WO2006095548A1 - ファイバブラッググレーティング素子 - Google Patents

ファイバブラッググレーティング素子 Download PDF

Info

Publication number
WO2006095548A1
WO2006095548A1 PCT/JP2006/302746 JP2006302746W WO2006095548A1 WO 2006095548 A1 WO2006095548 A1 WO 2006095548A1 JP 2006302746 W JP2006302746 W JP 2006302746W WO 2006095548 A1 WO2006095548 A1 WO 2006095548A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber bragg
grating element
bragg grating
core
optical
Prior art date
Application number
PCT/JP2006/302746
Other languages
English (en)
French (fr)
Inventor
Yasuo Uemura
Kazuhiko Kashima
Toshiyuki Inukai
Original Assignee
The Furukawa Electric Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by The Furukawa Electric Co., Ltd. filed Critical The Furukawa Electric Co., Ltd.
Priority to US11/816,552 priority Critical patent/US7835604B2/en
Priority to EP06713887A priority patent/EP1860472A1/en
Priority to JP2007507024A priority patent/JPWO2006095548A1/ja
Publication of WO2006095548A1 publication Critical patent/WO2006095548A1/ja

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02057Optical fibres with cladding with or without a coating comprising gratings
    • G02B6/02076Refractive index modulation gratings, e.g. Bragg gratings
    • G02B6/0208Refractive index modulation gratings, e.g. Bragg gratings characterised by their structure, wavelength response
    • G02B6/02085Refractive index modulation gratings, e.g. Bragg gratings characterised by their structure, wavelength response characterised by the grating profile, e.g. chirped, apodised, tilted, helical
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02057Optical fibres with cladding with or without a coating comprising gratings
    • G02B6/02076Refractive index modulation gratings, e.g. Bragg gratings
    • G02B6/0208Refractive index modulation gratings, e.g. Bragg gratings characterised by their structure, wavelength response
    • G02B6/021Refractive index modulation gratings, e.g. Bragg gratings characterised by their structure, wavelength response characterised by the core or cladding or coating, e.g. materials, radial refractive index profiles, cladding shape
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/02057Optical fibres with cladding with or without a coating comprising gratings
    • G02B6/02076Refractive index modulation gratings, e.g. Bragg gratings
    • G02B6/02114Refractive index modulation gratings, e.g. Bragg gratings characterised by enhanced photosensitivity characteristics of the fibre, e.g. hydrogen loading, heat treatment
    • G02B6/02119Photosensitivity profiles determining the grating structure, e.g. radial or longitudinal

Definitions

  • the present invention relates to a fiber Bragg grating element having a function as an optical filter that performs high-bandwidth, high-blocking filtering on an input optical signal.
  • optical filters using a fiber Bragg grating have been widely used in optical communication devices in order to cut off a desired wavelength band (see Patent Document 1).
  • This FBG uses the “photo-induced refractive index change” that increases the refractive index when an optical fiber is irradiated with ultraviolet rays. By increasing this photo-induced refractive index change, a large blocking amount can be obtained.
  • the FBG is a periodic refractive index change formed on a fiber core, and this periodic refractive index change is formed by a method using a two-beam interference method or a phase mask. This periodic refractive index change reflects light in a region centered around the wavelength called the Bragg center wavelength.
  • the light in the region of the center wavelength of the lag will be blocked.
  • the Bragg center wavelength ⁇ ⁇ is
  • 2 ⁇ .
  • is the effective refractive index of the optical fiber, and ⁇ is periodic
  • FBGs are used not only for WD communication systems, but also as multiplexers / demultiplexers, line monitoring filters, temperature sensors, and strain sensors.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2002-328238
  • Fig. 14 shows the result of blocking light of approximately 1Onm band of 1650nm wavelength by chapter grating with a grating length of 7mm. Below the force indicated by the loss, this is called the cutoff amount).
  • Fig. 15 shows the result of blocking about lOnm band light with the same wavelength of 1650nm by chapter grating with a grating length of 13mm, and the blocking level is about 35-40dB.
  • the present invention has been made in view of the above, and an object thereof is to provide a fiber Bragg grating element capable of obtaining a high cutoff amount exceeding 40 dB in a wide band with a simple configuration.
  • the fiber Bragg grating element according to claim 1 forms a plurality of gratings in an optical waveguide having a core and a clad outside the core.
  • a fiber Bragg grating element that performs high cutoff filtering on an input optical signal in a desired wavelength band, and the pitch interval between adjacent gratings is directed toward the center in the length direction of the optical waveguide. It is formed to be wide and wide!
  • the fiber Bragg grating element according to claim 2 has a desired wavelength with respect to an input optical signal by forming a plurality of gratings in an optical waveguide having a core and a cladding outside the core.
  • a photosensitive material having sensitivity to ultraviolet rays is attached to the cladding region of the optical waveguide, and the same grating as the core region is formed. It is characterized by that.
  • the fiber Bragg grating element according to claim 4 is characterized in that the number of openings of the optical waveguide is 0.2 or more.
  • the fiber Bragg grating element according to claim 5 is provided with a ring-shaped region having a refractive index lower than that of the cladding region at a peripheral portion in the core region of the optical waveguide.
  • the grating is formed at least in the core region.
  • a grating is formed in at least the core region of the optical waveguide, and the grating is formed of a material having a refractive index higher than that of the cladding. A part or all of the core region is covered from the outside of the cladding.
  • the fiber grating element according to claim 7 is characterized in that a desired wavelength band is equal to or greater than lOnm.
  • the fiber grating element according to claim 8 is characterized in that it has a cutoff power OdB or more in a desired wavelength band.
  • the fiber Bragg grating element according to the present invention is formed so that the pitch interval between adjacent gratings becomes wider toward the center in the length direction. It has the effect of being able to obtain a high shutoff amount exceeding 40 dB stably.
  • FIG. 1 is a diagram showing a schematic configuration of an optical branch line monitoring system using a fiber Bragg grating element according to the present invention.
  • FIG. 2 is a diagram showing a transmission state of monitoring light and communication light on the ONU side.
  • FIG. 3 is a schematic diagram showing a configuration example of an FBG according to the first embodiment.
  • FIG. 4 is a schematic diagram showing the concept of a broadband filter based on FBG.
  • Fig. 5 is a diagram showing an experimental result of the cutoff characteristics by the FBG of the first embodiment.
  • Fig. 6 is a schematic diagram showing a configuration example of an FBG according to the second embodiment.
  • Fig. 7 is a diagram showing an experimental result of a cutoff characteristic by FBG of the second embodiment.
  • FIG. 8 is a block diagram showing an example of another system to which a fiber Bragg grating element that is useful in the present invention is applied.
  • FIG. 9 is a schematic diagram showing a configuration example of an FBG according to the third embodiment.
  • FIG. 10 is a schematic diagram showing a configuration example of an FBG according to the fourth embodiment.
  • FIG. 11 is a schematic diagram showing a configuration example of an FBG according to the fifth embodiment.
  • Fig. 12 is a diagram showing experimental results of the cutoff characteristics by the FBG of the fifth embodiment.
  • FIG. 13 is a schematic diagram showing a configuration example of an FBG according to a sixth embodiment.
  • FIG. 14 is a diagram showing the cutoff characteristics of a conventional broadband fiber Bragg grating element when the grating length is 7 mm.
  • FIG. 15 is a diagram showing the cutoff characteristics of a conventional broadband fiber Bragg grating element when the grating length shown in FIG. 14 is 13 mm.
  • FIG. 1 is a diagram showing a schematic configuration of an optical branch line monitoring system using a fiber Bragg grating element according to a first embodiment of the present invention.
  • a trunk optical line 22 is connected to the transmission apparatus 10, and the trunk optical line 22 is optically branched by an optical splitter 28 and branched into a plurality of trunk optical lines 22.
  • the branched main optical line 22 extends outside the station via the optical power bra 18, and is optically branched into the branch lines la to la by the outdoor optical splitter 3.
  • the optical splitter 3 has an optical line monitoring device (not shown).
  • the optical line monitoring device associates only the monitoring lights c to c with the branched optical lines la to La, respectively. Input and output.
  • the control unit 26 performs output control of the monitoring light of the variable wavelength output from the OTDR (Optical Time Domain Reflectometer) 2, outputs it to the fiber selector 25 (hereinafter referred to as FS), and controls reception measurement. Also do.
  • the OTDR2 is connected to the optical power bra 18 via the control unit 26 and the FS25.
  • Each ONU 20 is assigned a unique monitoring light wavelength.
  • FBG21-1 to 21-8 forces that block the output to the receiving side by reflecting the monitoring light in the wavelength band are provided in each ONU20.
  • Each of the FBGs 21-1 to 21-8 is an FBG having the same configuration and has a characteristic of blocking about 60 dB of the monitoring light in the about lOnm band.
  • the control unit 26 periodically emits monitoring light of ⁇ c to e c to be monitored
  • the FS 25 selects the trunk optical line 22 to be output.
  • the communication light having the wavelength b propagated from the transmission device 10 is input to the optical splitter 3 together with the monitoring light having the wavelength c, and the communication light having the wavelength b is separated.
  • the monitoring light of wavelength c is
  • the monitoring light of wavelength ⁇ c is reflected by the FBG21-1 wavelength ⁇
  • the communication light b is received as it is by the optical receiver 31-1, is converted into light Z by the OZE unit 32-1, and is input to the reception processing unit 33-1.
  • the communication light having the wavelength b reflected by the BG21-3 is received as it is by the light receiving unit 31-3, converted into light Z by the OZE unit 32-3, and input to the reception processing unit 33-3.
  • monitoring light such as wavelength c is input to the optical receivers 31-1 to 31-8,
  • the FBGs 21-1 to 21-8 have a cutoff amount of about 60 dB in the monitoring light wavelength band of about lOnm, so that the monitoring light can be reliably cut off.
  • the FBG 21-1 to 21-8 are fixed by a rule not shown or the like, and are provided in the connectors 30-1 to 30-8.
  • FBG21 (21-l to 21-8)
  • F BG21 has a grating pitch ⁇ corresponding to wavelengths c to c changing in the longitudinal direction.
  • FBG21 may be formed by using the wavelength of each monitoring light as the Bragg center wavelength for each of FBG21-1 to 21-8.
  • the FBG21 is formed so as to be widened by the force in the longitudinal center of the optical fiber forming the pitch ⁇ force FBG21 of adjacent gratings. According to such a grating structure, for example, it exists in a wide band from ⁇ c to e c.
  • FIG. 5 is a diagram showing the cutoff characteristics of FBG21.
  • the FBG21 blocks the input optical signal by 40 dB or more in a band of about 10 nm centering on 1650 nm.
  • the pitch of the grating of the FBG21 ⁇ force is formed so as to increase toward the center in the length direction of the optical fiber! Therefore, even in a wide band of about lOnm, a cutoff of about 40 dB or more Characteristics can be obtained.
  • FIG. 6 is a diagram showing a modification of FIG. 3, and shows an FBG unit 40 including FBG 21.
  • the outer peripheral force of the clad 42 of the FBG part 40 is covered by the high refractive index part 43 having a refractive index equal to or higher than the refractive index of the clad 42.
  • the high refractive index portion 43 is preferably the entire periphery of the FBG portion 21, but may be a part.
  • the member used for the high refractive index portion 43 is not particularly limited as long as it has a refractive index higher than the refractive index of the clad 42, for example, matting oil or an adhesive.
  • the high refractive index portion 43 may have a high V and refractive index higher than the refractive index of the core 41! /.
  • FIG. 7 is a diagram showing the cutoff characteristics of the FBG unit 40.
  • the matching oil is a high refractive index part 43, and the FBG part 40 blocks light input by 60 dB or more in a band of about lOnm centering on 1650nm. It is because the transmission loss fluctuates around -70 dB because it is the measurement limit.
  • the pitch human power FBG of adjacent gratings of the FBG 21 is formed, and is formed so as to be widened toward the center in the length direction of the optical fiber.
  • a cutoff characteristic of about 40 dB or more can be obtained even in a wide band of about lOnm.
  • FIG. 1 a force indicating a configuration in which the optical splitter 3 is branched in a multi-branch manner, as shown in FIG. 8, for a single branched optical line la to la that is not branched downstream from the optical splitter 28.
  • the ONU 20 may be directly connected, and the monitoring light may be transmitted and received via the optical power bra 18.
  • the monitoring light has a single wavelength (eg, c). This is OTD This is because the center wavelength shift of the light emitted by R2 is large, and a broadband FBG21 exceeding 1 nm per Bragg center wavelength is required.
  • the FBG 21 is formed on one optical fiber.
  • the grating was formed on one optical fiber so that the grating pitch ⁇ force widened toward the center in the length direction.
  • two optical fibers formed so that the grating pitch ⁇ is widened toward the end portion where the grating is not formed in one optical fiber are used, and the end portions of both are used.
  • FBG is formed by fusion splicing.
  • FIG. 9 shows a longitudinal sectional view of an FBG 21a according to the second embodiment of the present invention.
  • FB G21a is formed by fusion splicing two optical fibers 44 and 45, which are formed so that the grating pitch ⁇ is widened toward the ends by the end portions 44a and 45a.
  • this FBG21a is formed so as to become wider toward the center in the length direction of the pitch human power optical fiber of the grating (in FIG. 9, the end portions 44a and 45a of the optical fibers 44 and 45). Therefore, the same cutoff characteristics as those in the first embodiment can be obtained. That is, the cutoff characteristic of FBG21a in FIG. 9 is equivalent to that shown in FIG.
  • the UV irradiation width the length of the optical fiber irradiated with UV
  • a grating can be formed with high accuracy.
  • the same chapter grating is formed not only in the core but also in the cladding region.
  • FIG. 10 shows a longitudinal sectional view of the FBG portion 50 having the FBG 21b according to the third embodiment.
  • the FBG 21b is formed up to the cladding 52a which is a partial region of the cladding 52 in addition to the core 51.
  • FBG2 formed in this cladding 52a region By lb, the light propagated through the clad 52 leaks to the output side (in FIG. 10, on the right side of the page).
  • the formation of the chirped grating in the clad 52a region is obtained by adding approximately the same amount of Ge as the calorie added to the core 51 to the clad 52a region and forming a chief grating in the core 51 region.
  • the force of adding Ge to the cladding 52a is not limited to this. It is sufficient if the chapter grating can be formed in the region of the cladding 52a, for example, a material sensitive to ultraviolet rays such as phosphorus. May be added to the region of the cladding 52a. If necessary, the high refractive index portion 43 shown in FIG. 6 may be formed on the outer periphery of the cladding 52! /.
  • the FBG unit 50 capable of obtaining a cutoff characteristic of about 40 dB or more even in a high band of about lOnm is realized. it can
  • Embodiment 4 will be described.
  • a chief grating is formed in the region of the clad 52.
  • the refractive index of the core region is made higher than usual.
  • FIG. 11 shows a longitudinal sectional view of the FBG portion 60 having the FBG 21c according to the fourth embodiment of the present invention.
  • the FBG section 60 forms an FBG 21c that is a chapter grating in the area of the core 61, like the core 41 of the first embodiment.
  • the core 61 preferably has a higher refractive index than the clad 62, and for example, the numerical aperture (NA) is preferably 0.2 or more.
  • the high refractive index portion 43 shown in FIG. 6 may be formed on the outer periphery of the clad 62 as necessary.
  • FIG. 12 is a diagram showing the cutoff characteristics of the FBG21c using a fiber having a numerical aperture of 0.34. As shown in FIG. 12, this Embodiment 4 also achieves a cutoff of about 40 dB or more in a wide band of about 10 ⁇ m centered at 1650 nm.
  • the area of the core 61 is
  • the refractive index of the peripheral region in the core region is set lower than that of the cladding region.
  • FIG. 13 shows a longitudinal sectional view of the FBG unit 70 having the FBG 21d according to the fifth embodiment.
  • the FBG portion 70 forms a FBG 21d that is a chapter grating in the region of the core 71 in the same manner as the core 41 of the first embodiment.
  • the refractive index of the peripheral region in the core 71 region is set lower than the refractive index of the region of the cladding 72 so that the profile thereof is a W type (displaced clad fiber).
  • the clad mode generated in the clad 72 is prevented from coupling.
  • the clad mode itself may not exist by providing the high refractive index portion 73. In any case, the influence of the clad mode can be removed, so that the cutoff characteristics can be greatly improved.
  • the FBG unit 70 that can obtain a cutoff characteristic of about 40 dB or higher even in a high band of about lOnm.
  • the present invention can be easily applied to an optical communication apparatus that requires an optical filter that performs high-bandwidth, high-blocking filtering on an input optical signal.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Light Guides In General And Applications Therefor (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

 簡易な構成で、広帯域において40dBを越える高遮断量を得ることができるファイバブラッググレーティング素子を提供することにある。  本発明のファイバブラッググレーティング素子は、コアと、コアの外側にクラッドを備えた光導波路に複数のチャープトグレーティングを形成することにより、入力される光信号に対し、所望の波長帯域で高遮断のフィルタリングを行うものであって、隣り合うグレーティングのピッチ間隔Λが、光ファイバの長さ方向の中心に向かって広くなるように形成されている。

Description

明 細 書
ファイバブラッググレーティング素子
技術分野
[0001] この発明は、入力される光信号に対し、広帯域で高遮断のフィルタリングを行う光フ ィルタとしての機能を有したファイバブラッググレーティング素子に関するものである。 背景技術
[0002] 従来から、光通信装置では、所望の波長帯域を遮断するためにファイバブラッググ レーティング(FBG ;F¾er Bragg Grating)を用いた光フィルタが多用されている(特許 文献 1を参照)。この FBGは、光ファイバに紫外線を照射すると屈折率が上昇する「 光誘起屈折率変化」を利用したものであり、この光誘起屈折率変化を大きくすること によって大きな遮断量を得ることができる。 FBGは、ファイバコア上に周期的な屈折 率変化を形成したものであり、この周期的な屈折率変化は、二光束干渉法やフエ一 ズマスクを用いた方法によって形成される。この周期的な屈折率変化によって、ブラ ッグ中心波長と呼ばれる波長え を中心とした領域の光が反射され、結果的にこのブ
B
ラッグ中心波長え 領域の光が遮断されることになる。なお、ブラッグ中心波長 λ Βは
Β
、 λ = 2η Λで表される。ここで、 ηは光ファイバの実効屈折率であり、 Λは周期的な
Β
屈折率変化の間隔を意味するグレーティングピッチである。このような FBGは、 WD Μ通信システム以外にも、合分波器、線路監視用フィルタ、温度センサ、ひずみセン サとしても用いられる。
[0003] 特許文献 1:特開 2002— 328238号公報
発明の開示
発明が解決しょうとする課題
[0004] ところで、約 lOnm程度の広帯域で光信号を遮断しょうとする場合、 FBGをチヤ一 ブトグレーティングとし、さらにこの帯域で大きな遮断量を得ようとする場合、グレーテ イング長を長くすることによって大きな遮断量を実現している。たとえば、図 14は、波 長 1650nm帯の約 lOnm帯域の光をグレーティング長が 7mmのチヤープトグレーテ イングによって遮断した結果を示しており、約 30〜35dBの遮断量(図では、透過損 失で示している力 以下ではこれを遮断量という)を得ている。そして、図 15は、同じ 波長 1650nm帯の約 lOnm帯域の光をグレーティング長が 13mmのチヤープトグレ 一ティングによって遮断した結果を示しており、約 35〜40dB程度の遮断量を得てい る。
[0005] し力しながら、チヤ一ブトグレーティング長を約 2倍にした場合、遮断量も約 2倍とな つて約 80dB程度の遮断量が得られると期待されるにもかかわらず、図 15に示した遮 断量は、若干(5dB程度)の遮断量増加となっているに過ぎない。すなわち、単にチ ヤーブトグレーティング長を長くしても大きな遮断量を得るには限界がある。
[0006] 一方、近年の光通信分野などでは、監視通信系の光を実通信系の光と確実に分 離する必要があり、この監視通信系の光が実通信系の光に漏れることによる実通信 への影響を極力なくすため、たとえば、広帯域で安定した 40dB程度の遮断量が要 求される場合がある。このため、広帯域で安定して 40dBを越える遮断量が得られる F BGの出現が要望されて!ヽた。
[0007] この発明は、上記に鑑みてなされたものであって、簡易な構成で、広帯域において 40dBを越える高遮断量を得ることができるファイバブラッググレーティング素子を提 供することを目的とする。
課題を解決するための手段
[0008] 上述した課題を解決し、 目的を達成するために、請求項 1にかかるファイバブラッググ レーティング素子は、コアと、コアの外側にクラッドを備えた光導波路に複数のグレー ティングを形成することにより、入力される光信号に対し、所望の波長帯域で高遮断 のフィルタリングを行うファイバブラッググレーティング素子であって、隣り合うグレーテ イングのピッチ間隔が、前記光導波路の長さ方向の中心に向かって広くなるように形 成されて!/ヽることを特徴とする。
[0009] また、請求項 2にかかるファイバブラッググレーティング素子は、コアと、コアの外側 にクラッドを備えた光導波路に複数のグレーティングを形成することにより、入力され る光信号に対し、所望の波長帯域で高遮断のフィルタリングを行うファイバブラッググ レーティング素子であって、前記光導波路は、端部に向かって隣り合うグレーティング のピッチ間隔が広くなるように形成された 2本の光ファイバの前記端部同士を接続さ せることにより形成されることを特徴とする。
[0010] また、請求項 3にかかるファイバブラッググレーティング素子は、前記光導波路のク ラッド領域に、紫外線に対して感光性を有する感光性材料を添付し、前記コア領域と 同じグレーティングを形成させたことを特徴とする。
[0011] また、請求項 4に力かるファイバブラッググレーティング素子は、前記光導波路の開 口数が 0. 2以上であることを特徴とする。
[0012] また、請求項 5にかかるファイバブラッググレーティング素子は、前記光導波路のコ ァ領域内の周縁部に前記クラッド領域に比して屈折率が低いリング状の領域を設け
、少なくとも前記コア領域にグレーティングを形成したことを特徴とする。
[0013] また、請求項 6にかかるファイバブラッググレーティング素子は、前記光導波路の少 なくとも前記コア領域にグレーティングが形成され、前記クラッドの屈折率以上の屈折 率をもつ材料によって前記グレーティングが形成されたコア領域の一部あるいは全部 を前記クラッドの外側から覆うことを特徴とする。
[0014] また、請求項 7にかかるファイバグレーティング素子は、所望の波長帯域が lOnm以 上であることを特徴とする。
[0015] また、請求項 8にかかるファイバグレーティング素子は、所望の波長帯域での遮断 量力 OdB以上であることを特徴とする。
発明の効果
[0016] この発明に力かるファイバブラッググレーティング素子は、隣り合うグレーティングの ピッチ間隔が、長さ方向の中心に向力つて広くなるように形成されているので、簡易 な構成で、任意の広帯域で安定して 40dBを越える高遮断量を得ることができると ヽ う効果を奏する。
図面の簡単な説明
[0017] [図 1]本発明にかかるファイバブラッググレーティング素子を用いた光分岐線路監視 システムの概要構成を示す図である。
[図 2]ONU側における監視光と通信光との伝送状態を示す図である。
[図 3]実施の形態 1である FBGの一構成例を示す模式図である。
[図 4]FBGによる広帯域フィルタの概念を示す模式図である。 [図 5]実施の形態 1の FBGによる遮断特性の実験結果を示す図である。
[図 6]実施の形態 2である FBGの一構成例を示す模式図である。
[図 7]実施の形態 2の FBGによる遮断特性の実験結果を示す図である。
[図 8]本発明に力かるファイバブラッググレーティング素子が適用される他のシステム の一例を示すブロック図である。
[図 9]実施の形態 3である FBGの一構成例を示す模式図である。
[図 10]実施の形態 4である FBGの一構成例を示す模式図である。
[図 11]実施の形態 5である FBGの一構成例を示す模式図である。
[図 12]実施の形態 5の FBGによる遮断特性の実験結果を示す図である。
[図 13]実施の形態 6である FBGの一構成例を示す模式図である。
[図 14]グレーティング長を 7mmとした場合における従来の広帯域のファイバブラッグ グレーティング素子の遮断特性を示す図である。
[図 15]図 14に示したグレーティング長を 13mmとした場合における従来の広帯域の ファイバブラッググレーティング素子の遮断特性を示す図である。
符号の説明
la〜la 分岐光線路
1 8
2 OTDR
3, 28 光スプリッタ
10 伝送装置
18 光力プラ
20 ONU
21, 21— 1〜21— 8, 21a, 21b, 21c, 21d FBG
22 幹線光線路
24 ユーザ
25 ファイノ セレクタ
26 制御部
30- 1, 30- 3 光コネクタ
31 - 1, 31 - 3 光受信部 32- 1, 32- 3 ΟΖΕ部
33 - 1, 33 - 3 受信処理部
40, 50, 60, 70 FBG部
41, 51, 61, 71 コア
42, 52, 62, 72 クラッド、
43, 73 高屈折率部
44, 45 光ファイノく
44a, 45a 端部
l a, l b 通信光の波長
〜え c 監視光の波長
1 8
発明を実施するための最良の形態
[0019] 以下、この発明を実施するための最良の形態であるファイバブラッググレーティング 素子について説明する。
[0020] (実施の形態 1)
図 1は、この発明の実施の形態 1にかかるファイバブラッググレーティング素子を用 V、た光分岐線路監視システムの概要構成を示す図である。この光分岐線路監視シス テムは、伝送装置 10に幹線光線路 22が接続され、この幹線光線路 22は、光スプリツ タ 28によって光多分岐され、複数の幹線光線路 22に分岐される。この分岐された幹 線光線路 22は、光力ブラ 18を介して局外に延び、屋外の光スプリッタ 3によって各分 岐線路 la〜laに光多分岐される。光多分岐された各分岐光線路 la
1 8 1〜laは、ュ
8 一ザ 24内の各 ONU (Optical Network Unit) 20に接続される。なお、この光スプリツ タ 3は、図示しない光線路監視用デバイスを有し、この光線路監視用デバイスは、監 視光え c〜え cのみをそれぞれ各分岐光線路 la〜: Laに対応させて入出力する。
[0021] 制御部 26は、 OTDR (Optical Time Domain Reflectometer) 2が出力する可変波長 の監視光の出力制御を行い、ファイバセレクタ 25 (以下 FSと呼ぶ)に出力するととも に、受信計測の制御をも行う。 OTDR2は、この制御部 26および FS25を介して光力 ブラ 18に接続される。
[0022] 各 ONU20には、それぞれ固有の監視光波長が割り当てられ、それぞれの監視光 波長帯域の監視光を反射することで受信側に出力されるのを遮断する FBG21— 1 〜21— 8力 各 ONU20内に設けられている。なお、各 FBG21— 1〜21— 8は、同 じ構成の FBGであり、約 lOnm帯域の監視光を約 60dB遮断する特性を有する。
[0023] 制御部 26は、監視すべき λ c〜え cの監視光を周期的に出射させ、光力ブラ 18を
1 8
介して幹線光線路 22に出力される。この際、 FS25は、出力すべき幹線光線路 22を 選択する。光力ブラ 18において、伝送装置 10から伝搬した波長え bの通信光は、た とえば波長え cの監視光とともに光スプリッタ 3に入力され、波長え bの通信光は、分
1
岐光線路 la〜laを介して各 ONU20に入力されるとともに、波長え cの監視光は、
1 8 1
分岐光線路 laに接続された ONU20に入力される。
1
[0024] 図 2に示すように波長 λ cの監視光は、 FBG21 - 1によって反射される力 波長 λ
1
bの通信光は、そのまま光受信部 31—1で受信され、 OZE部 32— 1によって光 Z電 気変換され、受信処理部 33— 1に入力される。同様にして、分岐光線路 laに、波長
3 λ cの監視光と波長 λ bの通信光とが入力された場合にも、波長え cの監視光は、 F
3 3
BG21— 3によって反射される力 波長え bの通信光は、そのまま光受信部 31— 3で 受信され、 OZE部 32— 3によって光 Z電気変換され、受信処理部 33— 3に入力さ れる。ここで、波長え cなどの監視光が光受信部 31— 1〜31— 8に入力されると、通
1
信エラーなどが生じ、通信に大きな影響を及ぼすため、これらの監視光を FBGSl - l Sl— 8によって確実に遮断する必要がある。ここで、上述したように FBG21— 1 〜21— 8は、監視光の波長帯域約 lOnmにおいて約 60dBの遮断量を有するので、 確実に監視光を遮断することができる。なお、 FBG21— 1〜21— 8は、図示しないフ ヱルールなどによって固定され、コネクタ 30— 1〜30— 8内に設けられる。
[0025] ここで、 FBG21 (21— l〜21— 8)の構成について説明する。図 3に示すように、 F BG21は、波長え c〜え cに対応するグレーティングピッチ Λが長手方向に変化す
1 8
るチヤープトグレーティングである。図 4に示すように、ブラッグ中心波長が波長え c
1
〜え Cであるため、 λ C〜え Cまでの広帯域で反射することができ、この波長帯域の
8 1 8
光を遮断することができる。この結果、 ONU20は、同一の FBG21を用いることがで きる。なお、 FBG21は、 FBG21— 1〜21— 8毎に各監視光の波長をブラッグ中心波 長として形成されたものを用いてもょ 、。 [0026] この FBG21は、隣り合うグレーティングのピッチ Λ力 FBG21を形成している光フ アイバの長さ方向の中心に向力つて広くなるように形成されていることがわかる。この ようなグレーティングの構造によれば、例えば、 λ c〜え cまでの広帯域に存在する
1 8
信号光を、安定して反射させることが可能となる。この反射量は、 λ C〜え Cまでの広
1 8 帯域において、 40dB以上である。
[0027] 図 5は、 FBG21の遮断特性を示す図である。 FBG21は、 1650nmを中心に約 10 nmの帯域で、入力された光信号を、 40dB以上遮断している。この実施の形態 1で は、 FBG21のグレーティングのピッチ Λ力 前記光ファイバの長さ方向の中心に向 力つて広くなるように形成されて!、るので、 lOnm程度の広帯域でも約 40dB以上の 遮断特性を得ることができる。
[0028] 図 6は、図 3の変形例を示す図であり、 FBG21を含む FBG部 40を示すものである。
図 6では、 FBG部 40のクラッド 42の外周力 クラッド 42の屈折率以上の屈折率をも つ高屈折率部 43によって覆われている。なお、高屈折率部 43は、 FBG部 21の周囲 全体であることが好ましいが、一部であってもよい。高屈折率部 43に用いられる部材 は、クラッド 42の屈折率以上の高い屈折率をもつものであればよぐたとえばマツチン グオイルでも、接着剤でもよい。なお、高屈折率部 43は、コア 41の屈折率以上の高 V、屈折率をもつものでもよ!/、。
[0029] 図 7は、 FBG部 40の遮断特性を示す図である。図 7では、マッチングオイルを高屈 折率部 43としたものであり、 FBG部 40は、 1650nmを中心に約 lOnmの帯域で、光 入力を、 60dB以上遮断している。なお、透過損失が、— 70dB近傍において揺らぎ が生じるのは測定限界だからである。
[0030] この実施の形態 1では、 FBG21の隣り合うグレーティングのピッチ人力 FBGを形 成して 、る光ファイバの長さ方向の中心に向力つて広くなるように形成されて 、ること によって、 lOnm程度の広帯域でも約 40dB以上の遮断特性を得ることができる。
[0031] なお、図 1では、光スプリッタ 3によって多分岐する構成を示した力 図 8に示すよう に光スプリッタ 28よりも下流では分岐されない単一の分岐光線路 la〜laに対して
1 8
ONU20が直接接続され、監視光を、光力ブラ 18を介して送受するようにしてもよい 。この場合、前記監視光を単一波長(例えばえ c )とするのが好ましい。これは、 OTD R2が発光する光の中心波長ずれが大きいため、 1つのブラッグ中心波長当たり lnm を超える広帯域の FBG21が必要となってしまうためである。
[0032] (実施の形態 2)
つぎに、この発明の実施の形態 2について説明する。上述した実施の形態 1では、 一本の光ファイバに FBG21を形成させていた。つまり、一本の光ファイバにグレーテ イングのピッチ Λ力 長さ方向の中心に向力つて広くなるようにグレーティングが形成 されていた。この実施の形態 2では、一本の光ファイバにグレーティングを形成するの ではなぐ端部に向力つてグレーティングのピッチ Λが広くなるように形成した 2本の 光ファイバを使用し、両者の端部を融着接続することにより FBGを形成するようにして いる。
[0033] 図 9は、この発明の実施の形態 2である FBG21aの縦断面図を示したものである。 FB G21aは、端部に向力つてグレーティングのピッチ Λが広くなるように形成された 2本 の光ファイバ 44、 45を、それぞれの端部 44a、 45aで融着接続することにより形成さ れている。この FBG21aは、実施の形態 1と同様に、グレーティングのピッチ人力 光 ファイバの長さ方向の中心(図 9では光ファイバ 44、 45の各々の端部 44a、 45a)に 向かって広くなるように形成されることになるので、遮断特性も実施の形態 1と同等の 特性が得られる。つまり、図 9の FBG21aの遮断特性は、図 5に示すものと同等となる 。図 9のように FBG21aを形成すると、グレーティングの形成時に、 UVの照射幅(UV が照射されて 、る光ファイバの長さ)を短くすることができ、容易に製造が可能となる だけでなぐ精度良くグレーティングを形成させることが可能となる。
[0034] (実施の形態 3)
上述した実施の形態 1および実施の形態 2では、 FBG21、 21aのグレーティングのピ ツチ Λが、光ファイバの長さ方向の中心に向かって広くなるようにコア 51のみに形成 されていた力 この実施の形態 3の FGBは、コアのみでなくクラッド領域にも同一のチ ヤープトグレーティングを形成して 、る。
[0035] 図 10は、実施の形態 3である FBG21bを有した FBG部 50の縦断面図を示している 。図 10に示すように、 FBG部 50は、コア 51に加えてクラッド 52の一部領域であるクラ ッド 52aまで FBG21bが形成されている。このクラッド 52aの領域に形成された FBG2 lbによって、クラッド 52を伝播した光が、出力側(図 10では紙面上、向って右側)に 漏れな 、ようにして 、る。このクラッド 52aの領域のチヤープトグレーティングの形成は 、コア 51に添カロした Geとほぼ同量の Geをクラッド 52aの領域に添カロしておき、コア 5 1の領域にチヤ一ブトグレーティングを形成すると同じように、二光束干渉法やフエ一 ズマスクを用いた方法によって行うことができる。なお、この実施の形態 3では、クラッ ド 52aに Geを添カ卩している力 これに限らず、チヤープトグレーティングがクラッド 52a の領域に形成できればよぐたとえば、リンなどの紫外線に感光する材料をクラッド 52 aの領域に添加してもよい。また、必要に応じて、図 6に示した高屈折率部 43をクラッ ド 52の外周に形成してもよ!/、。
[0036] この実施の形態 3によっても、実施の形態 1と同様に、図 5に示したように、 lOnm程 度の高帯域でも約 40dB以上の遮断特性を得ることができる FBG部 50を実現できる
[0037] (実施の形態 4)
つぎに、実施の形態 4について説明する。上述した実施の形態 3では、クラッド 52 の領域にチヤ一ブトグレーティングを形成するようにして 、たが、この実施の形態 4で は、コアの領域の屈折率を通常よりも高くしている。
[0038] 図 11は、この発明の実施の形態 4である FBG21cを有した FBG部 60の縦断面図 を示している。図 11に示すように、 FBG部 60は、実施の形態 1のコア 41と同様に、コ ァ 61の領域にチヤープトグレーティングである FBG21cを形成している。ここで、コア 61は、クラッド 62に比して高い屈折率を有し、たとえば開口数 (NA)を 0. 2以上とす ることが好ましい。また、必要に応じて、図 6に示した高屈折率部 43をクラッド 62の外 周に形成してもよい。
[0039] 図 12は、開口数が 0. 34となるファイバを用いた FBG21cの遮断特性を示した図で ある。図 12に示すように、この実施の形態 4によっても、 1650nmを中心とした約 10η mの広帯域で、約 40dB以上の遮断を実現している。
[0040] (実施の形態 5)
つぎに、実施の形態 5について説明する。上述した実施の形態 4では、コア 61の領 域 の屈折率をクラッド 62の領域よりも通常より高めの屈折率としたが、この実施の形態 5 では、コア領域内の周縁領域の屈折率をクラッドの領域よりも低くしている。
[0041] 図 13は、実施の形態 5である FBG21dを有した FBG部 70の縦断面図を示している 。図 13に示すように、 FBG部 70は、実施の形態 1のコア 41と同様に、コア 71の領域 にチヤープトグレーティングである FBG21dを形成している。コア 71は、コア 71領域 内の周縁領域の屈折率を、クラッド 72の領域の屈折率よりも低くし、そのプロファイル が W型(ディスプレイスドクラッドファイバ)になるようにしている。このように屈折率プロ ファイルを W型とすることによって、クラッド 72に生じるクラッドモードが結合しないよう にしている。さらに、図 6に示したように、高屈折率部 73を設けることによって、クラッド モード自体が存在しないようにしてもよい。いずれの場合にも、クラッドモードの影響 を除去できるので、遮断特性を格段に向上させることができる。
[0042] この実施の形態 5によっても、実施の形態 1と同様に、図 5に示したように、 lOnm 程度の高帯域でも約 40dB以上の遮断特性を得ることができる FBG部 70を実現でき る。
産業上の利用可能性
[0043] この発明は、入力される光信号に対し広帯域で高遮断のフィルタリングを行う光フィ ルタを必要とする光通信装置等に容易に適用できる。

Claims

請求の範囲
[1] コアと、コアの外側にクラッドを備えた光導波路に複数のグレーティングを形成する ことにより、入力される光信号に対し、所望の波長帯域で高遮断のフィルタリングを行 うファイバブラッググレーティング素子であって、隣り合うグレーティングのピッチ間隔 力 前記光導波路の長さ方向の中心に向力つて広くなるように形成されていることを 特徴とするファイバブラッググレーティング素子。
[2] コアと、コアの外側にクラッドを備えた光導波路に複数のグレーティングを形成する ことにより、入力される光信号に対し、所望の波長帯域で高遮断のフィルタリングを行 うファイバブラッググレーティング素子であって、前記光導波路は、端部に向かって隣 り合うグレーティングのピッチ間隔が広くなるように形成された 2本の光ファイバの前記 端部同士を接続させることにより形成されることを特徴とするファイバブラッググレーテ イング素子。
[3] 前記光導波路のクラッド領域に、紫外線に対して感光性を有する感光性材料を添 付し、前記コア領域と同じグレーティングを形成させたことを特徴とする請求項 1また は 2に記載のファイバブラッググレーティング素子。
[4] 前記光導波路は、開口数が 0. 2以上であることを特徴とする請求項 1または 2に記 載のファイバブラッググレーティング素子。
[5] 前記光導波路は、前記コア領域内の周縁部に、前記クラッド領域に比して屈折率 が低 、リング状の領域を設け、少なくとも前記コア領域にグレーティングを形成したこ とを特徴とする請求項 1または 2に記載のファイバブラッググレーティング素子。
[6] 前記光導波路は、少なくとも前記コア領域にグレーティングが形成され、前記クラッ ドの屈折率以上の屈折率をもつ材料によって前記グレーティングが形成されたコア 領域の一部あるいは全部を前記クラッドの外側力 覆うことを特徴とする請求項 1また は 2に記載のファイバブラッググレーティング素子。
[7] 所望の波長帯域が 10 以上であることを特徴とする請求項 1または 2に記載のファ ィバグレーティング素子。
[8] 所望の波長帯域での遮断量が 40dB以上であることを特徴とする請求項 1 2また は 7に記載のファイバグレーティング素子。
PCT/JP2006/302746 2005-02-17 2006-02-16 ファイバブラッググレーティング素子 WO2006095548A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US11/816,552 US7835604B2 (en) 2005-02-17 2006-02-16 Fiber Bragg grating element
EP06713887A EP1860472A1 (en) 2005-02-17 2006-02-16 Fiber bragg grating element
JP2007507024A JPWO2006095548A1 (ja) 2005-02-17 2006-02-16 ファイバブラッググレーティング素子

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-041086 2005-02-17
JP2005041086 2005-02-17

Publications (1)

Publication Number Publication Date
WO2006095548A1 true WO2006095548A1 (ja) 2006-09-14

Family

ID=36953150

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/302746 WO2006095548A1 (ja) 2005-02-17 2006-02-16 ファイバブラッググレーティング素子

Country Status (4)

Country Link
US (1) US7835604B2 (ja)
EP (1) EP1860472A1 (ja)
JP (1) JPWO2006095548A1 (ja)
WO (1) WO2006095548A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8682313B2 (en) 2009-12-08 2014-03-25 Electronics And Telecommunications Research Institute Over-the-air inter-cell interference coordination methods in cellular systems

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011066858A1 (en) * 2009-12-03 2011-06-09 Telefonaktiebolaget Lm Ericsson (Publ) Improvements in optical networks
US8693866B1 (en) * 2012-01-20 2014-04-08 Google Inc. Fiber diagnosis system for WDM optical access networks
KR101456130B1 (ko) * 2013-11-06 2014-11-04 주식회사 피피아이 하이브리드 광 집적 모듈
WO2017007749A1 (en) * 2015-07-06 2017-01-12 Alliance Fiber Optic Products, Inc. Passive optical network and wavelength selective two-port reflectors for use therein
US10281652B2 (en) 2016-08-16 2019-05-07 Alliance Fiber Optic Products, Inc. Two-port high isolation filter

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07244209A (ja) * 1994-03-07 1995-09-19 Sumitomo Electric Ind Ltd 光ファイバ型回折格子の作製方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9722549D0 (en) * 1997-10-24 1997-12-24 Univ Southampton Fabricating optical waveguide gratings and/or characterising optical waveguides
DE19911182C2 (de) * 1999-03-12 2001-05-10 Profile Optische Systeme Gmbh Faser-Transmissionsbauelement zur Erzeugung chromatischer Dispersion
JP2001100053A (ja) * 1999-09-27 2001-04-13 Showa Electric Wire & Cable Co Ltd 光導波路グレーティング
CN1207587C (zh) * 2000-06-19 2005-06-22 株式会社藤仓 倾斜型短周期光栅
JP3764066B2 (ja) 2001-04-27 2006-04-05 古河電気工業株式会社 ファイバ型光部品
JP2004138680A (ja) * 2002-10-15 2004-05-13 Ntt Advanced Technology Corp 光デバイス
JP2006058678A (ja) * 2004-08-20 2006-03-02 Fujikura Ltd 光ファイバグレーティング

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07244209A (ja) * 1994-03-07 1995-09-19 Sumitomo Electric Ind Ltd 光ファイバ型回折格子の作製方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8682313B2 (en) 2009-12-08 2014-03-25 Electronics And Telecommunications Research Institute Over-the-air inter-cell interference coordination methods in cellular systems

Also Published As

Publication number Publication date
EP1860472A1 (en) 2007-11-28
US20090052828A1 (en) 2009-02-26
US7835604B2 (en) 2010-11-16
JPWO2006095548A1 (ja) 2008-08-14

Similar Documents

Publication Publication Date Title
EP0782799B1 (en) Efficient optical wavelength multiplexer/de-multiplexer
US6850665B2 (en) Wavelength-selective optical fiber components using cladding-mode assisted coupling
US5778119A (en) In-line grating device for forward coupling light
US20030053783A1 (en) Optical fiber having temperature independent optical characteristics
JP3377729B2 (ja) 光導波路システム
WO2006095548A1 (ja) ファイバブラッググレーティング素子
KR20060048308A (ko) 광 회로 디바이스, 광 합파기 및 광 분파기
EP0680164A2 (en) Optical fiber system using tapered fiber devices
CA2231530C (en) Grating-assisted fused fiber filter
CN101776784B (zh) 一种2×2长周期光纤光栅耦合器
JP2005196089A (ja) ファイバブラッググレーティング素子
US6212318B1 (en) Add/drop filters and multiplexers fabricated from cladding mode couplers and fiber bragg gratings
JP2008282044A (ja) ファイバブラッググレーティング素子
JP4429953B2 (ja) ファイバブラッググレーティング素子
US20020102057A1 (en) All fiber dwdm multiplexer and demultiplexer
US11852863B2 (en) Mode multiplexing/demultiplexing optical circuit
US6546167B1 (en) Tunable grating optical device
EP1335219A1 (en) Optical waveguide diffraction grating device, method for fabricating optical waveguide diffraction grating device, multiplexing/demultiplexing module, and optical transmission system
JP2002504703A (ja) 光学装置
Slavík et al. All-fiber periodic filters for DWDM using a cascade of FIR and IIR lattice filters
He et al. A novel add/drop multiplexer architecture for DWDM network
JPH1114858A (ja) ファイバグレーティング及び光通信システム
JPH04353804A (ja) 導波路型光合分波器
CA2412395A1 (en) Wavelength-selective optical fiber components using cladding-mode assisted coupling
JPH08286072A (ja) 光ファイバカプラーとその製造方法及び光通信システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007507024

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006713887

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2006713887

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11816552

Country of ref document: US