JP2012020221A - Carbon dioxide absorption method - Google Patents

Carbon dioxide absorption method Download PDF

Info

Publication number
JP2012020221A
JP2012020221A JP2010159453A JP2010159453A JP2012020221A JP 2012020221 A JP2012020221 A JP 2012020221A JP 2010159453 A JP2010159453 A JP 2010159453A JP 2010159453 A JP2010159453 A JP 2010159453A JP 2012020221 A JP2012020221 A JP 2012020221A
Authority
JP
Japan
Prior art keywords
substituent
carbon dioxide
absorption method
compound
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010159453A
Other languages
Japanese (ja)
Other versions
JP5656492B2 (en
Inventor
Nobuhiko Yamashita
信彦 山下
Atsushi Mizusawa
厚志 水沢
Kaname Tsuchii
加奈芽 槌井
Takakiyo Tada
孝清 多田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2010159453A priority Critical patent/JP5656492B2/en
Publication of JP2012020221A publication Critical patent/JP2012020221A/en
Application granted granted Critical
Publication of JP5656492B2 publication Critical patent/JP5656492B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Abstract

PROBLEM TO BE SOLVED: To provide a new carbon dioxide absorption method with improved absorption efficiency of carbon dioxide.SOLUTION: The carbon dioxide absorption method includes bringing the carbon dioxide into contact with an aprotic polar solvent in which a compound having a hydroxy-ketone structure is dissolved.

Description

本発明は、炭酸ガスの吸収(固定)方法に関する。   The present invention relates to a method for absorbing (fixing) carbon dioxide.

炭酸ガスは、生物の呼吸、燃焼反応、化学工場等から多量に生成し、現在、炭酸ガスに起因する地球の温室効果が問題視されている。炭酸ガスは、地球環境へ及ぼす影響の他に宇宙船、潜水艦、深海艇等の密閉環境においても問題となる。そのため、種々の炭酸ガス吸着剤が提案されている。例えば、炭酸ガスを物理吸着する吸着剤としてNa−Xゼオライトなどのゼオライト系吸着剤が提案されている。   Carbon dioxide is produced in large quantities from living organisms' respiration, combustion reactions, chemical factories, etc., and the global greenhouse effect caused by carbon dioxide is currently regarded as a problem. Carbon dioxide is a problem in sealed environments such as spacecraft, submarines, and deep sea boats in addition to the effects on the global environment. For this reason, various carbon dioxide adsorbents have been proposed. For example, zeolite-based adsorbents such as Na-X zeolite have been proposed as adsorbents that physically adsorb carbon dioxide.

しかしながら、ゼオライト系吸着剤は、水分に対する吸着能が著しく大きいため、水分が共存する場合には、水分の吸着により炭酸ガスに対する吸着が著しく損なわれる。   However, the zeolite-based adsorbent has a remarkably large water-absorbing ability, so that when water is present, the adsorption of carbon dioxide gas is remarkably impaired by the water adsorption.

また、炭酸ガスを固定化する吸着剤として、活性炭、活性炭素繊維等にアミンを添着させた吸着剤が提案されている。例えば、特許文献1には、多孔質担体上に、N−メチルアラニン酸のアルカリ金属塩を担持させた炭酸ガス吸着剤が提案されている。アミン添着活性炭では、添着アミン量により炭酸ガス除去量が左右される上、アミンの添着量が小さいため、炭酸ガス吸着量が少ない。   Further, as an adsorbent for fixing carbon dioxide gas, an adsorbent obtained by adding an amine to activated carbon, activated carbon fiber or the like has been proposed. For example, Patent Document 1 proposes a carbon dioxide gas adsorbent in which an alkali metal salt of N-methylalanic acid is supported on a porous carrier. In the amine-impregnated activated carbon, the amount of carbon dioxide removed depends on the amount of amine added, and the amount of carbon dioxide adsorbed is small because the amount of amine attached is small.

更に、炭酸ガスを含むガスとの気液接触により、炭酸ガスと化学反応させて炭酸ガスを吸収する液状アミン吸収剤も知られている。   Further, liquid amine absorbents that absorb carbon dioxide gas through chemical reaction with carbon dioxide gas by gas-liquid contact with a gas containing carbon dioxide gas are also known.

しかしながら、液状アミン吸収剤を用いる場合には、設備が大型化するとともに装置の操作及び保守が煩雑化する。   However, when a liquid amine absorbent is used, the equipment becomes large and the operation and maintenance of the apparatus become complicated.

特開昭61−101244号公報JP-A-61-101244

本発明は、炭酸ガスの吸収効率が向上した新規な炭酸ガスの吸収方法を提供することを主な目的とする。   The main object of the present invention is to provide a novel carbon dioxide gas absorption method with improved carbon dioxide gas absorption efficiency.

本発明者は上記目的を達成すべく鋭意研究を重ねた結果、特定の構造を有する化合物を溶解した非プロトン性極性溶媒を炭酸ガス吸収剤として用いる場合には、上記目的を達成できることを見出し、本発明を完成するに至った。   As a result of intensive studies to achieve the above object, the present inventor has found that the above object can be achieved when an aprotic polar solvent in which a compound having a specific structure is dissolved is used as a carbon dioxide gas absorbent. The present invention has been completed.

