WO2006098372A1 - 高周波インターフェース素子 - Google Patents

高周波インターフェース素子 Download PDF

Info

Publication number
WO2006098372A1
WO2006098372A1 PCT/JP2006/305137 JP2006305137W WO2006098372A1 WO 2006098372 A1 WO2006098372 A1 WO 2006098372A1 JP 2006305137 W JP2006305137 W JP 2006305137W WO 2006098372 A1 WO2006098372 A1 WO 2006098372A1
Authority
WO
WIPO (PCT)
Prior art keywords
view
magnetic field
magnetic
frequency interface
detection unit
Prior art date
Application number
PCT/JP2006/305137
Other languages
English (en)
French (fr)
Inventor
Hirofumi Imatani
Koji Yamaguchi
Hideki Takamura
Yuichi Kariya
Nobukiyo Kobayashi
Kiwamu Shirakawa
Original Assignee
Omron Corporation
The Research Institute For Electric And Magnetic Materials
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Omron Corporation, The Research Institute For Electric And Magnetic Materials filed Critical Omron Corporation
Publication of WO2006098372A1 publication Critical patent/WO2006098372A1/ja

Links

Classifications

    • H04B5/24
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F5/00Coils
    • H01F5/003Printed circuit coils
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/20Electromagnets; Actuators including electromagnets without armatures

Definitions

  • the present invention relates to an interface element that transmits a signal by magnetic means while maintaining electrical insulation, and more particularly to a high-frequency interface element.
  • Patent Document 1 a magnetically coupled isolator has been proposed to remove radiation noise (Patent Document 1). That is, as shown in FIG. 46, the magnetically coupled isolator is formed between a magnetoresistive element 2 (MR element or GMR element) that is a magnetic sensing unit stacked on a base 1 and a coil 4 that is a magnetism generating means. A shielding film 3 is disposed on the surface.
  • Reference numeral 5 denotes an insulator.
  • Patent Document 1 Special Table 2001-521160
  • the shielding film 3 is disposed between the magnetoresistive element 2 and the coil 4, the shielding effect of radiation noise such as an electric field is great. loss Loss is also great. For this reason, it is necessary to generate a magnetic field obtained by converting an input signal into an impulse signal in the input side circuit, and it is necessary to provide an extra circuit in the input side circuit.
  • an object of the present invention is to provide a high-frequency interface element with a small loss of a magnetic field when removing an electric field.
  • the high-frequency interface element detects a magnetic field generated by the magnetic field generation unit that converts the input signal that solves the above problem into a magnetic field that is a medium that transmits the output signal to the output side.
  • An electrically isolated high-frequency interface element comprising a magnetic detection unit configured to dispose at least a part of the magnetic field generation unit between the magnetic detection unit and an absorption film facing the magnetic detection unit It is as.
  • the electric field is absorbed by the absorption film disposed so as to face the magnetic detection unit with the magnetic field generation unit interposed therebetween, but the loss of the magnetic field is small. For this reason, the mixing of the electric field and the magnetic field is reduced, and there is no need to provide an extra circuit for the input side circuit and the output side circuit.
  • the absorption film can absorb not only an electric field but also other radiation noise.
  • the magnetic field generator may be a two-dimensional spiral coil.
  • a thin high-frequency interface element can be obtained.
  • the magnetic field generation unit is a coil cage formed in a three-dimensional spiral shape.
  • a magnetic detection unit is arranged inside the coil, and the magnetic field generation unit is arranged outside the coil.
  • An absorption film facing the detection part may be arranged.
  • a large magnetic field can be obtained with a small current, the SN ratio can be improved, and an output waveform with little distortion can be obtained.
  • the magnetic detection unit may be formed of at least one magnetoresistive element. Further, a soft magnetic material may be disposed on at least one side of the magnetoresistive element.
  • the magnetic efficiency is improved and the sensitivity is improved.
  • soft magnetic bodies arranged on both sides of the magnetoresistive element may be arranged side by side, and the adjacent soft magnetic bodies may be connected to each other by a resistive element.
  • a bridge circuit is formed by connecting adjacent soft magnetic bodies with a resistance element, and sensitivity is further improved.
  • the magnetoresistive element may be formed using a thin film magnetoresistive element described in Japanese Patent No. 003466470 in which soft magnetic thin films are arranged on both sides of a giant magnetoresistive thin film. According to this embodiment, by combining the GMR thin film (or MR thin film) with the soft magnetic thin film, the magnetic field sensitivity is further improved, and the magnetic field can be detected without generating a large magnetic field at the magnetic field generation unit. be able to.
  • the distance between the opposing surfaces of the magnetic field generation unit and the absorption film may be shorter than the distance between the opposing surfaces of the magnetic field generation unit and the magnetic detection unit.
  • the electric field is absorbed more by the absorption film, and the signal transmission efficiency is increased.
  • an absorption film having at least the same plane area as that of the magnetic detection unit may be disposed at a position facing the magnetic detection unit.
  • the electric field can be removed with the minimum necessary absorption film covering the magnetic detection unit.
  • At least one discontinuous portion may be provided on at least a surface of the absorption film covering the magnetic field generating portion.
  • the discontinuous portion prevents the generation of eddy current, and a V and high frequency interface element with low transmission loss can be obtained.
  • FIG. 1 is an exploded perspective view showing a first embodiment of a high-frequency interface element according to the present invention.
  • FIG. 2A and FIG. 2B are a perspective view and a plan view illustrating an appearance of the first embodiment shown in FIG.
  • FIG. 3A and FIG. 3B are a perspective view and a plan view showing the main part of the first embodiment shown in FIG. 4A and FIG. 4B are a perspective view and a plan view showing an application example of the first embodiment shown in FIG.
  • FIG. 5A and FIG. 5B are a perspective view and a plan view showing another application example of the first embodiment shown in FIG.
  • 6A and 6B are a perspective view and a plan view showing another application example of the first embodiment shown in FIG.
  • FIG. 7A and FIG. 7B are a plan view and a front sectional view showing a manufacturing process of the high frequency interface element shown in FIG.
  • FIGS. 8A to 8C are a plan view, a front sectional view, and a side sectional view showing the manufacturing process of the high-frequency interface element following FIG.
  • FIGS. 9A to 9C are a plan view, a front sectional view, and a side sectional view showing a manufacturing process subsequent to FIG.
  • FIG. 10A to FIG. 10C are a plan view, a front sectional view, and a side sectional view showing a manufacturing process following FIG. 9.
  • FIGS. 11A to 11C are a plan view, a front sectional view, and a side sectional view showing the manufacturing process following FIG.
  • FIGS. 12A to 12C are a plan view, a front sectional view, and a side sectional view showing a manufacturing process subsequent to FIG.
  • FIGS. 13A to 13D are a plan view, a front sectional view, and a side sectional view showing a manufacturing process subsequent to FIG.
  • FIGS. 14A to 14C are a plan view, a front sectional view, and a side sectional view showing the manufacturing process subsequent to FIG.
  • FIGS. 15A to 15C are a plan view, a front sectional view, and a side sectional view showing the manufacturing process following FIG.
  • FIGS. 16A to 16C are a plan view, a front sectional view, and a side sectional view showing a manufacturing process subsequent to FIG.
  • FIGS. 17A to 17C are a plan view, a front sectional view, and a side sectional view showing the manufacturing process following FIG. 18]
  • FIGS. 18A to 18C are a plan view, a front sectional view, and a side sectional view showing a manufacturing process subsequent to FIG.
  • FIGS. 19A to 19C are a plan view, a front sectional view, and a side sectional view showing the manufacturing process subsequent to FIG.
  • FIG. 20A and FIG. 20B are schematic front sectional views and schematic views showing the operation principle
  • FIG. 20C is a schematic front sectional view showing a modification of the first embodiment.
  • FIG. 21A and FIG. 21B are schematic front sectional views for illustrating the principle of operation based on the difference in the distance between the facing surfaces of the coil and the absorbing film.
  • FIG. 22A is a plan view showing a case where a discontinuous portion is provided in the absorption film
  • FIG. 22B and FIG. 22C are schematic cross-sectional views for explaining the operation principle depending on the presence or absence of the discontinuous portion.
  • FIG. 23 is an exploded perspective view showing a second embodiment of the high-frequency interface device according to the present invention.
  • FIG. 24A and FIG. 24B are a perspective view and a plan view illustrating the appearance of the second embodiment shown in FIG.
  • FIG. 25A and FIG. 25B are a perspective view and a plan view showing the main part of the first embodiment shown in FIG.
  • 26A to 26C are a plan view, a front sectional view, and a side sectional view showing a manufacturing process of the high-frequency interface device shown in FIG. 23.
  • FIG. 27A to FIG. 27C are a plan view, a front sectional view, and a side sectional view showing a manufacturing process of the high-frequency interface element following FIG.
  • 28A to 28C are a plan view, a front sectional view, and a side sectional view showing a manufacturing process subsequent to FIG. 27.
  • 29A to 29C are a plan view, a front sectional view, and a side sectional view showing a manufacturing process subsequent to FIG. 28.
  • 30A to 30C are a plan view, a front sectional view, and a side sectional view showing a manufacturing process subsequent to FIG. 29.
  • FIG. 31A to FIG. 31C are a plan view, a front sectional view, and a side sectional view showing a manufacturing process following FIG. 30.
  • 32A to 32C are a plan view, a front sectional view, and a side sectional view showing a manufacturing process subsequent to FIG. 31.
  • FIG. 33A to FIG. 33C are a plan view, a front sectional view, and a side sectional view showing a manufacturing process subsequent to FIG. 32.
  • 34A to 34C are a plan view, a front sectional view, and a side sectional view showing a manufacturing process subsequent to FIG. 33.
  • 35A to 35C are a plan view, a front sectional view, and a side sectional view showing a manufacturing process subsequent to FIG. 34.
  • 36A to 36C are a plan view, a front sectional view, and a side sectional view showing a manufacturing process subsequent to FIG. 35.
  • FIG. 37A to FIG. 37C are a plan view, a front sectional view, and a side sectional view showing a manufacturing process subsequent to FIG.
  • 38A to 38C are a plan view, a front sectional view, and a side sectional view showing a manufacturing process subsequent to FIG. 37.
  • FIG. 39A to FIG. 39C are a plan view, a front sectional view, and a side sectional view showing a manufacturing process subsequent to FIG. 38.
  • FIG. 40A to FIG. 40C are a plan view, a front sectional view, and a side sectional view showing the manufacturing process following FIG. 39.
  • FIG. 41A and FIG. 41B are perspective views for explaining how to use the high-frequency interface element according to the present invention.
  • FIG. 42 is a graph showing the calculation results of Example 1.
  • FIG. 43 is a graph showing the calculation results of Example 2.
  • FIG. 44 is a graph showing the calculation results of Example 3.
  • FIG. 45 is a graph showing the calculation results of Example 4.
  • FIGS. 46A and 46B are a schematic front sectional view and a schematic view of a high-frequency interface element that is effective in the conventional example.
  • a, 16b, 16c, 16d soft magnetic materials a, 17b, 17c, 17d: non-magnetic materials a, 18b, 18c, 18d: mirage? ⁇ Elements a, 19b, 19c, 19d: Connecting electrode: Insulating film
  • External electrode 44 Upper absorption film
  • the high-frequency interface element that works in the first embodiment includes magnetoresistive elements 18a, 18b, 18c, which are connected to a set of four soft magnetic bodies 16a, 16b, 16c, 16d.
  • a magnetic field generation unit including a two-dimensional spiral coil 21 is disposed between the magnetic detection unit including 18d and the absorption film.
  • the protective film is not shown in FIGS. 1 and 2, and the film-like body such as an insulating film is not shown in FIG.
  • the absorption film 23 does not need to have the same planar shape as the substrate 10.
  • the absorption film 23 has at least the same planar shape as the magnetic detection unit having at least the soft magnetic bodies 16a to 16d. That's fine.
  • the absorption film 23 may have the same planar shape as the coil 21.
  • the base 10 may be provided with a magnetic detection unit made up of 28a, 28b, 28c, 28d and a magnetoresistive element (not shown).
  • the nonmagnetic materials 17a, 17c and 17b, 17d may be connected by simple resistance elements.
  • connection electrodes 19a and 19c are connected to one end of the soft magnetic bodies 16b and 16d (FIG. 13).
  • an insulating film 20 having a through-hole 20a is laminated to cover the magnetic detection part such as the soft magnetic body 16a (FIG. 14).
  • a substantially elliptic spiral coil 21 is formed in the insulating film 20, and one end 21a is connected to the connection end 12a of the wiring 12 exposed from the through hole 20a, while the other end.
  • the connecting end 21b is drawn from the insulating film 20 to the surface edge of the substrate 10 (FIG. 15). Further, after the coil 21 is covered with the insulating film 22 (FIG. 16), an absorption film 23 having connection end portions 23a and 23b is laminated (FIG. 17).
  • the coil 21 may have a substantially square or substantially circular spiral shape.
  • connection end portions 12b, 21b, 13b, the connection electrodes 19b, 19d, and the connection end portions 14b, 23a, 23b are external electrodes 24a, 24b, 24c. , 24d, 24e, 24f, 24g, 24h, respectively (Fig. 18).
  • the surface of the absorption film 23 and the exposed surface where the end portion for the connection portion is not provided are covered with the protective film 25 (FIG. 19).
  • a magnetic field generating unit is provided between the magnetic detection unit in which the soft magnetic bodies 16a and 16b are arranged on both sides of the magnetoresistive element 18a and the absorption film 23.
  • Coil 21 Is arranged.
  • the electric field is absorbed by the absorption film 23, and the magnetic field for transmitting a signal is shielded by the absorption film 23 and can be easily detected.
  • FIG. 20C a magnetic force is generated between the absorption film 23 formed on the surface of the substrate 10 and the magnetic detection unit formed by arranging the soft magnetic bodies 16a and 16b on both sides of the magnetoresistive element 18a. Even if the coil 21 which is a part is arranged, the same effect can be obtained.
  • the distance L between the opposing surfaces of the coil 21 and the absorbing film 23 is equal to the distance M between the opposing surfaces of the coil 21 and the magnetic detection parts such as the soft magnetic bodies 16a and 16b (Fig. 21A).
  • the shorter one is preferred for removing the electric field efficiently.
  • the absorption film 23 is formed with a discontinuous portion 23c such as a circular hole, a long hole, a slit, or a spiral in the portion located immediately above the coil 21. Also good. This is because by forming the discontinuous portion 23c, generation of eddy current can be suppressed and transmission loss can be reduced.
  • a magnetic detection unit is arranged inside a magnetic field generation unit made of a flat three-dimensional spiral coil, and outside the magnetic field generation unit.
  • an absorption film facing the magnetic detection unit is formed.
  • the protective film is not shown in FIGS. 1 and 2, and the film-like body such as an insulating film is not shown in FIG.
  • the insulating film 32 having the axially symmetric cutout portions 32a is formed on the opposite side edges (see FIG. 27). ( Figure 28). Further, after the lower coil 33 is wired on the surface of the insulating film 32 (FIG. 29), an insulating film 34 is formed (FIG. 30). Note that connection end portions 33a and 33b of the lower coil 33 protrude from both side edges of the insulating film.
  • elongated trapezoidal soft magnetic bodies 35a, 35b, 35c, 35d are arranged in parallel on the upper surface of the insulating film 34 (FIG. 31).
  • non-magnetic materials 36a, 36c and 36b, 36d are provided on the opposing edges of adjacent soft magnetic bodies 35a, 35c and 35b, 35d (FIG. 32).
  • magnetoresistive elements 37c and 37d are added to the non-magnetic materials 36a, 36c and 36b, 36d. Element or GMR element).
  • a bridge circuit is configured by providing and connecting magnetoresistive elements 37a and 37b between the opposing ends of the soft magnetic bodies 35a and 35b and 35c and 35d (FIG. 33).
  • connection electrodes 38a, 38b, 38c, and 38d to one end portions of the soft magnetic bodies 35a, 35b, 35c, and 35d (FIG. 34)
  • a new insulation is formed on the insulating film 34.
  • Forming the film 39 covers the soft magnetic material 35a and the like (FIG. 35).
  • the upper coil 40 is wired on the surface of the insulating film 39, and connected to the protruding end of the lower coil 33, thereby forming a magnetic field generating unit composed of a flat spiral coil. ( Figure 36).
  • connection ends 33a, 33b of the lower coil 33 and the ends of the connection electrodes 38a, 38b, 38c, 38d are covered with external electrodes 42a, 42b and 43a, 43b, 43c, 43d, respectively, to facilitate wire bonding (Figure 38).
  • an upper absorption film 44 is laminated on the upper surface of the insulating film 41, and connection end portions 44a and 44b of the upper absorption film 44 are formed on the lower absorption film 31 exposed from the notch 32a of the insulating film 32. Connect each one ( Figure 39).
  • the external electrodes 42a, 42b and 43a, 43b, 43c, 43d are removed and covered with a protective film 45 (FIG. 40).
  • a lead frame 50 including a lead terminal 51, a high-frequency interface element 52 of the present application, and a control Each element 53 incorporating a circuit may be mounted.
  • a single chip 54 in which the control circuit and the high-frequency interface element are integrated may be mounted on the lead frame 50.
  • the first example is based on the structure of the first embodiment, and the film thicknesses of all four types of absorbing films having different specific volume resistances are set to 1 ⁇ m, and the distance between the facing surfaces of the coil and the absorbing film is set to be 1 ⁇ m.
  • the change in leakage voltage due to the change was simulated by calculation.
  • Figure 42 shows the calculation results. In the figure, for example, “1.0E + 08J” means “1.0 ⁇ 10 8 ”.
  • the basic structure of the first embodiment is adopted, but one set of four magnetic detection units each having a soft magnetic strength is arranged in the center part of the long side facing the coil. Calculated assuming the case.
  • resist same surface means a case where only two sets of the magnetic detectors are covered with two absorbing films, respectively.
  • Integrated resist means two sets of magnetic detectors. This is the case where only a single integrated absorption film is coated.
  • the “widest surface” indicates the case where the entire substrate is covered with an absorbent film, and the “widest surface with a central hole” refers to the case where a long hole is provided at the center of the above-described widest surface.
  • “With coil expansion surface center hole” means only the coil The case where a long hole is provided in the center of the absorbing film to be coated is shown.
  • the leakage voltage was the smallest when the absorption film covered the entire substrate.
  • the absorption film is effective in suppressing leakage voltage even when only the coil is covered.
  • the presence or absence of the central slot has a slight effect on the leakage voltage, but it has been found that it does not cause practical problems.
  • the specific volume resistance of the absorption film is large, and the absorption film is thinned.
  • the coil is covered as wide as possible, and if the coil is close to the coil, the leakage voltage is further increased. It was found that it could be further suppressed.
  • the present invention is connected by an input / output circuit of a computer, an input / output circuit of a control device using a central processing unit, an input / output device of communication between devices having different ground levels, and a long-distance communication line. It can be used as an input / output circuit for communication between devices.

