WO2006099794A1 - Dérivés de la n-acétylcystéine et utilisation de ceux-ci - Google Patents

Dérivés de la n-acétylcystéine et utilisation de ceux-ci Download PDF

Info

Publication number
WO2006099794A1
WO2006099794A1 PCT/CN2006/000422 CN2006000422W WO2006099794A1 WO 2006099794 A1 WO2006099794 A1 WO 2006099794A1 CN 2006000422 W CN2006000422 W CN 2006000422W WO 2006099794 A1 WO2006099794 A1 WO 2006099794A1
Authority
WO
WIPO (PCT)
Prior art keywords
peg
solution
mpeg
nac
acetyl cysteine
Prior art date
Application number
PCT/CN2006/000422
Other languages
English (en)
French (fr)
Inventor
Yonghai Yu
Original Assignee
Yonghai Yu
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yonghai Yu filed Critical Yonghai Yu
Publication of WO2006099794A1 publication Critical patent/WO2006099794A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C327/00Thiocarboxylic acids
    • C07C327/20Esters of monothiocarboxylic acids
    • C07C327/32Esters of monothiocarboxylic acids having sulfur atoms of esterified thiocarboxyl groups bound to carbon atoms of hydrocarbon radicals substituted by carboxyl groups
    • C07C327/34Esters of monothiocarboxylic acids having sulfur atoms of esterified thiocarboxyl groups bound to carbon atoms of hydrocarbon radicals substituted by carboxyl groups with amino groups bound to the same hydrocarbon radicals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/32Polymers modified by chemical after-treatment
    • C08G65/329Polymers modified by chemical after-treatment with organic compounds
    • C08G65/334Polymers modified by chemical after-treatment with organic compounds containing sulfur
    • C08G65/3348Polymers modified by chemical after-treatment with organic compounds containing sulfur containing nitrogen in addition to sulfur

Definitions

  • This invention relates to N-acetyl cysteine derivatives and their use. Background technique
  • Protein drugs such as insulin and interferon have the characteristics of specificity and high efficiency, and play an important role in the treatment of human diseases. With the completion of the Human Genome Project and the full development of proteomics research, more and more protein drugs will be used for disease treatment. However, protein drugs have poor stability, are prone to antigen-antibody reaction and protease degradation, have high renal elimination rate, high plasma clearance rate, and short half-life in vivo, thus limiting the clinical application of protein drugs.
  • PEGylation Polyethylene glycol
  • PEG Polyethylene glycol
  • the "PEGylation” technique is the attachment of polyethylene glycol molecules to the surface of protein molecules to protect proteins from the immune system and enzymes. Compared with proteins, the immunogenicity and antigenicity of PEG-protein conjugates are reduced, plasma clearance is reduced, and half-life in vivo is prolonged.
  • PEG polyethylene glycol
  • proteins such as insulin and enzymes to obtain a conjugate in which the protein is less immunogenic and retains most of the physiological activity
  • U.S. Patent 4,179,337 The binding of PEG to islet activating proteins to reduce their side effects and immunogenicity is disclosed in U.S. Patent No. 4,791,192 to Nakagawa et al. Abuchowski et al., "Enzymes as Drugs" (1981), describe that PEG-modified peptides can significantly reduce immunogenicity and antigenicity, prolong half-life in vivo, and modified polypeptides such as enzymes will be used in a variety of therapeutic areas. Play a role.
  • the modification should be highly specific to avoid the production of low or inactive PEG-protein conjugates; the modification step should be as simple as possible and the purification steps should be as small as possible.
  • Aldehyde is mainly used for the modification of the amino terminus of a polypeptide with high specificity, but usually requires a two-step reaction, ie, a modification reaction and a reduction reaction;
  • the ester group has high activity and mild reaction conditions, and is the most widely used active group.
  • the disadvantage is that although the amino group on the modified polypeptide is dominant, it can also modify the imidazole group and the tyrosine on the histidine. Hydroxyl and the like.
  • N-acetyl cysteine derivative provided by the present invention has the structure of formula I,
  • POLY is a polydecyl diol having a molecular weight ranging from 1000 Da to 500,000 Da, and a binary copolymer, a terpolymer, a mixed copolymer thereof, including polyethylene glycol, polypropylene glycol, and ethylene glycol propylene glycol.
  • Binary copolymer a polydecyl diol having a molecular weight ranging from 1000 Da to 500,000 Da
  • the structural formula of the N-acetyl cysteine derivative is of formula II,
  • n is a positive integer between 25 and 4000;
  • Y is a ⁇ —, an S—, an HCO—, a CONH—, a COO_, an OCO—, an NHCO 2 —, or an O 2 CNH —; is 11 or methyl;
  • R 2 is H or methyl;
  • m is a positive integer between 0 and 5.
  • n in the formula II is preferably a positive integer between 113 and 1500; preferably H, R 2 is preferably H; R is preferably a methyl group; Y is preferably an O-; m is a positive integer between 0 and 5, m More preferably, it is a positive integer between 1 and 5, and more effectively, m is 2.
  • the N-acetyl cysteine derivative of the present invention may also be a compound of the formula:
  • ni and n 2 are each a positive integer between 25 and 4000, preferably a positive integer of 113 to 1500; mj and m 2 are each a positive integer of 0-5, preferably a positive integer between 1 and 5, More preferably, m is 2.
  • the N-acetyl cysteine derivatives of the present invention can be synthesized by a conventional method in the art, for example, mPEG-based N-acetyl cysteine derivatives (R is a methyl group, and R ⁇ W is mainly prepared. include:
  • mPEG-OH activation of mPEG-OH, for example by reacting methanesulfonyl chloride with mPEG-OH, to activate it to form mPEG-methanesulfonyl ester;
  • mPEG-acid is reacted with thionyl chloride in an organic solvent such as toluene or dichloromethane to form mPEG-acyl chloride;
  • mPEG-NAC can be obtained by reacting mPEG-acid chloride with N-acetylcysteine (NAC).
  • NAC N-acetylcysteine
  • another synthetic route can be used: 1) mPEG-OH or 111?£0- ⁇ 3 ⁇ 4 triphosgene, acryloyl chloride, bisacyl chloride compound, etc., directly obtain mPEG-acid chloride;
  • mPEG-NAC can be obtained by reacting mPEG-acid chloride with N-acetylcysteine (NAC).
  • NAC N-acetylcysteine
  • Figure 1 is an electropherogram of mPEG 2()k -(CH 2 ) 2 -CO-NAC modified interferon a -2a.
  • Figure 2 is an electrophoresis pattern of mPEG 5k -(CH 2 ) 2 -CO-NAC modified bovine hemoglobin.
  • the precipitate was dissolved in a mixture of 10 ml of toluene and 15 ml of dichloromethane, and 0.33 g of N-acetylcysteine (NAC) was added thereto, and 0.3 ml of triethylamine was added dropwise thereto, and the mixture was stirred at room temperature overnight. After filtering the reaction mixture, the filtrate was concentrated to dryness, and 50 ml of isopropanol was added thereto, and the mixture was heated until the solution was transparent, poured into a beaker, and stirred to cool and crystallize. The crystals were filtered off, washed twice with isopropanol and air dried, to give mPEG 5k -0-CO-NAC.
  • NAC N-acetylcysteine
  • the mPEG-O-iCH ⁇ COOH prepared in the above step was dissolved in 320 ml of toluene, and 10 ml of toluene was distilled off under a nitrogen atmosphere. To the reflux liquid were added 3.0 mmol of anhydrous pyridine and 3.0 mmol of thionyl chloride, and the mixture was refluxed for 6 hours and then stirred overnight. The reaction solution was vacuumed under reduced pressure, concentrated and added to 360 ml. Precipitation of cold ether. The precipitate was collected, dissolved in 180 ml of dichloromethane, and then added 1.1 g of NAC and 0.8 ml of triethylamine, and stirred at room temperature overnight.
  • the mPEG 4()K -O-(CH 2 )rCOOH prepared in the previous step was dissolved in 700 ml of toluene, and 250 ml of toluene was distilled off under a nitrogen atmosphere.
  • To the reflux liquid 6.5 mmol of anhydrous pyridine and 6.5 mmol of thionyl chloride were added, and the mixture was refluxed for 10 hours and then stirred overnight.
  • the reaction mixture was concentrated in vacuo, then EtOAc EtOAc EtOAc EtOAc. After the reaction mixture was filtered, the filtrate was concentrated to dry. Add 350 ml of isopropanol, heat until the solution is clear, pour into a beaker and stir to cool and crystallize. The crystals were filtered off, washed twice with isopropanol, and dried to give mPEG 40K -O-(CH 2 ) 3 -CO-NAC o
  • tert-butyl 6-hydroxycaproate was dissolved in 80 ml of toluene, heated under a nitrogen atmosphere, and heated to azeotropic distillation until the remaining volume was about 50 ml.
  • the solution was cooled to room temperature and poured into 20 ml of 0.25 g of sodium hydride. In a toluene solution, mix well. The solution was stirred for 5 hours in a 37 ° C water bath, filtered, and cooled to room temperature.
  • the solution was mixed with a solution of the compound mPEG 5K -O-SO 2 -CH 3 prepared in the above step in 80 ml of anhydrous toluene, and the reaction was stirred at 125 ° C for 25 hours.
  • the reaction solution was vacuumed under reduced pressure, and then concentrated, and then, then, 100 ml of cold diethyl ether was precipitated, and the precipitate was collected and dried to obtain mPEG 5K -O-(CH 2 ) r CO 2 -C 4 H 9 .
  • the mPEG 5K -O-(CH 2 ) 5 -COOH prepared in the above step was dissolved in 150 ml of toluene, and 70 ml of toluene was distilled off under a nitrogen atmosphere. 1.5 mmol of anhydrous pyridine and 1.5 mmol of thionyl chloride were added to the reflux, and the mixture was refluxed for 4 hours and then stirred overnight. The reaction solution was concentrated in vacuo and then evaporated to ethyl ether. The precipitate was collected, dissolved in 50 ml of dichloromethane, and then 0.33 g of NAC and 0.3 ml of triethylamine were added and stirred at room temperature overnight.
  • the insoluble salt was filtered off, concentrated under reduced pressure, and then diethyl ether (180 ml).
  • the precipitate was filtered, dissolved in 100 ml of deionized water, adjusted to pH 12 with sodium hydroxide, stirred at room temperature for 1 hour, adjusted to pH 3 by adding 1 N hydrochloric acid, and the solution was extracted three times with dichloromethane, 100 ml each time.
  • the extract was dried over sodium sulfate / magnesium sulfate and filtered. After concentration under reduced pressure, the precipitate was added 400ml cold ether, the precipitate was collected and dried in vacuo to save, to give mPEG 1QK -S- (CH 2) 2 -COOH.
  • the mPEG 1QK- S-(CH 2 ) 2 -COOH prepared in the above step was dissolved in 250 ml of toluene, and under a nitrogen atmosphere, 120 ml of toluene was distilled off. 1.5 mmol of anhydrous pyridine and 1.5 mmol of thionyl chloride were added to the reflux, and the mixture was refluxed for 4 hours and then stirred overnight. The reaction solution was evaporated to dryness. The precipitate was collected, dissolved in 100 ml of dichloromethane, and then added with 0.5 g of NAC and 0.45 ml of triethylamine, and stirred at room temperature overnight. After the reaction mixture was filtered, the filtrate was concentrated to dry.
  • R 2 are hydrogen atoms; Y is -NHCO-; m is 2; n is 454)
  • reaction solution was filtered, and the filtrate was concentrated, dissolved in 150 ml of diluted hydrochloric acid, and adjusted to pH 3.0 with NaOH, and then extracted with dichloromethane three times, 150 ml each time, and the extract was combined and concentrated to dryness under reduced pressure.
  • the CH 3 O-PEG 4 o K -NHCO 2 - (CH 2 ) 4 -COOH prepared in the above step was dissolved in 650 ml of toluene, and 200 ml of toluene was distilled off under a nitrogen atmosphere. 6.0 mmol of anhydrous pyridine and 6.0 mmol of thionyl chloride were added to the reflux, and the mixture was refluxed for 10 hours and then stirred overnight. The reaction mixture was concentrated in vacuo, and then evaporated, evaporated, evaporated, evaporated. After the reaction mixture was filtered, the filtrate was concentrated to dry.
  • the CH 3 O-PEG 1()K -(CH 2 )2-COOH prepared in the above step was dissolved in 250 ml of toluene, and under a nitrogen atmosphere, 120 ml of toluene was distilled off. 1.5 mmol of anhydrous pyridine and 1.5 mmol of thionyl chloride were added to the reflux, and the mixture was refluxed for 4 hours and then stirred overnight. The reaction solution was evaporated to dryness. The precipitate was collected, dissolved in 100 ml of dichloromethane, and then 3.0 mmol of 3-aminopropionic acid and 0.6 mmol of triethylamine were added and stirred at room temperature overnight. The reaction solution was filtered, and the filtrate was concentrated, poured into 250 ml of ethyl acetate to precipitate, and the precipitate was collected and stored in vacuo to give
  • the CH 3 O-PEG 1QK -(CH 2 ) 2 -CONH-(CH 2 ) 2 -COOH prepared in the above step was dissolved in 250 ml of toluene, and under a nitrogen atmosphere, 130 ml of toluene was distilled off. 1.5 mmol of anhydrous pyridine and 1.5 mmol of thionyl chloride were added to the reflux, and the mixture was refluxed for 4 hours and then stirred overnight. The reaction solution was evacuated, concentrated to dryness and then evaporated and evaporated.
  • Example 3 mPEG 2() K -propionic acid, i.e., CH 3 O-PEG 2GK -(CH 2 ) 5 -COOH, was prepared. b) CH 3 O-PEG 2 . Preparation of K -(CH 2 ) 2 -COO-(C3 ⁇ 4) 5 -COOH
  • the CH 3 O-PEG 2QK -(CH 2 ) 5 -COOH prepared in the above step was dissolved in 360 ml of toluene, and under a nitrogen atmosphere, 140 ml of toluene was distilled off. 1.5 mmol of anhydrous pyridine and 1.5 mmol of thionyl chloride were added to the reflux, and the mixture was refluxed for 4 hours and then stirred overnight. The reaction solution was concentrated to dryness in vacuo. EtOAc was evaporated. Et. The reaction solution was filtered, and the filtrate was concentrated and poured into cold diethyl ether. The precipitate was collected and dried to give CH 3 O- PEG-(C3 ⁇ 4) 2 -COO-(CH 2 ) 5 -COOH.
  • the CH 3 O-PEG 20K -(CH 2 )2-COO-(CH 2 ) 5 -COOH prepared in the above step was dissolved in 380 ml of toluene, and 160 ml of toluene was distilled off under a nitrogen atmosphere. To the reflux liquid were added 3.0 mmol of anhydrous pyridine and 3.0 mmol of thionyl chloride, and the mixture was refluxed for 6 hours and then stirred overnight. The reaction solution was vacuumed under reduced pressure, and then concentrated, and then, 380 ml of cold diethyl ether.
  • the residue was dissolved in a mixture of 200 ml of toluene and 160 ml of 1,4-dioxane, and 5.0 mmol of ⁇ -aminopropionic acid was added thereto, and 0.7 ml of triethylamine was added dropwise thereto, and the mixture was stirred at room temperature for 2 hours.
  • the reaction solution was filtered, and the filtrate was concentrated and then precipitated with 600 ml of cold diethyl ether. The precipitate was collected and dried.
  • the precipitate was dissolved in 600 ml of toluene, and 190 ml of toluene was distilled off under a nitrogen atmosphere. 6.0 mmol of anhydrous pyridine and 6.0 mmol of thionyl chloride were added to the reflux liquid, and the mixture was refluxed for 10 hours and then stirred overnight. The reaction mixture was concentrated in vacuo, then EtOAc EtOAc EtOAc EtOAc EtOAc EtOAc EtOAc After the reaction solution was filtered, the filtrate was concentrated under reduced pressure, and then 350 ml of isopropyl alcohol was added thereto, and the mixture was heated until the solution was transparent, poured into a beaker, and cooled to crystallize. The crystals were filtered off, washed twice with isopropyl alcohol, and dried.
  • R 2 is a hydrogen atom; Y is -S-; m is 2; n is 113)
  • the C 6 H 5 -CH 2 -O-PEG 5K -S- (CH 2 ) 2 -CO-NAC prepared in the above step was dissolved in 50 ml of dioxane, and 2 g of 10% palladium carbide was added. The hydrogen gas was oscillated overnight. The solution was filtered, concentrated under reduced pressure, and then 50 ml of isopropanol was added, and the mixture was heated until the solution was transparent, poured into a beaker, stirred and cooled to crystallize. The crystals were filtered off, washed twice with isopropyl alcohol and dried to give HO-PEG 5K -S- (CH 2 ) 2 -CO-NAC.
  • C 6 H 5 -CH 2 -O- PEG 2 OK-OH was prepared starting from C 6 H 5 -CH 2 -0- PEG -rich -S- (CH 2) R COOH.
  • the sample prepared in the previous step was dissolved in 95 ml of C 6 H 5 -CH 2 -O-PEG 2QK -S- (CH 2 ) 2 -CO-NAC
  • To the oxetane 2.5 g of 10% palladium carbide was added and vortexed overnight with hydrogen.
  • the solution was filtered, concentrated under reduced pressure and then purified with diethyl ether.
  • the precipitate was collected and dried to give HO-PEG 2QK -S - (CH 2 ) 2 -COOH.
  • the sample prepared in the previous step HO-PEG 2()K -S-(CH 2 ) 2 -COOH, was dissolved in 350 ml of toluene, and under a nitrogen atmosphere, 110 ml of toluene was distilled off.
  • To the solution was added 3 ml of an ethanol solution containing 2.1 mmol of sodium ethoxide, and the reaction was heated to reflux until about 6 ml of a solution was distilled off.
  • the reaction solution was cooled to room temperature, and 2.0 mmol of allyl chloride was added, and the mixture was reacted under nitrogen overnight.
  • the CH 2 CH-CH 2 -O-PEG 2()K -S-(CH 2 )2-COOH prepared in the above step was dissolved in 360 ml of toluene, and under a nitrogen atmosphere, 120 ml of toluene was distilled off. To the reflux liquid were added 3.0 mmol of anhydrous pyridine and 3.0 mmol of thionyl chloride, and the mixture was refluxed for 6 hours and then stirred overnight. The reaction solution was vacuumed under reduced pressure, and then concentrated, and then evaporated. The precipitate was collected, dissolved in 180 ml of dichloromethane, and then added 1.1 g of NAC and 0.8 ml of triethylamine, and stirred at room temperature overnight.
  • CH 2 CH-CH 2 -O-PEG dish -S-(CH 2 ) 2 -CO-NAC.
  • the C 6 H 5 -CH 2 -O-PEG 1GK -O-SO R CH 3 prepared in the above step was dissolved in 60 ml of distilled water, and then poured into 200 mr of concentrated aqueous ammonia containing 20 g of ammonium chloride, and stirred at room temperature overnight. The solution was extracted three times with dichloromethane, 220 ml each time. The combined extracts were dried over sodium sulfate and filtered. The solution was concentrated under reduced pressure, and then a mixture of 300 ml of cold diethyl ether was added, and the precipitate was collected to obtain C 6 H 5 -CH 2 -O- PEG 1QK -NH 2 and stored in vacuo.
  • the C 6 H 5 -C 3 ⁇ 4-O-PEG 1()K -NH 2 prepared in the above step was dissolved in 90 ml of dichloromethane, and adipic acid chloride 10 mmol and 1,4 ml of triethylamine were added, and the mixture was stirred at room temperature for 2 hours.
  • the reaction solution was filtered, concentrated in vacuo and then evaporated with diethyl ether.
  • the precipitate was collected, dissolved in 100 ml of dichloromethane, and then 2.0 g of NAC and 1.5 ml of triethylamine were added and stirred at room temperature overnight.
  • the reaction solution was filtered, concentrated, and then evaporated with diethyl ether.
  • the precipitate was collected to give C 6 H 5 -CH 2 -O-PEG 1QK -NHCO-(CH 2 )4-CO-NAC, which was stored in vacuo.
  • R is (CH 3 ) 3 CO-CONH-CH 2 -CH 2 ;
  • R 2 is a hydrogen atom;
  • Y is -S-;
  • m is 2;
  • n is 454)
  • the precipitate was filtered, dissolved in 150 ml of distilled water, and then poured into 250 ml of concentrated aqueous ammonia containing 25 g of ammonium chloride, and stirred at room temperature overnight. The solution was extracted three times with dichloromethane, 200 ml each time. The combined extracts were dried over sodium sulfate. The solution was filtered, concentrated under reduced pressure after addition of 600ml of cold ethyl ether precipitation, the precipitate was collected to give H 2 -PEG 2QK -S- (CH 2 ) 2 -COOH, save and dried in vacuo.
  • the sample prepared in the previous step NH 2 -PEG 20K -S-(CH 2 ) 2 -COOH, was dissolved in 100 ml of dichloromethane, and then 3.0 mmol of anhydrous triethylamine and 1.2 mmol of di-tert-butyl carbonate were added and mixed uniformly. The reaction was allowed to proceed overnight at room temperature under a nitrogen atmosphere. The solution was concentrated under reduced pressure, dissolved in 200 ml of distilled water, and adjusted to pH 3 with hydrochloric acid. The solution was extracted three times with dichloromethane, 200 ml each time. The combined extracts were dried over sodium sulfate.
  • the extracts were combined and extracted with 30 ml of 1N hydrochloric acid and 30 ml of distilled water. The solution was dried over sodium sulfate. The solution was filtered, concentrated under reduced pressure, and then taken to a mixture of 600 ml of cold diethyl ether. The precipitate was collected and stored in vacuo.
  • the precipitate was dissolved in 180 ml of dichloromethane, and 6 g of mPEGsk-CO-NAC synthesized according to Example 1 was added successively, and 0.25 ml of triethylamine was uniformly mixed and allowed to react at room temperature overnight. The reaction was quenched by the addition of an excess of ethylamine. The mixture was concentrated under reduced pressure and dissolved with a small portion of distilled water.
  • the product was subjected to Sephadex-200 molecular sieve chromatography ( ⁇ 2.6 cm X 100 cm), a buffer solution of 20 mmol/L pH 7.0 sodium phosphate (containing 200 mmol/L NaCl), and 30 ml of a double-chain PEG aqueous solution was collected.
  • the pH of the aqueous solution of the double-chain PEG was adjusted to 3.0 with hydrochloric acid, and the solution was extracted three times with dichloromethane, and the combined extracts of 100 mL each were dried over sodium sulfate. Filter the solution, concentrate under reduced pressure and add 300 ml of cold ether. Precipitation. The collected precipitate was dissolved in 400 ml of toluene, and under a nitrogen atmosphere, 100 ml of toluene was distilled off. 6.0 mmol of anhydrous pyridine and 6.0 mmol of thionyl chloride were added to the reflux, and the mixture was refluxed for 10 hours and then stirred overnight.
  • reaction mixture was concentrated in vacuo, and then evaporated, evaporated, evaporated,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
  • Example 19 mPEG 20k -(CH 2 ) 2 -CO-NAC modified interferon ct -2a.
  • the mPEG 20k -(CH 2 ) 2 -CO-NAC was mixed, and 0.75 ml of sodium borate (pH 9.2) was added to start the reaction, and the reaction was carried out at 4 ° C for 2 hours.
  • 0.1 ml of 2 M glycine was added, and after 10 minutes at room temperature, 0.5 ml of 1 M sodium acetate (pH 5.0) was added.
  • the sample was dialyzed, and the dialysate was 20 mM pH 5.0 sodium acetate.
  • the sample was directly applied to Sepharose-CM at a flow rate of 1.5 ml/min. After washing, it was eluted with 100 mM NaCl, 200 mM NaCl, 400 mM NaCl in 20 mM sodium acetate pH 4.5, respectively.
  • the modified and purified samples were collected and analyzed by SDS-PAGE. The results are shown in Figure 1.
  • the channel M is the protein standard
  • the channel 1 is the modified sample
  • the channel 2 is the ion-exchanged eluent.
  • 4 is a 100 mM elution sample
  • lane 5 is a 200 mM elution sample
  • lanes 6, 7 are 400 mM elution samples.
  • the apparent molecular weight of monoPEG interferon is about 60 kd
  • the molecular weight of interferon is 15 kd.
  • the results showed that PEG-NAC can be modified by interferon under mild conditions, and the product is stable and easy to separate and purify.
  • Example 20 mPEG 5k -(CH 2 ) 2 -CO-NAC modified bovine hemoglobin.
  • mPEG 5k -(CH 2 ) 2 -CO-NAC was prepared according to the procedure of Example 3.
  • the reaction was initiated by 0.75 ml of sodium borate (pH 9.0) and reacted at 10 ° C for 2 hours. 0.2 ml of 1 M glycine was added, and the reaction was terminated by a room temperature for 10 minutes. After the reaction, the sample was ultrafiltered with a 5kD membrane, and the ultrafiltered sample was collected for SDS-PAGE electrophoresis.
  • the electropherogram is shown in Figure 2.
  • channel 1 is hemoglobin
  • channel 2 is modified hemoglobin
  • channel 3 is protein standard.
  • the hemoglobin subunit has a molecular weight of about 15 kD
  • the PEG monomodified hemoglobin subunit has an apparent molecular weight of about 26 kD.
  • the results show that PEG-NAC can modify hemoglobin under mild conditions.
  • the N-acetyl cysteine derivative provided by the present invention is mainly used for modifying an amino group in a protein or a polypeptide, and the modified product is stable, and is advantageous for long-term preservation of a protein or a polypeptide product, and can be used as a modifier of a protein or a polypeptide.
  • the amino group in the protein or polypeptide is mainly modified, thereby having high selectivity and specificity.

Description

N-乙酰基半胱氨酸衍生物及其应用 技术领域
本发明涉及 N-乙酰基半胱氨酸衍生物及其应用。 背景技术
蛋白质药物如胰岛素、 干扰素具有作用专一、 高效等特点, 在人类疾病 治疗中发挥重要的作用。 随着人类基因组计划的完成, 蛋白质组学研究的全 面展开, 将会有越来越多的蛋白质药物用于疾病治疗。 然而蛋白质药物稳定 性差, 易于产生抗原抗体反应和蛋白酶降解, 肾脏排除速度快, 血浆清除率 高, 体内半衰期较短, 因此限制了蛋白质药物的临床应用。
二十世纪 90年代末, 国外医药研究人员开始利用一名为 "聚乙二醇化" 的新技术来改造蛋白质药物。聚乙二醇 [Polyethylene glycol),PEG]具有很强的 亲水性和柔韧性, 在水溶液中具有较大的排水体积, 通常是无毒性、 无免疫 原性的。 "聚乙二醇化"技术是将聚乙二醇分子连接到蛋白质分子表面上, 从而可以保护蛋白质不受免疫系统和酶类的进攻。 与蛋白质相比较, PEG-蛋 白质结合物的免疫原性和抗原性降低, 同时血浆清除率降低, 体内半衰期延 长。
Davis等人在美国专利 4,179,337中公开了将聚乙二醇(PEG) 与蛋白质 如胰岛素和酶结合以得到结合物, 其中的蛋白质免疫原性较小并保留了大部 分的生理活性。 Nakagawa等人在美国专利 4,791,192中公开了将 PEG与胰岛 活化蛋白质结合以降低其副作用和免疫原性。 Abuchowski等人在 "Enzymes as Drugs" ( 1981 )中阐述了 PEG修饰的多肽能够显著降低了免疫原性和抗原性, 延长体内半衰期,修饰后的多肽如酶类产品将会在多种治疗领域中发挥作用。 将 PEG和其它聚合物与重组蛋白质结合可降低免疫原性, 增大半衰期。参见 Nitecki等人的美国专利 4,902,502; Εηζοη,Ιηο的国际申请 PCT/US 90/02133; Nishimura等人的欧洲专利申请 154,316 以及 Tomasi 的国际申请 PCT/US 85/02572 。 Veronese 等 人 在 文 献 ( Applied Biochem and Biotech,l 1,141-152(1985))中公开了用氯甲酸苯酯类化合物活化聚乙二醇以修 饰核糖核酸酶和过氧化物歧化酶。 King 等人在文献 (IntArchs. Allsrgy Appl.Immun.66, 439-446(1981))描述了一种用 0-(RO-PEG)-S-甲酰氨基甲基一 二硫代碳酸酯中间体使蛋白质与 PEG键合的方法。 Alipsky等人在 US5,122,614 中强调 PEG修饰蛋白质的过程中, PEG的 活性基团应满足如下条件: 1 )活性基团的活性要高, 可以在温和的条件下使 PEG与蛋白质快速发生结合反应; 2)修饰反应后, 活性部位释放出来的副产 物应是无毒性性的, 或可以很容易从产品中分离出去。
此外, 修饰反应应有较高的专一性, 避免产生低活性或无活性的 PEG- 蛋白质结合物; 修饰步骤应尽量简单, 纯化步骤应尽可能的少。
在 PEG与蛋白质的修饰反应中,常用的活性基团包括琥珀酰亚胺的酯基 (N-hydroxysuccinimide, NHS )、 醛基、三氟磺酸酯基、 对硝基苯碳酸酯基及 苯肼三唑碳酸酯基等。 其中, 对硝基苯碳酸酯基的主要缺点是反应副产物毒 性高; 苯肼三唑碳酸酯基的活性低、 修饰反应时间长 (48-72hr pH 8.5 ) , 而 且价格昂贵 (Beauchamp, et al. Analyt. Biochem. 131, 25-33 (1983)) ; 醛基主 要用于多肽氨基末端的修饰, 专一性高, 但通常需要进行两步反应即修饰反 应和还原反应; 琥珀酰亚胺的酯基活性高、 反应条件温和, 是目前应用最广 的活性基团, 其不足之处是尽管以修饰多肽上的氨基为主, 但还可以修饰组 氨酸上咪唑基、 络氨酸上的羟基等。
发明公开
本发明的目的是提供一种 N-乙酰基半胱氨酸衍生物。
本发明所提供的 N-乙酰基半胱氨酸衍生物, 具有式 I结构,
Figure imgf000004_0001
! 其中, POLY为分子量范围在 1000Da〜500,000Da之间的聚垸基二醇, 及其二元共聚物、 三元共聚物、 混合共聚物, 包括聚乙二醇、 聚丙二醇、 以 及乙二醇丙二醇的二元共聚物。
优选的所述 N-乙酰基半胱氨酸衍生物结构式为式 II,
Figure imgf000004_0002
(式 Π ) 其中, n为 25-4000之间的正整数; R为氢、 碳原子数为 1一 10的烷基、 苄基、 CH2=CH2— CH2—、 C¾=CH—CO—、 或 (C )3— O— CONH— CH2— CH2—; Y为一 Ο—、一 S—、一 HCO—、一CONH―、一 COO_、一 OCO—、一 NHCO2—、 或一 O2CNH—; 为11或甲基; R2为 H或甲基; m为 0-5之间 的正整数。
式 II中 n优选为 113-1500之间的正整数; 优选为 H, R2优选为 H; R 优选为甲基; Y优选为一 O—; m为 0-5之间的正整数, m更优选为 1-5之间 的正整数, 更有效地, m为 2。 本发明的 N-乙酰基半胱氨酸衍生物还可以为结构式为式 ΙΠ的化合物,
Figure imgf000005_0001
其中, ni、 n2分别为 25-4000之间的正整数, 优选为 113-1500的正整数; mj , m2分别为 0-5的正整数, 优选为 1-5之间的正整数, 更优选地, m为 2。 本发明 N-乙酰基半胱氨酸衍生物均可以用本领域的常规方法合成, 例 如, mPEG类的 N-乙酰基半胱氨酸衍生物(R为甲基, 、 R^ W制备过 程主要包括:
1 ) mPEG-OH的活化, 例如用甲磺酰氯与 mPEG-OH反应, 将其活化生 成 mPEG-甲磺酰酯;
2 )将所得 mPEG-甲磺酰酯与羟基(巯基)酸酯反应生成 mPEG-酸酯, mPEG-酸酯经水解反应生成 mPEG-酸;
3 ) mPEG-酸在甲苯、二氯甲烷等有机溶剂中与亚硫酰氯反应生成 mPEG- 酰氯;
4 ) mPEG-酰氯与 N-乙酰半胱氨酸(NAC)反应即可以得到 mPEG-NAC。 或者, 也可以采用另外一条合成途径: 1 ) mPEG-OH或 111?£0-^¾三光气、 丙烯酰氯、 双酰氯化合物等反应, 直接得到 mPEG-酰氯;
2) mPEG-酰氯与 N-乙酰半胱氨酸(NAC)反应即可以得到 mPEG-NAC。 本发明的另一个目的是提供本发明 N-乙酰基半胱氨酸衍生物的用途。 附图说明
图 1为 mPEG2()k-(CH2)2-CO-NAC修饰干扰素 a -2a的电泳图。
图 2为 mPEG5k-(CH2)2-CO-NAC修饰牛血红蛋白的电泳图。
实施发明的最佳方式
以下实施例对于本专业技术人员而言, 很容易从中推出式 II中 R为其他 的低级烷基如乙基、丙基、异丙基等的 N-乙酰基半胱氨酸衍生物的制备工艺。
实施例 1、 制备 mPEG5k-O-CO-NAC (式 II中 R为甲基; 、 R2为氢原 子; Y为氧原子; m为 0; n为 113)
取 5.0g的 mPEG5k溶于 30ml二氯甲烷和 15ml甲苯的混合液中, 加入三 光气 1.53克, 混合均勾, 加入无水三乙氨 0.8ml, 搅拌反应过夜。 将反应液 减压抽真空,浓缩至干后加入 150ml冷乙醚沉淀。将沉淀溶解到 10ml甲苯和 15ml二氯甲烷的混合液中, 加入 N-乙酰半胱氨酸(N-acetylcysteine, NAC) 0.33克,滴加三乙胺 0.3ml,室温搅拌过夜。反应液过滤后,将滤液浓缩至干, 加 50ml异丙醇, 加热至溶液透明, 倒入烧杯中搅拌冷却析晶。滤出晶体, 用 异丙醇洗涤两遍, 凉干, 得到 mPEG5k-0-CO-NAC。
产 物 1 H NMR ( DMSO-d6 ) : δ 3.21(s,3H,-O ), δ 3.5(br m,-O-CH2-¾-0-), δ 4.35(t,2H,-O-CH2-C -O-CO-), δ
4.71(m,lH,-CO-S-CH2-CH-), S 2.0(s,3H,-NHCOC ) ; 证明所得化合物正确。 实施例 2、 制备 mPEG1()k-O-CH2-CO-NAC (式 II中 R为甲基; 、 R2 为氢原子; Y为氧原子; m为 1 ; n为 227)
a)甲氧基聚乙二醇 10000-乙酸(mPEG1()k - O - CH2 - COOH) 的合成 取 mPEG1()k10.0克溶于 150m l甲苯, 氮气保护下, 加热共沸蒸馏至剩余 体积约为 100ml时停止加热, 溶液冷却到室温。 将溶液加入到含有叔丁醇钾 0.3克的 20ml叔丁醇和 20ml甲苯的混合液中,氮气保护下向内加入 2.1mmol 的 2-溴代乙酸叔丁酯, 反应在室温搅拌过夜。 将反应液过滤, 抽真空浓缩至 干。 将残渣倒入 100ml的稀盐酸中搅拌过夜,溶液反应后用氢氧化钠调节 pH 值到 3左右。 用二氯甲烷进行抽提, 每次 120ml, 抽提 3次, 合并二氯甲烷 抽提液, 过滤后减压浓縮至干, 得到 mPEG1Qk- 0- CH2- COOEL
b) mPEG10k-O-CH2-CO-NAC的合成
将 mPEG1()k O - CH2 - COOH溶解到 150ml甲苯中, 氮气保护下, 蒸馏出
50ml甲苯。 向回流液中加入 1.5mmol无水吡啶和 1.5mmol亚硫酰氯, 回流 4 小时后搅拌过夜。 将反应液抽真空, 浓縮至干后加入 220ml冷乙醚沉淀。 收 集沉淀, 加入 100ml二氯甲垸溶解, 先后加入 0.5克 NAC和 0.45ml三乙胺, 室温搅拌过夜。 反应液过滤后, 将滤液浓缩至干。 加入 80ml异丙醇, 加热至 溶液透明, 倒入烧杯中搅拌冷却析晶。 滤出晶体, 用异丙醇洗涤两遍, 凉干, 得到 mPEG1()k- O- CH2- CO-NAC。
产 物 1 H NMR ( DMSO-d6 ) : δ 3,21(s,3H,-OC ), δ 3.5(br m,-O-CH2zCH2-O-), δ 4.21(s,2H, -0-CHrCO-), δ 4.7 l(m, 1H5 -CO-S-CH2-CH-), δ 2.0(s,3H,- HCOCH3) ; 证明所得化合物正确。 实施例 3、 制备 mPEG2k - 0-CH2 - CH2-CO-NAC (式 II中 R为甲基; 、 为氢原子; Y为氧原子; m为 2; n为 454)
a) mPEG20k-O-(CH2)2-CN的合成
取 20.0g的 mPEG2Qk溶于 30ml 0.5N氢氧化钠的水溶液中, 室温搅拌 2 小时。 溶液冷却到 4°C后, 加入丙烯氰 10ml, 搅拌反应 2小时后, 用盐酸调 节 pH至中性。 溶液用二氯甲烷分三次抽提, 每次 50ml。 合并抽提液, 用硫 酸钠干燥。 过滤后, 真空减压浓缩至干, 得到 mPEG2Qk-0- (CH2)2-CN。
b)甲氧基聚乙二醇 20000-丙酸 (mPEG2()k- O-(C¾)2 - COOH) 的合成 将上步制备得到的 mPEG2Qk-O-(CH2)2-CN溶解到 80ml浓盐酸中, 室温 搅拌 72小时。 向溶液中加入 5N氢氧化钾溶液 250ml, 室温搅拌 24小时。 用 盐酸将 pH调节到 3.0, 用二氯甲烷分三次抽提, 每次 360ml。 合并抽提液, 用硫酸钠干燥。过滤后,真空减压浓缩至干,得到 mPEG2Qk-O- (CH2)2- COOH。
C ) mPEG2Qk- O- (CH2)2- CO-NAC的合成
将上步制备的 mPEG -O-iCH ^COOH溶解到 320ml甲苯中, 氮气保 护下, 蒸馏出 1 10ml甲苯。 向回流液中加入 3.0mmol无水吡啶和 3.0mmol亚 硫酰氯, 回流 6小时后搅拌过夜。 将反应液减压抽真空, 浓缩后加入 360ml 冷乙醚沉淀。 收集沉淀, 加入 180ml二氯甲烷溶解, 先后加入 1.1克 NAC和 0.8ml三乙胺, 室温搅拌过夜。 反应液过滤后, 将滤液浓缩至干。 加入 180ml 异丙醇, 加热至溶液透明, 倒入烧杯中搅拌冷却析晶。 滤出晶体, 用异丙醇 洗涤两遍, 凉干, 得到 mPEG2Qk- O- (CH2)2- CO-NAC。
产 物 1 H NMR ( DMSO-d6 ) : δ 3.21(s,3H,-OC ), δ 3.5(br m,-0-CH CH2-0-), δ 2.9(t,2H, -0-CH2-CH2- CO-), δ 4.7 l(m, 1H, -CO-S-CH2-CH-)5 δ 2.0(s,3H,-NHCOC )。 证明所得化合物正确。 实施例 4、 制备 mPEG4oK-O-(CH2)3-CO-NAC (式 II中 R为甲基; 、 R2 为氢原子; Y为氧原子; m为 3; n为 909)
a) 甲氧基聚乙二醇 40000-甲磺酰酯 (mPEG4oK-O-S02-CH3) 的合成 取 40.0g的 mPEG4Qk溶于 500ml甲苯, 氮气保护下, 加热共沸蒸熘至剩 余体积约为 350ml时停止加热, 溶液冷却到室温。 溶液中先后加入二氯甲垸 40ml、 无水三乙基氨 1.5mmol和无水甲磺酰氯 1.5mmol混合均匀, 在氮气保 护下, 室温搅拌过夜, 加入无水乙醇终止反应。 混合溶液过滤, 真空减压浓 縮后加入 600ml 乙醚进行沉淀。 产品过滤后真空浓缩至干, 得到 mPEG40K-O-SOrCH3
b) 甲氧基聚乙二醇 40000-丁酸叔丁酯(mPEG4()K-O-(CH2)3-CO2-C4H9) 的合成
取 4-羟基丁酸叔丁酯 1.86克溶解到 80m l甲苯中, 氮气保护下, 加热共 沸蒸馏至剩余体积约为 50ml时停止加热, 溶液冷却到室温后倒入溶解 0.25 克氢化钠的 20ml甲苯溶液中, 混合均匀。 溶液放置 37°C水浴中搅拌 5小时 后, 过滤, 并冷却到室温。
将溶液与溶解有 mPEG4QK-O-SO2-CH3的 200ml无水甲苯溶液进行混合, 125Ό下, 搅拌反应 25小时。 反应液真空浓縮后加入 550ml冷乙醚沉淀, 沉 淀过滤, 得到 mPEG40K-O-(CH2)3-CO2-C4H9, 真空保存。
c) 甲氧基聚乙二醇 40000-丁酸 (mPEG40K-O-(CH2)3-COOH) 的合成 将上步所得到的 mPEG4()K-O-(CH2)3-C02-C4H9倒入 320ml稀盐酸中搅拌 过夜,溶液反应后用氢氧化钠调节 pH值到 3左右。用二氯甲垸进行抽提,每 次 300πύ, 抽提 3 次, 合并二氯甲垸抽提液, 过滤后减压浓缩至干, 得到 mPEG40K-O-(CH2)3-COOH。 d) mPEG40K-O-(CH2)3-CO-NAC的合成
将上步所制备得到的 mPEG4()K-O-(CH2)rCOOH解到 700ml甲苯中, 氮 气保护下,蒸熘出 250ml甲苯。向回流液中加入 6.5mmol无水吡啶和 6.5mmol 亚硫酰氯, 回流 10小时后搅拌过夜。反应液真空浓缩后加入 550ml冷乙醚沉 淀, 沉淀过滤后加入 380ml二氯甲烷溶解, 先后加入 1.7克 NAC和 1.4ml三 乙胺, 室温搅拌过夜。 反应液过滤后, 将滤液浓缩至干。加入 350ml异丙醇, 加热至溶液透明, 倒入烧杯中搅抨冷却析晶。滤出晶体, 用异丙醇洗涤两遍, 凉干, 得到 mPEG40K-O-(CH2)3-CO-NACo
产 物 1H NMR ( DMSO-d6 ) : δ 3.21(s,3H,-OC ), δ 3.5(br m O-CH2-CH O-)5 δ l,9(m,2H, -O-CHr CH2-CH2-CO-)5 δ 2.57(t,2H, -O-CH2-CH2-CH2-CO-), δ 4.7 l(m, 1H, -CO-S-CH2-CH-)5 δ 2.0(s,3H, -NHCOC )。 证明所得化合物正确。 实施例 5、 制备 mPEG5K-O-(CH2)5-CO-NAC (式 II中 R为甲基; 、 R2 为氢原子; Y为氧原子; m为 5; n为 113 )
a) 甲氧基聚乙二醇 5000-甲磺酰酯 (mPEG5K-0-SO2-CH3) 的合成 取 5.0g的 mPEG5k溶于 80m 1甲苯, 氮气保护下, 加热共沸蒸镏至剩余 体积约为 50ml时停止加热,溶液冷却到室温。溶液中先后加入二氯甲烷 20ml、 无水三乙氨 1.5mmol和无水甲磺酰氯 1.5mmol混合均匀, 在氮气保护下, 室 温搅拌过夜, 加入无水乙醇终止反应。 混合溶液过滤, 真空减压浓缩后加入 90ml冷乙醚进行沉淀。产品过滤后真空浓缩至干,得到 mPEG5K-O-SO2-CH3
b) 甲氧基聚乙二醇 5000-己酸叔丁酯(mPEG5K-O-(CH2)5-CO2-C4H9) 的 合成
取 6-羟基己酸叔丁酯 2.1克溶解到 80m l甲苯中,氮气保护下,加热共沸 蒸馏至剩余体积约为 50ml时停止加热, 溶液冷却到室温后倒入溶解 0.25克 氢化钠的 20ml甲苯溶液中, 混合均匀。 溶液放置 37°C水浴中搅拌 5小时后, 过滤, 并冷却到室温。
将溶液与溶解上步所制备的化合物 mPEG5K-O-SO2-CH3的 80ml无水甲苯 溶液进行混合, 125度下, 搅拌反应 25小时。 将反应液减压抽真空, 浓缩后 加入 100ml冷乙醚沉淀,收集沉淀,晾干,得到 mPEG5K-O-(CH2)rCO2-C4H9
c) 甲氧基聚乙二醇 5000-己酸(mPEG5K-O-(CH2)5-COOH) 的合成 将上步制备得到的 mPEG5K-O-(CH2)5-COrC2H5倒入 100ml稀盐酸中搅拌 过夜, 溶液反应后用氢氧化钠调节 pH值到 3左右。用二氯甲烷进行抽提, 每 次 100ml, 抽提 3 次, 合并二氯甲烷抽提液, 过滤后减压浓缩至干, 得到 mPEG5K-O-(CH2)5-COOH。
d) 甲氧基聚乙二醇 5000-己酸 -NAC (mPEG5K-O-(CH2)5-CO-NAC ) 的合 成
将上步制备的 mPEG5K-O-(CH2)5-COOH溶解到 150ml甲苯中, 氮气保护 下,蒸馏出 70ml甲苯。 向回流液中加入 1.5mmol无水吡啶和 1.5mmol亚硫酰 氯, 回流 4小时后搅拌过夜。将反应液抽真空浓缩后加入 120ml冷乙醚沉淀。 收集沉淀,加入 50ml二氯甲烷溶解,先后加入 0.33克 NAC和 0.3ml三乙胺, 室温搅拌过夜。 反应液过滤后, 将滤液浓缩至干。 加入 45ml异丙醇, 加热至 溶液透明, 倒入烧杯中搅拌冷却析晶。 滤出晶体, 用异丙醇洗涤两遍, 凉干, 得到 mPEG5K-O-(CH2)5-CO-NAC。
产物 1H[ NMR
(DMSO-d6) : S3.24(m,5H,-OC ,-O-C -CH2-C¾-CH2-CH2-CO-), 53.5(br m O-CHrCH2-O-),51.58(m,6H O-CH2-CH2-CH2-CH2-CH2-CO-)562.55(t,2H5 -O-CH CH2-CH2-CH2-CH2-CO-),54.71(m5lH,-CO-S-CH2-CH-),52.0(s,3¾-NHC
OCi¾)。 证明所得化合物正确。 实施例 6、 制备 mPEG10K-S-(CH2)rCO-NAC (式 II中 R为甲基; 、 R2 为氢原子; Y为硫原子; m为 2; n为 227)
a) 甲氧基聚乙二醇 10000-甲磺酰酯 (mPEG1()K-O-SO2 - OCH3) 的合成 取 lO.Og的 mPEG1Qk溶于 150ml甲苯, 氮气保护下, 加热共沸蒸熘至剩 余体积约为 90ml时停止加热, 溶液冷却到室温。 溶液中先后加入二氯甲烷 25ml、 无水三乙氨 1.5mraol和无水甲磺酰氯 1.5mmol混合均匀, 在氮气保护 下, 室温搅拌过夜, 加入无水乙醇终止反应。 混合溶液过滤, 真空减压浓縮 后加入 250ml冷乙醚进行沉淀。 产品过滤后真空干燥保存, 得到
mPEG10K-O-SO2-OCH3
b) 甲氧基聚乙二醇 10000-S-丙酸 (mPEG10K-S-(CH2)2-COOH) 的合成 将上步制备的 mPEG1QK-O-SO2-OCH3溶解到 40ml甲苯和 60ml无水乙醇 混合液中。 将氢氧化钠 0.13克溶于 10ml无水乙醇中, 随后加入到 PEG溶液 中。 3-巯基丙酸乙酯 3.0mmol加入到反应液中, 氮气保护, 60°C加热 4小时, 反应后冷却到室温。 过滤除不溶性盐, 减压浓缩后加入 180ml冷乙醚沉淀。 沉淀过滤后溶解到 100ml去离子水中, 用氢氧化钠调节 pH至 12, 室温搅拌 1小时, 加入 1N盐酸调节 pH至 3, 溶液用二氯甲烷抽提 3次, 每次 100ml。 抽提液用硫酸钠 /硫酸镁干燥, 过滤。 减压浓缩后, 加入 400ml冷乙醚沉淀, 收集沉淀, 真空干燥保存, 得到 mPEG1QK-S-(CH2)2-COOH。
c) 甲氧基聚乙二醇 10000-S-丙酸 -NAC ( mPEG10K-S-(CH2)2-CO-NAC ) 的合成
将上步制备的 mPEG1QK-S-(CH2)2-COOH溶解到 250ml甲苯中,氮气保护 下, 蒸馏出 120ml甲苯。 向回流液中加入 1.5mmol无水吡啶和 1.5mmol亚硫 酰氯, 回流 4小时后搅拌过夜。 将反应液抽真空, 浓缩至干后加入 220ml冷 乙醚沉淀。收集沉淀,加入 100ml二氯甲垸溶解,先后加入 0.5克 NAC和 0.45ml 三乙胺,室温搅拌过夜。反应液过滤后,将滤液浓缩至干。加入 90ml异丙醇, 加热至溶液透明, 倒入烧杯中搅拌冷却析晶。滤出晶体, 用异丙醇洗涤两遍, 凉干, 得到 mPEG1QK-S-(CH2)2-COOH。
产物1 H MR (DMSO-d6) : δ 3.21(s,3H,-OCi¾), δ 3.5(br
m5-O-CH2-CHrO-), δ 2.7(m,4H, -O-CH2-CHr S-C -CHrCO-), δ 3.0(t,2H, -O-CH2-CH2-S-CH2-CH2-CO-), δ 4.7 l(m, 1H, -CO-S-CH2-CH-), δ
2.0(s,3H,- NHCOC )。 证明所得化合物正确。 实施例 7、 制备 mPEG20K-NHCO- (CH2)2-CO-NAC (式 II中 R为甲基;
Ri、 R2为氢原子; Y为 -NHCO-; m为 2; n为 454)
取 20.0g的 mPEG20k胺( SHEARWATER.CO )溶于 180ml二氯甲烷中, 加入丁二酰氯 lO.Ommol和 1.4ml三乙胺, 室温下搅拌 2小时, 反应液过滤, 将滤液浓缩后用 360ml乙酸乙酯沉淀。收集沉淀,加入 180ml二氯甲烷溶解, 先后加入 2.0克 NAC和 1.5ml三乙胺, 室温搅拌过夜。 反应液过滤后, 将滤 液浓縮至干; 随后, 加 150ml异丙醇, 加热至溶液透明; 最后, 倒入烧杯中 搅拌冷却析晶。滤出晶体, 用异丙醇洗涤两遍, 凉干, 得到 mPEG2QK-NHCO-
(CH2)2-CO-NAC。
产物 1H MR (DMSO-d6) : δ 3.21(s,3H,-OCH3), δ 3.5(br
m,-0-CH2-CHrO-), δ 2.53(t,2H, -蘭 CO - -CHrCO-), δ 2.77(t,2H5-NHCO-CH2-CH2-CO-), δ 4.71(m5 1H, -CO-S-CH2-CH-)5 δ
2.0(s,3H,-NHCOCi¾)。 证明所得化合物正确。 实施例 8、 制备 CH3O-PEG4oK-NHCO2- (CH2)4-CO-NAC (式 II中 R为甲 基; 、 R2为氢原子; Y为 -NHCO2-; m为 4; n为 909)
a) CH30-PEG4OK-NHC02- (CH2)4-COOH的制备
取 40.0g的 mPEG4Gk胺溶于 350ml二氯甲垸中, 加入 2.58克三光气和 1.41ml三乙胺, 搅拌反应过夜。 将反应液抽真空, 浓缩后加入 600ml冷乙醚 沉淀。 .将所得沉淀溶解到 80ml甲苯和 120ml二氯甲烷的混合液中, 加入 5- 羟基戊酸 2.1克, 滴加三乙胺 1.45ml, 室温搅拌过夜。 反应液过滤, 将滤液 浓縮后溶解到 150ml稀盐酸中,用 NaOH调节 pH至 3.0, 随后用二氯甲烷分 三次抽提, 每次 150ml, 合并抽提液, 减压浓缩至干, 得到
CH3O-PEG40K- HCO2- (CH2)4-COOH。
b) CH3O-PEG4OK-NHCO2- (CH2)4-CO-NAC的制备
将上步制备的 CH3O-PEG4oK-NHCO2- (CH2)4-COOH溶解到 650ml甲苯 中, 氮气保护下, 蒸馏出 200ml甲苯。 向回流液中加入 6.0mmol无水吡啶和 6.0mmol亚硫酰氯, 回流 10小时后搅拌过夜。 反应液真空浓縮后加入 550ml 冷乙醚沉淀, 沉淀过滤后加入 380ml二氯甲烷溶解, 先后加入 1.7克 NAC和 1.4ml三乙胺, 室温搅拌过夜。 反应液过滤后, 将滤液浓缩至干。 加入 360ml 异丙醇, 加热至溶液透明, 倒入烧杯中搅拌冷却析晶。 滤出晶体, 用异丙醇 洗涤两遍, 凉干, 得到 CH3O-PEG4QK-NHC02- (CH2)4-CO-NAC。
产物 1H NMR (DMSO-d6) : δ 3.21(s,3H,-OCi¾), δ 3.5(br
m,-O-CH2-CH2-O-), δ 3.98(t,2H,- HCO2-CH2), δ
1.64(m54H,-NHCO-CH2-CH2-CH2-CH2-CO-)5 δ
2.55(t,2H,- HCO-CH2-CH2-CH2-CHrCO-), δ 4.7 l(m, 1H, -CO-S-CH2-CH-), δ 2.0(s,3H,-NHCOC )。 证明所得化合物正确。 实施例 9、 制备 CH30-PEG5K-OCO-(CH2)3-CO-NAC (式 II中 R为甲基; 、 R2为氢原子; Y为 - OCO-; m为 3; n为 113)
取 5.0g的 mPEG5k溶于 50ml二氯甲烷中,加入戊二酰氯 2.0g,无水三乙 氨 1.62ml搅拌反应过夜。 反应液减压浓缩后倒入 100ml冷乙醚中沉淀。 收集 沉淀,溶解到 50ml二氯甲垸中,先后加入 1.7克 NAC和 1.4ml三乙胺, 室温 搅拌过夜。 反应液过滤后, 将滤液浓缩至干; 随后, 加 50ml异丙醇, 加热至 溶液透明; 最后, 倒入烧杯中搅拌冷却析晶。滤出晶体, 用异丙醇洗涤两遍, 凉干, 得到 CH3O-PEG5K-OCO-(CH2)3-CO-NAC。
产物 1H NMR (DMSO-d6) : δ 3.21(s,3H,-OC ), δ 3.5(br
m,-O-CHrCHrO-), δ 4.35(t,2H, -O-CH2- -OCO-), δ 2.32(t,2H,
-OCO-CHrCH2-CHrCO-)5 δ 2.62(t,2H, -OCO-CH2-CH2-C¾-CO-), δ 4.71 (m,lH,-COS-CH2-CH-)5 δ 2.02(m,5H,-NHCOC ; -OCO-CH2-CH2-CH2-CO-)。 证明所得化合物正确。 实施例 10、 制备 CH3O-PEG1()K- (CH2)rCONH-(CH2)2-CO-NAC (式 II中 R为甲基; Ri、 R2为氢原子; Y为 -CO H-; m为 2; n为 227)
a) CH3O-PEG10K-(CH2)2-COOH的制备
依据实施例 3的方法, 制备 mPEG1QK-丙酸, 即
CH3O-PEG10K-(C¾)2-COOH。
b) CH3O-PEG皿 -(CH2)2-CO H-(CH2)2-COOH的制备
将上步制备的 CH3O-PEG1()K-(CH2)2-COOH溶解到 250ml甲苯中,氮气保 护下, 蒸馏出 120ml甲苯。 向回流液中加入 1.5mmol无水吡啶和 1.5mmol亚 硫酰氯, 回流 4小时后搅拌过夜。 将反应液抽真空, 浓缩至干后加入 220ml 冷乙醚沉淀。 收集沉淀, 加入 100ml二氯甲烷溶解, 先后加入 3.0mmol 3-氨 基丙酸和 0.6mmol三乙胺, 室温搅拌过夜。 反应液过滤, 将滤液浓缩后倒入 250ml乙酸乙酯中沉淀, 收集沉淀, 真空干燥保存, 得到
CH3O-PEG10K-(CH2)2-CONH-(CH2)2-COOH。
C ) CH3O-PEGIOK- (CH2)2-CONH-(CH2)2-CO-NAC的制备
将上步制备的 CH3O-PEG1QK-(CH2)2-CONH-(CH2)2-COOH溶解到 250ml 甲苯中, 氮气保护下, 蒸熘出 130ml甲苯。 向回流液中加入 1.5mmol无水吡 啶和 1.5mmol亚硫酰氯, 回流 4小时后搅拌过夜。 将反应液抽真空, 浓缩至 干后加入 250ml冷乙醚沉淀。 收集沉淀, 加入 110ml二氯甲垸溶解, 先后加 入 0.5克 NAC和 0.45ml三乙胺, 室温搅拌过夜。 加入 90ml异丙醇, 加热至 溶液透明, 倒入烧杯中搅拌冷却析晶。 滤出晶体, 用异丙醇洗涤两遍, 凉干, 得到 CH3O-PEG1()K- (CH2)2-CONH-(CH2)2-CO-NAC。 产物 1H MR (DMSO-d6) : δ 3.21(s,3H,-OC ), δ 3.5(br m,-O-CHr -O-), δ 2.49(t,2H, -CONH -CHrCH2-CO-), δ 2.86(t,2H,-CONH -CH2-CHrCO-); δ 4.7 l(m51H,-C0S-CH2-CH-), δ 2.0(s,3H, -丽 COC]¾)。证明所 得化合物正确。 实施例 11、 制备 CH3O-PEG20K- (CH2)2-COO-(CH2)5-CO-NAC (式 II中 R 为甲基; 、 R2为氢原子; Y为 -COO-; m为 5; n为 454)
a) CH3O-PEG20K-(CH2)2-COOH的制备
依据实施例 3, 制备 mPEG2()K -丙酸, 即 CH3O-PEG2GK-(CH2)5-COOH。 b) CH3O-PEG2K-(CH2)2-COO-(C¾)5-COOH的制备
将上步制备的 CH3O-PEG2QK-(CH2)5-COOH溶解到 360ml甲苯中,氮气保 护下, 蒸馏出 140ml甲苯。 向回流液中加入 1.5mmol无水吡啶和 1.5mmol亚 硫酰氯, 回流 4小时后搅拌过夜。 将反应液抽真空浓缩至干, 加入 110ml二 氯甲烷溶解, 先后加入 3.0mmol 6—羟基己酸和 0.43ml三乙胺, 室温搅拌 2 小时。 反应液过滤, 将滤液浓縮后倒入冷乙醚中。 收集沉淀, 晾干, 得到 CH3O-PEG皿 -(C¾)2-COO-(CH2)5-COOH。
c) CH3O-PEG2QK- (CH2)2-COO-(CH2)5-CO-NAC的制备
将上步制备的 CH3O-PEG20K-(CH2)2-COO-(CH2)5-COOH溶解到 380ml甲 苯中, 氮气保护下, 蒸馏出 160ml甲苯。 向回流液中加入 3.0mmol无水吡啶 和 3.0mmol亚硫酰氯, 回流 6小时后搅拌过夜。 将反应液减压抽真空, 浓缩 后加入 380ml冷乙醚沉淀。 收集沉淀, 加入 190ml二氯甲烷溶解, 先后加入 1.15克 NAC和 0.82ml三乙胺, 室温搅拌过夜。 反应液过滤后, 将滤液浓缩 至干。 加入 160ml异丙醇, 加热至溶液透明, 倒入烧杯中搅拌冷却析晶。 滤 出晶体, 用异丙醇洗涤两遍, 凉干, 得到 CH3O-PEG2()K- (CH2)2-COO-(CH2)5-CO-NAC。
产物1 H NMR (DMSO-d6) : δ 3.21(s,3H,-OC]¾), δ 3.5(br
m,-O-CH2-CH2-O-), δ 2.57(t,2H, -Ο-Οί2-0¾- COO-), δ
3.98(t,2H,-COO- -CH2- CH2-CH2-C¾-CO-), δ
1.58(m,6H,-COO-CH2-CH2-CH2-CI¾_-CH2-CO-), δ 2.55(t,2H,-COO-CH2-CH2- CH2-CH2-CH2-CO-)5 δ 4.71 (m, lH5-COS-CH2-CH-)5 δ 2.0 (s,3H, -NHCOC )。证 明所得化合物正确。 实施例 12、制备 CH3O-PEG概 - (CH2)2-02CNH-(C¾)2-CO-NAC (式 II中 R为甲基; Ri> R2为氢原子; Y为 -02CNH-; m为 2; n为 909)
取 40.0g的 mPEG40k溶于 230ml二氯甲烷和 110ml甲苯的混合液中, 力口 入三光气 2.65g, 混合均匀, 加入无水三乙氨 1.35ml, 搅拌反应过夜。将反应 液减压抽真空,浓缩至干。将所得残渣溶解到 200ml甲苯和 160ml 1,4-二氧六 环的混合液中, 加入 β-氨基丙酸 5.0mmol, 滴加三乙胺 0.7ml, 室温搅拌 2小 时。 反应液过滤, 将滤液浓缩后用 600ml冷乙醚沉淀, 收集沉淀, 晾干。
将沉淀溶解到 600ml甲苯中, 氮气保护下, 蒸馏出 190ml甲苯。 向回流 液中加入 6.0mmol无水吡啶和 6.0mmol亚硫酰氯, 回流 10小时后搅拌过夜。 反应液真空浓缩后加入 550ml冷乙醚沉淀, 沉淀过滤后加入 380ml二氯甲烷 溶解,先后加入 1.7克 NAC和 1.4ml三乙胺, 室温搅拌过夜。反应液过滤后, 将滤液减压浓缩后加 350ml异丙醇, 加热至溶液透明, 倒入烧杯中搅拌冷却 析晶。 滤出晶体, 用异丙醇洗漆两遍, 凉干。
产物 1H NMR (DMSO-d6) : δ 3.21(s,3H,-OCH3), δ 3.5(br
m,-O-CHrCH2-O-), δ 4.35(t,2H, -O-CH2-CH O2CNH-), δ
2.86(t,2H,-O2CNH-CH2-CHrCO-)5 δ 4.71 (m, 1H,-C0S-CH2-CH-), δ 2.0 (s,3H, - HCO ¾:)。 证明所得化合物正确。 实施例 13、 制备 HO-PEG5K-S- (CH2)2-CO-NAC (式 II中 R为 H;
R2为氢原子; Y为 -S-; m为 2; n为 113 )
a) C6H5-CH2-O-PEG5K-S- (CH2)2-CO-NAC的制备
参照实施例 6制备 mPEG1{)K-S-(CH2)rCO-NAC的方法, 以 5克
C6H5-CH2-O- PEG5K-OH和 3.0mmol 3-巯基丙酸叔丁酯为主要原料制备
C6H5-CH2-O-PEG5K-S-(C¾)2- CO-NACo
b) HO-PEG5K-S-(CH2)2-CO-NAC的制备
将上步制备的 C6H5-CH2-O-PEG5K-S- (CH2)2-CO-NAC溶解 50ml二氧杂环 乙烷中, 加入 2克 10%的钯碳化物, 通入氢气震荡过夜。 溶液过滤, 减压浓 缩后加 50ml异丙醇,加热至溶液透明,倒入烧杯中搅拌冷却析晶。滤出晶体, 用异丙醇洗涤两遍, 凉干, 得到 HO-PEG5K-S- (CH2)2-CO-NAC。
产物1 H MR (DMSO-d6) : δ 3.5(br 111,-0-¾-¾-0-), δ 2.7(m,4H, -O-CH2-CH2-S-CI32-CH2-CO-)5 δ 3.0(t,2H5-S-CH2-CHRCO-)5 δ 4.71(m, 1H, -CO-S-CH2-CH-), δ 2.0(s,3H,-NHCOC )。 证明所得化合物正确。 实施例 14、 制备 CH2=CH-CO-O-PEG1()K-S-(CH2)RCO-NAC (式 II中 R 为 CH2=CH-CO; 、 R2为氢原子; Y为 -S-; m为 2; n为 227 )
a) C6H5-CH2-O-PEG10K-S- (CH2)2-CO-NAC的制备
参照实施例 6制备 mPEG1QK-S-(CH2)2-CO-NAC的方法, 以 10克
C6H5-CH2-O-PEGIOK-OH为原料制备 C6H5-CHRO-PEG1()K-S- (CH2)2-CO-NAC。
b) HO-PEGIOK-S- (CH2)2-CO-NAC的制备
将上步制备的样品 C6H5-CH2-0-PEG -S- (CH2)2-CO-NAC溶解 50ml二 氧杂环乙烷中, 加入 2克 10%的钯碳化物, 通入氢气震荡过夜。 溶液过滤, 减压浓缩后用 200ml冷乙醚沉淀, 收集沉淀, 晾干, 得到 HO-PEG1QK-S- (CH2)RCO-NAC。
c) CH2=CH-CO-PEG10K-S- (CH2)2-CO-NAC的制备
将上步制备的样品 HO-PEG1QK-S- (CH2)2-CO-NAC溶解到 45ml二氯甲烷 中, 先后加入三乙胺 1.5mmol, 丙烯酰氯 1.5mmol, 氮气保护下反应过夜。溶 液过滤, 减压浓缩后加 95ml异丙醇, 加热至溶液透明, 倒入烧杯中搅拌冷却 析晶。 滤出晶体, 用异丙醇洗涤两遍, 凉干, 得到 CH2=CH-CO-PEG1()K-S- (CH2)2-CO-NAC。
产物 1H NMR (DMSO-d6) : δ 5.81-6.45(m,3H,CH2=CH-CO-), δ 4,21(s,2H,
CH2=CH-COO-CH2-CH2- O-), δ 3.5(brm, -O-CH2-CH2-O-), δ 2.7(m,4H,
-O-CH2-CH2-S-CH2-CH2-CO-), δ 3.0(t,2H,-S-CH2- CH2-CO-), δ 4.7 l(m, 1H, -CO-S-CH2-CH-), δ 2.0(s,3H,- NHCOQ¾)。 证明所得化合物正确。 实施例 15、 制备 CH2=CH-CH2-O-PEG20K-S-(CH2)2-CO-NAC (式 II中 R 为 CH2=€H-CH2 ; 、 R2为氢原子; Y为 -S-; m为 2; n为 454)
a) C6H5-CH2-O-PEG2OK-S- (CH2)2-COOH的制备
参照实施例 6制备 mPEG1()K-S-(C¾)2-COOH的方法, 以 20克
C6H5-CH2-O-PEG2OK-OH为原料制备 C6H5-CH2-0-PEG富 -S- (CH2)RCOOH。
b) HO-PEG20K-S- (CH2)2-COOH的制备
将上步制备的样品 C6H5-CH2-O-PEG2QK-S- (CH2)2-CO-NAC溶解 95ml二 氧杂环乙垸中, 加入 2.5克 10%的钯碳化物, 通入氢气震荡过夜。 溶液过滤, 减压浓缩后用冷乙醚沉淀, 收集沉淀, 晾干, 得到 HO-PEG2QK-S- (CH2)2-COOH。
c) CH2=CH-CH2-O-PEG2K-S-(CH2)rCOOH的制备
将上步制备的样品 HO-PEG2()K-S- (CH2)2-COOH溶解到 350ml甲苯中, 氮气保护下, 蒸馏出 110ml甲苯。 溶液中加入含有 2.1mmol乙醇钠的乙醇溶 液 3ml, 反应加热回流至蒸馏出约 6ml溶液。 反应液冷却到室温, 加入烯丙 基氯 2.0mmol,氮气保护下反应过夜。溶液用稀酸调节 pH至中性,溶液过滤, 减压浓缩后溶解到 100ml稀盐酸中,搅拌 2小时。随后用二氯甲烷抽提三次, 每次 100ml。 合并抽提液, 用硫酸钠干燥。 溶液过滤后, 真空减压浓缩至干, 得到 CH2=CH-C¾-O-PEG2()K-S-(CH2)2-COOH。
d) CH2=:CH-CH2-O-PEG2OK-S-(CH2)2-CO-NAC的制备
将上步制备的 CH2=CH-CH2-O-PEG2()K-S-(CH2)2-COOH溶解到 360ml甲 苯中, 氮气保护下, 蒸馏出 120ml甲苯。 向回流液中加入 3.0mmol无水吡啶 和 3.0mmol亚硫酰氯, 回流 6小时后搅拌过夜。 将反应液减压抽真空, 浓缩 后加入 360ml冷乙醚沉淀。 收集沉淀, 加入 180ml二氯甲烷溶解, 先后加入 1.1克 NAC和 0.8ml三乙胺, 室温搅拌过夜。 反应液过滤后, 将滤液浓缩至 干。 加入 165ml异丙醇, 加热至溶液透明, 倒入烧杯中搅拌冷却析晶。 滤出 晶体, 用异丙醇洗涤两遍, 凉干, 得到
CH2=CH-CH2-O-PEG皿 -S-(CH2)2-CO-NAC。
产物1 H MR (DMSO-d6) : δ 5.13(dd,lH,CHaHb=CHc-CH2-O-)5 δ 5.24 (dd, lH,CHaHb=CHc-CH2-CO-), δ 5.24 (dd, lH,CHaHb=CHc-CH2-CO-)5 δ
Figure imgf000017_0001
δ 3.5(br m, -O-CH2- CHrO-)5 δ 2.7(m,4H, -O-CH2-CH2-S-CH2-CH2-CO-), δ 3.0(t,2H,-S-CH2- CHrCO-), δ 4.7 l(m, 1H, -CO-S-CH2-CH-), δ 2.0(s,3H,- NHCOC )。 证明所得化合物正确。 实施例 16、 制备 HO-PEG1QK-NHCO-(CH2)4-CO-NAC (式 II中 R为 H; 、 R2为氢原子; Y为 -NHCO-; m为 4; n为 227)
a) C6H5-CH2-O-PEG10K-O-SO2-CH3的合成
取 10g的 C6H5-C¾-O-PEG1()K-OH溶于 350ml氯仿中, 氮气保护下, 加 热共沸蒸馏至剩余体积约为 200ml时停止加热, 溶液冷却到室温。 溶液中先 后加入无水三乙基氨 1.5mmol和无水甲磺酰氯 1.5mmol混合均匀, 在氮气保 护下, 室温搅拌过夜, 加入无水乙醇终止反应。 混合溶液过滤, 真空减压浓 縮后加入 300ml乙醚进行沉淀。 沉淀过滤后, 得到
C6H5-CH2-O-PEG10K-O-SO2-CH3, 真空干燥保存。
b)C6H5-CH2-O-PEG10K-NH2的合成
将上步制备的 C6H5-CH2-O-PEG1GK-O-SORCH3用 60ml蒸馏水溶解, 随 后倒入含有 20克氯化铵的 200mr浓氨水中,室温搅拌过夜。溶液用二氯甲垸 提取三次, 每次 220ml。 合并提取液用硫酸钠干燥, 过滤。 溶液减压浓缩后 加入 300ml冷乙醚沉淀, 收集沉淀, 得到 C6H5-CH2-O-PEG1QK-NH2, 真空干 燥保存。
C) C6H5-CH2-O-PEG10K- HCO-(CH2)4-CO-NAC的合成
将上步制备的 C6H5-C¾-O-PEG1()K-NH2溶于 90ml二氯甲烷中,加入己二 酰氯 lO.Ommol和 1,4ml三乙胺, 室温下搅拌 2小时, 反应液过滤, 真空浓缩 后用 300ml冷乙醚沉淀。收集沉淀, 加入 100ml二氯甲垸溶解, 先后加入 2.0 克 NAC和 1.5ml三乙胺, 室温搅拌过夜。 反应液过滤、浓缩后用 300ml冷乙 醚沉淀。 收集沉淀, 得到 C6H5-CH2-O-PEG1QK-NHCO-(CH2)4-CO-NAC, 真空 干燥保存。
d) HO-PEG10K- HCO-(CH2)4-CO-NAC的合成
将上步制备的样品 C6H5-CH2-0-PEG1()K-NHCO-(CH2)4-CO-NAC溶解 110ml二氧杂环乙垸中, 加入 3.5克 10%的钯碳化物, 通入氢气震荡过夜。溶 液过滤, 减压浓缩后加 150ml异丙醇, 加热至溶液透明, 溶液倒入烧杯中搅 拌冷却析晶。 滤出晶体, 用异丙醇洗涤两遍, 凉干, 得到
HO-PEG皿 - HCO-(CH2)4-CO-NAC。
产物 1H NMR (DMSO-d6) : δ 3.5(br m, -O-CH2- CHRO-)5 δ
2.19(t,2H,-丽 CO-CH2-CH2-CH2-C¾-CO-), δ
1.78(t,2H,-NHCO-CH2-CH2-CH2-CH2-CO-)5 δ
2.55(t,2H,-NHCO-CH2-CH2-CH2-CH2-CO-), δ 4.7 l(m, 1H, -CO-S-CH2-CH-), δ 2.0(s,3H,-NHCOC )。 证明所得化合物正确。 实施例 17、制备 (CH3)3C-O-CONH-CH2-C¾-O-PEG2K-S-(CH2)RCO-NAC
(式 II中 R为 (CH3)3C-O-CONH-CH2-CH2; R2为氢原子; Y为 -S-; m为 2; n为 454)
a) C6H5-CH2-O-PEG2OK-S- (CH2)2-COOH的制备
参照实施例 6制备 mPEG1()K-S-(CH2)2-COOH的方法, 以 20克
C6H5-CH2-O-PEG20K-OH为原料制备 C6H5-CH2-O-PEG20K-S- (CH2)2-COOH b) HO-PEG2QK-S- (CH2)2-COOCH3的制备
将上步制备的样品 C6H5-CH2-O-PEG2()K-S- (CH2)2-COOH溶解 100ml二氧 杂环乙烷中, 加入 2.5克 10%的钯碳化物, 通入氢气震荡过夜。 溶液过滤, 减压浓缩后用冷乙醚沉淀,沉淀过滤后溶解到 200ml的甲醇溶液中,滴加 lml 浓硫酸后搅拌反应 1.5小时。 溶液用 1N氢氧化钠调节 pH到 7左右, 溶液过 滤, 减压浓缩后用冷乙醚沉淀, 收集沉淀, 得到 HO-PEG2()K-S- (CH2)RCOOCH3, 真空干燥保存。
c) NH2-PEG20K-S- (CH2)2-COOH的制备
将上步制备的样品 HO-PEG2()K-S- (CH2)2-COOCH3溶解到 150m 1氯仿中, 先后加入无水三乙基氨 1.5mmol和无水甲磺酰氯 1.5mmol混合均匀, 在氮气 保护下, 室温搅拌过夜, 加入无水乙醇终止反应。 溶液过滤, 真空减压浓縮 后加入 300ml乙醚进行沉淀。 沉淀过滤后用 150ml蒸馏水溶解, 随后倒入含 有 25克氯化铵的 250ml浓氨水中,室温搅拌过夜。溶液用二氯甲垸提取三次, 每次 200ml。 合并提取液用硫酸钠干燥。 溶液过滤, 减压浓縮后加入 600ml 冷乙醚沉淀, 收集沉淀, 得到 H2-PEG2QK-S- (CH2)2-COOH, 真空干燥保存。
d) (CH3)3C-O-CONH-CH2-CH2-O-PEG -S-(CH2)2-COOH
将上步制备的样品 NH2-PEG20K-S- (CH2)2-COOH溶解到 100m 1二氯甲烷 中, 先后加入无水三乙氨 3.0mmol和碳酸二叔丁酯 1.2mmol混合均匀, 氮气 保护下, 室温反应过夜。 溶液减压浓缩后溶解到 200ml蒸馏水中, 用盐酸调 节 pH至 3左右。 溶液用二氯甲垸抽提三次, 每次 200ml。 合并提取液用硫酸 钠干燥。 溶液过滤, 减压浓缩后加入 600ml冷乙醚沉淀, 收集沉淀, 得到 (CH3)3C-O-CO H-CH2-CH2-O-PEG20K-S-(CH2)2-COOH, 真空干燥保存。
e) (CH3)3C-O-CONH-CH2-C¾-O-PEG皿 -S-(C¾)2-CO-NAC
将上步制备的样品
(CH3)3C-O-CONH-CH2-CH2-O-PEG20K-S-(CH2)2-COOH溶解到 400ml甲苯中, 氮气保护下, 蒸馏出 160ml甲苯。 向回流液中加入 3.0mmol无水吡啶和
3.0mmol亚硫酰氯, 回流 6小时后搅拌过夜。 将反应液减压抽真空, 浓缩后 加入 400ml冷乙醚沉淀。 收集沉淀, 加入 180ml二氯甲烷溶解, 先后加入 1.1 克 NAC和 0.8ml三乙胺, 室温搅拌过夜。 反应液过滤后, 将滤液浓缩至干。 加入 200ml异丙醇, 加热至溶液透明, 倒入烧杯中搅拌冷却析晶。 滤出晶体, 用异丙醇洗涤两遍, 凉干, 得到
(CH3)3C-O-CONH-CH2-CHrO-PEG20K-S-(CH2)2-CO-NAC。
产物 1H MR (DMSO-d6) : δ 1.36(s59H, (Cg3)3C-O-CO H-CH2-CH2-), δ 3.5(br m,-O-CH2-CHb-O-), δ 2.7(m,4H, -O-CHb-Ci^-S-CEb-CHt-CO-), δ
3.0(t,2H5 -O-CH2-CH2-S-CH2-CH2-CO-)5 δ 4.7 l(m, 1H, -CO-S-CH2-CH-), δ 2.0(s,3H,-NHCOC )。 证明所得化合物正确。 实施例 18、 制备式 III中 (!^为 ^、 n2为 454, !^为^ m2为 5 ) 的化 合物, 即
CH3— 0— (CH2— CH2— 0)i is— CO— NH
(CH2)4
CH A
CH3—0—(CH2—CH2— 0)454— (CH2)5— CO— NH CO— NAC 取 20.0克按照实施例 5方法合成的 mPEG2Qk-(CH2)5-CO-NAC溶解到含有 lOmmol赖氨酸的 80ml水溶液中, 向内加入 0.25mol pHl l.6的磷酸氢二钠- 氢氧化钠缓冲液 20ml, 室温反应 1小时。 溶液用 1N盐酸调节 pH到 3.0, 随 后用二氯甲烷抽提三次, 每次 100ml。 合并提取液, 先后用 30ml 1N盐酸、 30ml蒸馏水反抽提, 溶液用硫酸钠干燥。 溶液过滤、 减压浓缩后加入 600ml 冷乙醚沉淀, 收集沉淀、 真空干燥保存。
将沉淀溶于 180ml二氯甲烷中, 先后加入 6克按照实施例 1合成的 mPEGsk-CO-NAC, 0.25ml三乙胺混合均匀, 室温反应过夜。 溶液中加入过量 乙胺终止反应, 减压浓縮后用少量蒸馏水溶解。 产物用 Sephadex-200分子筛 层析( Φ 2.6cm X 100cm),缓冲液为 20mmol/L pH7.0磷酸钠(含有 200 mmol/L NaCl) , 收集双链 PEG水溶液 30ml。
用盐酸调节双链 PEG水溶液 pH至 3.0,溶液用二氯甲烷提取三次,每次 lOOmL合并提取液用硫酸钠干燥。溶液过滤, 减压浓縮后加入 300ml冷乙醚 沉淀。 收集沉淀溶解到 400ml甲苯中, 氮气保护下, 蒸馏出 100ml甲苯。 向 回流液中加入 6.0mmol无水吡啶和 6.0mmol亚硫酰氯,回流 10小时后搅拌过 夜。 反应液真空浓缩后加入 500ml冷乙醚沉淀, 沉淀过滤后加入 380ml二氯 甲烷溶解, 先后加入 1.7克 NAC和 1.4ml三乙胺, 室温搅拌过夜。 反应液过 滤后, 将滤液浓缩至干。 加入 290ml异丙醇, 加热至溶液透明, 倒入烧杯中 搅拌冷却析晶。 滤出晶体, 用异丙醇洗涤两遍, 凉干。 产物用水溶解后, 经 高效液项色谱 -质谱(液质联机)分析, 分子量 25kD占 95%以上。 实施例 19、 mPEG20k-(CH2)2-CO-NAC修饰干扰素 ct -2a。
取 3ml ( 1.2mg)干扰素加入 6.0mg实施例 3所制备得到的
mPEG20k-(CH2)2-CO-NAC混匀, 加入 0.75ml硼酸钠 (pH9.2) 启动反应, 4 °C反应 2小时。加入 2M甘氨酸 0.1ml, 室温作用 10分钟后加入 0.5ml 1M乙 酸钠(pH5.0) 。 反应后样品进行透析, 透析液为 20mM pH5.0乙酸钠。 透析 后样品直接上 Sepharose-CM, 流速为 1.5ml/min。淋洗后分别用 100mM NaCl、 200mM NaCl、 400mM NaCl的 20mM乙酸钠 pH4.5溶液洗脱。
收集修饰、 纯化后的样品用 SDS-PAGE进行分析, 结果如图 1所示, 图 1中道 M为蛋白质标准品, 道 1为修饰后样品, 道 2为离子交换后淋洗液, 道 3、 4为 lOOmM洗脱样品, 道 5为 200mM洗脱样品, 道 6、 7为 400mM 洗脱样品。其中单 PEG干扰素表观分子量约为 60kd,而干扰素分子量为 15kd。 结果表明, PEG-NAC可以在比较温和的条件下进行干扰素的修饰,而且产物 稳定, 易于分离纯化。 实施例 20、 mPEG5k-(CH2)2-CO-NAC修饰牛血红蛋白。
按照实施例 3的过程制备 mPEG5k-(CH2)2-CO-NAC。
取 3ml ( 60mg)血红蛋白加入 70mg mPEG5k-(CH2)2-CO-NAC混勾,加入
0.75ml硼酸钠 (pH9.0)启动反应, 10°C反应 2小时。加入 1M甘氨酸 0.2ml, 室温作用 10分钟终止反应。反应后样品用 5kD膜进行超滤,收集超滤后的样 品进行 SDS-PAGE电泳, 电泳图如图 2所示, 图中道 1为血红蛋白, 道 2为 修饰后血红蛋白,道 3为蛋白质标准品。其中,血红蛋白亚基的分子量约 15kD, PEG单修饰血红蛋白亚基表观分子量约为 26kD。 结果表明, PEG-NAC可以 在比较温和的条件下进行血红蛋白的修饰。 工业应用
本发明所提供的 N-乙酰基半胱氨酸衍生物主要用于修饰蛋白质或多肽 中的氨基, 修饰产物稳定, 有利于蛋白质或多肽产品的长期保存, 可以作为 蛋白质或多肽的修饰剂。
本发明的功能化 PEG (N-乙酰基半胱氨酸衍生物) 的优点可以体现在以 下几个方面: 其一, 主要修饰蛋白质或多肽中的氨基, 从而具有较高的选择 性和专一性; 其二, 具有较高的反应活性, 可以在温和的条件下与蛋白质或 多肽发生修饰反应, 修饰过程操作简便; 其三, 反应后生成的主要副产物是 NAC, 没有任何毒副作用; 其四, PEG—般与多肽间形成稳定的连接物, 有 利于产品的长期保存, 可以广泛用于蛋白质、 多肽等药物的修饰。

Claims

权利要求
1、 具有式 I结构的 N-乙酰基半胱氨酸衍生物,
Figure imgf000023_0001
(式 I ) 其中, POLY为分子量范围在 1000Da〜500,000Da之间的聚烷基二醇, 及其二元共聚物、 三元共聚物、 混合共聚物, 包括聚乙二醇、 聚丙二醇、 以 及乙二醇丙二醇的二元共聚物。
2、 根据权利要求 1所述的 N-乙酰基半胱氨酸衍生物, 其特征在于: 所 述 N-乙酰基半胱氨酸衍生物结构式为式 II,
Figure imgf000023_0002
其中, n为 25-4000之间的正整数; R为氢、 碳原子数为 1一 10的烷基、 苄基、 CH2=CH2— CH2—、 CH2=CH— CO—、 或 (CH3)3— O—CONH— CH2— CH2—; Y为一 Ο—、一 S―、一 HCO—、一CO丽一、一COO—、一 OCO—、― NHCO—, 或一 02C H—; 为 H或甲基; R2为 H或甲基; m为 0-5之间 的正整数。
3、 根据权利要求 2所述的 N-乙酰基半胱氨酸衍生物, 其特征在于: 所 述 n为 113-1500之间的正整数。
4、 根据权利要求 3所述的 N-乙酰基半胱氨酸衍生物, 其特征在于: 所 述 为11; R2为 H。
5、 根据权利要求 4所述的 N-乙酰基半胱氨酸衍生物, 其特征在于: 所 述 R为甲基。
6、 根据权利要求 5所述的 N-乙酰基半胱氨酸衍生物, 其特征在于: 所 述 Y为一 O—。
7、 根据权利要求 2-6任一所述的 N-乙酰基半胱氨酸衍生物, 其特征在 于: 所述 m为 1-5之间的正整数。
8、 根据权利要求 7所述的 N-乙酰基半胱氨酸衍生物, 其特征在于: 所 述 m为 2。
9、 根据权利要求 1所述的 N-乙酰基半胱氨酸衍生物, 其特征在于: 所 述 N-乙酰基半胱氨酸衍生物结构式为式 III,
Figure imgf000024_0001
其中, ni、 n2分别为 25-4000之间的正整数。
10、 根据权利要求 9所述的 N-乙酰基半胱氨酸衍生物, 其特征在于: 所 述 ηι、 n2分别为 113-1500之间的正整数; mi、 m2分别为 0-5的正整数。
11、 ί艮据权利要求 10所述的 Ν-乙酰基半胱氨酸衍生物, 其特征在于: 所述 1¾、 m2分别为 1-5之间的正整数。
12、 根据权利要求 11所述的 N-乙酰基半胱氨酸衍生物, 其特征在于: 所述 m】、 m2分别为 2。
13、权利要求 1一 12任一所述的 N-乙酰基半胱氨酸衍生物在修饰蛋白质 和多肽上的应用。
PCT/CN2006/000422 2005-03-23 2006-03-20 Dérivés de la n-acétylcystéine et utilisation de ceux-ci WO2006099794A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200510056454.1 2005-03-23
CNB2005100564541A CN100381420C (zh) 2005-03-23 2005-03-23 一种n-乙酰基半胱氨酸衍生物与应用

Publications (1)

Publication Number Publication Date
WO2006099794A1 true WO2006099794A1 (fr) 2006-09-28

Family

ID=37014720

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2006/000422 WO2006099794A1 (fr) 2005-03-23 2006-03-20 Dérivés de la n-acétylcystéine et utilisation de ceux-ci

Country Status (2)

Country Link
CN (1) CN100381420C (zh)
WO (1) WO2006099794A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8653131B2 (en) 2008-08-22 2014-02-18 Baxter Healthcare S.A. Polymeric benzyl carbonate-derivatives

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103204789B (zh) * 2012-01-16 2014-09-24 中国科学院化学研究所 一种半胱氨酸衍生物、非离子型聚半胱氨酸及其制备方法
CN113527657B (zh) * 2021-07-16 2023-05-30 武汉纳乐吉生命科技有限公司 一种聚乙二醇修饰的胱氨酰胺衍生物、其制备及应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990012874A2 (en) * 1989-04-21 1990-11-01 Genetics Institute, Inc. Cysteine added variants of polypeptides and chemical modifications thereof
WO1992016221A1 (en) * 1991-03-15 1992-10-01 Synergen, Inc. Pegylation of polypeptides

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2903899A (en) * 1998-03-12 1999-09-27 Shearwater Polymers Inc. Poly(ethylene glycol) derivatives with proximal reactive groups
CN100372870C (zh) * 2003-03-21 2008-03-05 中国人民解放军军事医学科学院毒物药物研究所 胸腺素α1的聚乙二醇化衍生物

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1990012874A2 (en) * 1989-04-21 1990-11-01 Genetics Institute, Inc. Cysteine added variants of polypeptides and chemical modifications thereof
WO1992016221A1 (en) * 1991-03-15 1992-10-01 Synergen, Inc. Pegylation of polypeptides

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8653131B2 (en) 2008-08-22 2014-02-18 Baxter Healthcare S.A. Polymeric benzyl carbonate-derivatives
US8962549B2 (en) 2008-08-22 2015-02-24 Baxter International Inc. Polymeric benzyl carbonate-derivatives

Also Published As

Publication number Publication date
CN100381420C (zh) 2008-04-16
CN1837191A (zh) 2006-09-27

Similar Documents

Publication Publication Date Title
JP4877225B2 (ja) ポリオキシアルキレン誘導体
JP4758608B2 (ja) 分枝ポリマーおよびそれらの結合体
ES2202409T3 (es) Preparacion de polieter con contenido en acido carboxilico y sustancias biologicamente activas derivadas.
US9364553B2 (en) Synergistic biomolecule-polymer conjugates
JP4612919B2 (ja) 非抗原性分枝ポリマーコンジュゲート
JP4250202B2 (ja) 多糖、ポリペプチド(タンパク質)および表面を変性するための求電子性ポリエチレンオキサイド類
JP6138052B2 (ja) 水溶性脂肪酸誘導体をタンパク質に抱合させるための材料および方法
KR101134983B1 (ko) 단백질 및 펩티드로의 접합을 위한 4개의 분지된덴드리머-폴리에틸렌글리콜
US20090285780A1 (en) Peg linker compounds and biologically active conjugates thereof
JPH10502401A (ja) 非抗原性アミン誘導ポリマーおよびポリマー複合体
WO2002009766A1 (en) Highly reactive branched polymer and proteins or peptides conjugated with the polymer
JPH06172201A (ja) 生物学的活性タンパク質性組成物
JP4152187B2 (ja) 分岐型ポリアルキレングリコール類
JPH04501121A (ja) 生物学的に活性な新規薬剤・ポリマー誘導体およびその製造方法
JP2005514505A (ja) マルチアーム樹枝状および機能的なpegの調製法および用途
WO2006099794A1 (fr) Dérivés de la n-acétylcystéine et utilisation de ceux-ci
US20030103934A1 (en) Drugs having long-term retention in target tissue
US20030153694A1 (en) Novel monofunctional polyethylene glycol aldehydes
TW200916116A (en) Protein-polymer conjugates
CN106220843A (zh) 一种含有邻苯二醌类官能团的聚乙二醇修饰剂及其制备方法和用途
WO2005061701A1 (ja) タンパク質のポリマー複合体の製造方法
CN101580585A (zh) 组氨酸选择性水溶性聚合物衍生物
KR100480432B1 (ko) G-csf와 폴리에틸렌글리콜 유도체의 배합체
KR100480423B1 (ko) 에리트로포이에틴과 폴리에틸렌글리콜 유도체의 배합체
US20070141021A1 (en) Methylmaleimidyl polymer derivatives

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

WWW Wipo information: withdrawn in national office

Country of ref document: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06722074

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 6722074

Country of ref document: EP