即ち、本発明は下記の炭酸ガスの吸収方法に関する。
1.ヒドロキシ−ケトン構造を有する化合物を溶解した非プロトン性極性溶媒に炭酸ガスを接触させることを特徴とする炭酸ガスの吸収方法。
2.前記非プロトン性極性溶媒中の前記ヒドロキシ−ケトン構造を有する化合物の含有量は、45重量%以上である、上記項1に記載の吸収方法。
3.前記非プロトン性極性溶媒は、白金、酸化亜鉛及びゼオライトからなる群から選択される少なくとも1種の触媒を含有する、上記項1又は2に記載の吸収方法。
4.前記非プロトン性極性溶媒の温度が20〜150℃である、上記項1〜3のいずれかに記載の吸収方法。
5.前記ヒドロキシ−ケトン構造を有する化合物は、下記(A)〜(F):
(A)ケトース化合物、
(B)下記式(1)で示される化合物、
That is, the present invention relates to the following carbon dioxide absorption method.
1. A carbon dioxide absorption method comprising contacting carbon dioxide with an aprotic polar solvent in which a compound having a hydroxy-ketone structure is dissolved.
2. Item 2. The absorption method according to Item 1, wherein the content of the compound having a hydroxy-ketone structure in the aprotic polar solvent is 45% by weight or more.
3. Item 3. The absorption method according to Item 1 or 2, wherein the aprotic polar solvent contains at least one catalyst selected from the group consisting of platinum, zinc oxide, and zeolite.
4). Item 4. The absorption method according to any one of Items 1 to 3, wherein the temperature of the aprotic polar solvent is 20 to 150 ° C.
5. The compounds having the hydroxy-ketone structure are the following (A) to (F):
(A) a ketose compound,
(B) a compound represented by the following formula (1),

Figure 2012020221
Figure 2012020221

〔式(1)中、R及びRは同一又は異なって置換基を有していてもよい炭素数1〜5の炭化水素基を示す。Rは水素又は置換基を有していてもよい炭素数1〜5の炭化水素基を示す。R及びRは閉環して置換基を有していてもよい環状構造を形成してもよい。〕
(C)下記式(2)で示される化合物、
[In Formula (1), R < 1 > and R < 2 > are the same or different, and show the C1-C5 hydrocarbon group which may have a substituent. R 3 represents hydrogen or a hydrocarbon group having 1 to 5 carbon atoms which may have a substituent. R 2 and R 3 may be closed to form a cyclic structure which may have a substituent. ]
(C) a compound represented by the following formula (2),

Figure 2012020221
Figure 2012020221

〔式(2)中、Rは水素、水酸基又は置換基を有していてもよい炭素数1〜5の炭化水素基を示す。nは1以上の正数を示す。環状構造は置換基を有していてもよい。〕
(D)下記式(3)で示される化合物、
[In the formula (2), R 1 represents hydrogen, a hydroxyl group or a hydrocarbon group having 1 to 5 carbon atoms which may have a substituent. n represents a positive number of 1 or more. The cyclic structure may have a substituent. ]
(D) a compound represented by the following formula (3),

Figure 2012020221
Figure 2012020221

〔式(3)中、Ring及びRingは同一又は異なって置換基を有していてもよい芳香環を示す。〕
(E)下記式(4)で示される化合物、並びに、
[In Formula (3), Ring 1 and Ring 2 are the same or different and each represents an aromatic ring which may have a substituent. ]
(E) a compound represented by the following formula (4), and

Figure 2012020221
Figure 2012020221

〔式(4)中、Ringは置換基を有していてもよい芳香環を示す。Rは置換基を有していてもよい炭素数1〜5の炭化水素基を示す。Rは水素又は置換基を有していてもよい炭素数1〜5の炭化水素基を示す。R及びRは閉環して置換基を有していてもよい環状構造を形成してもよい。〕
(F)下記式(5)で示される化合物、
[In Formula (4), Ring 1 represents an aromatic ring which may have a substituent. R 1 represents a C 1-5 hydrocarbon group which may have a substituent. R 2 represents hydrogen or a hydrocarbon group having 1 to 5 carbon atoms which may have a substituent. R 1 and R 2 may be closed to form a cyclic structure which may have a substituent. ]
(F) a compound represented by the following formula (5),

Figure 2012020221
Figure 2012020221

〔式(5)中、Rは置換基を有していてもよい炭素数1〜5の炭化水素基を示す。Rは水素又は置換基を有していてもよい炭素数1〜5の炭化水素基を示す。Ringは置換基を有していてもよい芳香環を示す。〕
からなる群から選択される少なくとも1種である、上記項1〜4のいずれかに記載の吸収方法。
6.前記ヒドロキシ−ケトン構造を有する化合物は、グルコノラクトンである、上記項1〜4のいずれかに記載の吸収方法。
7.前記非プロトン性極性溶媒中に炭酸ガスをバブリングさせて接触させる、上記項1〜6のいずれかに記載の吸収方法。
[In formula (5), R 1 represents a hydrocarbon group of 1 to 5 carbon atoms which may have a substituent. R 2 represents hydrogen or a hydrocarbon group having 1 to 5 carbon atoms which may have a substituent. Ring 1 represents an aromatic ring which may have a substituent. ]
The absorption method according to any one of Items 1 to 4, which is at least one selected from the group consisting of:
6). Item 5. The absorption method according to any one of Items 1 to 4, wherein the compound having a hydroxy-ketone structure is gluconolactone.
7). Item 7. The absorption method according to any one of Items 1 to 6, wherein carbon dioxide gas is bubbled into contact with the aprotic polar solvent.

以下、本発明の炭酸ガスの吸収方法について詳細に説明する。   Hereinafter, the carbon dioxide absorption method of the present invention will be described in detail.

本発明の炭酸ガスの吸収方法は、ヒドロキシ−ケトン構造を有する化合物を溶解した非プロトン性極性溶媒に炭酸ガスを接触させることを特徴とする。   The method for absorbing carbon dioxide of the present invention is characterized in that carbon dioxide gas is brought into contact with an aprotic polar solvent in which a compound having a hydroxy-ketone structure is dissolved.

上記特徴を有する本発明の炭酸ガスの吸収方法は、ヒドロキシ−ケトン構造を有する化合物を溶解した非プロトン性極性溶媒に炭酸ガスを接触させることにより、ヒドロキシ−ケトン構造を有する化合物のカルボニル基に炭酸ガス(CO)が求核付加反応することにより炭酸ガスが効率的に吸収(固定)される。 In the carbon dioxide gas absorption method of the present invention having the above characteristics, carbonic acid gas is brought into contact with an aprotic polar solvent in which a compound having a hydroxy-ketone structure is dissolved, whereby carbonic acid is added to the carbonyl group of the compound having a hydroxy-ketone structure. Carbon dioxide is efficiently absorbed (fixed) by the nucleophilic addition reaction of the gas (CO 2 ).

ヒドロキシ−ケトン構造を有する化合物としては限定的ではないが、例えば、下記(A)〜(F)で示される化合物の少なくとも1種が使用できる。
(A)ケトース化合物、
(B)下記式(1)で示される化合物、
Although it does not limit as a compound which has a hydroxy-ketone structure, For example, at least 1 sort (s) of the compound shown by the following (A)-(F) can be used.
(A) a ketose compound,
(B) a compound represented by the following formula (1),

Figure 2012020221
Figure 2012020221

〔式(1)中、R及びRは同一又は異なって置換基を有していてもよい炭素数1〜5の炭化水素基を示す。Rは水素又は置換基を有していてもよい炭素数1〜5の炭化水素基を示す。R及びRは閉環して置換基を有していてもよい環状構造を形成してもよい。〕
(C)下記式(2)で示される化合物、
[In Formula (1), R < 1 > and R < 2 > are the same or different, and show the C1-C5 hydrocarbon group which may have a substituent. R 3 represents hydrogen or a hydrocarbon group having 1 to 5 carbon atoms which may have a substituent. R 2 and R 3 may be closed to form a cyclic structure which may have a substituent. ]
(C) a compound represented by the following formula (2),

Figure 2012020221
Figure 2012020221

〔式(2)中、Rは水素、水酸基又は置換基を有していてもよい炭素数1〜5の炭化水素基を示す。nは1以上の正数を示す。環状構造は置換基を有していてもよい。〕
(D)下記式(3)で示される化合物、
[In the formula (2), R 1 represents hydrogen, a hydroxyl group or a hydrocarbon group having 1 to 5 carbon atoms which may have a substituent. n represents a positive number of 1 or more. The cyclic structure may have a substituent. ]
(D) a compound represented by the following formula (3),

Figure 2012020221
Figure 2012020221

〔式(3)中、Ring及びRingは同一又は異なって置換基を有していてもよい芳香環を示す。〕
(E)下記式(4)で示される化合物、並びに、
[In Formula (3), Ring 1 and Ring 2 are the same or different and each represents an aromatic ring which may have a substituent. ]
(E) a compound represented by the following formula (4), and

Figure 2012020221
Figure 2012020221

〔式(4)中、Ringは置換基を有していてもよい芳香環を示す。Rは置換基を有していてもよい炭素数1〜5の炭化水素基を示す。Rは水素又は置換基を有していてもよい炭素数1〜5の炭化水素基を示す。R及びRは閉環して置換基を有していてもよい環状構造を形成してもよい。〕
(F)下記式(5)で示される化合物、
[In Formula (4), Ring 1 represents an aromatic ring which may have a substituent. R 1 represents a C 1-5 hydrocarbon group which may have a substituent. R 2 represents hydrogen or a hydrocarbon group having 1 to 5 carbon atoms which may have a substituent. R 1 and R 2 may be closed to form a cyclic structure which may have a substituent. ]
(F) a compound represented by the following formula (5),

Figure 2012020221
Figure 2012020221

〔式(5)中、Rは置換基を有していてもよい炭素数1〜5の炭化水素基を示す。Rは水素又は置換基を有していてもよい炭素数1〜5の炭化水素基を示す。Ringは置換基を有していてもよい芳香環を示す。〕
そして、(A)ケトース化合物としては、グルコノラクトンが好ましい。
[In formula (5), R 1 represents a hydrocarbon group of 1 to 5 carbon atoms which may have a substituent. R 2 represents hydrogen or a hydrocarbon group having 1 to 5 carbon atoms which may have a substituent. Ring 1 represents an aromatic ring which may have a substituent. ]
And (A) As a ketose compound, gluconolactone is preferable.

(B)式(1)で示される化合物としては、下記表1の(1-1)〜(1-4)の少なくとも1種が好ましい。   (B) The compound represented by the formula (1) is preferably at least one of (1-1) to (1-4) in Table 1 below.

Figure 2012020221
Figure 2012020221

(C)式(2)で示される化合物としては、下記表2の(2-1)〜(2-6)の少なくとも1種が好ましい。   (C) The compound represented by the formula (2) is preferably at least one of (2-1) to (2-6) in Table 2 below.

Figure 2012020221
Figure 2012020221

(D)式(3)で示される化合物としては、下記表3の(3-1)〜(3-5)の少なくとも1種が好ましい。   (D) As a compound shown by Formula (3), at least 1 sort (s) of (3-1)-(3-5) of following Table 3 is preferable.

Figure 2012020221
Figure 2012020221

(E)式(4)で示される化合物としては、下記表4の(4-1)に示される化合物が好ましい。   (E) As a compound shown by Formula (4), the compound shown by (4-1) of the following Table 4 is preferable.

(F)式(5)で示される化合物としては、下記表4の(4-2)に示される化合物が好ましい。   (F) As a compound shown by Formula (5), the compound shown by (4-2) of following Table 4 is preferable.

Figure 2012020221
Figure 2012020221

上記の(A)〜(F)で示される化合物の中でも、(A)ケトース化合物が好ましく、特にグルコノラクトンが好ましい。   Among the compounds represented by the above (A) to (F), (A) ketose compounds are preferable, and gluconolactone is particularly preferable.

上記グルコノラクトンとしては限定されないが、地球上で最も豊富なバイオマスであるセルロースを原料として合成することが好ましい。即ち、可溶化セルロースを溶媒中で酸分解することによりグルコースとし、更にグルコースを酸化することによりグルコノラクトンを合成することが好ましい。   Although it does not limit as said gluconolactone, It is preferable to synthesize | combine using the cellulose which is the most abundant biomass on the earth as a raw material. That is, it is preferable to synthesize solubilized cellulose into glucose by acidolysis in a solvent and further synthesize glucose by oxidizing glucose.

上記可溶化セルロースは、例えば、特開2009-179913号公報に記載された方法によって製造することが好ましい。具体的には、下記式(6)で示されるイオン液体を含有する溶媒中でセルロース原料を膨潤及び/または部分溶解、解繊させることにより製造することが好ましい。   The solubilized cellulose is preferably produced, for example, by the method described in JP-A-2009-179913. Specifically, the cellulose raw material is preferably produced by swelling and / or partial dissolution and defibration in a solvent containing an ionic liquid represented by the following formula (6).

Figure 2012020221
Figure 2012020221

〔式(6)中、Rは炭素数1〜4のアルキル基であり、Rは炭素数1〜4のアルキル基又はアリル基である。Xはハロゲン又は擬ハロゲンである。〕
上記セルロース原料としては限定的ではないが、例えば、木材、木粉、綿、麻、わら等の天然セルロース原料、クラフトパルプ、サルファイトパルプ等の木材化学処理パルプ、セミケミカルパルプ、古紙又はその再生パルプなどが挙げられる。これらの中でもコスト面、品質面、地球環境面より、木材パルプが好ましい。これらのセルロース原料は、処理の容易さ及び溶媒の浸透促進の目的から、適宜粉砕してから用いてもよい。
Wherein (6), R 1 is an alkyl group having 1 to 4 carbon atoms, R 2 is an alkyl group or an allyl group having 1 to 4 carbon atoms. X is halogen or pseudohalogen. ]
The cellulose raw material is not limited. For example, natural cellulose raw materials such as wood, wood powder, cotton, hemp, straw, etc., wood chemically treated pulp such as kraft pulp and sulfite pulp, semi-chemical pulp, waste paper or recycled paper Examples include pulp. Among these, wood pulp is preferable from the viewpoint of cost, quality, and global environment. These cellulose raw materials may be used after being appropriately pulverized for the purpose of ease of treatment and promotion of solvent penetration.

上記イオン液体としては、具体的には、1−ブチル−3−メチルイミダゾリウムクロリド、1−ブチル−3−メチルイミダゾリウムブロミド、1−アリル−3−メチルイミダゾリウムクロリド、1−アリル−3−メチルイミダゾリウムブロミド、1−プロピル−3−メチルイミダゾリウムブロミド等が挙げられる。   Specific examples of the ionic liquid include 1-butyl-3-methylimidazolium chloride, 1-butyl-3-methylimidazolium bromide, 1-allyl-3-methylimidazolium chloride, 1-allyl-3- Examples thereof include methyl imidazolium bromide and 1-propyl-3-methyl imidazolium bromide.

上記イオン液体のみでセルロース原料を処理することもできるが、溶解力が高く微細繊維まで溶解してしまうおそれがある場合、有機溶媒を添加して使用することが好ましい。添加する有機溶媒はイオン液体との相溶性、セルロース原料との親和性、混合溶媒の溶解性、粘度などを考慮し適宜選択すればよいが、例えば、N,N−ジメチルアセトアミド、N,N−ジメチルホルムアミド、1−メチル−2−ピロリドン、ジメチルスルフォキサイド、アセトニトリル、メタノール、エタノール等の少なくとも1種が好ましい。これらの有機溶媒の共存により、イオン液体はセルロース原料の微細繊維間への浸透が促進され、また、イオン液体による微細繊維の結晶構造の破壊を防ぐことができる。   Although the cellulose raw material can be treated only with the ionic liquid, it is preferable to add an organic solvent when there is a possibility that even a fine fiber may be dissolved because of high dissolving power. The organic solvent to be added may be appropriately selected in consideration of compatibility with the ionic liquid, affinity with the cellulose raw material, solubility of the mixed solvent, viscosity, and the like. For example, N, N-dimethylacetamide, N, N- At least one of dimethylformamide, 1-methyl-2-pyrrolidone, dimethyl sulfoxide, acetonitrile, methanol, ethanol and the like is preferable. By the coexistence of these organic solvents, the ionic liquid can promote the penetration of the cellulose raw material between the fine fibers, and can prevent the crystal structure of the fine fibers from being broken by the ionic liquid.

上記イオン液体を含有する溶媒は、イオン液体の含有率が20〜100重量%であることが好ましい。イオン液体の含有量をこの範囲で設定すると、溶媒のセルロース微細繊維間への速やかな浸透、膨潤が生じ、抽出効率と微細繊維へのダメージの低減を両立することができる。   The solvent containing the ionic liquid preferably has an ionic liquid content of 20 to 100% by weight. When the content of the ionic liquid is set within this range, rapid penetration and swelling of the solvent between the cellulose fine fibers occurs, and both the extraction efficiency and the reduction of damage to the fine fibers can be achieved.

上記イオン液体を含有する溶媒中でセルロース原料を膨潤させることとは、セルロース原料を構成する微細繊維が若干弛緩し、外力により開裂し易い状態にあることを意味する。部分溶解とは、高い結晶性の微細繊維の間に結合剤として存在する物質を溶解することを意味する。これらの物質は、セルロース原料の場合はリグニン、ヘミセルロース及び非結晶のセルロースである。更に解繊とはセルロース原料を構成する微細繊維の本来の配向状態から無秩序な状態に変化することを指す。   Swelling the cellulose raw material in the solvent containing the ionic liquid means that the fine fibers constituting the cellulose raw material are slightly relaxed and are easily cleaved by an external force. Partial dissolution means dissolving a substance present as a binder between highly crystalline fine fibers. These substances are lignin, hemicellulose and amorphous cellulose in the case of cellulose raw materials. Furthermore, defibration refers to a change from the original orientation state of the fine fibers constituting the cellulose raw material to a disordered state.

イオン液体を含有する溶媒でセルロース原料を膨潤させた後、機械処理(ホモジナイズ処理)又は超音波処理により更に解繊することが好ましい。イオン液体を含有する溶媒により膨潤処理を行なったセルロース原料は、微細繊維間の結合が弱くなっているため、外力の作用により微細繊維は容易に解繊される。上記過程を経ることにより、可溶化セルロースが得られる。   It is preferable that the cellulose raw material is swollen with a solvent containing an ionic liquid and then further defibrated by mechanical treatment (homogenization treatment) or ultrasonic treatment. The cellulose raw material that has been subjected to the swelling treatment with the solvent containing the ionic liquid has weak bonds between the fine fibers, and therefore the fine fibers are easily defibrated by the action of external force. Through the above process, solubilized cellulose is obtained.

本発明では、上記により得られた可溶化セルロースを溶媒中でそのまま酸分解することによりグルコースとし、更にグルコースを酸化することによりグルコノラクトンを合成することが好ましい。酸分解及び酸化の方法については、常法に従って行えばよい。   In the present invention, it is preferable to synthesize gluconolactone by oxidizing the solubilized cellulose obtained in the above as it is in the solvent to produce glucose, and further oxidizing the glucose. What is necessary is just to perform according to a conventional method about the method of acid decomposition and oxidation.

本発明では、ヒドロキシ−ケトン構造を有する化合物を溶解した非プロトン性極性溶媒を炭酸ガス吸収剤として用いる。非プロトン性極性溶媒としては限定されないが、イオン液体が好ましく、上述した式(6)で示されるイオン液体を含有する溶媒をそのまま用いることができる。   In the present invention, an aprotic polar solvent in which a compound having a hydroxy-ketone structure is dissolved is used as a carbon dioxide gas absorbent. Although it does not limit as an aprotic polar solvent, An ionic liquid is preferable and the solvent containing the ionic liquid shown by Formula (6) mentioned above can be used as it is.

非プロトン性極性溶媒中のヒドロキシ−ケトン構造を有する化合物の含有量は限定的ではないが、非プロトン性極性溶媒を常温で使用する場合には45重量%以上が好ましく、45〜60重量%がより好ましい。含有量が多過ぎると、粘度が高くなり炭酸ガスの接触(例えば、バブリング)が困難となるおそれがある。   The content of the compound having a hydroxy-ketone structure in the aprotic polar solvent is not limited. However, when the aprotic polar solvent is used at room temperature, it is preferably 45% by weight or more and 45 to 60% by weight. More preferred. When there is too much content, there exists a possibility that a viscosity may become high and the contact (for example, bubbling) of a carbon dioxide gas may become difficult.

非プロトン性極性溶媒の温度は限定的ではないが、20〜150℃が好ましく、50〜100℃がより好ましい。この温度を採用することにより、炭酸ガス吸収効率を高めることができる。   Although the temperature of an aprotic polar solvent is not limited, 20-150 degreeC is preferable and 50-100 degreeC is more preferable. By adopting this temperature, the carbon dioxide absorption efficiency can be increased.

非プロトン性極性溶媒中には、触媒を含有することが好ましい。触媒としては、白金、酸化亜鉛及びゼオライトからなる群から選択される少なくとも1種が好ましい。触媒の含有量は限定的ではないが、数ppm〜数十重量%程度の範囲で適宜調整できる。   The aprotic polar solvent preferably contains a catalyst. The catalyst is preferably at least one selected from the group consisting of platinum, zinc oxide and zeolite. The catalyst content is not limited, but can be appropriately adjusted within a range of several ppm to several tens of weight percent.

炭酸ガスの接触方法は限定的ではなく、例えば、吹き込み(バブリング)によって接触させることが好ましい。この接触により、ヒドロキシ−ケトン構造を有する化合物のカルボニル基に炭酸ガス(CO)が求核付加反応することにより炭酸ガスが効率的に吸収(固定)される。 The method for contacting the carbon dioxide gas is not limited. For example, it is preferable that the carbon dioxide gas is brought into contact by bubbling. By this contact, carbon dioxide gas (CO 2 ) undergoes a nucleophilic addition reaction to the carbonyl group of the compound having a hydroxy-ketone structure, whereby carbon dioxide gas is efficiently absorbed (fixed).

本発明の炭酸ガスの吸収方法は、ヒドロキシ−ケトン構造を有する化合物を溶解した非プロトン性極性溶媒に炭酸ガスを接触させることにより、ヒドロキシ−ケトン構造を有する化合物のカルボニル基に炭酸ガス(CO)が求核付加反応することにより炭酸ガスが効率的に吸収(固定)される。 Absorption method the carbon dioxide gas of the present invention are hydroxy - by contacting in an aprotic polar solvent to dissolve the compound having a ketone structure carbon dioxide, hydroxy - carbon dioxide to the carbonyl group of the compound having a ketone structure (CO 2 ) Undergoes a nucleophilic addition reaction, whereby carbon dioxide is efficiently absorbed (fixed).

以下に実施例を示して本発明を具体的に説明する。但し本発明は実施例に限定されない。   The present invention will be specifically described below with reference to examples. However, the present invention is not limited to the examples.

実施例1〜7
イオン液体である1−ブチル−3−メチルイミダゾリウムクロリド(BMIMCL)とN,N−ジメチルアセトアミド(DMAC)を3:1に混合し、80℃に加熱した後、撹拌しながらそこにグルコノラクトンを45重量%の含有量となるように徐々に溶解した。
Examples 1-7
The ionic liquid 1-butyl-3-methylimidazolium chloride (BMIMCL) and N, N-dimethylacetamide (DMAC) are mixed at a ratio of 3: 1, heated to 80 ° C., and then mixed with gluconolactone with stirring. Was gradually dissolved to a content of 45% by weight.

上記溶液に炭酸ガスをバブリングすることにより炭酸ガスを吸収させた。なお、実施例1〜2では、溶液温度を室温まで冷却してから使用した。   Carbon dioxide was absorbed by bubbling carbon dioxide into the solution. In Examples 1-2, the solution temperature was cooled to room temperature before use.

各実施例における触媒の有無、反応時間、反応温度及び反応率を下記表5に示す。   The presence / absence of catalyst, reaction time, reaction temperature and reaction rate in each Example are shown in Table 5 below.

Figure 2012020221
Figure 2012020221

反応率は、残存グルコノラクトンと生成物(炭酸ガス付加物)の比率から算出した〕
表5の結果から明らかなように、非プロトン性極性溶媒を加熱して用いることにより、炭酸ガスの吸収速度を促進することができる。また、加熱すると共に触媒を用いることにより炭酸ガスの吸収速度及び吸収効率を更に促進することができる。
[ * The reaction rate was calculated from the ratio of residual gluconolactone and product (carbon dioxide adduct)]
As is apparent from the results in Table 5, the absorption rate of carbon dioxide gas can be promoted by heating and using the aprotic polar solvent. Moreover, the absorption rate and absorption efficiency of carbon dioxide can be further promoted by heating and using a catalyst.

Claims (7)