Abstract

 本発明は、電界を除去する際における磁界の損失が少ない高周波インターフェース素子を提供することにある。このため、軟質磁性体16a~16dおよび磁気抵抗要素18a~18dからなる磁気検知部と、吸収膜23との間に、2次元の渦巻き状コイル21からなる磁界発生部を配置した。

Description

明 細 書
高周波インターフェース素子
技術分野
[0001] 本発明は、電気的絶縁を維持しつつ、磁気的手段で信号を伝達するインターフエ ース素子、特に、高周波インターフェース素子に関する。
背景技術
[0002] 従来、例えば、ノ ソコンでィ匕学プラント設備等をモニタリングしつつ、コントロールす るシステムでは、ノ ソコンと化学プラント設備等とが離れた位置にある場合、あるいは 、前記プラント等が高電圧を取り扱って 、る場合にグランドレベルが高 、ときがある。 このような高いグランドレベルで通信を行うと、両者間の電位差によってパソコン内の 中央演算処理装置 (CPU)等のハードウェアを破壊するおそれがある。このため、パ ソコンと化学プラント設備等との通信配線においては、電気的絶縁を維持しつつ、信 号を伝達する手段が必要となる。そこで、磁気を信号の伝達媒体としたインターフエ ース素子が提案されている。
[0003] しかし、伝達する信号が高周波になればなる程、入出力間における電界等の放射 ノイズが大きくなる。このため、放射ノイズを除去しなければ、伝達しょうとする信号が 放射ノイズに埋もれてしまい、伝達信号を取り出すための回路を別に設ける必要があ る。
[0004] そこで、放射ノイズを除去するために磁気結合アイソレータが提案されて ヽる (特許 文献 1)。すなわち、前記磁気結合アイソレータは、図 46に示すように、ベース 1に積 層した磁気検知部である磁気抵抗要素 2 (MR要素また GMR要素)と、磁気発生手 段であるコイル 4との間に遮蔽膜 3を配置してある。なお、 5は絶縁体である。
特許文献 1 :特表 2001— 521160号公報
発明の開示
発明が解決しょうとする課題
[0005] しカゝしながら、前記磁気結合アイソレータでは、磁気抵抗要素 2とコイル 4との間に 遮蔽膜 3を配置してあるので、電界等の放射ノイズの遮蔽効果も大きいが、磁界の損 失も大きい。このため、入力側回路において入力信号をインパルス状信号に変換し た磁界を発生させる必要があり、入力側回路に余分な回路を設ける必要がある。
[0006] 本発明は、前記問題点に鑑み、電界を除去する際における磁界の損失が少ない 高周波インターフェース素子を提供することを課題とする。
課題を解決するための手段
[0007] 本発明にかかる高周波インターフェース素子は、前記課題を解決すベぐ入力信 号を出力側へ伝達する媒体である磁界に変換する磁界発生部と、前記磁界発生部 で発生した磁界を検知する磁気検知部とからなる電気絶縁型高周波インターフエ一 ス素子であって、前記磁気検知部と、これに対向する吸収膜との間に、前記磁界発 生部の少なくとも一部を配置した構成としてある。
発明の効果
[0008] 本発明によれば、磁界発生部を間にして磁気検知部に対向するように配置した吸 収膜に電界が吸収されるが、磁界の損失が少ない。このため、電界と磁界との混在 が少なくなり、入力側回路および出力側回路に余分な回路を設ける必要がなくなる。 なお、前記吸収膜は電界に限らず、他の放射ノイズをも吸収できるものである。
[0009] 本発明にかかる実施形態としては、磁界発生部が、 2次元の渦巻き状コイルであつ てもよい。
本実施形態によれば、薄型の高周波インターフェース素子が得られる。
[0010] 他の実施形態としては、磁界発生部が 3次元の螺旋状に形成されたコイルカゝらなる 一方、前記コイルの内側に磁気検知部を配置するとともに、前記コイルの外側に前 記磁気検知部と対向する吸収膜を配置してもよ 、。
本実施形態によれば、小電流で大きな磁界が得られ、 SN比が向上し、歪みの少な い出力波形が得られる。
[0011] 別の実施形態としては、磁気検知部を、少なくとも 1つの磁気抵抗要素で形成して もよい。また、前記磁気抵抗要素の少なくとも片側に軟磁性体を配置して形成しても よい。
本実施形態によれば、軟磁性体を配置することにより、磁気効率が向上し、感度が 良くなる。 特に、磁気抵抗要素の両側に配置した軟磁性体を並設するとともに、隣り合う前記 軟磁性体を抵抗要素でそれぞれ接続してもよ ヽ。
本実施形態によれば、隣り合う軟磁性体を抵抗要素で接続することにより、ブリッジ 回路が形成され、感度がより一層良くなる。
また、前記磁気抵抗要素に、巨大磁気抵抗薄膜の両側に軟磁性薄膜を配置した 特許第 003466470号に記載された薄膜磁気抵抗素子を用いて形成しても良い。 本実施形態によれば、 GMR薄膜 (また MR薄膜)を軟磁性薄膜と複合化することに より、更に磁界感度が良くなり、磁界発生部にて大きな磁界を発生させなくても磁界 を検知することができる。
[0012] 異なる実施形態としては、磁界発生部と吸収膜との対向面間距離を、磁界発生部と 磁気検知部との対向面間距離よりも短くしておいてもよい。
本実施形態によれば、電界が吸収膜により多く吸収され、信号の伝達効率が高まる
[0013] 新たな実施形態としては、少なくとも磁気検知部と同一平面積を有する吸収膜を、 前記磁気検知部と対向する位置に配置してぉ 、てもよ 、。
本実施形態よれば、前記磁気検知部を被覆する必要最小限度の吸収膜で電界を 除去できる。
[0014] 吸収膜のうち、少なくとも前記磁界発生部を被覆する面に、少なくとも 1つの不連続 部を設けておいてもよい。
本実施形態によれば、前記不連続部が渦電流の発生を防止し、伝送損失が少な V、高周波インターフェース素子が得られると!、う効果がある。
図面の簡単な説明
[0015] [図 1]本発明にかかる高周波インターフェース素子の第 1実施形態を示す分解斜視 図である。
[図 2]図 2Aおよび図 2Bは、図 1で示した第 1実施形態の外観を図示した斜視図およ び平面図である。
[図 3]図 3Aおよび図 3Bは、図 1で示した第 1実施形態の要部を図示した斜視図およ び平面図である。 [図 4]図 4Aおよび図 4Bは、図 1で示した第 1実施形態の応用例を示す斜視図および 平面図である。
[図 5]図 5Aおよび図 5Bは、図 1で示した第 1実施形態の他の応用例を示す斜視図お よび平面図である。
[図 6]図 6Aおよび図 6Bは、図 1で示した第 1実施形態の別の応用例を示す斜視図お よび平面図である。
[図 7]図 7Aおよび図 7Bは図 1で示した高周波インターフェース素子の製造工程を示 す平面図、正面断面図である。
圆 8]図 8Aないし図 8Cは図 7に続く高周波インターフェース素子の製造工程を示す 平面図、正面断面図および側面断面図である。
圆 9]図 9Aないし図 9Cは図 8に続く製造工程を示す平面図、正面断面図および側 面断面図である。
[図 10]図 10Aないし図 10Cは図 9に続く製造工程を示す平面図、正面断面図および 側面断面図である。
圆 11]図 11Aないし図 11Cは図 10に続く製造工程を示す平面図、正面断面図およ び側面断面図である。
圆 12]図 12Aないし図 12Cは図 11に続く製造工程を示す平面図、正面断面図およ び側面断面図である。
圆 13]図 13Aないし図 13Dは図 12に続く製造工程を示す平面図、正面断面図およ び側面断面図である。
圆 14]図 14Aないし図 14Cは図 13に続く製造工程を示す平面図、正面断面図およ び側面断面図である。
圆 15]図 15Aないし図 15Cは図 14に続く製造工程を示す平面図、正面断面図およ び側面断面図である。
圆 16]図 16Aないし図 16Cは図 15に続く製造工程を示す平面図、正面断面図およ び側面断面図である。
圆 17]図 17Aないし図 17Cは図 16に続く製造工程を示す平面図、正面断面図およ び側面断面図である。 圆 18]図 18Aないし図 18Cは図 17に続く製造工程を示す平面図、正面断面図およ び側面断面図である。
圆 19]図 19Aないし図 19Cは図 18に続く製造工程を示す平面図、正面断面図およ び側面断面図である。
[図 20]図 20Aおよび図 20Bは動作原理を示す概略正面断面図および概略図であり 、図 20Cは第 1実施形態の変形例を示す概略正面断面図である。
圆 21]図 21Aおよび図 21Bはコイルと吸収膜との対向面距離の差異に基づく動作原 理を示すための概略正面断面図である。
[図 22]図 22Aは吸収膜に不連続部を設けた場合を示す平面図、図 22Bおよび図 22 Cは不連続部の有無による動作原理を説明するための概略断面図である。
圆 23]本発明にかかる高周波インターフェース素子の第 2実施形態を示す分解斜視 図である。
[図 24]図 24Aおよび図 24Bは、図 23で示した第 2実施形態の外観を図示した斜視 図および平面図である。
[図 25]図 25Aおよび図 25Bは、図 23で示した第 1実施形態の要部を図示した斜視 図および平面図である。
[図 26]図 26Aないし図 26Cは図 23で示した高周波インターフェース素子の製造ェ 程を示す平面図、正面断面図および側面断面図である。
[図 27]図 27Aないし図 27Cは図 26に続く高周波インターフェース素子の製造工程を 示す平面図、正面断面図および側面断面図である。
[図 28]図 28Aないし図 28Cは図 27に続く製造工程を示す平面図、正面断面図およ び側面断面図である。
[図 29]図 29Aないし図 29Cは図 28に続く製造工程を示す平面図、正面断面図およ び側面断面図である。
[図 30]図 30Aないし図 30Cは図 29に続く製造工程を示す平面図、正面断面図およ び側面断面図である。
[図 31]図 31Aないし図 31Cは図 30に続く製造工程を示す平面図、正面断面図およ び側面断面図である。 [図 32]図 32Aないし図 32Cは図 31に続く製造工程を示す平面図、正面断面図およ び側面断面図である。
[図 33]図 33Aないし図 33Cは図 32に続く製造工程を示す平面図、正面断面図およ び側面断面図である。
[図 34]図 34Aないし図 34Cは図 33に続く製造工程を示す平面図、正面断面図およ び側面断面図である。
[図 35]図 35Aないし図 35Cは図 34に続く製造工程を示す平面図、正面断面図およ び側面断面図である。
[図 36]図 36Aないし図 36Cは図 35に続く製造工程を示す平面図、正面断面図およ び側面断面図である。
[図 37]図 37Aないし図 37Cは図 36に続く製造工程を示す平面図、正面断面図およ び側面断面図である。
[図 38]図 38Aないし図 38Cは図 37に続く製造工程を示す平面図、正面断面図およ び側面断面図である。
[図 39]図 39Aないし図 39Cは図 38に続く製造工程を示す平面図、正面断面図およ び側面断面図である。
[図 40]図 40Aないし図 40Cは図 39に続く製造工程を示す平面図、正面断面図およ び側面断面図である。
[図 41]図 41Aおよび図 41Bは本発明に力かる高周波インターフェース素子の使用方 法を説明するための斜視図である。
[図 42]実施例 1の計算結果を示すグラフ図である。
[図 43]実施例 2の計算結果を示すグラフ図である。
[図 44]実施例 3の計算結果を示すグラフ図である。
[図 45]実施例 4の計算結果を示すグラフ図である。
[図 46]図 46Aおよび図 46Bは従来例に力かる高周波インターフェース素子の概略正 面断面図および概略図である。
符号の説明
10 :基板 :マーク
, 13, 14 :配線
:絶縁膜
a, 16b, 16c, 16d :軟磁性体a, 17b, 17c, 17d :非磁性材a, 18b, 18c, 18d :條気抵?几要素a, 19b, 19c, 19d :接続用電極 :絶縁膜
:コイル
:絶縁膜
:吸収膜
a〜24h :外部電極
:保護膜
a, 28b, 28c, 28d軟磁性体:基板
:下側吸収膜
:絶縁膜
:下側コイル
:絶縁膜
a, 35b, 35c, 35d軟磁性体a, 36b, 36c, 36d:非磁性材a, 37b, 37c, 37d: 気抵饥要素a, 38b, 38c, 38d :接続用電極:絶縁膜
:上側コイル
:絶縁膜
a, 42b :外部電極
a, 43b, 43c, 44d :外部電極 44 :上側吸収膜
44a, 44b :接続用端部
45 :保護膜
50 :リードフレーム
51 :リード端子
52:高周波インターフェース素子
54 :チップ
発明を実施するための最良の形態
[0017] 本発明にかかる実施形態を図 1ないし図 45の添付図面に従って説明する。
第 1実施形態に力かる高周波インターフェース素子は、図 1ないし図 3に示すように 、 4本 1組の軟磁性体 16a, 16b, 16c, 16dを接続した磁気抵抗要素 18a, 18b, 18 c, 18dからなる磁気検知部と、吸収膜 23との間に、 2次元の渦巻き状コイル 21から なる磁界発生部を配置したものである。なお、説明の便宜上、図 1,図 2において保 護膜は図示されておらず、図 3において絶縁膜等の膜状体は図示されていない。
[0018] なお、前記吸収膜 23は、基板 10と同一平面形状である必要はなぐ例えば、図 4 に示すように、少なくとも軟磁性体 16a〜16d等力もなる磁気検知部と同一平面形状 であればよい。
[0019] また、図 5に示すように、前記吸収膜 23は前記コイル 21と同一平面形状であっても よい。
[0020] さらに、図 6に示すように、 4本 1組の軟磁性体 16a〜16d、および、磁気抵抗要素 1 8a〜18d力もなる磁気検知咅だけでなく、 4本 1組の軟磁性体 28a, 28b, 28c, 28d 、および、磁気抵抗要素(図示せず)からなる磁気検知部を、ベース 10に設けておい てもよい。
[0021] 次に、前述の第 1実施形態に力かる高周波インターフェース素子の構造を、図 7な いし図 19に基づく製造工程の説明を通じ、より明確にする。
まず、図 7に示すように、ガラス製基板 10にマーク 11をチタン等のスパッタリングで 付けた後、前記マーク 11を目印にして 3本の配線 12, 13, 14をスパッタリング等で 形成する(図 8)。前記配線 12, 13, 14の両端部には接続用端部 12a, 12b, 13a, 13b, 14a, 14bがそれぞれ設けられている。
[0022] そして、前記基板 10に、接続用長孔 15aを備えた絶縁膜 15を形成した後(図 9)、 前記絶縁膜 15の表面片側に、細長い台形状の 4本の軟磁性体 16a, 16b, 16c, 16 dを並設する(図 10)。ついで、隣り合う軟磁性体 16a, 16cおよび 16b, 16dの対向 する縁部に非磁性材 17a, 17cおよび 17b, 17dをそれぞれ設けた後(図 11)、前記 非磁性材 17a, 17cおよび 17b, 17dに磁気抵抗要素 18cおよび 18d (前記磁気抵 抗要素は GMR, TMR, CMR等を含む)をそれぞれ設けて接続する。さらに、軟磁 性体 16a, 16bおよび 16c, 16dの対向する端部間に磁気抵抗要素 18a, 18bを設 けて接続することにより、ブリッジ回路を構成する(図 12)。
なお、前記非磁性材 17a, 17cおよび 17b, 17dは、単なる抵抗要素で接続しても よい。
[0023] 前記軟磁性体 16a, 16cの一端部を、接続用電極 19a, 19cを介し、配線 13, 14の 接続用端部 13a, 14aにそれぞれ接続する。一方、前記軟磁性体 16b, 16dの一端 部に接続用電極 19b, 19dを接続する(図 13)。そして、貫通孔 20aを有する絶縁膜 20を積層して前記軟磁性体 16a等カゝらなる磁気検知部を被覆する(図 14)。
[0024] 前記絶縁膜 20に略楕円形の渦巻き状コイル 21を形成し、その一端部 21aを前記 貫通孔 20aから露出する配線 12の接続用端部 12aに接続する一方、その他端部で ある接続用端部 21bを前記絶縁膜 20から基板 10の表面縁部に引き出す(図 15)。さ らに、前記コイル 21を絶縁膜 22で被覆した後(図 16)、接続用端部 23a, 23bを備え た吸収膜 23を積層する(図 17)。なお、前記コイル 21は略方形あるいは略円形の渦 巻き状であってもよい。
[0025] 前記接続用端部 12b, 21b, 13b、接続用電極 19b, 19d、および、前記接続用端 部 14b, 23a, 23bを、ワイヤーボンディングを容易にするため、外部電極 24a, 24b , 24c, 24d, 24e, 24f, 24g, 24hでそれぞれ被覆する(図 18)。最後に、前記吸収 膜 23の表面、および、接続部用端部を設けていない露出面を保護膜 25で被覆する (図 19)。
[0026] 本実施形態によれば、図 20Aに示すように、磁気抵抗要素 18aの両側に軟磁性体 16a, 16bを配置した磁気検知部と、吸収膜 23との間に磁界発生部であるコイル 21 を配置してある。このため、図 20Bに示すように、電界が吸収膜 23に吸収されるととも に、信号を伝達する磁界は吸収膜 23に遮蔽されて漏れることがなぐ前記磁界の検 出が容易になる。なお、図 20Cに示すように、基板 10の表面に形成した吸収膜 23と 、磁気抵抗要素 18aの両側に軟磁性体 16a, 16bを配置して形成した磁気検知部と の間に、磁力発生部であるコイル 21を配置しても、同一の効果が得られる。
[0027] 特に、コイル 21と吸収膜 23との対向面間距離 L力 コイル 21と軟磁性体 16a, 16b 等の磁気検知部との対向面間距離 Mと同等(図 21A)であるよりも、図 21Bに示すよ うに、短!、方が電界を効率的に除去するうえで好ま 、。
[0028] また、図 22に示すように、前記吸収膜 23には、前記コイル 21の直上に位置する部 分に円孔、長孔、スリット、渦巻き状等の不連続部 23cを形成してもよい。前記不連続 部 23cを形成することにより、渦電流の発生を抑制でき、伝送損失を低減できるから である。
[0029] 第 2実施形態は、図 23ないし図 25に示すように、扁平な 3次元の螺旋状コイルから なる磁界発生部の内側に磁気検知部を配置するとともに、前記磁界発生部の外側に 前記磁気検知部に対向する吸収膜を形成する場合である。なお、説明の便宜上、図 1,図 2には保護膜は図示されておらず、図 3には絶縁膜等の膜状体は図示されてい ない。
[0030] 第 1実施形態と同様、図 26ないし図 40に基づく製造工程の説明を通じ、第 2実施 形態に力かる高周波インターフェース素子の構造を明確にする。
まず、図 26に示すガラス製基板 30の上面に下側吸収膜 31を形成した後(図 27)、 対向する両側縁部に軸対称となる切り欠き部 32aを有する絶縁膜 32を形成する(図 28)。さらに、前記絶縁膜 32の表面に下側コイル 33を配線した後(図 29)、絶縁膜 3 4を形成する(図 30)。なお、前記絶縁膜 34の両側縁部からは前記下側コイル 33の 接続用端部 33a, 33bがはみ出している。
[0031] 前記絶縁膜 34の上面に、細長い台形状の 4本の軟磁性体 35a, 35b, 35c, 35d を並設する(図 31)。ついで、隣り合う軟磁性体 35a, 35cおよび 35b, 35dの対向す る縁部に、非磁性材 36a, 36cおよび 36b, 36dをそれぞれ設ける(図 32)。ついで、 前記非磁性材 36a, 36cおよび 36b, 36dに、磁気抵抗要素 37cおよび 37d (MR要 素または GMR要素)を設けて接続する。さらに、軟磁性体 35a, 35bおよび 35c, 35 dの対向する端部間に磁気抵抗要素 37a, 37bをそれぞれ設けて接続することにより 、ブリッジ回路を構成する(図 33)。
[0032] そして、前記軟磁性体 35a, 35b, 35c, 35dの一端部に、接続用電極 38a, 38b, 38c, 38dをそれぞれ接続した後(図 34)、前記絶縁膜 34上に新たな絶縁膜 39を形 成することにより、前記軟磁性体 35a等を被覆する(図 35)。さらに、前記絶縁膜 39の 表面に上側コイル 40を配線するとともに、前記下側コイル 33のはみ出した端部にそ れぞれ接続することにより、扁平な螺旋状のコイルからなる磁界発生部を形成する( 図 36)。
[0033] 前記上側コイル 40を絶縁膜 41で被覆した後(図 37)、前記下側コイル 33の接続用 端部 33a, 33b、および、前記接続用電極 38a, 38b, 38c, 38dの端部を、ワイヤー ボンディングを容易にするため、外部電極 42a, 42bおよび 43a, 43b, 43c, 43dで それぞれ被覆する(図 38)。さらに、前記絶縁膜 41の上面に上側吸収膜 44を積層す るとともに、絶縁膜 32の切り欠き部 32aから露出する下側吸収膜 31に前記上側吸収 膜 44の接続用端部 44a, 44bをそれぞれ接続する(図 39)。最後に、外部電極 42a, 42bおよび 43a, 43b, 43c, 43dを除き、保護膜 45で被覆する(図 40)。
[0034] 本実施形態に力かる高周波インターフェースの使用方法としては、例えば、図 41A に示すように、リード端子 51を備えたリードフレーム 50に、本願の高周波インターフエ ース素子 52、および、制御回路を組み込んだ素子 53をそれぞれ実装してもよい。ま た、図 41Bに示すように、前記制御回路および前記高周波インターフェース素子を 集積した 1枚のチップ 54を、前記リードフレーム 50に実装してもよい。
実施例 1
[0035] 第 1実施例は、実施形態 1の構造を前提とし、固有体積抵抗 が異なる 4種類の吸 収膜すべての膜厚を 1 μ mとし、コイルと吸収膜との対向面間距離の変化による漏れ 電圧の変化を、計算によってシミュレーションした。計算結果を図 42に示す。なお、 図中、例えば、「1. 0E + 08Jとは、「1. 0 X 108」を意味する。
[0036] 図 42にから明らかなように、吸収膜の抵抗率が大きい程、漏れ電圧が少ないことが 判明した。特に、固有体積抵抗 pが 1. 0E + 08 Ω cm)である吸収膜は、コイルと 吸収膜との対向面間距離が短くになるにつれ、漏れ電圧が少なくなる傾向にあること が半 lj明した。
実施例 2
[0037] 固有体積抵抗 pが 1. OE+ 10 Ω cm)の吸収膜を、コイルとの対向面間距離 3 μ mとした場合に、吸収膜の厚さを変化させたときの漏れ電圧の変化を計算によって シミュレーションした。計算結果を図 43に示す。
[0038] 図 43から明らかなように、吸収膜の厚さが薄くなればなるほど、漏れ電圧が少なくな る傾向があることが判った。
実施例 3
[0039] 固有体積抵抗 pが 1. OE+ 10 ( iu Ω cm)、厚さl. 5 mの吸収膜と、コイルとの対 向面間距離を変化させた場合に生じる漏れ電圧の変化を計算によってシミュレーショ ンした。計算結果を図 44に示す。
[0040] 図 44から明らかなように、吸収膜がコイルに接近した方が漏れ電圧を抑制できるこ とが判明した。このため、吸収膜の膜厚にバラツキがあっても、対向面間距離を正確 に設定することにより、膜厚のノ ツキを吸収して電界を効果的に吸収できることが判 明した。
実施例 4
[0041] 固有体積抵抗 pが 1. (^+ 10 0 «!1)、厚さ1. 0 mの吸収膜を、コイルとの対 向面間距離を mとした場合に、吸収膜の平面形状と漏れ電圧との関係を計算に よってシミュレーションした。計算結果を図 45に示す。
なお、本実施例では、第 1実施形態の基本構造としているが、 4本 1組の軟質磁性 体力もなる磁気検知部を 1組ずつ、前記コイルの対向する長辺中央部にそれぞれ配 置した場合を前提として計算した。
また、図 45中、「レジスト同面」とは、 2組の前記磁気検知部だけを、 2枚の吸収膜で それぞれ被覆する場合であり、「統合レジスト」とは、 2組の磁気検知部だけを 1枚の 統合した吸収膜で被覆する場合である。また、「最広面」とは、基板全体を被覆できる 吸収膜で被覆した場合を示し、「最広面中央穴付」とは、前述の最広面にかかる吸収 膜の中央に長孔を設けた場合を示し、「コイル拡大面中央穴付」とは、コイルだけを 被覆する吸収膜の中央に長孔を設けた場合を示す。
[0042] 本実施例によれば、吸収膜が基板全体を被覆する場合が最も漏れ電圧が少ないこ とが判った。また、吸収膜は、コイルだけを被覆する場合であっても漏れ電圧の抑制 に有効である。さらに、中央の長孔の有無は漏れ電圧に若干の影響があるが、実用 上の問題が生じない範囲であることが判明した。
[0043] 以上の実施例から明らかなように、吸収膜の固有体積抵抗が大きぐそして、吸収 膜が薄ぐ出来る限り広くコイルを被覆するとともに、コイルに接近していれば、漏れ 電圧をより一層抑制できることが判った。
産業上の利用可能性
[0044] 本発明は、ノ ソコンの入出力回路、中央演算装置等を用いた制御装置の入出力回 路、グランドレベルが異なる装置間通信の入出力装置、および、長距離の通信線で 結ばれている装置間通信の入出力回路に使用できる。

Claims

請求の範囲
[1] 入力信号を出力側へ伝達する媒体である磁界に変換する磁界発生部と、前記磁 界発生部で発生した磁界を検知する磁気検知部とからなる電気絶縁型高周波インタ 一フェース素子であって、
前記磁気検知部と、これに対向する吸収膜との間に、前記磁界発生部の少なくとも 一部を配置したことを特徴とする高周波インターフェース素子。
[2] 磁界発生部が、 2次元の渦巻き状コイルであることを特徴とする請求項 1に記載の 高周波インターフェース素子。
[3] 磁界発生部が 3次元の螺旋状に形成されたコイルからなる一方、前記コイルの内側 に磁気検知部を配置するとともに、前記コイルの外側に前記磁気検知部と対向する 吸収膜を配置したことを特徴とする請求項 1に記載の高周波インターフェース素子。
[4] 磁気検知部が、少なくとも 1つの磁気抵抗要素力もなることを特徴とする請求項 1な
Vヽし 3の!、ずれ力 1項に記載の高周波インターフェース素子。
[5] 磁気検知部が、磁気抵抗要素の少なくとも片側に軟磁性体を配置したものであるこ とを特徴とする請求項 1ないし 4のいずれか 1項に記載の高周波インターフェース素 子。
[6] 磁気抵抗要素の両側に配置した軟磁性体を並設するとともに、隣り合う前記軟磁性 体を抵抗要素でそれぞれ接続したことを特徴とする請求項 5に記載の高周波インタ 一フェース素子。
[7] 磁界発生部と吸収膜との対向面間距離が、磁界発生部と磁気検知部との対向面 間距離よりも短 、ことを特徴とする請求項 1な 、し 6の 、ずれか 1項に記載の高周波ィ ンターフェース素子。
[8] 吸収膜が、少なくとも磁気検知部と同一平面積を有し、かつ、前記磁気検知部と対 向する位置に配置されていることを特徴とする請求項 1ないし 7のいずれか 1項に記 載の高周波インターフェース素子。
[9] 吸収膜のうち、少なくとも前記磁界発生部を被覆する面に、少なくとも 1つの不連続 部を設けたことを特徴とする請求項 1な 、し 8の 、ずれか 1項に記載の高周波インタ 一フェース素子 n
PCT/JP2006/305137 2005-03-17 2006-03-15 高周波インターフェース素子 WO2006098372A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005077526 2005-03-17
JP2005-077526 2005-03-17

Publications (1)

Publication Number Publication Date
WO2006098372A1 true WO2006098372A1 (ja) 2006-09-21

Family

ID=36991715

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/305137 WO2006098372A1 (ja) 2005-03-17 2006-03-15 高周波インターフェース素子

Country Status (1)

Country Link
WO (1) WO2006098372A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008111336A1 (ja) * 2007-03-12 2008-09-18 Omron Corporation 磁気カプラ素子および磁気結合型アイソレータ
JP2008300851A (ja) * 2008-06-19 2008-12-11 Omron Corp 磁気カプラ素子および磁気結合型アイソレータ
JP2009164259A (ja) * 2007-12-28 2009-07-23 Tdk Corp 磁気カプラ
US7948349B2 (en) 2007-10-31 2011-05-24 Tdk Corporation Magnetic coupler
JP2019148475A (ja) * 2018-02-27 2019-09-05 Tdk株式会社 磁気センサ

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH052033A (ja) * 1990-11-15 1993-01-08 Fujitsu Ltd 電流センサ及びその検出電流範囲の設定方法
JPH08264857A (ja) * 1995-01-26 1996-10-11 Matsushita Electric Works Ltd 集積化アイソレータ
JP2001521160A (ja) * 1997-10-23 2001-11-06 アナログ デバイセス インコーポレーテッド ファラデー遮蔽mrまたはgmr受信要素を用いる磁気結合信号アイソレータ
JP2004363157A (ja) * 2003-06-02 2004-12-24 Res Inst Electric Magnetic Alloys 薄膜磁気センサ及びその製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH052033A (ja) * 1990-11-15 1993-01-08 Fujitsu Ltd 電流センサ及びその検出電流範囲の設定方法
JPH08264857A (ja) * 1995-01-26 1996-10-11 Matsushita Electric Works Ltd 集積化アイソレータ
JP2001521160A (ja) * 1997-10-23 2001-11-06 アナログ デバイセス インコーポレーテッド ファラデー遮蔽mrまたはgmr受信要素を用いる磁気結合信号アイソレータ
JP2004363157A (ja) * 2003-06-02 2004-12-24 Res Inst Electric Magnetic Alloys 薄膜磁気センサ及びその製造方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008111336A1 (ja) * 2007-03-12 2008-09-18 Omron Corporation 磁気カプラ素子および磁気結合型アイソレータ
JP2008227081A (ja) * 2007-03-12 2008-09-25 Omron Corp 磁気カプラ素子および磁気結合型アイソレータ
US8400748B2 (en) 2007-03-12 2013-03-19 Omron Corporation Magnetic coupler device and magnetically coupled isolator
US7948349B2 (en) 2007-10-31 2011-05-24 Tdk Corporation Magnetic coupler
JP2009164259A (ja) * 2007-12-28 2009-07-23 Tdk Corp 磁気カプラ
JP2008300851A (ja) * 2008-06-19 2008-12-11 Omron Corp 磁気カプラ素子および磁気結合型アイソレータ
JP2019148475A (ja) * 2018-02-27 2019-09-05 Tdk株式会社 磁気センサ
WO2019167598A1 (ja) * 2018-02-27 2019-09-06 Tdk株式会社 磁気センサ
JP7020176B2 (ja) 2018-02-27 2022-02-16 Tdk株式会社 磁気センサ

Similar Documents

Publication Publication Date Title
US8390272B2 (en) Position detecting device
JP4575153B2 (ja) 電流測定方法および電流測定装置
US7977934B2 (en) High bandwidth open-loop current sensor
JP4414545B2 (ja) 電流センサーの製造方法
JP2015017862A (ja) 電流センサ
JP2019120687A (ja) オフセットされた電流センサ構造体
WO2006098372A1 (ja) 高周波インターフェース素子
JP6429871B2 (ja) 磁気抵抗ミキサ
US10274523B2 (en) Current sensor including a first current sensor and a second current sensor unit
TW200907773A (en) Touch panel input device
EP2639594B1 (en) Magnetic sensor
CN101365609A (zh) 信号处理系统和方法
JP2012063203A (ja) 磁気センサ
TW201508598A (zh) 具雜訊屏蔽功能的電容式觸控感測裝置
WO2007040058A1 (ja) ホール素子デバイスとそれを用いたホール素子回路
JP2019035686A (ja) 磁気センサ
US6501285B1 (en) RF current sensor
Nibir et al. Performance study of magnetic field concentration techniques on magnetoresistor/rogowski contactless current sensor
US11022660B2 (en) Magnetic sensor including a magnetic member offset from a magnetoresistive effect element
JP2012088191A (ja) 電流センサ
JP5504483B2 (ja) 電流センサ
JP2020067271A (ja) 電流検出装置
WO2003056276A1 (fr) Capteur de direction et procede de production
KR20030085464A (ko) 차폐 전극과 피 차폐 전극 및 대칭 평형적이고 상보적에너지 부분 조정을 위한 다른 선결 요소 부분을 포함한상보적 쌍 부분을 구비하는 미리 정한 대칭 균형적 아말감
JP2011039021A (ja) 電流センサ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06729158

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP