WO2006100370A2 - Dispositif d'acceleration d'un groupe de turbocompression aux bas regimes d'un moteur alternatif et moteur alternatif comportant un tel dispositif - Google Patents

Dispositif d'acceleration d'un groupe de turbocompression aux bas regimes d'un moteur alternatif et moteur alternatif comportant un tel dispositif Download PDF

Info

Publication number
WO2006100370A2
WO2006100370A2 PCT/FR2006/000600 FR2006000600W WO2006100370A2 WO 2006100370 A2 WO2006100370 A2 WO 2006100370A2 FR 2006000600 W FR2006000600 W FR 2006000600W WO 2006100370 A2 WO2006100370 A2 WO 2006100370A2
Authority
WO
WIPO (PCT)
Prior art keywords
compressor
nozzle
engine
pressure
turbocharger
Prior art date
Application number
PCT/FR2006/000600
Other languages
English (en)
Other versions
WO2006100370A3 (fr
Inventor
Jean Frédéric Melchior
Original Assignee
Melchior Jean F
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Melchior Jean F filed Critical Melchior Jean F
Priority to EP06726100A priority Critical patent/EP1861598A2/fr
Publication of WO2006100370A2 publication Critical patent/WO2006100370A2/fr
Publication of WO2006100370A3 publication Critical patent/WO2006100370A3/fr
Priority to US11/859,185 priority patent/US20080066466A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/04Engines with exhaust drive and other drive of pumps, e.g. with exhaust-driven pump and mechanically-driven second pump
    • F02B37/10Engines with exhaust drive and other drive of pumps, e.g. with exhaust-driven pump and mechanically-driven second pump at least one pump being alternatively or simultaneously driven by exhaust and other drive, e.g. by pressurised fluid from a reservoir or an engine-driven pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/007Engines characterised by provision of pumps driven at least for part of the time by exhaust with exhaust-driven pumps arranged in parallel, e.g. at least one pump supplying alternatively
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/16Control of the pumps by bypassing charging air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/16Control of the pumps by bypassing charging air
    • F02B37/164Control of the pumps by bypassing charging air the bypassed air being used in an auxiliary apparatus, e.g. in an air turbine
    • F02B37/166Control of the pumps by bypassing charging air the bypassed air being used in an auxiliary apparatus, e.g. in an air turbine the auxiliary apparatus being a combustion chamber, e.g. upstream of turbine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/18Control of the pumps by bypassing exhaust from the inlet to the outlet of turbine or to the atmosphere
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/18Control of the pumps by bypassing exhaust from the inlet to the outlet of turbine or to the atmosphere
    • F02B37/183Arrangements of bypass valves or actuators therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/18Control of the pumps by bypassing exhaust from the inlet to the outlet of turbine or to the atmosphere
    • F02B37/183Arrangements of bypass valves or actuators therefor
    • F02B37/186Arrangements of actuators or linkage for bypass valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics
    • F02M26/25Layout, e.g. schematics with coolers having bypasses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/36Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with means for adding fluids other than exhaust gas to the recirculation passage; with reformers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/51EGR valves combined with other devices, e.g. with intake valves or compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D23/00Controlling engines characterised by their being supercharged
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/05High pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust system upstream of the turbine and reintroduced into the intake system downstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics
    • F02M26/28Layout, e.g. schematics with liquid-cooled heat exchangers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • Device for accelerating a turbocharger unit at low speeds of an alternating motor and reciprocating engine comprising such a device.
  • the present invention relates to a device for accelerating a turbocharging unit at low revolutions of an alternating engine operating on a four-stroke cycle, and an alternating engine equipped with such an acceleration device of the turbocharger unit. .
  • the invention also relates to methods of accelerating a turbocharger unit at low speeds of an alternating engine operating in a four-cycle cycle.
  • Turbocharged four-stroke diesel engines such as those described in French patent applications 03 03 728 and 05 01 156 in the name of the Applicant, are characterized by a high-pressure turbocharger group adapted for a lower rotational speed. at their minimum speed of use for the purpose of recycling a flue gas flow under all operating conditions of the engine.
  • the turbocharger unit tuning speed is the rotational speed of the engine where the gas pressure upstream of the turbine of the turbocharger unit crosses the air pressure downstream of the compressor of this turbocharger unit.
  • turbocompression groups known hitherto are but adapted to engines of small motor vehicles such as, for example of the order of 1500 cm 3 .
  • miniaturization of the turbocharger groups finds its limits for a rotor diameter close to 30 mm. For such a dimension, no variable geometry can be envisaged without seriously compromising the isentropic compression and expansion efficiencies.
  • Over-sizing of high-pressure turbocharger units is particularly disadvantageous for engines equipped with a particulate filter, especially when it is arranged upstream of the turbine of said turbocharger unit. Indeed, in this case, the high pressure turbine does not benefit from the pressure waves to accelerate from the idle speed of the engine. In addition, no gas flow can be recycled to the intake of the engine at very low speed to limit emissions of NOX nitrogen oxide and maintain the catalyst temperature of the particulate filter.
  • the automakers have, to improve the acceleration of the turbocharger group at low engine speeds, undersized the turbine of this turbocharging unit and associated this turbine to a discharge valve or a variable section valve. But, the undersizing of the turbine is limited by the maximum power of the engine.
  • the object of the present invention is to solve this problem by proposing a device capable of generating a flow rate of recycled flue gases at lower speeds than the adaptation speed and of accelerating the high pressure turbocharger unit without having the compressor of this group pumped out. said schemes.
  • the subject of the invention is therefore a device for accelerating a turbocharger unit at low speeds of an alternating engine operating on a four-stroke cycle and comprising at least one cylinder provided with at least one connected intake valve. to an intake manifold and at least one exhaust valve connected to an exhaust manifold, said turbocharger unit comprising at least one turbocharger having an air compressor supplying the intake manifold and a fed radial turbine by the exhaust manifold and driving the compressor, characterized in that it comprises an aerodynamic ejector removing a propellant flow on the exhaust gas of the engine and a flow driven on the air delivered by the compressor and forming a mixed flow which feeds the turbine of the turbocharger unit.
  • the ejector comprises a mixer formed by the turbine feed volute extended upstream with respect to the flow direction of the mixed flow, by a substantially rectilinear portion of sufficient length to homogenize the mixture between the propellant flow and the driven flow,
  • the substantially rectilinear portion of the mixer is extended upstream by a substantially conical coaxial portion with an apex angle of between 20 and 40 ° communicating with the exhaust manifold
  • the ejector comprises a cylindrical tube whose outer wall is provided, at one of its ends, with a conical portion intended to cooperate with the conical portion of the mixer, said tube being displaceable coaxially with said mixer so that the conical portions form an annular convergent nozzle of variable speed propellant flow
  • the cylindrical tube is slidably mounted in a guide formed in the wall of the exhaust manifold and communicates with the outlet of the compressor via a non-return valve preventing the flow of burnt gases from the exhaust manifold to the compressor, - the nozzle section varies between the inlet section of the scroll of the turbine and one-third of said entrance section,
  • the cylindrical tube is integral, at its end opposite to that provided with the conical portion, with a control piston slidably mounted in a cylinder which determines, on one side of the piston, a first chamber subjected to the pressure of the delivered air; by the compressor and, on the other side of this control piston, a second chamber comprising a spring acting on said piston, said air pressure delivered by the compressor tending to open the nozzle of ejector and the force of the spring tending to close this nozzle, and
  • the second chamber communicates with a vacuum pump to modify or neutralize the spring force
  • the turbocharger unit comprises a second turbocharger comprising a turbine permanently communicating with the an exhaust manifold and a compressor communicating permanently with the intake manifold and the compressor communicates with the intake manifold via a non-return valve.
  • the invention also relates to an alternating engine operating in a four-stroke cycle and comprising a turbocharger unit, characterized in that it comprises an acceleration device of the turbocharging unit at low engine speeds, as previously mentioned. .
  • the invention also relates to a method for accelerating a turbocharger unit at low speeds of an alternating engine operating in a four-stroke cycle and comprising an acceleration device of said turbocharging unit as previously mentioned, characterized in that it consists in closing the nozzle of the aerodynamic ejector.
  • the invention also relates to a method for accelerating a turbocharger unit at low speeds of an alternating engine operating in a four-stroke cycle and comprising a turbocharger group acceleration device as previously mentioned, and a flue gas recycling duct, characterized in that it consists in obstructing said recycling duct, the nozzle nozzle section of the ejector being fixed.
  • the invention also relates to a method of accelerating a turbocharging unit at low speeds of an alternating engine, said group comprising two turbochargers, characterized in that it consists of:
  • FIG. 1 is a diagram of a cylinder of an alternating engine equipped with an acceleration device of a turbocharger group to a turbocharger,
  • FIG. 2 is a diagram of a variant of a cylinder of an alternating material equipped with a device for accelerating a turbocharger group to a turbocharger
  • FIG. 3 is a diagram of a cylinder of a an alternating engine equipped with a turbocharger unit with two turbochargers according to the state of the art, and
  • FIG. 4 is a diagram of a cylinder of an alternating engine equipped with a turbocharger group with two turbochargers and equipped with an acceleration device of a two-turbocharger turbocharging unit.
  • a motor 1 which comprises at least one cylinder 1a provided with at least one intake valve 2 connected to an intake manifold 3 and at least one exhaust valve 4 connected to an exhaust manifold 5.
  • This engine 1 operates in a four-stroke cycle, preferably without crossing the valves 2 and 4, to prevent direct communication between the intake manifold 3 and the exhaust manifold 5.
  • the engine 1 is supercharged by a turbocharger unit comprising a turbocharger generally designated by the reference 10 and comprising an air compressor 11 supplying the intake manifold 3 and a radial turbine 12 fed by the collector. exhaust 5 and driving the compressor 11 by mechanical means shown schematically in the figure by the dash line 13.
  • the engine 1 is also equipped with a duct 6 for recycling burnt gases, also called EGR conduit, and provided with a adjustment valve 7, commonly called EGR valve.
  • the engine 1 is equipped with an acceleration device of the turbocharger unit at low speeds of this engine and which comprises an aerodynamic ejector generally designated by the reference 20.
  • the aerodynamic ejector 20 takes a propulsive flow on the exhaust gas of the engine 1 and a flow driven on the air delivered by the compressor 11 and forms a mixed flow which feeds turbine 12 of the turbocharger 10.
  • the aerodynamic ejector 20 comprises a mixer 21 which is, in the exemplary embodiment shown in FIG. 1, formed by the supply volute of the turbine 12.
  • This mixer 21 is extended upstream with respect to the direction of rotation. flow of the flow mixed by a substantially straight portion 22 which has a length sufficient to homogenize the mixture between the propellant flow and the driven flow of the aerodynamic ejector 20.
  • This substantially rectilinear portion 22 is extended by a substantially conical coaxial portion 23 of which the Angle at the apex is for example between 20 and 40 °.
  • the portion 23 communicates with the exhaust manifold 5.
  • the ejector 20 also comprises a cylindrical tube 24 which forms an inner conduit 25 and whose outer wall is provided at one of its ends 24a with a conical portion 24b intended to cooperate with the conical portion 23 of the mixer 20.
  • the cylindrical tube 24 is slidably mounted in a guide 26 which has an inner section of shape conjugated to the outer wall of the cylindrical tube 24.
  • This cylindrical tube 24 is displaceable coaxially with the mixer 21 so that the conical portions, respectively 23 and 24b, form an annular converging nozzle 30 of variable section for accelerating the propellant flow.
  • the cylindrical tube 24 communicates with the outlet of the compressor 11 via a bypass duct 31 via a nonreturn valve 32 which prevents the flow of flue gases from the exhaust manifold 5 to the compressor 11.
  • the non-return valve 32 is associated with a spring 33 whose restoring force tends to apply the valve 32 against its seat 32a to close the bypass duct 31.
  • the cylindrical tube 24 has at its end 24c opposite to that provided with the conical portion 24b, a control piston 35 slidably mounted in a cylinder 36 determining on one side of the piston 35, a first chamber 37 subjected to the pressure of the air delivered by the compressor 11 through the bypass conduit 31 and, on the other side of the control piston 35, a second chamber 38 having a spring 39 acting on the piston 35.
  • the air pressure delivered by the compressor 11 and passing through the bypass duct 31 tends to open the nozzle 30 by moving through the piston 35, the cylindrical tube 24 while the force exerted by the spring 39 on the piston 35 tends to close this nozzle 30.
  • the second chamber 38 communicates via a pipe 40 with a vacuum pump, not shown, which allows, in some cases to change or neutralize the force of the spring 39
  • the section of the nozzle 30 preferably varies between the turbine scroll inlet section 12 and the third of said inlet section.
  • the four-stroke engine without crossing valves is capable of generating a flue gas flow proportional to its speed and the density of the gases in the intake manifold 3.
  • the pressure of the gases discharged by the engine 1 at a given speed depends only on the section of the exhaust port in this case, the distributor of the turbine 12.
  • the turbine 12 To accelerate the compressor 11, the turbine 12 must receive a gas flow whose total pressure and / or the total temperature are greater than that of the air flow delivered by the compressor 11.
  • the flow delivered by the compressor 11, equal to the flow that passes through the turbine 12, must also be greater than the pumping rate where the operation is unstable. To the regime of idle, the flow sucked by the engine 1 is below this minimum flow and the discharge pressure of the burnt gases is negligible given the oversizing of the turbine 12.
  • the compressor 11 delivers in parallel in the intake circuit of the engine 1 and in the bypass duct 31 which supplies the turbine 12 directly.
  • this turbine 12 is supplied simultaneously by the air coming from the bypass duct 31 and by the burnt gases discharged by the engine 1.
  • the engine 1 is used as a compressed gas generator which propels a portion of the air flow delivered by the compressor 11 into the turbine feed volute 12 by means of the aerodynamic ejector 20.
  • the hot gases accelerated by the nozzle 30 of this aerodynamic ejector communicate their momentum to the air delivered by the bypass duct 31 by means of the ejector 20 whose mixer 21 feeds the volute of the turbine 12.
  • section of the nozzle 30 of the ejector 20 is adjustable which allows to control the ratio between the flow of propellants and the gas flow of the entrained air.
  • the section of the nozzle 30 may be set in operation between a minimum value which allows the acceleration of the turbocharger unit and the desired flue gas recirculation flow rate at idle and the normal supply section of the turbine 12 of this group of turbines. turbocharging.
  • the nozzle 30 is set to its minimum section.
  • the control valve 7 is open and adjusts the flow rates of recycled hot gases to dispose in the cylinder 1a of the amount of air just needed to burn the flow of maintenance fuel idling and an admission temperature as high as possible to limit noise and unburnt combustion.
  • the richness is preferably regulated by the control computer of the engine 1. Under these conditions, the intake pressure in the intake manifold 3 is close to the atmospheric pressure and the exhaust pressure in the exhaust manifold 5 is slightly above atmospheric pressure. To increase the air pressure delivered by the turbocharger unit without changing the idling speed of the engine 1, simply close the control valve 7 without changing the section of the nozzle 30.
  • the pressure in the exhaust manifold 5 increases as well as the speed of the jet emitted by the nozzle 30 which causes a flow of air through the bypass duct 31 to which it transfers its momentum in the mixer 21.
  • the total pressure upstream of the turbine 12 being greater than the pressure delivered by the compressor 11, the latter accelerates to a maximum speed when the control valve 7 is closed.
  • the engine 1 and supercharged at its idle speed, is likely to deliver torque to accelerate the vehicle.
  • the nozzle 30 of the ejector 20 When the engine 1 accelerates to reach the speed of adaptation, the nozzle 30 of the ejector 20 must be progressively opened up to the normal supply section of the turbine 12 to limit the pressure of the gases in the collector. 5. The percentage of air entrained to the turbine 12 then decreases to zero and the check valve 32 closes to prohibit a reflux of hot gas to the outlet of the compressor 11.
  • This maneuver is regulated by the spring 39 which is supported on a face of the piston 35, the other face is subjected to the pressure delivered by the compressor 11.
  • the calibration and the stiffness of the spring 39 fix the accessible air pressure levels in this control mode.
  • This mode of regulation can be modified or neutralized by putting the chamber 38 which comprises the spring 39 in communication with a vacuum pump by a solenoid valve controlled three ways, not shown.
  • the gradual opening of the nozzle 30 of the ejector 20 may be accompanied by a partial opening of the control valve 7 to maintain the recycled gas content to a desired value.
  • the device according to the invention makes it possible to maintain a high rate of recycled gases and / or to deliver a high torque.
  • control valve 7 controls the recycled gas content and the nozzle 30 of the ejector 20 actuated by the piston 35 controls the wealth of combustion of the engine.
  • An advantage of the device according to the invention is the control of the intake temperature which makes it possible to exploit reduced compression ratios in cold weather.
  • Another advantage of the device according to the invention is the engine brake obtained by the simultaneous closing of the control valve 7 and the nozzle 30 of the aerodynamic ejector 20.
  • the nozzle 30 can close and the control valve 7 can open to supply the engine 1 with hot gases so as not to cool the after-treatment devices of the engines. exhaust gas.
  • the driver wants to slow down the vehicle by pressing the brake pedal, it can firstly close the control valve 7 to increase the exhaust against pressure and create engine braking. The kinetic energy of the vehicle is then used to drive the turbocharger unit 10 and allows instant recovery after the deceleration.
  • the invention allows many engine operation control strategies that are familiar to those skilled in the art.
  • the duct 6 comprises a gas / water refrigerant 52 and a bypass duct 53 of said refrigerant.
  • the exchanger 51 is in this case placed upstream of the refrigerant 52 and the bypass duct 53.
  • the acceleration device is particularly advantageous in a sequential turbocharging unit which comprises two turbines and two compressors which are connected in parallel to relax the exhaust gases and compress the engine intake air.
  • the first turbocharger which comprises a turbine and a compressor, operates alone between the idle and an intermediate regime called Nt transition regime from which the second turbocharger which also comprises a turbine and a compressor, cooperates with the first to ensure the air supply of the engine.
  • the activation of the second turbocharger which poses problems similar to the acceleration at low revs, occurs at each revving and stopping occurs at each descent into regime. In urban or sport driving, the frequency of these transitions can be high and impose a difficult control of gas flow control valves.
  • FIG. 3 shows a known type of engine which comprises an intake duct 3 and an exhaust duct 5 and which is supercharged by a turbocharger unit comprising two turbochargers, respectively 60 and 70, each comprising a compressor , respectively 61 and 71, and a turbine, respectively 62 and 72.
  • the compressor 61 draws air into the atmosphere to discharge it permanently into the intake manifold 3 and the turbine 62 permanently communicates with the exhaust manifold 5 which feeds it with hot gases which it rejects towards the 'atmosphere.
  • the compressor 71 draws air into the atmosphere to discharge it into the intake manifold 3 via a non-return valve 110.
  • the turbine 72 communicates with the exhaust manifold 5 via a supply valve 8 controlled by an actuator ⁇ i.
  • the exhaust manifold 5 is provided with a discharge valve 9 to the atmosphere controlled by an actuator 91 and the intake manifold 3 is provided with a discharge valve 100 in the atmosphere located upstream of the valve 110 and controlled by an actuator 101.
  • N1 the valves and the valves 8, 9, 10 and 11 are closed and the entire exhaust flow feeds the turbine 62 which accelerates the compressor 61 to the P2 intake pressure desired.
  • Nt the air flow increases at constant pressure P2 gradually opening the discharge valve 9.
  • the Nt regime must be sufficient for the engine 1 to suck up after the transition, a flow of air greater than the sum of the pumping rates of the two compressors, respectively 61 and 71. If the two compressors 61 and 71 are identical and the turbocharger 60 is adapted in the vicinity of the pumping line, the Nt regime is therefore higher at 2 N1.
  • valve 8 opens to supply the turbine 72 while the discharge valve 9 closes to maintain the pressure P2.
  • the compressor 71 accelerates rapidly by delivering through the regulated relief valve 10 to avoid pumping.
  • the purpose of the acceleration device according to the invention is to simplify the process of actuating the compressor 71 of the second turbocharger 70 and to make it contribute to the engine air flow from a lower Nt regime to the Nt regime. of the engine according to the state of the art previously described with respect to FIG.
  • the engine 1 equipped with the acceleration device of a turbocharger unit according to the invention is shown in FIG. 4.
  • the configuration of this engine is identical to the configuration of the engine shown in Figure 3 with the exception of the turbine supply circuit 72 of the second turbocharger 70 and the compressor discharge circuit 71 of the turbocharger to the valve against back 110.
  • This turbine 72 is powered by an aerodynamic ejector 20 whose propellant flow is taken from the exhaust gas from the exhaust manifold 5 and whose driven flow is taken at the discharge of the compressor 71 through the conduit 31.
  • This ejector aerodynamic 20 is identical to that described with respect to the first embodiment shown in Figure 1 except that the variable nozzle 30 can close completely and tightly and that the pressure acting on the control piston 35 of the nozzle 30 is not the discharge pressure P21 of the compressor 71, but that P2 of the compressor 61.
  • the supply duct 913 of the chamber 910 includes a shut-off valve 914 which opens only when the nozzle 30 is on its side. opening stop.
  • the supply valve 8 of the turbine 72 and the anti-pumping valve 100 of the compressor 71 of FIG. 3 are replaced by the aerodynamic ejector 20 and its non-return valve 32.
  • FIG. 4 An example of a regulating device is shown in FIG. 4.
  • a reference pressure Pr is established in an enclosure 12 fed by the intake manifold 3 where the intake pressure P2 prevails by means of a pressure reducing valve 121 controlled by a control computer of the engine.
  • This chamber 12 communicates with the chambers 38 and 91 of the control actuators of the nozzle 30 and the discharge valve 9 to add to the springs 39 and 912, a variable setting force.
  • the pressure in the intake manifold 3 is equal to the desired inlet pressure P2 downstream of the check valve back 110 and equal to a pressure P21 lower than this intake pressure P2 upstream. Between the idle and the Nt regime, only the compressor 61 provides the air supply of the engine.
  • the nozzle 30 continues to open to regulate the intake pressure P2 until it is fully open.
  • the contribution of the compressor 71 to the motor supply increases.
  • the static pressure at its outlet crosses the inlet pressure P2 and the non-return valve 32 closes. The compressor 71 then ceases to flow into the ejector 20.
  • An advantage of the invention lies in the progressiveness of the actuation of the turbocharger 70.
  • Another advantage is the reduction of the Nt transition regime. Indeed, no pressurized fluid is discharged to the atmosphere as in the installation according to the state of the art shown in Figure 2 where the relief valve 9 and the check valve 110 cooperate to avoid pumping. of the compressor 71 of the turbocharger 70. The flow of enthalpy required for to drive the two compressors 61 and 71 to their pumping rate, is therefore reached for a lower speed.
  • each torque applied to the engine corresponds a quantity of fuel and an amount of air proportional to the intake pressure P2 desired to burn with a wealth determined by the mapping stored in an engine control computer.
  • the position of the accelerator pedal that requires a motor torque orders this calculator intake pressure P2 regardless of the speed.
  • the computer acts only on the pressure reduction valve 121 supplied by the intake pressure P2 to establish in the chamber 12 a reference pressure Pr variable with the position of said pedal accelerator.
  • the spring 39 of the actuator of the nozzle 30 and the spring 912 of the actuator of the discharge valve 9 are calibrated so that, when this reference pressure Pr is equal to atmospheric pressure, said nozzle 30 and the valve of discharge 9 open for the minimum desired inlet pressure P2.
  • the supply duct 913 of the chamber 910 includes the shutter valve 914 which opens only when the nozzle 30 is on its opening stop.
  • this chamber 12 Since the chamber 12 is in communication with the chambers 38 and 91 of the actuators respectively of the nozzle 30 and of the relief valve 9, this chamber 12 makes it possible to add to the springs 39 and 912 a variable setting force which modifies the threshold pressure regulator P2. Under these conditions the actuators of the nozzle 30 and the discharge valve 9 regulate the intake pressure P2 to the level programmed in the engine control computer regardless of the speed of the engine.
  • the parameter corresponding to the intake pressure P2 will be replaced by the fresh air flow rate measured by a flowmeter located at the inlet of the engine upstream of the arrival of the recycled gases.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Supercharger (AREA)

Abstract

L'invention concerne un dispositif d'accélération d'un groupe de turbocompression aux bas régimes d'un moteur alternatif (1) fonctionnant selon un cycle ô quatre temps et comprenant au moins un cylindre (1a) muni d'au moins une soupape d'admission (2) reliée ô un collecteur d'admission (3) et d'au moins une soupape d'échappement (4) reliée ô un collecteur d'échappement (5), ledit groupe de turbocompression comprenant au moins un turbocompresseur (10) comportant un compresseur d'air (11) alimentant le collecteur d'admission (3) et une turbine radiale (12) alimentée par le collecteur d'échappement (5) et entraînant le compresseur (11). Le dispositif comporte un éjecteur aérodynamique (20) prélevant un flux propulseur sur les gaz d'échappement du moteur (1) et un flux entraîné sur l'air délivré par le compresseur (11) et formant un flux mélangé qui alimente la turbine (12) du groupe de turbocompression (10).

Description

Dispositif d'accélération d'un groupe de turbocompression aux bas régimes d'un moteur alternatif et moteur alternatif comportant un tel dispositif.
La présente invention concerne un dispositif d'accélération d'un groupe de turbocompression aux bas régimes d'un moteur alternatif fonctionnant selon un cycle à quatre temps, ainsi qu'un moteur alternatif équipé d'un tel dispositif d'accélération du groupe de turbocompression.
L'invention concerne également des procédés d'accélération d'un groupe de turbocompression aux bas régimes d'un moteur alternatif fonctionnant selon un cycle à quatre temps.
Les moteurs diesel à quatre temps turbocompressés, comme par exemple ceux décrits dans les demandes de brevet en France n° 03 03 728 et 05 01 156 au nom du Demandeur, sont caractérisés par un groupe de turbocompression haute pression adapté pour une vitesse de rotation inférieure à leur vitesse minimale d'utilisation dans le but de recycler un débit de gaz brûlés dans toutes les conditions de fonctionnement du moteur. Le régime d'adaptation du groupe de turbocompression est la vitesse de rotation du moteur où la pression des gaz en amont de la turbine du groupe de turbocompression croise la pression de l'air en aval du compresseur de ce groupe de turbocompression.
Les groupes de turbocompression connus jusqu'à présent sont mais adaptés aux moteurs des véhicules automobiles de petite cylindrée comme, par exemple de l'ordre de 1500 cm3. En effet, la miniaturisation des groupes de turbocompression trouve ses limites pour un diamètre du rotor voisin de 30 mm. Pour une telle dimension, aucune géométrie variable n'est envisageable sans compromettre gravement les rendements isentropiques de compression et de détente.
Le surdimensionnement des groupes de turbocompression haute pression est particulièrement pénalisant pour les moteurs équipés d'un filtre à particules surtout lorsqu'il est disposé en amont de la turbine dudit groupe de turbocompression. En effet, dans ce cas, la turbine haute pression ne bénéficie pas des ondes de pression pour s'accélérer à partir du régime de ralenti du moteur. De plus, aucun débit de gaz ne peut être recyclé à l'admission du moteur à très bas régime pour limiter les émissions d'oxyde d'azote NOX et maintenir la température du catalyseur du filtre à particules.
Les constructeurs automobiles ont, pour améliorer l'accélération du groupe de turbocompression aux bas régimes du moteur, sous dimensionné la turbine de ce groupe de turbocompression et associé cette turbine à une vanne de décharge ou à un distributeur à section variable. Mais, le sous dimensionnement de la turbine est limité par la puissance maximale du moteur.
Les constructeurs de groupes de turbocompression ont, par ailleurs, proposé un entraînement électrique ou hydraulique du turbocompresseur aux bas régimes de fonctionnement du moteur. Mais, cette solution onéreuse n'est pas assez puissante pour les forts taux de suralimentation.
Le procédé décrit dans la demande de brevet en France n° 03 03 728 également au nom du Demandeur permet de résoudre ce problème pour les moteurs ayant une cylindrée supérieure à 1900 cm3.
La présente invention a pour but de résoudre ce problème en proposant un dispositif capable de générer un débit de gaz brûlés recyclés aux régimes inférieurs au régime d'adaptation et d'accélérer le groupe de turbocompression haute pression sans faire pomper le compresseur de ce groupe pour lesdits régimes.
L'invention a donc pour objet un dispositif d'accélération d'un groupe de turbocompression aux bas régimes d'un moteur alternatif fonctionnant selon un cycle à quatre temps et comprenant au moins un cylindre muni d'au moins une soupape d'admission reliée à un collecteur d'admission et d'au moins une soupape d'échappement reliée à un collecteur d'échappement, ledit groupe de turbocompression comprenant au moins un turbocompresseur comportant un compresseur d'air alimentant le collecteur d'admission et une turbine radiale alimentée par le collecteur d'échappement et entraînant le compresseur, caractérisé en ce qu'il comporte un éjecteur aérodynamique prélevant un flux propulseur sur les gaz d'échappement du moteur et un flux entraîné sur l'air délivré par le compresseur et formant un flux mélangé qui alimente la turbine du groupe de turbocompression. Selon d'autres caractéristiques de l'invention :
- l'éjecteur comporte un mélangeur formé par la volute d'alimentation de la turbine prolongé vers l'amont par rapport au sens de circulation du flux mélangé, par une portion sensiblement rectiligne de longueur suffisante pour homogénéiser le mélange entre le flux propulseur et le flux entraîné,
- la portion sensiblement rectiligne du mélangeur se prolonge vers l'amont par une portion coaxiale sensiblement conique d'angle au sommet compris entre 20 et 40° communiquant avec le collecteur d'échappement, - l'éjecteur comporte un tube cylindrique dont la paroi extérieure est munie, à l'une de ses extrémités, d'une portion conique destinée à coopérer avec la portion conique du mélangeur, ledit tube étant déplaçable coaxialement audit mélangeur pour que les portions coniques forment une tuyère convergente annulaire de section variable d'accélération du flux propulseur, - le tube cylindrique est monté coulissant de façon étanche dans un guide aménagé dans la paroi du collecteur d'échappement et communique avec la sortie du compresseur par l'intermédiaire d'un clapet anti-retour interdisant l'écoulement des gaz brûlés du collecteur d'échappement vers le compresseur, - la section de la tuyère varie entre la section d'entrée de la volute de la turbine et le tiers de ladite section d'entrée,
- le tube cylindrique est solidaire, à son extrémité opposée à celle munie de la portion conique, d'un piston de commande monté coulissant dans un cylindre déterminant d'un côté du piston, une première chambre soumise à la pression de l'air délivré par le compresseur et, de l'autre côté de ce piston de commande, une seconde chambre comportant un ressort agissant sur ledit piston, ladite pression de l'air délivrée par le compresseur tendant à ouvrir la tuyère de Péjecteur et la force du ressort tendant à fermer cette tuyère, et
- la seconde chambre communique avec une pompe à vide pour modifier ou neutraliser la force du ressort,
- le groupe de turbocompression comprend un second turbocompresseur comportant une turbine communiquant en permanence avec le collecteur d'échappement et un compresseur communiquant en permanence avec le collecteur d'admission et le compresseur communique avec le collecteur d'admission par l'intermédiaire d'un clapet anti-retour.
L'invention a également pour objet un moteur alternatif fonctionnant selon un cycle à quatre temps et comprenant un groupe de turbocompression, caractérisé en ce qu'il comporte un dispositif d'accélération du groupe de turbocompression aux bas régimes du moteur, tel que précédemment mentionné.
L'invention a aussi pour objet un procédé d'accélération d'un groupe de turbocompression aux bas régimes d'un moteur alternatif fonctionnant selon un cycle à quatre temps et comprenant un dispositif d'accélération dudit groupe de turbocompression tel que précédemment mentionné, caractérisé en ce qu'il consiste à fermer la tuyère de l'éjecteur aérodynamique.
L'invention a également pour objet un procédé d'accélération d'un groupe de turbocompression aux bas régimes d'un moteur alternatif fonctionnant selon un cycle à quatre temps et comprenant un dispositif d'accélération du groupe de turbocompression tel que précédemment mentionné, et un conduit de recyclage des gaz brûlés, caractérisé en ce qu'il consiste à obstruer ledit conduit de recyclage, la section de la tuyère de l'éjecteur étant fixe. L'invention a encore pour objet un procédé d'accélération d'un groupe de turbocompression aux bas régimes d'un moteur alternatif, ledit groupe comprenant deux turbocompresseurs, caractérisé en ce qu'il consiste :
- entre le régime de ralenti et un régime N1 où la pression d'admission P2 atteint la valeur désirée fonction du débit de carburant brûlé, à maintenir la soupape de décharge, le clapet anti-retour et la tuyère fermés de telle sorte que le moteur est alimenté en air par le seul compresseur du turbocompresseur entraîné par la turbine de ce turbocompresseur qui reçoit la totalité des gaz brûlés dans le moteur, et
- entre ce régime N1 et un régime Nt où la pression de refoulement du compresseur du turbocompresseur atteint la pression d'admission
P2, à maintenir cette pression d'admission P2 à sa valeur de consigne par l'ouverture progressive de la tuyère, la soupape de décharge et le clapet anti- retour restant fermés de telle sorte que le moteur est alimenté en air par le seul compresseur du turbocompresseur entraîné par la turbine qui ne reçoit qu'une fraction des gaz brûlés dans le moteur dont le complément alimente la turbine par l'éjecteur aérodynamique qui entraîne le compresseur débitant exclusivement dans la turbine par l'intermédiaire dudit éjecteur aérodynamique.
D'autres caractéristiques et avantages de l'invention apparaîtront au cours de la description qui va suivre et faite en référence aux dessins annexés, sur lesquels :
- la Figure 1 est un schéma d'un cylindre d'un moteur alternatif équipé d'un dispositif d'accélération d'un groupe de turbocompression à un turbocompresseur,
- la Figure 2 est un schéma d'une variante d'un cylindre d'un matériau alternatif équipé d'un dispositif d'accélération d'un groupe de turbocompression à un turbocompresseur, - la Figure 3 est un schéma d'un cylindre d'un moteur alternatif équipé d'un groupe de turbocompression à deux turbocompresseurs selon l'état de la technique, et
- la Figure 4 est un schéma d'un cylindre d'un moteur alternatif équipé d'un groupe de turbocompression à deux turbocompresseurs et équipé d'un dispositif d'accélération d'un groupe de turbocompression à deux turbocompresseurs.
Sur les figures, on a représenté schématiquement un moteur 1 qui comporte au moins un cylindre 1a muni d'au moins une soupape d'admission 2 reliée à un collecteur d'admission 3 et d'au moins une soupape d'échappement 4 reliée à un collecteur d'échappement 5. Ce moteur 1 fonctionne selon un cycle à quatre temps, de préférence sans croisement des soupapes 2 et 4, pour empêcher une communication directe entre le collecteur d'admission 3 et le collecteur d'échappement 5.
Sur la Figure 1 , le moteur 1 est suralimenté par un groupe de turbocompression comprenant un turbocompresseur désigné dans son ensemble par la référence 10 et comportant un compresseur d'air 11 alimentant le collecteur d'admission 3 et une turbine radiale 12 alimentée par le collecteur d'échappement 5 et entraînant le compresseur 11 par des moyens mécaniques schématisés sur la figure par le trait mixte 13. Le moteur 1 est également équipé d'un conduit 6 de recyclage des gaz brûlés, également appelé conduit EGR, et muni d'une vanne de réglage 7, couramment appelée vanne EGR. Le moteur 1 est équipé d'un dispositif d'accélération du groupe de turbocompression aux bas régimes de ce moteur et qui comporte un éjecteur aérodynamique désigné dans son ensemble par la référence 20.
D'une manière générale et comme cela sera décrit ultérieurement, l'éjecteur aérodynamique 20 prélève un flux propulseur sur les gaz d'échappement du moteur 1 et un flux entraîné sur l'air délivré par le compresseur 11 et forme un flux mélangé qui alimente la turbine 12 du turbocompresseur 10.
L'éjecteur aérodynamique 20 comporte un mélangeur 21 qui est, dans l'exemple de réalisation représenté sur la figure 1 , formé par la volute d'alimentation de la turbine 12. Ce mélangeur 21 est prolongé vers l'amont par rapport au sens de circulation du flux mélangé par une portion 22 sensiblement rectiligne qui présente une longueur suffisante pour homogénéiser le mélange entre le flux propulseur et le flux entraîné de l'éjecteur aérodynamique 20. Cette portion 22 sensiblement rectiligne se prolonge par une portion coaxiale 23 sensiblement conique dont l'angle au sommet est par exemple compris entre 20 et 40°. La portion 23 communique avec le collecteur d'échappement 5.
Dans le mode de réalisation représenté sur la figure 1 , l'éjecteur 20 comporte également un tube cylindrique 24 qui forme un conduit interne 25 et dont la paroi extérieure est munie, à l'une de ses extrémités 24a, d'une portion conique 24b destinée à coopérer avec la portion conique 23 du mélangeur 20.
Le tube cylindrique 24 est monté coulissant de façon étanche dans un guide 26 qui présente une section interne de forme conjuguée à la paroi externe de ce tube cylindrique 24. Ce tube cylindrique 24 est déplaçable coaxialement au mélangeur 21 pour que les portions coniques, respectivement 23 et 24b, forment une tuyère 30 convergente annulaire de section variable d'accélération du flux propulseur. Le tube cylindrique 24 communique avec la sortie du compresseur 11 par un conduit de dérivation 31 par l'intermédiaire d'un clapet anti-retour 32 qui interdit l'écoulement des gaz brûlés du collecteur d'échappement 5 vers le compresseur 11. Pour cela, le clapet anti-retour 32 est associé à un ressort 33 dont la force de rappel a tendance à appliquer le clapet 32 contre son siège 32a pour obturer le conduit de dérivation 31.
Le tube cylindrique 24 comporte à son extrémité 24c opposée à celle munie de la portion conique 24b, un piston de commande 35 monté coulissant dans un cylindre 36 déterminant d'un côté de ce piston 35, une première chambre 37 soumise à la pression de l'air délivré par le compresseur 11 par l'intermédiaire du conduit de dérivation 31 et, de l'autre côté de ce piston de commande 35, une seconde chambre 38 comportant un ressort 39 agissant sur le piston 35. La pression de l'air délivré par le compresseur 11 et passant par le conduit de dérivation 31 a tendance à ouvrir le tuyère 30 en déplaçant par l'intermédiaire du piston 35, le tube cylindrique 24 tandis que la force exercée par le ressort 39 sur le piston 35 a tendance à fermer cette tuyère 30.
Dans l'exemple de réalisation représenté sur la figure 1 , la seconde chambre 38 communique par l'intermédiaire d'une canalisation 40 avec une pompe à vide, non représentée, qui permet, dans certains cas de modifier ou neutraliser la force du ressort 39. La section de la tuyère 30 varie, de préférence, entre la section d'entrée de la volute de la turbine 12 et le tiers de ladite section d'entrée.
Le moteur à quatre temps sans croisement de soupapes est susceptible de générer un débit de gaz brûlés proportionnel à son régime et à la densité des gaz dans le collecteur d'admission 3. La pression des gaz refoulés par le moteur 1 à un régime donné ne dépend que de la section de l'orifice d'échappement en l'occurrence, le distributeur de la turbine 12.
Pour accélérer le compresseur 11 , la turbine 12 doit recevoir un débit de gaz dont la pression totale et/ou la température totale sont supérieures à celle du débit d'air délivré par le compresseur 11. Le débit délivré par le compresseur 11 , égal au débit qui traverse la turbine 12, doit par ailleurs être supérieur au débit de pompage où le fonctionnement est instable. Au régime de ralenti, le débit aspiré par le moteur 1 est inférieur à ce débit minimal et la pression de refoulement des gaz brûlés est négligeable compte tenu du surdimensionnement de la turbine 12.
Dans le dispositif de l'invention représenté sur la figure 1 , le compresseur 11 débite en parallèle dans le circuit d'admission du moteur 1 et dans le conduit de dérivation 31 qui alimente directement la turbine 12. Ainsi, cette turbine 12 est alimentée simultanément par l'air issu du conduit de dérivation 31 et par les gaz brûlés refoulés par le moteur 1.
Dans le dispositif selon l'invention, le moteur 1 est utilisé comme un générateur de gaz comprimés qui propulse une partie du flux d'air délivré par le compresseur 11 dans la volute d'alimentation de la turbine 12 au moyen de l'éjecteur aérodynamique 20. Les gaz chauds accélérés par la tuyère 30 de cet éjecteur aérodynamique communiquent leur quantité de mouvement à l'air délivré par le conduit de dérivation 31 au moyen de l'éjecteur 20 dont le mélangeur 21 alimente la volute de la turbine 12. La section de la tuyère 30 de l'éjecteur 20 est réglable ce qui permet de contrôler le rapport entre le débit des gaz propulseurs et le débit de gaz de l'air entraîné. La section de la tuyère 30 peut être réglée en fonctionnement entre une valeur minimale qui permet l'accélération du groupe de turbocompression et le débit de recyclage des gaz brûlés souhaité au ralenti et la section normale d'alimentation de la turbine 12 de ce groupe de turbocompression.
Pour le fonctionnement au ralenti, la tuyère 30 est réglée à sa section minimale. La vanne de réglage 7 est ouverte et règle les débits de gaz chauds recyclés pour disposer dans le cylindre 1a de la quantité d'air juste nécessaire pour brûler le débit de carburant d'entretien du ralenti et une température d'admission aussi haute que possible pour limiter le bruit et les imbrûlés de combustion. La richesse est de préférence régulée par le calculateur de contrôle du moteur 1. Dans ces conditions, la pression d'admission dans le collecteur d'admission 3 est voisine de la pression atmosphérique et la pression d'échappement dans le collecteur d'échappement 5 est légèrement supérieure à la pression atmosphérique. Pour augmenter la pression d'air délivrée par le groupe de turbocompression sans modifier le régime du ralenti du moteur 1, il suffit de fermer la vanne de réglage 7 sans modifier la section de la tuyère 30. La pression dans le collecteur d'échappement 5 augmente ainsi que la vitesse du jet émis par la tuyère 30 qui entraîne un débit d'air par le conduit de dérivation 31 auquel il transfert sa quantité de mouvement dans le mélangeur 21. La pression totale en amont de la turbine 12 étant supérieure à la pression délivrée par le compresseur 11 , ce dernier s'accélère jusqu'à une vitesse maximale quand la vanne de réglage 7 est fermée. Le moteur 1 ainsi suralimenté à son régime de ralenti, est susceptible de délivrer un couple pour accélérer le véhicule.
Quand le moteur 1 s'accélère pour atteindre le régime d'adaptation, la tuyère 30 de l'éjecteur 20 doit être progressivement ouverte jusqu'à la section normale d'alimentation de la turbine 12 pour limiter la pression des gaz dans le collecteur d'échappement 5. Le pourcentage d'air entraîné vers la turbine 12 décroît alors jusqu'à zéro et le clapet anti-retour 32 se ferme pour interdire un reflux de gaz chauds vers la sortie du compresseur 11. Cette manoeuvre est régulée par le ressort 39 qui est en appui sur une face du piston 35 dont l'autre face est soumise à la pression délivrée par le compresseur 11. Le tarage et la raideur du ressort 39 fixent les niveaux de pression d'air accessible sur ce mode de régulation. Ce mode de régulation peut être modifié ou neutralisé en mettant la chambre 38 qui comporte le ressort 39 en communication avec une pompe à vide par une électrovanne pilotée à trois voies, non représentées. L'ouverture progressive de la tuyère 30 de l'éjecteur 20 peut être accompagnée d'une ouverture partielle de la vanne de réglage 7 afin de maintenir le taux de gaz recyclés à une valeur souhaitée. Entre le ralenti et un régime égal au double du régime d'adaptation, le dispositif selon l'invention permet de maintenir un taux de gaz recyclés élevé et/ou de délivrer un couple élevé.
De préférence, la vanne de réglage 7 contrôle le taux de gaz recyclés et la tuyère 30 de l'éjecteur 20 actionnée par le piston 35 contrôle la richesse de la combustion du moteur. Un avantage du dispositif selon l'invention est le contrôle de la température d'admission qui permet d'exploiter des taux de compression réduits par temps froid. Un autre avantage du dispositif selon l'invention est le frein moteur obtenu par la fermeture simultanée de la vanne de réglage 7 et de la tuyère 30 de l'éjecteur aérodynamique 20.
A chaque levée de pied du conducteur de la pédale d'accélérateur, la tuyère 30 peut se fermer et la vanne de réglage 7 peut s'ouvrir pour alimenter le moteur 1 en gaz chauds afin de ne pas refroidir les dispositifs de post-traitement des gaz d'échappement.
Si le conducteur souhaite ralentir le véhicule en actionnant la pédale frein, celle-ci peut prioritairement fermer la vanne de réglage 7 pour accroître la contre pression d'échappement et créer du frein moteur. L'énergie cinétique du véhicule est alors utilisée pour entraîner le groupe de turbocompression 10 et permette une reprise instantanée à l'issue du ralentissement.
L'invention autorise de nombreuses stratégies de contrôle de fonctionnement du moteur qui sont familières de l'homme de l'art.
Quand le moteur 1 est équipé d'un conduit 6 de recyclage des gaz brûlés également appelé conduit EGR, comme montré à la figure 2, l'efficacité du dispositif selon l'invention peut être améliorée en réchauffant l'air qui alimente l'éjecteur 20 par l'intermédiaire du conduit 31. Une solution décrite sure la Fig. 2 consiste à placer un échangeur
51 air/gaz brûlés à une intersection du conduit 31 et du conduit 6. Généralement, le conduit 6 comporte un réfrigérant gaz/eau 52 ainsi qu'un conduit de dérivation 53 dudit réfrigérant. L'échangeur 51 est dans ce cas placé en amont du réfrigérant 52 et du conduit de dérivation 53. En se reportant maintenant aux Figures 3 et 4, on va décrire une autre application du dispositif d'accélération du groupe de turbocompression.
Outre l'accélération du compresseur aux bas régimes du moteur, le dispositif d'accélération selon l'invention est particulièrement avantageux dans un groupe de turbocompression séquentiel qui comporte deux turbines et deux compresseurs qui sont montés en parallèle pour détendre les gaz d'échappement et comprimer l'air d'admission du moteur. Dans une telle configuration, le premier turbocompresseur qui comporte une turbine et un compresseur, fonctionne seul entre le ralenti et un régime intermédiaire dit régime de transition Nt à partir duquel le second turbocompresseur qui comporte également une turbine et un compresseur, coopère avec le premier pour assurer l'alimentation en air du moteur. La mise en action du second turbocompresseur qui pose des problèmes similaires à l'accélération à bas régime, intervient à chaque montée en régime et son arrêt intervient à chaque descente en régime. En conduite urbaine ou sportive, la fréquence de ces transitions peut être élevée et imposer un contrôle difficile des vannes de régulation des flux gazeux.
Sur les figures 3 et 4, les organes communs au précédent mode de réalisation ont été désignés par les mêmes références.
Sur la Figure 3, on a représenté un moteur de type connu qui comporte un conduit d'admission 3 et un conduit d'échappement 5 et qui est suralimenté par un groupe de turbocompression comprenant deux turbocompresseurs, respectivement 60 et 70, comportant chacun un compresseur, respectivement 61 et 71 , et une turbine, respectivement 62 et 72.
Le compresseur 61 aspire l'air dans l'atmosphère pour le refouler en permanence dans le collecteur d'admission 3 et la turbine 62 communique en permanence avec le collecteur d'échappement 5 qui l'alimente en gaz chauds qu'elle rejette vers l'atmosphère. Le compresseur 71 aspire l'air dans l'atmosphère pour le refouler dans le collecteur d'admission 3 par l'intermédiaire d'un clapet anti-retour 110. La turbine 72 communique avec le collecteur d'échappement 5 par l'intermédiaire d'une vanne d'alimentation 8 contrôlée par un actionneur δi .
Le collecteur d'échappement 5 est muni d'une soupape de décharge 9 à l'atmosphère contrôlée par un actuateur 91 et le collecteur d'admission 3 est muni d'une soupape de décharge 100 à l'atmosphère située en amont du clapet 110 et contrôlée par un actuateur 101. Entre le ralenti et un régime N1 , les vannes et les clapets 8, 9, 10 et 11 sont fermés et la totalité du flux d'échappement alimente la turbine 62 qui accélère le compresseur 61 jusqu'à la pression d'admission P2 désirée. Entre le régime N1 et un régime de transition supérieur Nt, le débit d'air augmente à pression P2 constante en ouvrant progressivement la soupape de décharge 9. Le régime Nt doit être suffisant pour que le moteur 1 puisse aspirer après la transition, un débit d'air supérieur à la somme des débits de pompage des deux compresseurs, respectivement 61 et 71. Si les deux compresseurs 61 et 71 sont identiques et que le turbocompresseur 60 est adapté au voisinage de la ligne de pompage, le régime Nt est donc supérieur à 2 N1.
A partir du régime Nt, la vanne 8 s'ouvre pour alimenter la turbine 72 alors que la soupape de décharge 9 se ferme pour maintenir la pression P2. Le compresseur 71 s'accélère rapidement en débitant à travers la soupape de décharge 10 régulée pour éviter le pompage.
Quand la pression du compresseur 71 atteint la pression P2, le clapet 11 s'ouvre, la soupape de décharge 10 se ferme et les deux compresseurs
61 et 71 se partagent le débit d'air du moteur 1 au prorata de la section des turbines 62 et 72. La soupape de décharge 9 reprend alors la régulation de la pression P2 pour les régimes supérieurs à Nt.
Etant donné que l'ensemble de ces opérations doit se dérouler en quelques dixièmes de seconde, la gestion des actuateurs et la commande des actuateurs eux mêmes qui gèrent la chronologie des opérations, sont d'une grande complexité.
Le dispositif d'accélération selon l'invention a pour but de simplifier le processus de mise en action du compresseur 71 du second turbocompresseur 70 et de le faire contribuer au débit d'air du moteur à partir d'un régime Nt inférieur au régime Nt du moteur selon l'état de la technique précédemment décrit par rapport à la Figure 3.
Le moteur 1 équipé du dispositif d'accélération d'un groupe de turbocompression selon l'invention, est représenté à la Figure 4.
La configuration de ce moteur est identique à la configuration du moteur représenté à la Figure 3 à l'exception du circuit d'alimentation de la turbine 72 du second turbocompresseur 70 et du circuit de refoulement du compresseur 71 de ce turbocompresseur jusqu'au clapet anti-retour 110. Cette turbine 72 est alimentée par un éjecteur aérodynamique 20 dont le flux propulseur est prélevé sur les gaz d'échappement issus du collecteur d'échappement 5 et dont le flux entraîné est prélevé au refoulement du compresseur 71 en passant par le conduit 31. Cet éjecteur aérodynamique 20 est identique à celui décrit en rapport au premier mode de réalisation représenté à la Figure 1 à ceci près que la tuyère variable 30 peut se fermer totalement et de façon étanche et que la pression qui agit sur le piston de commande 35 de la tuyère 30 n'est pas la pression de refoulement P21 du compresseur 71 , mais celle P2 du compresseur 61.
Selon le mode de réalisation représenté à la figure 4, le cylindre
36 détermine d'un côté du piston 35, une première chambre 38 soumise à la pression de référence Pr et, de l'autre côté de ce piston 35, une seconde chambre 381 soumise à la pression P2, la chambre 37 restant soumise à la pression P21.
Pour éviter que la soupape de décharge 9 s'ouvre avant que la tuyère 30 soit complètement ouverte, le conduit d'alimentation 913 de la chambre 910 comporte une vanne d'obturation 914 qui ne s'ouvre que quand la tuyère 30 est sur sa butée d'ouverture. Dans ce mode de réalisation, la vanne d'alimentation 8 de la turbine 72 et le clapet anti-pompage 100 du compresseur 71 de la figure 3 sont remplacés par l'éjecteur aérodynamique 20 et son clapet anti-retour 32.
Un exemple de dispositif de régulation est montré à la figure 4.
Une pression de référence Pr est établie dans une enceinte 12 alimentée par le collecteur d'admission 3 où règne la pression d'admission P2 par l'intermédiaire d'une vanne 121 de réduction de pression pilotée par un calculateur de contrôle du moteur.
Cette enceinte 12 communique avec les chambres 38 et 91 des actuateurs de commande de la tuyère 30 et de la soupape de décharge 9 pour ajouter aux ressorts 39 et 912, une force de tarage variable.
Un mode de fonctionnement de l'installation représentée à la Figure 4 est décrit ci-dessous pendant une accélération du moteur. Entre le ralenti et un régime N1, la soupape de décharge 9, le clapet 110 et la tuyère 30 sont fermés et la totalité du flux d'échappement alimente la turbine 62 qui accélère le compresseur 61 du turbocompresseur 60 jusqu'à atteindre la pression d'admission P2 désirée. Entre le régime N1 et un régime Nt1 le débit d'air augmente à la pression d'admission P2 constante en ouvrant progressivement la tuyère 30 qui alimente la turbine 72. Le turbocompresseur 70 s'accélère progressivement et le compresseur 71 de ce turbocompresseur 70 débite sans pomper dans la turbine 72 par l'intermédiaire du clapet anti-retour 32 et de l'éjecteur aérodynamique 20. La pression dans le collecteur d'admission 3 est égale à la pression d'admission P2 désirée en aval du clapet anti-retour 110 et égale à une pression P21 inférieure à cette pression d'admission P2 en amont. Entre le ralenti et le régime Nt, seul le compresseur 61 assure l'alimentation en air du moteur.
Quant le régime atteint Nt1 la pression P21 atteint la pression d'admission P2 et le clapet anti-retour 110 s'ouvre. Le compresseur 71 commence à participer à l'alimentation en air du moteur.
Au delà du régime Nt, la tuyère 30 continue de s'ouvrir pour réguler la pression d'admission P2 jusqu'à son ouverture totale. La contribution du compresseur 71 à l'alimentation du moteur augmente. A la fin de l'ouverture de la tuyère 30, la pression statique à sa sortie croise la pression d'admission P2 et le clapet anti-retour 32 se ferme. Le compresseur 71 cesse alors de débiter dans l'éjecteur 20.
La transition étant effectuée, les compresseurs 61 et 71 se partagent le débit d'air et la pression d'admission P2 est régulée par la soupape de décharge 9.
Un avantage de l'invention réside dans la progressivité de la mise en action du turbocompresseur 70.
Un autre avantage est la diminution du régime de transition Nt. En effet, aucun fluide sous pression n'est déchargé à l'atmosphère comme dans l'installation selon l'état de la technique représentée à la Figure 2 où la soupape de décharge 9 et le clapet anti-retour 110 coopèrent pour éviter le pompage du compresseur 71 du turbocompresseur 70. Le flux d'enthalpie nécessaire pour entraîner les deux compresseurs 61 et 71 à leur débit de pompage, est donc atteint pour un régime inférieur.
Par ailleurs, pour chaque couple demandé au moteur correspond une quantité de carburant et une quantité d'air proportionnelles à la pression d'admission P2 désirée pour le brûler avec une richesse déterminée par la cartographie mise en mémoire dans un calculateur de contrôle du moteur.
La position de la pédale d'accélérateur qui demande un couple moteur, ordonne à ce calculateur une pression d'admission P2 quel que soit le régime. Selon une réalisation simple de l'invention, le calculateur n'agit que sur la vanne de réduction de pression 121 alimentée par la pression d'admission P2 pour établir dans l'enceinte 12 une pression de référence Pr variable avec la position de ladite pédale d'accélérateur. Le ressort 39 de l'actuateur de la tuyère 30 et le ressort 912 de l'actuateur de la soupape de décharge 9 sont tarés pour que, quand cette pression de référence Pr est égale à la pression atmosphérique, ladite tuyère 30 et la vanne de décharge 9 s'ouvrent pour la pression d'admission P2 minimale désirée.
Pour éviter que la soupape de décharge 9 s'ouvre avant que la tuyère 30 soit complètement ouverte, le conduit d'alimentation 913 de la chambre 910 comporte la vanne d'obturation 914 qui ne s'ouvre que quant la tuyère 30 est sur sa butée d'ouverture.
L'enceinte 12 étant en communication avec les chambres 38 et 91 des actuateurs respectivement de la tuyère 30 et de la soupape de décharge 9, cette enceinte 12 permet d'ajouter aux ressorts 39 et 912, une force de tarage variable qui modifie le seuil de régulation de la pression P2. Dans ces conditions les actuateurs de la tuyère 30 et de la soupape de décharge 9 réguleront la pression d'admission P2 au niveau programmé dans le calculateur de contrôle du moteur quel que soit le régime de ce moteur.
En présence d'un recyclage des gaz brûlés, le paramètre correspondant à la pression d'admission P2 sera remplacé par le débit d'air frais mesuré par un débitmètre situé à l'entrée du moteur en amont de l'arrivée des gaz recyclés. Pendant les phases de ralentissement, les différentes séquences ans l'ordre inverse.

Claims

REVENDICATIONS
1. Dispositif d'accélération d'un groupe de turbocompression aux bas régimes d'un moteur alternatif (1) fonctionnant selon un cycle à quatre temps et comprenant au moins un cylindre (1a) muni d'au moins une soupape d'admission (2) reliée à un collecteur d'admission (3) et d'au moins une soupape d'échappement (4) reliée à un collecteur d'échappement (5), ledit groupe de turbocompression comprenant au moins un turbocompresseur (10, 70) comportant un compresseur d'air (11 , 71) alimentant le collecteur d'admission (3) et une turbine radiale (12, 72) alimentée par le collecteur d'échappement (5) et entraînant le compresseur (11 , 71), caractérisé en ce qu'il comporte un éjecteur aérodynamique (20) prélevant un flux propulseur sur les gaz d'échappement du moteur (1) et un flux entraîné sur l'air délivré par le compresseur (11 , 71) et formant un flux mélangé qui alimente la turbine (12, 72) du groupe de turbocompression (10).
2. Dispositif selon la revendication 1, caractérisé en ce que l'éjecteur (20) comporte un mélangeur (21) formé par la volute d'alimentation de la turbine (12, 72) prolongée vers l'amont, par rapport au sens de circulation du flux mélangé, par une portion (22) sensiblement rectiligne de longueur suffisante pour homogénéiser le mélange entre le flux propulseur et le flux entraîné.
3. Dispositif selon la revendication 2, caractérisé en ce que la portion sensiblement rectiligne du mélangeur (21) se prolonge vers l'amont par une portion (23) coaxiale sensiblement conique d'angle au sommet compris par exemple entre 20 et 40° communiquant avec le collecteur d'échappement (5).
4. Dispositif selon l'une quelconque des revendications 1 à 3, caractérisé en ce que l'éjecteur (20) comporte un tube cylindrique (24) dont la paroi extérieure est munie, à l'une (24a) de ses extrémités, d'une portion conique (24b) destinée à coopérer avec la portion conique (23) du mélangeur (21), ledit tube (24) étant déplaçable coaxialement audit mélangeur (21) pour que les deux portions coniques (23, 24b) forment une tuyère (30) convergente annulaire de section variable d'accélération du flux propulseur.
5. Dispositif selon la revendication 4, caractérisé en ce que le tube cylindrique (24) est monté coulissant de façon étanche dans un guide (26) aménagé dans la paroi du collecteur d'échappement (5) et communique avec la sortie du compresseur (11 , 71) par l'intermédiaire d'un clapet anti-retour (32) interdisant l'écoulement des gaz brûlés du collecteur d'échappement (5) vers le compresseur (10).
6. Dispositif selon la revendication 4, caractérisé en ce que la section de la tuyère (30) varie entre la section d'entrée de la volute (21) de la turbine (12, 72) et le tiers de ladite section d'entrée.
7. Dispositif selon la revendication 4 ou 6, caractérisé en ce que le tube cylindrique (25) est solidarisé, à son extrémité (24c) opposée à celle munie de la portion conique (24b), d'un piston de commande (35) monté coulissant dans un cylindre déterminant d'un côté du piston (35), une première chambre (37) soumise à la pression de l'air délivré par le compresseur (11 , 71) et, de l'autre côté de ce piston de commande (35), une seconde chambre (38) comportant un ressort (39) agissant sur le piston (35), ladite pression de l'air délivré par le compresseur (11 , 71) tendant à ouvrir la tuyère (30) de l'éjecteur (20) et la force du ressort (39) tendant à fermer cette tuyère (30).
8. Dispositif selon la revendication 7, caractérisé en ce que la seconde chambre (38) communique avec une pompe à vide pour modifier ou neutraliser la force du ressort (39).
9. Dispositif selon l'une quelconque des revendications 1 à 8, ledit moteur (1) étant pourvu d'un conduit (6) de recyclage des gaz brûlés, caractérisé en ce qu'un échangeur air/gaz (51) est disposé à une intersection du conduit (6) et d'un conduit de dérivation (31) communiquant avec la sortie du compresseur (11 , 71).
10. Dispositif selon la revendication 9, caractérisé en ce qu'il comporte un réfrigérant (52) gaz/eau situé en aval de l'échangeur air/gaz (51).
11. Dispositif selon l'une quelconque des revendications 4 à 10, caractérisé en ce que le tube cylindrique (24) est déplaçable jusqu'à une position de fermeture totale et étanche de la tuyère (30).
12. Dispositif selon l'une quelconque des revendications 1 à 11 , caractérisé en ce que le groupe de turbocompression comprend un second turbocompresseur (60) comportant une turbine (62) communiquant en permanence avec le collecteur d'échappement (5) et un compresseur (61) communiquant en permanence avec le collecteur d'admission (3) et en ce que le compresseur (71) communique avec le collecteur d'admission (3) par l'intermédiaire d'un clapet anti-retour (110).
13. Dispositif selon la revendication 11 ou 12, caractérisé en ce qu'il comporte un moyen pour créer une pression de gaz de référence Pr variable inférieure à une pression d'admission P2 désirée et qui est fonction de la masse de carburant injectée à chaque cycle du moteur et éventuellement en fonction d'autres paramètres de fonctionnement de ce moteur.
14. Dispositif selon la revendication 13, caractérisé en ce que ledit moyen est formé par une enceinte (12) reliée au collecteur d'admission (3) dans lequel règne la pression d'admission P2 désirée, par l'intermédiaire d'une vanne (121) de réduction de pression pilotée par le calculateur de contrôle du moteur.
15. Dispositif selon l'une quelconque des revendications 7 et 12 à
14, caractérisé en ce que la seconde chambre (38) de l'actuateur de la tuyère (30) est alimentée par la pression de référence Pr qui s'ajoute à la force du ressort (39) pour fermer ladite tuyère (30), la force du ressort (39) étant juste suffisante pour maintenir fermée ladite tuyère (30) à la pression d'admission P2 minimale désirée.
16. Dispositif selon l'une quelconque des revendications 10 à 15, caractérisé en ce que le collecteur d'échappement (5) comporte une soupape de décharge (9) à l'atmosphère actionnée, dans la position d'ouverture totale de la tuyère (30), par la pression d'admission P2 dans une première chambre (910) pour maintenir la pression dans ladite chambre à une valeur de consigne réglée par un ressort (912) et la pression de référence Pr dans une seconde chambre (911).
17. Moteur alternatif fonctionnant selon un cycle à quatre temps et comprenant un groupe de turbocompression, caractérisé en ce qu'il comporte un dispositif d'accélération du groupe de turbocompression aux bas régimes du moteur, selon l'une quelconque des revendications précédentes.
18. Procédé d'accélération d'un groupe de turbocompression (10) aux bas régimes d'un moteur alternatif (1) fonctionnant selon un cycle à quatre temps et comprenant un dispositif d'accélération dudit groupe de turbocompression (10) selon l'une quelconque des revendications 1 à 8, caractérisé en ce qu'il consiste à fermer la tuyère (30) de l'éjecteur aérodynamique (20).
19. Procédé d'accélération d'un groupe de turbocompression (10) aux bas régimes d'un moteur alternatif (1) fonctionnant selon un cycle à quatre temps et comprenant un dispositif d'accélération du groupe de turbocompression (10) selon l'une quelconque des revendications 1 à 8, et un conduit (6) de recyclage des gaz brûlés, caractérisé en ce qu'il consiste à obstruer ledit conduit de recyclage (6), la section de la tuyère (30) de l'éjecteur (20) étant fixe.
20. Procédé d'accélération d'un groupe de turbocompression (10) d'un moteur alternatif (1) fonctionnant selon un cycle à quatre temps et comprenant un dispositif d'accélération selon l'une quelconque des revendications 1 et 10 à 16, caractérisé en ce qu'il consiste :
- entre le régime de ralenti et un régime N1 où la pression d'admission P2 atteint la valeur désirée fonction du débit de carburant brûlé, à maintenir la soupape de décharge (9), le clapet anti-retour (11) et la tuyère (30) fermés de telle sorte que le moteur (1) est alimenté en air par le seul compresseur (61) du turbocompresseur (60) entraîné par la turbine (62) de ce turbocompresseur (60) qui reçoit la totalité des gaz brûlés dans le moteur, et
- entre ce régime N1 et un régime Nt où la pression de refoulement du compresseur (71) du turbocompresseur (70) atteint la pression d'admission P2, à maintenir cette pression d'admission P2 à sa valeur de consigne par l'ouverture progressive de la tuyère (30), la soupape de décharge (9) et le clapet anti-retour (11) restant fermés de telle sorte que le moteur (1) est alimenté en air par le seul compresseur (61) du turbocompresseur (60) entraîné par la turbine (62) qui ne reçoit qu'une fraction des gaz brûlés dans le moteur dont le complément alimente la turbine (72) par l'éjecteur aérodynamique (20) qui entraîne le compresseur (71) débitant exclusivement dans la turbine (72) par l'intermédiaire dudit éjecteur aérodynamique (20).
21. Procédé selon la revendication 20, caractérisé en ce que, lorsque le régime traverse la valeur du régime Nt, le clapet anti-retour (110) s'ouvre et le compresseur (71) du turbocompresseur (70) commence à participer à l'alimentation du moteur (1).
22. Procédé selon la revendication 20 ou 21 , caractérisé en ce qu'au delà du régime Nt, la tuyère (30) continue de s'ouvrir pour maintenir la pression d'admission P2 à sa valeur de consigne, l'alimentation en air du moteur par le compresseur (71) augmente.
23. Procédé selon la revendication 20 ou 21 , caractérisé en ce que, avant que la tuyère (30) soit totalement ouverte, la pression statique au débouché de cette tuyère (30) croise la pression d'admission P2 et le clapet antiretour (32) se ferme, la totalité du débit du compresseur (71) étant alors orientée vers le collecteur d'admission (3) du moteur (1).
24. Procédé selon l'une quelconque des revendications 20 à 23, caractérisé en ce que, lorsque la tuyère (30) est totalement ouverte, la soupape de décharge (9) prend le relais pour maintenir la pression d'admission P2 à une valeur de consigne.
PCT/FR2006/000600 2005-03-22 2006-03-17 Dispositif d'acceleration d'un groupe de turbocompression aux bas regimes d'un moteur alternatif et moteur alternatif comportant un tel dispositif WO2006100370A2 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP06726100A EP1861598A2 (fr) 2005-03-22 2006-03-17 Dispositif d'acceleration d'un groupe de turbocompression aux bas regimes d'un moteur alternatif et moteur alternatif comportant un tel dispositif
US11/859,185 US20080066466A1 (en) 2005-03-22 2007-09-21 Device for accelerating a turbocharger unit at low speeds of a reciprocating engine, and a reciprocating engine including such a device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0502838A FR2883601B1 (fr) 2005-03-22 2005-03-22 Dispositif d'acceleration d'un groupe de turbocompression aux bas regimes d'un moteur alternatif et moteur alternatif comportant un tel dispositif
FR0502838 2005-03-22

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/859,185 Continuation US20080066466A1 (en) 2005-03-22 2007-09-21 Device for accelerating a turbocharger unit at low speeds of a reciprocating engine, and a reciprocating engine including such a device

Publications (2)

Publication Number Publication Date
WO2006100370A2 true WO2006100370A2 (fr) 2006-09-28
WO2006100370A3 WO2006100370A3 (fr) 2007-02-15

Family

ID=35285405

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2006/000600 WO2006100370A2 (fr) 2005-03-22 2006-03-17 Dispositif d'acceleration d'un groupe de turbocompression aux bas regimes d'un moteur alternatif et moteur alternatif comportant un tel dispositif

Country Status (4)

Country Link
US (1) US20080066466A1 (fr)
EP (1) EP1861598A2 (fr)
FR (1) FR2883601B1 (fr)
WO (1) WO2006100370A2 (fr)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008145202A1 (fr) * 2007-05-30 2008-12-04 Voith Patent Gmbh Turbocompresseur à gaz d'échappement
FR2937683A3 (fr) * 2008-10-23 2010-04-30 Renault Sas Procede de suralimentation en melange gazeux d'un moteur de vehicule automobile et dispositif correspondant
CN102767419A (zh) * 2012-07-03 2012-11-07 上海交通大学 内部带有弹簧的容积腔装置
CN110734859A (zh) * 2019-11-27 2020-01-31 英都斯特(无锡)感应科技有限公司 磁场催化箱体及应用

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2900198A1 (fr) * 2006-04-21 2007-10-26 Renault Sas Moteur pour vehicule automobile
JP2010518298A (ja) * 2007-02-05 2010-05-27 ボーグワーナー・インコーポレーテッド ターボチャージャ
DE112010000970T5 (de) * 2009-03-03 2012-09-27 Borgwarner Inc. Turbolader
DE102011005865A1 (de) * 2011-03-21 2012-09-27 Mahle International Gmbh Abgasturbolader
US8826659B2 (en) * 2011-09-27 2014-09-09 Toyota Motor Engineering & Manufacturing North America, Inc. Ejector with check valve
DE102012202857A1 (de) * 2012-02-24 2013-08-29 Bayerische Motoren Werke Aktiengesellschaft Abgasturbolader für einen Verbrennungsmotor
DE102013005068B4 (de) * 2013-03-22 2023-04-20 Volkswagen Aktiengesellschaft Verbrennungsmotor mit Bypasskanal zum Scavenging
GB2524820A (en) * 2014-04-04 2015-10-07 Caltec Ltd Jet pump
US9291094B2 (en) * 2014-05-05 2016-03-22 Dayco Ip Holdings, Llc Variable flow valve having metered flow orifice
US10080310B2 (en) 2015-06-26 2018-09-18 International Business Machines Corporation Bypassing a removed element in a liquid cooling system
CN108240273A (zh) * 2016-12-27 2018-07-03 中船动力有限公司 柴油机增压空气旁通装置
CN114622985A (zh) * 2021-06-13 2022-06-14 米建军 一种内燃机增压方法及装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB941532A (en) * 1960-09-08 1963-11-13 Daimler Benz Ag Improvements relating to the operation of superchargeable internal combustion engines
DE2207221A1 (de) * 1972-02-16 1973-09-27 Porsche Ag Brennkraftmaschine mit abgasturbine und von dieser angetriebenem ladergeblaese
DE2232593A1 (de) * 1972-07-03 1974-01-24 Audi Nsu Auto Union Ag Vom abgas angetriebener lader fuer brennkraftmaschinen
US4089173A (en) * 1975-04-24 1978-05-16 Etat Francais Supercharged internal combustion engines
US4785635A (en) * 1985-07-18 1988-11-22 Etat Francais Supercharged internal combustion engines
WO2004044412A1 (fr) * 2002-11-13 2004-05-27 Honeywell International Inc. Systemes de recirculation des gaz d'echappement doubles et hybrides utilises avec un moteur turbocompresse

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US408173A (en) * 1889-07-30 Nail for boots or shoes
US2390161A (en) * 1941-11-07 1945-12-04 Mercier Pierre Ernest Airplane power plant
CH639172A5 (de) * 1979-01-31 1983-10-31 Bbc Brown Boveri & Cie Verbrennungsmotor mit turbolader mit einem automatischen bypass.
US4367626A (en) * 1979-07-16 1983-01-11 Schwartzman Everett H Turbocharger systems
DE3145114C2 (de) * 1981-11-13 1985-08-14 Dr.Ing.H.C. F. Porsche Ag, 7000 Stuttgart Arbeitsverfahren einer Kolben-Brennkraftmaschine mit Abgasturbolader
US4499731A (en) * 1981-12-09 1985-02-19 Bbc Brown, Boveri & Company, Limited Controllable exhaust gas turbocharger
JPS6196138A (ja) * 1984-10-16 1986-05-14 Ngk Spark Plug Co Ltd 過給機付内燃機関
FR2618528B1 (fr) * 1987-07-23 1992-10-16 France Etat Armement Perfectionnements aux chambres de combustion auxiliaires, pour moteurs a combustion interne suralimentes, et moteurs a combustion interne equipes d'une telle chambre
DE4312078C2 (de) * 1993-04-13 1995-06-01 Daimler Benz Ag Abgasturbolader für eine aufgeladene Brennkraftmaschine
DE10158874A1 (de) * 2001-11-30 2003-06-12 Daimler Chrysler Ag Abgasturbolader für eine Brennkraftmaschine und Verfahren zum Betrieb einer aufgeladenen Brennkraftmaschine
US20030183212A1 (en) * 2002-03-26 2003-10-02 Paul Gottemoller Engine turbocompressor controllable bypass system and method
JP2004346776A (ja) * 2003-05-20 2004-12-09 Komatsu Ltd 給気バイパス制御装置を備えた内燃機関
US7249930B2 (en) * 2005-11-29 2007-07-31 Honeywell International, Inc. Variable-nozzle turbocharger with integrated bypass

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB941532A (en) * 1960-09-08 1963-11-13 Daimler Benz Ag Improvements relating to the operation of superchargeable internal combustion engines
DE2207221A1 (de) * 1972-02-16 1973-09-27 Porsche Ag Brennkraftmaschine mit abgasturbine und von dieser angetriebenem ladergeblaese
DE2232593A1 (de) * 1972-07-03 1974-01-24 Audi Nsu Auto Union Ag Vom abgas angetriebener lader fuer brennkraftmaschinen
US4089173A (en) * 1975-04-24 1978-05-16 Etat Francais Supercharged internal combustion engines
US4785635A (en) * 1985-07-18 1988-11-22 Etat Francais Supercharged internal combustion engines
WO2004044412A1 (fr) * 2002-11-13 2004-05-27 Honeywell International Inc. Systemes de recirculation des gaz d'echappement doubles et hybrides utilises avec un moteur turbocompresse

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008145202A1 (fr) * 2007-05-30 2008-12-04 Voith Patent Gmbh Turbocompresseur à gaz d'échappement
FR2937683A3 (fr) * 2008-10-23 2010-04-30 Renault Sas Procede de suralimentation en melange gazeux d'un moteur de vehicule automobile et dispositif correspondant
CN102767419A (zh) * 2012-07-03 2012-11-07 上海交通大学 内部带有弹簧的容积腔装置
CN110734859A (zh) * 2019-11-27 2020-01-31 英都斯特(无锡)感应科技有限公司 磁场催化箱体及应用

Also Published As

Publication number Publication date
WO2006100370A3 (fr) 2007-02-15
FR2883601B1 (fr) 2007-10-05
FR2883601A1 (fr) 2006-09-29
EP1861598A2 (fr) 2007-12-05
US20080066466A1 (en) 2008-03-20

Similar Documents

Publication Publication Date Title
WO2006100370A2 (fr) Dispositif d'acceleration d'un groupe de turbocompression aux bas regimes d'un moteur alternatif et moteur alternatif comportant un tel dispositif
EP2129891B1 (fr) Moteur a combustion interne suralimente
EP1775441B1 (fr) Dispositif de suralimentation pour moteur à combustion interne, et véhicule automobile équipé d'un tel dispositif
EP0730706B1 (fr) Procede pour ameliorer le fonctionnement d'un moteur thermique suralimente et balaye avec de l'air, et moteur thermique agence pour la mise en oeuvre du procede
FR2615902A1 (fr) Moteur a turbocompresseur
EP0069632B1 (fr) Procédé et dispositif de contrôle du clapet de décharge de l'échappement d'un moteur à combustion interne turbo-compressé
FR2801931A1 (fr) Moteur a combustion interne equipe d'un turbocompresseur entraine par les gaz d'echappement et son procede
WO2005073536A1 (fr) Moteur a combustion interne suralimente par turbocompresseur
FR2611229A1 (fr) Turboreacteur a soufflante carenee a cycle compound
WO2013186464A1 (fr) Ensemble comprenant un moteur thermique et un compresseur electrique
FR2886978A1 (fr) Moteur a combustion interne et procede destine a commander un generateur a turbine dans un moteur a combustion interne
FR2812031A1 (fr) "turbocompresseur de suralimentation entraine par les gaz d'echappement pour un moteur a combustion interne et procede de fonctionnement d'un turbocompresseur entraine par les gaz d'echappement"
FR2530730A1 (fr) Moteur a allumage par compression et a turbocompresseur, pouvant fonctionner avec un faible taux de compression
FR2853011A1 (fr) Moteur alternatif a recirculation de gaz brules destine a la propulsion des vehicules automobiles et procede de turbocompression de ce moteur
FR2885649A1 (fr) Systeme de suralimentation pour moteur a allumage par compression
EP1908937A1 (fr) Moteur a combustion interne suralimenté et procédé de suralimentation
FR3069020B1 (fr) Compresseur de turbomachine a calages variables
EP0090122A2 (fr) Dispositif de régulation de l'alimentation d'un moteur à combustion interne
FR2881793A1 (fr) Moteur alternatif a combustion interne et procede d'elimination des particules des gaz brules pour un tel moteur alternatif
EP0961880B1 (fr) Procede et dispositif de regeneration d'un filtre a vapeurs de carburant pour un moteur a injection directe
EP0458670B1 (fr) Procédé d'injection pneumatique de carburant dans un moteur à deux temps et moteur à deux temps correspondant
FR2580334A1 (fr) Systeme d'alimentation en carburant pour un moteur a combustion interne a turbocompresseur
EP1074714A1 (fr) Moteur turbocompressé perfectionné
FR2864579A1 (fr) Moteur a combustion interne avec suralimentation pilotee et procede de pilotage de la suralimentation
FR2947867A3 (fr) Moteur a combustion interne pour vehicule automobile suralimente par deux turbocompresseurs

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006726100

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11859185

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

WWW Wipo information: withdrawn in national office

Country of ref document: RU

WWP Wipo information: published in national office

Ref document number: 2006726100

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11859185

Country of ref document: US