WO2006093204A1 - 半導体集積回路装置 - Google Patents

半導体集積回路装置 Download PDF

Info

Publication number
WO2006093204A1
WO2006093204A1 PCT/JP2006/303903 JP2006303903W WO2006093204A1 WO 2006093204 A1 WO2006093204 A1 WO 2006093204A1 JP 2006303903 W JP2006303903 W JP 2006303903W WO 2006093204 A1 WO2006093204 A1 WO 2006093204A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
transistor
temperature protection
semiconductor integrated
voltage
Prior art date
Application number
PCT/JP2006/303903
Other languages
English (en)
French (fr)
Inventor
Mikiya Doi
Hiroki Takeuchi
Original Assignee
Rohm Co., Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohm Co., Ltd filed Critical Rohm Co., Ltd
Priority to US11/816,655 priority Critical patent/US7782585B2/en
Publication of WO2006093204A1 publication Critical patent/WO2006093204A1/ja

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0248Particular design considerations for integrated circuits for electrical or thermal protection, e.g. electrostatic discharge [ESD] protection

Definitions

  • the present invention relates to a semiconductor integrated circuit device provided with a temperature protection circuit, and in particular,
  • This relates to the improvement of the accuracy of the temperature protection function.
  • IC integrated circuit devices
  • ICs semiconductor integrated circuit devices
  • thermal shutdown circuit for preventing destruction of the power transistor
  • the above temperature protection circuit generally generates a temperature protection signal using the V ⁇ ⁇ characteristic when the bipolar transistor Vf (base voltage drop between the base and emitter) varies depending on the ambient temperature. It is said to be a composition to do!
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2004-253936
  • Patent Document 2 Japanese Patent Publication No. 6-16540
  • the conventional IC described above may not require a high speed for its temperature protection operation.
  • the malfunction of the temperature protection circuit due to power supply voltage fluctuation (noise superposition) It was powerful that no special measures were taken.
  • switching power supply devices and motor drive devices often have a power transistor as a noise source built into the IC. Because the noise noise caused by turning on and off is easily superimposed on the power supply voltage of the temperature protection circuit
  • an object of the present invention is to provide a semiconductor integrated circuit device capable of performing a highly accurate temperature protection operation without depending on power supply voltage fluctuation (pulse superposition).
  • a semiconductor integrated circuit device detects a power transistor that is controlled to be switched, and abnormal protection of the protection target circuit by detecting abnormal heat generation of the power transistor.
  • a temperature protection circuit that includes a filter unit that removes a frequency component that is higher than a predetermined cutoff frequency of the power supply voltage force.
  • the temperature protection circuit is provided adjacent to the reference voltage generation unit that generates a predetermined reference voltage; and the power transistor.
  • a bipolar transistor for temperature detection whose on-Z off state fluctuates according to the level of the forward drop voltage between the base emitter and the reference voltage, which varies depending on the ambient temperature; and the power supply voltage force
  • a control voltage signal generating unit that generates a control voltage signal having a logic corresponding to an on-Z-off state of the bipolar transistor; a switch unit that is on-off controlled according to the logic of the control voltage signal; and turning on the switch unit
  • a temperature protection signal generation unit that generates a logic temperature protection signal according to the Z-off state; and as the filter unit, one end of the switch unit and the power supply voltage
  • a configuration (second configuration) including a resistor inserted between the application end and a capacitor Z inserted between the other end of the switch unit and the ground end.
  • the reference voltage generation unit includes a bandgap power supply unit that generates a bandgap voltage without depending on ambient temperature, and the bandgap voltage force. It is preferable to adopt a configuration (third configuration) including a resistor divider that generates the reference voltage.
  • the reference voltage The generation unit may have a configuration (fourth configuration) including a current buffer unit for increasing current capability between the band gap power supply unit and the resistance dividing unit.
  • the power transistor constitutes a switching power supply circuit or a motor drive circuit.
  • the semiconductor integrated circuit device According to the present invention, even when the temperature protection circuit is placed in the vicinity of the overheat monitoring target, which is a noise generation source, high accuracy can be obtained depending on the power supply voltage fluctuation (pulse superposition). Temperature protection operation can be performed.
  • FIG. 1 is a block diagram showing an outline of a switching power supply IC according to the present invention.
  • FIG. 2 is a circuit diagram showing an embodiment of a temperature protection circuit 1.
  • FIG. 3 is a diagram for explaining the switching noise reduction effect.
  • FIG. 4 is a circuit diagram showing another embodiment of the temperature protection circuit 1.
  • a switching power supply IC will be exemplified and described in detail as a semiconductor integrated circuit device according to the present invention.
  • FIG. 1 is a block diagram showing a schematic configuration of a switching power supply IC according to the present invention.
  • the switching power supply IC10 includes a temperature protection circuit 1 and a switching power supply circuit 2.
  • the power supply voltage Vcc supplied via the external terminal T1 is used as the drive voltage, and the Vf (forward voltage drop between the base and emitter) of the bipolar transistor varies depending on the ambient temperature. It is configured to generate the temperature protection signal Stsd using the characteristic of The temperature protection signal Stsd is a signal for notifying the protection target circuit (internal circuit and switching power supply circuit 2 not shown) that the chip temperature is abnormal, and is used for shutdown control when the IC's abnormal temperature rises. Used. Further, the temperature protection circuit 1 is provided in the vicinity of the switching power supply circuit 2 (particularly the power transistor) to be monitored for overheating. By adopting such a configuration, it is possible to directly detect the junction temperature of the power transistor serving as a heat generation source and realize a highly accurate temperature protection operation. The internal configuration and operation of the temperature protection circuit 1 will be described in detail later.
  • the switching power supply circuit 2 is a direct current conversion means that converts the power supply voltage Vcc supplied via the external terminal T1 into a desired output voltage Vo and supplies it to an internal circuit (not shown). Note that the switching power supply circuit 2 of the present embodiment is assumed to be a boosting means for generating an output voltage Vo of 9 [V] from a power supply voltage Vcc of 1.8 [V].
  • the power transistor constituting the switching power supply circuit 2 is also a noise source that generates switching noise (pulse noise) due to its on-Z off. Therefore, as described above, switching noise can easily be superimposed on the power supply voltage Vcc of the temperature protection circuit 1 disposed in the vicinity of the switching power supply circuit 2! It becomes a situation!
  • the temperature protection circuit 1 does not depend on the power supply voltage fluctuation (pulse superposition) due to the wraparound of such switching noise! Voltage Vcc force Removes frequency components higher than the predetermined cutoff frequency The filter means is provided.
  • FIG. 2 is a circuit diagram showing an embodiment of the temperature protection circuit 1 (particularly, around the heat generation detection unit).
  • the temperature protection circuit 1 includes npn-type bipolar transistors Nl and N2, a pnp-type bipolar transistor P1, a band gap power supply BG, resistors R1 to R7, and a capacitor C1. It consists of
  • the output terminal of the band gap power supply BG is grounded via resistors Rl and R2.
  • the connection node of the resistors R1 and R2 is connected to the base of the transistor N1.
  • the collector of the transistor N1 is connected to the application terminal of the power supply voltage Vcc via resistors R4 and R3.
  • the emitter of transistor N1 is grounded.
  • the connection node of resistors R3 and R4 is connected to the base of each transistor.
  • the emitter of the transistor P1 is connected to the application terminal of the power supply voltage Vcc via the resistor R7.
  • the collector of the transistor P1 is grounded via the resistor R5, and is also grounded via the capacitor C1.
  • the collector of transistor P1 is connected to the base of transistor N2.
  • the collector of the transistor N2 is connected to the application terminal of the power supply voltage Vcc via the resistor R6, and is connected to the control terminal of the internal circuit (not shown) or the switching power supply circuit 2 as the output terminal of the temperature protection circuit 1. Yes.
  • the temperature protection circuit 1 of the present embodiment includes a reference voltage generation unit that generates a predetermined reference voltage Vref (a bandgap power supply unit BG that generates a bandgap voltage independent of the ambient temperature, and the band Resistor dividers Rl, R2) that generate the reference voltage Vref as well as the gap voltage force; adjacent to the power transistor (not shown) of the switching power supply circuit 2 and the order between the base emitters that vary depending on the ambient temperature
  • the bipolar transistor for temperature detection N 1 whose on-Z off state varies according to the level of the direction drop voltage Vf and the reference voltage Vref; and the logic according to the on Z-off state of the transistor N 1 from the power supply voltage Vcc
  • Control voltage signal generating means (resistors R3, R4) for generating the control voltage signal Sctrl; switch means (transistor) that are turned on and off according to the logic of the control voltage signal Sctrl; Emissions register temperature protection signal generating means for generating a logical temperature protection
  • the forward drop voltage Vf between the base and emitter of transistor N1 has a negative temperature characteristic of approximately 2 [mV / ° C], and its value decreases as the ambient temperature increases. Go.
  • a period in which the reference voltage Vref is lower than the forward voltage drop Vf between the base and the emitter of the transistor N1 that is, a period until the ambient temperature reaches a predetermined threshold temperature (eg, 175 [° C]).
  • Transistor N1 is maintained in the off state, and when the reference voltage Vref exceeds the forward drop voltage Vf between the base and emitter of transistor N1, that is, when the ambient temperature reaches a predetermined threshold temperature, transistor N1 Is transitioned to the on state.
  • the threshold temperature can be appropriately adjusted according to the resistance ratio of the resistors Rl and R2.
  • the control voltage signal Sctrl applied to the base of the transistor P1 is at a high level (approximately the power supply voltage Vcc), and the transistor P1 is maintained in the off state.
  • the base of the transistor N2 is at a low level (almost ground potential)
  • the transistor N2 is also maintained in an off state. Therefore, the logic of the temperature protection signal Stsd drawn from the collector of the transistor N2 becomes high level (almost power supply voltage Vcc). That is, the temperature protection circuit 1 notifies the protection target circuit that the chip temperature is normal by sending a temperature protection signal Stsd of the logic concerned.
  • the protection target circuit that receives the temperature protection signal Stsd input from temperature protection circuit 1 detects that the logic is high level, recognizes that no abnormal heat is generated, and can perform normal operation. Possible
  • the control voltage signal Sctrl applied to the base of the transistor P1 is pulled down to a low level (almost ground potential), and the transistor P1 is turned on. Is done.
  • the base of the transistor N2 Since the voltage is raised to the bell (approximately the power supply voltage Vcc), the transistor N2 is also turned on. Accordingly, the logic of the temperature protection signal Stsd is at a low level (approximately ground potential). That is, the temperature protection circuit 1 notifies the protection target circuit that the chip temperature is abnormal by sending a temperature protection signal Stsd of the logic concerned.
  • the protection target circuit that receives the temperature protection signal Stsd from temperature protection circuit 1 can detect that the logic is low level, recognize that abnormal heat has occurred, and stop its operation. It becomes.
  • the temperature protection circuit 1 of the present embodiment includes an RC filter circuit including a resistor R7 and a capacitor C1 as filter means for removing a high frequency component (switching noise) from the power supply voltage Vcc.
  • the temperature protection circuit 1 of the present embodiment considering that the frequency component of the switching pulse superimposed on the power supply voltage Vcc is about 100 [MHz] (the pulse width is about 10 [ns]),
  • the temperature protection circuit 1 of the present embodiment noise (such as switching noise generated in the switching power supply circuit 2) having a forward drop voltage Vf or more between the base and emitter of the transistor P1 is rotated to the power supply voltage Vcc. Even in such a case, the base voltage of transistor P1 and the emitter voltage do not fluctuate significantly (see Figure 3).
  • This filtering operation avoids malfunctions such as the transistor P1 being accidentally turned on in response to the switching noise described above, and the logic of the temperature protection signal Stsd transitions to a low level regardless of the occurrence of abnormal heat generation. It becomes possible to do. Therefore, according to the present invention, the temperature protection circuit 1 is disposed as close as possible to the power transistor that is the object of overheat monitoring. A temperature protection operation can be realized.
  • the technique of inserting a resistor into a transistor emitter is a well-known force S, and the resistor R7 in this embodiment is only to the power supply voltage Vcc. It is a filter means for the purpose of removing superimposed noise. It is not a means of adjusting road characteristics.
  • a regulator can be provided in the input path of the power supply voltage.
  • the power supply voltage is lower than the low input voltage type temperature protection circuit that can operate from 1.25 [V] + lVsat (about 0.1 [V]). If Vcc is 3 [V] or more, exceptional, otherwise (for example, if the power supply voltage Vcc is about 1.8 to 2.5 [V]), the voltage margin for providing the above regulator is poor. Therefore, it is desirable (or necessary) to adopt the configuration of this embodiment.
  • the force described by taking the case where the present invention is applied to a switching power supply IC as an example is not limited to this, such as a motor driving device, etc.
  • the present invention can be widely applied to other semiconductor integrated circuit devices.
  • a P-channel field effect transistor PFET1 may be used instead of the bipolar transistor P1.
  • the present invention is a technique useful for increasing the temperature protection accuracy of a semiconductor integrated circuit device.
  • a power transistor serving as a noise source is built in an IC, and compared with other semiconductor integrated circuit devices, It can be suitably used for a switching power supply device and a motor drive device that are immediately heated and that require high reliability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Power Conversion In General (AREA)
  • Protection Of Static Devices (AREA)
  • Electronic Switches (AREA)

Abstract

 本発明に係る半導体集積回路装置の温度保護回路1は、電源電圧Vccから高周波数成分を除去するフィルタ手段を有する。具体的には、基準電圧Vrefを生成するバンドギャップ電源部BG及び抵抗R1、R2と、温度検出用のトランジスタN1と、電源電圧VccからトランジスタN1のオン/オフ状態に応じた制御信号Sctrlを生成する抵抗R3、R4と、制御信号Sctrlに応じてオン/オフ制御されるトランジスタP1と、トランジスタP1のオン/オフ状態に応じて温度保護信号Stsdを生成するトランジスタN2及び抵抗R5、R6と、を有するほか、前記フィルタ手段として、トランジスタP1のエミッタ及びコレクタに各々接続された抵抗R7及び容量C1を有する。従って、電源電圧変動(パルス重畳)に依らず、高精度の温度保護動作を行うことが可能となる。

Description

明 細 書
半導体集積回路装置
技術分野
[0001] 本発明は、温度保護回路を備えた半導体集積回路装置に関するものであり、特に
、その温度保護機能の精度向上に関するものである。
背景技術
[0002] 従来より、電源装置やモータ駆動装置など、パワートランジスタを駆動する半導体 集積回路装置(以下、 IC [Integrated Circuit]と呼ぶ)の多くは、 ICの異常温度上昇 に起因する IC (特にそのパワートランジスタ)の破壊を防止するための温度保護回路 (いわゆるサーマルシャットダウン回路)を搭載して成る(例えば、本願出願人による 特許文献 1、 2を参照)。なお、上記の温度保護回路は、一般に、バイポーラトランジ スタの Vf (ベース'ェミッタ間の順方向降下電圧)が周囲温度に依存して変動すると Vヽぅ特性を利用して、温度保護信号を生成する構成とされて!ヽる。
特許文献 1:特開 2004— 253936号公報
特許文献 2:特公平 6 - 16540号公報
発明の開示
発明が解決しょうとする課題
[0003] 確かに、特許文献 1、 2に記載の ICであれば、誤動作や過負荷による ICの異常発 熱を検知 ·遮断して、 ICの破壊を未然に防止することが可能である。
[0004] し力しながら、上記従来の ICでは、その温度保護動作にさほど高速性が要求され ないこともあり、電源電圧変動 (ノイズ重畳)に起因する温度保護回路の誤動作につ いては、特段対策が講じられていな力つた。
[0005] そのため、過熱監視対象がノイズ源でもある場合には、当該過熱監視対象の近傍 に設けられる温度保護回路の電源電圧にノイズが重畳し、誤った温度保護信号を生 成してしまうと!、う課題があった。
[0006] 特に、近年では、スイッチング電源装置やモータ駆動装置にお 、て、ノイズ源となる パワートランジスタが ICに内蔵されることも多ぐこのような ICでは、パワートランジスタ のオン zオフに起因するノ ルスノイズが温度保護回路の電源電圧に重畳し易いため
、上記の課題が顕著であり、温度保護回路を過熱監視対象でもあるパワートランジス タの近傍に置きにくい、という課題があった。
[0007] 本発明は、上記の問題点に鑑み、電源電圧変動 (パルス重畳)に依ることなぐ高 精度の温度保護動作を行うことが可能な半導体集積回路装置を提供することを目的 とする。
課題を解決するための手段
[0008] 上記目的を達成するために、本発明に係る半導体集積回路装置は、スイッチング 制御されるパワートランジスタと、該パワートランジスタの異常発熱を検知して保護対 象回路に異常である旨を報知する温度保護回路と、を内蔵して成る半導体集積回路 装置であって、前記温度保護回路は、その電源電圧力 所定のカットオフ周波数より も高 、周波数成分を除去するフィルタ部を有して成る構成 (第 1の構成)として 、る。
[0009] より具体的に述べると、上記第 1の構成から成る半導体集積回路装置において、前 記温度保護回路は、所定の基準電圧を生成する基準電圧生成部と;前記パワートラ ンジスタに隣設され、周囲温度に依存して変動するベース'ェミッタ間の順方向降下 電圧と前記基準電圧との高低に応じて、そのオン Zオフ状態が変動する温度検出用 のバイポーラトランジスタと;前記電源電圧力 前記バイポーラトランジスタのオン Zォ フ状態に応じた論理の制御電圧信号を生成する制御電圧信号生成部と;前記制御 電圧信号の論理に応じてオン Zオフ制御されるスィッチ部と;前記スィッチ部のオン Zオフ状態に応じた論理の温度保護信号を生成する温度保護信号生成部と;を有 するほか、前記フィルタ部として、前記スィッチ部の一端と前記電源電圧の印加端と の間に挿入された抵抗、及び Zまたは、前記スィッチ部の他端と接地端との間に挿 入された容量、を有して成る構成 (第 2の構成)として 、る。
[0010] なお、上記した第 2の構成力 成る半導体集積回路装置において、前記基準電圧 生成部は、周囲温度に依存しな 、バンドギャップ電圧を生成するバンドギャップ電源 部と、前記バンドギャップ電圧力 前記基準電圧を生成する抵抗分割部と、を有して 成る構成 (第 3の構成)にするとよい。
[0011] また、上記した第 3の構成力も成る半導体集積回路装置において、前記基準電圧 生成部は、前記バンドギャップ電源部と前記抵抗分割部との間に、電流能力を高め るための電流バッファ部を有して成る構成 (第 4の構成)としてもよ 、。
[0012] また、上記第 1〜第 4のいずれかの構成力も成る半導体集積回路装置において、 前記パワートランジスタは、スイッチング電源回路またはモータ駆動回路を構成して いる。
発明の効果
[0013] 本発明に係る半導体集積回路装置であれば、温度保護回路をノイズ発生源である 過熱監視対象の近傍に置いた場合でも、その電源電圧変動 (パルス重畳)に依るこ となぐ高精度の温度保護動作を行うことが可能となる。
図面の簡単な説明
[0014] [図 1]は、本発明に係るスイッチング電源 ICの概略を示すブロック図である。
[図 2]は、温度保護回路 1の一実施形態を示す回路図である。
[図 3]は、スイッチングノイズの低減効果を説明するための図である。
[図 4]は、温度保護回路 1の別実施形態を示す回路図である。
符号の説明
[0015] 1 温度保護回路
2 スイッチング電源回路
10 スイッチング電源 IC
T1 電源端子
BG バンドギャップ電源部
R1〜R7 抵抗
C1 容量
N1〜N3 npn型バイポーラトランジスタ
P1〜P2 pnp型バイポーラトランジスタ
PFET1 Pチャネル電界効果トランジスタ
II 定電流源
IBUF 電流バッファ部 発明を実施するための最良の形態
[0016] 以下では、本発明に係る半導体集積回路装置として、スイッチング電源 ICを例示し 、詳細な説明を行う。
[0017] 図 1は、本発明に係るスイッチング電源 ICの概略構成を示すブロック図である。本 図に示すように、スイッチング電源 IC10は、温度保護回路 1と、スイッチング電源回 路 2と、を内蔵して成る。
[0018] 温度保護回路 1は、外部端子 T1を介して供給される電源電圧 Vccを駆動電圧とし 、ノイポーラトランジスタの Vf (ベース'ェミッタ間の順方向降下電圧)が周囲温度に 依存して変動するという特性を利用して、温度保護信号 Stsdを生成する構成とされ ている。温度保護信号 Stsdは、保護対象回路(図示しない内部回路やスイッチング 電源回路 2)に対して、チップ温度が異常である旨を報知するための信号であり、 IC の異常温度上昇時におけるシャットダウン制御に利用される。また、温度保護回路 1 は、過熱監視対象であるスイッチング電源回路 2 (特にそのパワートランジスタ)の近 傍に設けられている。このような構成とすることにより、発熱源となるパワートランジスタ の接合温度を直接的に検出し、高精度の温度保護動作を実現することが可能となる 。なお、温度保護回路 1の内部構成及び動作については、後ほど詳細な説明を行う
[0019] スイッチング電源回路 2は、外部端子 T1を介して供給される電源電圧 Vccを所望 の出力電圧 Voに変換して、不図示の内部回路に供給する直流変換手段である。な お、本実施形態のスイッチング電源回路 2は、 1. 8 [V]の電源電圧 Vccから 9 [V]の 出力電圧 Voを生成する昇圧手段とされて ヽる。
[0020] ここで、スイッチング電源回路 2を構成するパワートランジスタは、そのオン Zオフに 起因してスイッチングノイズ (パルスノイズ)を生じるノイズ源でもある。そのため、先述 のように、スイッチング電源回路 2の近傍に配設された温度保護回路 1の電源電圧 V ccには、スイッチングノイズが重畳し易!、状況となって!、る。
[0021] そこで、本実施形態の温度保護回路 1は、このようなスイッチングノイズの回り込み に起因する電源電圧変動 (パルス重畳)に依らな!/ヽ高精度の温度保護動作を行うベ ぐその電源電圧 Vcc力 所定のカットオフ周波数よりも高い周波数成分を除去する フィルタ手段を有して成る構成とされて 、る。
[0022] 以下、図 2を参照しながら、温度保護回路 1の回路構成及び動作について、具体的 かつ詳細な説明を行う。
[0023] 図 2は、温度保護回路 1 (特に、その発熱検出部周辺)の一実施形態を示す回路図 である。本図に示すように、温度保護回路 1は、 npn型バイポーラトランジスタ Nl、 N 2と、 pnp型バイポーラトランジスタ P1と、バンドギャップ電源部 BGと、抵抗 R1〜R7と 、容量 C1と、を有して成る。
[0024] バンドギャップ電源部 BGの出力端は、抵抗 Rl、 R2を介して接地されている。抵抗 R1、R2の接続ノードは、トランジスタ N1のベースに接続されている。トランジスタ N1 のコレクタは、抵抗 R4、 R3を介して電源電圧 Vccの印加端に接続されている。トラン ジスタ N1のェミッタは接地されている。抵抗 R3、 R4の接続ノードは、トランジスタお のベースに接続されている。トランジスタ P1のェミッタは、抵抗 R7を介して電源電圧 Vccの印加端に接続されている。トランジスタ P1のコレクタは、抵抗 R5を介して接地 される一方、容量 C1を介しても接地されている。また、トランジスタ P1のコレクタは、ト ランジスタ N2のベースに接続されている。トランジスタ N2のコレクタは、抵抗 R6を介 して電源電圧 Vccの印加端に接続される一方、温度保護回路 1の出力端として、不 図示の内部回路やスィッチング電源回路 2の制御端に接続されている。
[0025] すなわち、本実施形態の温度保護回路 1は、所定の基準電圧 Vrefを生成する基 準電圧生成手段 (周囲温度に依存しないバンドギャップ電圧を生成するバンドギヤッ プ電源部 BG、及び、前記バンドギャップ電圧力も基準電圧 Vrefを生成する抵抗分 割部 Rl、 R2)と;スイッチング電源回路 2のパワートランジスタ(図示せず)に隣設され 、周囲温度に依存して変動するベース'ェミッタ間の順方向降下電圧 Vfと基準電圧 Vrefとの高低に応じて、そのオン Zオフ状態が変動する温度検出用バイポーラトラン ジスタ N 1と;電源電圧 Vccからトランジスタ N 1のオン Zオフ状態に応じた論理の制 御電圧信号 Sctrlを生成する制御電圧信号生成手段 (抵抗 R3、 R4)と;制御電圧信 号 Sctrlの論理に応じてオン Zオフ制御されるスィッチ手段(トランジスタお)と;トラン ジスタ P1のオン Zオフ状態に応じた論理の温度保護信号 Stsdを生成する温度保護 信号生成手段(トランジスタ N2及び抵抗 R5、 R6)と;を有するほか、電源電圧 Vccか ら高周波数成分を除去するフィルタ手段として、トランジスタ P1のェミッタと電源電圧 Vccの印加端との間に挿入された抵抗 R7、及び、トランジスタ P1のコレクタと接地端 との間に挿入された容量 C1、を有して成る構成とされている。
[0026] 次に、上記構成から成る温度保護回路 1の動作について詳細に説明する。温度検 出用のトランジスタ N1は、ェミッタが接地されているので、そのベース'ェミッタ間電 圧 Vbeは、バンドギャップ電圧 (約 1. 25 [V])を抵抗分割して生成された基準電圧 V ref (例えば 0. 4[V])そのものとなり、その温度特性はフラットとなる。一方、トランジス タ N1のベース ·ェミッタ間の順方向降下電圧 Vfは、約 2 [mV/°C]の負の温度特 性を有しており、周囲温度が高くなるほど、その値は低下していく。
[0027] 従って、基準電圧 Vrefがトランジスタ N1のベース.ェミッタ間の順方向降下電圧 Vf を下回っている期間、すなわち、周囲温度が所定の閾値温度 (例えば 175 [°C])に 達するまでの期間は、トランジスタ N1がオフ状態に維持され、基準電圧 Vrefがトラン ジスタ N1のベース.ェミッタ間の順方向降下電圧 Vfを上回ったとき、すなわち、周囲 温度が所定の閾値温度に達したとき、トランジスタ N1はオン状態に遷移される。なお 、上記の閾値温度は、抵抗 Rl、 R2の抵抗比に応じて、適宜調整することができる。
[0028] トランジスタ N1がオフ状態の場合、トランジスタ P1のベースに印加される制御電圧 信号 Sctrlは、ハイレベル(ほぼ電源電圧 Vcc)となり、トランジスタ P1は、オフ状態に 維持される。また、このとき、トランジスタ N2のベースは、ローレベル(ほぼ接地電位) となるため、トランジスタ N2もオフ状態に維持される。従って、トランジスタ N2のコレク タから引き出される温度保護信号 Stsdの論理は、ハイレベル(ほぼ電源電圧 Vcc)と なる。すなわち、温度保護回路 1は、当該論理の温度保護信号 Stsdを送出すること で、保護対象回路にチップ温度が正常である旨を報知する。温度保護回路 1から温 度保護信号 Stsdの入力を受けた保護対象回路は、その論理がハイレベルであること を検知して、異常発熱は生じていないことを認識し、通常動作を行うことが可能となる
[0029] 一方、トランジスタ N1がオフ状態に遷移されると、トランジスタ P1のベースに印加さ れる制御電圧信号 Sctrlは、ローレベル(ほぼ接地電位)に引き下げられ、トランジス タ P1は、オン状態に遷移される。また、このとき、トランジスタ N2のベースは、ハイレ ベル(ほぼ電源電圧 Vcc)まで引き上げられるため、トランジスタ N2もオン状態に遷 移される。従って、温度保護信号 Stsdの論理は、ローレベル(ほぼ接地電位)となる。 すなわち、温度保護回路 1は、当該論理の温度保護信号 Stsdを送出することで、保 護対象回路にチップ温度が異常である旨を報知する。温度保護回路 1から温度保護 信号 Stsdの入力を受けた保護対象回路は、その論理がローレベルであることを検知 して、異常発熱が生じたことを認識し、その動作を停止することが可能となる。
[0030] また、本実施形態の温度保護回路 1は、電源電圧 Vccから高周波数成分 (スィッチ ングノイズ)を除去するフィルタ手段として、抵抗 R7及び容量 C1から成る RCフィルタ 回路を有して成る。
[0031] なお、本実施形態の温度保護回路 1では、電源電圧 Vccに重畳するスイッチング パルスの周波数成分が 100 [MHz]程度(パルス幅としては、 10 [ns]程度)であるこ とに鑑み、 RCフィルタ回路のカットオフ周波数 fc{ = 1/ (2 π CR) }を 3. 2 [MHz]に 設定すベぐ抵抗 R7を 、容量 C1を 5 [pF]としている。このようなカットオフ周 波数を採用することで、スイッチングパルスを 3. 2% ( = 3. 2/100 X I 00)まで軽減 することが可能となる。
[0032] 従って、本実施形態の温度保護回路 1では、その電源電圧 Vccにトランジスタ P1の ベース ·ェミッタ間の順方向降下電圧 Vf以上のノイズ (スイッチング電源回路 2で生じ たスイッチングノイズなど)が回り込んだ場合であっても、トランジスタ P1のベース電圧 は元より、そのェミッタ電圧も、さほど大きく振れることがなくなる(図 3を参照)。このよ うなフィルタリング動作により、上記のスイッチングノイズに応じてトランジスタ P1が誤 つて一瞬オンし、異常発熱の発生とは無関係に温度保護信号 Stsdの論理がローレ ベルに遷移する、といった誤動作を未然に回避することが可能となる。従って、本発 明に依れば、温度保護回路 1を過熱監視対象であるパワートランジスタのできるだけ 近傍に配設すること、延いては、パワートランジスタの接合温度を直接的に検出し、 高精度の温度保護動作を実現することが可能となる。
[0033] なお、従来より、カレントミラー回路のペア特性を調整する手段として、トランジスタ のェミッタに抵抗を挿入する技術は周知である力 S、本実施形態における抵抗 R7は、 あくまで、電源電圧 Vccに重畳したノイズの除去を目的とするフィルタ手段であり、回 路特性を調整する手段ではな ヽ。
[0034] また、上記の実施形態のほか、電源電圧 Vccに重畳したノイズの除去手段としては 、電源電圧の入力経路にレギユレータを設けることも可能である。ただし、本実施形 態の温度保護回路 1のように、 1. 25 [V] + lVsat (0. 1 [V]程度)から動作可能な低 入力電圧型の温度保護回路に対して、電源電圧 Vccが 3 [V]以上ある場合なら格別 、そうでない場合 (例えば電源電圧 Vccが 1. 8〜2. 5 [V]程度である場合)には、上 記レギユレータを設けるための電圧余裕が乏しいため、本実施形態の構成を採用す ることが望ま U、(或いは必要である)と考えられる。
[0035] なお、上記の実施形態では、スイッチング電源 ICに本発明を適用した場合を例に 挙げて説明を行った力 本発明の適用対象はこれに限定されるものではなぐモータ 駆動装置など、他の半導体集積回路装置にも広く適用することが可能である。
[0036] また、本発明の構成は、上記実施形態のほか、発明の主旨を逸脱しない範囲で種 々の変更をカ卩えることが可能である。
[0037] 例えば、図 4に示すように、バイポーラトランジスタ P1に代えて、 Pチャネル電界効 果トランジスタ PFET1を用いても構わな 、。
[0038] また、同じぐ図 4に示すように、バンドギャップ電源部 BGの電流出力能力が乏しい 場合には、バンドギャップ電源部 BGと抵抗分割部 Rl、 R2との間に、バンドギャップ 電圧をー且トランジスタ P2で IVfだけ上げた後、再びトランジスタ N3で IVf下げるこ とにより、その電流出力能力を高める電流バッファ部 IBUFを設けても構わない。 産業上の利用可能性
[0039] 本発明は、半導体集積回路装置の温度保護精度を高める上で有用な技術であり、 例えばノイズ源となるパワートランジスタを ICに内蔵して成り、他の半導体集積回路 装置と比べて、熱が発生しやすぐかつ、高信頼性が要求されるスイッチング電源装 置やモータ駆動装置について、好適に利用することができる。

Claims

請求の範囲
[1] スイッチング制御されるパワートランジスタと、前記パワートランジスタの異常発熱を 検知して保護対象回路に異常である旨を報知する温度保護回路と、を内蔵して成る 半導体集積回路装置であって、前記温度保護回路は、その電源電圧力 所定の力 ットオフ周波数よりも高い周波数成分を除去するフィルタ部を有して成ることを特徴と する半導体集積回路装置。
[2] 前記温度保護回路は、所定の基準電圧を生成する基準電圧生成部と;前記パワー トランジスタに隣設され、周囲温度に依存して変動するベース'ェミッタ間の順方向降 下電圧と前記基準電圧との高低に応じて、そのオン Zオフ状態が変動する温度検出 用のバイポーラトランジスタと;前記電源電圧力 前記バイポーラトランジスタのオン z オフ状態に応じた論理の制御電圧信号を生成する制御電圧信号生成部と;前記制 御電圧信号の論理に応じてオン Zオフ制御されるスィッチ部と;前記スィッチ部のォ ン Zオフ状態に応じた論理の温度保護信号を生成する温度保護信号生成部と;を有 するほか、前記フィルタ部として、前記スィッチ部の一端と前記電源電圧の印加端と の間に挿入された抵抗、及び zまたは、前記スィッチ部の他端と接地端との間に挿 入された容量、を有して成ることを特徴とする請求項 1に記載の半導体集積回路装置
[3] 前記基準電圧生成部は、周囲温度に依存しないバンドギャップ電圧を生成するバ ンドギャップ電源部と、前記バンドギャップ電圧力 前記基準電圧を生成する抵抗分 割部と、を有して成ることを特徴とする請求項 2に記載の半導体集積回路装置。
[4] 前記基準電圧生成部は、前記バンドギャップ電源部と前記抵抗分割部との間に、 電流能力を高めるための電流バッファ部を有して成ることを特徴とする請求項 3に記 載の半導体集積回路装置。
[5] 前記パワートランジスタは、スイッチング電源回路またはモータ駆動回路を構成する ことを特徴とする請求項 1〜請求項 4のいずれかに記載の半導体集積回路装置。
PCT/JP2006/303903 2005-03-02 2006-03-01 半導体集積回路装置 WO2006093204A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US11/816,655 US7782585B2 (en) 2005-03-02 2006-03-01 Semiconductor integrated circuit device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-056792 2005-03-02
JP2005056792A JP2006245154A (ja) 2005-03-02 2005-03-02 半導体集積回路装置

Publications (1)

Publication Number Publication Date
WO2006093204A1 true WO2006093204A1 (ja) 2006-09-08

Family

ID=36941233

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/303903 WO2006093204A1 (ja) 2005-03-02 2006-03-01 半導体集積回路装置

Country Status (4)

Country Link
US (1) US7782585B2 (ja)
JP (1) JP2006245154A (ja)
CN (1) CN101133489A (ja)
WO (1) WO2006093204A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0712739D0 (en) * 2007-07-02 2007-08-08 Smith & Nephew Apparatus
US7868773B2 (en) * 2007-09-12 2011-01-11 International Rectifier Corporation Switched mode power converter with over temperature detection
CN103764186B (zh) * 2011-07-26 2016-05-04 凯希特许有限公司 用减压治疗组织部位的系统和方法,牵涉一个具有用于接触歧管的多管腔导管的减压接口
KR101412914B1 (ko) * 2012-11-22 2014-06-26 삼성전기주식회사 과열 보호 회로
US9939335B2 (en) * 2014-12-17 2018-04-10 Nxp Usa, Inc. Over-temperature detector with test mode

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05328587A (ja) * 1992-05-18 1993-12-10 Sanyo Electric Co Ltd 半導体システムの保護装置
JPH0616540B2 (ja) * 1984-11-26 1994-03-02 ロ−ム株式会社 半導体集積回路の熱遮断回路
JPH0750389A (ja) * 1993-08-06 1995-02-21 Fujitsu Ten Ltd 温度センサを備える集積回路
JPH10326868A (ja) * 1997-05-26 1998-12-08 Oki Electric Ind Co Ltd 半導体装置
JPH1115545A (ja) * 1997-06-26 1999-01-22 Matsushita Electric Ind Co Ltd 半導体装置
JP2005026307A (ja) * 2003-06-30 2005-01-27 Renesas Technology Corp 半導体集積回路

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3135245B2 (ja) * 1990-03-19 2001-02-13 株式会社日立製作所 パルス出力型熱線式空気流量計
DE4207481A1 (de) 1992-03-10 1993-09-16 Bayer Ag Liposomale wirkstoff-formulierungen und verfahren zu ihrer herstellung
JP3995043B2 (ja) 2003-02-19 2007-10-24 ローム株式会社 熱保護機能付き半導体集積回路

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0616540B2 (ja) * 1984-11-26 1994-03-02 ロ−ム株式会社 半導体集積回路の熱遮断回路
JPH05328587A (ja) * 1992-05-18 1993-12-10 Sanyo Electric Co Ltd 半導体システムの保護装置
JPH0750389A (ja) * 1993-08-06 1995-02-21 Fujitsu Ten Ltd 温度センサを備える集積回路
JPH10326868A (ja) * 1997-05-26 1998-12-08 Oki Electric Ind Co Ltd 半導体装置
JPH1115545A (ja) * 1997-06-26 1999-01-22 Matsushita Electric Ind Co Ltd 半導体装置
JP2005026307A (ja) * 2003-06-30 2005-01-27 Renesas Technology Corp 半導体集積回路

Also Published As

Publication number Publication date
US7782585B2 (en) 2010-08-24
CN101133489A (zh) 2008-02-27
JP2006245154A (ja) 2006-09-14
US20090027820A1 (en) 2009-01-29

Similar Documents

Publication Publication Date Title
JP4589966B2 (ja) 電力供給制御装置及び半導体装置
EP2028760B1 (en) A low side driver
EP2124339A1 (en) Protection circuit for semiconductor integrated circuit and driving method therefor
US7423855B2 (en) Active protection circuit arrangement
JP2008042230A (ja) 負荷駆動回路、および保護方法
KR20060132941A (ko) 반도체 집적 회로 장치 및 그것을 이용한 스위칭 전원 장치
JP4479570B2 (ja) 保護機能付きスイッチング回路および保護回路
US20080049366A1 (en) Protection circuit
JP2005093497A (ja) 保護回路を有する半導体装置
KR100813486B1 (ko) 전압공급 회로
JP2010003982A (ja) 電気回路
WO2006093204A1 (ja) 半導体集積回路装置
JP4936698B2 (ja) パワーアンプシステム
JP2002261241A (ja) 静電気保護回路
JP2009302367A (ja) 半導体素子の静電保護回路
JP3739365B2 (ja) 半導体装置
CN114069557A (zh) 过热保护电路以及具备该过热保护电路的开关调节器
CN108736877B (zh) 驱动电路
JP4845427B2 (ja) 半導体集積回路
JP4788582B2 (ja) プルアップ抵抗遮断用mosトランジスタの駆動回路
JP2006261143A (ja) 熱保護回路及びこれを備えた半導体集積回路装置
JP2004229365A (ja) 電子装置
US20230155559A1 (en) Semiconductor integrated circuit device
JP5708457B2 (ja) 過電流検出回路および負荷駆動装置
JPH1127845A (ja) 過電流防止回路

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200680006781.9

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11816655

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 06715020

Country of ref document: EP

Kind code of ref document: A1