ヒドロキシ−ケトン構造を有する化合物を溶解した非プロトン性極性溶媒に炭酸ガスを接触させることを特徴とする炭酸ガスの吸収方法。   A carbon dioxide absorption method comprising contacting carbon dioxide with an aprotic polar solvent in which a compound having a hydroxy-ketone structure is dissolved. 前記非プロトン性極性溶媒中の前記ヒドロキシ−ケトン構造を有する化合物の含有量は、45重量%以上である、請求項1に記載の吸収方法。   The absorption method according to claim 1, wherein the content of the compound having a hydroxy-ketone structure in the aprotic polar solvent is 45 wt% or more. 前記非プロトン性極性溶媒は、白金、酸化亜鉛及びゼオライトからなる群から選択される少なくとも1種の触媒を含有する、請求項1又は2に記載の吸収方法。   The absorption method according to claim 1 or 2, wherein the aprotic polar solvent contains at least one catalyst selected from the group consisting of platinum, zinc oxide and zeolite. 前記非プロトン性極性溶媒の温度が20〜150℃である、請求項1〜3のいずれかに記載の吸収方法。   The absorption method according to any one of claims 1 to 3, wherein the temperature of the aprotic polar solvent is 20 to 150 ° C. 前記ヒドロキシ−ケトン構造を有する化合物は、下記(A)〜(F):
(A)ケトース化合物、
(B)下記式(1)で示される化合物、
Figure 2012020221
〔式(1)中、R及びRは同一又は異なって置換基を有していてもよい炭素数1〜5の炭化水素基を示す。Rは水素又は置換基を有していてもよい炭素数1〜5の炭化水素基を示す。R及びRは閉環して置換基を有していてもよい環状構造を形成してもよい。〕
(C)下記式(2)で示される化合物、
Figure 2012020221
〔式(2)中、Rは水素、水酸基又は置換基を有していてもよい炭素数1〜5の炭化水素基を示す。nは1以上の正数を示す。環状構造は置換基を有していてもよい。〕
(D)下記式(3)で示される化合物、
Figure 2012020221
〔式(3)中、Ring及びRingは同一又は異なって置換基を有していてもよい芳香環を示す。〕
(E)下記式(4)で示される化合物、並びに、
Figure 2012020221
〔式(4)中、Ringは置換基を有していてもよい芳香環を示す。Rは置換基を有していてもよい炭素数1〜5の炭化水素基を示す。Rは水素又は置換基を有していてもよい炭素数1〜5の炭化水素基を示す。R及びRは閉環して置換基を有していてもよい環状構造を形成してもよい。〕
(F)下記式(5)で示される化合物、
Figure 2012020221
〔式(5)中、Rは置換基を有していてもよい炭素数1〜5の炭化水素基を示す。Rは水素又は置換基を有していてもよい炭素数1〜5の炭化水素基を示す。Ringは置換基を有していてもよい芳香環を示す。〕
からなる群から選択される少なくとも1種である、請求項1〜4のいずれかに記載の吸収方法。
The compounds having the hydroxy-ketone structure are the following (A) to (F):
(A) a ketose compound,
(B) a compound represented by the following formula (1),
Figure 2012020221
[In Formula (1), R < 1 > and R < 2 > are the same or different, and show the C1-C5 hydrocarbon group which may have a substituent. R 3 represents hydrogen or a hydrocarbon group having 1 to 5 carbon atoms which may have a substituent. R 2 and R 3 may be closed to form a cyclic structure which may have a substituent. ]
(C) a compound represented by the following formula (2),
Figure 2012020221
[In the formula (2), R 1 represents hydrogen, a hydroxyl group or a hydrocarbon group having 1 to 5 carbon atoms which may have a substituent. n represents a positive number of 1 or more. The cyclic structure may have a substituent. ]
(D) a compound represented by the following formula (3),
Figure 2012020221
[In Formula (3), Ring 1 and Ring 2 are the same or different and each represents an aromatic ring which may have a substituent. ]
(E) a compound represented by the following formula (4), and
Figure 2012020221
[In Formula (4), Ring 1 represents an aromatic ring which may have a substituent. R 1 represents a C 1-5 hydrocarbon group which may have a substituent. R 2 represents hydrogen or a hydrocarbon group having 1 to 5 carbon atoms which may have a substituent. R 1 and R 2 may be closed to form a cyclic structure which may have a substituent. ]
(F) a compound represented by the following formula (5),
Figure 2012020221
[In formula (5), R 1 represents a hydrocarbon group of 1 to 5 carbon atoms which may have a substituent. R 2 represents hydrogen or a hydrocarbon group having 1 to 5 carbon atoms which may have a substituent. Ring 1 represents an aromatic ring which may have a substituent. ]
The absorption method according to claim 1, wherein the absorption method is at least one selected from the group consisting of:
前記ヒドロキシ−ケトン構造を有する化合物は、グルコノラクトンである、請求項1〜4のいずれかに記載の吸収方法。   The absorption method according to claim 1, wherein the compound having a hydroxy-ketone structure is gluconolactone. 前記非プロトン性極性溶媒中に炭酸ガスをバブリングさせて接触させる、請求項1〜6のいずれかに記載の吸収方法。   The absorption method according to claim 1, wherein carbon dioxide gas is bubbled into contact with the aprotic polar solvent.
JP2010159453A 2010-07-14 2010-07-14 Carbon dioxide absorption method Expired - Fee Related JP5656492B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010159453A JP5656492B2 (en) 2010-07-14 2010-07-14 Carbon dioxide absorption method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010159453A JP5656492B2 (en) 2010-07-14 2010-07-14 Carbon dioxide absorption method

Publications (2)

Publication Number Publication Date
JP2012020221A true JP2012020221A (en) 2012-02-02
JP5656492B2 JP5656492B2 (en) 2015-01-21

Family

ID=45774952

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010159453A Expired - Fee Related JP5656492B2 (en) 2010-07-14 2010-07-14 Carbon dioxide absorption method

Country Status (1)

Country Link
JP (1) JP5656492B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10322367B2 (en) 2016-02-12 2019-06-18 University Of Kentucky Research Foundation Method of development and use of catalyst-functionalized catalytic particles to increase the mass transfer rate of solvents used in acid gas cleanup

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6277312A (en) * 1985-09-30 1987-04-09 Earth Chem Corp Ltd Foaming bath agent
JPS63194715A (en) * 1987-02-10 1988-08-11 Agency Of Ind Science & Technol Gas separating material
JPH05168845A (en) * 1991-12-26 1993-07-02 Tokuyama Soda Co Ltd Method for releasing gaseous carbon dioxide
JP2006036950A (en) * 2004-07-28 2006-02-09 Mitsubishi Materials Corp Gas purification process and absorbent solution used in the same
JP2006305544A (en) * 2004-07-28 2006-11-09 Mitsubishi Materials Corp Method of purifying gas, apparatus therefor, and acidic gas absorbing liquid used in the purification
JP2007090329A (en) * 2005-09-02 2007-04-12 Nissan Motor Co Ltd Molecule mediation species composition and molecule concentration apparatus
JP2008045049A (en) * 2006-08-17 2008-02-28 Kri Inc Method and apparatus for easily separating gas component
JP2008296211A (en) * 2007-05-02 2008-12-11 National Institute Of Advanced Industrial & Technology Gas separation, purification and recovery method and apparatus therefor
JP2009106909A (en) * 2007-10-31 2009-05-21 National Institute Of Advanced Industrial & Technology Adsorbent for selectively separating-refining carbon dioxide
WO2009076327A1 (en) * 2007-12-13 2009-06-18 Alstom Technology Ltd System and method for regeneration of an absorbent solution

