WO2006098267A1 - 半導体レーザ、光ピックアップおよび光情報処理装置 - Google Patents

半導体レーザ、光ピックアップおよび光情報処理装置 Download PDF

Info

Publication number
WO2006098267A1
WO2006098267A1 PCT/JP2006/304888 JP2006304888W WO2006098267A1 WO 2006098267 A1 WO2006098267 A1 WO 2006098267A1 JP 2006304888 W JP2006304888 W JP 2006304888W WO 2006098267 A1 WO2006098267 A1 WO 2006098267A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
semiconductor laser
transparent plate
light
laser element
Prior art date
Application number
PCT/JP2006/304888
Other languages
English (en)
French (fr)
Inventor
Kenji Matsumura
Yohichi Saitoh
Hideki Hayashi
Tomotada Kamei
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2005076807A external-priority patent/JP2008135411A/ja
Priority claimed from JP2005228164A external-priority patent/JP2008135079A/ja
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Publication of WO2006098267A1 publication Critical patent/WO2006098267A1/ja

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/125Optical beam sources therefor, e.g. laser control circuitry specially adapted for optical storage devices; Modulators, e.g. means for controlling the size or intensity of optical spots or optical traces
    • G11B7/127Lasers; Multiple laser arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/0225Out-coupling of light
    • H01S5/02257Out-coupling of light using windows, e.g. specially adapted for back-reflecting light to a detector inside the housing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/0014Measuring characteristics or properties thereof
    • H01S5/0021Degradation or life time measurements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/022Mountings; Housings
    • H01S5/02208Mountings; Housings characterised by the shape of the housings
    • H01S5/02212Can-type, e.g. TO-CAN housings with emission along or parallel to symmetry axis

Definitions

  • the present invention relates to a semiconductor laser, and more particularly to a semiconductor laser used for optical information processing and optical communication.
  • the present invention also relates to an optical information processing apparatus and an optical pickup used therefor.
  • BD Blu-ray disc
  • DVD digital versatile disc
  • dust, dust, etc. are generated inside the apparatus from outside the apparatus. If dust or the like enters the components constituting the optical system used for recording or reproduction, the laser beam from the semiconductor laser in the optical pickup or the return light of the optical information recording medium force is blocked. For this reason, there is a possibility that the information on the optical information recording medium cannot be read correctly or that the information cannot be correctly written on the optical information recording medium.
  • Patent Document 1 provides dust and dirt attached to an optical element by providing a photocatalyst layer on the outer surface from which the laser beam of the optical element is emitted or incident. It is disclosed to disassemble and remove the throat.
  • Patent Document 1 Japanese Unexamined Patent Publication No. 2003-059087
  • the present invention solves such problems of the prior art and provides a semiconductor laser, an optical head, and an optical information processing apparatus that are not easily affected by dust or dust.
  • the semiconductor laser of the present invention has an emission end face, has a first laser element that emits laser light having the emission end face force of the first wavelength, and first and second main faces,
  • the transparent plate supporting the transparent plate so that the transparent plate having the characteristic of transmitting the laser light, the emission end surface of the first laser element and the second main surface of the transparent plate face each other, and the laser element A package to be included, and an interval between an emission end face of the first laser element and a first main surface of the transparent plate is 1.1 mm or more.
  • the first wavelength is blue or shorter than blue.
  • the first laser element emits the laser beam with an optical output of lOOmW or more.
  • a distance between an emission end surface of the first laser element and a first main surface of the transparent plate is 1.35 mm or more.
  • the first laser element emits the laser beam with an optical output of 150 mW or more.
  • the first laser element has a power density force of 37 mWZmm 2 or less on the first main surface of the transparent plate of the emitted laser light.
  • the first wavelength of the first laser beam is 415 nm or less.
  • the semiconductor laser further includes a second laser element that has an emission end face and emits a laser beam having a second wavelength different from the first wavelength.
  • the second laser element is included in a package such that an emission end face of the second laser element and a second main surface of the transparent plate are opposed to each other.
  • the semiconductor laser has an emission end face, and the emission end face force is a third laser element that emits a laser beam having a third wavelength different from the first and second wavelengths.
  • the third laser element is included in a package such that an emission end face of the third laser element and a third main surface of the transparent plate are opposed to each other, and the first wavelength Is 415 nm or less, the second wavelength is 630 nm or more and 680 nm or less, and the third wavelength is 780 nm or more and 820 nm or less.
  • the semiconductor laser has first and second main surfaces, an inner transparent plate having a material force that transmits the laser light, and the first laser element in the package. And an inner package that supports the inner transparent plate and encloses the first laser element so that the emission end surface of the inner transparent plate faces the second main surface of the inner transparent plate.
  • the semiconductor laser is further provided on the first main surface side of the transparent plate so as to be exposed to the outside, and further includes a film having niobium pentoxide force.
  • An optical pickup of the present invention includes any one of the above semiconductor lasers and a condensing unit that condenses the laser light emitted from the semiconductor laser toward an optical information recording medium.
  • the optical pickup further includes a film having niobium pentoxide force provided on the surface of the light collecting section.
  • the light receiving element having a light receiving surface for detecting reflected light obtained by reflecting the laser light focused toward the optical information recording medium on the optical information recording medium. And a film made of niobium pentoxide and provided on the surface of the light receiving surface.
  • An optical information processing apparatus of the present invention includes the optical pickup of!
  • the invention's effect [0023] According to the present invention, it is possible to suppress dust and dust from adhering to the transparent plate by setting the laser element emitting end surface force to the outer surface of the transparent plate at a predetermined value or more. For this reason, it is possible to most effectively prevent a reduction in the amount of light of the optical system in the entire optical pickup, and it is possible to realize an optical information processing apparatus that is hardly affected by dust or dust.
  • FIG. 1 is a block diagram showing a structure of a main part in a first embodiment of an optical information processing apparatus according to the present invention.
  • FIG. 2 is a side sectional view showing the first embodiment of the semiconductor laser according to the present invention.
  • FIG. 3 is a diagram illustrating a method for driving a semiconductor laser.
  • FIG. 4 is a diagram showing the relationship between the irradiation time of the window glass and the reduction rate of the transmittance of the window glass in a semiconductor laser with various output laser outputs.
  • FIG. 5 is a diagram showing the relationship between the power density and the distance from the emission end face of the laser element to the outer surface of the window glass in a semiconductor laser with various emission laser outputs.
  • FIG. 6 is a side sectional view showing a second embodiment of the semiconductor laser according to the present invention.
  • FIG. 7 is a front view showing a third embodiment of the semiconductor laser according to the present invention.
  • FIG. 8 is a side sectional view showing a fourth embodiment of a semiconductor laser according to the present invention.
  • FIG. 9 is a diagram showing the relationship between the irradiation time of the window glass and the reduction rate of the transmittance of the window glass in the semiconductor laser of the fourth embodiment.
  • the inventor of the present application examined the relationship between the light emitted from the semiconductor laser and the dust or dust adhering to the components constituting the optical system.
  • the adhesion of dust and dust is closely related to the wavelength of the light emitted from the semiconductor laser and the output of the output laser. Even if the size was increased, dust and dust did not collect on the components that make up the optical system.
  • the output power of the semiconductor laser is reduced. When it was increased, dust and dust gathered on the window glass from which the semiconductor laser light was emitted, making it easier to attach.
  • FIG. 1 is a block diagram showing a configuration of the optical information processing apparatus 100.
  • an optical information processing apparatus refers to an apparatus that performs at least one of recording information on an optical information recording medium and reproducing information recorded on the optical information recording medium.
  • the optical disk apparatus will be described as an example of the optical information processing apparatus 100, but the optical information processing apparatus may have other structures.
  • the present invention can be suitably used for a hologram recording apparatus or the like.
  • the optical information processing apparatus 100 mounts the optical information recording medium 9, irradiates light toward the spindle motor 28 that rotates and the optical information recording medium 9, and reflects on the optical information recording medium 9.
  • An optical pickup 110 that receives the received light.
  • the optical pickup 110 includes an objective lens 8 that is a condensing unit that condenses light emitted from the semiconductor laser 1 and the semiconductor laser 1 serving as a light source toward the optical information recording medium 9.
  • the semiconductor laser 1 has a structure for reducing the optical power density in the window glass of the package of the semiconductor laser 1. This embodiment Then, the semiconductor laser 1 is provided with a laser element having a GaN-based semiconductor power, and emits coherent light for recording and reproduction.
  • a beam splitter 2 Between the semiconductor laser 1 and the objective lens 8, for example, a beam splitter 2, an attenuation optical element 3, a diffraction grating 4, a polarization beam splitter 5, a collimator lens 6, a 1Z4 wavelength plate 17 and a mirror 7 are provided. Provided. Light emitted from the semiconductor laser 1 passes through the beam splitter 2 and enters the attenuation optical element 3. At this time, the beam splitter 2 is designed so that 90% of the light emitted from the semiconductor laser 1 is transmitted.
  • the attenuation optical element 3 includes a liquid crystal element and a polarization hologram, and the transmittance changes according to an external signal.
  • the diffraction grating 4 has a grating structure, and has, for example, the characteristics that the 0th-order diffraction efficiency is approximately 90% and the ⁇ 1st-order diffraction efficiency is approximately 10%.
  • the diffraction grating 4 is formed, for example, by patterning a desired pattern on the glass surface using photolithography and then etching.
  • the polarization beam splitter 5 transmits, for example, 90% of linearly polarized light emitted from the semiconductor laser 1 and reflects 10%. Also, 100% of the linearly polarized light in the direction orthogonal to the linearly polarized light emitted from the semiconductor laser 1 is reflected.
  • the collimator lens 6 converts divergent light emitted from the semiconductor laser 1 into parallel light.
  • Mirror 1 reflects incident light and directs it toward the objective lens 8.
  • the objective lens 8 condenses light toward the information recording layer of the optical information recording medium 9.
  • the optical pickup 110 further includes a first condenser lens 10, a second condenser lens 11, a first photodetector 12, a second photodetector 13, and a third photodetector 14. .
  • the first condenser lens 10 condenses a part of the light emitted from the semiconductor laser 1 and transmitted through the attenuation optical element 3 toward the second photodetector 13.
  • the second condenser lens 11 condenses the light reflected by the optical information recording medium 9 toward the third photodetector 14.
  • the first photodetector 12 detects the light reflected by the beam splitter 2.
  • the optical information processing apparatus 100 includes a light amount control unit 15, an optical element control unit 16, a command unit 18, and a reflectance detection unit 20 in order to control the optical pickup 110.
  • the linearly polarized light emitted from the semiconductor laser 1 enters the first beam splitter 2.
  • the light reflected by the beam splitter 2 is incident on the first photodetector 12 and transmitted therethrough. Enters the attenuating optical element 3.
  • the light incident on the first photodetector 12 is converted into an electrical signal, which becomes an electrical signal for monitoring the amount of light emitted from the semiconductor laser 1.
  • the light quantity control unit 15 receives this electrical signal and controls the output of the semiconductor laser 1 so as to output an optimum light quantity.
  • the attenuation optical element 3 attenuates transmitted light under the control of the optical element control unit 16.
  • the transmitted light is attenuated so that the amount of light is about 50%.
  • the optical information recording medium 9 is a double-layer disc, light is transmitted without being attenuated.
  • the polarizing beam splitter 5 reflects a part of the incident light and makes it incident on the condenser lens 10.
  • the light transmitted through the condenser lens 10 is condensed on the second photodetector 13.
  • the amount of light emitted from the semiconductor laser 1 is controlled by the first photodetector 12 and the light amount controller 15. For this reason, the signal output from the second photodetector 13 responds to the change in the transmittance of the attenuation optical element 3.
  • the optical element control unit 16 receives the signal obtained from the second photodetector 13 and controls so that the transmittance of the attenuation optical element 3 is optimized.
  • the light that has passed through the second beam splitter 5 enters the collimator lens 6 and is converted into parallel light.
  • the light transmitted through the collimator lens 6 is converted into circularly polarized light by the 1Z4 wavelength plate 17, reflected by the mirror 7, incident on the objective lens 8, and collected on the optical information recording medium 9.
  • the light reflected by the optical information recording medium 9 passes through the objective lens 8, is reflected by the mirror 7, and enters the 1Z4 wavelength plate 17.
  • the 1Z4 wavelength plate 17 converts the reflected light into linearly polarized light orthogonal to the forward path.
  • the linearly polarized reflected light passes through the collimator lens 6 and is reflected by the polarization beam splitter 5 toward the second condenser lens 11.
  • the second condenser lens 11 condenses the reflected light toward the third photodetector 14.
  • the third photodetector 14 outputs a force error signal indicating the light condensing state on the optical information recording medium 9, and outputs a tracking error signal indicating the light irradiation position.
  • a force error signal indicating the light condensing state on the optical information recording medium 9
  • a tracking error signal indicating the light irradiation position.
  • a focus control unit moves the position of the objective lens 8 in the direction of the optical axis so that light is always condensed on the optical information recording medium 9 in a predetermined light collection state based on the focus error signal.
  • a tracking control unit controls the position of the objective lens 8 based on the tracking error signal so that the light is condensed on a desired track on the optical information recording medium 9.
  • the third photodetector 14 also outputs information recorded on the optical information recording medium 9.
  • the semiconductor laser 1 includes a laser element 41 (laser chip), a package 44 containing the laser element 41, and a transparent plate 45 provided on the package 44.
  • the laser element 41 has an emission end face 41a from which laser light is emitted, and emits light having a short wavelength.
  • the short wavelength means blue or a wavelength shorter than blue, specifically, a wavelength of 480 nm or less.
  • the laser element 41 emits light of 415 nm or less.
  • the laser element 41 is preferably manufactured using a compound semiconductor containing GaN.
  • the laser element 41 is fixed on the submount 42, and the submount 42 is fixed to the stem 47 via the terminal pins 46. Further, another terminal 46 is fixed to the stem 47, and the other terminal 46 is electrically connected to the laser element 41 using a wire 43.
  • the stem 47 has a disk shape.
  • the transparent plate 45 has a first main surface 45a and a second main surface 45b, and has a characteristic of transmitting light emitted from the laser element 41.
  • a general glass plate can be used for 45 mm transparent plates!
  • the package 44 has a cylindrical shape that defines a space 44s containing the laser element 41, and an opening 44a is provided at the bottom of the cylinder.
  • the transparent plate 45 is provided in the package 44 so as to cover the opening 44a.
  • the package 44 is fixed to the stem 47 so that the laser element 41 is positioned in the space 44s.
  • the knock 44 becomes the second plate of the transparent plate 45.
  • the transparent plate 45 is supported so that the main surface 45b and the emission end surface 41a of the laser element 41 face each other. Further, the position of the laser element 41 is determined so that laser light emitted from the emission end face 41a of the laser element 41 is transmitted through the transparent plate 45 and emitted from the opening 44a to the outside of the semiconductor laser 1.
  • the knock 44 is formed of a metal resin or the like because it has excellent heat dissipation and high strength. Therefore, the knock 44 preferably has a metal strength.
  • Package 44 made of metal is also called a can package.
  • the shape of the knock 44 is not limited to a cylinder, and may be other shapes such as a rectangle.
  • the stem 47 may have other shapes as long as it supports the terminal 46 and has a function of sealing the space 44s formed by the knock 44.
  • the package 44 and the stem 47 may be integrally formed by means of grease or the like.
  • the position of the laser element 41 relative to the transparent plate 45 is determined so that the distance D1 between the second main surface 45b of the transparent plate 45 and the emission end face 41a of the laser element 41 is 1. lm m or more. . The reason for this will be explained in detail below.
  • the output laser power of the semiconductor laser means the peak power output when the semiconductor laser is driven by being modulated with a pulse signal, as shown in FIG.
  • the inventor of the present application has made various studies in order to realize an optical information processing apparatus capable of recording and reproducing at a high speed with respect to a double-layer disc using such a high-power blue semiconductor laser.
  • a blue semiconductor laser when a blue semiconductor laser is used, dust or Dust adheres and the optical transmittance of the optical pickup decreases.
  • dust and dust gather on the transparent plate (window glass) provided in the semiconductor laser cage, reducing the transmittance. I was divided. Further, it was found that such a decrease in transmittance is hardly observed in the actual use range in a blue semiconductor laser having an output laser output of about 50 mW.
  • FIG. 4 shows the transmission time generated by dust attached to the transparent plate provided in the semiconductor laser package when the oscillation operation is performed using three semiconductor lasers having different output laser outputs. It is a graph which shows the relationship with the decreasing rate of a rate.
  • Lines 105, 106, and 107 show the results obtained using blue semiconductor lasers with output laser powers of 50 mW, lOO mW, and 150 mW, respectively. Even in the case of a misaligned semiconductor laser, the distance between the outer surface of the transparent plate and the emitting end surface of the semiconductor element is set to 0.8 mm.
  • the rate of decrease in transmittance increases as the output power of the emitted laser increases.
  • the decrease in transmittance after 1000 hours of operation is within 0.5% (point S6), whereas the output laser output is lOOmW and In the semiconductor laser of 150 mW, the transmittance decreases by 1% (point S7) and 2% (point S8). Therefore, even when the output laser power is lOOmW and 150mW, it is necessary to suppress the decrease in transmittance to the same extent as that of a semiconductor laser having an output laser power of 50mW. Specifically, the decrease in transmittance needs to be 0.5% or less.
  • FIG. 5 shows the distance D1 from the emission end face 41a of the semiconductor element 1 shown in FIG. 2 to the first main surface 45a that is the outer surface of the transparent plate 45, and the laser power density (unit area) on the first main surface 45a.
  • the relationship with the laser output power per unit) is shown.
  • the horizontal axis shows the distance D1
  • the vertical axis shows the laser power density.
  • laser power density P is 1 / (D1 X D1 X ⁇ XTAN 0 1 XTAN 0 2 X optical output coefficient).
  • ⁇ 1 represents the horizontal spread angle at the half-value diameter of the light intensity distribution (far-field image, FFP)
  • ⁇ 2 represents the vertical spread angle at the half-value diameter of FFP.
  • 0 1 is set to 11 ° and 0 2 is set to 4 °.
  • the power density is the average value of outputs that are greater than the FFP half-value diameter.
  • a curve 102 shows the characteristics in the blue semiconductor laser 1 with an output laser output of lOOmW
  • a curve 103 shows the characteristics in the blue semiconductor laser 1 with an output laser output of 150 mW
  • the curve 101 shows the characteristics of a blue semiconductor laser with an output laser power of 50 mW.
  • the surface of the first main surface 45a of the transparent plate 45 is set to 0.5% or less by using a blue semiconductor laser having an output laser power of 50 mW or more to reduce the amount of dust and dirt adhering to the transparent plate 45 to 0.5% or less.
  • the power density of the laser light in the above should be 37mWZmm 2 or less.
  • the distance D1 should be 1.15 mm or more, as shown by the intersection S4 between the curve 102 and the power density P1.
  • D1 may be set to 1.4 mm or more as indicated by the intersection S4 between the curve 103 and the power density P1.
  • the characteristics of the 100 mW and 150 mW semiconductor lasers 1 are curves 102 ′ and 103 ′. Gatsutsu Taking into account such variations in standards, if the distance D1 is 1.1 mm or more and 1.35 mm or more, respectively, the dust and dirt adhering to the transparent plate 45 may be reduced to 0.5% or less. it can.
  • the distance D1 to the outer surface of the transparent plate 45 is also set to 1.1 mm or more in the semiconductor laser having the output laser power exceeding 1 OOmW, and the output laser power exceeding 150mW.
  • this semiconductor laser by setting it to 1.35 mm or more, it is possible to suppress dust and dust from adhering to the transparent plate that is the window glass of the semiconductor laser.
  • the reduction rate of the transmittance of the transparent plate after 1000 hours of operation can be made within 0.5%.
  • the present invention employs a structure based on an idea not found in conventional semiconductor lasers.
  • the projection area of the light emitted from the laser device 41 on the transparent plate 45 is widened.
  • the opening 44a to be provided needs to be widened accordingly.
  • the emission angle of the laser element 1 is about 30 degrees at the maximum, it is not necessary to enlarge the opening 44a so much.
  • the power density on the outer surface of the transparent plate 45 is inversely proportional to the square of D1. Therefore, by increasing the distance D1, the power density is reduced and the effect of preventing dust and dirt from being attracted to the transparent plate surface is significant.
  • the power density of the laser beam is highest in the semiconductor This is in a transparent substrate provided in the laser electrode / cage.
  • the light is already attenuated because it is after being transmitted through the other optical components, even if the light that is not collected is force or the portion where the collected light is incident Because. Therefore, by using the semiconductor laser of the present invention, it is possible to most effectively prevent the reduction of the light amount of the optical system in the entire optical pickup due to the adhesion of dust and dust, and the influence of dust and dust etc.
  • An optical information processing device that is difficult to receive can be realized.
  • FIG. 6 shows the structure of a second embodiment of the semiconductor laser according to the invention.
  • the semiconductor laser 62 includes a laser element 41, a package 51, an inner package 54, a transparent plate 53, and an inner transparent plate 55.
  • the laser element 41 has the same structure as that of the first embodiment, and emits a laser beam having a short wavelength with an output laser output of lOOmW or more.
  • the laser element 41 is fixed on the submount 42, and the submount 42 is fixed to the system 57 via the terminal pins 46. Further, another terminal 46 is fixed to the stem 57 and is electrically connected to the laser element 41 using the wire 43.
  • the inner transparent plate 55 has a first main surface 55a and a second main surface 55b, and has a characteristic of transmitting light emitted from the laser element 41.
  • An inner transparent plate 55 is provided on the inner package 54 so as to cover the opening of the inner package 54.
  • the package 54 defines a space 54s that encloses the laser element 41, and the inner package 54 is fixed to the stem 57 so that the laser element 41 is positioned in the space 54s.
  • the inner transparent plate 55 is supported so that the second main surface 55b of the inner transparent plate 55 and the emission end surface 41a of the laser element 41 face each other.
  • the gate / cage 51 is provided outside the inner package 54 so as to cover the inner package 54.
  • a stem 52 for fixing the package 51 is attached to the stem 57, and the stem 52 and the package 51 are connected.
  • the package 51 is provided with an opening force S, and a transparent substrate 53 is attached so as to cover the opening.
  • the transparent substrate 53 has a first main surface 53a and a second main surface 53b, and the second main surface 53b faces the emission end surface 41a of the laser element 41. ing.
  • the distance D1 between the first main surface 53a of the transparent substrate 53 and the emission end surface 41a of the laser element 41 is 1.1 mm or more.
  • the transparent plate 53 is supported so that When the output laser power of the laser element 41 is 150 mW or more, the distance D1 is set to 1.35 mm or more.
  • the distance D1 between the first main surface 53a of the transparent substrate 53 exposed to the outside and the emission end surface 41a of the laser element 41 is set to 1.1 mm or more. Therefore, the power density on the first main surface 53a of the transparent substrate 53 is 37 mW or less, and dust and dust can be prevented from being attracted to the surface of the transparent plate 53.
  • the distance between first main surface 55a of inner transparent substrate 55 and emission end surface 41a of laser element 41 is shorter than D1.
  • the power density of the first main surface 55a of the inner transparent substrate 55 exceeds 37 mW.
  • the inner transparent substrate 55 is not exposed to the outside and does not come into contact with outside air, dust and dust do not adhere to the inner transparent substrate 55.
  • the structure other than the package 51, the stem 52, and the transparent plate 53 may have the same structure as a conventional semiconductor laser.
  • the output power of the output laser is lOOmW or more, but a semiconductor laser in which the distance between the outer surface of the transparent plate provided in the package and the output end face of the laser element is shorter than 1.1 mm may be used.
  • the semiconductor laser 62 can be obtained. Therefore, the semiconductor laser 62 can be manufactured by using an existing package or by using a semiconductor laser already contained in the package.
  • the semiconductor laser 62 According to the semiconductor laser 62, the same effect as that of the first embodiment can be obtained. Further, as described in the first embodiment, by using the semiconductor laser 62 in the optical information processing apparatus, it is possible to realize an optical head and an optical information processing apparatus that are hardly affected by dust and the like.
  • FIG. 7 shows the structure of the third embodiment of the semiconductor laser according to the present invention.
  • FIG. 7 is a plan view of the semiconductor laser 63 viewed from the surface force that the laser beam emits.
  • the semiconductor laser 63 includes a laser element 41, a laser element 102, and a laser element 104.
  • the wavelengths of the light emitted by these laser elements are preferably different from each other! Specifically, the laser element 41 emits light having a wavelength of 415 nm or less, and the laser element 102 Emits light with a wavelength between 630 nm and 680 nm.
  • the laser element 104 emits light having a wavelength of 780 nm or more and 820 nm or less.
  • the wavelengths of light emitted from the laser elements 41, 102, and 104 are 405 nm, 650 nm, and 790 nm, respectively.
  • the semiconductor laser 63 includes a package 107 including these elements and a stem 106. As described in the first embodiment, each of the laser element 41, the laser element 102, and the laser element 104 is a submount. It is fixed to the terminal via.
  • the package 107 is provided with openings for guiding the light emitted from the laser element 41, the laser element 102, and the laser element 104 to the outside, and the transparent plates 103, 102, and 101 cover the respective openings.
  • the distance D1 between the emission end face of the laser element 41 and the outer surface of the transparent plate 103 is set to 1.1 mm or more as described in the first embodiment. More specifically, the distance D1 is 1.1 mm or more when the output laser power of the laser element 41 is lOOmW or more, and the distance D1 when the output laser power of the laser element 41 is 150 mW or more. Is greater than 1.35 mm.
  • the distance between the emission end faces of laser element 102 and laser element 104 and the outer surfaces of transparent plates 102 and 101 there is no particular limitation on the distance between the emission end faces of laser element 102 and laser element 104 and the outer surfaces of transparent plates 102 and 101.
  • the distance between the emission end face of the laser element 41 and the outer surface of the transparent plate 103 may be the same or different! /!
  • the semiconductor laser 63 includes light sources having three different wavelengths. Therefore, by using the semiconductor laser 63, an optical pickup having a simple optical system structure and capable of recording and reproducing at least one of CD, DVD and BD, for example, is realized. Further, as described in the first embodiment, since the distance between the emission end face of the laser element 41 and the outer surface of the transparent plate 103 is set to a predetermined value, although the light with a short wavelength is emitted, the transparent plate 103 Dust and dust adhere to the surface of the surface. Therefore, it is possible to most effectively prevent the light amount of the optical system in the entire optical pickup from being reduced, and it is possible to realize an optical information processing apparatus that is not easily affected by dust or dust.
  • the semiconductor laser 63 includes light sources having three different wavelengths. For this reason, as described above, there is an advantage that the structure of the optical system can be simplified. If a failure occurs in one of the light sources having three wavelengths, the entire semiconductor laser 63 is replaced. need to do Force S is generated. In other words, if the amount of light caused by dust or dust is reduced in the BD light source, the entire semiconductor laser needs to be replaced even if the CD or DVD light source is functioning properly.
  • the semiconductor laser has a structure in which dust and dust are less likely to adhere to the window glass by reducing the optical power density in the window glass of the package of the semiconductor laser.
  • the window glass is provided with a coating that prevents dust and dust from adhering to it, thereby realizing an optical head and an optical information processing apparatus that are less susceptible to the effects of dust and dust.
  • FIG. 8 shows the structure of the fourth embodiment of the semiconductor laser of the present invention.
  • the semiconductor laser 64 includes a laser element 41, a package 44 containing the laser element 41, and a transparent plate 45 provided in the package 44.
  • the laser element 41 has the same structure as that of the first embodiment and emits light having a short wavelength.
  • the laser element 41 is fixed on the submount 42, and the submount 42 is fixed to the stem 47 via the terminal pins 46. Further, another terminal 46 is fixed to the stem 47 and is electrically connected to the laser element 41 using the filler 43.
  • the transparent plate 45 has a first main surface 45a and a second main surface 45b, and has a characteristic of transmitting light emitted from the laser element 41.
  • the knocker 44 has an opening 44a, and a transparent plate 45 is provided in the package 44 so as to cover the opening 44a.
  • the knock 44 defines a space 44 s that encloses the laser element 41, and the package 44 is fixed to the stem 47 so that the laser element 41 is positioned in the space 44 s.
  • the transparent plate 45 is supported so that the main surface 45b and the emission end surface 41a of the laser element 41 face each other.
  • the position of the laser element 41 is determined so that laser light emitted from the emission end face 41 a of the laser element 41 passes through the transparent plate 45 and is emitted to the outside of the semiconductor laser 1 with the opening 44 a force.
  • the distance D1 ′ between the second main surface 45b of the transparent plate 45 and the emission end surface 41a of the laser element 41 is There is no restriction
  • a film 110 made of niobium pentoxide (Nb 2 O 3) is provided on the outermost surface of the transparent plate 45 on the first main surface 45a side. Membrane 110 is positioned on the outermost surface of transparent plate 45
  • another film may be provided between the film 110 and the first main surface 45a of the transparent plate 45.
  • a film having niobium pentoxide force can also be used as an antireflection coating (antireflection film).
  • antireflection film in the case of a semiconductor laser, such an anti-reflection coating is generally provided on the second main surface 45b side of the transparent plate 45.
  • the present embodiment is characterized in that the film 110 having niobium pentoxide force is provided on the outermost surface of the transparent plate 45 on the first main surface 45a side.
  • a film that has MgF force is also known as a non-reflective coating.
  • the film made of 2 2 does not have the function described below.
  • the function of the film 110 is unknown in detail, the dust activated by light having a short wavelength or dust is inactivated on the surface of the film 110 by some action, etc. It is thought that it becomes difficult to adhere to the surface of 110. Since such a function is considered to be related to the surface state of the film 110, as long as the film 110 covers the entire outermost surface of the transparent plate 45, there is no particular limitation on the thickness of the film 110. You may have thickness. However, from the viewpoint of productivity for forming the film 110 and attenuation of the emitted light in the film 110, the thickness of the film 110 is preferably about 25 nm to 75 nm.
  • FIG. 9 shows that dust adheres to the irradiation time and the transparent plate provided in the semiconductor laser package when the semiconductor laser is oscillated using three semiconductor lasers having different output laser powers. It is a graph which shows the relationship with the decreasing rate of the transmittance
  • Lines 108, 109 and 110 show the results obtained using blue semiconductor lasers with outgoing laser powers of 50 mW, lOO mW and 150 mW, respectively. Even in the case of a misaligned semiconductor laser, a film 110 having a thickness of 50 nm in niobium pentoxide is formed on the outermost surface of the transparent plate. As shown in Fig. 8, the distance D1 between the outer principal surface of the transparent plate and the emission end face of the semiconductor element is!, And the deviation is set to 0.8 mm!
  • the decrease in transmittance is about 0.1%, 0.25%, and 0.5%. Is suppressed. Therefore, even for blue semiconductor lasers with output laser power of lOOmW and 150mW, the decrease in transmittance is suppressed to 0.5% or less, and it is possible to achieve a level at which the decrease in transmittance does not cause a problem in practice. Become.
  • the semiconductor laser of the present embodiment it is possible to suppress dust and dust from adhering to the transparent plate, which is a window glass, and to reduce the amount of light emitted from the semiconductor laser. Can be prevented.
  • the semiconductor laser of the present invention it is possible to most effectively prevent a reduction in the amount of light of the optical system in the entire optical pickup due to the adhesion of dust and dust, which is affected by dust and dust. Difficult optical information processing device can be realized.
  • the film 110 having niobium pentoxide force used in this embodiment may be provided on another optical component in the optical pickup.
  • an optical element having a high optical power density like a window glass from which laser light is emitted from a semiconductor laser.
  • it may be provided on the surface 8a of the objective lens 8 facing the optical information recording medium 9 or the surface 8b facing the mirror 7 in FIG. 1, or the light receiving surfaces 12a, 13a, 14a of the light receiving elements 12, 13, 14 May be provided.
  • this embodiment can be suitably combined with the semiconductor lasers of the first to third embodiments.
  • a film having niobium pentoxide force may be provided on the first main surface 45a side of the transparent plate 45.
  • an optical head and an optical information processing apparatus that are not easily affected by dust or dust can be realized.
  • the present invention relates to a semiconductor laser that emits short-wavelength light and is driven with a high output laser output.
  • a semiconductor laser is suitably used in an information recording apparatus such as an optical information processing apparatus, a medical field such as a laser knife, and a processing technology field such as laser cutting.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optical Head (AREA)
  • Semiconductor Lasers (AREA)

Abstract

 本発明の半導体レーザは、出射端面を有し、前記出射端面から第1の波長のレーザ光を出射する第1のレーザ素子と、第1および第2の主面を有し、前記レーザ光を透過する特性を有する透明板と、前記第1のレーザ素子の出射端面と前記透明板の第2の主面とが対向するように、前記透明板を支持し、前記レーザ素子を内包するパッケージとを備え、前記第1のレーザ素子の出射端面と前記透明板の第1の主面との間隔が1.1mm以上である。                                                                       

Description

明 細 書
半導体レーザ、光ピックアップおよび光情報処理装置
技術分野
[0001] 本発明は、半導体レーザに関し、特に、光情報処理や光通信に用いられる半導体 レーザに関する。また、本発明は、光情報処理装置およびそれに用いられる光ピック アップにも関する。
背景技術
[0002] 近年、情報通信技術の発展に伴って、コンピュータで扱う情報量が飛躍的に増大し てきている。特に、従来ではアナログ信号としてのみ扱うことが可能であった音声や 音楽、画像などのマルチメディア情報もデジタル信号に変換することにより、情報を 劣化させることなく記録することが可能になってきた。このため、大容量の情報記録媒 体が求められている。たとえば、青色半導体レーザから出射する光を用いるブルーレ ィディスク(BD)は、従来のデジタルバーサタイルディスク(DVD)の約 10倍の記録 密度で情報を記録できる。
[0003] こうした光情報記録媒体に情報を記録したり、光情報記録媒体に記録された情報を 再生したりする光情報処理装置において、装置の外部から装置内にゴミゃ埃、チリな どが侵入したり、記録や再生に用いる光学系を構成する部品にゴミなどが付着したり すると、光ピックアップ内の半導体レーザからのレーザ光や光情報記録媒体力 の戻 り光が遮られる。このため、光情報記録媒体の情報を正しく読み取ることができない、 あるいは、光情報記録媒体に情報を正しく書き込むことができないという不具合が生 じる可能性がある。
[0004] 特に、青色レーザや青紫レーザのような短波長の半導体レーザを用いた光学へッ ドでは、記録や再生用の光学系に埃や塵などが付着しやす 、ことが知られて 、る。 特許文献 1によれば、これは、埃や塵などが波長の短いレーザ光によって活性化さ れるためであると考えられている。
[0005] 特許文献 1は、このような問題を解決するために、光学素子のレーザ光が出射また は入射する外表面に光触媒層を設けることによって、光学素子に付着した埃や塵な どを分解除去することを開示して 、る。
特許文献 1 :日本国特開 2003— 059087号公報
発明の開示
発明が解決しょうとする課題
[0006] し力しながら、特許文献 1に開示されている光触媒は酸化作用を有するものである ため、付着した埃や塵の種類などによっては十分な分解反応が引き起こされず、付 着した埃や塵を完全には除去できないことが考えられる。
[0007] 本発明はこのような従来技術の課題を解決し、埃や塵などの影響を受けにくい半導 体レーザ、光学ヘッド及び光情報処理装置を提供する。
課題を解決するための手段
[0008] 本発明の半導体レーザは、出射端面を有し、前記出射端面力 第 1の波長のレー ザ光を出射する第 1のレーザ素子と、第 1および第 2の主面を有し、前記レーザ光を 透過する特性を有する透明板と、前記第 1のレーザ素子の出射端面と前記透明板の 第 2の主面とが対向するように、前記透明板を支持し、前記レーザ素子を内包するパ ッケージとを備え、前記第 1のレーザ素子の出射端面と前記透明板の第 1の主面との 間隔が 1. 1mm以上である。
[0009] ある好ましい実施形態において、前記第 1の波長は、青色または青色より短い波長 である。
[0010] ある好ましい実施形態において、前記第 1のレーザ素子は、 lOOmW以上の光学 出力で前記レーザ光を出射する。
[0011] ある好ましい実施形態において、前記第 1のレーザ素子の出射端面と前記透明板 の第 1の主面との間隔が 1. 35mm以上である。
[0012] ある好ましい実施形態において、前記第 1のレーザ素子は、 150mW以上の光学 出力で前記レーザ光を出射する。
[0013] ある好ましい実施形態において、前記第 1のレーザ素子が出射レーザ光の前記透 明板の第 1の主面におけるパワー密度力 37mWZmm2以下である。
[0014] ある好ましい実施形態において、前記第 1のレーザ光の第 1の波長は 415nm以下 である。 [0015] ある好ましい実施形態において、半導体レーザは、出射端面を有し、前記出射端 面力 第 1の波長とは異なる第 2の波長のレーザ光を出射する第 2のレーザ素子をさ らに備え、前記第 2のレーザ素子は、前記第 2のレーザ素子の出射端面と前記透明 板の第 2の主面とが対向するようにパッケージ内に内包されて 、る。
[0016] ある好ましい実施形態において、半導体レーザは、出射端面を有し、前記出射端 面力 第 1および第 2の波長とは異なる第 3の波長のレーザ光を出射する第 3のレー ザ素子をさらに備え、前記第 3のレーザ素子は、前記第 3のレーザ素子の出射端面と 前記透明板の第 3の主面とが対向するようにパッケージ内に内包されており、前記第 1の波長は、 415nm以下であり、前記第 2の波長は、 630nm以上 680nm以下であ り、前記第 3の波長は、 780nm以上 820nm以下である。
[0017] ある好ましい実施形態において、半導体レーザは、第 1および第 2の主面を有し、 前記レーザ光を透過する物質力 なる内側透明板と、前記パッケージ内において、 前記第 1のレーザ素子の出射端面と前記内側透明板の第 2の主面とが対向するよう に、前記内側透明板を支持し、かつ、前記第 1のレーザ素子を内包する内側パッケ 一ジとをさらに備える。
[0018] ある好ましい実施形態において、半導体レーザは、前記透明板の第 1の主面側に おいて外部に露出するように設けられており、五酸ィ匕ニオブ力もなる膜をさらに備え る。
[0019] 本発明の光ピックアップは、上記いずれかの半導体レーザと、前記半導体レーザか ら出射するレーザ光を、光情報記録媒体に向けて集光する集光部とを備える。
[0020] ある好ましい実施形態において、光ピックアップ前記集光部の表面に設けられてお り、五酸ィ匕ニオブ力 なる膜をさらに備える。
[0021] ある好ましい実施形態において、前記光情報記録媒体に向けて集光されたレーザ 光が前記光情報記録媒体において反射することにより得られた反射光を検出するた め受光面を有する受光素子と、前記受光面の表面に設けられており、五酸化ニオブ 力 なる膜とをさらに備える。
[0022] 本発明の光情報処理装置は上記!/、ずれかの光ピックアップを備える。
発明の効果 [0023] 本発明によれば、レーザ素子出射端面力 透明板の外側表面までの距離を所定 の値以上にすることによって、透明板に埃や塵が付着するのを抑制することができる 。このため、光ピックアップ全体における光学系の光量の低減を最も効果的に防止す ることができ、埃や塵などの影響を受けにくい光情報処理装置を実現することができ る。
図面の簡単な説明
[0024] [図 1]本発明による光情報処理装置の第 1の実施形態における要部の構造を示すブ ロック図である。
[図 2]本発明による半導体レーザの第 1の実施形態を示す側面断面図である。
[図 3]半導体レーザの駆動方法を説明する図である。
[図 4]種々の出射レーザ出力の半導体レーザにおける窓ガラスへの照射時間と窓ガ ラスの透過率の減少率との関係を示す図である。
[図 5]種々の出射レーザ出力の半導体レーザにおけるレーザ素子の出射端面から窓 ガラスの外側表面までの距離とパワー密度との関係を示す図である。
[図 6]本発明による半導体レーザの第 2の実施形態を示す側面断面図である。
[図 7]本発明による半導体レーザの第 3の実施形態を示す正面図である。
[図 8]本発明による半導体レーザの第 4の実施形態を示す側面断面図である。
[図 9]第 4の実施形態の半導体レーザにおける窓ガラスへの照射時間と窓ガラスの透 過率の減少率との関係を示す図である。
符号の説明
1 半導体レーザ
2 ビームスプリッタ
3 減衰光学素子
4 回折格子
5 偏光ビームスプリッタ
6 コリメータレンズ
7 立ち上ミラー
8 対物レンズ 9 光情報記録媒体
10 集光レンズ
11 集光レンズ
12 光検出器
13 光検出器
14 光検出器
15 光量制御回路
16 光学素子制御回路
17 1 4波長板
18 指令回路
19 コンパレータ回路
28 スピンドルモータ
41 レーザチップ素子
42 サブマウント
43 ワイヤ
44 缶パッケージ
45 窓ガラス
46 端子ピン
47 ステム
51 ノ ッケージ
52 ステム
53 透明板
発明を実施するための最良の形態
本願発明者は、半導体レーザが出射する光と光学系を構成する部品に付着する埃 や塵との関係について検討した。その結果、埃や塵の付着には、半導体レーザから 出射する光の波長および出射レーザ出力と密接に関係しており、 CDおよび DVDの 記録 '再生に用いられる波長では、半導体レーザの出射レーザ出力を大きくしても、 埃や塵が光学系を構成する部品に集まってくることはなかった。 [0027] 一方、 DVDの記録 *再生に用いられる光より短い波長の光、具体的には、青や紫 などの短波長の光を出射する半導体レーザの場合、半導体レーザの出射レーザ出 力を大きくすると、半導体レーザの光が出射する窓ガラスに埃や塵が集まってきて付 着しやすくなることが分力つた。また、この場合、半導体レーザから出射する光のパヮ 一密度が最も高くなる半導体レーザのノ ッケージの窓ガラスに最も埃や塵が付着し やすくなることが分力つた。したがって、半導体レーザのパッケージの窓ガラスに埃や 塵が付着しに《なるようにすれば、埃や塵などの影響を受けにくい光学ヘッドや光 情報処理装置が実現できると考えられる。
[0028] 本願発明者は、このような知見に基づき、半導体レーザのパッケージの窓ガラスに おける光パワー密度を低減させることおよび窓ガラスに埃や塵が付着しにくいコーテ イングを施すことによって、埃や塵などの影響を受けにくい半導体レーザ、光学ヘッド および光情報処理装置が実現することを見出した。以下、図面を参照しながら本発 明を説明する。
[0029] (第 1の実施形態)
まず、本発明の光情報処理装置の第 1の実施形態を説明する。図 1は、光情報処 理装置 100の構成を示すブロック図である。本願明細書において光情報処理装置と は、光情報記録媒体に情報の記録を行うことおよび光情報記録媒体に記録された情 報の再生を行うことの少なくとも一方を行う装置を言う。以下、光ディスク装置を光情 報処理装置 100の一例として説明するが、光情報処理装置は他の構造を備えてい てもよい。たとえば、ホログラム記録装置などにも本発明は好適に用いることができる
[0030] 光情報処理装置 100は、光情報記録媒体 9を載置し、回転駆動するスピンドルモ ータ 28と、光情報記録媒体 9に向けて光を照射し、光情報記録媒体 9において反射 した光を受け取る光ピックアップ 110を含む。光ピックアップ 110は、光源となる半導 体レーザ 1および半導体レーザ 1から出射した光を光情報記録媒体 9に向けて集光 する集光部である対物レンズ 8を含む。
[0031] 半導体レーザ 1は、以下において詳細に説明するように、半導体レーザ 1のパッケ ージの窓ガラスにおける光パワー密度を低減させる構造を備えている。本実施形態 では、半導体レーザ 1は GaN系の半導体力もなるレーザ素子を備え、記録再生用の コヒーレントな光を出射する。
[0032] 半導体レーザ 1と対物レンズ 8との間には、たとえば、ビームスプリッタ 2、減衰光学 素子 3、回折格子 4、偏光ビームスプリッタ 5、コリメータレンズ 6、 1Z4波長板 17およ びミラー 7が設けられる。半導体レーザ 1から出射した光は、ビームスプリッタ 2を透過 し、減衰光学素子 3に入射する。この際、半導体レーザ 1から出射した光の 90%が透 過するようにビームスプリッタ 2は設計されている。減衰光学素子 3は、液晶素子およ び偏光ホログラムを含み、外部信号に応じて透過率が変化する。
[0033] 回折格子 4は、グレーティング構造を備え、たとえば、 0次回折効率がほぼ 90%で あり、 ± 1次回折効率がほぼ 10%となる特性を備えている。回折格子 4は、たとえば、 ガラス表面にフォトリソグラフィーを用いて所望のパターンをパターユングした後、エツ チングすることにより形成される。
[0034] 偏光ビームスプリッタ 5は、たとえば、半導体レーザ 1から出射される直線偏光の 90 %を透過させ、 10%を反射する。また、半導体レーザ 1から出射される直線偏光と直 交する方向の直線偏光を 100%反射する。
[0035] コリメータレンズ 6は、半導体レーザ 1から出射した発散光を平行光に変換する。ミラ 一 7は、入射する光を反射し、対物レンズ 8の方向に向かわせる。対物レンズ 8は、光 情報記録媒体 9の情報記録層に向けて光を集光する。
[0036] 光ピックアップ 110は、さらに第 1の集光レンズ 10、第 2の集光レンズ 11、第 1の光 検出器 12、第 2の光検出器 13および第 3の光検出器 14を備える。第 1の集光レンズ 10は、半導体レーザ 1から出射され、減衰光学素子 3を透過した光の一部を第 2の光 検出器 13に向けて集光する。第 2の集光レンズ 11は、光情報記録媒体 9で反射され た光を第 3の光検出器 14に向けて集光する。第 1の光検出器 12は、ビームスプリッタ 2において反射された光を検出する。
[0037] 光情報処理装置 100は、光ピックアップ 110を制御するために、光量制御部 15と、 光学素子制御部 16と、指令部 18と、反射率検出部 20とを備える。
[0038] 半導体レーザ 1から出射された直線偏光の光は、第 1のビームスプリッタ 2に入射す る。ビームスプリッタ 2で反射された光は、第 1の光検出器 12に入射され、透過した光 は減衰光学素子 3に入射する。第 1の光検出器 12に入射した光は電気信号に変換 され、半導体レーザ 1から出射された光量をモニタする電気信号となる。光量制御部 15は、この電気信号を受け取り、最適な光量を出力するように半導体レーザ 1の出力 を制御する。
[0039] 減衰光学素子 3は、光学素子制御部 16の制御により、透過する光を減衰する。たと えば、光情報記録媒体 9が 1層ディスクである場合、光量が約 50%になるように透過 光を減衰する。光情報記録媒体 9が 2層ディスクである場合には、減衰させることなく 光を透過する。
[0040] 減衰光学素子 3を透過した光の大部分は、回折することなく回折格子 4を透過し、 一部が回折する。回折格子 4を透過した光 (透過光と回折光の両方)は、偏光ビーム スプリッタ 5に入射される。
[0041] 偏光ビームスプリッタ 5は入射する光の一部を反射し、集光レンズ 10に入射させる。
集光レンズ 10を透過した光は第 2の光検出器 13に集光される。半導体レーザ 1から 出射される光の光量は第 1の光検出器 12および光量制御部 15により制御されてい る。このため、第 2の光検出器 13から出力される信号は、減衰光学素子 3の透過率の 変化に応答している。光学素子制御部 16は、第 2の光検出器 13から得られた信号を 受け取り、減衰光学素子 3の透過率が最適になるように制御する。
[0042] 第 2のビームスプリッタ 5を透過した光は、コリメータレンズ 6に入射し、平行光に変 換される。コリメータレンズ 6を透過した光は 1Z4波長板 17で円偏光に変換され、ミラ 一 7で反射されることにより、対物レンズ 8に入射し、光情報記録媒体 9上に集光され る。
[0043] 光情報記録媒体 9にお ヽて反射された光は、対物レンズ 8を透過し、ミラー 7で反射 され、 1Z4波長板 17に入射する。 1Z4波長板 17は、往路とは直交する直線偏光に 反射光を変換する。直線偏光の反射光は、コリメータレンズ 6を透過し、偏光ビームス プリッタ 5により、第 2の集光レンズ 11に向けて反射される。第 2の集光レンズ 11は反 射光を第 3の光検出器 14に向けて集光する。
[0044] 第 3の光検出器 14は、光情報記録媒体 9上における光の集光状態を示すフォー力 ス誤差信号を出力し、また光の照射位置を示すトラッキング誤差信号を出力する。こ の場合、たとえば、光情報記録媒体 9が再生専用型光情報記録媒体である場合は位 相差法を用い、光情報記録媒体 9が記録型光情報記録媒体である場合は回折格子 4により作成したサブビームを用いた 3ビーム法により、トラッキング誤差信号を得る。
[0045] 図示しないフォーカス制御部は、フォーカス誤差信号に基づき、常に光が所定の集 光状態で光情報記録媒体 9上に集光されるように対物レンズ 8の位置をその光軸方 向に制御する。また、図示していないトラッキング制御部は、トラッキング誤差信号に 基づき、光が光情報記録媒体 9上の所望のトラックに集光するように対物レンズ 8の 位置を制御する。第 3の光検出器 14はまた光情報記録媒体 9に記録された情報を出 力する。
[0046] 次に、図 2を参照しながら半導体レーザ 1の構造を詳細に説明する。半導体レーザ 1は、レーザ素子 41 (レーザチップ)と、レーザ素子 41を内包するパッケージ 44と、パ ッケージ 44に設けられた透明板 45とを備えている。
[0047] レーザ素子 41は、レーザ光が出射する出射端面 41aを有し、短波長の光を出射す る。ここで短波長とは、青色または青色より短い波長を意味し、具体的には、 480nm 以下の波長を言う。好ましくは、レーザ素子 41は 415nm以下の光を出射する。この ため、レーザ素子 41は GaNを含む化合物半導体を用いて作製されていることが好ま しい。
[0048] レーザ素子 41はサブマウント 42の上に固定され、サブマウント 42は、端子ピン 46 を介してステム 47に固定される。また、ステム 47には他の端子 46が固定されており、 他の端子 46はワイヤ 43を用いてレーザ素子 41に電気的に接続されて 、る。ステム 4 7は円盤形状を有している。
[0049] 透明板 45は、第 1の主面 45aおよび第 2の主面 45bを有し、レーザ素子 41から出 射する光を透過する特性を備えている。たとえば、一般的なガラス板を透明板 45〖こ 用!/、ることができる。
[0050] パッケージ 44は、レーザ素子 41を内包する空間 44sを規定する円筒形状を有し、 円筒の底部には開口 44aが設けられている。透明板 45は、開口 44aを覆うようにパッ ケージ 44に設けられている。パッケージ 44は、空間 44s内にレーザ素子 41が位置す るようにステム 47に固定されている。これにより、ノ ッケージ 44は、透明板 45の第 2の 主面 45bとレーザ素子 41の出射端面 41aとが対向するように、透明板 45を支持する 。また、レーザ素子 41の出射端面 41aから出射するレーザ光が透明板 45を透過して 、開口 44aから半導体レーザ 1の外部へ出射するようにレーザ素子 41の位置が決定 される。ノ ッケージ 44は、金属ゃ榭脂などによって形成されていることが好ましぐ放 熱性優れ、高い強度を備えていることから、ノ ッケージ 44は金属力もなることが好まし い。金属からなるパッケージ 44は缶パッケージとも呼ばれる。
[0051] ノ ッケージ 44の形状は円筒に限られず、矩形など他の形状であってもよい。また、 ステム 47は端子 46を支持するとともに、ノ ッケージ 44により形成された空間 44sを封 止する働きを有しておればよぐ他の形状を有していてもよい。榭脂などによってパッ ケージ 44とステム 47とが一体的に形成されてもよい。
[0052] 透明板 45の第 2の主面 45bとレーザ素子 41の出射端面 41aとの間隔 D1は 1. lm m以上になるように、透明板 45に対するレーザ素子 41の位置が決定されている。こ の理由を以下において詳細に説明する。
[0053] 近年、 GaN系の青色半導体レーザの出力を向上させる技術が開発されてきており 、出射した光の出力が lOOmWを越えるものが報告されている。出射レーザ出力が 1 OOmWを越えるようになると、一般的な光ピックアップの光学透過率、すなわち、約 2 5%程度のレーザ出力効率を有する光ピックアップにおいても、対物レンズからの出 射パワーのピーク値が 25mW(100mWX 25%)となる。このため、情報記録層が 2 層存在するいわゆる 2層ディスクを 2倍速で記録および再生することが可能になる。さ らに、出射レーザ出力が 150mWを超える青色半導体レーザを用いれば、 2層デイス クの 3倍速の記録再生が可能になる。現在、 2層ディスクを 1倍速で記録または再生 することのできる BD用光情報処理装置では、出射レーザ出力が 50mWである巿販 の青色半導体レーザが用いられている。なお、本願明細書において半導体レーザの 出射レーザ出力とは、図 3に示すように、半導体レーザをパルス信号で変調し、駆動 した場合におけるピークパワー出力を言う。
[0054] 本願発明者は、こうした高出力の青色半導体レーザを用いて、 2層ディスクに対して 高倍速で記録再生が可能な光情報処理装置を実現するために種々の検討を行った 。その結果、青色半導体レーザを用いた場合、光ピックアップを構成する部品に埃や 塵が付着し、光ピックアップの光学透過率が低下してゆくこと、特に半導体レーザの ノ^ケージに設けられた透明板 (窓ガラス)に、埃や塵が集まって透過率を低下させ ていることが分力つた。また、このような透過率の低下は、出射レーザ出力が 50mW 程度の青色半導体レーザでは、実使用範囲内でほとんど見られないことが分力つた 。また、青色半導体レーザよりも波長の長い半導体レーザでは、高出力で長時間動 作を行っても半導体レーザのパッケージに設けられた透明板に埃や塵が集まり、透 過率が大きく低下すると 、う問題は生じな!/、ことが分かった。
[0055] 図 4は、出射レーザ出力の異なる 3つの半導体レーザを用いて発振動作を行った 場合における、照射時間と半導体レーザのパッケージに設けられた透明板に埃が付 着することにより生じる透過率の減少率との関係を示すグラフである。
[0056] 直線 105、 106および 107はそれぞれ出射レーザ出力が 50mW、 lOOmWおよび 150mWの青色半導体レーザを用いて得られた結果を示して 、る。 、ずれの半導体 レーザにおいても透明板の外側面と半導体素子の出射端面との距離は 0. 8mmに 設定している。
[0057] 図 5から明らかなように、出射レーザ出力が増大するに連れて、透過率の減少率が 大きくなるのが分かる。具体的には、出射レーザ出力が 50mWの青色半導体レーザ の場合、 1000時間の動作後における透過率の減少は 0. 5%以内(点 S6)であるの に対して、出射レーザ出力が lOOmWおよび 150mWである半導体レーザでは、 1% (点 S7)および 2% (点 S8)も透過率が減少している。したがって、出射レーザ出力が lOOmWおよび 150mWである場合においても、透過率の減少を出射レーザ出力が 50mWである半導体レーザと同程度に抑制する必要がある。具体的には、透過率の 減少を 0. 5%以下にする必要がある。
[0058] 本願発明者は、こうした高出力青色半導体レーザの透明板において埃や塵の付着 により透過率が減少する原因力 透明板の外側表面におけるレーザパワー密度に依 存していることを見出した。図 5は、図 2に示す半導体素子 1の出射端面 41aから透明 板 45の外側表面である第 1の主面 45aまでの距離 D1と、第 1の主面 45aにおけるレ 一ザパワー密度(単位面積あたりのレーザ出射出力)との関係を示している。横軸は 距離 D1を示し、縦軸はレーザパワー密度を示している。ここでレーザパワー密度 Pは 、 1/ (D1 X D1 X π XTAN 0 1 XTAN 0 2 X光出力係数)により算出している。伹 し、 θ 1は光強度分布 (遠視野像、 FFP)の半値径における水平方向の広がり角を示 し、 Θ 2は FFPの半値径における垂直方向の広がり角を示す。それぞれ 0 1は 11° 、 0 2は 4° と設定している。パワー密度は FFPの半値径以上の出力を平均化した値 である。
[0059] 図 5において、曲線 102は、出射レーザ出力が lOOmWの青色半導体レーザ 1に おける特性を示し、曲線 103は、出射レーザ出力が 150mWの青色半導体レーザ 1 における特性を示している。また、比較のため、出射レーザ出力が 50mWの青色半 導体レーザにおける特性を曲線 101で示している。
[0060] 図 5に示す曲線 101、 102および 103から明らかなように、レーザ素子の出射端面 41aから、透明板 45の第 1の主面 45aまでの距離 D1が長くなるにしたがって、第 1の 主面 45aにおけるパワー密度は低下する。これは上述のパワー密度の算出式が示 すとおり、 D1が長くなると、レーザ素子 41から出射する光の透明板 45への投射面積 が広くなり、単位面積あたりの光の強度が下がるからである。
[0061] 図 5に示すように、 D1が 0. 8mmである場合、出射レーザ出力が 50mW、 lOOmW および 150mWの青色半導体レーザの第 1の主面 45a上のパワー密度は、曲線 101 、 102および 103上の点 Sl、 S2および S3で示される、 Pl、 P2および P3である。具 体的には、 Pl、 P2および P3はそれぞれ 37mWZmm2、 74mWZmm2および 110 mWz mm (?める。
[0062] 50mW以上の出射レーザ出力の青色半導体レーザを用いて、透明板 45に付着す る塵や埃を 0. 5%以下にするためには、透明板 45の第 1の主面 45a表面におけるレ 一ザ光のパワー密度を 37mWZmm2以下にすればよい。図 5に示すように、出射レ 一ザ出力が lOOmWの青色半導体レーザ 1の場合、曲線 102とパワー密度 P1との交 点 S4で示されるように、距離 D1は 1. 15mm以上にすればよい。また、出射レーザ 出力が 150mWの青色半導体レーザ 1の場合、曲線 103とパワー密度 P1との交点 S 4で示されるように、 D1は 1. 4mm以上にすればよい。
[0063] 半導体レーザ 1の出射レーザ出力が 10%程度変動することを考慮すると、 100m Wおよび 150mWの半導体レーザ 1の特性は曲線 102'および 103'となる。したがつ て、このような規格のばらつきも考慮すれば、距離 D1がそれぞれ 1. 1mm以上およ び 1. 35mm以上であれば透明板 45に付着する塵や埃を 0. 5%以下にすることがで きる。
[0064] このように、レーザ素子 1の出射端面力も透明板 45の外側表面までの距離 D1を、 1 OOmWを越える出射レーザ出力の半導体レーザにおいて 1. 1mm以上とし、 150m Wを越える出射レーザ出力の半導体レーザにおいて 1. 35mm以上とすることにより 、半導体レーザの窓ガラスである透明板に埃や塵が付着するのを抑制することができ る。具体的には、 1000時間動作させた後における透明板の透過率の減少率を 0. 5 %以内にすることが可能になる。言い換えれば、 lOOmWを越える出射レーザ出力の 短波長半導体レーザにおいて、透明板 45の外側表面におけるパワー密度が 37mW Zmm2W以下となるように、レーザ素子 1の出射端面から透明板 45の外側表面まで の距離 D1を確保することによって、透明板に埃や塵が付着するのを抑制することが できる。
[0065] 従来の半導体レーザでは、このようにパッケージからレーザ光を出射させるための 透明板とレーザ素子の出射端面との距離に着目したり、透明板におけるパワー密度 に着目したりすることはな力つた。むしろ、光ピックアップを小型化するために、半導 体レーザのパッケージの外形も小さくすることに着目されていた。この点において本 発明は従来の半導体レーザには見られない発想に基づく構造を採用しているといえ る。
[0066] なお、レーザ素子 1の出射端面力 透明板 45の外側表面までの距離 D1を長くする ことにより、透明板 45におけるレーザ素子 41から出射する光の投射面積は広くなり、 ノ ッケージ 44に設ける開口 44aはその分、広くする必要がある。しかし、レーザ素子 1の出射角は、最大でも 30度程度であるため、開口 44aをさほど大きくする必要はな い。一方、上述の算出式から明らかなように、透明板 45の外側表面におけるパワー 密度は D1の二乗に反比例する。したがって、距離 D1を長くすることによって、パワー 密度を低下させ、透明板表面に埃や塵が吸い寄せられるのを防止する効果は大き い。
[0067] また、光ピックアップにおいて、レーザ光のパワー密度が最も高くなるのは、半導体 レーザのノ¾ /ケージに設けられた透明基板においてである。他の光学部品上では、 光が集光されていな力つたり、集光した光が入射する部分であっても、他の光学部品 を透過した後であるため、既に光が減衰しているからである。したがって、本発明の 半導体レーザを用いることによって、埃や塵が付着することによる、光ピックアップ全 体における光学系の光量の低減を最も効果的に防止することができ、埃や塵などの 影響を受けにくい光情報処理装置を実現することができる。
[0068] (第 2の実施形態)
図 6は、本発明による半導体レーザの第 2の実施形態の構造を示している。半導体 レーザ 62は、レーザ素子 41と、パッケージ 51と内側パッケージ 54と、透明板 53と、 内側透明板 55とを備えている。レーザ素子 41は、第 1の実施形態と同じ構造を備え ており、 lOOmW以上の出射レーザ出力で短波長のレーザ光を出射する。レーザ素 子 41はサブマウント 42の上に固定され、サブマウント 42は、端子ピン 46を介してス テム 57に固定される。また、ステム 57には他の端子 46が固定されており、ワイヤ 43 を用いてレーザ素子 41に電気的に接続されて 、る。
[0069] 内側透明板 55は、第 1の主面 55aおよび第 2の主面 55bを有し、レーザ素子 41か ら出射する光を透過する特性を備えている。内側パッケージ 54の開口を覆うように内 側透明板 55が内側パッケージ 54に設けられている。パッケージ 54は、レーザ素子 4 1を内包する空間 54sを規定しており、空間 54sにレーザ素子 41が位置するように内 側パッケージ 54がステム 57に固定されている。これにより、内側透明板 55の第 2の 主面 55bとレーザ素子 41の出射端面 41aとが対向するように、内側透明板 55が支持 される。
[0070] ノ¾ /ケージ 51は内側パッケージ 54を覆うように内側パッケージ 54の外側に設けら れている。本実施形態では、ステム 57にパッケージ 51を固定するためのステム 52が 取り付けられ、ステム 52とパッケージ 51とが接続されている。パッケージ 51には開口 力 S設けられ、開口を覆うように透明基板 53が取り付けられている。
[0071] 第 1の実施形態と同様、透明基板 53は、第 1の主面 53aおよび第 2の主面 53bを有 し、第 2の主面 53bがレーザ素子 41の出射端面 41aと対向している。また、透明基板 53の第 1の主面 53aとレーザ素子 41の出射端面 41aとの距離 D1が 1. 1mm以上と なるように透明板 53が支持されて 、る。レーザ素子 41の出射レーザ出力が 150mW 以上である場合には、距離 D1が 1. 35mm以上に設定される。
[0072] 半導体レーザ 62において、外部に曝される透明基板 53の第 1の主面 53aとレーザ 素子 41の出射端面 41aとの距離 D1が 1. 1mm以上に設定されている。このため、透 明基板 53の第 1の主面 53aにおけるパワー密度が 37mW以下となり、透明板 53の 表面に埃や塵が吸い寄せられるのを防止することができる。
[0073] 一方、内側透明基板 55の第 1の主面 55aとレーザ素子 41の出射端面 41aとの距 離は D1より短い。このため、内側透明基板 55の第 1の主面 55aにおけるパワー密度 は 37mWを超える。しかし、内側透明基板 55は外部には露出されておらず、外気と 接触しないため、埃や塵が内側透明基板 55に付着することはない。
[0074] 半導体レーザ 62において、パッケージ 51、ステム 52および透明板 53を除く他の構 造は、従来の半導体レーザと同様の構造を備えていてもよい。つまり、出射レーザ出 力は lOOmW以上であるが、パッケージに設けられた透明板の外側表面とレーザ素 子の出射端面との間隔が 1. 1mmよりも短くなつている半導体レーザを用いてもよい 。このような従来の半導体レーザを用い、外側を新たなパッケージで覆うことによって 、半導体レーザ 62を得ることができる。このため、既存のパッケージを利用したり、既 にパッケージに収められた半導体レーザを利用して半導体レーザ 62を作製すること ができる。
[0075] 半導体レーザ 62によれば、第 1の実施形態と同様の効果を得ることができる。また、 半導体レーザ 62を第 1の実施形態で説明したように、光情報処理装置に用いること により、埃や塵などの影響を受けにくい光学ヘッドや光情報処理装置を実現すること ができる。
[0076] (第 3の実施形態)
図 7は、本発明による半導体レーザの第 3の実施形態の構造を示している。図 7は、 半導体レーザ 63をレーザ光が出射する面力 見た平面図である。
[0077] 半導体レーザ 63は、レーザ素子 41、レーザ素子 102およびレーザ素子 104を備え て 、る。これらのレーザ素子が出射する光の波長は好ましくは互いに異なって!/、る。 具体的には、レーザ素子 41は、 415nm以下の波長の光を出射し、レーザ素子 102 は、 630nm以上 680nm以下の波長の光を出射する。またレーザ素子 104は、 780 nm以上 820nm以下の波長の光を出射する。たとえば、レーザ素子 41、 102および 104が出射する光の波長は、それぞれ、 405nm、 650nmおよび 790nmである。
[0078] 半導体レーザ 63は、これらの素子を内包するパッケージ 107とステム 106とを備え 、第 1の実施形態で説明したように、レーザ素子 41、レーザ素子 102およびレーザ素 子 104はそれぞれサブマウントを介して端子に固定されている。パッケージ 107には レーザ素子 41、レーザ素子 102およびレーザ素子 104から出射する光を外部へ導く ための開口が設けられており、それぞれの開口を透明板 103、 102および 101が覆 つている。
[0079] レーザ素子 41の出射端面と透明板 103の外側表面との距離 D1は、第 1の実施形 態で説明したように 1. 1mm以上に設定されている。より具体的には、レーザ素子 41 の出射レーザ出力が lOOmW以上である場合には、距離 D1は 1. 1mm以上であり、 レーザ素子 41の出射レーザ出力が 150mW以上である場合には、距離 D1は 1. 35 mm以上である。
[0080] 一方、レーザ素子 102およびレーザ素子 104の出射端面と透明板 102および 101 の外側表面との間隔に特に制限はない。レーザ素子 41の出射端面と透明板 103の 外側表面との距離と一致して 、てもよ 、し、異なって!/、てもよ!/、。
[0081] 半導体レーザ 63は異なる 3つの波長の光源を備えている。このため、半導体レーザ 63を用いて、光学系の構造が簡単であり、たとえば、 CD、 DVDおよび BDに記録お よび再生の少なくとも一方を行うことのできる光ピックアップが実現する。また、第 1の 実施形態で説明したように、レーザ素子 41の出射端面と透明板 103の外側表面との 間隔を所定の値にしているため、短波長の光を出射するものの、透明板 103の表面 に埃や塵が付着しに《なっている。したがって、光ピックアップ全体における光学系 の光量の低減を最も効果的に防止することができ、埃や塵などの影響を受けにくい 光情報処理装置を実現することができる。
[0082] また、半導体レーザ 63は異なる 3つの波長の光源を備えている。このため、上述し たように、光学系の構造を簡単にすることができるという利点がある力 3つの波長の 光源のうち 1つに不具合が生じた場合には、半導体レーザ 63全体を交換等する必要 力 S生じる。つまり、埃や塵が付着することによる光量の低下が BD用の光源に生じた 場合、 CDや DVD用の光源はまったく正常に機能していても半導体レーザ全体を交 換する必要が生じる。しかし、本発明によれば、 BD用光源の光量が塵や埃によって 低下するのを防止することができる。したがって、それぞれの光源の性能を有効に発 揮させ、半導体レーザ全体としての信頼性を高めるとともに、寿命を長くすることがで きる。
[0083] (第 4の実施形態)
これまで説明してきた実施形態では、半導体レーザは、半導体レーザのパッケージ の窓ガラスにおける光パワー密度を低減させることにより、埃や塵が窓ガラスに付着 しにくい構造を備えていた。これに対し、本実施形態では、窓ガラスに埃や塵が付着 しにくいコーティングが施されており、これにより埃や塵などの影響が生じにくい光学 ヘッドや光情報処理装置を実現する。
[0084] 図 8は、本発明の半導体レーザの第 4の実施形態の構造を示している。半導体レー ザ 64は、レーザ素子 41と、レーザ素子 41を内包するパッケージ 44と、パッケージ 44 に設けられた透明板 45とを備えている。
[0085] レーザ素子 41は、第 1の実施形態と同様の構造を備え、短波長の光を出射する。
レーザ素子 41はサブマウント 42の上に固定され、サブマウント 42は、端子ピン 46を 介してステム 47に固定される。また、ステム 47には他の端子 46が固定されており、ヮ ィャ 43を用いてレーザ素子 41に電気的に接続されて 、る。
[0086] 透明板 45は、第 1の主面 45aおよび第 2の主面 45bを有し、レーザ素子 41から出 射する光を透過する特性を備えている。ノ ッケージ 44は開口 44aを有し、開口 44aを 覆うように透明板 45がパッケージ 44に設けられている。ノ ッケージ 44は、レーザ素 子 41を内包する空間 44sを規定しており、空間 44sにレーザ素子 41が位置するよう にパッケージ 44がステム 47に固定されることにより、透明板 45の第 2の主面 45bとレ 一ザ素子 41の出射端面 41aとが対向するように、透明板 45を支持する。また、レー ザ素子 41の出射端面 41aから出射するレーザ光が透明板 45を透過して、開口 44a 力 半導体レーザ 1の外部へ出射するようにレーザ素子 41の位置が決定されている 。透明板 45の第 2の主面 45bとレーザ素子 41の出射端面 41aとの間隔 D1 'は本実 施形態では特に制限はない。透明板 45の第 1の主面 45a側の最表面には、五酸ィ匕 ニオブ (Nb O )からなる膜 110が設けられている。膜 110は透明板 45の最表面に位
2 5
置していればよぐ膜 110と透明板 45の第 1の主面 45aとの間に他の膜が設けられて いてもよい。
[0087] 五酸ィ匕ニオブ力もなる膜は、無反射コート (反射防止膜)として用いることができるこ とが知られている。しかし、このような無反射コートは、半導体レーザの場合、透明板 4 5の第 2の主面 45b側に設けられるのが一般的である。しかし、本実施形態では、五 酸ィ匕ニオブ力もなる膜 110を透明板 45の第 1の主面 45a側の最表面に設けることに 特徴がある。また、無反射コートとしては MgF力もなる膜が知られている力 MgFか
2 2 らなる膜は以下において説明するような機能を有さない。
[0088] 膜 110の働きは、詳細には不明であるが、波長の短い光によって活性化した埃や 塵がなんらかの作用により、膜 110の表面において不活性ィ匕されるなどの理由により 、膜 110の表面に付着しにくくなるものと考えられる。このような機能は、膜 110の表 面状態に関連していると考えられるため、膜 110が透明板 45の最表面全体を覆って いる限り、膜 110の厚さに特に制限はなぐどのような厚さを有していてもよい。ただし 、膜 110を形成する生産性および膜 110における出射光の減衰の観点から、膜 110 の厚さは、 25nmから 75nm程度であることが好ましい。
[0089] 図 9は、出射レーザ出力の異なる 3つの半導体レーザを用いて半導体レーザに発 振動作を行わせた場合における、照射時間と半導体レーザのパッケージに設けられ た透明板に埃が付着することにより生じる透過率の減少率との関係を示すグラフであ る。
[0090] 直線 108、 109および 110はそれぞれ出射レーザ出力が 50mW、 lOOmWおよび 150mWの青色半導体レーザを用いて得られた結果を示して 、る。 、ずれの半導体 レーザにおいても透明板の最表面に厚さ 50nmの五酸ィ匕ニオブ力 なる膜 110が形 成されている。図 8に示すように、透明板の外側の主面と半導体素子の出射端面との 距離 D1,は!、ずれも 0. 8mmに設定して!/、る。
[0091] 第 1の実施形態において説明したように、透明板の外側の主面と半導体素子の出 射端面との距離 D1 'が 0. 8mmである場合、図 4に示すように、出射レーザ出力が 5 OmW、 lOOmWおよび 150mWの青色半導体レーザでは照射時間が 1000時間に なると、透明板における透過率の減少力 それぞれ、 0. 5%、 1%および 2%となる。
[0092] これに対し、図 9に示すように、五酸ィ匕ニオブ力 なる膜 110を設けることによって、 透過率の減少が、約 0. 1%、 0. 25%、および 0. 5%に抑制されている。したがって 、出射レーザ出力が lOOmWおよび 150mWの青色半導体レーザであっても、透過 率の減少が 0. 5%以下に抑制され、透過率の減少が実用上問題とならないレベルを 達成することが可能となる。
[0093] したがって、本実施形態の半導体レーザによれば、窓ガラスである透明板に埃や塵 が付着するのを抑制することができ、半導体レーザから出射する光の光量が低減す るのを防止することができる。また、本発明の半導体レーザを用いることによって、埃 や塵が付着することによる、光ピックアップ全体における光学系の光量の低減を最も 効果的に防止することができ、埃や塵などの影響を受けにくい光情報処理装置を実 現することができる。
[0094] 本実施形態で用いた五酸ィ匕ニオブ力 なる膜 110は、光ピックアップ中の他の光学 部品に設けてもよい。特に、半導体レーザにおけるレーザ光が出射する窓ガラスと同 様、光パワー密度の高くなる光学素子に用いるのが効果的である。たとえば、図 1に おける対物レンズ 8の光情報記録媒体 9に面した表面 8aやミラー 7に面した表面 8b に設けてもよいし、受光素子 12、 13、 14の受光面 12a、 13a、 14aに設けてもよい。 これらの部分に五酸ィ匕ニオブ力もなる膜を設けることにより、光ビームのエネルギー による埃や塵の付着を抑制することが可能となる。
[0095] また、本実施形態は、第 1から第 3の実施形態の半導体レーザと好適に組み合わせ ることができる。たとえば、図 2に示す半導体レーザ 1において、透明板 45の第 1の主 面 45a側に五酸ィ匕ニオブ力もなる膜を設けてもよい。これにより、より一層、埃や塵の 付着を抑制することが可能となる。また、そのような半導体レーザを用いることにより、 埃や塵などの影響を受けにくい光学ヘッドや光情報処理装置を実現することができ る。
産業上の利用可能性
[0096] 本発明は、短波長の光を出射し、高い出射レーザ出力で駆動される半導体レーザ に好適に用いられる。このような半導体レーザは、光情報処理装置などの情報記録 装置、レーザメス等の医療分野、レーザによる切削などの加工技術分野に好適に用 いられる。

Claims

請求の範囲
[1] 出射端面を有し、前記出射端面力 第 1の波長のレーザ光を出射する第 1のレー ザ素子と、
第 1および第 2の主面を有し、前記レーザ光を透過する特性を有する透明板と、 前記第 1のレーザ素子の出射端面と前記透明板の第 2の主面とが対向するように、 前記透明板を支持し、前記レーザ素子を内包するパッケージと、
を備え、
前記第 1のレーザ素子の出射端面と前記透明板の第 1の主面との間隔が 1. lmm 以上である半導体レーザ。
[2] 前記第 1の波長は、青色または青色より短い波長である請求項 1に記載の半導体レ 一ザ
[3] 前記第 1のレーザ素子は、 lOOmW以上の光学出力で前記レーザ光を出射する請 求項 1に記載の半導体レーザ。
[4] 前記第 1のレーザ素子の出射端面と前記透明板の第 1の主面との間隔が 1. 35m m以上である請求項 1に記載の半導体レーザ。
[5] 前記第 1のレーザ素子は、 150mW以上の光学出力で前記レーザ光を出射する請 求項 4に記載の半導体レーザ。
[6] 前記第 1のレーザ素子が出射レーザ光の前記透明板の第 1の主面におけるパワー 密度が、 37mWZmm2以下である請求項 1に記載の半導体レーザ。
[7] 前記第 1のレーザ光の第 1の波長は 415nm以下である請求項 1に記載の半導体レ 一ザ
[8] 出射端面を有し、前記出射端面力 第 1の波長とは異なる第 2の波長のレーザ光を 出射する第 2のレーザ素子をさらに備え、
前記第 2のレーザ素子は、前記第 2のレーザ素子の出射端面と前記透明板の第 2 の主面とが対向するようにパッケージ内に内包されている請求項 1に記載の半導体レ 一ザ
[9] 出射端面を有し、前記出射端面力 第 1および第 2の波長とは異なる第 3の波長の レーザ光を出射する第 3のレーザ素子をさらに備え、 前記第 3のレーザ素子は、前記第 3のレーザ素子の出射端面と前記透明板の第 3 の主面とが対向するようにパッケージ内に内包されており、
前記第 1の波長は、 415nm以下であり、前記第 2の波長は、 630nm以上 680nm 以下であり、前記第 3の波長は、 780nm以上 820nm以下である請求項 8に記載の 半導体レーザ。
[10] 第 1および第 2の主面を有し、前記レーザ光を透過する物質からなる内側透明板と 前記パッケージ内において、前記第 1のレーザ素子の出射端面と前記内側透明板 の第 2の主面とが対向するように、前記内側透明板を支持し、かつ、前記第 1のレー ザ素子を内包する内側パッケージと、
をさらに備える請求項 1に記載の半導体レーザ。
[11] 前記透明板の第 1の主面側において外部に露出するように設けられており、五酸ィ匕 ニオブ力 なる膜をさらに備える請求項 1に記載の半導体レーザ。
[12] 請求項 1に規定される半導体レーザと、
前記半導体レーザから出射するレーザ光を、光情報記録媒体に向けて集光する集 光部と、
を備えた光ピックアップ。
[13] 前記集光部の表面に設けられており、五酸ィ匕ニオブ力 なる膜をさらに備える請求 項 12に記載の光ピックアップ。
[14] 前記光情報記録媒体に向けて集光されたレーザ光が前記光情報記録媒体におい て反射することにより得られた反射光を検出するための受光面を有する受光素子と、 前記受光面の表面に設けられており、五酸ィ匕ニオブ力 なる膜と、
をさらに備えた請求項 12に記載の光ピックアップ。
[15] 請求項 12に規定される光ピックアップを備えた光情報処理装置。
PCT/JP2006/304888 2005-03-14 2006-03-13 半導体レーザ、光ピックアップおよび光情報処理装置 WO2006098267A1 (ja)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2005-070673 2005-03-14
JP2005070673 2005-03-14
JP2005-076807 2005-03-17
JP2005076807A JP2008135411A (ja) 2005-03-17 2005-03-17 半導体レーザ素子、対物レンズ、光学ヘッド及び光情報記録再生装置
JP2005-228164 2005-08-05
JP2005228164A JP2008135079A (ja) 2005-03-14 2005-08-05 半導体レーザ、光学ヘッド及び光情報記録再生装置

Publications (1)

Publication Number Publication Date
WO2006098267A1 true WO2006098267A1 (ja) 2006-09-21

Family

ID=36991609

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/304888 WO2006098267A1 (ja) 2005-03-14 2006-03-13 半導体レーザ、光ピックアップおよび光情報処理装置

Country Status (1)

Country Link
WO (1) WO2006098267A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102313220A (zh) * 2010-05-17 2012-01-11 夏普株式会社 发光装置、照明装置以及车辆用前照灯
US8569942B2 (en) 2009-12-17 2013-10-29 Sharp Kabushiki Kaisha Vehicle headlamp and illuminating device
US8733996B2 (en) 2010-05-17 2014-05-27 Sharp Kabushiki Kaisha Light emitting device, illuminating device, and vehicle headlamp
US8833991B2 (en) 2010-02-10 2014-09-16 Sharp Kabushiki Kaisha Light emitting device, with light guide member having smaller exit section, and illuminating device, and vehicle headlight including the same
US9816677B2 (en) 2010-10-29 2017-11-14 Sharp Kabushiki Kaisha Light emitting device, vehicle headlamp, illumination device, and laser element

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61216380A (ja) * 1985-03-20 1986-09-26 Fuji Photo Film Co Ltd 半導体レ−ザ光源装置
JP2000063548A (ja) * 1998-08-25 2000-02-29 Konica Corp プラスティック支持体の表面処理方法、磁気記録媒体及びハロゲン化銀写真感光材料
JP2001264832A (ja) * 2000-03-22 2001-09-26 Matsushita Electric Ind Co Ltd 短波長レーザ光源
JP2003059087A (ja) * 2001-08-15 2003-02-28 Sony Corp 光学素子、半導体レーザ、光検出器、光学ヘッドおよび光ディスク再生装置
JP2004119580A (ja) * 2002-09-25 2004-04-15 Sharp Corp 多波長レーザ装置
JP2004128058A (ja) * 2002-09-30 2004-04-22 Fuji Photo Film Co Ltd レーザ装置
JP2004252425A (ja) * 2003-01-31 2004-09-09 Fuji Photo Film Co Ltd レーザモジュールおよびその製造方法
JP2004344688A (ja) * 2003-05-19 2004-12-09 Asahi Kasei Chemicals Corp 塗布用シ−ト

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61216380A (ja) * 1985-03-20 1986-09-26 Fuji Photo Film Co Ltd 半導体レ−ザ光源装置
JP2000063548A (ja) * 1998-08-25 2000-02-29 Konica Corp プラスティック支持体の表面処理方法、磁気記録媒体及びハロゲン化銀写真感光材料
JP2001264832A (ja) * 2000-03-22 2001-09-26 Matsushita Electric Ind Co Ltd 短波長レーザ光源
JP2003059087A (ja) * 2001-08-15 2003-02-28 Sony Corp 光学素子、半導体レーザ、光検出器、光学ヘッドおよび光ディスク再生装置
JP2004119580A (ja) * 2002-09-25 2004-04-15 Sharp Corp 多波長レーザ装置
JP2004128058A (ja) * 2002-09-30 2004-04-22 Fuji Photo Film Co Ltd レーザ装置
JP2004252425A (ja) * 2003-01-31 2004-09-09 Fuji Photo Film Co Ltd レーザモジュールおよびその製造方法
JP2004344688A (ja) * 2003-05-19 2004-12-09 Asahi Kasei Chemicals Corp 塗布用シ−ト

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8569942B2 (en) 2009-12-17 2013-10-29 Sharp Kabushiki Kaisha Vehicle headlamp and illuminating device
US8876344B2 (en) 2009-12-17 2014-11-04 Sharp Kabushiki Kaisha Vehicle headlamp with excitation light source, light emitting part and light projection section
US8833991B2 (en) 2010-02-10 2014-09-16 Sharp Kabushiki Kaisha Light emitting device, with light guide member having smaller exit section, and illuminating device, and vehicle headlight including the same
CN102313220A (zh) * 2010-05-17 2012-01-11 夏普株式会社 发光装置、照明装置以及车辆用前照灯
US8733996B2 (en) 2010-05-17 2014-05-27 Sharp Kabushiki Kaisha Light emitting device, illuminating device, and vehicle headlamp
US9816677B2 (en) 2010-10-29 2017-11-14 Sharp Kabushiki Kaisha Light emitting device, vehicle headlamp, illumination device, and laser element
US10281102B2 (en) 2010-10-29 2019-05-07 Sharp Kabushiki Kaisha Light emitting device, vehicle headlamp, illumination device, and laser element
US10465873B2 (en) 2010-10-29 2019-11-05 Sharp Kabushiki Kaisha Light emitting device, vehicle headlamp, illumination device, and laser element

Similar Documents

Publication Publication Date Title
US6747939B2 (en) Semiconductor laser device and optical pickup device using the same
KR100195137B1 (ko) 호환형 광픽업장치
JP2002100070A (ja) 互換型光ピックアップ装置
WO2006098267A1 (ja) 半導体レーザ、光ピックアップおよび光情報処理装置
JP2008135411A (ja) 半導体レーザ素子、対物レンズ、光学ヘッド及び光情報記録再生装置
JP2000348367A (ja) 光学ユニットおよび光ピックアップ
JP2005235276A (ja) 光ヘッド、光再生装置及び光記録再生装置
KR100294886B1 (ko) 호환형 광픽업장치
JP2000021001A (ja) 光ピックアップ装置
JP2001319358A (ja) 光ピックアップ
KR101727520B1 (ko) 회절 소자를 갖는 광 픽업 장치 및 이를 구비한 광 기록 및 재생 장치
JP4584382B2 (ja) 光ピックアップ装置
JPH10208275A (ja) 光ピックアップ
JP2001155366A (ja) 光ヘッドおよび光ヘッドの製造方法
JP2008135079A (ja) 半導体レーザ、光学ヘッド及び光情報記録再生装置
JP4470042B2 (ja) 光ピックアップ装置
JP3854768B2 (ja) 光ピックアップ及び光学的情報再生装置
KR100486291B1 (ko) 호환형 광픽업장치
JP4116258B2 (ja) 偏光分離素子、半導体レーザユニット及び光ピックアップ装置
KR100655547B1 (ko) 광 픽업 장치
JP2006260640A (ja) 光ピックアップおよび光ディスク装置
JP2010152976A (ja) 光ピックアップ装置用の光学素子及び光ピックアップ装置
JP2007242116A (ja) 光ピックアップ装置
JP2008176823A (ja) 光ディスク記録再生装置
JP2006134502A (ja) 光ピックアップ装置及びそれを用いた光情報記録再生装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06715611

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP