WO2006100899A1 - 噴流はんだ槽 - Google Patents

噴流はんだ槽 Download PDF

Info

Publication number
WO2006100899A1
WO2006100899A1 PCT/JP2006/304328 JP2006304328W WO2006100899A1 WO 2006100899 A1 WO2006100899 A1 WO 2006100899A1 JP 2006304328 W JP2006304328 W JP 2006304328W WO 2006100899 A1 WO2006100899 A1 WO 2006100899A1
Authority
WO
WIPO (PCT)
Prior art keywords
solder
jet
solder bath
duct
jet solder
Prior art date
Application number
PCT/JP2006/304328
Other languages
English (en)
French (fr)
Inventor
Mitsuo Zen
Hirokazu Ichikawa
Original Assignee
Senju Metal Industry Co., Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Senju Metal Industry Co., Ltd filed Critical Senju Metal Industry Co., Ltd
Priority to CN2006800080584A priority Critical patent/CN101160193B/zh
Priority to EP06728697.1A priority patent/EP1859886B1/en
Priority to JP2007509179A priority patent/JP4636085B2/ja
Priority to US11/886,006 priority patent/US7988030B2/en
Publication of WO2006100899A1 publication Critical patent/WO2006100899A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/08Soldering by means of dipping in molten solder
    • B23K1/085Wave soldering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K3/00Tools, devices, or special appurtenances for soldering, e.g. brazing, or unsoldering, not specially adapted for particular methods
    • B23K3/06Solder feeding devices; Solder melting pans
    • B23K3/0646Solder baths
    • B23K3/0653Solder baths with wave generating means, e.g. nozzles, jets, fountains

Definitions

  • the present invention relates to a jet solder bath for soldering a printed circuit board by jetting molten solder.
  • soldering of a printed circuit board to be incorporated into a home appliance such as a television or a video is performed by a flow method because it must be produced in a large amount and at a low cost.
  • the flow method is a soldering method that is superior in mass production compared to other types of soldering because it can solder the entire printed circuit board in a single operation.
  • Processing equipment such as fluxers, pre-heaters, jet solder baths, and cooling machines are installed in the automatic soldering equipment that performs soldering using the flow method, and an endless conveyor runs on these processing equipment. Yes.
  • soldering printed circuit boards with an automatic soldering machine flux is applied with a fluxer while pre-heated by a conveyor while the printed circuit board is transported, solder is applied with a jet solder bath, and cooled with a cooler. Is made by Each processing device installed in the automatic soldering equipment can be used for many years if it is used normally, but only the jet solder bath has a shorter life than other processing equipment. The reason is that the jet solder bath is eroded.
  • This "erosion" means that a part constituting the jet solder bath is partially damaged by the molten solder.
  • erosion occurs in the jet solder bath, a hole is opened in the main body, and the molten solder that has become hot starts to spill out.
  • the molten solder that has spilled out of the jet solder bath is a very dangerous situation in which burners are burned to the soldering work that scorched the wiring part of the automatic soldering equipment and the floor of the workplace. Become a state. Therefore, measures are taken in the jet solder bath so as not to cause erosion.
  • the most effective means is to use stainless steel for the part constituting the jet solder bath. Stainless steel has a strong oxide film of chromium or nickel formed on its surface, so it does not come into direct contact with the stainless metal part. Therefore, with stainless steel, molten solder It is less likely to be alloyed with Tenres.
  • stainless steel may be eroded.
  • Stainless steel is eroded when the surface is free of a strong oxide film and the exposed stainless steel metal parts are exposed.
  • the oxide film on the stainless steel surface disappears locally, Fe in the stainless steel and Sn in the molten solder will alloy. Since this alloyed FeSn has a lower melting point, it melts into the molten solder and spreads further to the periphery and inside, eventually opening a stainless steel hole.
  • the cause of the local disappearance of the oxide film on the surface of the stainless steel in the jet solder bath is that the molten solder flows and flows well in the jet solder bath, and the flowing molten solder rubs against the stainless steel. This is because the surface acid film is physically peeled off. Therefore, in the jet solder bath, a lot of erosion occurs in the portion where the molten solder flows vigorously. The part that is severely eroded is the periphery of the pump where the flow of molten solder is fast, especially the bottom of the main body at the bottom of the duct where the pump is installed.
  • FIG. Fig. 3 is a front sectional view of a conventional jet solder bath.
  • the main body of the jet solder bath 1 is an open box, and the whole is made of stainless steel.
  • Molten solder 3 is placed in the main body 2, and is melted by an electric heater (not shown) and maintained at a predetermined temperature.
  • a primary jet nozzle 4 and a secondary jet nozzle are installed in the main body 2.
  • the primary jet nozzle 4 is provided with a large number of jet holes 5.
  • the primary jet nozzle 4 is connected to a duct 6, and a rectifying plate 8 in which a large number of holes 7 are formed is installed in the upper part of the duct.
  • An impeller pump 10 having a large number of blades 9 attached radially is installed at the end of the duct 6.
  • a shaft 11 is fixed to the upper center of the impeller pump 10, and a sprocket (not shown) is attached to the upper end of the shaft, and the sprocket is also interlocked with a motor (not shown).
  • An inflow port 12 is formed in the lower part of the duct 6 where the impeller pump 10 is installed. The inlet 12 is slightly smaller in diameter than the diameter of the blades 9 attached radially to the impeller pump 10.
  • the molten solder that has become the turbulent flow passes through a number of holes 7 in the rectifying plate 8 and is rectified. Then, the molten solder rectified by the rectifying plate 8 is ejected from the numerous ejection holes 5 of the primary jet nozzle 4. The molten solder ejected from a large number of ejection holes 5... Has a large number of irregularities, and the printed circuit board comes into contact with the irregular-shaped molten solder for soldering. Concave and convex molten solder often penetrates through holes and corners of electronic components, thus eliminating unsoldering. However, the uneven jets form a bridge between adjacent soldering parts and form a llara at the tip of the lead, so they are not shown! Correct it.
  • the molten solder becomes a vortex T on the bottom surface 13 of the main body 2 located below the inlet 12, and this vortex T rubs against the bottom surface 13 of the main body 2.
  • the acid rind film covering the stainless steel on the bottom surface 13 is removed, and a normal metal portion is exposed, and the stainless Fe and Sn in the solder are alloyed. This alloying progresses and is eaten into K, and eventually a hole is formed in the bottom surface 13.
  • the cause of erosion in the jet solder bath is also related to Sn in the solder and the soldering temperature, that is, the temperature of the molten solder in the jet solder bath.
  • Sn in the solder and the soldering temperature that is, the temperature of the molten solder in the jet solder bath.
  • the force that is more likely to occur as the Sn content in the solder used in the jet solder bath increases. This is because, as described above, stainless steel Fe is eroded by alloying with Sn in the solder. Is, This is because as the Sn content increases, alloying with Fe proceeds.
  • the higher the temperature of the molten solder in the jet solder bath the more likely it is to be eroded. This is not only the promotion of the alloying of Fe and Sn, but also this alloyed force. It is because it becomes easy to melt in.
  • the solder used for soldering printed circuit boards was a solder of Pb-63Sn alloy.
  • the solder has an Sn content of about 60% and the solder temperature in the jet solder bath is 220-240 ° C. At this Sn content and the solder temperature, it is difficult for the stainless steel to be eroded. It was a thing.
  • conventional Pb-Sn solder contains Pb and its use has been regulated. In other words, Pb has a negative effect when accumulated in the human body. Recently, lead-free solder that does not contain Pb has been used.
  • the lead-free solder contains Sn as a main component (95% by mass or more) and is added with Ag, Cu, In, Bi, Zn, Ni, Cr, Mo, Ga, Ge, P, etc. as appropriate. It is. Lead-free solders containing Sn as the main component often have a soldering temperature that has a melting point of 220 ° C or higher, that is, the temperature of the molten solder in the jet solder bath must inevitably be raised. ° C. In other words, lead-free solder has a high Sn content, and the solder temperature in the jet solder bath is also high! Therefore, the jet solder bath using lead-free solder was often eroded.
  • the jet solder bath used for the conventional Pb-63Sn solder and the jet solder bath using the recent lead-free solder have almost the same structure and material.
  • the Pb-Sn solder would cause erosion that did not occur.
  • the part that is severely eaten with lead-free solder is the bottom of the main body at the bottom of the duct where the pump is installed as described above. If the bottom of the main body is eroded and pierced, all the molten solder in the jet solder bath will spill out, making it extremely dangerous.
  • An object of the present invention is to provide a jet solder bath in which the bottom surface of the main body at the bottom of the duct is hardly eroded even when lead-free solder is used.
  • the present invention provides a jet solder bath in which a duct is installed in a main body, a pump is installed at an end of the duct, and an inflow port is formed in a lower portion of the pump. Do not affect the bottom of the body with the vortex generated at the bottom of the inlet! /, A jet solder bath characterized in that a shielding member is attached between the inlet and the bottom of the main body.
  • the jet solder bath of the present invention since the shielding member is installed below the inlet at the lower part of the pump, even if the vortex is generated on the shielding member, the vortex does not affect the bottom surface of the main body.
  • the bottom of the main body is not rubbed by the eddy current of the molten solder. Therefore, the jet solder bath of the present invention does not erode because the bottom surface of the main body is not rubbed by the molten solder, and the conventional jet solder bath can be safely soldered for a long period of time. Hana! / Has an excellent effect.
  • the jet solder bath of the present invention has a shielding member installed between the inlet of the duct and the bottom surface of the main body.
  • the shielding member may be installed on the duct or on the bottom surface of the main body. Good.
  • the shielding member installed in the jet solder bath of the present invention uses the same material as the bottom surface of the main body, that is, stainless steel.
  • stainless steel when the shielding member is eaten away, titanium or zirconium is used because it is somewhat expensive but does not adhere any molten solder.
  • a coating such as fluorine resin may be applied to the stainless steel surface, or a nitriding treatment may be applied to the stainless steel surface.
  • a non-metallic material such as ceramic or heat-resistant resin can be used as a material to which molten solder does not adhere.
  • the shielding member used in the jet solder bath of the present invention may have any shape as long as the vortex generated at the lower portion of the inlet does not affect the bottom surface of the main body. Shield As the shape of the material, a flat plate, a net, a punching plate, a cylindrical shape or the like can be adopted.
  • FIG. 1 is a front sectional view of a jet solder tank according to the present invention
  • FIG. 2 is a perspective view of an essential part.
  • An inlet 12 is formed in the lower part of the duct 6 where the impeller pump 10 is installed, and a shielding member 14 is installed between the inlet and the bottom surface 13 of the main body 2.
  • the shielding member is circular with a diameter larger than the diameter of the inlet 12.
  • the shielding member 14 is installed at the lower part of a plurality of suspension bars 15... Fixed at the lower part of the duct 6.
  • the shielding member is eaten for a long time, the shielding member is almost lost and the effect as a shielding member is lost. Therefore, when the disappearance becomes large when the shielding member is checked in a timely manner, the inspection is not performed only for the force shielding member that needs to be replaced.
  • solder oxides adhere to the main body wall surface, duct wall surface, rectifying plate, etc. during use for a long period of time, and may peel off during use and adhere to the printed circuit board. For this reason, the jet solder bath regularly cleans the oxide every time a certain period of time elapses.
  • the shielding member may be inspected during the periodic cleaning of the acid oxide.
  • FIG. 1 Front sectional view of the jet solder bath of the present invention
  • FIG. 2 is a perspective view of the main part of the present invention.
  • the present invention can also be applied to the secondary jet.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Molten Solder (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Description

明 細 書
噴流はんだ槽
技術分野
[0001] 本発明は、溶融はんだを噴流させてプリント基板のはんだ付けを行う噴流はんだ槽 に関する。
背景技術
[0002] 一般にテレビ、ビデオのような家電製品に組み込むプリント基板のはんだ付けは大 量に、し力も安価に生産しなければならないため、フロー法で行う。フロー法は、一度 の操作でプリント基板全面のはんだ付けができるため、他のはんだ付けに比べて大 量生産に優れたはんだ付け方法である。フロー法ではんだ付けを行う自動はんだ付 け装置には、フラクサ一、プリヒーター、噴流はんだ槽、冷却機等の処理装置が設置 されており、これらの処理装置上を無端のコンベアが走行している。自動はんだ付け 装置でプリント基板のはんだ付けを行う場合、コンベアでプリント基板を搬送しながら フラクサ一でフラックス塗布、プリヒーターで予備加熱、噴流はんだ槽ではんだの付 着、冷却機で冷却を行うことによりなされる。自動はんだ付け装置に設置された各処 理装置は、通常の使い方であれば長年月使用可能であるが、噴流はんだ槽だけは 他の処理装置に比べて寿命が短い。その理由は、噴流はんだ槽が食われる力 であ る。
[0003] この「食われ」とは、噴流はんだ槽を構成する部分が溶融はんだにより部分的に欠 損を起こしてしまうことである。噴流はんだ槽で食われが発生すると、本体では穴が開 いて高温となった溶融はんだが外部にこぼれ出るようになる。噴流はんだ槽カもこぼ れ出た溶融はんだは、自動はんだ付け装置の配線部分や作業場の床を焦がすばか りでなぐはんだ付け作業を行っていた作業者に火傷を負わすという大変な危険な状 態になる。そのため噴流はんだ槽では、食われを起こさないような手段を講じている。 その最も有効な手段は噴流はんだ槽を構成する部分にステンレスを用いることである 。ステンレスは、表面にクロムやニッケルの強固な酸ィ匕膜が形成されているため、ステ ンレスの金属部分とを直接接することがない。従って、ステンレスは、溶融はんだがス テンレスと合金化しにくぐそれだけ食われが少ない。
[0004] しかしながらステンレスでも食われを起こすことがある。ステンレスが食われるのは、 表面の強固な酸ィ匕膜がなくなって、清浄なステンレスの金属部分が露出したときであ る。つまり何らかの原因でステンレス表面の酸ィ匕膜が局部的になくなると、ステンレス 中の Feと溶融はんだ中の Snが合金化する。そしてこの合金化した FeSnは融点が下が るため、溶融はんだ中に溶け込み、これがさらに周囲や内部に広がって、ついにはス テンレスに穴が開いてしまうものである。
[0005] 噴流はんだ槽のステンレスで表面の酸ィ匕膜が局部的になくなる原因は、噴流はん だ槽では溶融はんだが勢 、よく流れ、その勢 、よく流れる溶融はんだがステンレスを 擦ってステンレス表面の酸ィ匕膜を物理的に剥がし取ってしまうからである。そのため 噴流はんだ槽では、溶融はんだが勢いよく流れる部分に食われが多く発生する。食 われの激しい部分は、溶融はんだの流れの速い部分であるポンプの周辺、特にボン プを設置したダクト下部の本体底面となるところである。
[0006] ここで図 3を参照しながら従来の噴流はんだ槽について説明する。図 3は従来の噴 流はんだ槽の正面断面図である。噴流はんだ槽 1の本体は無蓋箱状であり、全体が ステンレスで形成されている。本体 2内には溶融はんだ 3が入れられており、図示しな い電熱ヒーターで溶融状態にし、所定の温度に保たれている。また本体 2内には一 次噴流ノズル 4と二次噴流ノズル(図示せず)が設置されている。一次噴流ノズル 4に は多数の噴出孔 5 · · ·が穿設されて!/、る。
[0007] 一次噴流ノズル 4はダクト 6と接続されており、ダクト上部には多数の穴 7· · ·が穿設 された整流板 8が設置されている。またダクト 6の端部には、多数の羽根 9…を放射 状に取り付けたインペラポンプ 10が設置されている。インペラポンプ 10の上部中心 には軸 11が固定されており、該軸の上端には図示しないスプロケットが取り付けられ 、該スプロケットはやはり図示しないモーターと連動している。インペラポンプ 10が設 置されたダクト 6の下部には流入口 12が穿設されている。流入口 12は、インペラボン プ 10の放射状に取り付けられた羽根 9の直径よりも僅かに小径となっている。
[0008] 次に上記従来の噴流はんだ槽における溶融はんだの流動状態について説明する 。先ず、図示しないモーターを駆動させて、やはり図示しないスプロケットを回転させ 、さらにスプロケットに固定された軸 11を回転させると、軸 11が固定されたインペラポ ンプ 10が回転する。このときインペラポンプの多数の羽根 9 · · ·間にある溶融はんだ が羽根 9の回転の勢いで跳ね飛ばされてダクト 6の中を横方に送られる。このときダク ト 6の中を横方に送られた溶融はんだは、横方の流れが流動方向を上方に変えて上 方となるため、溶融はんだは乱流となっている。この乱流となった溶融はんだは、整 流板 8の多数の穴 7を通過して整流化される。そして整流板 8で整流となった溶融は んだは、一次噴流ノズル 4の多数の噴出孔 5から噴出する。多数の噴出孔 5 · · 'から 噴出した溶融はんだは、多数の凹凸状となり、プリント基板が該凹凸状の溶融はんだ に接触してはんだ付けがなされる。凹凸状の溶融はんだは、スルーホールや電子部 品の隅部によく侵入するため、未はんだをなくすものである。しかしながら凹凸状の噴 流は、隣接したはんだ付け部間にブリッジを形成させ、またリードの先端にッララを形 成させるため、これらを図示しな!、二次噴流ノズルから噴流する穏やかな噴流で修正 する。
[0009] ここで上記構造を有する従来の噴流はんだ槽で、本体底面に穴があく状態につい て説明する。インペラポンプ 10が回転し、インペラポンプの多数の羽根 9 · · '間にある 溶融はんだが回転する羽根の勢いで跳ね飛ばされてダクト 6の中の方に送られる。 するとインペラポンプ 10はダクト 6の流入口 12からダクト下部にある溶融はんだ 3を羽 根 9間に吸い込む。このときインペラポンプ 10が回転しているため、この回転が流入 口 12の下部にある溶融はんだをも回転さて渦流 Tを起こさせる。そのため流入口 12 の下方に位置する本体 2の底面 13上で溶融はんだが渦流 Tとなり、この渦流 Tが本 体 2の底面 13を擦るようになる。その結果、底面 13のステンレスを被っていた酸ィ匕皮 膜が除去されて正常な金属部分が露出し、ステンレスの Feとはんだ中の Snが合金化 する。そしてこの合金化が進行して食われ Kとなり、ついには底面 13に穴が開いてし まうものである。
[0010] 噴流はんだ槽における食われの原因は、はんだ中の Snとはんだ付け温度、即ち噴 流はんだ槽内での溶融はんだの温度も関係している。つまり噴流はんだ槽では、噴 流はんだ槽で使用するはんだ中の Sn含有量が多いほど発生しやすくなる力 これは 前述のようにステンレスの Feは、はんだ中の Snと合金化して食われとなるものであり、 Snの含有量が多いほど、 Feとの合金化が進行するからである。また噴流はんだ槽内 での溶融はんだの温度が高いほど、食われが発生しやすくなる力 これは Feと Snの 合金化が促進されるばかりでなぐこの合金化したもの力 高温となった溶融はんだ 中に溶け込みやすくなるからである。
[0011] 従来、プリント基板のはんだ付けに用いられていたはんだは、 Pb-63Sn合金のはん だであった。該はんだは、 Sn含有量が約 6割、噴流はんだ槽中のはんだの温度が 22 0〜240°Cであり、この Sn含有量とはんだの温度ではステンレスに対して食われを発 生させにくいものであった。しかしながら従来の Pb— Snはんだは、 Pbが含まれてい るため、その使用が規制されるようになってきた。つまり Pbは人体に蓄積されると悪影 響を及ぼすとして近時では Pbを全く含まな ヽ「鉛フリーはんだ」が使用されるようにな つてきた。該鉛フリーはんだとは、 Sn主成分(95質量%以上)とし、これに Ag、 Cu、 I n、 Bi、 Zn、 Ni、 Cr、 Mo、 Ga、 Ge、 P等を適宜添カ卩したものである。 Sn主成分の鉛 フリーはんだは、融点が 220°C以上のものが多ぐはんだ付け温度、即ち噴流はんだ 槽内の溶融はんだの温度も必然的に高くせざるを得ず、一般には 250〜260°Cとな つている。つまり鉛フリーはんだは、 Sn含有量が多いうえに、さらに噴流はんだ槽内 のはんだの温度も高!、ことから、鉛フリーはんだを用いた噴流はんだ槽では食われ が多く発生していた。
発明の開示
発明が解決しょうとする課題
[0012] 従来の Pb— 63Snはんだに使用していた噴流はんだ槽も、近時の鉛フリーはんだ を使用する噴流はんだ槽も構造や材質については、ほとんど変わらないものであり、 該噴流はんだ槽で鉛フリーはんだを使用すると、 Pb - Snはんだでは発生しな力つた 食われが発生してしまうものであった。鉛フリーはんだを用いて食われの激しい部分 は、前述のようにポンプを設置したダクト下部の本体底面となるところである。本体底 面が食われで穴があくと、噴流はんだ槽内の溶融はんだが全てこぼれ出て非常に危 険難状態となる。本発明は、鉛フリーはんだを用いてもダクト下部の本体底面が食わ れにくいという噴流はんだ槽を提供することにある。
課題を解決するための手段 [0013] 噴流はんだ槽において、ダクトの流入口下部にある本体底面に食われが発生しや すくなる原因がダクトの流入口下部における渦流の発生によるものであることから、本 発明者はダクト下部の流入口で発生した渦流を本体底面に影響を及ぼさな!/ヽように すれば、本体底面が食われなくなることに着目して本発明を完成させた。
[0014] 本発明は、本体内にダクトが設置されており、該ダクトの端部にポンプが設置され、 し力も該ポンプの下部に流入口が穿設された噴流はんだ槽にお 、て、流入口下部 で発生する渦流を本体底面に影響させな!/、遮蔽部材が流入口と本体底面間に取り 付けられていることを特徴とする噴流はんだ槽である。
発明の効果
[0015] 本発明の噴流はんだ槽は、ポンプ下部の流入口の下方に遮蔽部材を設置したた め、遮蔽部材上で渦流が発生しても、該渦流が本体底面まで影響せず、その結果、 本体底面は溶融はんだの渦流で擦られることがない。従って、本発明の噴流はんだ 槽は、本体底面が溶融はんだに擦られることがなくなることから食われが発生せず、 長期間にわたって安全にはんだ付け作業を行うことができるという従来の噴流はんだ 槽にはな!/、優れた効果を奏するものである。
発明を実施するための最良の形態
[0016] 本発明の噴流はんだ槽は、ダクトの流入口と本体底面間に遮蔽部材を設置したも のであり、遮蔽部材の設置はダクトに設置してもよぐ或いは本体底面に設置してもよ い。
[0017] 本発明の噴流はんだ槽に設置する遮蔽部材は、遮蔽部材が食われてもよい場合 は、本体底面と同一材料、即ちステンレスを用いる。しかるに遮蔽部材を食われに《 する場合は、多少高価であるが溶融はんだが全く付着しな 、チタニウムやジルコユウ ムを用いる。またステンレスを用いて食われ防止を図るのであれば、ステンレス表面 にフッ素榭脂のようなコーティングを施したり、ステンレス表面に窒化処理を施したりし てもよい。さらにまた溶融はんだが付着しない材料としては、セラミック、耐熱性榭脂 のような非金属材料を用いることもできる。
[0018] 本発明の噴流はんだ槽に用いる遮蔽部材は、流入口下部で発生する渦流を本体 底面まで影響させな 、ようにするものであれば如何なる形状のものでもよ 、。遮蔽部 材の形状は、平らな板、網、パンチングプレート、円筒状等が採用可能である。
[0019] 以下図面に基づいて本発明の噴流はんだ槽を説明する。図 1は本発明噴流はん だ槽の正面断面図、図 2は要部の斜視図である。
[0020] 本発明の噴流はんだ槽は、前述従来の噴流はんだ槽と同一部分は同一符号を付 して、その詳細な説明は省略する。
[0021] インペラポンプ 10が設置されたダクト 6の下部には流入口 12が穿設されており、該 流入口と本体 2の底面 13間に遮蔽部材 14が設置されている。該遮蔽部材は、流入 口 12の直径よりも大径の円形である。遮蔽部材 14はダクト 6の下部に固定した複数 の吊設棒 15 · · ·の下部に設置されている。
[0022] 上記構造を有する本発明の噴流はんだ槽では、インペラポンプ 10が回転して、そ の回転に伴って流入口 12の下部にある溶融はんだに渦流 Tが発生しても、渦流は遮 蔽部材 14の上で発生し、本体底面 13に影響を及ぼさない。従って、遮蔽部材がス テンレスで作られて 、る場合は、渦流が遮蔽部材を擦ってステンレス表面の酸ィ匕物 を除去し、正常な金属部分を露出させて遮蔽部材が食われて穴が開いたり周辺が削 られたりすると!/、う所謂「犠牲」となる。このように遮蔽部材が食われた状態で長期間 そのままの状態にしておくと、遮蔽部材がほとんど消失してしまい、遮蔽部材としての 効果がなくなってしまう。そこで適時、遮蔽部材を点検して消失が大きくなつたときに は交換が必要である力 遮蔽部材のためだけに点検を行うことはない。即ち噴流は んだ槽では、長期間使用するうちに、はんだの酸ィ匕物が本体壁面、ダクト壁面、整流 板等に付着し、これが使用時に剥がれてプリント基板に付着することがある。そのた め噴流はんだ槽では、一定期間経過毎に定期的に酸ィ匕物の清掃を行っている。この 定期的な酸ィ匕物の清掃時に遮蔽部材の点検を行えばよい。
図面の簡単な説明
[0023] [図 1]本発明噴流はんだ槽の正面断面図
[図 2]本発明の要部の斜視図
[図 3]従来の噴流はんだ槽の正面断面図
符号の説明
[0024] 1 噴流はんだ槽 2 本体
3 溶融はんだ
4 一次噴流ノズル
6 ダクト
10 インペラポンプ
12 流入口
13 本体底面
14 遮蔽部材
産業上の利用分野
本発明の実施例では、一次噴流ノズルを設置した噴流はんだ槽で説明したが、本 発明は二次噴流においても適用できるものである。

Claims

請求の範囲
[1] 本体内にダクトが設置されており、該ダクトの端部にポンプが設置され、し力も該ポン プの下部に流入口が穿設された噴流はんだ槽にお 、て、流入口下部で発生する渦 流を本体底面に影響させない遮蔽部材が流入口と本体底面間に取り付けられてい ることを特徴とする噴流はんだ槽。
[2] 前記遮蔽部材は、ダクトに取り付けられていることを特徴とする請求項 1記載の噴流 はんだ槽。
[3] 前記遮蔽部材は、本体の底面に取り付けられていることを特徴とする請求項 1記載の 噴流はんだ槽。
[4] 前記遮蔽部材は、板、網、パンチングプレートの 、ずれかであることを特徴とする請 求項 1記載の噴流はんだ槽。
[5] 前記遮蔽部材は、チタニウム、ジルコニウム、或いは非金属の 、ずれかで形成されて いることを特徴とする請求項 1〜5記載の噴流はんだ槽。
PCT/JP2006/304328 2005-03-18 2006-03-07 噴流はんだ槽 WO2006100899A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2006800080584A CN101160193B (zh) 2005-03-18 2006-03-07 喷射焊料槽
EP06728697.1A EP1859886B1 (en) 2005-03-18 2006-03-07 Jet solder vessel
JP2007509179A JP4636085B2 (ja) 2005-03-18 2006-03-07 噴流はんだ槽
US11/886,006 US7988030B2 (en) 2005-03-18 2006-03-07 Wave soldering bath

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-078457 2005-03-18
JP2005078457 2005-03-18

Publications (1)

Publication Number Publication Date
WO2006100899A1 true WO2006100899A1 (ja) 2006-09-28

Family

ID=37023573

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/304328 WO2006100899A1 (ja) 2005-03-18 2006-03-07 噴流はんだ槽

Country Status (5)

Country Link
US (1) US7988030B2 (ja)
EP (1) EP1859886B1 (ja)
JP (1) JP4636085B2 (ja)
CN (1) CN101160193B (ja)
WO (1) WO2006100899A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009027659A1 (en) * 2007-08-28 2009-03-05 Pillarhouse International Limited A selective soldering apparatus and a method of pumping solder in a selective soldering apparatus
JP2019188416A (ja) * 2018-04-20 2019-10-31 オムロン株式会社 噴流式はんだ付け装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9370838B2 (en) * 2014-08-21 2016-06-21 Illinois Tool Works Inc. Wave soldering nozzle system and method of wave soldering
DE102017114954A1 (de) * 2017-07-05 2019-01-10 Ersa Gmbh Verfahren zum Betreiben einer Lötvorrichtung, Lötvorrichtung
US20190366460A1 (en) * 2018-06-01 2019-12-05 Progress Y&Y Corp. Soldering apparatus and solder nozzle module thereof
JP6590232B1 (ja) * 2019-04-22 2019-10-16 千住金属工業株式会社 はんだ付け装置及びはんだ付け方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS513632A (ja) 1974-06-28 1976-01-13 Kenkoo Kk Ingayakitsukeho
JPS6418568A (en) * 1987-07-13 1989-01-23 Sanyo Electric Co Device and method for automatic soldering
JPH046361U (ja) * 1990-04-20 1992-01-21
JP2003332724A (ja) 2002-05-13 2003-11-21 Nihon Dennetsu Keiki Co Ltd はんだ波形成装置
US20040211816A1 (en) 2002-06-11 2004-10-28 Tadamichi Ogawa Wave soldering apparatus
JP2005074478A (ja) * 2003-09-01 2005-03-24 Matsushita Electric Ind Co Ltd 噴流式はんだ付け装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS513632U (ja) * 1974-06-26 1976-01-12
US4068792A (en) * 1977-04-28 1978-01-17 Burroughs Corporation Device for protecting the edge connectors of printed circuit boards during wave soldering
JPS62275567A (ja) * 1986-05-22 1987-11-30 Tamura Seisakusho Co Ltd 噴流式はんだ付け装置
US4802617A (en) * 1988-02-19 1989-02-07 Electrovert Limited Restriction of dross formation in a soldering apparatus
JP2820260B2 (ja) * 1989-02-02 1998-11-05 株式会社タムラ製作所 噴流式はんだ付け装置
JPH0754218B2 (ja) 1990-04-23 1995-06-07 三菱電機株式会社 空気調和装置
JP2003025063A (ja) * 2001-07-09 2003-01-28 Nihon Dennetsu Keiki Co Ltd 半田付け方法及び半田付け装置
CN2487489Y (zh) * 2001-08-14 2002-04-24 西安光机所技术开发总公司 液态金属软钎接用三相异步感应式电磁泵
JP4006361B2 (ja) 2002-10-10 2007-11-14 キヤノン株式会社 通信装置、通信装置の制御方法、および通信装置の制御プログラム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS513632A (ja) 1974-06-28 1976-01-13 Kenkoo Kk Ingayakitsukeho
JPS6418568A (en) * 1987-07-13 1989-01-23 Sanyo Electric Co Device and method for automatic soldering
JPH046361U (ja) * 1990-04-20 1992-01-21
JP2003332724A (ja) 2002-05-13 2003-11-21 Nihon Dennetsu Keiki Co Ltd はんだ波形成装置
US20040211816A1 (en) 2002-06-11 2004-10-28 Tadamichi Ogawa Wave soldering apparatus
JP2005074478A (ja) * 2003-09-01 2005-03-24 Matsushita Electric Ind Co Ltd 噴流式はんだ付け装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ABE Y. ET AL.: "Namari Free-Flow Sochi Sentei Joken", JISSO GIJUTSU GUIDE BOOK 2004, DENSHI ZAIRYO 7 GATSUGO BESSATSU, 29 May 2004 (2004-05-29), pages 127 - 131, XP008143458 *
ONO S.: "Stainless-sei Handaso Shinshoku Boshi ni Yuko na Tokushu Chikka Shori", JOURNAL OF ADVANCED SCIENCE, vol. 16, no. 2, 31 August 2004 (2004-08-31), pages I-5 - I-7, XP008122119 *
See also references of EP1859886A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009027659A1 (en) * 2007-08-28 2009-03-05 Pillarhouse International Limited A selective soldering apparatus and a method of pumping solder in a selective soldering apparatus
GB2464878A (en) * 2007-08-28 2010-05-05 Pillarhouse Int Ltd A selective soldering apparatus and a method of pumping solder in a selective soldering apparatus
JP2019188416A (ja) * 2018-04-20 2019-10-31 オムロン株式会社 噴流式はんだ付け装置

Also Published As

Publication number Publication date
US20090050674A1 (en) 2009-02-26
EP1859886A4 (en) 2010-01-13
EP1859886A1 (en) 2007-11-28
JPWO2006100899A1 (ja) 2008-08-28
US7988030B2 (en) 2011-08-02
CN101160193B (zh) 2010-05-19
JP4636085B2 (ja) 2011-02-23
EP1859886B1 (en) 2016-10-12
CN101160193A (zh) 2008-04-09

Similar Documents

Publication Publication Date Title
JP4941289B2 (ja) 噴流はんだ槽
WO2006100899A1 (ja) 噴流はんだ槽
JP4253374B2 (ja) プリント基板のはんだ付け方法および噴流はんだ槽
EP2012570B1 (en) Jet solder tank
JP2004009127A (ja) 噴流はんだ槽
US20120125982A1 (en) Gas feed device for a wave soldering or tinning machine
EP1876874A1 (en) Wave soldering bath
JP4467000B2 (ja) 噴流はんだ槽
KR20070010565A (ko) 자동납땜기용 납땜장치
JP2011146638A (ja) フローはんだ付けノズル、はんだ付け装置およびはんだ付け方法
JP5391500B2 (ja) はんだ付けノズルおよびはんだ付け装置
JP4410490B2 (ja) 自動はんだ付け装置
JP7483063B2 (ja) フローはんだ付け装置
JP2016112602A (ja) はんだ付け装置およびはんだ付け吹き口体の清掃方法
JP4674436B2 (ja) 噴流式はんだ付け装置
JP5458854B2 (ja) 噴流はんだ槽
JP2005353719A (ja) 噴流はんだ槽
JP2007196241A (ja) はんだ付け装置
Gyemant Protecting wave solder machines from the corrosive effects of Pb-free solders
KR200398461Y1 (ko) 자동납땜기용 납땜장치
CN201312409Y (zh) 内开全流式凸状型壶口
JP2000294915A (ja) 噴流はんだ槽
JP2000340940A (ja) はんだ噴流装置
TWI387418B (zh) Printed circuit board plating method
CN110303215A (zh) 钎焊装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680008058.4

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007509179

Country of ref document: JP

REEP Request for entry into the european phase

Ref document number: 2006728697

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2006728697

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

WWP Wipo information: published in national office

Ref document number: 2006728697

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11886006

Country of ref document: US