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6277312A (en) * 1985-09-30 1987-04-09 Earth Chem Corp Ltd Foaming bath agent
JPS63194715A (en) * 1987-02-10 1988-08-11 Agency Of Ind Science & Technol Gas separating material
JPH05168845A (en) * 1991-12-26 1993-07-02 Tokuyama Soda Co Ltd Method for releasing gaseous carbon dioxide
JP2006036950A (en) * 2004-07-28 2006-02-09 Mitsubishi Materials Corp Gas purification process and absorbent solution used in the same
JP2006305544A (en) * 2004-07-28 2006-11-09 Mitsubishi Materials Corp Method of purifying gas, apparatus therefor, and acidic gas absorbing liquid used in the purification
JP2007090329A (en) * 2005-09-02 2007-04-12 Nissan Motor Co Ltd Molecule mediation species composition and molecule concentration apparatus
JP2008045049A (en) * 2006-08-17 2008-02-28 Kri Inc Method and apparatus for easily separating gas component
JP2008296211A (en) * 2007-05-02 2008-12-11 National Institute Of Advanced Industrial & Technology Gas separation, purification and recovery method and apparatus therefor
JP2009106909A (en) * 2007-10-31 2009-05-21 National Institute Of Advanced Industrial & Technology Adsorbent for selectively separating-refining carbon dioxide
WO2009076327A1 (en) * 2007-12-13 2009-06-18 Alstom Technology Ltd System and method for regeneration of an absorbent solution
JP2011506080A (en) * 2007-12-13 2011-03-03 アルストム テクノロジー リミテッド Absorbent solution regeneration system and method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10322367B2 (en) 2016-02-12 2019-06-18 University Of Kentucky Research Foundation Method of development and use of catalyst-functionalized catalytic particles to increase the mass transfer rate of solvents used in acid gas cleanup

Also Published As

Publication number Publication date
JP5656492B2 (en) 2015-01-21

Similar Documents

Publication Publication Date Title
Zhong et al. Phenol-based ternary deep eutectic solvents for highly efficient and reversible absorption of NH3
Daochalermwong et al. Removal of heavy metal ions using modified celluloses prepared from pineapple leaf fiber
Shen et al. Adsorption of Cu (II) and Pb (II) onto diethylenetriamine-bacterial cellulose
Mamaní et al. Highly microporous sorbents from lignocellulosic biomass: different activation routes and their application to dyes adsorption
Duan et al. Lignin/chitin films and their adsorption characteristics for heavy metal ions
Cui et al. Efficient and reversible SO2 absorption by environmentally friendly task-specific deep eutectic solvents of PPZBr+ Gly
Gebald et al. Amine-based nanofibrillated cellulose as adsorbent for CO2 capture from air
Krishnan et al. Uptake of heavy metals in batch systems by sulfurized steam activated carbon prepared from sugarcane bagasse pith
Ooi et al. Conversion and characterization of activated carbon fiber derived from palm empty fruit bunch waste and its kinetic study on urea adsorption
Ohira et al. Design of cellulose dissolving ionic liquids inspired by nature
Murray et al. Highly-selective and reversible O2 binding in Cr3 (1, 3, 5-benzenetricarboxylate) 2
Le Leuch et al. Hydrogen sulfide adsorption and oxidation onto activated carbon cloths: applications to odorous gaseous emission treatments
Valdebenito et al. CO2 adsorption of surface-modified cellulose nanofibril films derived from agricultural wastes
Pohako-Esko et al. Chitosan containing supported ionic liquid phase materials for CO2 absorption
Liu et al. Double Cationization Approach toward Ionic Metal–Organic Frameworks with a High Bromide Content for CO2 Cycloaddition to Epoxides
Yang et al. Docking site modulation of isostructural covalent organic frameworks for CO2 fixation
Chowdhury et al. Adsorption of crystal violet from aqueous solution by citric acid modified rice straw: equilibrium, kinetics, and thermodynamics
Chatterjee et al. Low frequency ultrasound enhanced dual amination of biochar: a nitrogen-enriched sorbent for CO2 capture
Li et al. Research on urea linkages formation of amine functional adsorbents during CO2 capture process: two key factors analysis, temperature and moisture
CN107903408B (en) Cellulose-feather protein hydrogel nano metal compound and preparation method thereof
CN107866149A (en) A kind of preparation method of purification of air filter membrane
Ma et al. N-oxyl radicals trapped on Zeolite surface accelerate photocatalysis
JP5656492B2 (en) Carbon dioxide absorption method
Figueiredo et al. Electrochemical conversion of CO2 into organic carbonates—products and intermediates
JP6874329B2 (en) Formaldehyde removal composition and its manufacturing method, formaldehyde removal sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130610

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140407

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141028

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141125

R150 Certificate of patent or registration of utility model

Ref document number: 5656492

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees