WO2006093157A1 - オリゴヌクレオチド誘導体、遺伝子検出用プローブ及びdnaチップ - Google Patents

オリゴヌクレオチド誘導体、遺伝子検出用プローブ及びdnaチップ Download PDF

Info

Publication number
WO2006093157A1
WO2006093157A1 PCT/JP2006/303772 JP2006303772W WO2006093157A1 WO 2006093157 A1 WO2006093157 A1 WO 2006093157A1 JP 2006303772 W JP2006303772 W JP 2006303772W WO 2006093157 A1 WO2006093157 A1 WO 2006093157A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
alkyl
alkyl group
bonded
hydrogen
Prior art date
Application number
PCT/JP2006/303772
Other languages
English (en)
French (fr)
Inventor
Mitsuo Sekine
Kohji Seio
Akihiro Ohkubo
Kazushi Sakamoto
Takeshi Sasami
Original Assignee
Tokyo Institute Of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Institute Of Technology filed Critical Tokyo Institute Of Technology
Priority to EP06714901A priority Critical patent/EP1860115A4/en
Priority to JP2007505962A priority patent/JP4882074B2/ja
Publication of WO2006093157A1 publication Critical patent/WO2006093157A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H21/00Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids
    • C07H21/04Compounds containing two or more mononucleotide units having separate phosphate or polyphosphate groups linked by saccharide radicals of nucleoside groups, e.g. nucleic acids with deoxyribosyl as saccharide radical
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H19/00Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof
    • C07H19/02Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof sharing nitrogen
    • C07H19/04Heterocyclic radicals containing only nitrogen atoms as ring hetero atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H19/00Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof
    • C07H19/02Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof sharing nitrogen
    • C07H19/04Heterocyclic radicals containing only nitrogen atoms as ring hetero atom
    • C07H19/14Pyrrolo-pyrimidine radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H19/00Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof
    • C07H19/02Compounds containing a hetero ring sharing one ring hetero atom with a saccharide radical; Nucleosides; Mononucleotides; Anhydro-derivatives thereof sharing nitrogen
    • C07H19/04Heterocyclic radicals containing only nitrogen atoms as ring hetero atom
    • C07H19/16Purine radicals
    • C07H19/173Purine radicals with 2-deoxyribosyl as the saccharide radical
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/111General methods applicable to biologically active non-coding nucleic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6834Enzymatic or biochemical coupling of nucleic acids to a solid phase
    • C12Q1/6837Enzymatic or biochemical coupling of nucleic acids to a solid phase using probe arrays or probe chips
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/32Chemical structure of the sugar
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/30Chemical structure
    • C12N2310/33Chemical structure of the base
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2320/00Applications; Uses
    • C12N2320/10Applications; Uses in screening processes
    • C12N2320/11Applications; Uses in screening processes for the determination of target sites, i.e. of active nucleic acids

Definitions

  • Oligonucleotide derivatives probe for gene detection and DNA chip
  • the present invention relates to an oligonucleotide derivative, a gene detection probe, and the like. More specifically, the present invention relates to an oligonucleotide derivative, a gene detection probe, and the like that can be used without causing a problem such as dropping of the probe.
  • Genotype analysis including single nucleotide polymorphisms is a base that provides the basis for V, the so-called “tailor-made medicine”, and its necessity is rapidly increasing. From the standpoint of reducing the side effects of pharmaceuticals, the U.S. Pharmaceuticals Office is making a trend to require the attachment of SNP information on the effects of drugs when applying for new drugs, and the need for analysis of SNPs is increasing in Japan as well. is there.
  • a DNA probe is first obtained by attaching a functional group to a DNA oligonucleotide with high reactivity.
  • the obtained DNA probe is spotted on the surface of a substrate such as a glass slide to cause a chemical reaction between the DNA probe and a functional group present on the surface of the substrate, and the probe molecule is immobilized on the substrate via a covalent bond. Hesitate.
  • a substrate such as a glass slide
  • a probe is synthesized on the surface of a substrate such as a slide glass using optical lithography or bubble jet technology. Since this method synthesizes DNA at a specific position, the immobilization reaction on the substrate surface of the DNA probe is omitted. This enables high-throughput DNA chip synthesis.
  • this in situ synthesis method has the disadvantage that the efficiency of DNA strand elongation reaction on the substrate surface is low, the purity of the DNA probe is poor, and therefore the accuracy is low.
  • the efficiency of the chain extension reaction is about 95% at the maximum.
  • the effective probe is 40% or less. That is, 60% or more of probes having an incorrect sequence exist.
  • Non-patent document 1 Ange wandte Chemie international edition, 2002, 41, 1276-1289
  • Non-patent document 2 B iopolymer, 2004, 73, 579-596
  • an object of the present invention is to provide an oligonucleotide derivative that can be used without causing the above-mentioned problems when used for SNP or the like.
  • Another object of the present invention is to provide a method for use in a gene detection method using the above oligonucleotide derivative.
  • the present invention has been made based on the above findings, and provides an oligonucleotide derivative represented by the following general formula (1).
  • a 1 and A 2 may be the same, and A or I may be different from each other;
  • n is an integer of 10 to 50
  • Y 2 is hydrogen, a hydroxyl group, an alkoxy group, or a 2-cyanethoxy group.
  • Y 2 and ribose 4'-position carbon may be combined to form a ring
  • B 2 is a natural or non-natural nucleobase
  • R 2 is a substituent bonded to the amino group of the nucleobase Yes, may be substituted with hydrogen, acyl group, thioacyl group, alkoxycarbol group, alkoxythiocarbol group, alkyl group, or may be substituted with rubamoyl group, alkyl group, or thiocarbamoyl Or an alkyl group (including those bonded to an alkyl group, an alkyl group, an alkyl group, or a phenyl group), and B 1 represents a substituent represented by the following general formula (2).
  • B is a natural or non-natural nucleobase
  • R is a substituent bonded to an amino group of the nucleobase, and is a hydrogen, an acyl group, a thioacyl group, an alkoxycarbo group. , Alkoxyoxy group, rubamoyl group which may be substituted with alkyl group, alkyl group, thiomolybamoyl group or alkyl group (alkyl group, alkyl group, alkyl group).
  • X is an oxygen atom—, a sulfur atom—, BH, OCH, or CH
  • Y is a hydrogen atom, a hydroxyl group, or an alkoxy group.
  • a force that is a 2-cyanoethoxy group or Y and the 4′-position carbon of ribose may be bonded to form a ring.
  • at least one of R and R 2 is not hydrogen.
  • the present invention also provides a gene detection microarray in which at least one of the above oligonucleotide derivatives is immobilized on a carrier.
  • the present invention also provides a DNA chip comprising at least one or more of the above oligonucleotide derivatives immobilized on a carrier.
  • the present invention provides an oligonucleotide derivative represented by the following general formula (1) in a sample:
  • a method of identifying nucleotides in a target nucleic acid comprising the steps of:
  • a 1 and A 2 may be the same or different, and each represents hydrogen, a hydroxyl group, an alkyl group, a phosphate group, or a trityl group to which a substituent may be bonded.
  • N is an integer of 10 to 50
  • Y 2 is hydrogen, a hydroxyl group, an alkoxy group or a 2-cyanoethoxy group, or Y 2 and the ribose 4′-position carbon may be bonded to form a ring.
  • B 2 is a natural or non-natural nucleobase
  • R 2 is a substituent bonded to an amino group of the nucleobase, hydrogen, an acyl group, a thioacyl group, an alkoxycarbo group, an alkoxythiocarbole. Group, substituted with an alkyl group, or substituted with an alkyl group, a thiocarbamoyl group, or an alkyl group (an alkyl group, an alkyl group, an alkyl group, or a fluorine group).
  • B 1 is one of the following: Represents a substituent represented by the general formula (2).)
  • B is a natural or non-natural nucleobase
  • R is a substituent bonded to an amino group of the nucleobase, and is a hydrogen, an acyl group, a thioacyl group, or an alkoxy carbo group.
  • Alkoxyoxy group rubamoyl group which may be substituted with alkyl group, alkyl group, thiomolybamoyl group or alkyl group (alkyl group, alkyl group, alkyl group).
  • X is an oxygen atom—, a sulfur atom—, BH, OCH, or CH
  • Y is a hydrogen atom, a hydroxyl group, or an alkoxy group.
  • a force that is a 2-cyanoethoxy group or Y and the 4′-position carbon of ribose may be bonded to form a ring.
  • at least one of R and R 2 is not hydrogen.
  • the present invention also provides a gene expression control method that suppresses gene expression using an oligonucleotide derivative represented by the following general formula (1).
  • a 1 and A 2 may be the same or different, and each represents hydrogen, a hydroxyl group, an alkyl group, a phosphate group, or a trityl group to which a substituent may be bonded.
  • N is an integer of 10 to 50
  • Y 2 is hydrogen, a hydroxyl group, an alkoxy group or a 2-cyanoethoxy group, or Y 2 and the ribose 4′-position carbon may be bonded to form a ring.
  • B 2 is a natural or non-natural nucleobase
  • R 2 is a substituent bonded to an amino group of the nucleobase, hydrogen, an acyl group, a thioacyl group, an alkoxycarbo group, an alkoxythiocarbole.
  • B 1 is the following General formula represents a substituent group represented by (2).
  • B is a natural or non-natural nucleobase
  • R is a substituent bonded to the amino group of the nucleobase, and is a hydrogen, an acyl group, a thioacyl group, or an alkoxy carbo group.
  • Alkoxyoxy group rubamoyl group which may be substituted with alkyl group, alkyl group, thiomolybamoyl group or alkyl group (alkyl group, alkyl group, alkyl group).
  • X is an oxygen atom—, a sulfur atom—, BH, OCH, or CH
  • Y is a hydrogen atom, a hydroxyl group, or an alkoxy group.
  • a force that is a 2-cyanoethoxy group or Y and the 4′-position carbon of ribose may be bonded to form a ring.
  • at least one of R and R 2 is not hydrogen.
  • the present invention also provides a nucleotide derivative represented by the general formula (17).
  • R 3 represents a phosphate protecting group
  • R 4 represents a dialkylamino group in which two identical or different alkyl groups having 1 to 6 carbon atoms are bonded to the nitrogen atom
  • 5 is hydrogen, an alkoxy group, a trialkylsilyloxy group having the same or different alkyl group having 1 to 10 carbon atoms, a trialkylsilyloxymethoxy group or a cyanoethyl group, or the 4 ′ position of ribose.
  • R 6 represents a protecting group for a hydroxyl group
  • R 7 is substituted with an acyl group, a thioacyl group, an alkoxy carbo ol group, an alkoxy thio carbo ol group or an alkyl group.
  • X 2 represents a nitrogen atom or a carbon atom which may have a substituent.
  • the present invention also provides a nucleotide derivative represented by the general formula (18).
  • R 3 represents a phosphate protecting group
  • R 4 represents a dialkylamino group in which two identical or different alkyl groups having 1 to 6 carbon atoms are bonded to the nitrogen atom
  • 5 is hydrogen, an alkoxy group, a trialkylsilyloxy group having the same or different alkyl group having 1 to 10 carbon atoms, a trialkylsilyloxymethoxy group or a cyanoethyl group, or the 4 ′ position of ribose.
  • the present invention also provides a nucleotide derivative represented by the general formula (19).
  • R 3 represents a phosphate protecting group
  • R 4 represents a dialkylamino group in which two identical or different alkyl groups having 1 to 6 carbon atoms are bonded to the nitrogen atom
  • 5 represents hydrogen, an alkoxy group, a trialkylsilyloxy group having the same or different alkyl group having 1 to 10 carbon atoms, a trialkylsilyloxymethoxy group, or a cyanoethyl group, or the 4 ′ position of ribose.
  • R 6 represents a protecting group for a hydroxyl group
  • R 7 is substituted with an acyl group, a thioacyl group, an alkoxy carbo ol group, an alkoxy thio carbo ol group or an alkyl group.
  • X 4 is a nitrogen atom or methine
  • X 1 is an oxygen atom or a sulfur atom.
  • the oligonucleotide derivative of the present invention is capable of identifying a base while leaving a protecting group.
  • the probe, microarray, and DNA chip of the present invention have the oligonucleotide derivative of the present invention. Since the conductor is used, the gene can be detected with good sensitivity.
  • the nucleotide derivative of the present invention is used as a raw material for producing the oligonucleotide derivative of the present invention.
  • the oligonucleotide derivative of the present invention is represented by the following general formula (1).
  • a 1 and A 2 may be the same or different, and each may be bonded to hydrogen, a hydroxyl group, an alkyl group, a phosphate group, or a substituent.
  • Good trityl group As the alkyl group, an alkyl group having 1 to 20 carbon atoms is preferable. If the number of carbon atoms exceeds 20, the ability to form double strands and the ability to discriminate bases may be reduced.
  • examples of the alkyl group bonded to the trityl group include an alkyl group having 1 to 20 carbon atoms.
  • n 10-50. When n is less than 10, the ability to form a duplex decreases, while when n exceeds 50, the ability to discriminate the base decreases.
  • Y 2 may be hydrogen, a hydroxyl group, an alkoxy group, or a 2-cyanoethoxy group ethyl group, or Y 2 and the ribose 4′-position carbon may be bonded to form a ring.
  • the alkoxy group an alkoxy group having 1 to 20 carbon atoms is preferable.
  • B 2 is a natural or non-natural nucleobase. Specifically, in addition to natural adenine, cytosine, guanine, thymine, and uracil, artificial bases such as 7-dazaadenine and 7-daza 8 azadenine, 3 diazaadenine, 6 thioguanine, 2 thiouracil, 2-thiothymine, and various substituents (alkyl, alkenyl, alkyl, halogen, -toluene group, acyl group, hydroxyl group, etc.) are introduced at the 7-position 7-Diazaadenine, adenine introduced with various substituents (alkyl, alkyl, alkyl, halogen, nitro group, acyl group, hydroxyl group, etc.) at the 8-position, various substituents (alkyl) at the 8-position , Halogen, nitro group, acyl group, hydroxyl group, etc.) 7-Dazaaden
  • R 2 is a substituent bonded to the nucleobase amino group. Therefore, R 2 does not exist when B 2 is a nucleobase having no amino group. Specifically, R 2 is substituted with hydrogen, an acyl group, a thioacyl group, an alkoxy carbo group, an alkoxy thio carbo group, an alkyl group, or may be substituted with a strong rubamoyl group or an alkyl group. However, it is a thiomolybamoyl group or an alkyl group (including those bonded to an alkyl group, an alkyl group, an alkyl group or a phenyl group). As the alkyl group, an alkyl group having 1 to 30 carbon atoms is preferable. In addition, an alkyl group, a alkenyl group, a The alkynyl group preferably has 1 to 30 carbon atoms,
  • B 1 represents a substituent represented by the following general formula (2).
  • B is a natural or non-natural nucleobase.
  • the artificial bases 7-Dazaadenine, 7-Daza8-azaazadenine, 3-Dazaadenine, 6-thioguanine, 2 thiouracil, 2 thiothymine, 7 7-deazadenine with various substituents (alkyl, alkyl, alkynyl, halogen, nitro, acyl, hydroxyl group, etc.) introduced at the position, and various substituents (alkyl, alkyl, alkyl, etc.) at the 8-position.
  • Cytosine with various functional groups (alkyl, alkyl, alkyl, halogen, nitro group, acyl group, hydroxyl group, etc.) introduced at the 5-position
  • 1-position Pseudoisocytosine with various functional groups (alkyl, alkenyl, alkynyl, acyl group, hydroxyl group, etc.) introduced, various functional groups (alkyl, alkenyl, alkynyl, halogen, nitro group, acyl) at the 5-position Group, hydroxyl group, etc.) and uracil, which is introduced with various functional groups (alkyl, alkyl, alkyl, alkyl, acyl group, hydroxyl group, etc.) at the 1-position.
  • R is a substituent bonded to the amino group of the nucleobase. Therefore, R 2 does not exist when B is a nucleobase having no amino group. Specifically, R is replaced by hydrogen, an acyl group, a thiacyl group, an alkoxycarbol group, an alkoxythiocarbol group, or an alkyl group! /, May! /, A rubamoyl group, Substituted with an alkyl group !, may! /, A thio-molybamoyl group, or an alkyl group (including those bonded to an alkyl group, an alkyl group, an alkyl group, or a phenyl group) .
  • alkyl group an alkyl group having 1 to 30 carbon atoms is preferable.
  • the alkyl group, the alkyl group, and the alkyl group bonded to the alkyl group are preferably those having 1 to 30 carbon atoms.
  • the alkyl group bonded to the strong ruberamoyl group or thiocarbamoyl group those having about 1 to 10 carbon atoms are preferable.
  • X is an oxygen atom, a sulfur atom, BH, OCH, or CH.
  • Y is hydrogen, hydroxyl,
  • a force that is a alkoxy group or a 2-cyanoethoxy group, or Y, and a ribose 4′-position carbon may be bonded to each other to form a ring.
  • At least one of B and B represents an amino group.
  • the oligonucleotide derivative of the present invention can be used as a probe. By using it as a probe, it can be used to determine the type of base at a specific position of a target nucleic acid contained in a sample.
  • the oligonucleotide derivative of the present invention can be produced by combining conventionally known methods.
  • the oligonucleotide derivative of the present invention can be produced by first producing each unit (phosphoramidite) constituting the oligonucleotide derivative and then linking them. Specifically, it can be produced by the method described in Examples described later.
  • Production of the unit constituting the oligonucleotide derivative can be carried out by combining conventionally known methods.
  • a unit (phosphoramidite) constituting the oligonucleotide derivative a commercially available product may be used.
  • the DNA chip (or microarray) of the present invention is formed by immobilizing at least one of the above-described oligonucleotide derivatives of the present invention.
  • the term “fixed ⁇ ” is a concept including adsorption, and also includes a bond such as a covalent bond.
  • the DNA spot diameter on the substrate surface when producing a DNA chip (or microarray) is not particularly limited, but is usually about 50 to 200 / ⁇ ⁇ . Also, there is no particular restriction on the spot pitch, and it is usually about 100 to 500 / ⁇ ⁇ .
  • the DNA chip (or microarray) of the present invention is formed by binding the oligonucleotide or A of the oligonucleotide derivative represented by the general formula (1) to a carrier.
  • a carrier used, for example,
  • the shape of the carrier may be any shape such as a plate shape (substrate shape) or a bead shape.
  • the DNA chip may be one using a probe on carrier method! /.
  • the probe-on-carrier method consists of synthesizing a DNA probe on a microporous glass (CPG), which is the most suitable material for DNA synthesis, and then detaching the probe molecule from the CPG carrier and then binding the DNA probe bound to CPG. It means the method used to detect SNPs.
  • the size of CPG used is preferably 5,000 A with a particle size of 500 A force.
  • the efficiency of the DNA chain elongation reaction is as high as 99.8% or higher, the purity of the DNA probe can be increased, and the accuracy of the DNA chip is greatly improved.
  • CPGs with the necessary DNA probes can be mass-produced, enabling cost reduction and higher quality control.
  • the conventional DNA chip is almost two-dimensionally detected on the force slide glass plane, whereas the probe-on-carrier method uses CPG, enabling three-dimensional detection. As a result, DNA probes can be arranged at high density, and detection with high sensitivity is possible.
  • the oligonucleotide derivative of the present invention is immobilized on the surface of the carrier, the oligonucleotide derivative A or A represented by the general formula (1) is replaced with an appropriate linker.
  • a method of bonding by a method such as a metal sulfur bond may be mentioned.
  • the number of oligonucleotide derivatives to be immobilized on the carrier surface is not limited to one, but may be two or more.
  • the substituent that is not bound to the carrier is the DNA chain.
  • Fluorescent molecules, quenching molecules, etc. should be bound for detection when used as a loop.
  • the DNA chip (or microarray) of the present invention can be used in a method for identifying a nucleic acid in a sample.
  • the sample and the DNA chip (or microarray) of the present invention are neutralized.
  • a sample can be added to the oligonucleotide derivative immobilized on the DNA chip (or microarray), for example, about 0.1 ⁇ to 100 / ⁇ .
  • the hybridization conditions are different forces depending on the type of the polynucleotide derivative, for example, a temperature of 0 to 60 ° C., for example, about 1 to 30 hours.
  • the substrate is cleaned 2 to 5 times with a cleaning solution suitable for the type of chip.
  • the oligonucleotide derivative of the present invention can be used for nucleic acid identification methods and gene detection. Examples of the gene detection method include real-time PCR in addition to the above-described DNA chip and microarray, and the oligonucleotide derivative of the present invention can be used in the above-described method.
  • the method for identifying a nucleotide in a target nucleic acid of the present invention comprises a step of hybridizing an oligonucleotide derivative represented by the general formula (1) with a target nucleic acid in a sample: and a step of detecting an hybridization product.
  • the oligonucleotide derivative represented by the general formula (1) is hybridized with the target nucleic acid in the sample.
  • the sample to be used is not particularly limited as long as it contains nucleic acids that are not particularly limited. Examples thereof include cell extracts, body fluids such as blood, PCR products, and oligonucleotides. The conditions of hyprid soybean are as described above.
  • the oligonucleotide derivative of the present invention can be used in a gene expression control method that suppresses gene expression.
  • the gene expression control method of the present invention is carried out by designing the gene expression so as to bind to the target site of the gene whose expression is to be controlled, and administering it to the cell. Administration may be carried out in a state where the oligonucleotide derivative is administered alone or bound to a carrier.
  • the administration method may be either oral or parenteral. As parenteral administration, for example, it can be locally administered intravenously, intramuscularly, subcutaneously or transdermally.
  • means for transporting antisense oligonucleotides to a desired tissue and means for facilitating introduction into target cells for example, use of ribosomes by pharmacologically acceptable cationic lipids, etc. Etc. are also possible.
  • the administered oligonucleotide binds to the target site of the gene whose expression is to be controlled, and the expression of the gene is controlled.
  • nucleotide derivative useful in the first embodiment of the present invention is represented by the following general formula (17). Is done.
  • R 3 represents a phosphate protecting group.
  • Any phosphoric acid protecting group can be used without particular limitation as long as it is used in the phosphoroamidite method, and examples thereof include a methyl group, a 2-cyanoethyl group, and a 2-trimethylsilylethyl group.
  • R 4 represents a di-alkylamino group in which the same or different alkyl group having 1 to 6 carbon atoms on the nitrogen atom is bonded two. Two alkyl groups may be bonded to each other to form a ring. Examples of such a dialkylamino group include a jetylamino group, a di-propyl pyramino group, and a dimethylamino group.
  • R 5 is hydrogen, an alkoxy group, a trialkylsilyloxy group, a trialkylsilyloxymethoxy group, or a cyanoethyl group having the same or different alkyl group having 1 to 10 carbon atoms, or a ribose group. It may combine with the 4'-position carbon to form a ring.
  • the alkoxy group an alkoxy group having 1 to 6 carbon atoms is preferable.
  • alkoxy group examples include a methoxy group, an ethoxy group, a propoxy group, a 1 butyloxy group, a 1 Pentyloxy group, 1-hexyloxy group and the like, and branched alkoxy groups such as 2-propyloxy group, isobutyloxy group, cyclopropyloxy group, cyclobutyloxy group, cyclopentyloxy group Including an alkoxy group in which a part or all of the side chain is cyclized, such as a cyclohexyloxy group and a cyclopropylmethyloxy group
  • R 6 represents a hydroxyl-protecting group.
  • the hydroxyl protecting group is not particularly limited as long as it is used in the phosphoramidite method, and examples thereof include a dimethoxytrityl group and a monomethoxytrityl group.
  • R 7 is an acyl group, a thioacyl group, an alkoxycarbol group, an alkoxythiocarbol group, a rubamoyl group optionally substituted with an alkyl group, or a thiocarbamoyl optionally substituted with an alkyl group Or an alkyl group (including those bonded to an alkyl group, a alkenyl group, an alkynyl group, or a phenyl group).
  • the alkyl group is preferably an alkyl group having 1 to 30 carbon atoms.
  • the alkyl group, the alkyl group, and the alkyl group that are bonded to the alkyl group are preferably those having 1 to 30 carbon atoms.
  • X 2 represents a nitrogen atom or a carbon atom which may have a substituent.
  • nucleotide derivative of the present invention represented by the general formula (17) include:
  • DMTr represents a dimethyltrityl group (hereinafter the same as in the present specification).
  • nucleotide derivative that can be used in the second embodiment of the present invention.
  • the nucleotide derivative useful in the second embodiment of the present invention is represented by the following general formula (18).
  • R 3 , R 4 , R 5 , R 6 and R 7 are the same as described in the above formula (17).
  • X 3 represents a nitrogen atom or methine.
  • the nucleotide derivative represented by the general formula (18) may be bonded with one or more diphenylcarbamoyl groups! /! / ⁇ .
  • R 8 is a diphenylcarbamoyl group, or a silyl group having a total of three identical or different aryl or alkyl groups on the key. Specific examples of R 8 include t-butyldiphenylsilyl group.
  • nucleotide derivative of the present invention represented by the general formula (18) include a compound represented by the following formula (22) (5, -O- (4,4, -dimethoxytrityl) -6-O diphenol.
  • nucleotide derivative useful in the third embodiment of the present invention is represented by the following general formula (19).
  • R 3 — 0 In the above general formula (19), R 3 , R 4 , R 6 and R 7 are the same as described in the above formula (17).
  • X is a nitrogen atom or methine
  • X 1 is an oxygen atom or a sulfur atom
  • X 4 is a nitrogen atom or methine
  • the nucleotide represented by the general formula (19) The derivative may be bonded with one or more diphenylcarbamoyl groups.
  • Specific examples of the nucleotide derivative of the present invention represented by the general formula (19) include compounds represented by the following formula (25) (2-N-acetylyl-5′-O- (4,4′-dimethoxy). Trityl) -2, -O-methyl-3-dazaguanosine-3,-(2-cyanethyl-N, N-diisopropyl phosphoramidide) and the like.
  • the nucleotide derivative of the present invention can be used as a raw material for producing the above-described oligonucleotide derivative of the present invention.
  • Deoxyguanosine (1.33 g, 5 mmol) was dehydrated by azeotropic distillation with pyridine, dissolved in 30 ml of anhydrous methanol, and then dimethoxydimethylaminomethane (1.81 ml, 1.78 g, 15 mmol) was added to the flask at 55 ° C. Stir for hours. After stirring, the reaction solution was cooled to room temperature, and the precipitate was collected by filtration to obtain a white powder product. Next, the obtained white powder was dehydrated by pyridine azeotropy and dissolved in 50 ml of anhydrous pyridine.
  • Dimethoxytrityl chloride (1.86 g 5.5 mmol) was added to the resulting solution, and the mixture was stirred at room temperature for 12 hours. Then, 10 ml of methanol was added to the reaction solution, and the mixture was further stirred for 5 minutes. Next, this reaction solution was diluted with 200 ml of black mouth form, and extracted three times with 200 ml of 5 mass% aqueous sodium hydrogen carbonate solution. The organic layer was collected, dried over anhydrous sodium sulfate and filtered, and the solvent was distilled off under reduced pressure. The resulting crude product Crystallized with diisopropyl ether and filtered to recover white powder product
  • the resulting crude product was purified by silica gel chromatography (1% triethylamine), hexane monochloroform (changing the blackform form to 50-100%), and then blackform monomethanol (methano). And the solvent is distilled off, and the white solid 5 '-0- (dimethoxy) tritinole-2, -deoxyguanosine 3, -0-( 2 Cyanethoxy group ethynole ⁇ , ⁇ -diisopropyl phosphoramidite) (compound represented by the following formula (3)) was obtained. 3.35 g, yield: 92%).
  • the probe was synthesized using an automated synthesizer of Applied Biosynthesis Inc, trade name “DNA / RNA Synthesizer 392” to prepare a probe represented by the sequence GCCTCCGGTTCAT (SEQ ID NO: 1).
  • the probe was synthesized by an automatic synthesizer using a microporous glass (CPG) solid phase support (10 mg, lO ⁇ mol / g) with 16-hydroxyhexadecanoic acid introduced at the end.
  • CPG microporous glass
  • BIT benzimidazolium triflate
  • ATGA ACCGGAGGC SEQ ID NO: 2
  • ATGAACCAGAGGC SEQ ID NO: 3
  • ATGAACT GGAGGC SEQ ID NO: 4
  • Three types of fluorescent oligonucleotides having sequences were prepared. Each oligonucleotide is labeled at the end with fluorescein.
  • CPG bound to the probe was immersed in 0.25 ml of this oligonucleotide solution (250 nM oligonucleotide, lOOmM phosphate buffer, 1M NaCl, pH 7.0).
  • phosphate buffer mono lOOmM phosphate buffer, 1M NaCl, pH 7.0
  • phosphate buffer was removed, and CPG fluorescence was measured.
  • Fluorescence measurement was performed using an epifluorescence system manufactured by OLYMPUS, and irradiating light of 470 to 490 nm, and shooting light of 510 nm or more using a digital CCD camera (ORCA-ER) manufactured by Hamamatsu Photonics.
  • the fluorescence brightness was measured.
  • the results showed high fluorescence intensity only when the oligonucleotide of SEQ ID NO: 2 was used. That is, when measured at an exposure time of 300 S, the average fluorescence brightness is 2375 when the oligonucleotide of SEQ ID NO: 2 is used.
  • CPG bound to the probe is used for gene detection.
  • oligonucleotides differing by only one base can be distinguished, and it was found that they can be used for analysis of SNPs.
  • R is tetraisopropyldisiloxane.
  • the reaction solution was extracted once with 20 ml of ethyl acetate Z sodium bicarbonate (1 Z 1) and then extracted twice with 20 ml of ethyl acetate Z brine (1Z1).
  • the organic layer was dried over anhydrous magnesium sulfate and the solvent was distilled off under reduced pressure.
  • the residue was purified by silica gel column chromatography (N60 spherical neutral silica gel) with hexane Z ethyl acetate (hexane concentration 50% ⁇ 80% To be purified) 3 ', 5'-O- (1,1,3,3tetraisopropyldisiloxane-1,3-diyl) -6-0-diphenylcarbamoyl-2-N-((dimethylamino) methylene) -3- Dazaguanosine (a compound represented by the following formula (10)) was obtained (105 mg, yield: 79%).
  • R is tetraisopropyldisiloxane.
  • R 1U is tetraisopropyldisiloxane.
  • reaction solution was extracted once with 40 ml of ethyl acetate Z sodium bicarbonate (1Z1) and then twice with 40 ml of ethyl acetate Z brine (1Z1).
  • Organic layer with anhydrous sulfuric acid mug After drying with Nesium and distilling off the solvent under reduced pressure, the residue was purified by using silica gel column chromatography (N60 spherical neutral silica gel) to add 1% triethylamine hexane Z ethyl acetate (hexane concentration 60% ⁇ 80 2), and 0-methyl-5, -0- (4,4, -dimethoxytrityl) -6-0-diphenylcarbamoyl-2-N- ((dimethylamino) methylene) -3-Dazaguanosine (a compound represented by the following formula (13)) was obtained (33 mg, yield: 57%).
  • R is a 4,4′-dimethoxytrityl group.
  • R 9 is a 4,4′-dimethoxytrityl group.
  • R 9 is a 4,4′-dimethoxytrityl group.
  • R 9 is a 4,4′-dimethoxytrityl group.
  • 2′-Deoxy-7 diazaadenosine (lg, 4 mmol) was azeotropically dehydrated three times with anhydrous pyridine and then dissolved in anhydrous pyridine (40 mL).
  • triethylamine (5 59 ⁇ L, 4 mmol), dichloroacetic acid (329 ⁇ L, 4 mmol), and 4,4, -dimethoxytrityl chloride (1.48 g, 4.4 mmol) were added in this order. And stirred at room temperature for 4 hours.
  • the reaction solution was then diluted with CHC1 (80 mL). The CHC1 layer was washed 3 times with saturated saline and then washed with anhydrous sodium sulfate.
  • the CHC1 layer was washed 3 times with saturated brine, dried over anhydrous sodium sulfate, filtered, and dissolved.
  • the medium was distilled off under reduced pressure to obtain a crude product.
  • the resulting crude product was purified by silica gel column chromatography (20 g, l% pyridine), and hexane was subjected to a gradient of 50 to 100% chloroform, followed by a gradient of 0 to 3% methanol. And the solvent was distilled off to obtain the desired solid (5, -O (4,4'-dimethoxytrityl) -2, -deoxy-8aza-7 diaza-adenosine) (1.9 g, 85 %).
  • the extract was washed 3 times with brine, dried over anhydrous sodium sulfate and filtered, and the solvent was distilled off under reduced pressure to obtain a crude product.
  • the resulting crude product was purified by silica gel column chromatography (25 g, 1% pyridine), and the hexane was subjected to a gradient of 50 to 100% chloroform and then to 0 to 3% methanol. And the solvent was distilled off to obtain the desired solid (5'-0- (4,4'-dimethoxytrityl) -2'-deoxy-6N-acetyl-8-aza-7-diazaadenosine) ( 1.4 g, 85%).
  • the organic layer was washed 3 times with saturated brine, then dried over anhydrous sodium sulfate and filtered, and the solvent was distilled off under reduced pressure to obtain a crude product.
  • the resulting crude product was purified by silica gel column chromatography (25 g, l% triethylamine). The hexane was subjected to a 50 to 100% chloroform form, followed by a 0 to 3% methanol gradient in the chloroform form.
  • the target solid (a compound represented by the following formula (21), 5, -0- (4,4'-dimethoxytrityl) -2'-deoxy-6N-acetyl- 8 -Laza-7-Dazaadenosine-3'- (2-Cyanethyl- ⁇ , ⁇ -disopropyl phosphoramidite) was obtained (672 mg, 90%).
  • the compound represented by the above formula (20) or the compound represented by the above (21) obtained in Example 4 and the compound represented by the above formula (3) obtained in Example 5, the above formula (5 ) And a compound represented by the above formula (6) were used to synthesize probes.
  • the probe was synthesized using an automated synthesizer of Applied Biosynthesis Inc, trade name “DNA / RNA Synthesizer 392”. The sequence was TACCTAXATACCATA (SEQ ID NO: 5, X is doxy 6N acetyl-7-diazaadenosine (above) A probe represented by the formula (20) was used, or a 2-dioxy 6N acetyl 8 aza 7 diaza adenosine (when the compound represented by the above formula (21) was used).
  • the probe was synthesized by an automated synthesizer using a solid-phase polystyrene (HCP) solid phase carrier (1 ⁇ mol, 24 ⁇ mol / g) into which thymidine was introduced via a silyl linker.
  • HCP solid-phase polystyrene
  • the chain extension cycle is as shown in Table 2 below.
  • -1-Hydroxybenzotriazole (Ho n Bt) and Benzoimidazolium triflate (BIT) were used.
  • the solid support was treated with a reaction solution in which TBAF (131 mg, 0.5 mmol) and acetic acid (24iL, 0.5 mmol) were dissolved in anhydrous THF 500 L for 1 hour. Then, the DNA oligomer was excised. The obtained mixed solution was desalted using a Sep-Pak C18 cartridge, further diluted with water, and purified using anion exchange HPLC.
  • the measurement sample dissolved in a 500 / z L phosphate notch (150 mM sodium phosphate, pH 7.0, 0.1 M NaCl, 0. ImM EDTA) was prepared so that the temperature could be adjusted.
  • Pharma Spec UV-1700 (manufactured by Shimadzu Corporation) was used. In the measurement, the sample is first kept at a temperature of 80 ° C for 30 minutes, the oligonucleotide is made into a random coil state, and then annealed by changing the temperature to 5 ° C in 1.0 ° CZ minutes, then 1 The temperature was increased at a rate of 0 ° CZ and 1. UV absorbance was measured every 0 ° C.
  • the UV absorbance obtained by the measurement was plotted against the temperature change to obtain a double-chain melting curve.
  • the inflection point was obtained by first-order differentiation of the curve, and the inflection point was defined as the double chain melting temperature (Tm value).
  • Tm value double chain melting temperature
  • the duplex melting temperature with an oligonucleotide having a single base mismatch sequence was measured. The measurement was performed in a 150 mM sodium phosphate buffer containing 0.1 M NaCl and 0.1 mM EDTA (pH 7.0) at a concentration of 2.0 mM for each oligonucleotide.
  • Table 3 shows the measurement results.
  • represents the difference between the Tm of the complementary strand in which the position of ⁇ in SEQ ID NO: 6 is thymidine and the Tm of 2′-deoxyadenosine, which is the most stable mismatch. Represent.
  • Table 3 shows the following.
  • An oligonucleotide containing 2'-deoxy 6N-acetyl 8-aza 7-deaza adenosine (8aza7deazaA) at the position X in the base sequence represented by SEQ ID NO: 5 (produced from that obtained in Example 5) ) Is comparable to the oligonucleotide containing 2'-deoxyadenosine (A) at the X position (45 ° C) compared to the complementary strand of SEQ ID NO: 6 where the Y position is thymidine. It was.
  • the oligonucleotide (Example 4) containing 2 and deoxy-6N-acetyl-8-aza-7-deazaadenosine (8aza7deazaA) at the X position of SEQ ID NO: 5 is 2'-deoxy at the X position.
  • the Tm of the complementary strand with thymidine at the Y position of SEQ ID NO: 6 is equivalent (45. It was a fold. On the other hand, it is the most stable mismatch.
  • Tm when the Y position of SEQ ID NO: 6 is 2'-doxyadenosine is the force 3 ⁇ 4 (force of the force of 31 ° C) including the X position force S8aza7deazaA of SEQ ID NO: 5.
  • the base discrimination ability was 1 ° C lower than in the case (32 ° C), and as a result, it is clear that the oligonucleotide containing 8az7deazaA has improved mismatch base discrimination ability.
  • Example 5 The compound obtained in Example 5 (compound represented by the formula (21)), and 2′-deoxy 4 TA * C * C * TA * A * A * TA * C
  • Example 6 The same procedure as in Example 6 was performed except that N-acetylcytidine was used and the synthetic chain elongation cycles were performed as shown in Table 4 below.
  • the solid support was treated with a reaction solution in which TBAF (131 mg, 0.5 mmol) and acetic acid (24iL, 0.5 mmol) were dissolved in anhydrous THF 500 L for 1 hour.
  • the DNA oligomer was excised.
  • the obtained mixed solution was desalted using a Sep-Pak C18 cartridge, further diluted with water, and purified using anion exchange HPLC.
  • the oligonucleotide obtained in Example 7 and an oligonucleotide having a complementary sequence is measured in the same manner as in Example 6, and the base discrimination ability is examined in the same manner as in Example 6. It was. Also, as a control, the oligonucleotide represented by SEQ ID NO: 7 (the compound obtained in Example 5 (compound represented by the formula (21)) and 2′-deoxy 4N-acetylcytidine were not used. The same experiment was carried out using the product prepared in (1), ie, the modified oligonucleotide.
  • ATm was 12.7 ° C.
  • Example 10 3,5, -Bis-O- (tert-butyldimethylsilyl) deoxyguanosine (1.5 g, 3.02 mmol) was azeotroped three times with anhydrous pyridine, dissolved in anhydrous pyridine (15 ml), and trimethylsilylchlorate. Id (576 1,4.53 mmol) was added and stirred at room temperature for 1 hour. Subsequently, chloroformate phenol (5 69 / ⁇ 1,3.93 ⁇ 1) was added and stirred at room temperature for 4 hours. A methanol solution of 40% methylamine (1.8 ml, 15.1 mmol) was stirred at room temperature for 2 hours.
  • the reaction solution was extracted once with ethyl acetate (200 ml) and Z water (150 ml), and then extracted twice with ethyl acetate (200 ml) and Z saline (150 ml).
  • the organic layer was dried over anhydrous magnesium sulfate and the solvent was distilled off under reduced pressure.
  • the residue was purified by NH silica gel column chromatography with methanol Z-chloroform 50% -80%, 3, 5, -bis -0- (tert-Butyldimethylsilyl) -2-N-methylcarbamoyldeoxyguanosine was obtained (1.38 g, 78%).
  • reaction solution was extracted once with ethyl acetate (150 ml) and aqueous sodium bicarbonate (150 ml) and then extracted twice with ethyl acetate (150 ml) and brine (100 ml).
  • the organic layer was dried over anhydrous magnesium sulfate and the solvent was distilled off under reduced pressure.
  • the residue was purified with 40% to 50% ethyl acetate Z-hexane using silica gel column chromatography (C200). , -Bis-0- (tert-butyldimethylsilyl) -6-0-diphenylcarbamoyl-2-N-methylcarbamoyldeoxyguanosine was obtained (1.13 g, 94%).
  • reaction solution was extracted once with ethyl acetate (100 ml) and sodium bicarbonate water (100 ml), and then twice with ethyl acetate (100 ml) and brine (80 ml). After drying the organic layer over anhydrous magnesium sulfate and distilling off the solvent under reduced pressure The residue was purified by silica gel column chromatography (N60 spherical neutral silica gel) with 50% -60% ethyl acetate with 1% tritylamine and 5, -0- (4,4, -Dimethoxytrityl) -6-0-diphenylcarbamoyl-2-N-methylcarbamoyloxyguanosine was obtained (889 mg, 87%).
  • Mouth (2-cyanethoxy) (-N, ⁇ -diisopropylamino) phosphine (410 ⁇ l, 1.85 mmol) was added and stirred at room temperature for 2 hours. The reaction was stopped with water (lml). The reaction solution was extracted five times with ethyl acetate (150 ml), Z5% aqueous sodium bicarbonate (100 ml). The organic layer was dried over anhydrous sodium sulfate and the solvent was distilled off under reduced pressure.
  • reaction solution was extracted once with ethyl acetate (250 ml) and Z water (200 ml), and then extracted twice with ethyl acetate (250 ml) and Z brine (150 ml).
  • the organic layer was dried over anhydrous magnesium sulfate and the solvent was distilled off under reduced pressure. Purification using column chromatography (25 g) with methanol Z-chloroform 6% to 30% and 3,5, -bis-0- (tert-butyldimethylsilyl) -2-N-force rubermoylde Xiguanosine was obtained (2.12 g, 68%).
  • reaction solution was extracted once with ethyl acetate (180 ml) Z sodium bicarbonate (150 ml), and then extracted twice with ethyl acetate (180 ml) Z brine (100 ml).
  • the organic layer was dried over anhydrous magnesium sulfate and the solvent was distilled off under reduced pressure.
  • the residue was purified with 50% -60% ethyl acetate Z-hexane using silica gel column chromatography (C200).
  • -Bis-0- (tert-butyldimethylsilyl) -2-N-force rubamoyl-6-0-diphenylcarbamoyldeoxyguanosine was obtained (1.53 g, 91%).
  • reaction solution was extracted once with ethyl acetate (150 ml) / aqueous sodium bicarbonate (120 ml), and then extracted twice with ethyl acetate (150 ml) and brine (100 ml).
  • the organic layer was dried over anhydrous magnesium sulfate and the solvent was distilled off under reduced pressure.
  • the residue was then added to 1% triethylamine using silica gel column chromatography (N60 spherical neutral silica gel) in methanol / chloroform form. Purification at 2% to 3% gave 2-N-force rubamoyl-5, -0-(4,4, -dimethoxytrityl) -6-0-diphenylcarbamoyldeoxyguanosine (
  • reaction solution was extracted five times with ethyl acetate (50 ml) ZO. 2M aqueous sodium hydroxide solution (40 ml). The organic layer was then dried over anhydrous sodium sulfate, and the solvent was distilled off under reduced pressure. The residue was purified using gel filtration chromatography (acetonitrile), and then ethyl acetate (50 ml) /0.2M hydroxide.
  • the reaction solution was poured into 0.5 M ammonium acetate buffer (150 ml) and extracted once with ethyl acetate (200 ml) /0.5 M ammonium acetate buffer (150 ml). Extraction was performed twice with ethyl (200 ml) and Z water (150 ml). After evaporating the organic layer under reduced pressure, the residue was removed using NH silica gel column chromatography with 5% methanol Z-chloroform form, and the gel was recovered and eluted 40 times with 80% methanol Z-cloform form. And concentrated to obtain 3,5, -bis-0- (tert-butyldimethylsilyl) -2-N-methylthio-rubamoyldeoxyguanosine (1.65 g, 48%).
  • reaction solution was extracted once with ethyl acetate (150 ml) and sodium bicarbonate water (120 ml), and then twice with ethyl acetate (150 ml) and Z brine (100 ml).
  • the organic layer was dried over anhydrous magnesium sulfate and the solvent was distilled off under reduced pressure.
  • the residue was purified with 40% -50% ethyl acetate / hexane using silica gel column chromatography (N60 spherical neutral silica gel).
  • reaction solution was extracted once with ethyl acetate (150 ml) and sodium bicarbonate aqueous solution (120 ml), and then twice with ethyl acetate (150 ml) and Z brine (100 ml).
  • organic layer was dried over anhydrous magnesium sulfate, and the solvent was distilled off under reduced pressure. Then, 1% triethylamine was added to the residue using silica gel column chromatography (N60 spherical neutral silica gel).
  • the measurement conditions were measured at a concentration of 2 M for each oligonucleotide in a 10 mM sodium phosphate buffer (pH 7.0) containing 0.1 M NaCl and 0.1 ImM EDTA.
  • test results with RNA having the base sequence represented by SEQ ID NO: 10 are shown in Table 5, and the test with DNA having the base sequence represented by SEQ ID NO: 11 (measurement result 2).
  • Table 6 shows the results.
  • an oligonucleotide containing 2'-0-methyl-2N-acetyl-3-deazaguanosine (ad3G) at the position X of the measurement result 2 is changed to an oligonucleotide containing deoxyguanosine (G) at the position X.
  • Tm was equivalent (59 ° C and 60 ° C)
  • it was revealed that oligonucleotides containing ad3G have improved mismatch base discrimination ability.
  • the natural phosphoramidite unit and other necessary reagents were purchased from Glen Research Inc. and used.
  • the phosphoramidite unit synthesized in the raw material synthesis example (addition 16) was dissolved in anhydrous nitronitrile (0.1 M) and applied to an automatic DNA synthesizer. Deprotection of the base part was performed by adding aqueous ammonia (2 mL) and allowing to stand at room temperature for 12 hours, and the subsequent purification was performed in the same manner as in Example 13.
  • Example 16 Purchased from In. The phosphoramidite unit used was dissolved in anhydrous cetonitrile (0.1 M) and applied to an automatic DNA synthesizer. The deprotection of the base was performed by adding aqueous ammonia (2 mL) and allowing to stand at room temperature for 12 hours, and the subsequent purification was performed in the same manner as in Example 14. MALDI— TOF mass calcd. 3172. 5 found 3172. [0162] Example 16
  • Natural phosphoramidite units and other necessary reagents were purchased from Glen Research Inc.
  • the synthesized phosphoramidite unit used was dissolved in anhydrous acetonitrile (0.1 M) and applied to an automatic DNA synthesizer.
  • the deprotection of the base part was performed by adding aqueous ammonia (2 mL) and allowing to stand at room temperature for 12 hours, and the subsequent purification was performed in the same manner as in Example 14.
  • the melting temperature (Tm) of the double strand with deoxyguanosine, 2′-deoxycytidine or thymidine) was measured.
  • the measurement conditions were 0.1 M NaCl and 0.1 ImM EDTA-containing lOmM sodium phosphate buffer (pH 7.0), and each oligonucleotide was measured at a concentration of 2 M.
  • oligonucleotides containing cmG have improved mismatch base discrimination ability.

Description

明 細 書
オリゴヌクレオチド誘導体、遺伝子検出用プローブ及び DNAチップ 技術分野
[0001] 本発明は、オリゴヌクレオチド誘導体、遺伝子検出用プローブ等に関する。更に詳 細には、プローブが脱落する等問題が発生することなく用いることのできる、オリゴヌ クレオチド誘導体、遺伝子検出用プローブ等に関する。
背景技術
[0002] 一塩基遺伝子多型(SNPs)を含む遺伝子型解析は、 V、わゆる「テーラーメイド医療 」の根拠を提供する拠点ともいえ、その必要性が急速に高まってきている。医薬品の 副作用を低減させるという観点から、米国医薬品局は新薬の申請の際に薬剤の効果 に関する SNPsの情報の添付を義務付ける方向に推移しており、我が国においても SNPsの解析の必要性が高まりつつある。
[0003] 現在汎用されている SNPs解析用 DNAチップは、検出プローブとして合成 DNAォ リゴヌクレオチドを用いており、その DNAチップの製造方法としては、大きく分けて 2 種類の方法が知られている。第一に、既に合成された DNAオリゴヌクレオチドをスラ イドガラス等の基板表面に固定ィヒする方法 (coupling合成法、非特許文献 1参照)で ある。第二に、オリゴヌクレオチドをスライドガラス等の基板上で合成する方法 (in situ 合成法、非特許文献 2参照)である。
[0004] Coupling合成法にぉ ヽては、まず反応性の高!、官能基を DN Aオリゴヌクレオチド に付カ卩して DNAプローブを得る。次いで、得られた DNAプローブをスライドガラス等 の基板表面にスポットすることで、 DNAプローブと基板表面に存在する官能基とをィ匕 学反応させ、共有結合を介してプローブ分子を基板に固定ィ匕する。この方法は、 DN Aプローブのスポッティング技術の煩雑さのために、基板表面への固定ィ匕効率を制 御することが非常に困難であり、品質管理にも影響を及ぼすこととなる。
[0005] 一方、 in situ合成法にぉ 、ては、光リソグラフィーゃバブルジェット技術を利用して 、スライドガラス等の基板表面でプローブを合成していく。この方法は、特定の位置で DNA合成を行う技術であるため、 DNAプローブの基板表面への固定ィ匕反応を省略 することができ、 DNAチップ合成のハイスループットィ匕が可能になる。し力し、この in situ合成法は基板表面における DNA鎖の伸長反応効率が低ぐ DNAプローブ純度 が悪くなり、そのために正確性が低いという欠点がある。たとえば、光リソグラフィーを 用いた合成においては、鎖伸長反応の効率が最高でも 95%程度であり、例えば 20 塩基長のプローブを合成した場合の有効プローブは 40%以下となる。すなわち、不 正確な配列を有するプローブが 60%以上存在することとなる。
[0006] 非特許文献 1: Ange wandte Chemie international edition, 2002, 41, 1276-1289 非特許文献 2 : B iopolymer, 2004, 73, 579-596
[0007] 不正確な配列を有するプローブが多く存在することは、正確性が求められる SNP 解析等においては結果の正確性を欠く原因となるという問題がある。
従来は、プローブを作成する際に、核酸塩基部に保護基を結合し、最終的に、この 保護基をアンモニア処理により除去する必要があった力、アンモニア処理を行うこと により、アンカー部分の Si— O結合が切断され、 90%程度の DNAプローブが担体 上力 脱落すると 、う問題があった。
従って、本発明の目的は、 SNP等に用いる場合に、上記問題が発生することなく用 いることができるオリゴヌクレオチド誘導体を提供することにある。
また、本発明は上記オリゴヌクレオチド誘導体を用いた遺伝子検出法における利用 法を提供することにある。
発明の開示
課題を解決するための手段
[0008] 上記目的を達成するため、本発明者らは鋭意検討した結果、特定のオリゴヌクレオ チドを用いることにより、上記目的を達成し得るという知見を得た。
本発明は、上記知見に基づいてなされたものであり、下記一般式(1)で表わされる オリゴヌクレオチド誘導体を提供するものである。
[0009] [化 1]
Figure imgf000005_0001
[0010] (上記式中、 A1及び A2は同一であって Aも I 異なっていてもよぐそれぞれ水素、水酸基
2
、アルキル基、リン酸基又は置換基を結合していてもよいトリチル基であり、 nは 10〜 50の整数であり、 Y2は水素、水酸基、アルコキシ基又は 2—シァノエトキシ基である 力 又は Y2とリボース 4'位炭素とが結合し、環を形成していてもよぐ B2は天然又は非 天然の核酸塩基であり、 R2は、核酸塩基のァミノ基に結合した置換基であり、水素、 ァシル基、チオアシル基、アルコキシカルボ-ル基、アルコキシチォカルボ-ル基、 アルキル基で置換されて 、てもよ 、力ルバモイル基、アルキル基で置換されて 、ても よいチォカルバモイル基、又はアルキル基(アルキル基、ァルケ-ル基、アルキ-ル 基又はフエ-ル基と結合したものを含む)であり、 B1は下記一般式(2)で表わされる 置換基を表す。 )
[0011] [化 2]
Figure imgf000006_0001
[0012] (上記式中、 Bは天然又は非天然の核酸塩基であり、 Rは、核酸塩基のァミノ基に結 合した置換基であり、水素、ァシル基、チオアシル基、アルコキシカルボ-ル基、アル コキシチォカルボ-ル基、アルキル基で置換されていてもよい力ルバモイル基、アル キル基で置換されて 、てもよ 、チォ力ルバモイル基、又はアルキル基(アルキル基、 ァルケ-ル基、アルキ-ル基又はフエ-ル基と結合したものを含む)であり、 Xは酸素 原子—、硫黄原子—、 BH、 OCH、又は CHであり、 Yは水素、水酸基、アルコキシ基
3 3 3
又は 2—シァノエトキシ基である力 又は Yとリボースの 4'位炭素とが結合し、環を形 成していてもよい。また、 R及び R2は、少なくとも 1個が水素でない。 )
[0013] また、本発明は、上記オリゴヌクレオチド誘導体の少なくとも 1つ以上を担体に固定 ィ匕させてなる、遺伝子検出用マイクロアレイを提供する。
また、本発明は、上記オリゴヌクレオチド誘導体の少なくとも 1つ以上を担体に固定 ィ匕させてなる、 DN Aチップを提供する。
[0014] また、本発明は、下記一般式(1)で表わされるオリゴヌクレオチド誘導体を、試料中 の標的核酸とハイプリダイス'させる工程:及びハイプリダイス'産物を検出する工程を 有する、標的核酸中のヌクレオチドの同定方法を提供する。
[化 3]
Figure imgf000007_0001
[0016] (上記式中、 A1及び A2は同一であっても異なっていてもよぐそれぞれ水素、水酸基 、アルキル基、リン酸基又は置換基を結合していてもよいトリチル基であり、 nは 10〜 50の整数であり、 Y2は水素、水酸基、アルコキシ基又は 2—シァノエトキシ基である 力 又は Y2とリボース 4'位炭素とが結合し、環を形成していてもよぐ B2は天然又は非 天然の核酸塩基であり、 R2は、核酸塩基のァミノ基に結合した置換基であり、水素、 ァシル基、チオアシル基、アルコキシカルボ-ル基、アルコキシチォカルボ-ル基、 アルキル基で置換されて 、てもよ 、力ルバモイル基、アルキル基で置換されて 、ても よいチォカルバモイル基、又はアルキル基(アルキル基、ァルケ-ル基、アルキ-ル 基又はフ -ル基と結合したものを含む)であり、 B1は下記一般式(2)で表わされる 置換基を表す。 )
[0017] [化 4]
Figure imgf000008_0001
[0018] (上記式中、 Bは天然又は非天然の核酸塩基であり、 Rは、核酸塩基のァミノ基に結 合した置換基であり、水素、ァシル基、チオアシル基、アルコキシカルボ-ル基、アル コキシチォカルボ-ル基、アルキル基で置換されていてもよい力ルバモイル基、アル キル基で置換されて 、てもよ 、チォ力ルバモイル基、又はアルキル基(アルキル基、 ァルケ-ル基、アルキ-ル基又はフエ-ル基と結合したものを含む)であり、 Xは酸素 原子—、硫黄原子—、 BH、 OCH、又は CHであり、 Yは水素、水酸基、アルコキシ基
3 3 3
又は 2—シァノエトキシ基である力 又は Yとリボースの 4'位炭素とが結合し、環を形 成していてもよい。また、 R及び R2は、少なくとも 1個が水素でない。 )
[0019] また、本発明は、下記一般式(1)で表わされるオリゴヌクレオチド誘導体を用いて、 遺伝子の発現を抑制する、遺伝子発現制御方法を提供する。
[0020] [化 5]
Figure imgf000009_0001
[0021] (上記式中、 A1及び A2は同一であっても異なっていてもよぐそれぞれ水素、水酸基 、アルキル基、リン酸基又は置換基を結合していてもよいトリチル基であり、 nは 10〜 50の整数であり、 Y2は水素、水酸基、アルコキシ基又は 2—シァノエトキシ基である 力 又は Y2とリボース 4'位炭素とが結合し、環を形成していてもよぐ B2は天然又は非 天然の核酸塩基であり、 R2は、核酸塩基のァミノ基に結合した置換基であり、水素、 ァシル基、チオアシル基、アルコキシカルボ-ル基、アルコキシチォカルボ-ル基、 アルキル基で置換されて 、てもよ 、力ルバモイル基、アルキル基で置換されて 、ても よいチォカルバモイル基、又はアルキル基(アルキル基、ァルケ-ル基、アルキ-ル 基又はフエ-ル基と結合したものを含む)であり、 B1は下記一般式(2)で表わされる 置換基を表す。 )
[0022] [化 6]
Figure imgf000010_0001
[0023] (上記式中、 Bは天然又は非天然の核酸塩基であり、 Rは、核酸塩基のァミノ基に結 合した置換基であり、水素、ァシル基、チオアシル基、アルコキシカルボ-ル基、アル コキシチォカルボ-ル基、アルキル基で置換されていてもよい力ルバモイル基、アル キル基で置換されて 、てもよ 、チォ力ルバモイル基、又はアルキル基(アルキル基、 ァルケ-ル基、アルキ-ル基又はフエ-ル基と結合したものを含む)であり、 Xは酸素 原子—、硫黄原子—、 BH、 OCH、又は CHであり、 Yは水素、水酸基、アルコキシ基
3 3 3
又は 2—シァノエトキシ基である力 又は Yとリボースの 4'位炭素とが結合し、環を形 成していてもよい。また、 R及び R2は、少なくとも 1個が水素でない。 )
[0024] また、本発明は、一般式(17)で表わされるヌクレオチド誘導体を提供する。
[0025] [化 7]
Figure imgf000011_0001
[0026] (上記式中、 R3はリン酸保護基を表し、 R4は窒素原子上に炭素数 1〜6個の同一又 は異なるアルキル基が 2個結合したジアルキルアミノ基を表し、 R5は、水素、アルコキ シ基または炭素数 1から 10の同一または異なるアルキル基を有するトリアルキルシリ ルォキシ基、トリアルキルシリルォキシメトキシ基もしくはシァノエチル基であるカゝ、又 はリボースの 4'位炭素と結合して環を形成しており、 R6は水酸基の保護基を表し、 R 7は、ァシル基、チオアシル基、アルコキシカルボ-ル基、アルコキシチォカルボ-ル 基、アルキル基で置換されていてもよい力ルバモイル基、アルキル基で置換されてい てもよいチォカルバモイル基、又はアルキル基(アルキル基、ァルケ-ル基、アルキ -ル基又はフエニル基と結合したものを含む)であり、 X2は窒素原子もしくは置換基 を有してもよい炭素原子を表わす。 )
[0027] また、本発明は、一般式(18)で表わされるヌクレオチド誘導体を提供する。
[0028] [化 8]
Figure imgf000012_0001
4
[0029] (上記式中、 R3はリン酸保護基を表し、 R4は窒素原子上に炭素数 1〜6個の同一又 は異なるアルキル基が 2個結合したジアルキルアミノ基を表し、 R5は、水素、アルコキ シ基または炭素数 1から 10の同一または異なるアルキル基を有するトリアルキルシリ ルォキシ基、トリアルキルシリルォキシメトキシ基もしくはシァノエチル基であるカゝ、又 はリボースの 4'位炭素と結合して環を形成しており、 R6は水酸基の保護基を表し、 R 7は、ァシル基、チオアシル基、アルコキシカルボ-ル基、アルコキシチォカルボ-ル 基、アルキル基で置換されていてもよい力ルバモイル基、アルキル基で置換されてい てもよいチォカルバモイル基、又はアルキル基(アルキル基、ァルケ-ル基、アルキ -ル基又はフエ-ル基と結合したものを含む)であり、 R8は、ジフエ-ルカルバモイル 基もしくは、ケィ素上に同一又は異なるァリール基もしくはアルキル基を合計 3つ有す るシリル基であり、 X3は窒素原子又はメチンを表す。 )
[0030] また、本発明は、一般式(19)で表わされるヌクレオチド誘導体を提供する。
[0031] [化 9] R D——〇
Figure imgf000013_0001
Figure imgf000013_0002
[0032] (上記式中、 R3はリン酸保護基を表し、 R4は窒素原子上に炭素数 1〜6個の同一又 は異なるアルキル基が 2個結合したジアルキルアミノ基を表し、 R5は、水素、アルコキ シ基または炭素数 1から 10の同一または異なるアルキル基を有するトリアルキルシリ ルォキシ基、トリアルキルシリルォキシメトキシ基もしくはシァノエチル基であるカゝ、又 はリボースの 4 '位炭素と結合して環を形成しており、 R6は水酸基の保護基を表し、 R 7は、ァシル基、チオアシル基、アルコキシカルボ-ル基、アルコキシチォカルボ-ル 基、アルキル基で置換されていてもよい力ルバモイル基、アルキル基で置換されてい てもよいチォカルバモイル基、又はアルキル基(アルキル基、ァルケ-ル基、アルキ -ル基又はフエニル基と結合したものを含む)であり、 X4は窒素原子もしくはメチンで あり、 X1は酸素原子又は硫黄原子である。 )
発明の効果
[0033] 本発明のオリゴヌクレオチド誘導体は、保護基を残したまま塩基の識別を行うことの できるものである。
本発明のプローブ、マイクロアレイ、 DNAチップは、本発明のオリゴヌクレオチド誘 導体を用いているので、感度よぐ遺伝子の検出を行うことができる。
本発明のヌクレオチド誘導体は、本発明のオリゴヌクレオチド誘導体を製造するた めの原料として用いられる。
発明を実施するための最良の形態
[0034] 以下、先ず本発明のオリゴヌクレオチド誘導体について説明する。
本発明のオリゴヌクレオチド誘導体は、下記一般式(1)で表わされる。
[0035] [化 10]
Figure imgf000014_0001
[0036] 上記一般式(1)において、 A1及び A2は同一であっても異なっていてもよぐそれぞ れ水素、水酸基、アルキル基、リン酸基又は置換基を結合していてもよいトリチル基 である。アルキル基としては、炭素数が 1〜20個であるアルキル基が好ましい。炭素 数が 20個を超えると、二重鎖形成能及び塩基識別能が低下する場合がある。また、 トリチル基に結合するアルキル基としては、炭素数が 1〜20個のアルキル基等が挙 げられる。
nは 10〜50である。 nが 10未満であると二重鎖形成能が低下し、一方、 nが 50を超 えると塩基識別能が低下する。
Y2は水素、水酸基、アルコキシ基又は 2—シァノエトキシ基ェチル基である力 又 は Y2とリボース 4'位炭素とが結合し、環を形成していてもよい。アルコキシ基としては 、炭素数が 1〜20個のアルコキシ基が好ましい。
[0037] B2は天然又は非天然の核酸塩基である。具体的には、天然のアデニン、シトシン、 グァニン、チミン、ゥラシルのほかに人工塩基である 7—デァザアデニン、 7—デァザ 8 ァザアデニン、 3 デァザアデニン、 6 チォグァニン、 2 チォゥラシル、 2- チォチミン、 7位に種々の置換基(アルキル、ァルケ-ル、アルキ -ル、ハロゲン、 -ト 口基、ァシル基、水酸基等)が導入された 7—デァザアデニン、 8位に種々の置換基( アルキル、ァルケ-ル、アルキ -ル、ハロゲン、ニトロ基、ァシル基、水酸基等)が導 入されたアデニン、 8位に種々の置換基(アルキル、ハロゲン、ニトロ基、ァシル基、 水酸基等)が導入された 7—デァザアデニン、 7位及び 8位に種々の置換基 (アルキ ル、ァルケ-ル、アルキニル、ハロゲン、ニトロ基、ァシル基、水酸基等)が導入された 7—デァザアデニン、 7—デァザグァニン、 7—デァザ 8—ァザグァニン、 3—デァ ザグァニン、 7位に種々の置換基(アルキル、ァルケ-ル、アルキ -ル、ハロゲン、 -ト 口基、ァシル基、水酸基等)が導入された 7—デァザグァニン、 8位に種々の置換基( アルキル、ァルケ-ル、アルキ -ル、ハロゲン、ニトロ基、ァシル基、水酸基)を導入し たグァニン、 8位に種々の置換基(アルキル、ァルケ-ル、アルキ -ル、ハロゲン、 -ト 口基、ァシル基、水酸基等)が導入された 7—デァザグァニン、 7位と 8位に種々の置 換基(アルキル、ァルケ-ル、アルキ -ル、ハロゲン、ニトロ基、ァシル基、水酸基等) が導入された 7—デァザグァニン、 5位に種々の官能基(アルキル、ァルケ-ル、アル キニル、ハロゲン、ニトロ基、ァシル基、水酸基等)が導入されたシトシン、シユードィ ソシトシン、 1位に種々の官能基(アルキル、ァルケ-ル、アルキニル、ァシル基、水 酸基等)が導入されたシユードイソシトシン、 5位に種々の官能基 (アルキル、ァルケ -ル、アルキ -ル、ハロゲン、ニトロ基、ァシル基、水酸基等)が導入されたゥラシル、 シユードウラシル、 1位に種々の官能基(アルキル、ァルケ-ル、アルキ -ル、ァシル 基、水酸基等)が導入されたシユードウラシル等が挙げられる。
R2は、核酸塩基のァミノ基に結合した置換基である。従って、 B2がアミノ基を有しな い核酸塩基である場合には R2は存在しない。具体的には、 R2は、水素、ァシル基、 チオアシル基、アルコキシカルボ-ル基、アルコキシチォカルボ-ル基、アルキル基 で置換されて 、てもよ 、力ルバモイル基、アルキル基で置換されて 、てもよ 、チォ力 ルバモイル基、又はアルキル基(アルキル基、ァルケ-ル基、アルキ-ル基又はフエ -ル基と結合したものを含む)である。アルキル基としては、炭素数が 1〜30個のァ ルキル基が好ましい。また、このアルキル基と結合するアルキル基、ァルケ-ル基、ァ ルキニル基としては、炭素数が 1〜30個のものが好ましい,
B1は下記一般式 (2)で表わされる置換基を表す。
[化 11]
Figure imgf000016_0001
上記一般式(2)において、 Bは天然又は非天然の核酸塩基である。具体的には、 天然のアデニン、シトシン、グァニン、チミン、ゥラシルのほかに人工塩基である 7— デァザアデニン、 7—デァザ 8—ァザアデニン、 3—デァザアデニン、 6—チォグァ ニン、 2 チォゥラシル、 2 チォチミン、 7位に種々の置換基(アルキル、ァルケ-ル 、アルキニル、ハロゲン、ニトロ基、ァシル基、水酸基等)が導入された 7—デァザァ デニン、 8位に種々の置換基(アルキル、ァルケ-ル、アルキ -ル、ハロゲン、ニトロ 基、ァシル基、水酸基等)が導入されたアデニン、 8位に種々の置換基 (アルキル、ハ ロゲン、ニトロ基、ァシル基、水酸基等)が導入された 7—デァザアデニン、 7位及び 8 位に種々の置換基(アルキル、ァルケ-ル、アルキ -ル、ハロゲン、ニトロ基、ァシル 基、水酸基等)が導入された 7—デァザアデニン、 7—デァザグァニン、 7—デァザ 8—ァザグァニン、 3—デァザグァニン、 7位に種々の置換基(アルキル、ァルケ-ル 、アルキニル、ハロゲン、ニトロ基、ァシル基、水酸基等)が導入された 7—デァザグァ ニン、 8位に種々の置換基(アルキル、ァルケ-ル、アルキ -ル、ハロゲン、ニトロ基、 ァシル基、水酸基)を導入したグァニン、 8位に種々の置換基 (アルキル、アルケニル 、アルキニル、ハロゲン、ニトロ基、ァシル基、水酸基等)が導入された 7—デァザグァ ニン、 7位と 8位に種々の置換基(アルキル、ァルケ-ル、アルキ -ル、ハロゲン、 -ト 口基、ァシル基、水酸基等)が導入された 7—デァザグァニン、 5位に種々の官能基( アルキル、ァルケ-ル、アルキ -ル、ハロゲン、ニトロ基、ァシル基、水酸基等)が導 入されたシトシン、シユードイソシトシン、 1位に種々の官能基(アルキル、ァルケ-ル 、アルキニル、ァシル基、水酸基等)が導入されたシユードイソシトシン、 5位に種々の 官能基(アルキル、ァルケ-ル、アルキニル、ハロゲン、ニトロ基、ァシル基、水酸基 等)が導入されたゥラシル、シユードウラシル、 1位に種々の官能基 (アルキル、ァルケ -ル、アルキ -ル、ァシル基、水酸基等)が導入されたシユードウラシル等が挙げられ る。
[0041] Rは、核酸塩基のァミノ基に結合した置換基である。従って、 Bがアミノ基を有しな ヽ 核酸塩基である場合には R2は存在しない。具体的には、 Rは、水素、ァシル基、チォ ァシル基、アルコキシカルボ-ル基、アルコキシチォカルボ-ル基、アルキル基で置 換されて!/、てもよ!/、力ルバモイル基、アルキル基で置換されて!、てもよ!/、チォ力ルバ モイル基、又はアルキル基(アルキル基、ァルケ-ル基、アルキ-ル基又はフエ-ル 基と結合したものを含む)である。アルキル基としては、炭素数が 1〜30個のアルキ ル基が好ましい。また、このアルキル基と結合するアルキル基、ァルケ-ル基、アルキ -ル基としては、炭素数が 1〜30個のものが好ましい。力ルバモイル基、チォカルバ モイル基に結合するアルキル基としては、炭素数が 1〜10個程度のものが好ましい。
[0042] Xは酸素原子—、硫黄原子—、 BH 、 OCH、又は CHである。 Yは水素、水酸基、ァ
3 3 3
ルコキシ基又は 2—シァノエトキシ基ェチル基である力、又は Yとリボース 4'位炭素と が結合し、環を形成していてもよい。
また、上記一般式(1)及び(2)において、 B及び Bは、少なくとも 1個は、アミノ基を
2
有する核酸塩基であり、 R及び Rは、少なくとも 1個が水素でない。 [0043] 本発明のオリゴヌクレオチド誘導体は、プローブとして用いることができる。プローブ として使用することにより、試料中に含まれる標的核酸の特定位置の特定位置の塩 基の種類を決定する等に用いることができる。
[0044] 本発明のオリゴヌクレオチド誘導体は、従来公知の方法を組み合わせて製造するこ とができる。本発明のオリゴヌクレオチド誘導体を製造するには、まず、オリゴヌクレオ チド誘導体を構成するユニット (ホスホロアミダイト)毎の製造を行い、その後、連結す ることにより実施することができる。具体的には、後述する実施例に記載の方法によつ て製造することができる。
オリゴヌクレオチド誘導体を構成するユニットの製造は、従来公知の方法を組み合 わせて行うことができる。また、オリゴヌクレオチド誘導体を構成するユニット (ホスホロ アミダイト)としては、市販されて 、るものを用いてもょ ヽ。
[0045] 次に、本発明の DNAチップについて説明する。
本発明の DNAチップ (又はマイクロアレイ)は、上述した本発明のオリゴヌクレオチ ド誘導体の少なくとも 1つ以上を固定化させてなる。固定ィ匕とは、吸着も含む概念で あり、また共有結合等による結合も含まれる。
[0046] DNAチップ(又はマイクロアレイ)を作成する際の基板表面への DNAのスポット径 に特に制限はないが、通常は 50〜200 /ζ πι程度である。また、スポットピッチに特に 制限はなぐ通常は 100〜500 /ζ πι程度である。
[0047] 本発明の DNAチップ(又はマイクロアレイ)は、一般式(1)で表わされるオリゴヌタレ ォチド誘導体の Α又は Aが担体と結合してなる。用いられる担体としては、例えば、
1 2
微小多孔質ガラス、ポーラスガラス等のガラス、ポリスチレン、金属、フェライトを芯に グリシンメタタリレートで表面を覆った磁性ビーズ等が挙げられる。また、担体の形状 は、板状 (基板状)、ビーズ状等、どのような形状のものであってもよい。
[0048] DNAチップは、ブローブオンキャリア法を用いたものであってもよ!/、。プローブオン キャリア法とは、 DNA合成に最も適した素材とされる微小多孔質ガラス (CPG)上で DN Aプローブを合成した後、プローブ分子を CPG担体から切り離すことなぐ CPG に結合した DNAプローブを用いて SNPs検出に用いる手法のことを意味する。用い られる CPGのサイズは、好ましくは粒径が 500 A力も 5, 000 Aである。このプローブ オンキャリア法を用いることにより、 DNAプローブの基板への固定ィ匕操作を省略する ことができるため、 DNAチップ合成のハイスループットィ匕が可能になる。また、 DNA 鎖伸長反応効率が 99. 8%以上と非常に高いため、 DNAプローブの純度を高くす ることができ、 DNAチップの正確性が大幅に向上するという利点を有する。また、必 要な DNAプローブを有する CPGは、大量生産が可能であり、コストの低減や、より質 の高い品質管理が可能となる。更に、従来の DNAチップは、ほとんど力スライドガラ ス平面上で二次元的に検出を行っていたのに対し、プローブオンキャリア法では、 C PGを用いているため、三次元的な検出が可能となり、 DNAプローブの高密度な配 置が可能となり、高い感度の検出が可能である。
[0049] 上述した、プローブオンキャリア法に、既存の DNA合成システムを適用した場合、 核酸塩基部の保護基を除去する過程 (アンモニア処理)で、リンカ一部分の Si— O結 合が切断されてしまい、約 90%の DNAプローブが担体表面力も脱離してしまうという 現象が見られる。本発明のオリゴヌクレオチド誘導体をプローブオンキャリア法に適 用した場合、保護基を除去する必要がないので、上記問題が解消される。
[0050] 担体表面に、本発明のオリゴヌクレオチド誘導体を固定ィ匕する場合には、一般式( 1)で表わされるオリゴヌクレオチド誘導体の A又は Aを、適当なリンカ
1 2 一を介して、 例えば金属 硫黄結合等の方法によって結合させる方法が挙げられる。また、担体 表面に固定ィ匕させるオリゴヌクレオチド誘導体は 1種類のみならず、 2種類以上であ つてもよい。なお、 A又は Aの中で、担体と結合していない方の置換基は、 DNAチ
1 2
ップ等として用いた際の検出に用いるために、蛍光分子、消光分子等を結合させて ちょい。
[0051] 本発明の DNAチップ (又はマイクロアレイ)は、試料中の核酸の同定方法等に用い ることがでさる。
方法としては、まず、試料と、本発明の DNAチップ(又はマイクロアレイ)とをノヽイブ リダィズさせる。ハイブリダィズに際しては、 DNAチップ(又はマイクロアレイ)に固定 されたオリゴヌクレオチド誘導体に対し、試料を例えば 0. 1 μ Μ〜100 /ζ Μ程度添 加することができる。また、ハイブリダィズの条件は、ポリヌクレオチド誘導体の種類に よって異なる力 例えば 0〜60°Cの温度で、例えば 1〜30時間程度である。 [0052] ノ、イブリダィズ終了後は、チップの種類に適した洗浄液で 2〜5回洗浄を行う。この ように、本発明のオリゴヌクレオチド誘導体は、核酸の同定方法や遺伝子検出に用い ることができる。遺伝子検出の手法としては、上述した、 DNAチップ、マイクロアレイ に加え、リアルタイム PCRが挙げられ、本発明のオリゴヌクレオチド誘導体は、上述し た手法に用いることができる。
[0053] 次に、本発明の標的核酸中のヌクレオチドの同定方法について説明する。
本発明の標的核酸中のヌクレオチドの同定方法は、上記一般式(1)で表わされる オリゴヌクレオチド誘導体を、試料中の標的核酸とハイブリダィズさせる工程:及び ノ、イブリダィズ産物を検出する工程を有する。
本発明の標的核酸中のヌクレオチドの同定方法においては、先ず、上記一般式(1 )で表わされるオリゴヌクレオチド誘導体を、試料中の標的核酸とハイブリダィズさせる 。用いられる試料としては、特に制限はなぐ核酸を含むものであればよぐ例えば、 細胞抽出液、血液等の体液、 PCR産物、オリゴヌクレオチド等が挙げられる。ハイプリ ダイズの条件は上述した通りである。
[0054] 本発明のオリゴヌクレオチド誘導体は、遺伝子の発現を抑制する、遺伝子発現制御 方法に用いることができる。本発明の遺伝子発現制御方法は、発現を制御しょうとす る遺伝子の目的部位と結合するように設計し、細胞に投与することによって実施する 。投与は、オリゴヌクレオチド誘導体を単独で投与してもよぐ担体に結合させた状態 で投与してもよい。投与方法は、経口的又は非経口的方法、いずれであってもよぐ 非経口的投与としては、例えば局所に静脈内、筋肉内、皮下、経皮的に投与するこ とができる。また、所望の組織を標的としてアンチセンスオリゴヌクレオチドを輸送する ための手段や、標的細胞への導入を容易にするための手段、例えば薬理学的に許 容されるカチオン性脂質等によるリボソームの利用等も可能である。投与されたオリゴ ヌクレオチドは、発現を制御しょうとする遺伝子の目的部位と結合し、その遺伝子の 発現が制御される。
[0055] 次に、本発明のヌクレオチド誘導体について説明する。
まず、本発明の第 1の実施の形態に力かるヌクレオチド誘導体について説明する。 本発明の第 1の実施の形態に力かるヌクレオチド誘導体は下記一般式(17)で表わ される。
[0056] [化 12]
Figure imgf000021_0001
[0057] 上記一般式(17)において、 R3はリン酸保護基を表す。リン酸保護基としては、ホス ホロアミダイト法に用いられるものであれば、特に制限なく用いることができ、例えば、 メチル基、 2—シァノエチル基、 2—トリメチルシリルェチル基等が挙げられる。
[0058] R4は窒素原子上に炭素数 1〜6個の同一又は異なるアルキル基が 2個結合したジ アルキルアミノ基を表す。なお、 2個のアルキル基が互いに結合して環を形成してい てもよい。このようなジアルキルアミノ基としては、例えば、ジェチルァミノ基、ジィソプ 口ピルアミノ基、ジメチルァミノ基等が挙げられる。
[0059] R5は、水素、アルコキシ基または炭素数 1から 10の同一または異なるアルキル基を 有するトリアルキルシリルォキシ基、トリアルキルシリルォキシメトキシ基もしくはシァノ ェチル基である力、又はリボースの 4 '位炭素と結合して環を形成していてもよい。ァ ルコキシ基としては、炭素数が 1〜6個のアルコキシ基が好ましぐこのようなアルコキ シ基としては、例えば、メトキシ基、エトキシ基、プロポキシ基、 1 ブチルォキシ基、 1 ペンチルォキシ基、 1一へキシルォキシ基等が挙げられ、また、 2—プロピルォキシ 基、イソブチルォキシ基等のように分枝したアルコキシ基、シクロプロピルォキシ基、 シクロブチルォキシ基、シクロペンチルォキシ基、シクロへキシルォキシ基、シクロプ 口ピルメチルォキシ基等の、側鎖の一部もしくは全部が環化したアルコキシ基も含む
[0060] また、 R6は水酸基の保護基を表す。水酸基の保護基としては、ホスホロアミダイト法 で用いられるものであれば特に制限はなぐ例えば、ジメトキシトリチル基、モノメトキ シトリチル基等が挙げられる。
[0061] R7は、ァシル基、チオアシル基、アルコキシカルボ-ル基、アルコキシチォカルボ -ル基、アルキル基で置換されていてもよい力ルバモイル基、アルキル基で置換され ていてもよいチォカルバモイル基、又はアルキル基(アルキル基、ァルケ-ル基、ァ ルキニル基又はフエ-ル基と結合したものを含む)である。アルキル基としては、炭素 数が 1〜30個のアルキル基が好ましい。また、このアルキル基と結合するアルキル基 、ァルケ-ル基、アルキ-ル基としては、炭素数が 1〜30個のものが好ましい。
また、 X2としては、窒素原子又は置換基を有してもい炭素原子を表わす。
[0062] 一般式(17)で表わされる、本発明のヌクレオチド誘導体の具体例としては、下記式
(20)で表わされる化合物(5,— O— (4, 4,—ジメトキシトリチル)—2,—デォキシ— 6N ァセチルー 7 デァザアデノシン— 3, - (2 シァノエチル— N, N ジィソプ 口ピルホスホロアミダイド)及び下記式(21)で表わされる化合物(5' -0- (4, 4' ジメトキシトリチル)—2,—デォキシ— 6N ァセチルー 8 ァザ— 7 デァザアデノ シン— 3, - (2 シァノエチル— N, N ジイソプロピルホスホロアミダイド)等が挙げ られる。
[0063] [化 13]
Figure imgf000023_0001
[0064] [化 14]
Figure imgf000024_0001
Figure imgf000024_0002
[0065] 式(20)及び(21)において、 DMTrはジメチルトリチル基を表す(以下、本明細書 において同様である)。
次に、本発明の第 2の実施の形態に力かるヌクレオチド誘導体について説明する。 本発明の第 2の実施の形態に力かるヌクレオチド誘導体は下記一般式(18)で表わ される。
[0066] [化 15]
R 6一 〇
Figure imgf000025_0001
P—— R 4
3
上記一般式(18)において、 R3、 R4、 R5、 R6及び R7は、上記式(17)において説明 したのと同様である。 X3は、窒素原子又はメチンを表す。また、一般式(18)で表わさ れるヌクレオチド誘導体は、 1以上のジフエ-ルカルバモイル基が結合して!/、てもよ!/ヽ 。また、 R8は、ジフエ二ルカルバモイル基もしくは、ケィ素上に同一又は異なるァリー ル基もしくはアルキル基を合計 3つ有するシリル基である。 R8の具体例としては、例え ば、 tーブチルジフエニルシリル基等が挙げられる。上記一般式(18)で表わされる、 本発明のヌクレオチド誘導体の具体例としては、下記式(22)で表わされる化合物(5 ,— O— (4, 4,—ジメトキシトリチル)— 6— O ジフエ-ルカルバモイルー 2N—メチ ルカルバモイルデォキシグアノシン— 3, - (2 シァノエチル— N, N ジイソプロピ ルホスホロアミダイド)、下記式(23)で表わされる化合物( 2— N 力ルバモイル 5, — O— (4, 4,—ジメトキシトリチル))—6— O ジフエ-ルカルバモイルデォキシグァ ノシン一 3' - (2 シァノエチル一 N, N ジイソプロピルホスホロアミダイド)、及び下 記式(24)で表わされる化合物(5' O (4, 4'—ジメトキシトリチル) 6 O ジフ ェ-ルカルバモイルー 2N—メチルチオ力ルバモイルデォキシグアノシン 3 シァノエチル— N, N ジイソプロピルホスホロアミダイド)等が挙げられる。
[化 16]
Figure imgf000026_0001
[化 17]
Figure imgf000027_0001
[0070] [化 18]
Figure imgf000028_0001
次に、本発明の第 3の実施の形態に力かるヌクレオチド誘導体について説明する。 本発明の第 3の実施の形態に力かるヌクレオチド誘導体は下記一般式(19)で表わ される。
[化 19]
Figure imgf000029_0001
0 R 5 (19)
P— R 4
R 3— 0 上記一般式(19)において、 R3、 R4
Figure imgf000029_0002
R6及び R7は、上記式(17)において説明 したのと同様である。また、一般式(19)において、 Xは窒素原子もしくはメチンであり 、 X1は酸素原子又は硫黄原子であり、 X4は窒素原子又はメチンであり、また、一般式 (19)で表わされるヌクレオチド誘導体は、 1以上のジフヱ-ルカルバモイル基が結合 していてもよい。一般式(19)で表わされる、本発明のヌクレオチド誘導体の具体例と しては、下記式(25)で表わされる化合物(2— N—ァセチルー 5'— O—(4, 4'ージ メトキシトリチル)—2,—O—メチル—3—デァザグアノシン— 3, - (2—シァノエチル — N, N—ジイソプロピルホスホロアミダイド)等が挙げられる。
[化 20]
Figure imgf000030_0001
Figure imgf000030_0002
[0073] 本発明のヌクレオチド誘導体は、上述した、本発明のオリゴヌクレオチド誘導体を製 造するための原料として用いることができる。
実施例
[0074] 以下、本発明を実施例により更に詳細に説明する。なお、本発明の範囲は、かかる 実施例に限定されな ヽことは ヽうまでもな ヽ。
実施例 1
デォキシグアノシン (1.33g 5mmol)をピリジン共沸で脱水し、 30mlの無水メタノール に溶解した後、ジメトキシジメチルァミノメタン(1. 81ml, 1.78g 15mmol)をカ卩え、 55°C で 15時間、撹拌を行った。撹拌終了後、室温まで反応溶液を冷却し、沈殿物をろ過 して回収し、白色粉末の生成物を得た。次に、得られた白色粉末をピリジン共沸で脱 水し、 50mlの無水ピリジンに溶解した。得られた溶液にジメトキシトリチルクロライド (1. 86g 5.5mmol)を加え、室温で 12時間撹拌した後、反応溶液に 10mlのメタノールをカロ え、さらに 5分間撹拌した。次いで、この反応溶液を 200mlのクロ口ホルムで希釈し、 5 質量%炭酸水素ナトリウム水溶液 200mlで 3回抽出操作を行った。有機層を回収し、 無水硫酸ナトリウムで乾燥してろ過し、溶媒を減圧留去させた。得られた粗生成物を ジイソプロピルエーテルを用いて結晶化させ、ろ過し、白色粉末の生成物を回収した
[0075] 次いで、得られた白色粉末の生成物に、 100mlのピリジン アンモニア水溶液 (1:1 v/v)に加え、室温で 15時間、撹拌を行った。撹拌終了後、アンモニアを減圧留去し、 200mlのクロ口ホルムで希釈し、 5質量%炭酸水素ナトリウム水溶液 200mlで 3回抽出 操作を行った。次いで、有機層を回収し無水硫酸ナトリウムで乾燥してろ過し、溶媒 を減圧留去させた。得られた粗生成物を、ジイソプロピルエーテルを用いて結晶化さ せろ過し、白色粉末の 5, -0- (ジメトキシ)トリチル -2, -デォキシグアノシンを回収した( 1.65g、収率: 58%)。
JH NMR (CDC1 ): 2.22 - 2.31( m, 1H ), 2.57 - 267( m, 1H ), 3.09 - 3.15( m, 2H ),
3
3.71( s, 6H ), 3.81 - 3.91( m, 1H ), 4.32 - 4.35( m, 1H ), 5.28( d, 1H, J = 4.4 Hz ), 6.12( dd, 1H, J = 6.3, 6.8 Hz ), 6.42(br s, 2H), 6.81(dd, 4H, J = 6.8, 8.8 Hz ), 7.17- 7.34( m, 9H ), 7.76( s, 1H ), 10.58( br s, 1H )
[0076] 上述のようにして得られた 5 ' -0- (ジメトキシ)トリチル -2 ' -デォキシグアノシン (2.85g 5mmmol)をピリジン、トルエン、ジクロロメタンの順で共沸して脱水後、 10mlの無水テ トラヒドロフラン(THF)に溶解させた後、ジイソプロピルェチルァミン (1.23ml 7.5mmol) を加えた。この溶液を- 78°Cまで冷却し、(2 シァノエトキシ基ェチル )(N,N-ジィソプ 口ピルァミノ)クロ口ホスフィン (1.23ml 5.5mmol)を加えてから、徐々に室温まで戻した。 1時間撹拌した後、反応溶液を 20mlの水に注ぎ、 200mlのクロ口ホルムで希釈し、 5 質量%炭酸水素ナトリウム水溶液 200mlで 3回抽出操作を行った。有機層を回収し無 水硫酸ナトリウムで乾燥してろ過し、溶媒を減圧留去させた。得られた粗生成物をシリ 力ゲルクロマトグラフィー (1%トリェチルァミン)により精製し、へキサン一クロ口ホルム( クロ口ホルムを 50〜100%に変化させる)、次いで、クロ口ホルム一メタノール (メタノ ールを 0〜3%に変化させる)を用いて溶出し、溶媒を留去し、白色固体の 5' -0- (ジ メトキシ)トリチノレ- 2,-デォキシグアノシン 3,- 0- (2 シァノエトキシ基ェチノレ Ν,Ν-ジ イソプロピルホスホロアミダイト)(下記式(3)で表わされる化合物)を得た。 3.35g、収率 : 92%)。
31P NMR (CDC1 ): 149.4 149.2 H NMR (CDC1 ): 1.01 - 1.25(m, 12H ), 2.41( t, 1H, J = 10.5 Hz ), 2.43 - 2.77( m,
3
3H ), 3.31 - 3.80( m, 12H), 4.11 - 4.18( m, 1H ), 4.55 - 4.61( m, 1H ), 6.43 - 6.49( m 1H ), 6.74 - 6.80( m, 4H ), 7.10 - 7.36( m, 11H ), 760 - 7.69( m, 1H )
[0077] [化 21]
Figure imgf000032_0001
[0078] ¾細12
2,-デォキシアデノシン一水和物(4g, 15mmol)を酢酸ナトリウム緩衝液 (pH 4.3) 75 mlに懸濁させた。この溶液に、臭素(0.92ml, 18mmol)を溶解させた酢酸ナトリウム緩 衝液 (pH 4.3) 75mlを滴下し、室温で 2時間撹拌した。次いで、 5%チォ硫酸ナトリウム 水溶液を 50mlカ卩え、次いで、 2M水酸化ナトリウム水溶液を 50mlカ卩えた。得られた沈 殿物をろ過することにより回収し、水、エタノールで十分に洗浄し、 8-ブロモ -2' -デォ キシアデノシンを得た(4.2g,収率: 83%)。
1H NMR (DMSO): 2.08 - 2.16(m, 1H ), 3.05 - 3.15(m, 1H ), 3.41 - 3.48(m, 1H), 3. 54 - 3.61( m, 1H ), 3.78 - 3.83(m, 1H), 4.40 - 4.41(m, 1H), 4.91(s, 1H), 5.29(s,lH) , 5.43(brs, 2H), 6.13(t, 1H, J = 7.25 Hz), 8.12(s, 1H ) [0079] 上述のようにして得られた 8-ブロモ -2, -デォキシアデノシン(4.2g, 12.5mmol)を 80% 酢酸—無水酢酸(1: 1, v/v, 250ml)に溶解し、この溶液に酢酸ナトリウム (18.5g, 225 mmol)を加えた。次いで、 120°Cで 3時間撹拌した後、酢酸ェチルー水(500ml/500ml) で抽出操作をおこない、有機層を回収し溶媒を減圧下留去した。得られた組成生物 を 28%アンモニア水—ピリジン(1: 1, v/v, 250ml)に溶解し、室温で 5時間撹拌した。 次いで、この反応溶媒を減圧下留去し、得られた固体をエタノールで十分に洗浄'ろ 過し、 2,-デォキシ- 7,8-ジヒドロ- 6- N-ァセチル アデノシン- 8-オンを得た(1.9g,収 率: 55%)。
JH NMR (DMSO): 2.05 - 2.12(m, 1H ), 2.21(s,3H), 3.03 - 3.16(m, 1H ), 3.45 - 3.48 (m, 1H), 3.55 - 3.60( m, 1H ), 3.78 - 3.80(m, 1H), 4.38 (brs, 1H), 4.81(brs, 1H), 5. 22(s,lH), 6.15(t, 1H, J = 7.25 Hz), 8.12(s, 1H ), 10.20(brs, 1H), 10.83(brs,lH).
[0080] 上述のようにして得られた 2' -デォキシ- 7,8-ジヒドロ- 6-N-ァセチル アデノシン- 8- オン(1.5g, 5mmol)をピリジン共沸で脱水し、 50mlの無水ピリジンに溶解した後、こ の溶液にジメトキシトリチルクロライド (1.86g 5.5mmol)を加えた。次いで、この溶液を室 温で 4時間撹拌した後、反応溶液に 10mlのメタノールをカ卩え、さらに 5分間撹拌した 。次いえ、この反応溶液を 200mlのクロ口ホルムで希釈し、 5質量%炭酸水素ナトリウ ム水溶液 200mlで 3回抽出操作を行った。有機層を回収し無水硫酸ナトリウムで乾燥 してろ過し、溶媒を減圧留去させた。得られた粗生成物をシリカゲルクロマトグラフィ 一により精製し、クロ口ホルム (0.5%ピリジン)に 0〜3%メタノールのグラジェントをかけて 溶出し、溶媒を留去し、白色個体の 2,-デォキシ -5,- 0- (4,4,-ジメトキシトリチル) -7, 8-ジヒドロ- 6-N-ァセチル アデノシン- 8-オンを得た(2.45g,収率: 80%)。
1H NMR (CDC1 ): 2.11 - 2.15( m, 1H ), 2.21( s, 3H ), 3.04 - 3.15( m, 1H ), 3.70( s
3
, 6H ), 3.81 - 3.91( m, 1H ), 4.32 - 4.35( m, 1H ), 6.13( dd, 1H, J = 6.2, 6.7 Hz ), 6 .81(dd, 4H, J = 6.8, 8.8 Hz ), 7.10 - 7.28( m, 9H ), 8.20( s, 1H ), 10.20( br s, 1H), 10.82(brs, 1H).
[0081] 上述のようにして得られた 2, -デォキシ -5, -0- (4,4' -ジメトキシトリチル) -7,8-ジヒド 口- 6- N-ァセチル アデノシン- 8-オン(3.06g 5mmmol)をピリジン、トルエン、ジクロロ メタンの順で共沸して脱水後、 10mlの無水 THFに溶解させた後、ジイソプロピルェ チルァミン (1.23ml 7.5mmol)を加えた。この溶液を- 78°Cまで冷却し、(2 シァノエトキ シ基ェチル )(N,N-ジイソプロピルァミノ)クロ口ホスフィン (1.23ml 5.5mmol)を加えてから 、徐々に室温まで戻した。 1時間撹拌した後、反応溶液を 20mlの水に注ぎ、 200ml のクロ口ホルムで希釈し、 5質量%炭酸水素ナトリウム水溶液 200mlで 3回抽出操作を 行った。有機層を回収し無水硫酸ナトリウムで乾燥してろ過し、溶媒を減圧留去させ た。この粗生成物をシリカゲルクロマトグラフィー (1%トリェチルァミン)により精製し、 へキサン クロ口ホルム(クロ口ホルムを 50〜100%に変化させる)、クロ口ホルム メタ ノール (メタノールを 0〜3%に変化させる)グラジェントをかけて溶出し、溶媒を留去し 、 2,-デォキシ- 5,- 0- (4,4,-ジメトキシトリチル) -7,8-ジヒドロ- 6- N-ァセチル アデノ シン- 8-オン 3, - 0- (2 -シァノエトキシ基ェチノレ Ν,Ν-ジイソプロピルホスホロアミダイ ト(下記式 (4)で表わされる化合物)白色固体を得た (3.57g,収率: 88%)。
[化 22]
Figure imgf000034_0001
上記式(3)で表わされる化合物(ホスホロアミダイト)、上記式 (4)で表わされる化合 物(ホスホロアミダイト)、下記式(5)で表わされる化合物、及び下記式 (6)で表わされ る化合物を用いてプローブの作成を行った。なお、下記式(5)で表わされる化合物 及び下記式 (6)で表わされる化合物は市販のものを用いた。下記式(5)で表わされ る化合物としては、 GLEN RESERCH社製、商品名「P/N 10-1015-02 Ac- dC- CE Ph osphoramidite」を、下記式(6)で表わされる化合物としては、 GLEN RESERCH社製、 商品名「P/N 10-1030-02 dT-CE PhosphoramiditeJを用いた。
[0084] [化 23]
Figure imgf000035_0001
[0085] [化 24]
Figure imgf000036_0001
Figure imgf000036_0002
[0086] プローブの合成は、 Applied Biosynthesis Incの自動合成機、商品名「DNA/RNA Sy nthesizer 392」を用いて行い、配列 GCCTCCGGTTCAT (配列番号: 1)で表わされる プローブを作成した。プローブの自動合成機による合成は、末端に 16—ヒドロキシへ キサデカン酸を導入した微小多孔質ガラス (CPG)固相担体(10mg、 lO ^ mol/g) を用いて行った。合成各鎖伸長サイクルは、以下の表 1に示す通りであり、縮合反応 では、ベンゾイミダゾリゥムトリフラート (BIT)を用いた。
[0087] [表 1]
工程 操作 5式薬 時間
1 洗浄 CH3CN 0. 2
2 脱トリチル化 3¾ Cl3CCOOH/CH2Cl2 1. 5
3 洗浄 CH3 CN 0. 4
4 ί士ム
ポロ□ 0.1M amidide 4- 0.2M BIT in CH3CN 1. 0
5 洗浄 CH3CN 0. 2
6 酸化 0.2M I2 in Py-H20-THF (20 :2 : 78, v/v/v) 0. 5
7 洗浄 CH3CN 0, 4
[0088] 次いで、鎖伸長後に、 5'末端の 4, 4'ージメトキシトリチル基を残したままで、 1分間 の 1,8-ジァザビシクロ〔5, 4, 0〕ゥンデセン(DBU)—ァセトニトリル(1:9, vZv)処理 により、リン酸部のシァノエチル基を除去した。次いで、 4, 4'—ジメトキシトリチル基を 1分間の 3%濃度のトリクロ口酢酸の塩化メチレン溶液(2ml)で除去し、塩化メチレン( lml X 3回)、ァセトニトリル(lml X 3回)及び 0.1M酢酸アンモ -ゥム水溶液の淳で 固相担体の洗浄を行!、、プローブが結合した CPGを得た。
[0089] 上述のようにして得られたプローブが結合した CPGを十分に乾燥させた後、 ATGA ACCGGAGGC (配列番号: 2)、 ATGAACCAGAGGC (配列番号: 3)及び ATGAACT GGAGGC (配列番号: 4)の配列を有する 3種類の蛍光オリゴヌクレオチドを準備した 。なお、それぞれのオリゴヌクレオチドは、 3,末端がフルォレセインで標識されたもの である。このオリゴヌクレオチド溶液(250nMオリゴヌクレオチド、 lOOmMリン酸バッフ ァー、 1M NaCl、 pH7.0)0.25mlに、上記プローブが結合した CPGを浸漬させた。 50°Cの温度で 10時間撹拌した後、オリゴヌクレオチド溶液を除去し、リン酸バッファ 一(lOOmMリン酸バッファー、 1M NaCl、pH7.0)0.25mlを加え、 50°Cの温度で 1 時間撹拌した後、リン酸バッファーを除去し、 CPGの蛍光測定を行った。
[0090] 蛍光測定は、 OLYMPUS社製、落射蛍光システムを用いて、 470〜490nmの光を 照射し、 510nm以上の光を、浜松ホトニタス社製 デジタル CCDカメラ(ORCA-ER) を用いて撮影し、蛍光輝度を測定した。結果は、配列番号: 2のオリゴヌクレオチドを 用いた場合のみが高い蛍光輝度を示した。すなわち、露光時間 300 Sで測定した 場合、平均の蛍光輝度は、配列番号: 2のオリゴヌクレオチドを用いた場合が 2375、 配列番号: 3のオリゴヌクレオチドを用いた場合が 337、配列番号: 4のオリゴヌクレオ チドを用いた場合が 714であり、配列番号: 2で表わされるオリゴヌクレオチドの特異 性が示された。
[0091] 上記の結果から、上記プローブが結合した CPGは、遺伝子の検出に用いることが 明らかである。特に、 1塩基のみが異なっているオリゴヌクレオチドを区別することがで きることがわかり、 SNPsの解析にも使用し得るものであることがわ力つた。
[0092] 実施例 3
790mgの 3—デァザグアノシン(下記式(7)で表わされる化合物)を lmlの無水 DM Fで供沸し、次いで、 20mlの無水 N, N—ジメチルホルムアミド(DMF)に溶解し、室 温にした後、 1.87mlの N, Nジメチルホルムアミドジメチルァセタールをカ卩え、 5時間 撹拌した。溶媒を減圧下留去した後、メタノールを加え、沈殿を生じさせた。この沈殿 を濾過により精製し、よく乾燥させ、 2— N- ((ジメチルァミノ)メチレン)— 3—デァザグァ ノシン(下記一般式 (8)で表わされる化合物)を得た(789mg、収率: 83%)。
JH NMR (DMSO-d6) δ 2.9-3. 1 (6Η, NCH ), 3.5-4.4(5H, 2'H, 3'H, 4'H
3
, 5'H), 5.0-6. 1(5H, l'H, 2'OH, 3'OH, 5'OH, 3H), 7.9-8.0(2H, 8H, N CHN), 10.6-10.7(1H, 1H)
[0093] [化 25]
Figure imgf000039_0001
OH OH
[0094] [化 26]
Figure imgf000039_0002
OH OH
[0095] 次いで、得られた 2—N- ((ジメチルァミノ)メチレン )ー3—デァザグアノシン(337mg) を、 1mlの無水ピリジンで共沸(X 3)し、次いで、 6mlの無水ピリジンに溶解し、 0°Cで 342 1の 1,1, 3,3テトライソプロピルジシロキサンジクロライド 1, 3—ジィルを加え、 4時 間撹拌した。 4時間撹拌した後、 1mlの水及び lmlのメタノールをカ卩ぇ反応を停止さ せた。反応溶液を 50mlの酢酸ェチル Z食塩水(1Z1)で 3回抽出した。有機層を無 水硫酸マグネシウムで乾燥し、溶媒を減圧下留去した後、残渣をシリカゲルカラムク 口マトグラフィー(N60球状中性シリカゲル)を用いてメタノール Zクロ口ホルム(メタノ ール濃度を 2%→4%に変化させる)で精製し、 3,,5,-0-(1,1,3,3テトライソプロピル ジシロキサン- 1 ,3-ジィル )-2-N- ((ジメチルァミノ)メチレン)- 3-デァザグアノシン(下記 式(9)で示される化合物)を得た(382g、収率: 66%)。
1H NMR (DMSO-d6) δ 0. 6, 1. 3 (28H, CCH , SiCHC ) , 2. 9-3. 1 (6H, NCH
3 2 3
) , 3. 9-4. 4 (5H, 2' H, 3' H, 4' H , 5' H) , 5. 6-6. 0 (3H, l ' H, 2' OH, 3H) , 7 . 9-8. 0 (2H, 8H, NCHN) , 10. 6-10. 7 (1H, 1H)
[0096] [化 27]
Figure imgf000040_0001
[0097] 上記式(9)にお!/、て、 R はテトライソプロピルジシロキサンである。
次いで、上述のようにして得られた、 3,,5,-0- (1,1,3,3テトライソプロピルジシロキサ ン- 1 ,3-ジィル )-2- N- ((ジメチルァミノ)メチレン)- 3-デァザグアノシン( lOOmg)を、 1 mlの無水ピリジンで共沸(X 3)し、 3mlの無水ピリジンに溶解し、 31 1のイソプロピル ェチルァミン、及び 48mgのジフエ-ルカルバモイルク口ライドをカ卩え、室温で 4.5時間 撹拌した。 4. 5時間の撹拌後、 20mlの重曹水を加え反応を停止させた。反応溶液 を 20mlの酢酸ェチル Z重曹水( 1 Z 1 )で 1回抽出した後、 20mlの酢酸ェチル Z食 塩水(1Z1)で 2回抽出した。有機層を無水硫酸マグネシウムで乾燥し、溶媒を減圧 下留去した後、残渣をシリカゲルカラムクロマトグラフィー (N60球状中性シリカゲル)を 用いてへキサン Z酢酸ェチル (へキサン濃度を 50%→80%に変化させる)で精製し、 3 ' ,5 ' - O- (1 , 1 ,3,3テトライソプロピルジシロキサン- 1 ,3-ジィル )-6-0-ジフエ二ルカル バモイル -2-N- ((ジメチルァミノ)メチレン)- 3-デァザグアノシン(下記式(10)で表わさ れる化合物)を得た(105mg、収率: 79%)。
1HNMR (DMSO-d6) δ 0.6, 1.3(28H, CCH , SiCHC ), 2.9-3.1 (6H, NCH
3 2 3
), 3.9-4.4(5H, 2'H, 3'H, 4'H , 5'H), 5.7-5.9(2H, l'H, 2'OH), 6.9-7 .0(1H, 3H), 7.2-7.6(10H, C H ), 8.2-8.5(2H, 8H, NCHN)
[0098] [化 28]
Figure imgf000041_0001
[0099] 上記式(10)にお!/、て、 R はテトライソプロピルジシロキサンである。
次いで、上述のようにして得られた、 3 ',5' -0-(1, 1,3,3テトライソプロピルジシロキサン -1,3-ジィル )-6-0-ジフヱ-ルカルバモイル- 2- N- ((ジメチルァミノ)メチレン)- 3-デァ ザグアノシン(155mg)を、 1mlの無水トルエンで共沸 (X 2)し、 5mlの無水 DMFに溶 解し、 62/zlのヨウ化メチル、及び 12mgの水素化ナトリウムをカ卩え、 -20°Cで 3時間撹 拌した。 3時間撹拌した後、 50mlの酢酸ェチルを加え、リン酸緩衝液 (pH7.0)に注 いで反応を停止させた。反応溶液を酢酸ェチル Zリン酸緩衝液 (PH: 7.0)で 1回抽 出した後、 50mlの酢酸ェチル Z食塩水(1Z1)で 2回抽出した。有機層を無水硫酸 マグネシウムで乾燥し、溶媒を減圧下留去した後、残渣をシリカゲルカラムクロマトグ ラフィー (N60球状中性シリカゲル)を用いてへキサン Z酢酸ェチル (へキサン濃度を 7 0%→75%に変化させる)で精製し 2, - 0-メチル - 3, ,5, - 0- (1 , 1 ,3,3テトライソプロピ ルジシロキサン- 1,3-ジィル )-6-0-ジフエ-ルカルバモイル- 2-N- ((ジメチルァミノ)メ チレン)- 3-デァザグアノシン(下記式(11)で表わされる化合物)を得た(118mg、収 率: 75%)。
1HNMR (DMSO-d6) δ 0.6, 1.3(28H, CCH , SiCHC ), 2.9-3.1 (6H, NCH
3 2 3
), 3.5-3.6(3H, OCH ), 3.9-4.6(5H, 2'H, 3'H, 4'H , 5'H), 6.0-6. 1(1
3
H, l'H), 6.8-6.9(1H, 3H), 7.2-7.6(10H, C H ), 8.2-8.5(2H, 8H, NC
6 5
HN)
[0100] [化 29]
Figure imgf000042_0001
[0101] 上記式(11)において、 R1Uはテトライソプロピルジシロキサンである。
上述のようにして得られた、 2,- 0-メチル -3,,5,- 0- (1,1,3,3テトライソプロピルジシ ロキサン- 1,3-ジィル )-6-0-ジフエ-ルカルバモイル- 2- N- ((ジメチルァミノ)メチレン)- 3-デァザグアノシン(70mg)を lmlの無水テトラヒドロフラン (THF)で共沸 ( X 2)し、 2. 2mlの無水 THFに溶解し、 36 μ 1のトリエチルァミン 3フッ化水素をカ卩え、室温で 3時 間撹拌した。次いで、溶媒を減圧下留去した後、残渣をシリカゲルカラムクロマトダラ フィー (Ν60球状中性シリカゲル)を用いて酢酸ェチル Ζメタノール(酢酸ェチル濃度 を 2%→4%に変化させる)で精製し、 2, -0-メチル -6-0-ジフエ-ルカルバモイル -2 -Ν- ((ジメチルァミノ)メチレン)- 3-デァザグアノシン(下記式(12)で表わされる化合物 )を得た (41mg、収率: 83%)。 また、カラム中でィ匕合物が結晶化した場合、酢酸ェチル zメタノール((酢酸ェチル 濃度を 2%→4%に変化させる)で副精製物を除去した後、シリカゲルを回収し、水 Z メタノール 1: 1 (v/v)の溶液を用いて、室温で 1時間撹拌した。その後濾過をおこない シリカゲルを取り除いた後、濾液を減圧下濃縮し、水相 Zクロ口ホルムで抽出を 30回 行い、有機層を無水硫酸マグネシウムで乾燥し、溶媒を減圧下留去し、 2'-0-メチル -6-0-ジフエ-ルカルバモイル- 2-N- ((ジメチルァミノ)メチレン)- 3-デァザグアノシン を得た。
JH NMR (DMSO-d6) δ 2.9—3. 1 (6Η, NCH ), 3.2—3.4(3Η, OCH ), 3.5—4
3 3
.4(5Η, 2'Η, 3'Η, 4'Η , 5'Η), 5.1-5.4(2Η, 3'ΟΗ, 5'ΟΗ), 5.9-6.0(1Η
Η), 6.9-7. 1(1Η, 3Η) 7.2-7.6(10Η, C Η ), 8.3-8.5(2Η, 8Η, NCH
Ν)
[0103] [化 30]
(12)
Figure imgf000043_0001
OH OCH.
[0104] 上述のようにして得られた、 2, -0-メチル -6-0-ジフエ-ルカルバモイル- 2-N- ((ジメ チルァミノ)メチレン)- 3-デァザグアノシン(37mg)を lmlの無水ピリジンで共沸( X 3) し、 800 1の無水ピリジン〖こ溶解し、 27.5mgの 4,4,-ジメトキシトリチルクロライドを 加え室温で 3時間撹拌した。 3時間撹拌した後、 20mlの重曹水 (濃度: 5質量%)を 加え反応を停止した。反応溶液を 40mlの酢酸ェチル Z重曹水(1Z1)で 1回抽出し た後、 40mlの酢酸ェチル Z食塩水(1Z1)で 2回抽出した。有機層を無水硫酸マグ ネシゥムで乾燥し、溶媒を減圧下留去した後、残渣をシリカゲルカラムクロマトグラフィ 一 (N60球状中性シリカゲル)を用いて 1 %トリェチルァミンを添加したへキサン Z酢酸 ェチル (へキサン濃度を 60%→80%に変化させる)で精製し、 2, - 0-メチル - 5, - 0- ( 4,4,-ジメトキシトリチル) -6-0-ジフエ-ルカルバモイル- 2- N- ((ジメチルァミノ)メチレ ン) -3-デァザグアノシン(下記式(13)で表わされる化合物)を得た(33mg、収率: 57 %)。
JH NMR (DMSO-d6) δ 2.8-3. 1 (6Η, NCH ), 3. 1-3.3(2H, 5'H), 3.3-3.
3
4(3H, OCH ), 3.6-3.7(6H, OCH ), 4.0-4.4(3H, 2'H, 3'H, 4'H), 5.2-
3 3
5.4(1H, 3'OH), 5.9—6.1(1H, 1,H), 6.7—7.6(24H, 3H , C H , C H ), 8
6 4 6 5
.2-8.4(2H, 8H, NCHN)
[0105] [化 31]
Figure imgf000044_0001
[0106] 上記式(13)において、 Rは 4, 4'—ジメトキシトリチル基である。
上述のようにして得られた、
2, - 0-メチル - 5, -0- (4,4, -ジメトキシトリチル) -6-0-ジフエ-ルカルバモイル- 2- N-(( ジメチルァミノ)メチレン) -3-デァザグアノシン(290mg)を 28%アンモニア水: 40%メ チルァミン:ピリジン(2: 2:1)の混合溶液 3.5mlに溶解させた後、 50°Cで 6時間撹 拌した。溶媒を減圧下留去した後、残渣をシリカゲルカラムクロマトグラフィー (N60球 状中性シリカゲル)を用いて 1%トリェチルァミンを添加したへキサン Z酢酸ェチル(1 ZDで精製し、 2' - 0 -メチル- 5,-Ο- (4,4,-ジメトキシトリチル)- 3-デァザグアノシン (下記式(14)で表わされる化合物)を得た(50mg、収率: 74%)。
[0107] [化 32]
Figure imgf000045_0001
OH 0CH3
[0108] 上記式(14)において、 R9は 4, 4' -ジメトキシトリチル基である。
上述のようにして得られた、 2, - 0 -メチル -5, -0- (4,4,-ジメトキシトリチル)- 3-デァ ザグアノシン(18mg)を lmlの無水ピリジンで共沸 (X 3)し、 300 1のァセトニトリルに 溶解させた後、室温で 31 1のへキサメチルジシラザンを加え 2時間撹拌した。溶媒 を減圧下留去した後、残渣を 300 μ 1の無水ピリジンに溶解させた。 0°Cで 8 μ 1のァセ チルクロライドをカ卩え、その後室温に戻し 3時間撹拌した。 lmlの水を加え反応を停止 させた。次いで、 500 1のアンモニア水を加えて、 15分撹拌した後、 40mlの酢酸ェ チル Z食塩水(1Z1)で 2回抽出した。有機層を無水硫酸マグネシウムで乾燥し、溶 媒を減圧下留去した。残渣をシリカゲルカラムクロマトグラフィー (N60球状中性シリカ ゲル)を用いて 1 %トリェチルァミンを添加したへキサン Z酢酸ェチル (1/1)で精製 し、 2,- 0-メチル -5,- 0- (4,4,-ジメトキシトリチル) -2- N-ァセチル- 3-デァザグアノシ ン(下記式(15)で表わされる化合物)を得た(14. 3mg、収率: 70%)。
[0109] [化 33]
Figure imgf000046_0001
OH 0CH3
[0110] 上記式(15)において、 R9は 4, 4'—ジメトキシトリチル基である。
上述のようにして得られた、 2, - 0-メチル -5, - 0- (4,4, -ジメトキシトリチル) - 2-N-ァ セチル- 3-デァザグアノシン(599mg)を、 1mlの無水トルエンで共沸(X 3)し、 10ml の無水塩化メチレンに溶解し、 260 μ 1のイソプロピルェチルァミン、及び 230 μ 1の 2 -シァノジイソプロピルホスホロアミドク口リダイトをカ卩え、室温で 4.5時間撹拌した。撹 拌した後、 1mlの水を加え反応を停止させた。反応溶液 200mlの塩化メチレン Z5% 重炭酸ナトリウム水(lZl)で 5回抽出した。有機層を無水硫酸ナトリウムで乾燥し、 溶媒を減圧下留去した後、残渣をシリカゲルカラムクロマトグラフィー (N60球状中性シ リカゲル)を用いて 1%トリェチルァミンを添カ卩したへキサン Zクロ口ホルム(へキサン 濃度を 50%→80%に変化させる)で精製し、 2 ' - 0-メチル - 3 ' - 0- (2 -シァノエトキシ 基ェチル -Ν,Ν,-ジイソプロピルホスホロアミダイト)- 5, -0- (4,4, -ジメトキシトリチル) -2 -Ν-ァセチル -3-デァザグアノシン(下記式(16)で表わされる化合物)を得た (460m g、収率: 62%)。
[0111] [化 34]
Figure imgf000047_0001
上記式(16)において、 R9は 4, 4 '—ジメトキシトリチル基である。
実施例 4
2 'ーデォキシー 7 デァザ アデノシン (lg、 4mmol)を無水ピリジンで 3回共沸脱水 をおこなった後、無水ピリジン (40 mL)に溶解した。得られた溶液にトリェチルァミン (5 59 μ L, 4 mmol)、ジクロロ酢酸 (329 ^ L, 4 mmol)、及び 4, 4,—ジメトキシトリチルクロ ライド(1.48g, 4.4 mmol)を、この順で加え、室温で 4時間撹拌した。次いで反応溶液 を CHC1 (80mL)で希釈した。 CHC1層を飽和食塩水で 3回洗浄した後、無水硫酸ナ
3 3
トリウムで乾燥してろ過し、溶媒を減圧留去し、粗生成物を得た。得られた粗生成物 をシリカゲルカラムクロマトグラフィー (20g, 1%ピリジン)により精製し、へキサンに 50〜 100%クロ口ホルム、次いで、クロ口ホルムに 0〜3%メタノールのグラジェントをかけて溶 出し、溶媒を留去し目的の固体(5 ' - 0 - ( 4,4'—ジメトキシトリチル)—2 '—デォキ シ 7 デァザ アデノシン)を得た。 (1.5 g, 68%)
JH NMR (CDCl ) δ 2.31 -2.49 (m, 2H), 2.25 (s, 1H), 3.66 (s, 6H), 4.08 (d, 1H, 2.
3
97 Hz), 4.54 -4.56 (m, 1H), 5.55 (brs, 2H), 6.19 (d, 1H, J = 4.1 Hz), 6.66 (d, 4H, J = 8.9 Hz), 7.05 - 7.22 (m, 9H), 7.33 (d, 2H, J = 1.4 Hz), 8.13 (s, 1H), 8.46 (d, 1H, J = 4.3 Hz); C NMR (CDC1 ) δ 40.8, 55.2, 64.1, 72.2, 83.4, 85.6, 86.4, 99.1, 103
3
.6, 113.6, 121.9, 123.9, 125.3, 126.9, 127.9, 128.3, 129.1, 130.1, 135.9, 136.3, 144 .7, 149.6, 150.3, 151.5, 156.9, 158.5.
[0113] 上述のようにして得られた 5 ' Ο— ( 4,4'—ジメトキシトリチル) 2'—デォキシ— 7 デァザ アデノシン (1.37g, 2.5mmol)を無水ピリジンで 3回共沸脱水をおこなった後 、無水ピリジン (25mL)に溶解した。得られた溶液にトリメチルシリルクロライド(935 L, 7.45mmol)を加え、室温で 30分間撹拌した後、ァセチルクロライド (531 μ L, 7.45 mmo 1 )をカ卩えてさらに 3.5時間撹拌を行った。次いで、反応溶液に 28%アンモニア水(12 m L)をカ卩えて 10分間撹拌し、 CHC1 (50mL)で希釈した。有機層を飽和食塩水で 3回
3
洗浄した後、無水硫酸ナトリウムで乾燥してろ過し、溶媒を減圧留去させた。得られた 粗生成物をシリカゲルカラムクロマトグラフィー(25g,l%ピリジン)により精製し、へキ サンに 50〜100%クロ口ホルム、次いで、クロ口ホルムに 0〜3%メタノールのグラジェント をかけて溶出し、溶媒を留去し目的の固体 (5' -0- ( 4,4'—ジメトキシトリチル)—2 , 一デォキシ 6N ァセチル -7-デァザアデノシン)を得た。 (1.4 g, 95%)
JH NMR (CDC1 ): 2.30 (s, 3H), 2.39 -2.46 (m, 1H), 2.52-2.57 (m, 1H), 3.33—3.39
3
(m, 2H), 3.75 (s, 6H), 4.06 (d, 1H, 4.3 Hz), 4.59 (dd, 1H, 6.2 Hz, 9.9 Hz), 6.77 (d, 4H, J = 8.6 Hz), 6.86 (d, 1H, J = 4.1 Hz), 7.18 - 7.31 (m, 9H), 7.39 (d, 2H, J = 6.7 5 Hz), 8.46 (s, 1H), 8.63 (s, 1H); 13C NMR (CDC1 ): 24.6, 40.4, 55.2, 63.9, 72.7, 7
3
7.2, 83.1, 85.2, 86.6, 108.6, 113.2, 123.5, 126.9, 127.9, 128.1, 130.0, 135.6, 135.7 , 144.5, 149.9, 150.3, 158.5
[0114] 上述のようにして得られた 5' O— ( 4,4'—ジメトキシトリチル) 2'—デォキシ一 6N ァセチル -7-デァザアデノシン (1.4g, 2.4mmol)を無水ァセトニトリルで 3回共沸脱 水を行った後、無水ジクロロメタン (25 mL)に溶解した。得られた溶液にェチルジイソ プロピルアミン(575 μ L, 3.5mmol ),クロ口( 2 シァノエトキシ)(一 Ν,Ν'—ジイソプロ ピルァミノ)ホスフィン( 571 μ L,2.6mmol )を、この順で加え、室温で 30分間撹拌した。 次いで、反応溶液に水(lmL)をカ卩えて 5分間撹拌し、次いで CHC1 (25mL)で希釈し
3
た。有機層を飽和食塩水で 3回洗浄した後、無水硫酸ナトリウムで乾燥してろ過し、 溶媒を減圧留去し、粗生成物を得た。得られた粗生成物をシリカゲルカラムクロマト
Figure imgf000049_0001
Figure imgf000049_0002
[es^ ] [eno] Ύβ 'ζ'β - (\DQD) ^nn dK 'ΟΈΘΪ 'S'SSI '8·
Z l '2 3ΐ '9· ' -SST H 'S ST TOST 'Z^Zl 'Z^Zl '^LZl '6"92T ΊτΖΙ 'S'
HI 'nil 'ΐ'επ 'ο·6θΐ 'z'wi 'V9S 'z^s 'res 'o'ss '6· 8 'vzs 'ε· 'τ ι 'βτλ
'9"εζ 'ετ 'ε·89 '9X9 'ra 's'ss 'VSQ 's'ss 'rse 's'ss 'ε'ε 'ε'ε 'ra 'ra '8
•6S Ί'6Ζ 'L'fZ '9'fZ 'S'ZZ 'VOZ 'S S 'Z'OZ 'VOZ: (OQD) H N DgI: (HI 's) ZS-6 '(Ηΐ 's) ε ·8 '(ΗΠ 'ω) 9S"Z - ΐΓΖ '(ΖΗ = ί 'Ηΐ 'Ρ) ΐ8·9 '(ΖΗ 8"Ζ = f '^Η ε· = f 'Η 'ΡΡ) ΖΖ·9 '(Ηΐ 's) S9' '(Ηΐ 9Vf '(HOT 'ω) 9Vf-6VZ '{ΗΖ 'ω) ST- εετ '(ΖΗ 8·9 = f 'ΗΪ ' ) 6ε '(HS 9ε '{ηζ\ zv\-w\: ποαο) Η匪 ΗΤ
(%ΐ6 '§ ·ΐ) ^^ ΰ ^: cl l 一 Ν 'Ν- ^エ, ^ -Ζ)-(Ζ-ベ -L- / ^ -Ν9- ^ (Η ^! — ' )一 Ο— ^、呦 ^ ^ii^ 挲、 (os):g2暴止):#圑0 ^目つ 辛爵 瀚缀、つ ffl缀ェ べェ OH/— ^ %ε〜ο^マ
Figure imgf000049_0003
Figure imgf000049_0004
^エ (Η %ΐ 'SSS)—
ZLL£0£/900ZdT/13d IP .STC60/900Z OAV [0116] 実施例 5
5,, 3,-ビストルオイル 2,ーデォキシー6 クロ口- 7-デァザプリン (2.0 g, 4mmol)を飽 和アンモニア- MeOH(40mL)に溶解し、得られた溶液を密封可能な容器に入れ、密 封した状態で 60°Cの温度で、 3日間撹拌した。 3日間撹拌を行った後、溶媒を減圧留 去し、ジェチルエーテル(50 mL)及び水(40 mL)を用いて抽出操作を行った。水層 を回収し、溶媒を減圧留去した残留物を無水ピリジンで 3回共沸脱水を行い、無水ピ リジン (40 mL)に溶解した。次いで、反応溶液にトリェチルァミン (559 L, 4 mmol)、ジ クロ口酢酸 (329 μ L, 4 mmol)、 4,4,-ジメトキシトリチルクロライド (1.48 g, 4.4 mmol )を、 この順でカ卩ぇ室温で 4時間撹拌した。次いで、反応溶液を CHCl (80mL)で希釈した
3
。 CHC1層を飽和食塩水で 3回洗浄した後、無水硫酸ナトリウムで乾燥してろ過し、溶
3
媒を減圧留去し、粗生成物を得た。得られた粗生成物をシリカゲルカラムクロマトダラ フィー (20g, l%ピリジン)により精製し、へキサンに 50〜100%クロ口ホルム、続いてクロ 口ホルムに 0〜3%メタノールのグラジェントをかけて溶出し、溶媒を留去し目的の固体 (5,— O ( 4,4'—ジメトキシトリチル)—2,—デォキシ— 8 ァザ— 7 デァザ-アデノ シン)を得た (1.9 g, 85%)。
JH NMR (CDCl )
3 : 2.35 -2.49 (m, 1H), 3.02—3.11 (m, 1H), 3.22 (dd, 1H, J = 6.2
Hz, J = 9.2 Hz), 3.32 (dd, 1H, J = 5.1 Hz, J = 9.7 Hz), 3.79 (s, 6H), 4.03 (dd, 1H, J = 5.1 Hz, J = 11.1 Hz), 4.86 (dd, 1H, J = 6.1 Hz, J = 11.5 Hz), 5.55 (brs, 2H), 6.73 (d, 4H, J = 8.1 Hz), 6.76 - 6.83 (m, 1H), 7.16 - 7.34 (m, 9H), 7.39 (d, 2H, J = 1.6
Hz), 7.82 (s, 1H), 8.38 (s, 1H); 13C NMR (CDCl ): 21.2, 38.0, 54.9, 64.2, 72.3, 77.
3
2, 84.0, 85.6, 86.0, 100.9, 112.8, 123.8, 125.1 , 126.5, 127.5, 127.6, 127.7, 128.0, 128.0, 129.0, 129.9, 132.0, 135.9, 136.3, 144.7, 149.0, 153.8, 155.3, 157.4, 158.1 , 158.2, 158.3.
[0117] 上述のようにして得られた 5 ' - 0 - (4,4'—ジメトキシトリチル) 2 '—デォキシ一 8— ァザー 7 デァザ-アデノシン (1.62g, 2.9mmol)を無水ピリジンで 3回共沸脱水を行つ た後、無水ピリジン (30 mL)に溶解した。得られた溶液にトリメチルシリルクロライド (2.9 7mL, 8.8 mmol )を加え、室温で 30分間撹拌した後、ァセチルクロライド( 627 μ L, 8.8 mmol )をカ卩えてさらに 3.5時間撹拌を行った。次いで、反応溶液に 28%アンモニア水( 15mL)をカ卩えて 10分間撹拌し、次いで CHC1 (60mL)で希釈した。有機層を飽和食
3
塩水で 3回洗浄した後、無水硫酸ナトリウムで乾燥してろ過し、溶媒を減圧留去し、粗 生成物を得た。得られた粗生成物をシリカゲルカラムクロマトグラフィー (25g, 1%ピリジ ン)により精製し、へキサンに 50〜100%クロ口ホルム、次いでクロ口ホルムに 0〜3%メタ ノールのグラジェントをかけて溶出し、溶媒を留去し目的の固体 (5' -0- ( 4,4' -ジメ トキシトリチル) -2'-デォキシ -6N-ァセチル -8-ァザ- 7-デァザアデノシン)を得た (1.4 g, 85%)。
JH NMR (CDCl ): 2.30 (s, 3H), 2.38—2.48 (m, 1H), 3.01—3.10 (m, 1H), 3.20—3.35
3
(m, 2H), 3.76 (s, 6H), 4.06 (dd, 1H, J = 5.1 Hz, J = 11.3 Hz), 4.84 (m, 1H), 6.72-6 .83 (m, 5H), 7.15 - 7.35 (m, 9H), 7.36 (d, 2H, J = 6.48 Hz), 8.22 (s, 1H), 8.56—8.65 (s, 2H);
上述のようにして得られた 5,-0- ( 4,4' -ジメトキシトリチル) -2'-デォキシ -6N-ァセ チル- 8-ァザ- 7-デァザ-アデノシン (560mg, 0.9 mmol)を無水ァセトニトリルで 3回共沸 脱水を行った後、無水ジクロロメタン (lOmL)に溶解した。得られた溶液にェチルジイソ プロピルアミン(230 μ L, 1.4 mmol )、クロ口 (2—シァノエトキシ) (-Ν,Ν,-ジイソプロピ ルァミノ)ホスフィン( 228 1 ,1.0 mmol )を、この順でカ卩え、室温で 30分間撹拌した。次 いで、反応溶液に水(lmL)をカ卩えて 5分間撹拌し、次いで CHC1 (20mL)で希釈した
3
。有機層を飽和食塩水で 3回洗浄した後、無水硫酸ナトリウムで乾燥してろ過し、溶 媒を減圧留去し、粗生成物を得た。得られた粗生成物をシリカゲルカラムクロマトダラ フィー (25g,l%トリェチルァミン)により精製し、へキサンに 50〜100%クロ口ホルム、次い でクロ口ホルムに 0〜3%メタノールのグラジェントをかけて溶出し、溶媒を留去し目的 の固体(下記式(21)で表わされる化合物、 5,- 0- ( 4,4' -ジメトキシトリチル ) -2'-デ ォキシ -6N-ァセチル- 8-ァザ- 7-デァザアデノシン- 3'- (2-シァノエチル -Ν,Ν-ジィ ソプロピルホスホロアミダイト)を得た (672 mg, 90%)。
JH NMR (CDCl ): 1.07-1.28 (m, 12H), 2.30 (s, 3H), 2.42-2.62 (m, 3H), 3.14—3.2
3
9 (m, 3H), 3.56-3.81 (m, 10H), 4.22 (s, 1H), 4.82-4.97 (m, 1H), 6.67-6.73 (m, 4H), 6.83 (t, 1H, J = 4.1 Hz), 7.12 - 7.37 (m, 11H), 8.22 (s, 1H), 8.56 (s, 1H), 8.58 (s, 1H); 31P NMR (CDCl ) :149.2, 149.4. [0119] [化 36]
Figure imgf000052_0001
[0120] 実施例 6
実施例 4で得られた、上記式(20)で表わされる化合物又は上記(21)で表わされる 化合物と、実施例 5で得られた、上記式(3)で表わされる化合物、上記式(5)で表わ される化合物、上記式 (6)で表わされる化合物とを用いてプローブの合成を行った。 プローブの合成は、 Applied Biosynthesis Incの自動合成機、商品名「DNA/RNA Sy nthesizer 392」を用いて行い、配列 TACCTAXATACCATA (配列番号: 5、 Xは、デォ キシ 6N ァセチル - 7-デァザアデノシン(上記式(20)で表わされる化合物を用 V、た場合)又は 2,一デォキシ 6N ァセチル 8 ァザ 7 デァザアデノシン( 上記式(21)で表わされる化合物を用いた場合)で表わされるプローブを作成した。 プローブの自動合成機による合成は、シリルリンカ一を介してチミジンを導入したノ、ィ リークロスリンクポリスチレン(HCP)固相担体(1 μ mol、 24 μ mol/g)を用いて行った 。合成各鎖伸長サイクルは、以下の表 2に示す通りであり、縮合反応では、 6 -トロ - 1—ヒドロキシベンゾトリアゾール(HonBt)及びべンゾイミダゾリゥムトリフラート(BIT )を用いた。
[0121] [表 2]
Figure imgf000053_0001
[0122] 次いで、 2mlDMTr基を 3%トリクロ口酢酸溶液(CH C1 )で除去し、 1mlの CH C1で
2 2 2 2
3回、次いで、 1mlの CH CNで 3回、固相担体を洗浄した。次いで、 10%ジァザビシク
2
ロウンデセン(DBU)の CH CN溶液 (500iL)を用いてシァノエチル基を除去した。 CH C
3 3
N (1 mL X 3)で固相担体を洗浄した後に、 TBAF (131 mg, 0.5 mmol)及び酢酸(24iL, 0.5mmol)を無水 THF 500 Lに溶解した反応溶液で固相担体を 1時間処理し、 DNA オリゴマーの切り出しを行った。得られた混合溶液を Sep- Pak C18カートリッジを用い て、脱塩後、さらに水で希釈し、陰イオン交換 HPLCを用いて精製を行った。
[0123] 上述のようにして作製した、配列番号: 5で表わされる塩基配列を有するオリゴヌク レオチドの二重鎖形成能及び塩基識別能を調べた。コントロールとして、配列番号: 5で表わされる塩基配列の Xがアデニンであるものにつ!、ても調べた。上述のオリゴヌ クレオチドと、別途合成を行った相補鎖 (ATGGTGTYTAGGTA、配列番号: 6 Yは チミジン、 2'-デォキシシチジン、 2'-デォキシアデノシン、 2'-デォキシグアノシンのい ずれ力を表わす)とを混和し、溶液中二重鎖形成時に、二重鎖の濃度が 2 Mの濃 度となるように、 500 /z Lのリン酸ノ ッファー(150mMリン酸ナトリウム、 pH7. 0、 0. 1 M NaCl、 0. ImM EDTA)に溶解させた測定試料を調整した。測定には、 Phar ma Spec UV— 1700 (島津製作所 (株)製)を用いた。測定は、まず試料を 80°C の温度に 30分間保持し、オリゴヌクレオチドをランダムコイル状態とした後、 1. 0°CZ 分で温度を 5°Cまで変化させてアニーリングを行い、次いで、 1. 0°CZ分の速度で昇 温させて、 1. 0°C毎に UV吸光度を測定することにより行った。
[0124] 測定により得られた UV吸光度を温度変化に対してプロットし、二重鎖融解曲線とし た。 Stavilzky— Golay法(25point)を用いて融解曲線をスムージングした後、曲線 を一次微分することにより変曲点を求め変曲点を二重鎖融解温度 (Tm値)とした。な お、二重鎖のアニーリング時の曲線力 得られる値と二重鎖融解時の曲線力 得ら れる値において、 1. 0°C以上値のずれが観測された場合には、各測定温度における 系内の平衡が不完全であるとみなし、変温レートを 0. 5°CZ分に変更する等、適宜 条件を変更して再度測定を行った。また、塩基識別能を調べるため、一塩基ミスマツ チ配列を有するオリゴヌクレオチドとの二重鎖融解温度を測定した。測定は、 0.1 M N aCl, 0.1 mM EDTAを含む 150 mMリン酸ナトリウム緩衝液中で (pH 7.0) 各オリゴヌ クレオチド濃度 2.0 mMにて行った。
測定結果を表 3に示す。なお、表においては、 ΔΤπιは、配列番号: 6の Υの位置が チミジンである相補鎖の場合の Tmと、最も安定なミスマッチである、 2'-デォキシアデ ノシンである場合の Tmとの差を表わす。
[0125] [表 3]
X Y T m (V ) △ T m (V )
A T 4 5 ―
A G 3 2 - 1 3
A C 2 6 - 1 9
A A 2 9 - 1 6
実施例 4 T 4 3
実施例 4 G 3 2 一 1 1
実施例 4 C 2 4 - 1 9
実施例 4 A 2 7 - 1 6
実施例 5 T 4 5 一
実施例 5 G 3 1 一 1 4
実施例 5 C 2 6 一 1 9
実施例 5 A 2 9 一 1 6
[0126] 表 3から下記のことがわかる。
配列番号: 5で表わされる塩基配列の Xの位置に、 2 '—デォキシー 6N—ァセチル 8—ァザ 7—デァザアデノシン (8aza7deazaA)を含むオリゴヌクレオチド(実施例 5 で得られたものから製造されたもの)は、 Xの位置に 2 '—デォキシーアデノシン (A)を 含むオリゴヌクレオチドにくらべ、配列番号: 6の Yの位置がチミジンである相補鎖に 対する Tmが同等(45°C)であった。また、配列番号: 5の Xの位置に 2しデォキシ- 6N -ァセチル- 8-ァザ- 7-デァザアデノシン (8aza7deazaA)を含むオリゴヌクレオチド(実 施例 4)は、 Xの位置に 2'-デォキシ-アデノシン (A)を含むオリゴヌクレオチド(実施例 5)に比べ、配列番号: 6の Yの位置にチミジンがある相補鎖に対する Tmが同等 (45 。ひであった。一方、最も安定なミスマッチである、配列番号: 6の Yの位置が 2'-デォ キシアデノシンである場合の Tmは、配列番号: 5の Xの位置力 S8aza7deazaAを含む場 合(31°C)の方力 ¾ (力 の場合(32°C)よりも塩基識別能 1°C低力つた。この結果、 8az a7deazaAを含むオリゴヌクレオチドはミスマッチ塩基識別能が向上していることが明ら かである。
[0127] ¾細17
実施例 5で得られた化合物 (式 (21)で表わされる化合物)、及び 2 '—デォキシー 4 N ァセチルシチジンを用い、合成各鎖伸長サイクルを、以下の表 4に示す通りに行 つた以外は、実施例 6と同様に操作を行い、 TA*C*C*TA*A*A*TA*C*C*A*TA* ( 配列番号: 7、 A*は 2 ' デォキシ 6N ァセチル 8 ァザ 7 デァザデァノシ ンを表し、 C*は 2,ーデォキシー 4N ァセチルシチジンを表す)の配列を有するオリ ゴヌクレオチドを得た。
[0128] [表 4]
Figure imgf000056_0001
[0129] 次いで、 2mlDMTr基を 3%トリクロ口酢酸溶液(CH C1 )で除去し、 1mlの CH C1で 3
2 2 2 2 回、次いで、 1mlの CH CNで 3回、固相担体を洗浄した。次いで、 10%ジァザビシクロ
2
ゥンデセン(DBU)の CH CN溶液 (500iL)を用いてシァノエチル基を除去した。 CH CN
3 3
(1 mL X 3)で固相担体を洗浄した後に、 TBAF (131 mg, 0.5 mmol)及び酢酸(24iL, 0.5mmol)を無水 THF 500 Lに溶解した反応溶液で固相担体を 1時間処理し、 DNA オリゴマーの切り出しを行った。得られた混合溶液を Sep- Pak C18カートリッジを用い て、脱塩後、さらに水で希釈し、陰イオン交換 HPLCを用いて精製を行った。
[0130] 実施例 8
実施例 7で得られたオリゴヌクレオチドと、その相補的な配列を有するオリゴヌクレオ チド (ATGGTGTYTAGGTA、配列番号: 8、 Yはチミジン、 2しデォキシシチジン、 2し デォキシアデノシン、 2'-デォキシグアノシンのいずれかを表わす)との二重鎖融解温 度を、実施例 6と同様にして測定し、また、実施例 6と同様にして塩基識別能を調べ た。また、コントロールとして、配列番号: 7で表わされるオリゴヌクレオチド (実施例 5 で得られたィ匕合物(式(21)で表わされる化合物)、及び 2'—デォキシー 4N—ァセ チルシチジンを用いな 、で製造したもの、すなわち修飾されて 、な 、オリゴヌクレオ チド)を用いて同様に実験を行った。
[0131] 結果は、図示しな!ヽが、実施例 7で得られたオリゴヌクレオチドを用いた場合、その 二重鎖形成能は + 15. 2°C上昇し、 ΔΤπι は 17. 5°Cであった。これに対し、コン
A-G
トロールとして用いたオリゴヌクレオチドにおいては、 ATm は 12. 7°Cであった。
A-G
従って、塩基識別能は 4. 8°C上昇したことがわ力つた。
[0132] 実施例 9
2- N- ((ジメチルァミノ)メチレン)- 5, -0- (4,4' -ジメトキシトリチル) -6-0-ジフエ-ルカ ルバモイル- 2, - 0-メチル - 3-デァザグアノシン (290mg,0.342mmol)を 55。Cで 28%ァ ンモ-ァ水: 40%メチルァミン Zメタノール溶液:ピリジン(2 : 2 : 1, v/v/v) (3.5ml)に溶 解し、 5時間撹拌した。撹拌を行った後、クロ口ホルム( 100 ml )Z5%食塩水( 70 ml ) で 2回抽出した。有機層を減圧下留去した後、残渣をシリカゲルカラムクロマトグラフ ィー (N60球状中性シリカゲル)を用いて 1%トリェチルァミンを添加したメタノール Zク ロロホルム 4%で精製し、 5, -0- (4,4, -ジメトキシトリチル) -2, -0-メチル -3-デァザグァ ノシンを得た (150mg,73%)。
JH NMR(DMSO-d6) σ 3.39 ( 3Η, s ), 3.72 ( 6Η, s ), 4.01 ( 1H, d, J = 3.4 Hz ), 4. 14 ( 1H, t, J = 4.9 Hz ), 4.21 ( 1H, t, J = 5.6 Hz ), 5.27 ( 1H, d, J = 6.4 Hz ), 5.45 (
1H, s ), 5.56 ( 2H, d, J = 8.3 Hz ), 5.66 ( 1H, d, J = 4.6 Hz ), 6.82 - 6.84 ( 4H, m )
7.18 - 7.32 ( 9H, m ), 7.77 ( 1H, s ), 10.32 ( 1H, s br ) : MS m/z calcd for C H
33 35
N O + : 599.2506, found 599.2550
4 7
[0133] 上述のようにして得られた 5, -0- (4,4' -ジメトキシトリチル) -2, -0-メチル -3-デァザ グアノシン (170mg,0.284mmol)を無水ピリジンで 3回共沸し、無水ァセトニトリル (2.8 ml) に溶解させた後、室温でへキサメチルジシラザンを加え 2時間撹拌した。溶媒を減圧 下留去した後、残渣を無水ピリジン( 2.8 ml )に溶解させた。 0°Cでァセチルクロライ ド (44 1, 0.65 mmol)を加え、次いで、反応溶液を室温に戻し、 3時間撹拌した。水を 加え反応を停止した。アンモニア水をカ卩えて、ー晚撹拌した後、酢酸ェチル (100ml) Z食塩水 (70ml)で 2回抽出した。有機層を無水硫酸マグネシウムで乾燥し、溶媒を減 圧下留去した。残渣をシリカゲルカラムクロマトグラフィー (N60球状中性シリカゲル)を 用いて 1%トリェチルァミンを添カ卩したメタノール/クロ口ホルム 2%〜4%で精製し、 2 - N-ァセチル- 5, -0- (4,4, -ジメトキシトリチル) -2, -0-メチル -3-デァザグアノシンを 得た (120mg, 65 %)。
JH NMR(DMSO-d6) σ 2.09 ( 3Η, s ), 3.14 - 3.20 ( 2H, m ), 3.41 ( 3H, s ), 3.71 ( 6H, s ), 4.06 ( IH, dd, J = 5.1 Hz, J = 8.6 Hz), 4.20 ( IH, t, J = 4.7 Hz ), 4.24 ( IH, dd, J = 5.4 Hz, J = 11.5 Hz ), 5.31 ( IH, d, J = 6.4 Hz ), 5.86 ( IH, d, J = 4.4 Hz ), 6.45 ( IH, s br ), 6.80 - 6.83 ( 4H, m ), 7.15 - 7.29 ( 9H, m ), 8.07 ( IH, s ), 10.54 ( IH, s br ), 11.28 ( IH, s br ) : MS m/z calcd for C H N O + : 641.2611, found
35 37 4 8
641.2642
[0134] 上述のようにして得られた 2- N-ァセチル- 5, -0- (4,4' -ジメトキシトリチル) -2, - 0-メ チル- 3-デァザグアノシン (119 mg, 0.185mmol)を無水トルエンで 3回共沸し、無水塩 化メチレン (1.9ml)に溶解し、ジイソプロピルェチルァミン (54 l,0.27mmol)をカ卩え、クロ 口 (2-シァノエトキシ) (-Ν,Ν,-ジイソプロピルァミノ)ホスフィン (57 μ l,0.259mmol)を加え 、室温で 4.5時間撹拌した。次いで、水を加え反応を停止した後、反応溶液を塩化メ チレン (40ml)Z5%重炭酸ナトリウム水 (50 ml)で 5回抽出した。有機層を無水硫酸ナト リウムで乾燥し、溶媒を減圧下留去した後、残渣をゲル濾過カラムクロマトグラフィー( ァセトニトリル)を用いて精製し、 2- N-ァセチル- 5, -0- (4,4, -ジメトキシトリチル) -2, - 0 -メチル -3-デァザグアノシン- 3し(2-シァノエチル- Ν,Ν-ジイソプロピルホスホロアミダ イト)
を得た (47mg,30%)。
JH NMR ( CDC1 - dl ) σ 1.03 - 1.05 ( 4H, m ), 1.17 - 1.29 ( 8H, m ), 2.02 ( 3H,
3
m ), 2.37, 2.68 ( 2H, m ), 3.36 - 3.67 ( 7H, m ), 3.77 ( 6H, m ), 3.87 - 3.98 ( 1 H, m ), 4.13 -4.16 ( 1 H, m ), 4.32 - 4.38 ( 1 H, m ), 4.47 - 4.50 ( 1 H, m ), 5.85 ( 1 H , m ), 6.80 ( 4 H, m ), 7.20 - 7.49 ( 9H, m ), 7.96 ( 1 H, m ), 10.21 ( 1 H, s br ), 11. 80 ( 1 H, s br ) : 31P NMR ( CDC1— dl ) σ 151.6, 152.2
3
[0135] 実施例 10 3,, 5,-ビス- O- (tert-ブチルジメチルシリル)デォキシグアノシン( 1.5 g, 3.02 mmol )を無水ピリジンで 3回共沸し、無水ピリジン (15 ml)に溶解し、トリメチルシリルクロラ イド (576 1,4.53 mmol)をカ卩え、室温で 1時間撹拌した。次いで、クロロギ酸フエ-ル (5 69 /ζ 1,3.93πιπιο1)をカ卩え、室温で 4時間撹拌した。 40%メチルァミンのメタノール溶液 ( 1.8 ml, 15.1 mmol )をカ卩ぇ室温で 2時間撹拌した。反応溶液を酢酸ェチル( 200 ml )Z水( 150 ml )で 1回抽出した後、酢酸ェチル( 200 ml )Z食塩水( 150 ml )で 2回抽 出した。有機層を無水硫酸マグネシウムで乾燥し、溶媒を減圧下留去した後、残渣を NHシリカゲルカラムクロマトグラフィーを用いてメタノール Zクロ口ホルム 50%〜80% で精製し、 3,,5, -ビス- 0- (tert-ブチルジメチルシリル)- 2-N-メチルカルバモイルデォ キシグアノシンを得た (1.38g,78%)。
JH NMR ( DMSO-d6 ) δ 0.01 ( 6H, d ), 0.08 ( 6H, s ), 0.84 ( 9H, s ), 0.86 ( 9H, s ), 2.26 - 2.30 ( 1H, m ), 2.61 - 2.67 ( 1H, m ), 2.70 ( 3H, d, J = 3.9 Hz ), 3.62— 3. 71 ( 2H, m ), 3.81 ( 1H, m ), 4.48 ( 1H, m ), 6.15 ( 1H, t, J = 6.5 Hz ), 7.02 ( 1H, s br ), 8.05 ( 1H, s ), 10.26 ( 1H, s br ), 11.98 ( 1H, s br ) : 13C NMR ( DMSO— d6 ) δ -5.6, -5.6, -5.0, -4.9, 17.6, 17.9, 25.6, 25.7, 26.1, 62.6, 71.9, 82.5, 87.1, 119.1, 1 36.2, 148.9, 149.2, 155.5: MS m/z calcd for C H N O Si + : 553.2990, found 5
24 44 6 5 2
53.3027
上述のようにして得られた、 3 ' ,5 ' -ビス- O- (tert-ブチルジメチルシリル)- 2-N-メチ ルカルバモイルデォキシグアノシン (889mg,1.61mmol)を無水ピリジンで 3回共沸し、 無水ピリジン (16ml)に溶解した。次いで、ジイソプロピルェチルアミン( 421 μ 1,2.41 m mol )を加え、ジフエ-ルカルバモイルク口ライド (424 mg, 1.93 mmol)を加え、室温で 0. 5時間撹拌した。次いで、酢酸ェチル (10 ml)を加えた後、重曹水 (10 ml )を加え反応 を停止した。反応溶液を酢酸ェチル( 150 ml )Z重曹水( 150 ml )で 1回抽出した後、 酢酸ェチル( 150 ml )Z食塩水( 100 ml )で 2回抽出した。有機層を無水硫酸マグネ シゥムで乾燥し、溶媒を減圧下留去した後、残渣をシリカゲルカラムクロマトグラフィ 一 ( C200 )を用いて酢酸ェチル Zへキサン 40%〜50%で精製し、 3,, 5,-ビス- 0- (tert-ブチルジメチルシリル)- 6-0-ジフエ二ルカルバモイル- 2-N-メチルカルバモイ ルデォキシグアノシンを得た (1.13 g, 94 %)。 H NMR ( DMSO-d6 ) δ 0.00 ( 6H, s ), 0.10 ( 6H, s ), 0.83 ( 9H, s ), 0.88 ( 9H, s ), 2.34 - 2.39 ( 1H, m ), 2.77 ( 3H, d, J = 4.6 Hz ), 2.79 - 2.84 ( 1H, m ), 3.65 - 3. 76 ( 2H, m ), 3.86 ( 1H, m ), 4.55 ( 1H, m ), 6.39 ( 1H, t, J = 6.5 Hz ), 7.29 - 7.50 (
10H, m), 8.36 ( 1H, dd, J = 4.6 Hz, J = 9.2 Hz ), 8.49 ( 1H, s ), 9.87 ( 1H, s br ) : 1 3C NMR ( DMSO-d6 ) δ—5.5,—4.9, -4.7, 17.6, 17.9, 25.6, 25.7, 26.3, 62.5, 71.7, 83.3, 87.3, 118.6, 127.4, 129.4, 141.6, 142..8, 153.4, 154.0, 154.0, 155.2: MS m/z calcd for C H N O Si + : 748.3674, found 748.3677
37 54 7 6 2
[0137] 上述のようにして得られた 3 ' , 5 ' -ビス- O- (tert-ブチルジメチルシリル)- 6-0-ジフエ- ルカルバモイル- 2-N-メチルカルバモイルデォキシグアノシン (1.13g, 1.52mmol)を無 水テトラヒドロフランで 3回共沸し、無水テトラヒドロフラン (15 ml)に溶解し、トリェチル ァミン 3フッ化水素 (743 l,4.56mmol)をカ卩え、室温で 1晚撹拌した。次いで、トルエン( 5 ml)をカ卩え、溶媒を減圧下留去した。残渣をシリカゲルカラムクロマトグラフィー( C20 0 )を用いてメタノール Zクロ口ホルム 5%〜6%で精製した残渣に、酢酸ェチル (5 ml) 及びジェチルエーテル (15ml)をカ卩えて再沈殿を行い、濾過により精製を行い、 6-0- ジフエ-ルカルバモイル - 2-N-メチルカルバモイルデォキシグアノシンを得た (643 m g, 81%)。
JH NMR ( DMSO-d6 ) δ 2.33 - 2.36 ( 1H, m ), 2.67 ( 1H, m ), 2.79 ( 3H, d, J = 3. 4 Hz ), 3.50 - 3.60 ( 2H, m ), 3.85 ( 1H, d, J = 2.7 Hz ), 4.41 ( 1H, s ), 4.93 ( 1H, s ), 5.34 ( 1H, d, J = 3.2 Hz ), 6.39 ( 1H, t, J = 6.0 Hz ), 7.31 - 7.48 ( 10H, m), 8.39 ( 1H, d, J = 3.4 Hz ), 8.56 ( 1H, s ), 9.87 ( 1H, s br ) : 13C NMR ( DMSO— d6 ) δ 26 .4, 61.3, 70.3, 83.4, 87.8, 118.7, 127.4, 129.4, 141.6, 143.2, 150.0, 153.4, 154.0, 1 54.1, 155.1: MS m/z calcd for C H N O + : 520.1945, found 520.1945
25 25 7 6
[0138] 上述のようにして得られた 6-0-ジフエ-ルカルバモイル - 2-N-メチルカルバモイ ルデォキシグアノシン (643mg,1.24mmol)を無水ピリジンで 3回共沸し、無水ピリジン (1 2ml)に溶解し、 4,4,-ジメトキシトリチルクロライド (629mg,1.86mmol)をカ卩え、室温で 3時 間撹拌した。次いで、重曹水 (5ml)を加えて反応を停止した。反応溶液を酢酸ェチル ( 100 ml )Z重曹水 (100 ml )で 1回抽出した後、酢酸ェチル (100 ml )Z食塩水 (80 ml) で 2回抽出した。有機層を無水硫酸マグネシウムで乾燥し、溶媒を減圧下留去した後 、残渣をシリカゲルカラムクロマトグラフィー (N60球状中性シリカゲル)を用いて 1%トリ ェチルァミンを添カ卩した酢酸ェチル Zへキサン 50%〜60%で精製し、 5,- 0- (4,4,- ジメトキシトリチル) -6-0-ジフエ-ルカルバモイル- 2-N-メチルカルバモイルデォキ シグアノシンを得た (889 mg,87 %)。
JH NMR ( DMSO-d6 ) σ 2.37 - 2.42 ( 1Η, m ), 2.76 ( 3H, d, J = 4.6 Hz ), 2.80 - 2.84 ( 1H, m ), 3.12 - 3.19 ( 2H, m ), 3.65 ( 6H, d, J = 8.5 Hz ), 3.96 ( 1H, d, J = 2. 4 Hz ), 4.43 ( 1H, s ), 5.36 ( 1H, d, J = 3.7 Hz ), 6.43 ( 1H, t, J = 6.0 Hz ), 6.73 - 6 .78 ( 4H, m), 7.08 - 7.49 ( 19H, m), 8.42 ( 1H, d, J = 4.6 Hz ), 8.46 ( 1H, s ), 9.88 ( 1H, s ) : 13C NMR ( DMSO-d6 ) δ 26.4, 64.0, 70.2, 83.5, 85.4, 85.9, 113.0, 113.0 , 118.9, 126.5, 127.6, 127.6, 129.4, 129.6, 129.7, 135.4, 135.6, 141.6, 143.2, 144.9 , 149.9, 153.4, 153.9, 154.1, 155.2, 158.0 : MS m/z calcd for C H N Na O + : 8
46 43 7 8
44.3071, found 844.3075
上述のようにして得られた 5, -0- (4,4' -ジメトキシトリチル) -6-0-ジフエ-ルカルバ モイル- 2-N-メチルカルバモイルデォキシグアノシン (760 mg,0.925mmol)を無水トル ェンで 3回共沸し、無水ァセトニトリルで 3回共沸し、無水塩化メチレン (9.2ml)に溶解 し、ジイソプロピルェチルァミン (410 μ l,2.35mmol)をカ卩え、クロ口 (2-シァノエトキシ) (-N ,Ν-ジイソプロピルァミノ)ホスフィン (410 μ l,1.85mmol)をカ卩え、室温で 2時間撹拌した 。水 (lml)をカ卩ぇ反応を停止した。反応溶液を酢酸ェチル( 150 ml )Z5%重炭酸ナト リウム水 (100 ml)で 5回抽出した。有機層を無水硫酸ナトリウムで乾燥し、溶媒を減圧 下留去した後、残渣をゲル濾過クロマトグラフィー (ァセトニトリル)を用いて精製し、下 記式(22)で表わされる化合物、 5,- 0- ( 4,4,-ジメトキシトリチル》 -6-0-ジフエ-ルカ ルバモイル- 2-N-メチルカルバモイルデォキシグアノシン- 3し(2-シァノエチル- Ν,Ν- ジイソプロピルホスホロアミダイト)を得た (644mg, 68%)。
JH NMR (CDC1 - dl ) δ 1.13 - 1.27 ( 14H, m ), 2.43 ( 1H, m ), 2.58 - 2.76 ( 3H,
3
m ), 2.94 (3H, m ), 3.35 ( 2H, m ), 3.61 - 3.84 ( 4H, m), 3.73 ( 6H, m ), 4.29 - 4.33 ( 1 H, m ), 4.71 (1 H, m ), 6.35 ( 1 H, m ), 6.80 ( 4 H, m ), 7.18 - 7.43 ( 19H, m ), 7.63 ( 1 H, m ), 8.09 (1 H, m ), 8.61 (1 H, s ) : 13C NMR ( CDC1— dl ) σ 20.1, 20.2,
3
20.3, 20.4, 24.5, 24.5, 24.6, 26.7, 39.5, 39.7, 43.2, 43.3, 55.1, 55.1, 58.1, 58.1, 5 8.2, 58.3, 63.3, 63.4, 73.4, 73.6, 74.0, 74.1, 84.4, 85.7, 85.8, 86.0, 86.5, 113.1, 11 7.4, 117.5, 119.8, 126.9, 126.9, 127.8, 128.0, 128.0, 129.2, 129.9, 130.0, 130.0, 13 5.4, 135.5, 141.7, 144.4, 150.1, 153.0, 154.4, 154.5, 155.6, 155.6, 158.5: 31P NMR ( CDC1— dl ) σ 150.0, 150.3: MS m/z calcd for C H N Na O P+ : 1044.4149, f
3 55 60 9 9 ound 1044.3683
[0140] [化 37]
Figure imgf000062_0001
[0141] 実施例 11
3 ' ,5 ' -ビス- O- (tert-ブチルジメチルシリル)デォキシグアノシン (2.8g,5.83mmol)を無 水ピリジンで 3回共沸し、無水ピリジン( 60 ml )に溶解し、トリメチルシリルクロライド (1 .11 ml, 8.75 mmol )をカ卩ぇ室温で 1時間撹拌した。次いで、クロロギ酸フエ-ル (1.10 ml, 8.75mmol )をカ卩ぇ室温で 4時間撹拌した。次いで、 28%アンモニア水(4.1 ml,29. lmmol )を加え室温で 2時間撹拌した。反応溶液を酢酸ェチル (250 ml )Z水 (200 ml )で 1回抽出した後、酢酸ェチル( 250 ml )Z食塩水( 150 ml )で 2回抽出した。有機層 を無水硫酸マグネシウムで乾燥し、溶媒を減圧下留去した後、残渣を NHシリカゲル カラムクロマトグラフィー(25g)を用いてメタノール Zクロ口ホルム 6%〜30%で精製し 、3,, 5,-ビス- 0- (tert-ブチルジメチルシリル)- 2-N-力ルバモイルデォキシグアノシ ンを得た (2.12g, 68 %)。
JH NMR ( DMSO-d6 ) δ 0.02 ( 6H, d ), 0.10 ( 6H, s ), 0.86 ( 9H, s ), 0.88 ( 9H, s ), 2.26 - 2.35 ( IH, m ), 2.62 - 2.68 ( IH, m ), 3.62 - 3.71 ( 2H, m ), 3.82 ( IH, m ), 4.48 ( IH, m ), 6.15 ( IH, t, J = 6.8 Hz ), 6.41 ( IH, s br ), 7.23 ( IH, s br ), 8.07 ( IH, s ), 10.07 ( IH, s br ), 12.03 ( IH, s br ) : 13C NMR ( DMSO- d6 ) δ -5.5, -5. 5, -5.0, -4.8, 17.7, 18.0, 25.7, 25.8, 62.6, 71.9, 82.6, 87.1, 119.2, 136.4, 148.9, 1 491, 156.2: MS m/z calcd for C H N O Si + : 539.2834, found 539.2809
23 43 6 5 2
[0142] 上述のようにして得られた 3 ' , 5 ' -ビス- O- (tert-ブチルジメチルシリル)- 2-N-カル バモイルデォキシグアノシン (1.23g,2.29mmol)を無水ピリジンで 3回共沸し、無水ピリ ジン (23 ml )に溶解した。次いで、ジイソプロピルェチルァミン (797 μ l,4.58mmol)をカロ え、ジフエ-ルカルバモイルク口ライド (689mg,2.98mmol)を加え、室温で 0.5時間撹拌 した。次いで、重曹水( 5 ml )を加え反応を停止した。反応溶液を酢酸ェチル( 180 ml )Z重曹水 (150 ml)で 1回抽出した後、酢酸ェチル( 180 ml )Z食塩水( 100 ml )で 2 回抽出した。有機層を無水硫酸マグネシウムで乾燥し、溶媒を減圧下留去した後、 残渣をシリカゲルカラムクロマトグラフィー (C200)を用いて酢酸ェチル Zへキサン 50 %〜60%で精製し、 3,, 5,-ビス- 0- (tert-ブチルジメチルシリル)- 2-N-力ルバモイル - 6-0-ジフエ-ルカルバモイルデォキシグアノシンを得た (1.53g,91%)。
JH NMR ( DMSO— d6 ) δ 0.00 ( 6H, s ), 0.10 ( 6H, s ), 0.82 ( 9H, s ), 0.88 ( 9H, s ), 2.33 - 2.35 ( IH, m ) 2.62 - 2.67 ( IH, m ), 3.65 - 3.74 ( 2H, m ), 3.84 ( IH, m ), 4.55 ( IH, m ), 6.34 ( IH, t, J = 6.5 Hz ), 7.05 ( IH, s br ) 7.11 - 7.48 ( 10H, m), 8.36 ( IH, dd, J = 4.6 Hz, J = 9.2 Hz ), 7.98 ( IH, s br ), 8.49 ( IH, s ), 9.71 ( IH, s ) : 13C NMR ( DMSO- d6 ) δ—5.5,—5.5, -5.0, -4.7, 17.7, 18.0, 25.7, 25.8, 62.5, 7 1.6, 83.2, 87.3, 118.6, 127.3, 129.4, 141.6, 142.8, 149.9, 153.4, 154.2, 154.3, 155. 1: MS m/z calcd for C H N O Si + : 734.3518, found 734.3581
36 52 7 6 2
[0143] 上述のようにして得られた 3 ' , 5 ' -ビス- O- (tert-ブチルジメチルシリル)- 2-N-力ルバ モイル- 6-0-ジフエ-ルカルバモイルデォキシグアノシン (1.53g,2.09mmol)を無水テト ラヒドロフランで 3回共沸し、無水テトラヒドロフラン( 10 ml )に溶解し、トリェチルァミン 3フッ化水素 (1.02ml,6.27mmol )を加え、室温で 1晚撹拌した。トルエン (10 ml)を加え 、溶媒を減圧下留去した。次いで、残渣をシリカゲルカラムクロマトグラフィー (N60球 状中性シリカゲル)を用いてメタノール Zクロ口ホルム 4%〜10%で精製し、 2-N-カル バモイル- 6-0-ジフエ-ルカルバモイルデォキシグアノシンを得た (1.21g,quant)。
JH NMR ( DMSO- d6 ) δ 2.31 - 2.35 ( 1H, m ), 2.65 - 2.70 ( 1H, m ), 3.49 - 3.58 ( 2H, m ), 3.85 ( 1H, dd, J = 4.5 Hz, J = 7.6 Hz ), 4.44 ( 1H, , dd, J = 3.2 Hz, J = 5. 4 Hz ), 4.92 ( 1H, s ), 5.33 ( 1H, d, J = 3.9 Hz ), 6.35 ( 1H, t, J = 6.7 Hz ), 7.12 ( 1
H, s br ) 7.29 - 7.48 ( 10H, m), 8.06 ( 1H, s br ), 8.57 ( 1H, s ), 9.75 ( 1H, s ) : 13C NMR ( DMSO-d6 ) δ 61.4, 70.5, 83.4, 88.0, 118.7, 127.4, 129.4, 141.6, 143.2, 150 .0, 153.4, 154.2, 154.3, 155.2: MS m/z calcd for C H N O + : 506.1788, found
24 24 7 6
506.1796
上述のようにして得られた 2-N-力ルバモイル- 6-0-ジフエ-ルカルバモイルデォキ シグアノシン (1.19g,2.35mmol)を無水ピリジンで 3回共沸し、無水ピリジン (23ml)に溶 解し、 4,4,-ジメトキシトリチルクロライド (917mg,2.70mmol)をカ卩ぇ室温で 2時間撹拌し た。重曹水 (8 ml)を加え反応を停止した。次いで、反応溶液を酢酸ェチル (150 ml )/ 重曹水 (120 ml )で 1回抽出した後、酢酸ェチル (150 ml)Z食塩水 (100ml)で 2回抽出 した。有機層を無水硫酸マグネシウムで乾燥し、溶媒を減圧下留去した後、残渣をシ リカゲルカラムクロマトグラフィー (N60球状中性シリカゲル)を用いて 1%トリェチルアミ ンを添カ卩したメタノール/クロ口ホルム 2%〜3%で精製し、 2-N-力ルバモイル -5, -0 -(4,4, -ジメトキシトリチル) -6-0-ジフエ-ルカルバモイルデォキシグアノシンを得た(
I.45 g, 76 %)。
JH NMR ( DMSO- d6 ) δ 2.35 - 2.40 ( 1H, m ), 2.78 - 2.83 ( 1H, m ), 3.11 - 3.16 ( 2H, m ), 3.65 ( 6H, d, J = 7.8 Hz ), 3.95 ( 1H, dd, J = 4.4 Hz , J = 9.5 Hz), 4.43 ( 1H, m ), 5.35 ( 1H, d, J = 4.9 Hz ), 6.39 ( 1H, t, J = 6.1 Hz ), 6.73 - 6.79 ( 4H, m), 7.09 - 7.48 ( 19H, m), 7.48 ( 1H, s br ), 8.46 ( 1H, s ), 9.73 ( 1H, s ) : 13C NMR ( DMSO- d6 ) δ 54.9, 54.9, 63.9, 70.2, 79.2, 83.4, 85.4, 86.0, 113.0, 113.0, 118.8, 1 26.5, 127.6, 127.6, 129.4, 129.6, 129.7, 135.4, 135.6, 141.6, 143.0, 144.9, 149.6, 1 53.5, 154.2, 154.3, 155.2, 158.0: MS m/z calcd for C H N Na O : 830.2914,
45 41 7 8
found 830.2907
[0145] 上述のようにして得られた 2-N-力ルバモイル -5, -0- (4,4' -ジメトキシトリチル) -6-0 -ジフエ-ルカルバモイルデォキシグアノシン (250mg,0.309mmol)を無水トルエンで 3 回共沸し、無水ァセトニトリルで 3回共沸し、無水塩化メチレン (3.0 ml)に溶解し、ジィ ソプロピルェチルァミン (27 1, 0.145 mmol)をカ卩え、 1H-テトラゾール (11 mg,0.145mm ol)を加え、 (2-シァノエトキシ)ジ (-Ν,Ν,-ジイソプロピルァミノ)ホスフィン (410 μ 1,1.85m mol)をカ卩え、室温で 2時間撹拌した。反応溶液を酢酸ェチル (50ml)ZO. 2M水酸ィ匕 ナトリウム水溶液 (40ml)で 5回抽出した。次いで、有機層を無水硫酸ナトリウムで乾燥 し、溶媒を減圧下留去した後、残渣をゲル濾過クロマトグラフィー (ァセトニトリル)を用 いて精製し、酢酸ェチル( 50 ml )/0. 2M水酸ィ匕ナトリウム水溶液 (70 ml )で 5回抽出 し、 下記式(23)で表わされる化合物、 2- N-力ルバモイル- 5,- 0- (4,4,-ジメトキシ トリチル) )-6-0-ジフエ-ルカルバモイルデォキシグアノシン -3し(2-シァノエチル- N, N-ジイソプロピルホスホロアミダイト)を得た (245 mg, 75 %)。
JH NMR ( CDC1 - dl ) δ 1.11 - 1.33 ( 14H, m ), 2.46 ( 1H, m ), 2.55 - 2.74 ( 3H,
3
m ), 3.32 - 3.40 ( 2H, m ), 3.57 - 3.87 ( 4H, m), 3.75 ( 6H, m ), 4.26 - 4.32 ( 1 H, m ), 4.67 - 4.72 ( 1 H, m ), 5.36 ( 1 H, s br ), 6.35 ( 1 H, m ), 6.79 ( 4 H, m ), 7.17 - 7.50 ( 19H, m ), 8.07 ( 1 H, m ), 8.53 ( 1 H, s br ) : 13C NMR ( CDC1 - dl ) δ 20.
3
6, 20.7, 20.8, 20.9, 24.9, 25.0, 25.0, 40.2, 43.6, 43.6, 43.7, 43.7, 55.6, 55.6, 58.5,
58.6, 58.6, 58.7, 63.7, 63.8, 73.9, 74.0, 74.4, 74.5, 84.7, 84.8, 86.2, 86.2, 86.4, 86 .9, 113.6, 117.8, 117.9, 120.5, 127.3, 127.4, 128.3, 128.4, 128.5, 129.6, 130.3, 130 .4, 130.4, 135.8, 135.8, 135.9, 135.9, 142.1, 144.7, 150.4, 153.1, 154.8, 154.9, 155 .0, 156.2, 159.0: 31P NMR ( CDC1— dl ) σ 149.9: MS m/z calcd for C H N Na
3 54 59 9
O P+: 1030.3993, found 1033.4001
9
[0146] [化 38]
Figure imgf000066_0001
Figure imgf000066_0002
実施例 12
3' , 5,-ビス-0- (tert-ブチルジメチルシリル)デォキシグアノシン (3.0g,6.05 mmol) を無水トルエンで 3回共沸し、無水ジメチルホルムアミド (30ml)に溶解し、水素化ナト リウム (199mg,7.86mmol)をカ卩え、 70°Cの温度で 1時間撹拌した。次いで、反応溶液を 室温に戻しメチルチオイソシァネート (1.24ml,18.2mmol )を加え、 70°Cの温度で 36 時間撹拌した。反応溶液を 0. 5M酢酸アンモ-ゥム緩衝液 (150 ml )に注ぎ、酢酸ェ チル (200 ml )/0. 5M酢酸アンモ-ゥム緩衝液 ( 150 ml )で 1回抽出した後、酢酸ェ チル (200ml )Z水 (150 ml)で 2回抽出した。有機層を減圧下留去した後、残渣を NHシ リカゲルカラムクロマトグラフィーを用いてメタノール Zクロ口ホルム 5%で原料を除き、 ゲルを回収してメタノール Zクロ口ホルム 80%で 40回溶出し、濃縮し、 3,, 5,-ビス- 0- (tert-ブチルジメチルシリル)- 2-N-メチルチオ力ルバモイルデォキシグアノシンを 得た (1.65g,48 %)。
JH NMR ( DMSO-d6 ) δ 0.01 ( 6H, d ), 0.09 ( 6H, s ), 0.84( 9H, s ), 0.87 ( 9H, s ), 2.30 - 2.34 ( 1H, m ), 2.58 - 2.63 ( 1H, m ), 3.07 ( 3H, s ), 3.63 - 3.74 ( 2H, m ), 3.83 ( 1H, dd, J = 4.4 Hz, J = 8.5 Hz ), 4.51 ( 1H, m ), 6.30 ( 1H, t, J = 6.5 Hz ), 8 .06 ( 1H, s ), 10.73 ( 2H, s br ), 11.98 ( 1H, s br ) : C NMR ( DMSO— d6 ) δ—5.6, -5.5, -5.0, -4.8, 17.6, 17.9, 25.6, 25.7, 25.7, 31.7, 62.4, 71.5, 82.7, 86.9, 119.8, 1 36.6, 147.4, 179.0: MS m/z calcd for C H N O S Si + : 569.2762, found 569.27
24 44 6 4 2
50
[0148] 上述のようにして得られた、 3,, 5, -ビス- 0- (tert-ブチルジメチルシリル)- 2-Ν-メチ ルチオ力ルバモイルデォキシグアノシン (1.0 g,1.76 mmol)を無水ピリジンで 3回共沸 し、無水ピリジン (17ml)に溶解した。ジイソプロピルェチルァミン (511 l,3.16mmol)を 加え、ジフエ-ルカルバモイルク口ライド (489mg,2.11mmol)を加え、室温で 0. 5時間 撹拌した。重曹水 (5 ml)を加え反応を停止した。次いで、反応溶液を酢酸ェチル (150 ml )Z重曹水 (120ml)で 1回抽出した後、酢酸ェチル (150 ml)Z食塩水 (100ml)で 2回 抽出した。有機層を無水硫酸マグネシウムで乾燥し、溶媒を減圧下留去した後、残 渣をシリカゲルカラムクロマトグラフィー(N60球状中性シリカゲル)を用いて酢酸ェチ ル/へキサン 40%〜50%で精製し、 3,, 5,-ビス- 0- (tert-ブチルジメチルシリル) -6 -0-ジフエ-ルカルバモイル- 2-N-メチルチオ力ルバモイルデォキシグアノシンを得 た (1.09g, 81%)。
JH NMR ( DMSO-d6 ) δ 0.00 ( 6H, s ), 0.11 ( 6H, s ), 0.82 ( 9H, s ), 0.89 ( 9H, s ), 2.34 - 2.39 ( 1H, m ), 2.81 - 2.87 ( 1H, m ), 3.11 ( 3H, d, J = 4.6 Hz ), 3.65 - 3. 78 ( 2H, m ), 3.86 ( 1H, dd, J = 4.5 Hz, J = 8.8 Hz ), 4.55 ( 1H, m ), 6.42 ( 1H, t, J = 6.4 Hz ), 7.29 - 7.50 ( 10H, m), 8.56 ( 1H, s ), 10.59 ( 1H, dd, J = 4.5 Hz, J = 9.1
Hz ), 10.78 ( 1H, s ) : 13C NMR ( DMSO— d6) δ—5.5,—5.5—5.0,—4.8, 17.7, 17.9, 2 5.6, 25.7, 31.9, 62.4, 71.6, 83.6, 87.3, 119.1, 127.3, 129.4, 141.5, 143.5, 149.7, 15 .0, 153.6, 155.0, 179.7: MS m/z calcd for C H N O S Si + : 764.3446, found 76
37 54 7 5 2
4.3432
[0149] 上述のようにして得られた 3,, 5, -ビス- 0- (tert-ブチルジメチルシリル)- 6-0-ジフ ェ-ルカルバモイル- 2-N-メチルチオ力ルバモイルデォキシグアノシン (900mg, 1.17m mol)を無水テトラヒドロフランで 3回共沸し、無水テトラヒドロフラン (6.0 ml)に溶解し、ト リエチルァミン 3フッ化水素 (574 /ζ 1,3.51πιπιο1)をカ卩え、室温で 1晚撹拌した。次いで、 トルエン (5 ml )を加え、溶媒を減圧下留去した。残渣に、メタノール (5 ml)及びへキサ ン (25 ml)を加え,再沈殿をおこない濾過して精製し、 6-0-ジフヱ-ルカルバモイル -2 -N-メチルチオ力ルバモイルデォキシグアノシンを得た (504mg, 80%)。
JH NMR ( DMSO-d6 ) δ 2.32 - 2.37 ( 1Η, m ), 2.70 - 2.75 ( 1H, m ), 3.12 ( 3H, d , J = 4.4 Hz ), 3.48 - 3.61 ( 2H, m ), 3.85 ( 1H, dd, J = 4.2 Hz, J = 8.1 Hz ), 4.42 ( 1H, dd, J = 3.8, Hz, J = 5.9 Hz ), 4.92 ( 1H, t, J = 5.4 Hz ), 5.34 ( 1H, d, J = 4.2 H z ), 6.41 ( 1H, t, J = 6.5 Hz ), 7.30 - 7.50 ( 10H, m), 8.62 ( 1H, s ), 10.56 ( 1H, dd, J = 4.4 Hz, J = 9.1 Hz ), 10.80 ( 1H, s ) : 13C NMR ( DMSO— d6 ) δ 32.1, 61.2, 70.2 , 83.8, 87.8, 119.3, 127.3, 129.4, 141.5, 144.0, 149.8, 152.0, 153.6, 155.0, 179.7: MS m/z calcd for C H N O S + : 536.1716, found 536.1546
25 26 7 5
[0150] 上述のようにして得られた 6-0-ジフエ-ルカルバモイル- 2-N-メチルチオカルバモ ィルデォキシグアノシン (400mg,0.744mmol)を無水ピリジンで 3回共沸し、無水ピリジ ン (8.0 ml)に溶解し、 4,4,-ジメトキシトリチルクロライド (278 mg,0.818mmol)を加え室温 で 3時間撹拌した。次いで、重曹水 (3 ml)を加え反応を停止した。反応溶液を酢酸ェ チル (150ml)Z重曹水 (120 ml)で 1回抽出した後、酢酸ェチル (150ml)Z食塩水 (100 m 1)で 2回抽出した。次いで、有機層を無水硫酸マグネシウムで乾燥し、溶媒を減圧下 留去した後、残渣をシリカゲルカラムクロマトグラフィー (N60球状中性シリカゲル)を用 いて 1%トリェチルァミンを添加メタノール Zクロ口ホルム 3%〜4%で精製し、 5,- 0- ( 4,4, -ジメトキシトリチル) -6-0-ジフエ二ルカルバモイル- 2-N-メチルチオ力ルバモイ ルデォキシグアノシンを得た (570mg,78 %)。
JH NMR ( DMSO-d6 ) δ 2.37 - 2.42 ( 1Η, m ), 2.84—2.89 ( 1H, m ), 3.01 ( 3H, d, J = 4.4 Hz ), 3.11- 3.21 ( 2H, m ), 3.65 ( 6H, d, J = 10.2 Hz ), 3.97 ( 1H, m ), 4.46 ( 1H, t, J = 5.5 Hz ), 5.35 ( 1H, d, J = 4.6 Hz ), 6.45 ( 1H, t, J = 5.4 Hz ), 6.72 - 6 .77 ( 4H, m), 7.06 - 7.50 ( 19H, m), 8.53 ( 1H, s ), 10.62 56 ( 1H, dd, J = 4.4 Hz, J = 8.8 Hz ), 10.82 ( 1H, s ) : 13C NMR ( DMSO- d6 ) δ 32.0, 40.0, 54.9, 55.0, 64.0, 7 0.2, 84.0, 85.3, 86.1, 113.0, 113.0, 119.5, 126.5, 127.6, 127.6, 129.4, 129.6, 129.7 , 135.3, 135.7, 141.6, 144.2, 144.9, 149.8, 152.0, 153.5, 155.0, 158.0, 179.8: MS m/z calcd for C H N Na O S + : 860.2842, found 860.2859
46 43 7 7
[0151] 上述のようにして得られた 5, -0- (4,4' -ジメトキシトリチル) -6-0-ジフエ-ルカルバ モイル- 2-N-メチルチオ力ルバモイルデォキシグアノシン (250mg,0.298mmol)を無水ト ルェンで 3回共沸し、無水ァセトニトリルで 3回共沸し、次いで、無水塩化メチレン (3.0 ml)に溶解し、ジイソプロピルェチルァミン (83 μ l,0.477mmol)を加え、クロ口 (2—シァノ エトキシ) (-Ν,Ν,-ジイソプロピルァミノ)ホスフィン (86 μ 1 , 0.387 mmol )を加え、室温 で 2時間撹拌した。次いで、水 (1 ml )を加えて反応を停止した。反応溶液を酢酸ェチ ル (50 ml)Z5%重炭酸ナトリウム水 (50ml)で 5回抽出した。有機層を無水硫酸ナトリウ ムで乾燥し、溶媒を減圧下留去した後、残渣をゲル濾過クロマトグラフィー (ァセトニト リル)を用いて精製し、次いで、酢酸ェチル (50 ml )/0. 2M水酸ィ匕ナトリウム水溶液( 50 ml )で 5回抽出し、下記式(24)で表わされる化合物、 5,- 0- (4,4,-ジメトキシトリチ ル)) -6-0-ジフエ-ルカルバモイル- 2-N-メチルチオ力ルバモイルデォキシグアノシ ン- 3'- (2-シァノエチル- Ν,Ν-ジイソプロピルホスホロアミダイト)を得た (144 mg,47%)0 JH NMR ( CDC1 - dl ) δ 1.12 - 1.29 ( 14H, m ), 2.46 ( 1H, m ), 2.57 - 2.75 ( 3H,
3
m ), 2.25 ( 3H, m ), 3.30 - 3.38 ( 2H, m ), 3.58 - 3.88 ( 4H, m), 3.75 ( 6H, m ), 4.2 7 - 4.33 ( 1 H, m ), 4.67 ( 1 H, m ), 6.32 ( 1 H, m ), 6.79 ( 4 H, m ), 7.16 - 7.43 ( 1 9H, m ), 8.10 ( 1 H, m ), 8.52 ( 1 H, s ), 10.59 ( 1 H, m ) : 13C NMR ( CDC1 - dl )
3 δ 20.3, 20.4, 20.6, 20.6, 24.7, 24.7, 24.8, 32.6, 39.8, 43.4, 43.4, 43.5, 55.3, 58u.2 , 58.3, 58.4, 58.4, 63.4, 63.6, 73.6, 74.1, 74.2, 84.8, 84.8, 86.1, 86.1, 86.3, 86.7, 1 13.3, 113.3, 117.5, 117.6, 120.2, 120.3, 127.1, 127.1, 128.0, 128.2, 128.2, 129.4, 1 30.1, 130.1, 130.2, 135.5, 135.6, 135.7, 141.7, 142.4, 144.5, 150.0, 151.8, 158.7, 1 58.7, 180.0: 31P NMR ( CDC1— dl ) σ 150.0, 150.2: MS m/z calcd for C H N
3 55 60 9
Na O P S + : 1060.3921, found 1060.3889
8
[化 39]
Figure imgf000070_0001
Figure imgf000070_0002
実施例 13
実施例 3で得られた 2, - 0-メチル - 3, - 0- (2 -シァノエトキシ基ェチル- Ν,Ν, -ジイソ プロピルホスホロアミダイト)- 5, - 0- (4,4, -ジメトキシトリチル) -2- Ν-ァセチル- 3-デァ ザグアノシンを用い、 2'- 0-メチル RNAである、 2'- 0- Me- 5し (CGGCXGAGGAG) (配 列番号: 9、 X = 2'-0-メチル -2- N-ァセチル 3-デァザグアノシン)を合成した。合成 は、 Applied Biosystem Inc.(ABI)の DNA/RNA Synthesizer 392を使用して行った。 2' -0-メチル RNAオリゴマーの自動合成機による合成は、 Glen Researchより購入した 2' -0-メチルダァニンを担持した固相担体 (1 μ mol)を用いて行った。 Xに相当するヌクレ ォチド残基以外は上記自動合成装置の典型的な RNA合成プロトコールに従って行 い、 Xの残基のみは以下のプロトコール 1)〜3)に従い、各ステップの間にはァセトニ トリルによる洗浄を行いマニュアル合成にて鎖伸長を行った。
1)カップリング
アミダイトユニット 20 mol 1H-テトラゾール 80 molァセトニトリル—塩化メチレン( 200 し一 50 し;) 5 f¾
2)酸化 0. 1 Mヨウ素 Zピリジン—水(180 /z L- 20 /z L) 2分間
3) 3%トリクロ口酢酸 Z塩化メチレン(1 mL) X 3
[0154] 鎖伸長反応終了後、アンモニア水で上記自動合成装置のオートタリページ機能を 用いて切り出しを行い、ここにアンモニア水一エタノール(1. 5mL〜0. 5mL)を加え 、室温で 24時間放置した。得られた溶液を C18カートリッジに通し、不純物を除去し た後、 2%TFA水でカラム内で DMTr基を切断した後、 20%ァセトニトリルを含む水 で目的物を溶出した。得られた溶液を凍結乾燥し、次いで、陰イオン交換 HPLCを用 いて精製をおこなった。
MALDI— TOFマス calcd. 3456. 6 found 3456. 7。
[0155] 上述のようにして得られたオリゴヌクレオチドと、それに相補鎖である RNA、 5 -CUC CYCGCCG-3' (配列番号: 10、 Y=アデノシン、グアノシン、シチジン、ゥリジンのいず れかを表わす)もしくは DNA 5'- CTCCYCGCCG- 3' (配列番号: 11、 Υ=2'—デォキ シアデノシン、 2'—デォキシグアノシン、 2'—デォキシシチジン、チミジンのいずれか を表わす)との二本鎖の融解温度 (Tm)を測定した。方法は、実施例 6に記載された方 法で行った。コントロールとして、配列番号: 9で表わされる塩基配列の Xがグアノシン であるものについても調べた。
測定条件は 0. 1M NaCl、0. ImM EDTAを含む 10mM リン酸ナトリウム緩衝液( pH 7. 0)中、各オリゴヌクレオチド濃度 2 Mで測定した。
[0156] 配列番号: 10で表わされる塩基配列を有する RNAとの試験の結果 (測定結果 1)を 表 5に、配列番号: 11で表わされる塩基配列を有する DNAとの試験 (測定結果 2)の 結果を表 6に示す。
[0157] [表 5] X Y T m (°C ) A T m CO
G C 7 1 一
G A 5 0 一 2 1
G G 5 4 一 1 7
G U 6 2 一 9
ad3G c 7 0 ―
ad3G A 5 1 一 1 9
ad3G G 5 7 ― 1 3
ad3G U 5 5 一 1 5 [表 6]
Figure imgf000072_0001
測定結果 1結果 Xの位置に 2'-0-メチル -2N-ァセチル -3-デァザグアノシン (ad3G) を含むオリゴヌクレオチドは、 Xの位置に 2'-0-メチル-グアノシン(G)を含むオリゴヌ クレオチドにくらべ、 Y=Cである相補鎖に対する Tmが同等(71°Cと 70°C)であった。 一方、最も安定なミスマッチである場合の Tmは Xが ad3Gを含む場合 (57°C, Y=G)の 方が Xが Gの場合(62°C, Y=U)よりも 5°C低力つた。この結果、 ad3Gを含むオリゴヌク レオチドはミスマッチ塩基識別能が向上していることが明らかになった。
また、測定結果 2の結果 Xの位置に 2'-0-メチル -2N -ァセチル -3-デァザグアノシン (ad3G)を含むオリゴヌクレオチドは、 Xの位置にデォキシグアノシン (G)を含むオリゴ ヌクレオチドにくらべ、 Y=Cである相補鎖に対する Tmが同等(59°Cと 60°C)であった 一方、最も安定なミスマッチである場合の Tmは Xが ad3Gを含む場合 (46°C, Y=T) の方が Xが Gの場合(50°C, Y=T)よりも 4°C低かった。この結果、 ad3Gを含むオリゴヌ クレオチドはミスマッチ塩基識別能が向上していることが明らかになった。
[0160] 実施例 14
実施例 11で得られた 2-N-力ルバモイル -5, -0- (4,4, -ジメトキシトリチル) )-6-0-ジ フエ-ルカルバモイルデォキシグアノシン - 3し(2-シァノエチル- Ν,Ν-ジイソプロピル ホスホロアミダイト)を得た (245 mg, 75 %)を用いて、 2'-デォキシ- 2-N-力ルバモイルグ ァノシンを含むオリゴヌクレオチドを合成した。合成した DNAは 5, -CGGCXAGG AG— 3,(配列番号: 12、 Xは 2'-デォキシ- 2-N-力ルバモイルグアノシンを表わす) の配列を有する DNAである。合成には、 Applied Biosystem Inc.の DNA/RNA synthe sizer 392を使用した。天然型ホスホロアミダイトユニットおよびその他の必要な試薬は 、 Glen Research Inc.より購入して用いた。原料合成例(追加 16)で合成したホスホロ アミダイトユニットは無水ァセトニトリル( 0.1 M )に溶解し、 DNA自動合成機に適用し た。塩基部の脱保護は、アンモニア水(2 mL)を加え、室温で 12時間放置すること で行い、その後の精製は実施例 13と同様に行った。
MALDI— TOFマス calcd. 3158. 4 found 3158. 6。
[0161] 実施例 15
実施例 10で得られた 5,- 0- ( 4,4,-ジメトキシトリチル) )-6-0-ジフエ二ルカルバモイ ル- 2-N-メチルカルバモイルデォキシグアノシン- 3'-(2-シァノエチル- Ν,Ν-ジィソプ 口ピルホスホロアミダイト)を用いて、 2'-デォキシ- 2-Ν-メチルカルバモイルグアノシン を有するオリゴヌクレオチドを合成した。合成した DNAは 5, -CGGCXAGGAG- 3 ,(配列番号: 13、 Xは 2'-デォキシ- 2-Ν-メチルカルバモイルグアノシンを表わす)の 配列をもつ DNAである。 Applied Biosystem Inc.の DNA/RNA synthesizer 392を使用 した。天然型ホスホロアミダイトユニットおよびその他の必要な試薬は、 Glen Research
In より購入した。用いたホスホロアミダイトユニットは無水ァセトニトリル(0.1 M)に溶 解し、 DNA自動合成機に適用した。塩基部の脱保護は、アンモニア水(2mL)加え、 室温で 12時間放置することで行い、その後の精製は実施例 14と同様に行った。 MALDI— TOFマス calcd. 3172. 5 found 3172. 6。 [0162] 実施例 16
実施例 12で得られた 5, - 0- (4,4, -ジメトキシトリチル) )-6-0-ジフエ-ルカルバモイル - 2-N-メチルチオ力ルバモイルデォキシグアノシン- 3し(2-シァノエチル- Ν,Ν-ジイソ プロピルホスホロアミダイト)を用いて、 2'-デォキシ -2-Ν-メチルチオカルパモイルグ ァノシンを含むオリゴヌクレオチドを合成した。合成した DNAは 5, -CGGCXAGG AG— 3,(Xは 2しデォキシ- 2-N-メチルチオ力ルバモイルグアノシンを表わす)の配 列をもつ DNAである。 Applied Biosystem Inc.の DNA/RNA synthesizer 392を使用し た。天然型ホスホロアミダイトユニットおよびその他の必要な試薬は、 Glen Research I nc.より購入した。用いた合成したホスホロアミダイトユニットは無水ァセトニトリル( 0.1 M )に溶解し、 DNA自動合成機に適用した。塩基部の脱保護は、アンモニア水(2m L)を加え、室温で 12時間放置することで行い、その後の精製は実施例 14と同様に 行った。
MALDI— TOFマス calcd. 3188. 8 found 3188. 6。
[0163] 得られたオリゴヌクレオチドと、それに相補鎖と、それに相補的な鎖である DNA、 5' - CTCCYCGCCG-3' (配列番号: 14、 Υ=2'—デォキシアデノシン、 2'—デォキシグァ ノシン、 2'—デォキシシチジン、チミジンのいずれかを表わす)との二本鎖の融解温 度 (Tm)を測定した。測定条件は 0. 1M NaCl、 0. ImM EDTAを含む lOmM リン酸 ナトリウム緩衝液 (pH 7. 0)中、各オリゴヌクレオチド濃度 2 Mで測定した。
[0164] [表 7]
X Y Tm CC) Δ Τιτι CC)
G c 5 2 ―
G A 3 7 一 1 5
G G 3 6 一 1 6
G T 3 9 一 1 3
craG c 5 2 ―
cniG A 3 6 一 1 6
cmG G 3 7 - 1 5
cmG T 3 6 - 1 6 Xの位置に 2'-デォキシ- 2-N-力ルバモイルグアノシン (cmG)を含むオリゴヌクレオ チドは、 Xの位置に 2'-デォキシグアノシン (G)を含むオリゴヌクレオチドにくらべ、 Y= Cである相補鎖に対する Tmが同等 (52°C)であった。
一方、最も安定なミスマッチである場合の Tmは Xが cmGを含む場合 (36°C, Y=G, T) の方が Xが Gの場合(39°C, Y=T)よりも 3°C低かった。この結果、 cmGを含むオリゴヌク レオチドはミスマッチ塩基識別能が向上していることが明らかになった。

Claims

請求の範囲 下記一般式(1)で表わされるオリゴヌクレオチド誘導体。
[化 1]
Figure imgf000076_0001
(上記式中、 A1及び A2は同一であっても異なっていてもよぐそれぞれ水素、水酸基 、アルキル基、リン酸基又は置換基を結合していてもよいトリチル基であり、 nは 10〜 50の整数であり、 Y2は水素、水酸基、アルコキシ基又は 2—シァノエトキシ基である 力 又は Y2とリボース 4'位炭素とが結合し、環を形成していてもよぐ B2は天然又は非 天然の核酸塩基であり、 R2は、核酸塩基のァミノ基に結合した置換基であり、水素、 ァシル基、チオアシル基、アルコキシカルボ-ル基、アルコキシチォカルボ-ル基、 アルキル基で置換されて 、てもよ 、力ルバモイル基、アルキル基で置換されて 、ても よいチォカルバモイル基、又はアルキル基(アルキル基、ァルケ-ル基、アルキ-ル 基又はフエ-ル基と結合したものを含む)であり、 B1は下記一般式(2)で表わされる 置換基を表す。 )
[化 2]
Figure imgf000077_0001
(上記式中、 Bは天然又は非天然の核酸塩基であり、 Rは、核酸塩基のァミノ基に結 合した置換基であり、水素、ァシル基、チオアシル基、アルコキシカルボ-ル基、アル コキシチォカルボ-ル基、アルキル基で置換されていてもよい力ルバモイル基、アル キル基で置換されて 、てもよ 、チォ力ルバモイル基、又はアルキル基(アルキル基、 ァルケ-ル基、アルキ-ル基又はフエ-ル基と結合したものを含む)であり、 Xは酸素 原子—、硫黄原子—、 BH、 OCH、又は CHであり、 Yは水素、水酸基、アルコキシ基
3 3 3
又は 2—シァノエトキシ基である力 又は Yとリボースの 4'位炭素とが結合し、環を形 成していてもよい。また、 R及び R2は、少なくとも 1個が水素でない。 )
[2] プローブとして用いるための請求項 1に記載のオリゴヌクレオチド誘導体。
[3] 請求項 1に記載のオリゴヌクレオチド誘導体の少なくとも 1つ以上を担体に固定ィ匕さ せてなる、遺伝子検出用マイクロアレイ。
[4] 請求項 1に記載のオリゴヌクレオチド誘導体の少なくとも 1つ以上を担体に固定ィ匕さ せてなる、 DNAチップ。 [5] 担体が、微小多孔質ガラスである、請求項 4に記載の DNAチップ。
[6] 下記一般式(1)で表わされるオリゴヌクレオチド誘導体を、試料中の標的核酸とハイ ブリダィズさせる工程:及び
ノ、イブリダィズ産物を検出する工程を有する、
標的核酸中のヌクレオチドの同定方法。
[化 3]
Figure imgf000078_0001
(上記式中、 A1及び A2は同一であっても異なっていてもよぐそれぞれ水素、水酸基 、アルキル基、リン酸基又は置換基を結合していてもよいトリチル基であり、 nは 10〜 50の整数であり、 Y2は水素、水酸基、アルコキシ基又は 2—シァノエトキシ基である 力 又は Y2とリボース 4'位炭素とが結合し、環を形成していてもよぐ B2は天然又は非 天然の核酸塩基であり、 R2は、核酸塩基のァミノ基に結合した置換基であり、水素、 ァシル基、チオアシル基、アルコキシカルボ-ル基、アルコキシチォカルボ-ル基、 アルキル基で置換されて 、てもよ 、力ルバモイル基、アルキル基で置換されて 、ても よいチォカルバモイル基、又はアルキル基(アルキル基、ァルケ-ル基、アルキ-ル 基又はフエ-ル基と結合したものを含む)であり、 B1は下記一般式(2)で表わされる 置換基を表す。 )
[化 4]
Figure imgf000079_0001
(上記式中、 Bは天然又は非天然の核酸塩基であり、 Rは、核酸塩基のァミノ基に結 合した置換基であり、水素、ァシル基、チオアシル基、アルコキシカルボ-ル基、アル コキシチォカルボ-ル基、アルキル基で置換されていてもよい力ルバモイル基、アル キル基で置換されて 、てもよ 、チォ力ルバモイル某、又はアルキル基(アルキル基、 ァルケ-ル基、アルキ-ル基又はフエ-ル基と結合したものを含む)であり、 Xは酸素 原子—、硫黄原子—、 BH、 OCH、又は CHであり、 Yは水素、水酸基、アルコキシ基
3 3 3
又は 2—シァノエトキシ基である力 又は Yとリボースの 4'位炭素とが結合し、環を形 成していてもよい。また、 R及び R2は、少なくとも 1個が水素でない。 )
[7] 下記一般式(1)で表わされるオリゴヌクレオチド誘導体を用いて、遺伝子の発現を抑 制する、遺伝子発現制御方法。
[化 5]
Figure imgf000080_0001
(上記式中、 A1及び A2は同一であっても異なっていてもよぐそれぞれ水素、水酸基 、アルキル基、リン酸基又は置換基を結合していてもよいトリチル基であり、 nは 10〜 50の整数であり、 Y2は水素、水酸基、アルコキシ基又は 2—シァノエトキシ基である 力 又は Y2とリボース 4'位炭素とが結合し、環を形成していてもよぐ B2は天然又は非 天然の核酸塩基であり、 R2は、核酸塩基のァミノ基に結合した置換基であり、水素、 ァシル基、チオアシル基、アルコキシカルボ-ル基、アルコキシチォカルボ-ル基、 アルキル基で置換されて 、てもよ 、力ルバモイル基、アルキル基で置換されて 、ても よいチォカルバモイル基、又はアルキル基(アルキル基、ァルケ-ル基、アルキ-ル 基又はフエ-ル基と結合したものを含む)であり、 B1は下記一般式(2)で表わされる 置換基を表す。 )
[化 6]
Figure imgf000081_0001
(上記式中、 Bは天然又は非天然の核酸塩基であり、 Rは、核酸塩基のァミノ基に結 合した置換基であり、水素、ァシル基、チオアシル基、アルコキシカルボ-ル基、アル コキシチォカルボ-ル基、アルキル基で置換されていてもよい力ルバモイル基、アル キル基で置換されて 、てもよ 、チォ力ルバモイル基、又はアルキル基(アルキル基、 ァルケ-ル基、アルキ-ル基又はフエ-ル基と結合したものを含む)であり、 Xは酸素 原子—、硫黄原子—、 BH、 OCH、又は CHであり、 Yは水素、水酸基、アルコキシ基
3 3 3
又は 2—シァノエトキシ基である力 又は Yとリボースの 4'位炭素とが結合し、環を形 成していてもよい。また、 R及び R2は、少なくとも 1個が水素でない。 )
[8] 一般式( 17)で表わされるヌクレオチド誘導体。
[化 7]
Figure imgf000082_0001
(上記式中、 R3はリン酸保護基を表し、 R4は窒素原子上に炭素数 1〜6個の同一又 は異なるアルキル基が 2個結合したジアルキルアミノ基を表し、 R5は、水素、アルコキ シ基または炭素数 1から 10の同一または異なるアルキル基を有するトリアルキルシリ ルォキシ基、トリアルキルシリルォキシメトキシ基もしくはシァノエチル基であるカゝ、又 はリボースの 4'位炭素と結合して環を形成しており、 R6は水酸基の保護基を表し、 R 7は、ァシル基、チオアシル基、アルコキシカルボ-ル基、アルコキシチォカルボ-ル 基、アルキル基で置換されていてもよい力ルバモイル基、アルキル基で置換されてい てもよいチォカルバモイル基、又はアルキル基(アルキル基、ァルケ-ル基、アルキ -ル基又はフエニル基と結合したものを含む)であり、 X2は窒素原子もしくは置換基 を有してもよい炭素原子を表わす。 )
一般式(18)で表わされるヌクレオチド誘導体。
[化 8]
Figure imgf000083_0001
(上記式中、 R3はリン酸保護基を表し、 R4は窒素原子上に炭素数 1〜6個の同一又 は異なるアルキル基が 2個結合したジアルキルアミノ基を表し、 R5は、水素、アルコキ シ基または炭素数 1から 10の同一または異なるアルキル基を有するトリアルキルシリ ルォキシ基、トリアルキルシリルォキシメトキシ基もしくはシァノエチル基であるカゝ、又 はリボースの 4'位炭素と結合して環を形成しており、 R6は水酸基の保護基を表し、 R 7は、ァシル基、チオアシル基、アルコキシカルボ-ル基、アルコキシチォカルボ-ル 基、アルキル基で置換されていてもよい力ルバモイル基、アルキル基で置換されてい てもよいチォカルバモイル基、又はアルキル基(アルキル基、ァルケ-ル基、アルキ -ル基又はフエ-ル基と結合したものを含む)であり、 R8は、ジフエ-ルカルバモイル 基もしくは、ケィ素上に同一又は異なるァリール基もしくはアルキル基を合計 3つ有す るシリル基であり、 X3は窒素原子又はメチンを表す。 )
一般式(19)で表わされるヌクレオチド誘導体。
[化 9] X
Figure imgf000084_0001
P— R 4
(上記式中、 R3はリン酸保護基を表し、 R4は窒素原子上に炭素数 1〜6個の同一又 は異なるアルキル基が 2個結合したジアルキルアミノ基を表し、 R5は、水素、アルコキ シ基または炭素数 1から 10の同一または異なるアルキル基を有するトリアルキルシリ ルォキシ基、トリアルキルシリルォキシメトキシ基もしくはシァノエチル基であるカゝ、又 はリボースの 4'位炭素と結合して環を形成しており、 R6は水酸基の保護基を表し、 R 7は、ァシル基、チオアシル基、アルコキシカルボ-ル基、アルコキシチォカルボ-ル 基、アルキル基で置換されていてもよい力ルバモイル基、アルキル基で置換されてい てもよいチォカルバモイル基、又はアルキル基(アルキル基、ァルケ-ル基、アルキ -ル基又はフエニル基と結合したものを含む)であり、 X4は窒素原子もしくは置換基 を有してもよい炭素原子であり、 X1は酸素原子又は硫黄原子である。 )
PCT/JP2006/303772 2005-02-28 2006-02-28 オリゴヌクレオチド誘導体、遺伝子検出用プローブ及びdnaチップ WO2006093157A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP06714901A EP1860115A4 (en) 2005-02-28 2006-02-28 OLIGONUCLEOTIDE DERIVATIVE, GENE DETECTION PROBE, AND DNA CHIP
JP2007505962A JP4882074B2 (ja) 2005-02-28 2006-02-28 オリゴヌクレオチド誘導体、遺伝子検出用プローブ及びdnaチップ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005053417 2005-02-28
JP2005-053417 2005-02-28

Publications (1)

Publication Number Publication Date
WO2006093157A1 true WO2006093157A1 (ja) 2006-09-08

Family

ID=36941186

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/303772 WO2006093157A1 (ja) 2005-02-28 2006-02-28 オリゴヌクレオチド誘導体、遺伝子検出用プローブ及びdnaチップ

Country Status (4)

Country Link
US (1) US7851157B1 (ja)
EP (1) EP1860115A4 (ja)
JP (1) JP4882074B2 (ja)
WO (1) WO2006093157A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8889843B2 (en) 2007-08-31 2014-11-18 Apta Biosciences Ltd. Nucleic acid synthesizing dimer amidite and nucleic acid synthesizing method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2817002C (en) 2010-11-05 2019-01-15 Miragen Therapeutics Base modified oligonucleotides

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09507248A (ja) * 1994-02-01 1997-07-22 アイシス・ファーマシューティカルス・インコーポレーテッド 置換プリン類およびオリゴヌクレオチド架橋形成
JPH09507121A (ja) * 1993-10-26 1997-07-22 アフィマックス テクノロジーズ ナームロゼ ベノートスハップ 生物学的チップ上の核酸プローブアレー
WO1998039348A1 (en) * 1997-03-05 1998-09-11 Affymetrix, Inc. Photocleavable protecting groups and methods for their use
WO1999021874A1 (fr) * 1997-10-27 1999-05-06 Sankyo Company, Limited Oligodesoxyribonucleotides contenant un nucleoside modifie et autre
WO2000018778A1 (en) * 1998-09-29 2000-04-06 Phylos, Inc. Synthesis of codon randomized nucleic acids
JP2001524926A (ja) * 1991-09-18 2001-12-04 アフィマックス テクノロジーズ ナームロゼ フェンノートシャップ オリゴマーの雑多ライブラリーの集合体を合成する方法
JP2004168684A (ja) * 2002-11-19 2004-06-17 Rikogaku Shinkokai 核酸の短工程合成を可能にする新規ホスホロアミダイト化合物
JP2004233217A (ja) * 2003-01-30 2004-08-19 Fuji Electric Systems Co Ltd Dnaチップ,dnaチップの製造方法及びこれを用いた検出システム
JP2005000162A (ja) * 2003-05-19 2005-01-06 Canon Inc 核酸のpcr増幅方法、pcrプライマー・セット、pcr増幅産物、ならびに、該増幅方法を利用する核酸の検出方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6127121A (en) * 1998-04-03 2000-10-03 Epoch Pharmaceuticals, Inc. Oligonucleotides containing pyrazolo[3,4-D]pyrimidines for hybridization and mismatch discrimination
US20030077609A1 (en) * 2001-03-25 2003-04-24 Jakobsen Mogens Havsteen Modified oligonucleotides and uses thereof
JP4676148B2 (ja) * 2004-03-05 2011-04-27 独立行政法人科学技術振興機構 芳香族性置換基を導入した修飾4−n−カルバモイルシチジン

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001524926A (ja) * 1991-09-18 2001-12-04 アフィマックス テクノロジーズ ナームロゼ フェンノートシャップ オリゴマーの雑多ライブラリーの集合体を合成する方法
JPH09507121A (ja) * 1993-10-26 1997-07-22 アフィマックス テクノロジーズ ナームロゼ ベノートスハップ 生物学的チップ上の核酸プローブアレー
JPH09507248A (ja) * 1994-02-01 1997-07-22 アイシス・ファーマシューティカルス・インコーポレーテッド 置換プリン類およびオリゴヌクレオチド架橋形成
WO1998039348A1 (en) * 1997-03-05 1998-09-11 Affymetrix, Inc. Photocleavable protecting groups and methods for their use
WO1999021874A1 (fr) * 1997-10-27 1999-05-06 Sankyo Company, Limited Oligodesoxyribonucleotides contenant un nucleoside modifie et autre
WO2000018778A1 (en) * 1998-09-29 2000-04-06 Phylos, Inc. Synthesis of codon randomized nucleic acids
JP2004168684A (ja) * 2002-11-19 2004-06-17 Rikogaku Shinkokai 核酸の短工程合成を可能にする新規ホスホロアミダイト化合物
JP2004233217A (ja) * 2003-01-30 2004-08-19 Fuji Electric Systems Co Ltd Dnaチップ,dnaチップの製造方法及びこれを用いた検出システム
JP2005000162A (ja) * 2003-05-19 2005-01-06 Canon Inc 核酸のpcr増幅方法、pcrプライマー・セット、pcr増幅産物、ならびに、該増幅方法を利用する核酸の検出方法

Non-Patent Citations (10)

* Cited by examiner, † Cited by third party
Title
FU D.-J. ET AL.: "Importance of Specific Adenosine N7-Nitrogens for Efficient Cleavage by a Hammerhead Ribozyme. A Model for Magnesium Binding", BIOCHEMISTRY, vol. 31, no. 45, 1992, pages 10941 - 10949, XP003003368 *
GAYTAN P. ET AL.: "Combination of DMT-mononucleotide and Fmoc-trinucleotide phosphoramidites in oligonucleotide synthesis affords an automatable cocon-level mutagenesis method", CHEMISTRY & BIOLOGY, vol. 5, 1998, pages 519 - 527, XP002901697 *
GAYTAN P. ET AL.: "Orthogonal combinatorial mutagenesis: a codon-level combinatorial mutagenesis method useful for low multiplicity and amino acid-scanning protocols", NUCLEIC ACIDS RESEARCH, vol. 29, no. 3, 2001, pages E9, XP003003371 *
HEETEBRIJ R.J. ET AL.: "A Versatile Approach Towards Regioselective Platinated DNA Sequences", CHEM. EUR. J., vol. 9, no. 8, 2003, pages 1823 - 1827, XP001156625 *
KOIZUMI M. ET AL.: "Biologically Active Oligodeoxyribonucleotides. Part 12: N2-Methylation of 2'-Deoxyguanosines Enhances Stability of Parallel G-Quadruplex and Anti-HIV-1 Activity", BIOORGANIC & MEDICINAL CHEMISTRY LETTERS, vol. 10, 2000, pages 2213 - 2216, XP004212006 *
MAZZARELLI J.M. ET AL.: "Interactions between the trp Repressor and Its Operator Sequence As Studied by Base Analogue Substitution", BIOCHEMISTRY, vol. 31, 1992, pages 5925 - 5936, XP003003369 *
NIELSEN J. ET AL.: "Application of 2-cyanoethyl N,N,N',N'-tetraisopropylphosphorodiamidite for in situ preparation of deoxyribonucleoside phosphoramidites and their use in polymer-supported synthesis of oligodeoxyribonucleotides", NUCLEIC ACIDS RESEARCH, vol. 14, no. 18, 1986, pages 7391 - 7403, XP009028515 *
See also references of EP1860115A4 *
SEELA F. ET AL.: "2'-Deoxy-beta-D-ribofuranosides of N6-Methylated 7-Deazaadenine and 8-Aza-7-deazaadenine: Solid-Phase Synthesis of Oligodeoxyribonucleotides and Properties of Self-Complementary Duplexes", HELVETICA CHIMICA ACTA, vol. 72, 1989, pages 868 - 881, XP000655171 *
SEELA F. ET AL.: "PYRAZOLO[3,4-D]PYRIMIDINE 2'-DEOXYRIBO- AND 2',3'-DIDEOXYRIBO-FURANOSIDES: SYNTHESIS AND APPLICATION TO OLIGONUCLEOTIDE CHEMISTRY", NUCLEOSIDES & NUCLEOTIDES, vol. 8, no. 5 & 6, 1989, pages 789 - 792, XP003003370 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8889843B2 (en) 2007-08-31 2014-11-18 Apta Biosciences Ltd. Nucleic acid synthesizing dimer amidite and nucleic acid synthesizing method

Also Published As

Publication number Publication date
EP1860115A1 (en) 2007-11-28
JPWO2006093157A1 (ja) 2008-08-07
EP1860115A4 (en) 2010-09-22
JP4882074B2 (ja) 2012-02-22
US7851157B1 (en) 2010-12-14

Similar Documents

Publication Publication Date Title
US7572582B2 (en) Oligonucleotide analogues
US6794499B2 (en) Oligonucleotide analogues
JP4236812B2 (ja) オリゴヌクレオチド類似体
US7883869B2 (en) Four-color DNA sequencing by synthesis using cleavable fluorescent nucleotide reversible terminators
US7084125B2 (en) Xylo-LNA analogues
EP2089343B1 (en) Click chemistry for the production of reporter molecules
WO2004106356A1 (en) Functionalized nucleotide derivatives
JP2001512131A (ja) 塩基アナログ
JPS58180500A (ja) Dnaの化学的合成方法
WO2006030906A1 (ja) ヌクレオシド類似体またはその塩
EP2006293B1 (en) 2'-hydroxyl-modified ribonucleoside derivative
WO2001066556A1 (fr) Acides nucleiques contenant de la 5-pyrimidine et procede de ligature reversible utilisant ces acides
WO2006093157A1 (ja) オリゴヌクレオチド誘導体、遺伝子検出用プローブ及びdnaチップ
US6664058B2 (en) Base analogues
JPS6270391A (ja) 保護されたオリゴヌクレオチドの製造法
CN117567536A (zh) 荧光标记核苷酸在dna合成测序以及单分子测序中的应用
AU2002325599B2 (en) Oligonucleotide analogues
Du Synthesis of DNA containing selenium for nucleic acid X-ray crystallography
JP2006052148A (ja) ヌクレオシド誘導体
WO2004046147A1 (ja) ポリヌクレオチド誘導体及びその利用
TW200838541A (en) Novel nucleoside analogues and methods for preparing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2007505962

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006714901

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2006714901

Country of ref document: EP