WO2004044412A1 - Systemes de recirculation des gaz d'echappement doubles et hybrides utilises avec un moteur turbocompresse - Google Patents

Systemes de recirculation des gaz d'echappement doubles et hybrides utilises avec un moteur turbocompresse Download PDF

Info

Publication number
WO2004044412A1
WO2004044412A1 PCT/US2003/036065 US0336065W WO2004044412A1 WO 2004044412 A1 WO2004044412 A1 WO 2004044412A1 US 0336065 W US0336065 W US 0336065W WO 2004044412 A1 WO2004044412 A1 WO 2004044412A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust gas
turbocharger
egr
exhaust
compressor
Prior art date
Application number
PCT/US2003/036065
Other languages
English (en)
Inventor
Dennis Brookshire
Arnold Steven Don
Original Assignee
Honeywell International Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honeywell International Inc. filed Critical Honeywell International Inc.
Priority to EP03789742.8A priority Critical patent/EP1689997B1/fr
Priority to AU2003294261A priority patent/AU2003294261A1/en
Publication of WO2004044412A1 publication Critical patent/WO2004044412A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/013Engines characterised by provision of pumps driven at least for part of the time by exhaust with exhaust-driven pumps arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/001Engines characterised by provision of pumps driven at least for part of the time by exhaust using exhaust drives arranged in parallel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/004Engines characterised by provision of pumps driven at least for part of the time by exhaust with exhaust drives arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/007Engines characterised by provision of pumps driven at least for part of the time by exhaust with exhaust-driven pumps arranged in parallel, e.g. at least one pump supplying alternatively
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/05High pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust system upstream of the turbine and reintroduced into the intake system downstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/04EGR systems specially adapted for supercharged engines with a single turbocharger
    • F02M26/06Low pressure loops, i.e. wherein recirculated exhaust gas is taken out from the exhaust downstream of the turbocharger turbine and reintroduced into the intake system upstream of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/08EGR systems specially adapted for supercharged engines for engines having two or more intake charge compressors or exhaust gas turbines, e.g. a turbocharger combined with an additional compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates generally to the field of gasoline and diesel-powered internal combustion engines that make use of exhaust gas recirculation (EGR) systems and, more particularly, to dual and hybrid EGR systems that are specially adapted for use with turbocharged internal combustion engines.
  • EGR exhaust gas recirculation
  • EGR is a known method that is currently employed with internal combustion gasoline and diesel-powered engines for reducing NOx emissions.
  • Conventional EGR systems work by taking a by-pass stream of engine exhaust gas from an engine exhaust manifold and directing the same to a control valve or an EGR valve.
  • the EGR valve is designed and operated to provide a desired amount of exhaust gas for mixture with intake air and injection into the engine's induction system for subsequent combustion.
  • the EGR valve regulates the amount of exhaust gas that is routed to the engine induction system based on engine demand.
  • Such convention EGR systems include exhaust by-pass tubing or piping, related plumbing and manifolding, and engine driven EGR pump (if further pressurizing is necessary), and an EGR control valve, all of which are ancillary components that are attached to the engine.
  • the present invention is of an exhaust gas recirculation (EGR) system comprising an engine having an intake manifold and an exhaust manifold; a turbocharger with at least one compressor stage; a first exhaust gas bypass stream connected to receive exhaust gas upstream of the turbocharger; a first control valve connected in the first exhaust gas bypass stream to control the amount of exhaust gas received from the exhaust manifold; a second exhaust gas bypass stream connected to receive exhaust gas exiting the exhaust manifold through a turbine section of the turbocharger and combine the gas with an intake air stream to form an exhaust gas/air mixture that is directed into a first compressor stage of the turbocharger; and a second control valve connected within the second exhaust gas bypass stream upstream of a connection point with the intake air stream for controlling a relative amount of air and exhaust gas in the exhaust gas/air mixture routed to the first compressor stage of the turbocharger.
  • EGR exhaust gas recirculation
  • the exhaust gas from the first exhaust gas bypass stream may be cooled with an EGR cooler and mixed with the exhaust gas/air mixture to form a final gas/air mixture before the final gas/air mixture is directed into a second compressor stage of the turbocharger, before the pressurized final gas/air mixture is introduced into the intake manifold.
  • the exhaust gas/air mixture may be cooled after it is compressed by the first compressor stage.
  • a diesel particulate filter to filter exhaust gas in the first exhaust gas bypass stream may be added.
  • the pressurized exhaust gas/air mixture exiting a last compressor stage of the turbocharger is combined with the first exhaust gas bypass stream before being introduced into the intake manifold, with the exhaust gas/air mixture optionally being cooled before entering the last compressor stage.
  • At least one EGR cooler may be used to cool the first exhaust gas bypass stream and/or the second exhaust gas bypass stream.
  • a charge air cooler may be employed to cool the pressurized exhaust gas and air before they are introduced into the intake manifold.
  • At least one exhaust after- treatment to treat the second exhaust gas bypass stream is optionally included.
  • This EGR system may optionally comprise a second turbocharger operated in parallel with the turbocharger; a bypass for directing a partial flow of exhaust exiting the exhaust manifold into an inlet of a turbine section of the second turbocharger and a first synchronized control valve to control said partial flow; and a second synchronized control valve to control a relative amount of exhaust gas/air mixture entering compressor sections of the turbochargers; wherein exhaust gas exiting the turbine section of the second turbocharger forms a part of the second exhaust gas bypass stream.
  • the present invention is also of an EGR system comprising an engine having an intake manifold and an exhaust manifold a pair of serially arranged turbochargers; a first exhaust gas bypass stream connected to receive exhaust gas upstream of a first turbocharger; a first control valve connected in the first exhaust gas bypass stream to control the amount of exhaust gas received from the exhaust manifold; a second exhaust gas bypass stream connected to receive exhaust gas exiting the exhaust manifold through a turbine section of at least one turbocharger and combine the gas with an intake air stream to form an exhaust gas/air mixture that is directed into a compressor section of the second turbocharger; and a second control valve connected within the second exhaust gas bypass stream upstream of a connection point with the intake air stream for controlling a relative amount of air and exhaust gas in the exhaust gas/air mixture routed to the compressor section of the second turbocharger; wherein the pressurized exhaust gas/air mixture exiting the second turbocharger is directed to an inlet of a compressor section of the first turbocharger for further compression.
  • a turbine section of the second turbocharger receives exhaust gas exiting a turbine section of the first turbocharger and the second exhaust gas bypass stream is connected to receive exhaust gas exiting the turbine section of the second turbocharger, optionally wherein the exhaust gas from the first exhaust gas bypass stream is cooled and mixed with the exhaust gas/air mixture before said mixture is directed to an inlet of a compressor section of the first turbocharger to form a final gas/air mixture, and wherein the pressurized final gas/air mixture exiting the compressor section of the first turbocharger is introduced into the intake manifold.
  • the system may optionally further comprise a diesel particulate filter to filter exhaust gas in the first exhaust gas bypass stream.
  • the pressurized exhaust gas/air mixture exiting the compressor section of the first turbocharger is combined with the first exhaust gas bypass stream before being introduced into the intake manifold.
  • An EGR cooler may be used to cool the first exhaust gas bypass stream.
  • the second exhaust gas bypass stream is connected to receive exhaust gas exiting a turbine section of the first turbocharger, wherein the exhaust gas from the first exhaust gas bypass stream is cooled and mixed with the exhaust gas/air mixture before said mixture is directed to a compressor section of the first turbocharger to form a final gas/air mixture, and wherein the pressurized final gas/air mixture exiting the compressor section of the first turbocharger is introduced into the intake manifold.
  • a diesel particulate filter to filter exhaust gas in the first exhaust gas bypass stream may optionally be employed.
  • These embodiments may further comprise a charge air cooler to cool the exhaust gas and air before they are introduced into the intake manifold, an EGR cooler to cool the second exhaust gas bypass stream, at least one exhaust after-treatment to treat the second exhaust gas bypass stream, and/or a charge air cooler to cool the exhaust gas/air mixture after it is compressed by the compressor section of the second turbocharger.
  • a charge air cooler to cool the exhaust gas and air before they are introduced into the intake manifold
  • an EGR cooler to cool the second exhaust gas bypass stream
  • at least one exhaust after-treatment to treat the second exhaust gas bypass stream
  • a charge air cooler to cool the exhaust gas/air mixture after it is compressed by the compressor section of the second turbocharger.
  • the present invention is further of an EGR system comprising an engine having an intake manifold and an exhaust manifold; two turbochargers; an exhaust gas bypass stream; a control valve connected in the exhaust gas bypass stream to control the amount of exhaust gas received from the exhaust manifold; and a cooler to cool the exhaust gas; wherein said exhaust gas is mixed with intake air to form an exhaust gas/air mixture and the exhaust gas/air mixture is compressed by a compressor section of the first turbocharger before being directed to the intake manifold.
  • the exhaust gas bypass stream may be configured to receive exhaust gas downstream of a turbine section of the first turbocharger, wherein the exhaust gas/air mixture compressed by a compressor section of the second turbocharger before being compressed by the compressor section of the first turbocharger, or alternatively wherein the intake air is compressed by a compressor section of the second turbocharger before it is mixed with the exhaust gas.
  • the intake air may optionally be cooled after it is compressed by the compressor section of the second turbocharger.
  • the exhaust gas bypass stream is configured to receive exhaust gas upstream of the turbochargers, wherein the intake air preferably is compressed by a compressor section of the second turbocharger before it is mixed with the exhaust gas, and the intake air is optionally cooled after it is compressed by the compressor section of the second turbocharger.
  • inventions may further comprise a diesel particulate filter upstream of the control valve and/or a charge air cooler to cool the pressurized exhaust gas/air mixture before it is introduced into the intake manifold.
  • FIG. 1 is a schematic diagram illustrating a first embodiment dual EGR system according to principles of the invention
  • FIG. 2 is a schematic diagram illustrating a second embodiment dual EGR system according to principles of the invention
  • FIG. 3 is a schematic diagram illustrating a third embodiment dual EGR system, used with a turbocharger comprising a two-stage compressor, according to principles of the invention
  • FIG. 4 is a schematic diagram illustrating a fourth embodiment dual EGR system, used with turbochargers operated in a serial arrangement, according to principles of the invention
  • FIG. 5 is a schematic diagram illustrating a fifth embodiment dual EGR system, used with turbochargers operated in a parallel sequential arrangement, according to principles of the invention
  • FIG. 6 is a schematic diagram illustrating a first embodiment hybrid EGR system, used with a turbocharger comprising a two-stage compressor, according to principles of the invention
  • FIG. 7 is a schematic diagram illustrating a second embodiment hybrid EGR system, used with a turbocharger comprising a two-stage compressor, according to principles of the invention
  • FIG. 8 is a schematic diagram illustrating a third embodiment hybrid EGR system, used with a turbocharger comprising a two-stage compressor, according to principles of the invention
  • FIG. 9 is schematic diagram illustrating a fourth embodiment hybrid EGR system, used with turbochargers operated in a serial arrangement, according to principles of the invention
  • FIG. 10 is a schematic diagram illustrating a fifth embodiment hybrid EGR system, used with turbochargers operated in a serial arrangement, according to principles of the invention
  • FIG. 11 is a schematic diagram illustrating a first embodiment dual hybrid EGR system, used with turbochargers operated in a serial arrangement, according to principles of the invention
  • FIG. 12 is a schematic diagram illustrating a second embodiment dual hybrid EGR system, used with turbochargers operated in a serial arrangement, according to principles of the invention
  • FIG. 13 is a schematic diagram illustrating a third embodiment dual hybrid EGR system, used with a turbocharger comprising a two-stage compressor, according to principles of the invention.
  • FIG. 14 is a schematic diagram illustrating a special embodiment hybrid EGR system, used with turbochargers operated in a serial arrangement, according to principles of the invention.
  • EGR systems of this invention are configured to operate with single or multiple-turbocharged internal combustion engine applications, using single or multiple-staged turbochargers, to provide exhaust gas recirculation to the engine in a manner that meets stringent emissions requirements without detracting from desired engine performance characteristics.
  • the locations for tapping off the EGR from the exhaust and introducing it back into the intake system is of major significance.
  • CAC Charge Air Cooler
  • FIG. 1 illustrates a first embodiment dual EGR system 10 of this invention comprising engine 12 and turbocharger 14 connected thereto.
  • the engine 12 is of an inline piston configuration, however EGR system 10 will work with any engine configuration.
  • the term “dual” is understood to refer to the fact that two EGR streams are being provided to the engine.
  • First EGR stream 16 is provided from engine exhaust manifold 18 and is controlled via control or EGR valve 20.
  • Cooler 22 is used to cool the first EGR stream before introduced into engine intake manifold 24.
  • Exhaust gas from a second EGR stream is mixed with intake air and pressurized by turbocharger compressor 28.
  • the exhaust gas for the second EGR stream is provided to an inlet end of the compressor via exhaust bypass stream 30 exiting the turbocharger turbine 32.
  • the exhaust bypass is taken downstream of exhaust after-treatment 33, and air-to-air charge cooler 34 is used to cool pressurized fresh air/second EGR stream mixture 26 before introduction into the intake manifold.
  • EGR mixer 36 is used to mix the first and second EGR streams together prior to introduction.
  • fresh air/second EGR stream mixture 26 is a high pressure loop (HPL) that is cooled to provide EGR for mid/full load operation.
  • First EGR stream 16 is a low pressure loop (LPL) that provides uncooled EGR for idle/low load operation.
  • the spilt between EGR delivered via the HPL and LPL is controlled by EGR valve 20, and the split towards the LPL is increased for cold weather operation.
  • FIG. 2 illustrates a second embodiment dual EGR system 38 of this invention comprising engine 40 and turbocharger 42 connected thereto.
  • engine 40 is of a V-8 piston configuration, however EGR system 38 will work with any engine configuration.
  • First EGR stream/LPL 44 is provided from engine exhaust manifolds 46 and is controlled via first control or EGR valve 48. Cooler 50 is used to cool the first EGR stream before introduced into engine intake manifold 52.
  • Second EGR stream/HPL 54 is provided with pressurized intake air provided by turbocharger compressor 56.
  • the exhaust gas for the second EGR stream is provided to an inlet end of the compressor via exhaust bypass stream 58 exiting turbocharger turbine 60.
  • the exhaust bypass is taken downstream of exhaust after-treatment 62, and air-to-air charge cooler 64 is used to cool the pressurized intake air and second EGR stream before introduction into the intake manifold.
  • Second control or EGR valve 66 can be used to control the amount of exhaust gas that is mixed with fresh intake air for introduction into the compressor inlet.
  • Second cooler 68 may optionally be used in exhaust bypass 58 to control the temperature of the exhaust gas entering the compressor.
  • EGR mixer 70 is used to mix the first and second EGR streams together prior to introduction into the engine. '
  • the first/LPL and second/HPL EGR streams are operated in the same manner as described above to provide cooled EGR for mid/full load operation, and uncooled EGR for idle/low load operation.
  • FIG. 3 illustrates a third embodiment dual EGR system 72 that is in many respects similar to that described above and illustrated in FIG. 2, except that the turbocharger 74 includes a compressor section 76 comprising a double sided or two-stage compressor.
  • First compressor 78 is a low pressure compressor that receives a mix of intake air and EGR from exhaust bypass 82 and pressurizes the same before routing to second compressor 80 that is a high pressure compressor and that operates to provide a final desired boosting pressure for introduction of the mixed intake air and EGR into the engine.
  • Charge air cooler 84 may optionally be used between the first and second compressor stages.
  • first/LPL 86 and second/HPL EGR streams 88 are operated to provide desired cooled EGR for mid/full load operation, and uncooled EGR for idle/low load operation.
  • FIG. 4 illustrates a fourth embodiment dual EGR system 90 that is in many respects similar to that described above and illustrated in FIG. 2, except that the engine is turbocharged by more than one turbocharger.
  • two turbochargers 92 and 94 are arranged in series.
  • First EGR stream/LPL 96 is the same as that of the second and third embodiments.
  • the exhaust gas outlet from first turbocharger 92 is directed to the turbine inlet of second turbocharger 94, and exhaust bypass 93 is mixed with fresh inlet air prior to entering the low pressure compressor of second turbocharger 94.
  • the pressurized output from the low pressure compressor is directed to a high pressure compressor of first turbocharger 92, and optional charge air cooler 100 can be interposed therebetween.
  • the mix of pressurized air and EGR exiting the high pressure compressor comprises second EGR stream/HPL 102 of the system.
  • first/LPL 96 and second/HPL 102 EGR streams are operated to provide desired cooled EGR for mid/full load operation, and uncooled EGR for idle/low load operation.
  • FIG. 5 illustrates a fifth embodiment dual EGR system 90 that is in many respects similar to that described above and illustrated in FIG. 2, except that the engine is turbocharged by more than one turbocharger.
  • two turbochargers 106 and 108 are arranged in parallel.
  • First EGR stream/LPL 110 is the same as that of the second, third and fourth embodiments.
  • the exhaust gas outlet from the exhaust manifold, which is connected to the turbine inlet of first turbocharger 106 includes a bypass that is connected via control valve 112 to the turbine inlet of second turbocharger 108 to permit second turbocharger operation if so desired.
  • Exhaust bypass 114 is taken from the outlet of both turbochargers and is mixed with fresh inlet air prior to entering one or both compressor inlets of the two turbochargers.
  • Second control valve 116 is used to permit the parallel passage of inlet air and EGR to the second turbocharger.
  • the pressurized air and EGR exiting both turbochargers is directed towards the engine and comprises second EGR stream/HPL 118 of the system.
  • first/LPL 110 and second/HPL 118 EGR streams are operated in the same manner as that previously described to provide desired cooled EGR for mid/full load operation, and uncooled EGR for idle/low load operation.
  • FIG. 6 illustrates a first embodiment hybrid EGR system 120 of this invention comprising engine 122 and turbocharger 124 connected thereto.
  • engine 122 is of an inline piston configuration, however hybrid EGR system 120 may be used with any engine configuration.
  • hybrid is understood to refer to the fact that an exhaust bypass stream is taken from the engine and introduced between compressor stages of a turbocharger comprising two stages.
  • a single EGR stream 126 is introduced into engine intake manifold 128.
  • Exhaust gas exiting engine exhaust manifold 130 is passed to control valve 132.
  • the valve directs the passage of exhaust gas to one or both of turbocharger turbine 134 and turbocharger compressor 136.
  • Bypass stream 138 that is routed to the compressor 136 can first be passed through exhaust after-treatment 140, e.g., diesel particular filtering, for purposes of not fouling the compressor or downstream charge air cooler.
  • the EGR stream is then cooled by passage through EGR cooler 142 before being mixed via EGR mixer 144 with pressurized intake air 146 produced by compressor first stage 148.
  • charge air cooler 150 may be used to cool the first stage pressurized air.
  • the combined exhaust gas and pressurized air mixed in mixer 144 is introduced to the inlet of compressor second stage 152 for further pressurizing before being directed to the engine.
  • Charge air cooler 154 is used to cool the pressurized air and EGR stream 126 prior to introduction into the engine.
  • the embodiment illustrated is that of a low speed turbocharger configuration.
  • EGR stream 126 is provided in the form of pressurized intake air mixture and the amount of EGR is controlled by control valve 132.
  • FIG. 7 illustrates a second embodiment hybrid EGR system 156 of this invention that is in many respects similar to that described above and illustrated in FIG.6, except that EGR cooler 158 is disposed within exhaust bypass stream 160 downstream from EGR mixer 162 so that it operates to cool both the exhaust gas and first stage pressurized intake air before being introduced into turbocharger second compressor stage 164.
  • control valve 166 operates to regulate the amount of exhaust gas that is directed to the compressor, and thus the amount of EGR directed to the engine.
  • FIG. 8 illustrates a third embodiment EGR system 168 of this invention that is in many respects similar to that described above and illustrated in FIG. 6, except that it is used with engine 170 having a V-8 piston configuration, although any engine configuration will work with EGR system 168, and turbocharger 172 having two stage compressor 174.
  • the exhaust gas exiting the engine exhaust manifolds is split into first stream 178 that is directed to turbocharger turbine 180, and second stream 182 that is ultimately directed to turbocharger compressor 174 for EGR.
  • Control valve 184 is disposed within second stream 182 downstream from exhaust after- treatment 186, e.g., a diesel particulate filter.
  • Exhaust gas exiting the control valve is mixed with pressurized intake air, produced from compressor first stage 188, and is then cooled via charge air/EGR cooler 190.
  • the cooled exhaust gas and charge air is then directed into the inlet of a compressor second stage 192 for pressurizing as desired for introduction into the engine.
  • Charge air cooler 194 is positioned downstream of the compressor second stage for cooling the mixed pressurized air and exhaust gas before being introduced, via EGR stream 196, into the engine for combustion.
  • the embodiment illustrated is that of a low speed turbocharger, high-pressure-loop EGR configuration.
  • EGR stream 194 is provided in the form of pressurized intake air mixture and the amount of EGR is controlled by control valve 184.
  • FIG. 9 illustrates a fourth embodiment EGR system 200 of this invention that is in many respects similar to that described above and illustrated in FIG.8, except that it is used with more than one turbocharger in a serial arrangement.
  • the exhaust gas exiting engine exhaust manifolds 202 is split into first stream 204 that is directed to turbine 205 of high pressure turbocharger 206, and second stream 208 that is ultimately directed to compressor section 210 of high pressure turbocharger 206 for EGR.
  • Control valve 212 is disposed within second stream 208 downstream from exhaust after-treatment 214, e.g., a diesel particulate filter.
  • Exhaust gas exiting the control valve is mixed with pressurized intake air, produced from compressor section 216 of low pressure turbocharger 218, and is then cooled via charge air/EGR cooler 220.
  • the cooled exhaust gas and charge air is then directed into inlet of high pressure turbocharger compressor 210 for pressurizing as desired for introduction into the engine.
  • Charge air cooler 222 is positioned downstream of high pressure turbocharger compressor 210 for cooling the mixed further pressurized air and exhaust gas before being introduced, via EGR stream 224, into the engine for combustion.
  • the embodiment illustrated is that of a series turbocharger, high-pressure-loop EGR configuration.
  • EGR stream 224 is provided in the form of pressurized intake air mixture and the amount of EGR is controlled by control valve 212.
  • EGR system 226 of this invention that is in many respects similar to that described above and illustrated in FIG.9 in that it involves the use of multiple turbochargers positioned in a serial arrangement.
  • engine exhaust 228 is routed directly to turbine section 230 of high pressure turbocharger 232, and EGR bypass stream 234 is taken between the turbine exhaust outlet of the first turbocharger and turbine section 236 exhaust inlet of second turbocharger 238.
  • Control valve 240 is positioned with EGR bypass stream 234 downstream of exhaust after-treatment 242, e.g., a diesel particulate filter, and EGR cooler 244.
  • Exhaust gas exiting valve 240 is mixed with inlet air before being introduced into the inlet of compressor section 246 of low pressure turbocharger 238.
  • Pressurized air and exhaust gas exiting compressor section 246 of pressure turbocharger 238 is introduced into the inlet of compressor section 248 of high pressure turbocharger 232 for pressurizing to a desired amount for introduction into the engine.
  • Charge air cooler 250 is positioned downstream of high pressure turbocharger compressor 248 for cooling the mixed further pressurized air and exhaust gas before being introduced, via EGR stream 252, into the engine for combustion.
  • the embodiment illustrated is that of a series turbocharger, hybrid low pressure loop EGR configuration.
  • EGR stream 252 is provided in the form of pressurized intake air mixture and the amount of EGR is controlled by control valve 240.
  • FIG. 11 illustrates a first embodiment dual hybrid EGR system 254 of this invention that is in many respects similar to that described above and illustrated in FIG. 9 in that it involves the use of multiple turbochargers positioned serially, and involves the use of EGR bypass stream 262 for introducing exhaust gas into compressor section 274 of high pressure turbocharger 266.
  • This embodiment differs, however, in that it also includes another EGR bypass stream 256 that is taken before entering turbine section 261 of low pressure turbocharger 260. Because EGR bypass stream 256 is taken downstream of high pressure turbocharger turbine section 264, for introduction into compressor section 258 of low pressure turbocharger 260, it is referred to as a low pressure section of the EGR loop.
  • the other EGR bypass stream 262 includes control valve 268 positioned downstream of exhaust after-treatment 270, e.g., a diesel particulate filter, and charge air/EGR cooler 272. Exhaust gas exiting valve 268 is mixed with a pressurized mixture of air and exhaust gas from EGR bypass stream 256 produced by low pressure turbocharger compressor 258 before being introduced into the inlet of compressor section 274 of high pressure turbocharger 266.
  • control valve 268 positioned downstream of exhaust after-treatment 270, e.g., a diesel particulate filter, and charge air/EGR cooler 272.
  • Exhaust gas exiting valve 268 is mixed with a pressurized mixture of air and exhaust gas from EGR bypass stream 256 produced by low pressure turbocharger compressor 258 before being introduced into the inlet of compressor section 274 of high pressure turbocharger 266.
  • EGR bypass stream 262 is taken before entry into high pressure turbocharger turbine 264, it is referred to as a high pressure section of the EGR loop.
  • Pressurized air and exhaust gas exiting compressor 274 of high pressure turbocharger 266 is passed through charge air cooler 276 for cooling the further pressurized air and exhaust gas mixture before being introduced, via fresh air/EGR mixture stream 278, into the engine for combustion.
  • the embodiment illustrated involves the use of series turbochargers, and is referred to as being a dual hybrid system in that it includes two EGR loops, i.e., a high pressure loop and a low pressure loop, and because it involves the introduction of exhaust gas for EGR purposes into one or more turbocharger compressors.
  • this EGR system embodiment can be referred to as a dual hybrid high pressure and hybrid low pressure loop EGR system.
  • EGR stream 278 is provided in the form of pressurized intake air mixture and the amount of EGR provided via the low pressure loop is controlled by control valve 280, while the amount of EGR provided via the high pressure loop is controlled by control valve 268.
  • FIG. 12 illustrates a second embodiment dual hybrid EGR system 282 of this invention that is in many respects similar to that described above and illustrated in FIG. 11 in that it involves the use of multiple turbochargers positioned serially, and involves the use both high pressure and low pressure EGR loops.
  • This embodiment differs, however, in that the low pressure EGR loop is provided in the form of EGR bypass stream 284 that is taken downstream from turbine section 286 of low pressure turbocharger 288, and downstream from exhaust after-treatment 290.
  • EGR bypass 284 includes control valve 292 that is positioned upstream of a compressor section of low pressure turbocharger 288.
  • the high pressure EGR loop is identical to the embodiment described above and illustrated in FIG. 11.
  • the embodiment illustrated involves the use of series turbochargers, and is referred to as being a dual hybrid system in that it includes two EGR loops, i.e., a high pressure loop and a low pressure loop, and because it involves the introduction of exhaust gas for EGR purposes into one or more turbocharger compressors.
  • this EGR system embodiment can be referred to as a dual hybrid high pressure and hybrid low pressure loop EGR system.
  • EGR stream 294 is provided in the form of pressurized intake air mixture and the amount of EGR provided via the low pressure loop is controlled by control valve 292, while the amount of EGR provided via the high pressure loop is controlled by control valve 296.
  • FIG. 13 illustrates a third embodiment dual hybrid EGR system 300 of this invention that involves the use of low and high pressure EGR loops in a single turbocharger application.
  • EGR bypass stream 302 is taken from engine exhaust manifolds 304 upstream from turbocharger turbine section 308, and forms part of the high pressure EGR loop.
  • Another EGR bypass stream 310 is taken downstream from turbine section 308, and downstream from exhaust after-treatment 312.
  • EGR bypass 310 includes control valve 314 that is positioned upstream of turbocharger compressor section 316.
  • the turbocharger comprises a two stage compressor (including either a double sided compressor or two separate compressors) similar to that illustrated in FIG. 8.
  • Exhaust gas exiting valve 314 is mixed with air before being introduced into an inlet of first (low pressure) compressor stage 318.
  • Exhaust gas in EGR bypass stream 302 is passed through exhaust after-treatment 320, e.g., diesel particulate filter and to control valve 322 before being mixed with pressurized air and exhaust exiting turbocharger first compressor stage 318.
  • the mixed exhaust gas from EGR bypass stream 302 and the pressurized air is cooled by EGR charge air cooler 324 before being introduced into an inlet of second (high pressure) compressor stage 326.
  • the mixture of pressurized air and exhaust gas exits the second stage compressor and is routed through a charge air cooler before being introduced into the engine via EGR stream 330.
  • the example embodiment illustrated is referred to as being a dual hybrid system in that it includes two EGR loops, i.e., a high pressure loop and a low pressure loop, and because it involves the introduction of exhaust gas for EGR purposes into between the compressor stages of a multi-compressor stage turbocharger.
  • this EGR system embodiment can be referred to as a dual hybrid high pressure and hybrid low pressure loop EGR system.
  • EGR stream 330 is provided in the form of pressurized intake air mixture and the amount of EGR provided via the low pressure loop is controlled by control valve 314, while the amount of EGR provided via the high pressure loop is controlled by control valve 322.
  • FIG. 14 illustrates a special embodiment intermediate pressure EGR system 332 of this invention.
  • This embodiment is somewhat similar to that illustrated in FIG. 12 in that it involves the use of serially arranged turbochargers 334 and 336, and that it includes the introduction of exhaust gas between the two compressor sections 338 and 340 of respective turbochargers 334 and 336.
  • this particular embodiment only includes a single EGR loop that is taken as exhaust bypass stream 342 downstream of high pressure turbocharger turbine 344 but upstream of low pressure turbocharger turbine 346.
  • Control valve 348 is positioned within EGR bypass stream 342 downstream of exhaust after-treatment 350, e.g., a diesel particulate filter.
  • Exhaust gas exiting valve 348 is mixed with pressurized air produced by (low pressure) compressor section 340 of low pressure turbocharger 336.
  • the mixed pressurized air and exhaust gas is passed through charge air/EGR cooler 352 before being introduced into (high pressure) compressor section 338 of high pressure turbocharger 334.
  • the mixture of pressurized air and exhaust gas exits compressor section 338 and is routed through charge air cooler 354 before being introduced into the engine via EGR stream 356.
  • the embodiment illustrated is referred to as an intermediate pressure loop system, and because it involves taking an exhaust gas bypass stream at an intermediate pressure point between the two turbocharger turbines before being introduced between the turbocharger compressor stages.
  • the intermediate pressure loop EGR system is still considered a hybrid in that it involves the introduction of exhaust gas between turbocharger compressors.
  • EGR stream 356 is provided in the form of pressurized intake air mixture and the amount of EGR that is provided is controlled by control valve 348.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Exhaust-Gas Circulating Devices (AREA)
  • Supercharger (AREA)

Abstract

La présente invention concerne des systèmes de recirculation des gaz d'échappement (EGR) (10, 38, 72, 90, 104, 120, 156, 168, 200, 226, 254, 282, 300, 332) utilisés avec un moteur à combustion interne (12, 40, 122, 170) conçu pour fonctionner à l'aide de turbocompresseurs multi-étagés (76, 136, 174, 316) ou d'une paire de turbocompresseurs mono-étagés (92, 94, 106, 108, 206, 218, 232, 238, 260, 266, 288, 334, 336) permettant d'obtenir une recirculation des gaz d'échappement conforme aux exigences en matière d'émissions et n'affectant pas les performances du moteur. On peut utiliser une ou deux boucles EGR fonctionnant à basse, moyenne ou haute pression. Les gaz d'échappement du système EGR peuvent être prélevés directement de la tubulure d'échappement (18, 46, 130, 176, 202) ou après que le flux d'échappement soit passé dans une turbine (60, 180, 205, 230, 264, 286, 308, 334) de turbocompresseur. Les gaz d'échappement du système EGR peuvent être injectés à une pression intermédiaire entre des étages d'un turbocompresseur multi-étagé (76, 136, 174, 316) ou entre un compresseur de turbocompresseur à basse pression (216, 248, 258, 340) et un compresseur de turbocompresseur à haute pression (210, 248, 274, 338) avant d'être propulsés à une pression suffisamment élevée pour procurer le débit massique désiré au moteur et acheminés vers le collecteur d'admission (24, 52, 128). L'air d'admission peut être pressurisé avant d'être mélangé aux gaz d'échappement du système EGR.
PCT/US2003/036065 2002-11-13 2003-11-13 Systemes de recirculation des gaz d'echappement doubles et hybrides utilises avec un moteur turbocompresse WO2004044412A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP03789742.8A EP1689997B1 (fr) 2002-11-13 2003-11-13 Systemes de recirculation des gaz d'echappement doubles et hybrides utilises avec un moteur turbocompresse
AU2003294261A AU2003294261A1 (en) 2002-11-13 2003-11-13 Dual and hybrid egr systems for use with turbocharged engine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US42593302P 2002-11-13 2002-11-13
US60/425,933 2002-11-13

Publications (1)

Publication Number Publication Date
WO2004044412A1 true WO2004044412A1 (fr) 2004-05-27

Family

ID=32313077

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2003/036065 WO2004044412A1 (fr) 2002-11-13 2003-11-13 Systemes de recirculation des gaz d'echappement doubles et hybrides utilises avec un moteur turbocompresse

Country Status (4)

Country Link
EP (1) EP1689997B1 (fr)
CN (1) CN1735747A (fr)
AU (1) AU2003294261A1 (fr)
WO (1) WO2004044412A1 (fr)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2406138A (en) * 2003-09-16 2005-03-23 Detroit Diesel Corp Turbocharged i.c. engine with two-stage compression and passive EGR flow
US6988365B2 (en) * 2003-11-19 2006-01-24 Southwest Research Institute Dual loop exhaust gas recirculation system for diesel engines and method of operation
FR2879668A1 (fr) * 2004-12-16 2006-06-23 Renault Sas Systeme de recirculation des gaz d'echappement
EP1674710A1 (fr) 2003-12-22 2006-06-28 Iveco S.p.A. Méthode pour la recirculation des gaz d'échappement d'un moteur à pistons à turbocompresseur
WO2006100370A2 (fr) * 2005-03-22 2006-09-28 Melchior Jean F Dispositif d'acceleration d'un groupe de turbocompression aux bas regimes d'un moteur alternatif et moteur alternatif comportant un tel dispositif
DE102005029322A1 (de) * 2005-06-24 2006-12-28 Behr Gmbh & Co. Kg Vorrichtung zur Rückführung und Kühlung von Abgas für eine Brennkraftmaschine
EP1871999A1 (fr) * 2005-04-21 2008-01-02 International Engine Intellectual Property Company, LLC. Systeme de soupapes de moteur et procede correspondant
FR2905735A1 (fr) * 2006-09-12 2008-03-14 Renault Sas Dispositif ameliorant le fonctionnement d'un moteur suralimente avec un circuit de recirculation de gaz d'echappement
DE102007052899A1 (de) * 2007-11-07 2009-05-14 Ford Global Technologies, LLC, Dearborn Aufgeladene Brennkraftmaschine und Verfahren zum Betreiben einer derartigen Brennkraftmaschine
WO2011018135A1 (fr) * 2009-08-08 2011-02-17 Daimler Ag Moteur à combustion interne
USRE42609E1 (en) 2003-02-03 2011-08-16 Ford Global Technologies, Llc System and method for reducing NOx emissions during transient conditions in a diesel fueled vehicle with EGR
US9709069B2 (en) 2013-10-22 2017-07-18 Dayspring Church Of God Apostolic Hybrid drive engine
CN110145418A (zh) * 2019-05-05 2019-08-20 天津大学 一种基于两级涡轮增压器的中压废气再循环系统
WO2020064679A1 (fr) * 2018-09-25 2020-04-02 Eaton Intelligent Power Limited Système de rge et système de nettoyage et de refroidissement pour pompe rge
DE102009006359B4 (de) 2009-01-28 2021-07-29 Iav Gmbh Ingenieurgesellschaft Auto Und Verkehr Vorrichtung und Verfahren zur variablen Abgasturboaufladung und Abgasrückführung

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007111926A2 (fr) * 2006-03-22 2007-10-04 Borgwarner Inc. Air de suralimentation et soupape rge integres
JP4495120B2 (ja) * 2006-08-10 2010-06-30 三菱重工業株式会社 多段過給式排気ターボ過給機
CN101512122B (zh) * 2006-09-13 2012-09-05 博格华纳公司 排出空气冷却器在涡轮增压器中的整合
SE0602517L (sv) * 2006-11-27 2008-04-08 Scania Cv Ab Arrangemang för återcirkulation av avgaser hos en överladdad förbränningsmotor
KR101383288B1 (ko) * 2007-03-28 2014-04-09 보르그워너 인코퍼레이티드 터보차지되는 압축 착화 엔진 시스템에서 배기 가스 재순환의 제어
DE102007047089B4 (de) * 2007-10-01 2010-06-02 Mtu Friedrichshafen Gmbh Verfahren zur Regelung der Ladelufttemperatur einer Brennkraftmaschine
SE533750C2 (sv) * 2008-06-09 2010-12-21 Scania Cv Ab Arrangemang hos en överladdad förbränningsmotor
CN101368529B (zh) * 2008-09-02 2011-05-11 奇瑞汽车股份有限公司 一种低压egr系统
FR2944560B1 (fr) * 2009-04-16 2011-04-01 Inst Francais Du Petrole Systeme de suralimentation a double etage avec dispositif d'epuration de gaz d'echappement pour moteur a combustion interne et procede pour commander un tel systeme
US8479488B2 (en) * 2009-07-27 2013-07-09 General Electric Company Oxyfuel gas turbine system and method
GB2475316B (en) * 2009-11-16 2016-03-16 Gm Global Tech Operations Inc Method for controlling the level of oxygen in the intake manifold of an internal combustion engine equipped with a low pressure EGR system
US8443789B2 (en) * 2010-07-23 2013-05-21 GM Global Technology Operations LLC Exhaust gas recirculation system for an internal combustion engine
JP2012149575A (ja) * 2011-01-19 2012-08-09 Toyota Motor Corp 内燃機関の冷却装置
CN103590928B (zh) * 2012-08-15 2016-01-13 上海汽车集团股份有限公司 双废气再循环冷却装置
CN103470408A (zh) * 2013-09-23 2013-12-25 中国船舶重工集团公司第七一一研究所 一种用于船用中速柴油机的egr系统
CN103867348B (zh) * 2014-03-27 2016-05-25 天津大学 用于控制共轨发动机瞬态工况燃烧噪声的系统装置
DE102014005212A1 (de) * 2014-04-09 2015-10-15 Man Truck & Bus Ag Abgaskrümmer für eine Brennkraftmaschine, insbesondere in Kraftfahrzeugen
CN104196617B (zh) * 2014-07-31 2017-02-15 长城汽车股份有限公司 全可变气门增压柴油机及其控制方法
CN114962094B (zh) * 2022-05-09 2024-05-17 潍柴动力股份有限公司 一种燃烧系统及其控制方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5142866A (en) * 1990-06-20 1992-09-01 Toyota Jidosha Kabushiki Kaisha Sequential turbocharger system for an internal combustion engine
EP0718481A2 (fr) * 1994-12-24 1996-06-26 MAN Nutzfahrzeuge Aktiengesellschaft Recirculation des gaz d'échappement pour un moteur à combustion interne suralimenté
US5611202A (en) * 1994-05-11 1997-03-18 Mercedes-Benz Ag Turbocharged internal combustion engine
DE19943131A1 (de) * 1998-09-11 2000-03-30 Caterpillar Inc Verfahren und System zur Sauerstoffeinspritzung spät im Zyklus bei einem Verbrennungsmotor
US20020026926A1 (en) * 1996-08-23 2002-03-07 Loye Axel O. Zur Premixed charge compression ignition engine with optimal combustion control
EP1186767A2 (fr) 2000-09-11 2002-03-13 Toyota Jidosha Kabushiki Kaisha Système de recirculation de gaz d'échappement pour un moteur à combustion interne
US6378308B1 (en) * 1998-04-16 2002-04-30 3K Warner Turbosystems Gmbh Turbocharged internal combustion engine

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5142866A (en) * 1990-06-20 1992-09-01 Toyota Jidosha Kabushiki Kaisha Sequential turbocharger system for an internal combustion engine
US5611202A (en) * 1994-05-11 1997-03-18 Mercedes-Benz Ag Turbocharged internal combustion engine
EP0718481A2 (fr) * 1994-12-24 1996-06-26 MAN Nutzfahrzeuge Aktiengesellschaft Recirculation des gaz d'échappement pour un moteur à combustion interne suralimenté
US20020026926A1 (en) * 1996-08-23 2002-03-07 Loye Axel O. Zur Premixed charge compression ignition engine with optimal combustion control
US6378308B1 (en) * 1998-04-16 2002-04-30 3K Warner Turbosystems Gmbh Turbocharged internal combustion engine
DE19943131A1 (de) * 1998-09-11 2000-03-30 Caterpillar Inc Verfahren und System zur Sauerstoffeinspritzung spät im Zyklus bei einem Verbrennungsmotor
EP1186767A2 (fr) 2000-09-11 2002-03-13 Toyota Jidosha Kabushiki Kaisha Système de recirculation de gaz d'échappement pour un moteur à combustion interne

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USRE42609E1 (en) 2003-02-03 2011-08-16 Ford Global Technologies, Llc System and method for reducing NOx emissions during transient conditions in a diesel fueled vehicle with EGR
US6981375B2 (en) 2003-09-16 2006-01-03 Detroit Diesel Corporation Turbocharged internal combustion engine with EGR flow
GB2406138A (en) * 2003-09-16 2005-03-23 Detroit Diesel Corp Turbocharged i.c. engine with two-stage compression and passive EGR flow
US6988365B2 (en) * 2003-11-19 2006-01-24 Southwest Research Institute Dual loop exhaust gas recirculation system for diesel engines and method of operation
EP1674710A1 (fr) 2003-12-22 2006-06-28 Iveco S.p.A. Méthode pour la recirculation des gaz d'échappement d'un moteur à pistons à turbocompresseur
FR2879668A1 (fr) * 2004-12-16 2006-06-23 Renault Sas Systeme de recirculation des gaz d'echappement
WO2006100370A2 (fr) * 2005-03-22 2006-09-28 Melchior Jean F Dispositif d'acceleration d'un groupe de turbocompression aux bas regimes d'un moteur alternatif et moteur alternatif comportant un tel dispositif
WO2006100370A3 (fr) * 2005-03-22 2007-02-15 Melchior Jean F Dispositif d'acceleration d'un groupe de turbocompression aux bas regimes d'un moteur alternatif et moteur alternatif comportant un tel dispositif
EP1871999A4 (fr) * 2005-04-21 2009-05-13 Int Engine Intellectual Prop Systeme de soupapes de moteur et procede correspondant
EP1871999A1 (fr) * 2005-04-21 2008-01-02 International Engine Intellectual Property Company, LLC. Systeme de soupapes de moteur et procede correspondant
US8061334B2 (en) 2005-06-24 2011-11-22 Behr Gmbh & Co. Kg Device for recycling and cooling exhaust gas for an internal combustion engine
DE102005029322A1 (de) * 2005-06-24 2006-12-28 Behr Gmbh & Co. Kg Vorrichtung zur Rückführung und Kühlung von Abgas für eine Brennkraftmaschine
WO2008031959A1 (fr) * 2006-09-12 2008-03-20 Renault S.A.S. Dispositif améliorant le fonctionnement d'un moteur suralimenté avec un circuit de recirculation de gaz d'echappement
FR2905735A1 (fr) * 2006-09-12 2008-03-14 Renault Sas Dispositif ameliorant le fonctionnement d'un moteur suralimente avec un circuit de recirculation de gaz d'echappement
DE102007052899A1 (de) * 2007-11-07 2009-05-14 Ford Global Technologies, LLC, Dearborn Aufgeladene Brennkraftmaschine und Verfahren zum Betreiben einer derartigen Brennkraftmaschine
DE102009006359B4 (de) 2009-01-28 2021-07-29 Iav Gmbh Ingenieurgesellschaft Auto Und Verkehr Vorrichtung und Verfahren zur variablen Abgasturboaufladung und Abgasrückführung
WO2011018135A1 (fr) * 2009-08-08 2011-02-17 Daimler Ag Moteur à combustion interne
CN102472206A (zh) * 2009-08-08 2012-05-23 戴姆勒股份公司 内燃机
US9709069B2 (en) 2013-10-22 2017-07-18 Dayspring Church Of God Apostolic Hybrid drive engine
WO2020064679A1 (fr) * 2018-09-25 2020-04-02 Eaton Intelligent Power Limited Système de rge et système de nettoyage et de refroidissement pour pompe rge
CN110145418A (zh) * 2019-05-05 2019-08-20 天津大学 一种基于两级涡轮增压器的中压废气再循环系统

Also Published As

Publication number Publication date
EP1689997A1 (fr) 2006-08-16
EP1689997B1 (fr) 2014-12-17
CN1735747A (zh) 2006-02-15
AU2003294261A1 (en) 2004-06-03

Similar Documents

Publication Publication Date Title
US7013879B2 (en) Dual and hybrid EGR systems for use with turbocharged engine
EP1689997B1 (fr) Systemes de recirculation des gaz d'echappement doubles et hybrides utilises avec un moteur turbocompresse
US7788923B2 (en) Constant EGR rate engine and method
US6981375B2 (en) Turbocharged internal combustion engine with EGR flow
US6062026A (en) Turbocharging systems for internal combustion engines
US5771868A (en) Turbocharging systems for internal combustion engines
US9243579B2 (en) Method for operating an auto-ignition internal combustion engine
US7243495B2 (en) Pressure boosted IC engine with exhaust gas recirculation
RU2421625C2 (ru) Система двигателя с турбонаддувом и способ ее эксплуатации
US6484500B1 (en) Two turbocharger engine emission control system
US7308788B1 (en) Engine and method for counteracting face plugging of a diesel oxidation catalyst
CN106958489B (zh) 发动机系统
EP2295780A1 (fr) Système d'admission hybride pour chargement super-atmosphérique d'un collecteur d'admission de moteur utilisant un mélange d'air frais/EGR à basse pression
JPH10281018A (ja) 内燃エンジンの排気ガス再循環システム
US8495876B2 (en) Two-stage supercharging system with exhaust gas purification device for internal-combustion engine and method for controlling same
US20100071365A1 (en) Exhaust gas recirculation system
US20220106905A1 (en) Low-Pressure EGR System With Turbo Bypass
US20040050047A1 (en) Low speed turbo EGR
EP3306049A1 (fr) Système motorisé
CN110998081B (zh) 发动机的废气再循环系统
US20180238274A1 (en) Device for controlling the amount of fluid fed to the intake of a supercharged internal-combustion engine equipped with an exhaust gas recirculation circuit and method using same
US6293102B1 (en) Integral air brake compressor supply fitting
CN111894765A (zh) 一种废气再循环系统
KR101887965B1 (ko) 차압 밸브를 이용한 브레이크 부압장치
KR20110062410A (ko) 배기 분할 밸브를 이용한 저압 배기가스 재 순환장치 및 그 제어방법

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NO NZ OM PH PL PT RO RU SD SE SG SK SL TJ TM TN TR TT TZ UA UG UZ VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2003789742

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2116/DELNP/2005

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 20038A81773

Country of ref document: CN

WWP Wipo information: published in national office

Ref document number: 2003789742

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Ref document number: JP