WO2006093108A1 - 遺伝子導入剤 - Google Patents

遺伝子導入剤 Download PDF

Info

Publication number
WO2006093108A1
WO2006093108A1 PCT/JP2006/303669 JP2006303669W WO2006093108A1 WO 2006093108 A1 WO2006093108 A1 WO 2006093108A1 JP 2006303669 W JP2006303669 W JP 2006303669W WO 2006093108 A1 WO2006093108 A1 WO 2006093108A1
Authority
WO
WIPO (PCT)
Prior art keywords
conjugate
cde
pdna
cells
man
Prior art date
Application number
PCT/JP2006/303669
Other languages
English (en)
French (fr)
Inventor
Hidetoshi Arima
Kaneto Uekama
Fumitoshi Hirayama
Original Assignee
Kumamoto University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kumamoto University filed Critical Kumamoto University
Priority to JP2007505934A priority Critical patent/JP5092123B2/ja
Publication of WO2006093108A1 publication Critical patent/WO2006093108A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/87Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • A61K48/0008Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the 'non-active' part of the composition delivered, e.g. wherein such 'non-active' part is not delivered simultaneously with the 'active' part of the composition
    • A61K48/0025Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the 'non-active' part of the composition delivered, e.g. wherein such 'non-active' part is not delivered simultaneously with the 'active' part of the composition wherein the non-active part clearly interacts with the delivered nucleic acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/0006Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid
    • C08B37/0009Homoglycans, i.e. polysaccharides having a main chain consisting of one single sugar, e.g. colominic acid alpha-D-Glucans, e.g. polydextrose, alternan, glycogen; (alpha-1,4)(alpha-1,6)-D-Glucans; (alpha-1,3)(alpha-1,4)-D-Glucans, e.g. isolichenan or nigeran; (alpha-1,4)-D-Glucans; (alpha-1,3)-D-Glucans, e.g. pseudonigeran; Derivatives thereof
    • C08B37/0012Cyclodextrin [CD], e.g. cycle with 6 units (alpha), with 7 units (beta) and with 8 units (gamma), large-ring cyclodextrin or cycloamylose with 9 units or more; Derivatives thereof

Definitions

  • the present invention relates to a sugar-modified cyclodextrin 'dendrimer conjugate, a gene introduction agent comprising the conjugate, and a method for introducing a gene into a cell using the conjugate.
  • a virus vector cannot be guaranteed to be able to completely eliminate a virus with the vector's neutral growth ability, and in addition, when the viral genome containing the transgene is integrated into the chromosome, other genes are excluded. It has been pointed out that it has the potential to be inactivated or activated.
  • non-viral vectors have been developed, and many reports on so-called cationic carriers such as cationic liposomes, cationic lipids, and cationic peptides have been made.
  • cationic carriers such as cationic liposomes, cationic lipids, and cationic peptides
  • JP-A-2001-103969 discloses a conjugate of cyclodextrin and dendrimer, wherein the cyclodextrin is ⁇ , / 3 or ⁇ cyclodextrin, and the dendrimer is a polyamidoamine type. It is described that a cyclodextrin 'dendrimer conjugate characterized in that it can be used as a gene transfer vector. However, even when gene transfer is carried out using the gene transfer vector described in Japanese Patent Application Laid-Open No. 2001-103969, the problem is that the gene transfer efficiency decreases if serum is present in the medium. Disclosure of the invention
  • An object of the present invention is to solve the above-described problems of the prior art. That is, an object of the present invention is to provide a gene introduction agent that can perform gene introduction with high efficiency even in the presence of serum.
  • a conjugate of cyclodextrin and a generation 3 dendrimer (G3) which is further modified with a sugar.
  • a gene transfer agent comprising a conjugate of cyclodextrin and a generation 3 dendrimer (G3), which is further modified with a sugar.
  • a method for introducing a gene into a cell comprising:
  • the cyclodextrin is a-cyclodextrin.
  • the sugar is mannose or galactose.
  • a gene is introduced into a cell in the presence of serum.
  • Cyclodextrin 'dendrimer conjugate The conjugate of the present invention is a conjugate of cyclodextrin and a dendrimer (G 3) having a generation of 3, and is further modified with a sugar.
  • the cyclodextrin 'dendrimer conjugate can be easily produced by heating and mixing the dendrimer and cyclodextrin in a solvent.
  • Cyclodextrin The cyclodextrin constituting the dendrimer conjugate is ⁇ ,, or ⁇ cyclodextrin. These ⁇ , ⁇ , or ⁇ cyclodextrins can also be chemically modified or unmodified cyclodextrins. These ⁇ , ⁇ , or ⁇ cyclodextrins are readily available as commercial products. Of these, ⁇ -cyclodextrin is preferably used in the present invention because it has the most excellent effect as an introducing agent.
  • the cyclodextrin may have part or all of its hydroxyl groups acetylated, or may be modified with a sugar such as glucose, mannose, or saccharose.
  • the reaction of these modifiers with cyclodextrin can be produced from a mixture of both of them, for example, in an aqueous solution and heated and stirred.
  • introduction agent it is preferable not to modify the polymer because introduction efficiency is high.
  • dendrimer One component of the cyclodextrin 'dendrimer conjugate used in the present invention, dendrimer (Dendrimer) has ammonia or ethylenediamine as a core molecule, and the molecule is attached with methyl acrylate and ethylenediamine by Michael addition reaction. It is a new type of synthetic polymer characterized by a highly branched toothpick structure obtained by repeating the reaction (Generation) and having a number of primary amino groups at its ends.
  • the dendrimer used in the present invention is preferably a polyamidoamine type.
  • Generation 0 is a condensate of methyl acrylate and ethylenediamine (amide amine) around nitrogen derived from ammonia. 3) is a combination of three.
  • One amido group of ethylenediamine is present at the end of generation 0 (GO) amidoamine.
  • this nuclei generation 0 (GO)
  • ethylenediamine 3: 3 (molar ratio)
  • ethylenediamine 3: 3 (molar ratio)
  • the polyamidoamine type dendrimer is commercially available, and a commercially available product can be easily obtained.
  • Book The dendrimer used for the conjugate of the invention is not particularly limited as long as it belongs to G3.
  • the dendrimer's cyclodextrin conjugate can be synthesized by mixing the dendrimer and cyclodextrin and heating and stirring in the presence of an aqueous medium.
  • the molar ratio of cyclodextrin to dendrimer is usually about 1.1 to 5: 1, preferably about 1.1 to 4: 1.
  • the cyclodextrin 'dendrimer conjugate can be synthesized by reacting a tosylated cyclodextrin with a dendrimer for several hours under warming conditions, as shown in the Examples described later.
  • Tosyl ⁇ (toluene sulfonated) cyclodextrin can be obtained by reacting p-toluene sulfonyl chloride and cyclodextrin in pyridine.
  • the conjugate of the present invention can be produced by further modifying the cyclodextrin 'dendrimer conjugate obtained as described above with a sugar.
  • the type of sugar used for modification is not particularly limited, and may be a monosaccharide, disaccharide, or oligosaccharide, preferably a monosaccharide or disaccharide, and more preferably a monosaccharide.
  • Specific examples of the sugar include mannose, galactose, gnolecose, funolectose, ratatose, sucrose, fucose, manoletose and the like, and mannose or galactose is particularly preferable.
  • a solution containing the cyclodextrin' dendrimer conjugate is added with a a-D-Mannopyranosylphenyl isothiocyanate solution. And react at room temperature.
  • the corresponding reagent may be used instead of -D-Mannopyranosylphenyl isothiocyanate.
  • the conjugate of the present invention consisting of a cyclodextrin and a dendrimer (G3) having a generation of 3, and further modified with a sugar, can be used as a gene introduction agent for efficiently introducing a gene into a cell. it can.
  • the gene introduction method according to the present invention can be performed by incubating the gene to be introduced and the conjugate of the present invention together with cells.
  • the genes to be introduced There is no limit. For example, genes useful for gene therapy, genes useful for plant and animal breed improvement, and the like can be mentioned.
  • the conditions for gene transfer include, for example, a solution containing the gene to be introduced and the conjugate of the present invention in 0.5 ml of a medium containing the cell into which the gene is to be introduced (cell volume: about 2 ⁇ 10 5 cells). To the solution to be added.
  • the solution containing the gene to be introduced is added, for example, so that the gene amount is 0.1 to: LO / zg / 1, and the solution containing the cyclodextrin 'dendrimer conjugate is, for example, cyclodextrin' den It can be added so that the dreamer conjugate is about 0.8 ⁇ to 75 / ⁇ .
  • the above gene can be transfected into cells by incubating for a predetermined time.
  • the type and amount of the medium containing the cells into which the gene is to be introduced can be determined appropriately according to the cells used, and the addition amount and incubation time of the gene and cyclodextrin 'dendrimer conjugate also change accordingly. Can be made.
  • the gene transfer agent of the present invention even when serum is contained in the medium, the gene can be transferred while maintaining high gene transfer efficiency. This solves the problem of the conventional gene transfer agent and is particularly useful in practical use.
  • Example 1 Preparation of a sugar modified dendrimer / cyclodextrin conjugate
  • Dry azeotropically removed with benzene Dry a -CyD 8 g was dissolved in 500 mL of anhydrous pyridine, then cooled to 5 ° C or lower, added with 6 g of P-toluenesulfuryl chloride and stirred at room temperature.
  • Dendrimer (G3) (ALDRICH CHEMICAL) 0.5 mL was added to the test tube, and methanol was completely distilled off under reduced pressure. Thereafter, 60 mg of Tosyl ⁇ a-CyD and 0.5 mL of DMSO were added and mixed gently. The atmosphere in the test tube was replaced with nitrogen, followed by stirring in an oil bath at 60 ° C for 24 hours. The reaction product was subjected to gel filtration using TOSOH TskGel HW-40S (5.3 cm 2 x 70 cm, eluent: 0.1 M ammonium hydroxide).
  • the concentrate was redissolved in 0.5 mL of water and mixed with 3 mL of methanol until it became sufficiently cloudy. After centrifuging the solution containing the precipitate at 1,500 rpm for 15 minutes, the supernatant methanol was removed, and 3 mL of methanol was added again and mixed well. After centrifugation in the same manner and removing the supernatant, methanol in the residue was completely distilled off with a test tube evaporator to obtain an a-CDE conjugate.
  • the concentrate was redissolved in 0.5 mL of water, added with 3 mL of methanol, and mixed until fully cloudy.
  • the solution containing the precipitate was centrifuged at 1,500 rpm for 15 minutes, the methanol in the supernatant was removed, and 3 mL of methanol was added again and mixed well. After centrifugation in the same manner and removing the supernatant, methanol in the residue was completely distilled off using a test tube evaporator to obtain a Man-a-CDE conjugate.
  • Man-a-CDE conjugate Yield 65%; J H-NMR (500 MHz, D ⁇ ) ⁇ (from TMS) 7.05-7.10 (phenyl), 5.43—5.51 (mannose), 4.94 (HI, a -CyD), 3.94—3.61 (H3, H5, H6, a -CyD, mannose), 3.60—3.33 (H2, H4, a -CyD, mannose), 3.27-3.13 (de ndrimer methylene), 3.05-2.81 (dendrimer methylene), 2.72-2.51 (dendrimer methyl ene), 2.36-2.31 (dendrimer methylene).
  • DMSO 200 in which 1 mg of RITC was dissolved was mixed and allowed to react for 24 hours at room temperature in the dark. Thereafter, it was purified by dialysis and alcohol precipitation.
  • Cells were removed from the dish by trypsin-EDTA, centrifuged at 2000 rpm for 10 minutes, and all the supernatant was removed. The resulting pellet was placed in 10% FCS-containing DMEM medium with IX 10 5 cells / mL. Dispersed in density. The cell suspension was seeded to be 2 X 10 5/500 ⁇ L in 24 well micro plate, using cells cultured for 6 hours transflector Ekushi Yon experiments.
  • Rat alveolar macrophage-derived cell line NR8383 cells 8 ⁇ 10 5 cells containing 10% FCS in DMEM medium (590 mg / L L-glutamine, 160 mg / L NaHCO, 1 X 10 5 U / L penicillin,
  • the suspension was suspended in 10 mL of 0.1 g / L streptomycin), seeded on a tissue culture dish (100 mm) manufactured by Asahi Techno Glass Co., Ltd., and cultured at 37 ° C. and 5% CO in a CO incubator.
  • Fluent cells are detached from the dish by trypsin-EDTA, centrifuged at 2000 rpm for 10 minutes, all supernatant is removed, and the resulting pellet is added to a DMEM medium containing 10% FCS at 1 x 10 5 cells. Dispersed at a density of / mL. This cell suspension was seeded on a 24 well microplate so that it would become 2 X 10 5/500 L, and the cells cultured for 6 hours were used for transfection experiments. [0034] (Culture of HepG2 cells)
  • HepG2 cells derived from human hepatoblastoma cell line containing 10% FCS in DMEM medium 590 mg / L L-glutamine, 160 mg / L NaHCO, 1 X 10 5 U / L penicillin, 0.1 g / L strike
  • Cells were removed from the dish by trypsin-EDTA, centrifuged at 2000 rpm for 10 minutes, and all the supernatant was removed. The resulting pellet was placed in 10% FCS-containing DMEM medium with IX 10 5 cells / mL. Dispersed in density. The cell suspension was seeded to be 2 X 10 5/500 ⁇ L in 24 well micro plate, using cells cultured for 6 hours transflector Ekushi Yon experiments.
  • the luciferase activity was measured as follows. Take 20 ⁇ L of cell extract into a luminometer test tube, add 100 ⁇ L of Luciferase Assay Substrate (Promega) to this tube, and measure luminescence for 10 seconds with a luminometer (Lumat: LB9506) 30 seconds later. did. The Relative Light Unit (RLU) per unit protein was calculated from the values obtained here and the protein concentration measured with the BCA Protein Assay Kit (PIERCE).
  • RLU Relative Light Unit
  • Figure 2 shows the gene transfer effect of Man-a-CDE conjugate (G3, DSM 10) in A549 cells.
  • the effect of the charge ratio (Carrier / pDNA) on the rate is shown.
  • the dose ratio of dendrimer (G3) ZpDNA is 50.
  • the medium was supplemented with 10% FCS. Each value represents the mean standard error of 3-6 experiments.
  • Figure 3 shows the Man-a-CDE conjugate (G2 or G3) / pDNA complex in A549 cells. Shows the gene transfer efficiency of the body. Man-a-CDE conjugate) The charge ratio of ZpDNA is 50. 10% FCS was added to the medium. Each value represents the mean standard error of three experiments.
  • Figure 4 shows gene transfer of dendrimer (G3), a-CDE conjugate (G3), and Man-a-CDE conjugate (G3, DSM10) and pDNA complex in the presence of serum in A549 cells. Shows efficiency. The charge ratio of the carrier ZpDNA is 50. Each value represents the mean standard error of 3-7 experiments.
  • FIG. 5 shows the effect of serum on the gene transfer efficiency of various carrier (G3) ZpDNA complexes in A549 cells.
  • the white graph indicates no serum and the black graph indicates serum.
  • the charge ratio of the carrier ZpDNA is 50. Each value represents the mean standard error of 4 experiments.
  • FIG. 6 shows the effect of serum on the gene transfer efficiency of various carriers (G3) ZpDNA complexes in NR8383 cells.
  • the white graph indicates no serum, and the black graph indicates presence of serum.
  • the charge ratio of the carrier ZpDNA is 50. Each value represents the mean standard error of 4 experiments.
  • FIG. 7 shows the effect of serum on the gene transfer efficiency of various carrier (G3) ZpDNA complexes in HepG2 cells.
  • the white graph indicates no serum, and the black graph indicates presence of serum.
  • the charge ratio of the carrier ZpDNA is 50. Each value represents the mean standard error of three experiments.
  • Example 3 the properties of the Man-a-CDE conjugate were further analyzed. ( ⁇ ) Method
  • Amplification of pDNA Escherichia coli strain JM109 into which pRL-CMV luciferase DNA was introduced LB medium containing 100 ⁇ g / mL ampicillin (BACTO TRYPTONE 10 g, BACTO YEAST 5 g, NaCl 5 g / 1000 mL) in 3 mL, 37 Pre-cultured C at ° C, and 1 mL of this was added to 500 mL of fresh LB medium and cultured at 37 ° C for 24-48 hours.
  • BACTO TRYPTONE 10 g, BACTO YEAST 5 g, NaCl 5 g / 1000 mL ampicillin
  • the NMR spectrum was measured at 25 ° C. using an ⁇ -500 FT-NMR spectrometer manufactured by JEOL.
  • the solvent was D0 and the concentration of each sample was 10 mM. ' ⁇ - ⁇
  • the chemical shift of R is the internal standard tetramethylsilane (TMS) using the D 0 peak.
  • ⁇ -potential of various carrier / pDNA complexes 50 mL / mL of dendrimer (G3), ⁇ -CDE conjugate (G3), or Man-a-CDE conjugate (G3) was added to 3 mL of HBSS. 7.36 and 14.64 ⁇ L (charge ratio 50) and pDNA 8 L (1 g / L) dissolved in sputum, vortex for 10 seconds, and incubate for 15 minutes at room temperature.
  • EL S- from Otsuka Electronics Co., Ltd. ⁇ -potential was measured by 8000.
  • NIH3T3 cell culture
  • the cells are detached from the dish by trypsin-EDTA, centrifuged at 3,000 rpm for 3 minutes, the supernatant is removed, and the resulting pellet is placed in DMEM medium containing 10% (v / v) FCS at 1 X 10 5 cells / mL. The density was dispersed. This cell suspension was seeded on a 24 well plate at 2 ⁇ 10 5 cells / well, and the cells cultured for 6 hours were used for transfection experiments and cytotoxicity experiments.
  • A549 cells Human lung epithelial cancer-derived cell line A549 cells 8 ⁇ 10 5 cells containing 10% FCS in DME M medium (L-glutamine 590 mg / L, NaHCO 160 mg / L, penicillin 1 X 10 5 U / L, Stre
  • the dish force was peeled off by DTA method, centrifuged at 3,000 rpm for 3 minutes, the supernatant was removed, and the obtained pellet was dispersed in DMEM medium containing 10% FCS at a density of 1 ⁇ 10 5 cells / mL.
  • the cell suspension was seeded on a 24 well plate at 2 ⁇ 10 5 cells / well, and the cells cultured for 6 hours were used for transfection experiments and cytotoxicity experiments.
  • NR8383 cells a cell line derived from rat alveolar macrophages, containing 10% FCS in F-12 medium (L-glutamine 590 mg / L, NaHCO 160 mg / L, penicillin 1 X 10 5
  • the dish was peeled off with a scraper, centrifuged at 3,000 rpm for 3 minutes, the supernatant was removed, and the resulting pellet was dispersed in F-12 medium containing 15% FCS at a density of 1 ⁇ 10 5 cells / mL.
  • F-12 medium containing 15% FCS at a density of 1 ⁇ 10 5 cells / mL.
  • This cell suspension was seeded on a 24 well plate at 2 ⁇ 10 5 cells / well, and the cells cultured for 6 hours were used for transfection experiments and cytotoxicity experiments.
  • the absorbance was measured (BioRad Model 550; measurement wavelength; 450 nm, reference wavelength; 655 nm). The cell viability was calculated with 100% when no carrier was added.
  • each cell is washed twice with 200 L of PBS (-), added with a cell lysing agent 500, incubated at room temperature for 15 minutes, freeze-thawed twice, and 5 at 10,00 0 rpm. Centrifugation was performed for a minute, and the supernatant was used as a cell extract.
  • Bio-Rad Protein Assay Kit 200 ⁇ L of Bio-Rad Protein Assay kit solution was added to 10 L of cell extract, incubated for 15 minutes at room temperature, and the absorbance at 450 ° C was measured.
  • a standard curve was prepared by using BSA diluted with a cell lysing agent as a standard solution, and the relative light unit (RLU) was calculated from the above luciferase activity and protein concentration.
  • Cells were seeded on a 24 well plate at 2xl0 5 / well and cultured in a medium containing 10% (v / v) FCS for 6 hours. Wash cells twice with 500 L of serum-free medium, then carrier / pDNA (2 g) Add 200 ⁇ L of serum-free medium containing complex 200 L and 20% FCS-containing medium containing mannan, dextran, mannose and galactose (each 0.5 mg / mL) (final FCS concentration 10%) Incubated for 24 hours at 37 ° C, 5% CO concentration.
  • Cells were seeded on a 24 well plate at 2 ⁇ 10 5 cells / well and cultured in a medium containing 10% (v / v) FCS for 6 hours. Wash the cells twice with 500 L of serum-free medium, add 400 L of serum-free medium containing carrier / pDNA (2 ⁇ ) complex, incubate for 1 hour, and add FCS to a final concentration of 10%. Incubate for 23 hours at 37 ° C and 5% CO concentration
  • Transfection was performed using Alexa-labeled pDNA and TRITC-labeled carrier in the presence or absence of mannan (0.5 mg / mL) or dextran (0.5 mg / mL). After 24 hours of transfection, the cells were washed twice with 500 L of PBS (—), suspended in 1 mL of PBS, and the fluorescence intensity of Alexa and TRITC was measured using a FACSCalibur TM manufactured by Becton Dickinson.
  • Mannan and dextran were encapsulated in the HVJ-E vector according to the HVJ-E vector preparation kit protocol, and the encapsulation rates were about 16% and 18%, respectively.
  • Cells were seeded in a glass based dish (35 mm) at 2 ⁇ 10 5 cells / dish and cultured in a medium containing 10% (v / v) FCS for 5.5 hours. Remove the supernatant and wash twice with 500 L of serum-free medium, then HVJ-E vector, HVJ-E vector / mannan (15 mg / mL) or HVJ-E vector / deoxy 500 ⁇ L of medium containing stran (15 mg / mL) was added and cultured at 37 ° C. for 0.5 hour.
  • mice 4-week-old BALB / c male mice (body weight approx. 20 g) under ether anesthesia, containing Man-a-CDE conjugate (G3) and pDNA (20 ⁇ g) complex (charge ratio 20) 5% 500 L of Mann-Tall suspension was administered from the tail vein over about 30 seconds. 12 hours after administration, blood was collected from the abdominal aorta under etheric intoxication, and 200 ⁇ L of serum was collected and stored frozen until quantification. Various test values were measured using an automated blood biochemical test equipment.
  • FIG. 8 The results are shown in FIG. In FIG. 8, the luciferase activity of the cell lysate was measured 24 hours after incubation. 10% FCS was added to the medium. Each value represents mean standard error of 4-6 experiments. * p ⁇ 0.05 (compared to Man-a-CDE conjugate (G2, DSM3.3))
  • Man-a-CDE conjugate As shown in FIG. 8, as the charge ratio (carrier / pDNA) increases in 549 cells, Man-a-CDE conjugate (G2, DSM 3.3) and Man-a-CDE conjugate (G3 , DSM 10) increased the gene transfer efficiency. However, at any charge ratio, the Man-a-CDE conjugate (G3, DSM 10) showed significantly higher gene transfer efficiency than the Man-a-CDE conjugate (G2, DSM 3.3). The value was about 4,000 times higher at 1, about 1,000 times higher at a charge ratio of 5-50, and about 50-100 times higher at a charge ratio of 100-200.
  • FIG. 9 shows a comparison of gene transfer efficiency between Man-a-CDE conjugate (G3, DSM 10) and Lipofec tin TM, a commercially available gene transfer reagent.
  • the luciferase activity of the cell lysate was measured after 24 hours of incubation. The medium was supplemented with 10% FCS.
  • Each value represents the mean standard error of 4-8 experiments.
  • * p 0.05 (compared to the -CDE conjugate), cross is p 0.05 (
  • the expression frequency of the gene was examined by observing the fluorescence intensity of GFP after introduction into A549 cells with a confocal laser microscope.
  • FIG. 10 The results are shown in FIG. In FIG. 10, pEGFPNl DNA was used. Cells were incubated with carrier ZpDNA complex for 24 hours and observed with CLSM. 10% FCS was added to the medium. The charge ratios of dendrimer / pDNA, a-CDE conjugate / pDNA, Man- ⁇ -CDE conjugate / pDN A, and Lipofectin TM / pDNA are 50, 50, 50, and 1, respectively. As shown in Fig. 10, GFP expression was stronger in Man-a-CDE conjugates (G3, DSM 10) than in other carriers, as was the case with the study of gene transfer efficiency with Renilla luciferase.
  • FIG. 11 shows the cytotoxicity of each carrier in A549 cells and NIH3T3 cells.
  • cells were incubated with carrier ZpDNA for 24 hours.
  • Cell viability was analyzed by the WST-1 method. Each value represents the mean standard error of 3-4 experiments.
  • dendrimer (G3), a-CDE conjugate (G3) and Man-a-CDE conjugate (G3, DSM 10) did not show cytotoxicity up to a charge ratio of 200.
  • Lipofectin TM showed high cytotoxicity at a low charge ratio. From these results, it was shown that the Man-a-CDE conjugate (G3, DSM 10) is excellent in safety in vitro.
  • Carrier CRE (mg / dL) BUN (mg / dL) AST (U / L) ALT (U / L) LDH '(U / L)
  • CRE and BUN values were 0.05 ⁇ 0.02 mg / dL and 23.8 ⁇ 4.0 mg / dL, respectively, when Man-a-CDE conjugate (G3, DSM 10) / p DNA was administered. Yes, it was similar to that in the control and 5% man-tol (administration solution) administration groups, suggesting that renal damage due to administration of Man- ⁇ -CDE conjugate (G3, DSM 10) was low.
  • a ST and ALT levels were 57.5, 3.9 U / L and 18.0, 2.3 U / L, respectively, and there was almost no liver damage due to administration of Man-a-CDE conjugate (G3, DSM 10) / pDNA. It was guessed.
  • the LDH values in the control and 5% mannitol groups were 318 people 59 U / L and 305 people 11 U / L, respectively, whereas Man-a-CDE conjugate (G3, DSM 10) / With pDNA administration, it increased slightly to 527 people 26 U / L, but there was no statistically significant difference. From these results, it was considered that the Man-a-CDE conjugate (G3, DSM 10) / pDN A complex is highly safe in vivo under the present experimental conditions.
  • the charge ratio (carrier / pDNA) was 50.
  • the carrier / pDNA complex was incubated at 37 ° C for 2 hours in a reaction buffer containing 0.1 unit / mL DNasel. Electrophoresis was performed at 100V for 40 minutes.
  • the compaction state of pDNA in the carrier / pDNA complex is one of the factors affecting gene transfer. Therefore, the compaction state of pDNA in each carrier / pDNA complex was examined. For pDNA compaction, EtBr fluorescence intensity intercalated with pDNA when carrier was not added was taken as 100%, and EtBr fluorescence intensity decreased due to pDNA compaction when carrier added. It was evaluated by doing.
  • FIG. 14 shows the measurement results of the compaction state of the carrier / pDNA complex.
  • pDNA 1.0 ⁇ g
  • ethidium bromide 1.0 ⁇ g
  • carrier 1 mL
  • the charge ratio was added.
  • FIG. 15 shows the gene transfer efficiency of the carrier ZpDNA complex in ⁇ 3 ⁇ 3 cells in the absence and presence of FCS.
  • the luciferase activity of the cell lysate was measured after 24 hours of incubation.
  • the charge ratio (carrier / DNA) is 50.
  • Each value represents the mean standard error of 4-12 experiments. * p ⁇ 0.05 (compared to dendrimer), cross p ⁇ 0.05 (compared to a-CDE conjugate)
  • FIG. 16 shows the effect of FCS concentration on gene transfer efficiency.
  • the lysate activity of cell lysates was measured after 24 hours of incubation.
  • the charge ratios of dendrimer / pDNA, a-CDE conjugate / pDNA, Man-a-CDE conjugate / pDNA, and Lipofectin TM / pDNA are 50, 50, 50, and 1, respectively. Each value is the average of four experiments Indicates quasi-error.
  • Man-a-CDE conjugate a mannose-dendrimer linkage in which only a mannose residue is bound to the dendrimer (G3) (Man-dendrimer conjugate) (G3, DSM 10) was prepared, and its gene transfer efficiency was compared with Man-a-CDE conjugate (G3, DSM 10).
  • FIG. 17 The results are shown in FIG. In FIG. 17, the luciferase activity of the cell lysate was measured 24 hours after incubation. 10% FCS was added to the medium. The charge ratio (carrier / pDNA) is 50. Each value represents the mean standard error of 4 experiments. * p 0.05 (compared to dendrimer), cross p ⁇ 0.05 (compared to Man-dendrimer), 2 rice marks p ⁇ 0.05 (compared to a-CDE conjugate),
  • A549 cells were used to examine intracellular uptake of Alexa-labeled pDNA (Alexa-pDNA) and TRITC-labeled carrier (TRI TC-carrier). did. This experiment was conducted by TRITC-Carrier / Alexa- Transfection of pDNA complex into cells Cells were collected 24 hours later and evaluated by measuring fluorescence intensity of Alexa and TRITC using flow cytometry.
  • the fluorescence intensity of Alexa-pDNA and TRITC carrier in the cell lysate was measured with a flow cytometer after 24 hours of incubation.
  • the charge ratio (carrier / pDNA) is 50.
  • the fluorescence intensity of Alexa-pDNA in the cell lysate was measured with a flow cytometer after 24 hours of incubation.
  • the charge ratio (carrier / pDNA) is 50.
  • FIG. 20 shows the influence of mannan and dextran on the intracellular uptake of Alexa-pDNA / TRITC-Man-a-CDE conjugate (G3, DS M10) into A549 cells.
  • the fluorescence intensity of Alexa-pDNA and TRITC carrier in the cell lysate was measured with a flow cytometer after 24 hours of incubation. Mannan and dextran concentrations were 0.5 mg / mL. The charge ratio (carrier / pDNA) is 50.
  • mannan and dextran did not affect the intracellular uptake of TRTIC-Man- ⁇ -CDE conjugate (G3, DSM 10) and Alexa-pDNA in A549 cells.
  • FIG. 21 the luciferase activity of the cell lysate was measured 24 hours after incubation.
  • the charge ratio (carrier / pDNA) is 50.
  • the ratio of luciferase activity in the presence / absence of competitor was calculated.
  • the concentration of various sugars 0.5 mg / mL.
  • Each value represents the mean standard error of 4 experiments. * p ⁇ 0.05 (compared to control)
  • each carrier / pDNA complex was added to the cells in the presence of mannan or dextran at 4 ° C. After 1 hour, the carrier not bound to the cell surface was washed and incubated at 37 ° C for 23 hours. It went by.
  • the gene transfer efficiency of the complex of dendrimer (G3), ⁇ -CDE conjugate (G3), and Man-a-CDE conjugate (G3, DSM 10) and pDNA is There was little influence between dextran treatment, control, mannan and dextran treatment in all carriers, with little influence from dextran. This supports the result that the Mann-a-CDE conjugate (G3, DSM 10) improves the gene transfer efficiency in the A549 cells described above, and the involvement of the mannose recognition mechanism on the cell surface is low. This suggests the involvement of mannan recognition lectin.
  • Figure 23 shows TRITC-a-CDE conjugate (G3) and TRITC-Man-a-CDE conjugate (G3,
  • the results of observation with a confocal laser microscope 24 hours after adding DSM 10) / Alexa-pDNA complex to A549 cells are shown.
  • the charge ratio (carrier / pDNA) is 50.
  • FIG. 24 shows the results of observation of cells with a confocal laser microscope.
  • the charge ratio (carrier / pDNA) is 50 and the incubation time is 24 hours.
  • the pretreatment time by HVJ-E vector is 0.5 hours.
  • the concentration of mannan and dextran in the medium is 15 mg / mL.
  • the TRITC- ⁇ -CDE conjugate (G3) is localized around the nucleus, and is localized by mannan-encapsulated HVJ-E vector and dextran-encapsulated HVJ-E vector. It did not change.
  • the TRITC-Man-a-CDE conjugate (G3, DSM 10) accumulates in the nucleus, and the accumulation is suppressed by the mannan-encapsulated HVJ-E vector. Not given ( Figure 24B).
  • the gene By using a conjugate of the cyclodextrin of the present invention and a dendrimer (G3) whose generation is 3, which is modified with a sugar, the gene can be efficiently converted into cells even in the presence of serum. Can be introduced well.
  • the gene introduction agent of the present invention can be widely used in the life science field.
  • FIG. 1 shows an example of the structure of a cyclodextrin 'dendrimer conjugate that can be used in the present invention.
  • FIG. 2 shows the effect of charge ratio (Carrier / pDNA) on the gene transfer efficiency of Man-a-CDE conjugate (G3, DSM 10) in A549 cells.
  • FIG. 3 shows the gene transfer efficiency of a Man-a-CDE conjugate (G2 or G3) / pDNA complex in A549 cells.
  • Figure 4 shows the genes for dendrimer (G3), a-CDE conjugate (G3), and Man-a-CDE conjugate (G3, DSM10) and pDNA in the presence of serum in A549 cells. Shows the introduction efficiency.
  • FIG. 5 shows the effect of serum on gene transfer efficiency of various carrier (G3) ZpDNA complexes in A549 cells.
  • FIG. 6 shows the effect of serum on gene transfer efficiency of various carrier (G3) ZpDNA complexes in NR8383 cells.
  • FIG. 7 shows the effect of serum on the gene transfer efficiency of various carrier (G3) ZpDNA complexes in HepG2 cells.
  • FIG. 8 shows the gene transfer efficiency of Man-a-CDE conjugate (G2, G3) / pDNA complex at various input ratios in A549 cells.
  • FIG. 9 is a graph showing the case of A549 cells (A) and NIH3T3 cells (B) in the presence of FCS The gene transfer efficiency of a / pDNA complex is shown.
  • FIG. 10 shows the gene transfer efficiency of various carrier ZpDNA complexes in A549 cells.
  • FIG. 11 shows the cytotoxicity of various carrier / pDNA complexes in A549 cells (A) and NIH3T3 cells (B).
  • FIG. 12 shows agarose gel electrophoresis analysis of a carrier / pDNA complex.
  • FIG. 13 shows the influence of carriers on the electrophoretic mobility of pDNA treated with DNasel.
  • FIG. 14 shows the measurement results of the compaction state of the carrier / pDNA complex.
  • FIG. 15 shows the gene transfer efficiency of the carrier Zp DNA complex in the absence and presence of FCS in NIH3T3 cells.
  • FIG. 16 shows the gene transfer efficiency of carrier ZpDNA complex in various concentrations of FCS in A549 cells.
  • FIG. 17 shows the gene transfer efficiency of various carrier ZpDNA complexes in the presence of FCS in A549 cells (A), NIH3T3 cells (B), and HepG2 cells (C).
  • FIG. 18 shows intracellular uptake of Alexa-pDNA / TRITC-carrier into A549 cells.
  • FIG. 19 shows intracellular uptake of Man- ⁇ -CDE conjugate (G2, G3) / Alexa-pDNA complex into A549 cells.
  • FIG. 20 shows the influence of mannan and dextran on the intracellular uptake of Alexa-pDNA / TRITC-Man-a-CDE conjugate (G3, DS M10) into A549 cells.
  • FIG. 21 shows dendrimers (G3) (A), a-CDE conjugate (G3) (B), and Man-a-CDE conjugate in the absence and presence of various sugars in ⁇ 549 cells.
  • G3, DSM10 C shows the gene transfer efficiency of the pDNA complex.
  • FIG. 22 shows dendrimers (G3) (A), a-CDE conjugate (G3) (B), and Man-a-CDE conjugate in the absence and presence of mannan and dextran in A549 cells.
  • G3.DSM10 (C) shows the gene transfer efficiency of the pDNA complex.
  • FIG. 23 shows TRITIC-a-CDE conjugate (G3) (A) or TRITIC-Man- a-CDE conjugate (G3, DSM10) (B) / Alexa-pDNA complex shows nuclear transmissibility.
  • FIG. 24 shows TRITIC-a-CDE conjugate (G3) (A) or TRITIC-Man-a after treatment with Mannan / HVJ-E vector or dextran / HVJ-E vector to A549 cells. This shows the nuclear translocation property of -CDE conjugate (G3, DSM10) (B) / Alexa-pDNA complex.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Medicinal Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Zoology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biomedical Technology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • General Engineering & Computer Science (AREA)
  • Public Health (AREA)
  • Wood Science & Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Epidemiology (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microbiology (AREA)
  • Materials Engineering (AREA)
  • Polymers & Plastics (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicinal Preparation (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Polyamides (AREA)

Abstract

 本発明の目的は、血清の存在下においても高い効率で遺伝子導入を行うことができる遺伝子導入剤を提供することである。本発明によれば、シクロデキストリンとジェネレーション3のデンドリマー(G3)との結合体であって、さらに糖で修飾されている上記結合体が提供される。

Description

明 細 書
遺伝子導入剤
技術分野
[0001] 本発明は、糖で修飾したシクロデキストリン'デンドリマー結合体、該結合体からなる 遺伝子導入剤、及び該結合体を用いて細胞に遺伝子を導入する方法に関する。 背景技術
[0002] 種々の疾病の原因が遺伝子レベルで明らかにされつつあり、遺伝子に欠陥のある 細胞に外部から遺伝子を導入することによって疾病を治療しょうとする遺伝子治療に 関する臨床研究が活発に行われている。しかしその一方で、かかる遺伝子治療の治 療実績は十分とは言えないのが現状である。この原因の一つとして遺伝子導入効率 の低さが挙げられ、その改善を目的として遺伝子導入剤の改良が試みられている。
[0003] 従来の遺伝子治療で用いられているベクターの多くはウィルスベクターである。しか し、ウィルスベクターは、ベクターの中力 増殖能力があるウィルスを完全に除外でき る保証が得られな ヽこと、さらに導入遺伝子を含むウィルスのゲノムが染色体に組み 込まれる際に他の遺伝子を不活性化したり活性化したりする可能性を有するといった 欠点が指摘されている。一方、非ウィルス性ベクターの開発も行われ、カチォニックリ ポソーム、カチォニックリピッド、カチォニックペプチドなどのいわゆるカチォニックキヤ リア一に関する報告が数多くなされている。しカゝしながら、現在市販されている遺伝子 導入剤の多くは、血清の存在により、その遺伝子導入効率が著しく低下することが知 られている。
[0004] また、特開 2001— 103969号公報には、シクロデキストリンとデンドリマーとの結合 体であって、前記シクロデキストリンが α、 /3又は γシクロデキストリンであり、前記デ ンドリマーがポリアミドアミン型であることを特徴とするシクロデキストリン'デンドリマー 結合体を遺伝子導入ベクターとして使用できることが記載されて ヽる。しカゝしながら、 特開 2001— 103969号公報に記載の遺伝子導入ベクターを用いて遺伝子導入を 行った場合も、血清が培地中に存在すると遺伝子導入効率が低下するという問題が めつに。 発明の開示
発明が解決しょうとする課題
[0005] 本発明の目的は、上記した従来技術の問題点を解消することを解決すべき課題と した。即ち、本発明は、血清の存在下においても高い効率で遺伝子導入を行うことが できる遺伝子導入剤を提供することを解決すべき課題とした。
課題を解決するための手段
[0006] 本発明者らは上記課題を解決するために鋭意検討した結果、シクロデキストリンと ジェネレーションが 3であるデンドリマー(G3)との結合体をさらに糖で修飾したものを 用いて遺伝子導入を行うことによって、血清の存在下においても高い効率で遺伝子 導入を行えることを見出した。本発明はこれらの知見に基づいて完成したものである
[0007] すなわち、本発明によれば、シクロデキストリンとジェネレーション 3のデンドリマー( G3)との結合体であって、さらに糖で修飾されている上記結合体が提供される。
[0008] 本発明の別の側面によれば、シクロデキストリンとジェネレーション 3のデンドリマー( G3)との結合体であって、さらに糖で修飾されている上記結合体からなる遺伝子導 入剤が提供される。
[0009] 本発明のさらに別の側面によれば、導入すべき遺伝子と、シクロデキストリンとジェ ネレーシヨン 3のデンドリマー(G3)との結合体であって、さらに糖で修飾されている上 記結合体とを細胞とともにインキュベーションすることを含む、細胞に遺伝子を導入す る方法が提供される。
[0010] 好ましくは、シクロデキストリンは、 aーシクロデキストリンである。
好ましくは、糖はマンノース又はガラクトースである。
好ましくは、本発明の遺伝子導入方法では、血清の存在下で細胞に遺伝子を導入 する。
発明を実施するための最良の形態
[0011] 本発明の実施の形態について詳細に説明する。
( 1)シクロデキストリン'デンドリマー結合体 本発明の結合体は、シクロデキストリンとジェネレーションが 3であるデンドリマー(G 3)との結合体であって、さらに糖で修飾されていることを特徴とする。
本発明の結合体の構造の一例を、図 1に例示する。シクロデキストリン'デンドリマー 結合体は、デンドリマーとシクロデキストリンを溶媒中で加熱 '混合することにより容易 に製造することができる。
[0012] (シクロデキストリン)
シクロデキストリン.デンドリマー結合体を構成するシクロデキストリンは、 α、 、ま たは γシクロデキストリンである。これら α、 β、または γシクロデキストリンは、化学修 飾型または非修飾型のシクロデキストリンであることもできる。これら α、 β、または γ シクロデキストリンは市販品を容易に入手できる。本発明ではこれらのうち α—シクロ デキストリンを用いることがが、その導入剤としての効果が最も優れているため、好ま しい。
[0013] シクロデキストリンはその水酸基の一部もしくは全部がァセチルイ匕されていてもよぐ またはグルコース、マンノース、サッカロース等の糖で修飾されていてもよい。これら の修飾剤と、シクロデキストリンとの反応は、両者を例えば水溶液にし、加熱'攪拌す ること〖こより製造することができる。導入剤として用いる場合は、変性しない方が導入 効率が高いため好ましい。
[0014] (デンドリマー)
本発明で用いられるシクロデキストリン'デンドリマー結合体のひとつの構成成分で あるデンドリマー(Dendrimer)は、アンモニアあるいはエチレンジァミンをコア分子とし 、その分子にマイケル付加反応でアクリル酸メチルおよびエチレンジァミンを付カロし、 この反応を繰り返すこと(Generation)により得られる高度に枝分かれした榭枝状構造 を特徴とし、その末端に多数の一級アミノ基を有した新 ヽタイプの合成ポリマーで ある。本発明で用いるデンドリマーとしては、ポリアミドアミン型であることが好ましい。
[0015] ポリアミドアミン型デンドリマーは、アンモニアにアクリル酸メチルとエチレンジァミン とを反応させて(アンモニア:アクリル酸メチル:エチレンジァミン = 1 : 3 : 3 (モル比))、 ジェネレーション 0 (GO)と呼ばれる中心核を合成する。ジェネレーション 0はアンモ- ァに由来する窒素の周りに、アクリル酸メチルとエチレンジァミンの縮合体 (アミドアミ ン)が 3つ結合した形を有する。ジェネレーション 0 (GO)のアミドアミンの末端にェチレ ンジァミンの一方のァミノ基が存在する。そこで、この中心核(ジェネレーション 0 (GO ) )にアクリル酸メチル:エチレンジァミン = 3 : 3 (モル比)を反応させることで、上記アミ ドアミンの末端のァミノ基に 2つのアクリル酸メチルとエチレンジァミンの縮合体 (アミド ァミン)が結合する。このように GOのァミノ基由来の窒素に 2つのアクリル酸メチルとェ チレンジァミンの縮合体 (アミドアミン)が結合したものは、ジェネレーション 1 (G1)と 呼ばれる。このようにして順次、アクリル酸メチルとエチレンジァミンの縮合体を結合さ せて ヽくことで、ジェネレーション 2、 3、 4、 5、 6 (G2、 G3、 G4、 G5、 G6)力得られる 。この状態を下記の反応スキームに示す。本発明では、ジェネレーションが 3であるデ ンドリマーを使用する。
[0016] [化 1]
Figure imgf000005_0001
(Gen. 2)
Scheme 1. Synthetic scheme for starburst PA A denanmers.
[0017] ポリアミドアミン型デンドリマーは、市販されており、市販品を容易に入手できる。本 発明の結合体に用いるデンドリマーは、 G3に属するものであれば、特に限定されな い。
[0018] デンドリマー'シクロデキストリン結合体は、デンドリマーとシクロデキストリンとを混合 し、水性媒体の存在下で加熱攪拌すると!ヽうわずか 2段階の反応で合成できる。
[0019] 本発明で用いるシクロデキストリン'デンドリマー結合体におけるシクロデキストリンと デンドリマーとのモル比は通常 1.1〜5: 1、好ましくは 1.1〜4: 1程度であることが好ま しい。
[0020] シクロデキストリン'デンドリマー結合体は、後述の実施例で示すように、トシル化シ クロデキストリンとデンドリマーとを加温条件下で数時間反応させることで合成できる。 トシルイ匕(トルエンスルホ-ル化)シクロデキストリンは、 p—トルエンスルホ-ルクロライ ドとシクロデキストリンとをピリジン中で反応させることで得られる。
[0021] 本発明の結合体は、上記のようにして得られたシクロデキストリン'デンドリマー結合 体をさらに糖で修飾することによって製造することができる。修飾のために使用する糖 の種類は特に限定されず、単糖類、二糖類、又はオリゴ糖類でもよいが、好ましくは 単糖類又は二糖類であり、さらに好ましくは単糖類である。糖の具体例としては、マン ノース、ガラクトース、グノレコース、フノレクトース、ラタトース、スクロース、フコース、マノレ トースなどが挙げられ、特に好ましくはマンノース、又はガラクトースである。
[0022] シクロデキストリン'デンドリマー結合体を例えば、マンノースで修飾するためには、 後述する実施例で示すように、シクロデキストリン'デンドリマー結合体を含む溶液に 、 a -D-Mannopyranosylphenyl isothiocyanate溶液を添カロし、室温で反応させればよ ヽ。カフクトースで修飾する場合には、 -D-Mannopyranosylphenyl isothiocyanate の代わりに、対応する試薬を用いればよい。
[0023] (2)遺伝子導入剤及び遺伝子導入方法
上記した、シクロデキストリンとジェネレーションが 3であるデンドリマー(G3)から成り 、さらに糖で修飾されている本発明の結合体は、細胞に遺伝子を効率的に導入する ための遺伝子導入剤として用いることができる。
[0024] 本発明による遺伝子の導入方法は、導入すべき遺伝子と本発明の結合体とを細胞 とともにインキュベーションすることによって行うことができる。導入すべき遺伝子には 制限はない。例えば、遺伝子治療に有用な遺伝子や、植物及び動物の品種改良に 有用な遺伝子等を挙げることができる。遺伝子導入の条件は、例えば、遺伝子を導 入すべき細胞を含有する培地 0. 5ml (細胞量約 2 X 105個)に、導入すべき遺伝子を 含有する溶液と本発明の結合体を含有する溶液とを添加する。導入すべき遺伝子を 含有する溶液は、例えば、遺伝子量が 0. 1〜: LO /z g/ 1となるように添加し、シクロ デキストリン'デンドリマー結合体を含有する溶液は、例えば、シクロデキストリン'デン ドリマー結合体が約 0.8ηΜ〜75 /ζ Μとなるように添加することができる。添加後、所 定の時間だけインキュベートすることにより、細胞に上記遺伝子をトランスフエクシヨン することができる。遺伝子を導入すべき細胞を含有する培地の種類や量は、使用す る細胞に応じて適宜決定することができ、また、遺伝子及びシクロデキストリン'デンド リマー結合体の添加量やインキュベーション時間も適宜変化させることができる。特 に、本発明の遺伝子導入剤を用いて遺伝子導入を行う場合には、培地に血清が含 まれて ヽる状態でも、高 ヽ遺伝子導入効率を維持して遺伝子を導入することができる 。これは、従来の遺伝子導入剤の問題を解消したものであり、特に実用上の有用性 が高い。
以下に実施例を挙げて本発明につき更に詳しく説明するが、本発明はこれらの実 施例になんら制約されるものではな 、。
実施例
実施例 1:糖で修飾したデンドリマー/シクロデキストリン結合体の調製
(1)トシルイ匕 a - CyDの調製
ベンゼンで水分を共沸除去した乾燥 a -CyD 8 gを無水ピリジン 500 mLに溶解後 、 5°C以下に冷却、攪拌しながら P-トルエンスルホユルク口ライド 6 gを加え、室温で
2時間攪拌した。 反応溶液に水(約 100 mL)を注ぎ込み反応を停止させた後、減 圧濃縮し、アセトン 100 mLを添加して析出した沈殿物を濾取した。沈殿物は吸着ク 口マトグラフィーを用いて分離、精製した。
(多孔質ポリスチレン榭脂(DIAION (商標) HP- 20、 MITSUBISHI CHEMICAL);溶 離液:メタノール/水 = 0/100 v/v→ 100/0 v/v、収率 29%)。 FAB-MASS [M- H]— m /z 1125。 [0026] (2) α -CDE結合体の調製
デンドリマー(G3) (ALDRICH CHEMICAL) 0.5 mLを試験管に加えて減圧下メタノ ールを完全に留去した。 その後、トシルイ匕 a - CyD 60 mgおよび DMSO 0.5 mLを 加えて軽く混和し、試験管内を窒素置換後、油浴中、 60°Cで 24時間攪拌した。反 応物を TOSOH TskGel HW-40S (5.3 cm2 x 70 cm、溶出液: 0.1 M Ammonium hydro xycarbonate)を用いてゲルろ過した。 a - CDE結合体を含むフラクションを濃縮後、 濃縮液を 0.5 mLの水に再溶解し、メタノール 3 mLを加えて十分に白濁するまで混 和した。 沈殿物を含む溶液を 1 ,500 rpm、 15分間遠心分離後、上清のメタノールを 取り除き、再びメタノール 3 mLを添加してよく混和した。 同様に遠心分離し、上清を 取り除いた後、残渣中のメタノールを試験管エバポレーターにより完全に留去し、 a— CDE結合体を得た。
[0027] なお、比較用に、上記のデンドリマー (G3)の代わりに、デンドリマー (G2)を用いて同 様に oc -CDE結合体を作製した。
[0028] (3) TRITC- a -CDE結合体(G3)の調製
a -CDE結合体(G3) 10 mgを溶解した 0.9% (w/v) NaCl溶液 200 Lと TRITC 1 .36 mgを溶解した DMSO 200 μ Lを混合し、室温、遮光条件下、 24時間反応させ た。 その後、透析およびアルコール沈殿により精製した。
[0029] (4) Man- a -CDE結合体の調製
α -CDE結合体 70 mgを 0.15 M NaCl (pH 9.0) 1 mLに溶解後、 DMSOに溶解し 7こ 25 mg/mLの -D-Mannopyranosylphenyl isothiocyanate t谷仅 1 mLを添カロし、 室温で 24時間攪拌した。 反応物を TOSOH TskGel HW-40S (5.3 cm2 x 70 cm、 溶出ノッファー: 0.1 M Ammonium hydroxycarbonate)を用いてゲノレろ過した。 Man -ひ- CDE結合体を含むフラクションを減圧下濃縮後、濃縮液を 0.5 mLの水に再溶 解し、メタノール 3 mLを加え十分に白濁するまで混和した。 沈殿物を含む溶液を 1 ,500 rpm、 15分間遠心分離後、上清のメタノールを取り除き、再びメタノール 3 mL を添加してよく混和した。 同様に遠心分離し、上清を取り除いた後、残渣中のメタノ ールを試験管エバポレーターにより完全に留去し、 Man- a -CDE結合体を得た。
[0030] Man- a—CDE結合体 (G3, DSM 10):収率 65%; JH-NMR (500MHz, D Ο) δ (from TMS) 7.05-7.10 (phenyl), 5.43—5.51 (mannose), 4.94 (HI, a -CyD), 3.94—3.61 (H3, H5, H6, a -CyD, mannose), 3.60—3.33 (H2, H4, a -CyD, mannose), 3.27—3.13 (de ndrimer methylene), 3.05-2.81 (dendrimer methylene), 2.72-2.51 (dendrimer methyl ene), 2.36-2.31 (dendrimer methylene).
[0031] (5) TRITC-Man- a - CDE結合体(G3)の調製
Man- a -CDE結合体(G3) 10 mgを溶解した 0.9% (w/v) NaCl溶液 200 Lと、 T
RITC 1 mgを溶解した DMSO 200 を混合し、室温、遮光条件下、 24時間反応さ せた。 その後、透析およびアルコール沈殿により精製した。
[0032] 実施例 2 :遺伝子導入アツセィ
(1)細胞の培養
(A549細胞の培養)
ヒト肺上皮細胞癌由来の株化細胞である A549細胞 8 X 105個を 10%FCS含有 DMEM 培地(590mg/L L-グルタミン、 160mg/L NaHCO、 1 X 105U/Lペニシリン、 0.1g/Lスト
3
レプトマイシン) 10mLに懸濁し、旭テクノグラス (株)製組織培養ディッシュ(100mm)に 播種して、 COインキュベータ一中、 37°C、 5% CO下で培養した。セミコンフルェント
2 2
に達した細胞をトリプシン- EDTA法によりディッシュから剥離し、 2000rpm 10分間遠 心分離後、上清をすベて取り除き、得られたペレットを 10%FCS含有 DMEM培地に I X 105個/ mLの密度で分散した。この細胞懸濁液を 24 well micro plateに 2 X 105/500 μ Lになるように播種し、 6時間培養した細胞をトランスフエクシヨン実験に用いた。
[0033] (NR8383細胞の培養)
ラット肺胞マクロファージ由来の株化細胞である NR8383細胞 8 X 105個を 10%FCS含 有 DMEM培地(590mg/L L-グルタミン、 160mg/L NaHCO、 1 X 105U/Lペニシリン、
3
0.1g/Lストレプトマイシン) 10mLに懸濁し、旭テクノグラス (株)製組織培養ディッシュ( 100mm)に播種して、 COインキュベータ一中、 37°C、 5% CO下で培養した。セミコン
2 2
フルェントに達した細胞をトリプシン- EDTA法によりディッシュから剥離し、 2000rpm 1 0分間遠心分離後、上清をすベて取り除き、得られたペレットを 10%FCS含有 DMEM培 地に 1 X 105個/ mLの密度で分散した。この細胞懸濁液を 24 well micro plateに 2 X 10 5/500 Lになるように播種し、 6時間培養した細胞をトランスフエクシヨン実験に用いた [0034] (HepG2細胞の培養)
ヒト肝芽細胞癌由来の株化細胞である HepG2細胞 8 X 105個を 10%FCS含有 DMEM 培地(590mg/L L-グルタミン、 160mg/L NaHCO、 1 X 105U/Lペニシリン、 0.1g/Lスト
3
レプトマイシン) 10mLに懸濁し、旭テクノグラス (株)製組織培養ディッシュ(100mm)に 播種して、 COインキュベータ一中、 37°C、 5% CO下で培養した。セミコンフルェント
2 2
に達した細胞をトリプシン- EDTA法によりディッシュから剥離し、 2000rpm 10分間遠 心分離後、上清をすベて取り除き、得られたペレットを 10%FCS含有 DMEM培地に I X 105個/ mLの密度で分散した。この細胞懸濁液を 24 well micro plateに 2 X 105/500 μ Lになるように播種し、 6時間培養した細胞をトランスフエクシヨン実験に用いた。
[0035] (2)遺伝子の導入及びルシフェラーゼ活性の測定
2 X 105個 /24ゥエルの細胞を 6時間前培養した。培地 500 μ 1で洗浄し、ゥミホタル ルシフェラーゼをコードする pRL— CMVとデンドリマー、 pRL— CMVと a - CDE結 合体、又は pRL— CMVと Man- a - CDE結合体(G3)を各電荷比に相当する量を添 加し、全量 400 1とした。この際、 FCSを培地にカ卩えた(終濃度 10%)実験とカ卩えない 実験を行った。
[0036] FCSを加えた実験では、 FCSをカ卩えた培地で 24時間インキュベーションし、 PBS (50 0 1)で 2回洗浄し、溶解バッファー (500 μ 1)を添加し、ルシフェラーゼ活性を測定し た。 FCSをカ卩えない実験では、 FCSなしの培地で 1時間インキュベーションし、その後 、 FCSを添カ卩してさらに 24時間インキュベーションし、その後に PBS ^OO /z l)で 2回洗 浄し、溶解バッファー (500 μ 1)を添加し、ルシフヱラーゼ活性を測定した。
[0037] ルシフェラーゼ活性の測定は以下の通り行った。細胞抽出液 20 μ Lをルミノメータ 一用試験管に採取し、これに Luciferase Assay Substrate(Promega)100 μ Lを添カロし、 30秒後にルミノメーター (Lumat:LB9506)で 10秒間の発光量を測定した。ここで得られ た値と、タンパク濃度を BCA Protein Assay Kit(PIERCE)により測定した結果から、単 位タンパク量あたりの Relative Light Unit(RLU)を算出した。
[0038] 上記実験の結果を図 2〜図 7に示す。
図 2は、 A549細胞における Man- a - CDE結合体(G3, DSM 10)の遺伝子導入効 率に及ぼすチャージ比(Carrier/pDNA)の影響を示す。デンドリマー(G3)ZpDNAの 投与量比は 50である。培地には 10%FCSを添カ卩した。各値は、 3〜6回の実験の平 均士標準誤差を示す。
* p< 0.05 (デンドリマーと比較して), * * p< 0.01 (デンドリマーと比較して) [0039] 図 3は、 A549細胞における Man- a - CDE結合体(G2又は G3)/pDNAの複合体の 遺伝子導入効率を示す。 Man- a -CDE結合体) ZpDNAの電荷比は 50である。培地 には 10%FCSを添加した。各値は、 3回の実験の平均士標準誤差を示す。
* p< 0.01 (Man- a -CDE結合体 (G2)と比較して)
[0040] 図 4は、 A549細胞における血清存在下におけるデンドリマー(G3)、 a -CDE結合 体(G3)、及び Man- a - CDE結合体(G3、 DSM10)と pDNAとの複合体の遺伝子導入 効率を示す。キャリア ZpDNAの電荷比は 50である。各値は、 3〜7回の実験の平均 士標準誤差を示す。
* p< 0.05 - CDEと比較して)
[0041] 図 5は、 A549細胞における各種キャリア(G3)ZpDNA複合体の遺伝子導入効率に 対する血清の影響を示す。白のグラフは血清なしを示し、黒のグラフは血清ありを示 す。キャリア ZpDNAの電荷比は 50である。各値は、 4回の実験の平均士標準誤差を 示す。
* p< 0.05 (血清なしと比較して)
[0042] 図 6は、 NR8383細胞における各種キャリア(G3)ZpDNA複合体の遺伝子導入効率 に対する血清の影響を示す。白のグラフは血清なしを示し、黒のグラフは血清ありを 示す。キャリア ZpDNAの電荷比は 50である。各値は、 4回の実験の平均士標準誤差 を示す。
* p< 0.05 (血清なしと比較して)
[0043] 図 7は、 HepG2細胞における各種キャリア(G3)ZpDNA複合体の遺伝子導入効率 に対する血清の影響を示す。白のグラフは血清なしを示し、黒のグラフは血清ありを 示す。キャリア ZpDNAの電荷比は 50である。各値は、 3回の実験の平均士標準誤差 を示す。
* p< 0.05 (血清なしと比較して) [0044] 図 2〜図 7に示した結果から、本発明の遺伝子導入剤を用いることによって、血清 存在下にお 、ても高 、効率で遺伝子を細胞に導入できることが実証された。
[0045] 実施例 3 :
実施例 3では、 Man- a - CDE結合体の諸性質についてさらに分析した。 (Α)方法
( 1)プラスミドの調製
pDNAの増幅: pRL- CMV luciferase DNAを導入した大腸菌株 JM109を 100 ^ g /mLのアンピシリンを含む LB培地(BACTO TRYPTONE 10 g, BACTO YEAST 5 g, NaCl 5 g /1000 mL) 3 mL中、 37°Cでー晚予備培養し、その 1 mLを新たな LB 培地 500 mLにカロえ、 37°Cで 24〜48時間培養した。
[0046] pDNAの精製: QIAGEN製 Plasmid Purification MAXI Kitを用いて行った。精製 操作はマニュアルに準じて行い、精製後の DNA濃度は、 Tris-EDTA溶液 (TE)に 溶解して日立製作所(株)製 U-2000A型分光光度計を用い、 OD = 50 g DNA
260
/mLとして算出した。また、 OD I OD の値から、タンパク質混入の有無を判定し
260 280
た。
[0047] Alexaラベル化 pDNAの調製: Molecular Probe製 ULYSIS Alexa Fluor (登録商標 ) 488 Nucleic Acid Labeling Kitを用いて行った。ラベル化の操作はマニュアルに準 じて行い、未反応の Alexa488はセフアデックス G50カラムにより分離した。
[0048] (2)物性測定
NMRスペクトル測定:
NMRスペクトルは、 日本電子製 α - 500 FT- NMRスぺクトロメーターを用いて 2 5°Cで測定した。溶媒は D 0を用い、各種サンプルの濃度は 10 mMとした。 'Η-ΝΜ
2
Rの化学シフトは、 D 0のピークを用いて内部標準物質テトラメチルシラン(TMS)か
2
らの低磁場シフトとして表した。
[0049] pDNAとの相互作用:
HBSSに溶解した種々濃度のデンドリマー(G3)、 α -CDE結合体(G3)あるいは M an- a— CDE結合体(G3) 10 Lに、 TEに溶解した pDNA 2 L (0.1 g/ L)をカロ え、 10秒間ボルテックス処理後、 15分間室温でインキュベートした。本反応液に重 層用試薬(60% (v/v)グリセロール、 1 mM EDTA、 0.004% (w/v)ブロモフエノール ブルー、 0.004% (w/v)キシレンシァノール) 2 μ Lを添加し、泳動用緩衝液 (Tris-bo rate EDTA: TBE; 45 mM Tris, 45 mMホウ酸, 1 mM EDTA)で調製した 1%ァガ ロースゲルを用い、 100 Vの定圧条件下で約 40分間泳動した。泳動終了後、ァガロ ースゲルを EtBr (lOOng/mL)を含む TBE溶液中で 30分間振盪し染色した。 染色 終了後、アトー製デンシトグラフによりゲルを撮影した。
[0050] pDNAの酵素安定性に及ぼす各種キャリアの影響:
HBSSに溶解した種々濃度のデンドリマー(G3)、 α -CDE結合体(G3)あるいは Man- a— CDE結合体 (G3) 5 Lに、 TEに溶解した pDNA 2 L (0.1 g/ L)をカロ え、 10秒間ボルテックス後、 15分間室温でインキュベートした。 BSA (2 mg/mL) 1 μ し、反応バッファー (40 mM Tris-HCl, 10 mM NaCl, 10 mM CaCl , 6 mM MgCl , 2 m
2 2
M DTT) 1 μ L、 DNaseKl unit/ μ L) l μ Lを添加し、 37°Cで 2時間インキュベートした 。 70°Cで 10分間インキュベート後、 EDTA (0.5 M) 1 L、 SDS (8% w/v) 10 Lをカロ え、さらに 37°Cで 1時間インキュベートした。 本反応液に重層用試薬 4 μ Lを添カロ し、泳動用緩衝液で調製した 1%ァガロースゲルを用い、 100 Vの定圧条件下で約 40分間泳動した。泳動終了後、ァガロースゲルを EtBr (lOOng/mL)を含む TBE溶 液中で 30分間振盪し染色した。染色終了後、上記デンシトグラフによりゲルを撮影 した。
[0051] 各種キャリア/ pDNA複合体の粒子径:
HBSS 3 mLに 50 mg/mLのデンドリマー(G3)、 a - CDE結合体(G3)あるいは Ma η- α -CDE結合体(G3)をそれぞれ 5.24、 7.36および 14.64 L (チャージ比 50)と、 TEに溶解した pDNA 8 L (1 g/ L)を加え、 10秒間ボルテックス後、 15分間室 温でインキュベートし、 Beckman製 Coulter N4 Plusにより粒子径を測定した。
[0052] 各種キャリア/ pDNA複合体の ζ -電位: HBSS 3 mLに 50 mg/mLのデンドリマー (G3)、 α -CDE結合体(G3)あるいは Man- a - CDE結合体(G3)をそれぞれ 5.24、 7.36および 14.64 μ L (チャージ比 50)と、 ΤΕに溶解した pDNA 8 L (1 g/ L)を 加え、 10秒間ボルテックス後、 15分間室温でインキュベートし、大塚電子(株)製 EL S-8000により ζ -電位を測定した。 [0053] pDNAのコンパクションに及ぼす各キャリアの影響:
HBSS 1 mLに pDNA 1 L (1 g/ L)ゝ EtBr 1 L (1 g/ L)および種々のチヤ ージ比に相当するデンドリマー(G3)、 α -CDE結合体(G3)あるいは Man- a - CDE 結合体(G3)を加え、 10秒間ボルテックス後、 15分間室温でインキュベートし、蛍光 分光光度計(日立製、 F-4500)により蛍光( λ ex=510 nm, λ emi=590 nm)を測定し た。
(3)各種細胞の培養
NIH3T3細胞の培養:
マウス繊維芽細胞由来の株化細胞である NIH3T3細胞 8 X 105個を 10% (v/v) F CS含有 DMEM培地(L-グルタミン 590 mg/L、 NaHCO 160 mg/L、ペニシリン 1 X 1
3
05 U/L、ストレプトマイシン 0.1 g/L) 10 mLに懸濁し、プラスチックディッシュ(100 m m)に播種して、 37°C、 5% CO濃度下で培養した。 セミコンフルェントに達した細
2
胞をトリプシン- EDTA法によりディッシュから剥離し、 3,000 rpmで 3分間遠心分離 後、上清を取り除き、得られたペレットを 10% (v/v) FCS含有 DMEM培地に 1 X 105 個/ mLの密度で分散した。この細胞懸濁液を 24 well plateに 2 X 105個/ wellにな るように播種し、 6時間培養した細胞をトランスフエクシヨン実験および細胞傷害性の 実験に用いた。
[0054] HepG2細胞の培養:
ヒト肝芽細胞癌由来の株化細胞である HepG2細胞 8 X 105個を 10% (v/v) FCS 含有 DMEM培地(L-グルタミン 590 mg/L、 NaHCO 160 mg/L、ペニシリン 1 X 105
3
U/L、ストレプトマイシン 0.1 g/L) 10 mLに懸濁し、プラスチックディッシュ (100 mm) に播種して、 37°C、 5% CO 濃度下で培養した。セミコンフルェントに達した細胞をト
2
リプシン- EDTA法によりディッシュから剥離し、 3,000 rpmで 3分間遠心分離後、上 清を取り除き、得られたペレットを 10% (v/v) FCS含有 DMEM培地に 1 X 105個/ m Lの密度で分散した。この細胞懸濁液を 24 well plateに 2 X 105個/ well〖こなるよう に播種し、 6時間培養した細胞をトランスフエクシヨン実験および細胞傷害性の実験 に用いた。
[0055] A549細胞の培養: ヒト肺上皮癌由来の株化細胞である A549細胞 8 X 105個を 10% FCS含有 DME M培地(L-グルタミン 590 mg/L、 NaHCO 160 mg/L、ペニシリン 1 X 105 U/L、ストレ
3
プトマイシン 0.1 g/L) 10 mLに懸濁し、プラスチックディッシュ(100 mm)に播種して 、 37°C、 5% CO濃度下で培養した。 セミコンフルェントに達した細胞をトリプシン- E
2
DTA法によりディッシュ力 剥離し、 3,000 rpmで 3分間遠心分離後、上清を取り除 き、得られたペレットを 10% FCS含有 DMEM培地に 1 X 105個/ mLの密度で分散 した。この細胞懸濁液を 24 well plateに 2 X 105個/ wellになるように播種し、 6時間 培養した細胞をトランスフエクシヨン実験および細胞傷害性の実験に用いた。
[0056] NR8383細胞の培養:
ラット肺胞マクロファージ由来の株化細胞である NR8383細胞 8 X 105個を 10% FC S含有 F- 12培地(L-グルタミン 590 mg/L、 NaHCO 160 mg/L、ペニシリン 1 X 105
3
U/L、ストレプトマイシン 0.1 g/L) 10 mLに懸濁し、プラスチックディッシュ (100 mm) に播種して、 37°C、 5% CO濃度下で培養した。セミコンフルェントに達した細胞をセ
2
ルスクレーパーによりディッシュ力 剥離し、 3,000 rpmで 3分間遠心分離後、上清 を取り除き、得られたペレットを 15% FCS含有 F-12培地に 1 X 105個/ mLの密度 で分散した。この細胞懸濁液を 24 well plateに 2 X 105個/ wellになるように播種し、 6時間培養した細胞をトランスフエクシヨン実験および細胞傷害性の実験に用いた。
[0057] (4)培養細胞への細胞傷害性およびトランスフ クシヨン
キャリア/ pDNA複合体調製:
1.5 mLエツペンドルフチューブに各種培地を添カ卩し、 TEに溶解した pDNA 2 L (1 μ §/ μ Οを添加した後、 HBSSに溶解した各種濃度のキャリアを添加し、 10秒間 ボルテックスを用いて攪拌後、 15分間室温でインキュベートし、キャリア/ pDNA複合 体とした。
[0058] 細胞傷害性の検討:
WST-1法により評価した。 細胞を 24 well plateに 2 X 105個/ well〖こなるように播 種し、 10% (v/v) FCSを含む培地で 6時間培養した。細胞を無血清培地 500 μしで 2回洗浄した後、上記キャリア/ pDNA (2 μ §)複合体および 20%FCS含有培地をそ れぞれ 200 L添加し(最終 FCS濃度 10%)、 37°C、 5% CO濃度下で 24時間ィ ンキュペートした。その後、 HBSS 200 Lで 2回洗浄した後、 HBSS 270 μ Lおよび WST-1試薬 30 Lを添カ卩してよく混和し、 37°C、 5% CO濃度下で 30分間インキ
2
ュペートした後、吸光度を測定した(BioRad Model 550;測定波長; 450 nm、参照波 長; 655 nm)。なお、細胞生存率は、キャリア非添加時を 100%として算出した。
[0059] トランスフエクシヨン:
細胞を 24 well plateに 2 X 105個/ wellになるように播種し、 10% (v/v) FCSを含む 培地で 6時間培養した。細胞を無血清培地 500 Lで 2回洗浄後、キャリア/ pDNA (2 μ g)複合体を含む無血清の培地 200 μ Lおよび 20%FCS含有培地を 200 μ L添 加し(最終 FCS濃度 10%)、 37°C、 5% CO濃度下で 24時間インキュベートした。
2
[0060] 細胞抽出液の調製:
トランスフエクシヨン終了後の各種細胞を PBS (-) 200 Lで 2回洗浄後、細胞溶 解剤 500 を添加し、 15分間室温でインキュベートし凍結融解を 2回行い、 10,00 0 rpmで 5分間遠心分離しその上清を細胞抽出液とした。
[0061] ルシフ ラーゼ活性の測定:
細胞抽出液 20 Lをルミノメーター用試験管(Rohren Tubes, SARSTEDT)に採取 し、これにルシフェリン、コェンザィム A、 ATPなどを含む基質液を 100 μ L添加し、 ルミノメーター(Lumat: LB 9507、 EG&G BERHTOLD)で 10秒間の発光量を測定し た。
[0062] 細胞抽出液中のタンパク質の定量:
Bio-Rad Protein Assay Kitによりタンパク質の定量を行った。細胞抽出液 10 L に Bio- Rad Protein Assay kit溶液を 200 μ L添加し、室温で 15分間インキュベート 後、 450應における吸光度を測定した。細胞溶解剤で BSAを希釈したものを標準 液に用いて検量線を作成し、上記ルシフェラーゼ活性およびタンパク質濃度より Rel ative Light Unit (RLU)を算出した。
[0063] (5)各種糖処理および血清非存在時のトランスフエクシヨン
マンナン、デキストラン、マンノースおよびガラクトース処理:
細胞を 24 well plateに 2xl05個/ wellになるように播種し、 10% (v/v) FCSを含む 培地で 6時間培養した。細胞を無血清培地 500 Lで 2回洗浄後、キャリア/ pDNA (2 g)複合体を含む無血清の培地 200 Lおよびマンナン、デキストラン、マンノー スおよびガラクトース(それぞれ 0.5 mg/mL)を含む 20% FCS含有培地を 200 μ L 添加し(最終 FCS濃度 10%)、 37°C、 5% CO濃度下で 24時間インキュベートした。
2
[0064] 血清非存在時のトランスフエクシヨン:
細胞を 24 well plateに 2 X 105個/ wellになるように播種し、 10% (v/v) FCSを含 む培地で 6時間培養した。 細胞を無血清培地 500 Lで 2回洗浄後、キャリア/ p DNA (2 μ )複合体を含む無血清の培地 400 Lを添加し、 1時間インキュベート後 、終濃度 10%になるよう FCSを加え 37°C、 5%CO濃度下で 23時間インキュベート
2
した。
[0065] (6) pDNAおよびキャリアの細胞内取り込み
Alexaラベル化 pDNAと TRITCラベル化キャリアを用いてマンナン(0.5 mg/mL) あるいはデキストラン(0.5 mg/mL)存在または非存在下、トランスフエクシヨンを行つ た。トランスフエクシヨン 24時間後、細胞を PBS (—) 500 Lで 2回洗浄、 1 mLの PBSで懸濁し、 Becton Dickinson製 FACSCalibur™により Alexaおよび TRITCの 蛍光強度を測定した。
[0066] (7)共焦点レーザー走査顕微鏡による観察
キャリア/ pDNA複合体の核移行性の観察:
TRITCラベル化キャリア/ Alexaラベルイ匕 pDNA (2 μ g)との複合体を含む無血清 の培地 200 μ Lおよび 20%FCS含有培地 200 μ Lを細胞に添加し(最終 FCS濃 度 10%)、 37°Cでインキュベートした。インキュベーション 24時間後、 HBSS 500 μ L で 2回洗浄し、ォリンパス製 FLUOVIEW FV300BX (アルゴンイオンレーザー)によ り蛍光を観察した。
[0067] マンナンおよびデキストラン/ HVJ-E vector処理:
マンナンおよびデキストランの HVJ-E vectorへの封入は、 HVJ-E vector調製キ ットプロトコールに準じて行い、封入率はそれぞれ約 16%および 18%であった。細胞 を glass based dish (35 mm)に 2 X 105個/ dishになるように播種し、 10% (v/v) FCS を含む培地で 5.5時間培養した。上清を取り除き、無血清培地 500 Lで 2回洗浄 後、 HVJ- E vector, HVJ-E vector/マンナン(15 mg/mL)または HVJ- E vector/デキ ストラン(15 mg/mL)を含む培地 500 μ Lを添加し、 37°Cで 0.5時間培養した。細胞 を無血清培地 500 Lで 2回洗浄した後、キャリア/ pDNA (2 μ g)複合体を含む無 血清の培地 200 μ Lおよび 20%FCS含有培地を 200 μ L添加し(最終 FCS濃度 10%)、 37°C、 5%CO濃度下で 24時間インキュベートした。
2
[0068] (8)血液生化学的パラメータの算出
4週齢の BALB/c雄性マウス(体重約 20 g)をエーテル麻酔下、 Man- a - CDE結 合体(G3)と pDNA (20 ^ g)との複合体(チャージ比 20)を含む 5%マン-トール懸 濁液 500 Lを尾静脈より約 30秒間かけて投与した。投与 12時間後エーテル麻 酔下、腹部大動脈より採血し、血清 200 μ Lを分取し定量時まで凍結保存した。各 種検査値の測定は、血液生化学検査自動測定装置を用いて行った。
[0069] (Β)結果
( l) Renilla luciferaseによる遺伝子導入効率の検討
デンドリマーのジェネレーションが遺伝子導入効率に与える影響を検討するため、 Man- a -CDE結合体(G3, DSM 10)と Man- a - CDE結合体(G2, DSM 3.3)の遺 伝子導入効率を比較した。
[0070] 結果を図 8に示す。図 8では、細胞溶解物のルシフェラーゼ活性をインキュベーショ ン 24時間後に測定した。培地には 10%FCSを添加した。各値は、 4〜6回の実験の 平均士標準誤差を示す。 * p< 0.05 (Man- a - CDE結合体(G2, DSM3.3)と比較し て)
[0071] 図 8に示すように、 Α549細胞においてチャージ比(キャリア/ pDNA)の増カ卩に伴い 、 Man- a -CDE結合体(G2, DSM 3.3)および Man- a - CDE結合体(G3, DSM 10) の遺伝子導入効率は増大した。しかし、いずれのチャージ比においても Man- a -C DE結合体(G3, DSM 10)は Man- a - CDE結合体(G2, DSM 3.3)に比べて有意に 高い遺伝子導入効率を示し、チャージ比 1では約 4,000倍、チャージ比 5〜50で は約 1 ,000倍、チャージ比 100〜200でも約 50〜100倍高い値を示した。
[0072] 図 9は、 Man- a - CDE結合体(G3, DSM 10)と巿販遺伝子導入試薬である Lipofec tin™の遺伝子導入効率の比較を示す。図 9では、細胞溶解物のルシフェラーゼ活性 をインキュベーション 24時間後に測定した。培地には 10%FCSを添カ卩した。デンドリ マー/ pDNA、 a - CDE結合体/ pDNA、 Man- a - CDE結合体/ pDNA、及び LipofectinT M /pDNAのチャージ比は各々 50、 50、 50及び 1である。各値は、 4〜8回の実験の 平均士標準誤差を示す。 * pく 0.05 (ひ -CDE結合体と比較して)、十字は pく 0.05 (
Lipofectin™と比較して)
[0073] A549および NIH3T3両細胞にお!、て、 Man- a -CDE結合体(G3, DSM 10)は Li pofectin™に比べて有意に高い遺伝子導入効率を示した。
[0074] (2) Green fluorescence proteinによる遺伝子導入効率の検討
Green fluorescence protein (GFP)遺伝子を用いて、 A549細胞へ導入後の GFP の蛍光強度を共焦点レーザー顕微鏡にて観察することにより、遺伝子の発現頻度を 検討した。
[0075] 結果を図 10に示す。図 10では、 pEGFPNl DNAを用いた。細胞をキャリア ZpDNA 複合体とともに 24時間インキュベートし、 CLSMで観察した。培地には 10%FCSを 添加した。デンドリマー/ pDNA、 a - CDE結合体/ pDNA、 Man- α - CDE結合体/ pDN A、及び Lipofectin™/pDNAのチャージ比は各々 50、 50、 50及び 1である。図 10に 示すように、 Renilla luciferaseによる遺伝子導入効率の検討と同様に、 Man- a - CDE 結合体(G3, DSM 10)において、他のキャリアに比べて強い GFPの発現が観察さ れた。
[0076] (3) Man- a -CDE結合体(G3)の細胞傷害性
Man- a -CDE結合体(G3, DSM 10)の細胞傷害性を WST-1法により検討した。 図 11は、 A549細胞および NIH3T3細胞における各キャリアの細胞傷害性を示す。 図 11では、細胞をキャリア ZpDNAとともに 24時間インキュベートした。細胞生存率を WST-1法で分析した。各値は、 3〜4回の実験の平均士標準誤差を示す。
[0077] 図 11から明らかなように、デンドリマー(G3)、 a -CDE結合体(G3)および Man- a -CDE結合体(G3, DSM 10)はチャージ比 200まで細胞傷害性を示さなかったが、 Lipofectin™は低チャージ比にぉ 、ても高 、細胞傷害性を示した。 これらの結果か ら、 Man- a - CDE結合体(G3, DSM 10)は in vitroにおいて安全性に優れることが 示された。
[0078] (4) In vivoにおける血液生化学的パラメータの変化 Man- a -CDE結合体(G3, DSM 10)/pDNA複合体をマウスに尾静脈投与した後 の血液生化学的パラメータについて検討した。なお、血液生化学的パラメータは腎 障害の指標としてクレアチニン(CRE)および Blood urea nitrogen (BUN),肝障害の 旨標として Aspartate aminotransferase (AST)および Alanine aminotransferase (ALT )、細胞傷害の指標として Lactate dehydrogenase (LDH)を用い、チャージ比 20 (キ ャリア/ pDNA)、 pDNA投与量 g/mouseの条件下で行った。結果を表 1に示す。
[0079] [表 1]
表 1:
Carrier CRE (mg/dL) BUN (mg/dL) AST (U/L) ALT (U/L) LDH '(U/L)
Control 0.09 ± 0.00 30.8 ± 1.6 58.0 ± 7.8 32.0 + 4.4 318 ± 59
5% mannitol 0.09 ± 0.00 31.3 ± 2.7 66.0 + 5.3 44.8 + 8.8 305 ± 11
M "j?^°E 0.05 ± 0.02 23.8 + 4.0 57.5 ± 3.9 18.0 ± 2.3 527 ± 26 (DSM 10)
[0080] a)クレアチン、 b)血中尿素窒素、 c)ァスパラギン酸アミノトランスフェラーゼ、 d)ァラ- ンァミノトランスフェラーゼ、 e)乳酸デヒドロゲナーゼ
各値は、 3〜4回の実験の平均士標準誤差を示す。
[0081] 表 1に示すように、 CREおよび BUN値は、 Man- a - CDE結合体(G3, DSM 10)/p DNA投与において、それぞれ 0.05 ±0.02 mg/dLおよび 23.8±4.0 mg/dLであり、 コントロールおよび 5%マン-トール(投与液)投与群と同程度であったことから、 Man - α -CDE結合体(G3, DSM 10)投与による腎障害は低いものと推察された。また、 A STおよび ALT値は、それぞれ 57.5士 3.9 U/Lおよび 18.0士 2.3 U/Lであり、 M an- a -CDE結合体(G3, DSM 10)/pDNA投与による肝障害はほとんどないものと推 察された。コントロールおよび 5%マン-トール投与群における LDH値は、それぞれ 318士 59 U/Lおよび 305士 11 U/Lであったのに対して、 Man- a - CDE結合体( G3, DSM 10)/pDNA投与では、 527士 26 U/Lと若干増大したが、統計学的な有意 差は認められなかった。以上の結果から、 Man- a -CDE結合体(G3, DSM 10)/pDN A複合体は本実験条件下 in vivoにおいても安全性が高いものと考えられた。
[0082] (5) Man- a -CDE結合体(G3)とプラスミド DNAとの相互作用
(5— 1)ァガロースゲル電気泳動 Man- a -CDE結合体(G3, DSM 10)と pDNAとの相互作用について、それら複合 体の正味の電荷を簡便に知ることができるァガロースゲル電気泳動法を用いて検討 した。図 12は、 pDNA 0.2 μ gにチャージ比(キャリア/ pDNA)が 0.1〜100になるよう に各種キャリアを添加後、 10秒間攪拌し、室温で 15分間静置したサンプル溶液を 1%ァガロースゲルにて電気泳動(100Vで 40分間)を行い、ェチジゥムブロマイド(Et Br)で染色した結果を示す。
[0083] 図 12に示すように、デンドリマー(G3)、 α -CDE結合体(G3)および Man- a - CDE 結合体(G3, DSM 10)添加によりそれぞれ、チャージ比 1、 2、 2以上で pDNAに起 因するバンドが消失した。このように、キャリアと pDNAとの相互作用の強さに、キヤリ ァ間で大きな差異は認められなかった。
[0084] (5 - 2)プラスミド DNAの酵素安定性に及ぼす Man- a -CDE結合体(G3)の影響 目的とする細胞に外来遺伝子を導入'発現させるには、 pDNAは標的となる細胞内 へ送達されるまでインタタトな状態に保たれる必要がある。一般に、 pDNAは血清に 含まれる DNA分解酵素(DNase)により速やかに分解されることから、 in vivoにおい て遺伝子を発現させるためには、 DNaseに対する安定性の確保が重要となる。そこ で、 DNaselに対する pDNAの安定性に及ぼす各種キャリアの影響について検討した 。 DNasel処理後のキャリア/ pDNA複合体は、 SDS添カ卩により解離させた後、 1%ァガ 口ースゲルで電気泳動を行つた。
[0085] 結果を図 13に示す。図 13では、チャージ比(キャリア/ pDNA)は 50とした。キャリア/ pDNA複合体は、 0.1unit/mLの DNaselを含む反応緩衝液中で 37°Cで 2時間インキュ ペートした。電気泳動は 100Vで 40分間行つた。
[0086] 図 13に示すように、チャージ比 50 (キャリア/ pDNA)において、デンドリマー(G3) > a -CDE結合体(G3)の順に pDNA由来のバンド強度が小さくなり、 Man- a - CDE 結合体(G3, DSM 10)では、 pDNAの残存は観察されなかった。このように、本実験 条件下において、 DNaselに対する pDNAの分解抑制効果は、デンドリマー(G3)〉 α -CDE結合体(G3) > Man- a -CDE結合体(G3, DSM 10)の順に低下することが示 された。
[0087] (5 - 3) Man- a -CDE結合体(G3)/プラスミド DNA複合体の粒子径および ζ -電位 遺伝子導入に際し、キャリア /pDNA複合体の粒子径および ζ -電位は重要な因子 である。また、複合体の荷電状態は、細胞への接着性や血清成分との非特異的な相 互作用、さらには粒子自体の水への溶解度にも影響を及ぼす。そこで、各キャリア/ ρ DNA複合体の粒子径および ζ -電位について検討した。
[0088] 表 2に示すように、チャージ比 50 (キャリア/ pDNA)にお!/、て、各キャリア/ pDNA複 合体の粒子径は、それぞれ約 400 nmであり、キャリア間に有意差は認められなかつ た。 一方、 ζ -電位はデンドリマー(G3) > a -CDE結合体(G3) > Man- a - CDE結 合体(G3, DSM 10)の順に低下し、それぞれ約 26、 13、 3 mVであった。これは、デ ンドリマー表面の 1級ァミノ基に a -CyDおよびマンノース残基を導入することにより、 結合体の正電荷が減少したためであると考えられる。
[0089] [表 2]
Mean α meter ζ-Potential
Carrier (nm) (mV)
Dendrimer
389.0 ± 13.1 26.0 ± 1.35
(G3)
*
a-CDE 390.0 ± 20.9 13.0 ± 0.26
(G3)
Man-a-CDE 409.3 ± 9.4 3.1 ± 0.17 (G3, DSM 10)
[0090] 各値は、 3回の実験の平均士標準誤差を示す。 *は p< 0. 05 (デンドリマーに対し て)、十字は P< 0. 05 ( a -CDE結合体に対して)
[0091] (5 -4)プラスミド DNAのコンパクションに及ぼす Man- a -CDE結合体(G3)の影 響
キャリア/ pDNA複合体中の pDNAのコンパクション状態は、遺伝子導入に影響を 与える因子の一つである。そこで、各キャリア/ pDNA複合体中の pDNAのコンパク シヨン状態について検討した。なお、 pDNAのコンパクションは、キャリア非添カ卩時の p DNAにインター力レートさせた EtBrの蛍光強度を 100%とし、キャリア添カ卩時の pD NAのコンパクションにより減少した EtBrの蛍光強度を測定することにより評価した。
[0092] 図 14は、キャリア/ pDNA複合体のコンパクション状態の測定結果を示す。図 14で は、 pDNA(1.0 μ g)、ェチジゥムブロマイド(1.0 μ g)及びキャリアを lmLの HBSSに各種 チャージ比で添加した。溶液を 25°Cで 15分間インキュベートし、蛍光( ex=510nm、 em=590nm)を蛍光分光計で測定した。各値は、 3回の実験の平均士標準誤差を 示す。
[0093] 図 14に示すように、デンドリマー(G3)および a - CDE結合体(G3)の添加により ρ DNAのコンパクションは、 PLLよりは低いものの、チャージ比(キャリア/ pDNA)依存 的に誘導され、チャージ比 10において EtBrの蛍光強度はそれぞれ約 60%および 75%程度まで低下した。一方、 Man- a - CDE結合体(G3, DSM 10)の添加による ρ DNAのコンパクションはみられなかった。
[0094] (6) Man- a -CDE結合体(G3)の遺伝子導入効率に及ぼす血清の影響
通常、遺伝子導入の際、血清が存在すると導入効率は低下することが知られている 。これは、キャリア/ pDNA複合体への血清タンパク質の非特異的な吸着により複合 体の細胞への会合量が減少することや、キャリア/ pDNA複合体の解離、血清中の D NA分解酵素による DNAの分解などに起因する。し力し、 in vivoにおいて遺伝子を 発現させるためには、血清存在時でも高!ヽ遺伝子導入効率を保持する必要がある。 そこで、 Man- a - CDE結合体(G3, DSM 10)の遺伝子導入効率に及ぼす血清の影 響を検討した。
[0095] 図 15は、 ΝΙΗ3Τ3細胞における FCS非存在下及び存在下におけるキャリア ZpDNA 複合体の遺伝子導入効率を示す。図 15では、細胞溶解物のルシフェラーゼ活性を インキュベーション 24時間後に測定した。チャージ比(キャリア/ DNA)は 50である。 各値は、 4〜12回の実験の平均士標準誤差を示す。 * p< 0.05 (デンドリマーと比 較して)、十字 p< 0.05 ( a -CDE結合体と比較して)
[0096] 図 15力ら分力、るように、 NIH3T3細胞において、 Man- a - CDE結合体(G3, DSM 1 0)の遺伝子導入効率は、デンドリマー(G3)および a - CDE結合体(G3)に比べて FCSの影響を受けにくかった。
[0097] 図 16は、遺伝子導入効率に及ぼす FCS濃度の影響を示す。図 16では、細胞溶 解物のルシフェラーゼ活性をインキュベーション 24時間後に測定した。デンドリマー/ pDNA、 a - CDE結合体/ pDNA、 Man- a - CDE結合体/ pDNA、及び Lipofectin™/pD NAのチャージ比は各々 50、 50、 50及び 1である。各値は、 4回の実験の平均士標 準誤差を示す。 * p< 0.05 (デンドリマーと比較して)、十字は p< 0.05 ( a - CDE結合 体と比較して)、米印 2個は、 p< 0.05 (Lipofectin™と比較して)
[0098] 図 16から分かるように、 Man- a -CDE結合体(G3, DSM 10)では、 30%FCS (+)条 件下においても、 FCS (-)条件下の約 80%の遺伝子導入効率を保持したのに対し て、デンドリマー(G3)、 α -CDE結合体(G3)および Lipofectin™による遺伝子導入 効率は、 50%以下に低下した。これらの結果より、 Man- a -CDE結合体(G3, DSM 1 0)の遺伝子導入効率は、他のキャリアに比べて血清の影響を受けにくいことが示唆 された。
[0099] (7) Man- a -CDE結合体(G3)の遺伝子導入効率に及ぼす oc -CyDの役割
Man- a -CDE結合体(G3, DSM 10)の高い遺伝子導入効率に a -CyDが寄与し ているか否かを確かめるため、デンドリマー(G3)にマンノース残基のみを結合させた マンノース-デンドリマー結合体(Man- dendrimer結合体) (G3, DSM 10)を調製し、 その遺伝子導入効率を Man- a - CDE結合体(G3, DSM 10)と比較した。
[0100] 結果を図 17に示す。図 17では、細胞溶解物のルシフェラーゼ活性をインキュベー シヨン 24時間後に測定した。培地には 10%FCSを添加した。チャージ比(キャリア/ p DNA)は 50である。各値は、 4回の実験の平均士標準誤差を示す。 * pく 0.05 (デ ンドリマーと比較して)、十字は p< 0.05 (Man-デンドリマーと比較して)、米印 2個は、 p< 0.05 ( a -CDE結合体と比較して)、
[0101] 図 17に示すように、 A549細胞、 NIH3T3細胞および HepG2細胞における Man- de ndrimer結合体(G3, DSM 10)の遺伝子導入効率は、デンドリマー(G3)に比べると 高い値を示した力 Man- a -CDE結合体(G3, DSM 10)よりは低い値を示した。 こ れらの結果より、 Man- a -CDE結合体(G3, DSM 10)の遺伝子導入効率改善効果 は、 Man- a -CDE結合体(G3, DSM 10)分子中のマンノース残基と a -CyDの相カロ 作用によるものと推察された。
[0102] (8)プラスミド DNAの細胞内取り込みに及ぼす Man- a -CDE結合体(G3)の影響
pDNAの細胞内取り込みにキャリア間で違いがあるか否かを確かめるため、 A549 細胞を用いて Alexaラベルイ匕 pDNA (Alexa- pDNA)と TRITCラベル化キャリア(TRI TC-キャリア)の細胞内取り込みを検討した。なお、本実験は TRITC-キャリア/ Alexa- pDNA複合体を細胞にトランスフエクシヨン 24時間後における細胞を回収し、 Alexa および TRITCの蛍光強度をフローサイトメトリーを用いて測定することにより評価した
[0103] 図 18では、細胞溶解物における Alexa-pDNA及び TRITCキャリアの蛍光強度をイン キュベーシヨン 24時間後にフローサイトメーターにより測定した。チャージ比(キャリア /pDNA)は 50である。図 19では、細胞溶解物における Alexa-pDNAの蛍光強度をィ ンキュベーシヨン 24時間後にフローサイトメーターにより測定した。チャージ比(キヤリ ァ /pDNA)は 50である。
[0104] 図 18に示すように、 Alexa-pDNAおよび TRITC-キャリアの細胞内取り込みに、キ ャリア間で差異はみられなかった。また、 Man- a - CDE結合体(G2, DSM 3.3)と Man - α -CDE結合体(G3, DSM 10)間にも、 Alexa-pDNAの細胞内取り込みに差異は 認められなかった(図 19)。
[0105] さらに図 20は、 A549細胞への Alexa- pDNA/TRITC- Man- a -CDE結合体(G3, DS M10)の細胞内取り込みに対するマンナン及びデキストランの影響を示す。図 20では 、細胞溶解物における Alexa-pDNA及び TRITCキャリアの蛍光強度をインキュベーシ ヨン 24時間後にフローサイトメーターにより測定した。マンナン及びデキストランの濃 度は、 0.5mg/mLであった。チャージ比(キャリア/ pDNA)は 50である。図 20に示すよ うに、 A549細胞における TRTIC- Man- α - CDE結合体(G3, DSM 10)および Alexa -pDNAの細胞内取り込みに、マンナンおよびデキストランは影響を与えなかった。
[0106] これらの結果より、 A549細胞において、 Man- a - CDE結合体(G3, DSM 10)/pDN A複合体の細胞内取り込みには、細胞表面におけるマンノース特異的な認識機構の 関与は低いことが示唆された。
[0107] (9) Man- a -CDE結合体(G3)の遺伝子導入効率に及ぼすマンナンの影響
Man- a -CDE結合体(G3, DSM 10)の遺伝子導入効率に及ぼすマンナンの影響 を検討するため、マンナンおよびマンノースを用いて競合阻害実験を行った。
[0108] 結果を図 21に示す。図 21では、細胞溶解物のルシフェラーゼ活性をインキュベー シヨン 24時間後に測定した。チャージ比(キャリア/ pDNA)は 50である。競合物質の 存在下/非存在下におけるルシフェラーゼ活性の比率を計算した。各種糖の濃度は 0. 5mg/mLである。各値は、 4回の実験の平均士標準誤差を示す。 * p< 0.05 (対 照と比較して)
[0109] 図 21に示すように、 A549細胞におけるデンドリマー(G3)および a - CDE結合体( G3)/pDNA複合体の遺伝子導入効率は、マンナンおよびマンノースの影響をほとん ど受けなかったものの、 Man- a - CDE結合体(G3, DSM 10)/pDNA複合体の遺伝 子導入効率は、マンナンおよびマンノース処理によりそれぞれ約 40%および 50%に 低下した。 また、デキストランおよびガラクトースは阻害効果を示さな力つた。 これら の結果は、 pDNAの細胞内取り込み実験とは異なり、 A549細胞における Man- a - C DE結合体(G3, DSM 10)の遺伝子導入効率改善効果に、結合体中のマンノース分 子を認識する機構の関与を示唆するものである。
[0110] そこで、 A549細胞表面と各キャリア/ pDNA複合体の相互作用に及ぼすマンナン の影響を明らかにするため、細胞内取り込みが起こらない 4°Cにおいて遺伝子導入 実験を行った。 なお実験は、 4°Cにおいてマンナンまたはデキストラン共存下、各キ ャリア/ pDNA複合体を細胞へ添加 1時間後、細胞表面に結合していないキャリアを 洗浄し、 37°Cで 23時間培養することにより行った。
[0111] 結果を図 22に示す。図 22では、チャージ比(キャリア/ pDNA)は 50である。競合物 質の存在下/非存在下におけるルシフェラーゼ活性の比率を計算した。マンナン及 びデキストランの濃度は 0. 5mg/mLである。各値は、 4〜7回の実験の平均士標準誤 差を示す。
[0112] 図 22に示すように、デンドリマー(G3)、 α -CDE結合体(G3)および Man- a - CDE 結合体(G3, DSM 10)と pDNAとの複合体の遺伝子導入効率は、マンナンおよび デキストランの影響をほとんど受けず、すべてのキャリアにおいてコントロール、マン ナンおよびデキストラン処理間で有意差は認められな力つた。これは、前述した A549 細胞における Man- a - CDE結合体(G3, DSM 10)の遺伝子導入効率改善効果に 、細胞表面におけるマンノース認識機構の関与は低いという結果を支持するとともに 、細胞内マンノース'マンナン認識レクチンの関与を示唆するものである。
[0113] (lO) Man- a -CDE結合体(G3)の遺伝子導入効率に及ぼす核移行性の影響
( 10- 1) Man- α -CDE結合体(G3)/プラスミド DNA複合体の核移行性 上記において、 Man- a - CDE結合体(G3, DSM 10)/pDNA複合体の細胞内取り 込みは、デンドリマー(G3)/pDNAおよび α -CDE結合体(G3)/pDNA複合体と顕著 な差異が認められないことが明らかになった。また、 Man- a - CDE結合体(G3, DSM 10)/pDNA複合体の遺伝子導入効率に、細胞表面におけるマンノース認識機構の 関与は低いことが示唆された。
[0114] 1993年に初めてグルコース修飾 BSAが核に集積するという結果が得られてから、 その他の糖も核膜レクチンによって認識され、 nuclear targeting signal (NTS)として 働く可能性が報告されてきた。そのため、 Man- a -CDE結合体(G3, DSM 10)/pDN A複合体も、マンノースを特異的に認識するレクチンを介して核内へ移行する可能 性が考えられる。そこで、 Man- a - CDE結合体(G3, DSM 10)の核移行性について 検討した。
[0115] 図 23は、 TRITC- a - CDE結合体(G3)および TRITC- Man- a - CDE結合体(G3,
DSM 10)/Alexa-pDNA複合体を A549細胞へ添加 24時間後に共焦点レーザー 顕微鏡で観察した結果を示す。チャージ比(キャリア/ pDNA)は 50である。
[0116] 図 23から明らかなように、 TRITC- α -CDE結合体(G3)および Alexa-pDNAは核 周辺に局在したのに対し、 TRITC-Man- α - CDE結合体(G3, DSM 10)および Alex a-pDNAは、核内での局在が観察された。これらの結果は、核にマンノースを認識し て取り込む機構が存在すること、さらにマンノースが NTSとして働く可能性を示唆す る。
[0117] (10— 2)核移行性に及ぼすマンナンの影響
細胞内へマンナンを直接導入できる HVJ- E vectorを用いて、 TRITC- Man- a -CD
E結合体(G3, DSM 10)の核への集積に対するマンナンの影響を検討した。
[0118] 図 24は、細胞を共焦点レーザー顕微鏡で観察した結果である。チャージ比(キヤリ ァ /pDNA)は 50であり、インキュベーション時間は 24時間である。 HVJ-E vectorによ る前処理時間は 0. 5時間である。培地中におけるマンナン及びデキストランの濃度 は 15mg/mLで ¾>る。
[0119] 図 24Aに示すように、 TRITC- α -CDE結合体(G3)は核周辺に局在し、その局在 はマンナン封入 HVJ- E vectorおよびデキストラン封入 HVJ- E vector添カ卩によって 変化しなかった。 一方、 TRITC-Man- a - CDE結合体(G3, DSM 10)は核へ集積し 、その集積はマンナン封入 HVJ-E vector添カ卩により抑制された力 デキストラン封 入 HVJ-E vectorは影響を与えなかった(図 24B)。これらの結果は、核にマンノース を認識して取り込む機構が存在することを示して ヽる。
産業上の利用可能性
[0120] 本発明のシクロデキストリンとジェネレーションが 3であるデンドリマー(G3)との結合 体であって糖で修飾されている結合体を用いることにより、血清の存在下においても 細胞内に遺伝子を効率よく導入することができる。本発明の遺伝子導入剤は、生命 科学分野において広く利用することができる。
図面の簡単な説明
[0121] [図 1]図 1は、本発明で用いることができるシクロデキストリン'デンドリマー結合体の構 造の一例を示す。
[図 2]図 2は、 A549細胞における Man- a - CDE結合体(G3, DSM 10)の遺伝子導入 効率に及ぼすチャージ比(Carrier/pDNA)の影響を示す。
[図 3]図 3は、 A549細胞における Man- a - CDE結合体(G2又は G3)/pDNAの複合体 の遺伝子導入効率を示す。
[図 4]図 4は、 A549細胞における血清存在下におけるデンドリマー(G3)、 a - CDE結 合体(G3)、及び Man- a - CDE結合体(G3、 DSM10)と pDNAとの複合体の遺伝子導 入効率を示す。
[図 5]図 5は、 A549細胞における各種キャリア (G3)ZpDNA複合体の遺伝子導入効 率に対する血清の影響を示す。
[図 6]図 6は、 NR8383細胞における各種キャリア(G3)ZpDNA複合体の遺伝子導入 効率に対する血清の影響を示す。
[図 7]図 7は、 HepG2細胞における各種キャリア (G3)ZpDNA複合体の遺伝子導入効 率に対する血清の影響を示す。
[図 8]図 8は、 A549細胞における各種投入比率における Man- a - CDE結合体(G2,G3 ) /pDNA複合体の遺伝子導入効率を示す。
[図 9]図 9は、 A549細胞 (A)及び NIH3T3細胞 (B)における FCS存在下におけるキヤリ ァ /pDNA複合体の遺伝子導入効率を示す。
[図 10]図 10は、 A549細胞における各種キャリア ZpDNA複合体の遺伝子導入効率 を示す。
[図 11]図 11は、 A549細胞 (A)及び NIH3T3細胞 (B)における各種キャリア/ pDNA複合 体の細胞傷害性を示す。
[図 12]図 12は、キャリア/ pDNA複合体のァガロースゲル電気泳動分析を示す。
[図 13]図 13は、 DNaselで処理した pDNAの電気泳動移動度に対するキャリアの影響 を示す。
[図 14]図 14は、キャリア/ pDNA複合体のコンパクション状態の測定結果を示す。
[図 15]図 15は、 NIH3T3細胞における FCS非存在下及び存在下におけるキャリア Zp DNA複合体の遺伝子導入効率を示す。
[図 16]図 16は、 A549細胞における各種濃度の FCSにおけるキャリア ZpDNA複合体 の遺伝子導入効率を示す。
[図 17]図 17は、 A549細胞(A)、 NIH3T3細胞(B)、及び HepG2細胞 (C)における FCS 存在下における各種キャリア ZpDNA複合体の遺伝子導入効率を示す。
[図 18]図 18は、 A549細胞への Alexa-pDNA/TRITC-キャリアの細胞内取り込みを示 す。
[図 19]図 19は、 A549細胞への Man- α - CDE結合体(G2,G3) /Alexa- pDNA複合体の 細胞内取り込みを示す。
[図 20]図 20は、 A549細胞への Alexa-pDNA/TRITC- Man- a -CDE結合体(G3, DS M10)の細胞内取り込みに対するマンナン及びデキストランの影響を示す。
[図 21]図 21は、 Α549細胞における各種糖の非存在下及び存在下におけるデンドリ マー (G3) (A)、 a - CDE結合体(G3) (B)、及び Man- a - CDE結合体(G3,DSM10) (C) の pDNA複合体の遺伝子導入効率を示す。
[図 22]図 22は、 A549細胞におけるマンナン及びデキストランの非存在下及び存在下 におけるデンドリマー (G3) (A)、 a -CDE結合体(G3) (B)、及び Man- a -CDE結合体( G3.DSM10) (C)の pDNA複合体の遺伝子導入効率を示す。
[図 23]図 23は、 A549細胞への TRITIC- a - CDE結合体(G3) (A)又は TRITIC- Man- a -CDE結合体(G3, DSM10) (B)/Alexa-pDNA複合体の核移行性を示す。
[図 24]図 24は、 A549細胞への、マンナン/ HVJ-Eベクター又はデキストラン/ HVJ-E ベクターで処理した後の TRITIC- a -CDE結合体(G3) (A)又は TRITIC- Man- a -CD E結合体(G3, DSM10) (B)/Alexa-pDNA複合体の核移行性を示す。

Claims

請求の範囲
[1] シクロデキストリンとジェネレーション 3のデンドリマー(G3)との結合体であって、さら に糖で修飾されて 、る上記結合体。
[2] シクロデキストリン力 aーシクロデキストリンである、請求項 1記載の結合体。
[3] 糖がマンノース又はガラクトースである、請求項 1又は 2に記載の結合体。
[4] シクロデキストリンとジェネレーション 3のデンドリマー(G3)との結合体であって、さら に糖で修飾されている上記結合体からなる遺伝子導入剤。
[5] シクロデキストリン力 a—シクロデキストリンである、請求項 4記載の遺伝子導入剤。
[6] 糖がマンノース又はガラクトースである、請求項 4又は 5に記載の遺伝子導入剤。
[7] 導入すべき遺伝子と、シクロデキストリンとジェネレーション 3のデンドリマー(G3)との 結合体であって、さらに糖で修飾されている上記結合体とを細胞ともにインキュベー シヨンすることを含む、細胞に遺伝子を導入する方法。
[8] シクロデキストリン力 a—シクロデキストリンである、請求項 7に記載の方法。
[9] 糖がマンノース又はガラクトースである、請求項 7又は 8に記載の方法。
[10] 血清の存在下で細胞に遺伝子を導入する、請求項 7から 9の何れかに記載の方法。
PCT/JP2006/303669 2005-02-28 2006-02-28 遺伝子導入剤 WO2006093108A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007505934A JP5092123B2 (ja) 2005-02-28 2006-02-28 遺伝子導入剤

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-052650 2005-02-28
JP2005052650 2005-02-28

Publications (1)

Publication Number Publication Date
WO2006093108A1 true WO2006093108A1 (ja) 2006-09-08

Family

ID=36941137

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/303669 WO2006093108A1 (ja) 2005-02-28 2006-02-28 遺伝子導入剤

Country Status (2)

Country Link
JP (1) JP5092123B2 (ja)
WO (1) WO2006093108A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120115962A1 (en) * 2010-10-18 2012-05-10 Rutgers, The State University Of New Jersey Cyclodextrin-modified polyamines for delivery of therapeutic molecules
CN110420198A (zh) * 2019-08-15 2019-11-08 南华大学 靶向动脉粥样硬化巨噬细胞树状纳米载体系统及制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105199400A (zh) * 2015-09-25 2015-12-30 东华大学 一种β-环糊精修饰的聚酰胺-树状大分子及其纳米金颗粒复合物的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07313191A (ja) * 1994-03-14 1995-12-05 Fund Inst De Biologia Y Medicina Experimental ほ乳類の精子細胞の受精能力を評価する方法および装置
JPH11290073A (ja) * 1998-04-16 1999-10-26 Ajinomoto Co Inc 肝細胞特異的に遺伝子導入可能な糖修飾ペプチド誘導体、その製造法及びそれを含む医薬組成物
JP2001103969A (ja) * 1999-10-08 2001-04-17 Nippon Shokuhin Kako Co Ltd サイクロデキストリン・デンドリマー結合体及びその使用
JP2003231748A (ja) * 2001-11-28 2003-08-19 Keio Gijuku 医用高分子及びその用途
JP2004026866A (ja) * 2002-06-21 2004-01-29 Tetsuji Yamaoka 遺伝子送達用担体

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07313191A (ja) * 1994-03-14 1995-12-05 Fund Inst De Biologia Y Medicina Experimental ほ乳類の精子細胞の受精能力を評価する方法および装置
JPH11290073A (ja) * 1998-04-16 1999-10-26 Ajinomoto Co Inc 肝細胞特異的に遺伝子導入可能な糖修飾ペプチド誘導体、その製造法及びそれを含む医薬組成物
JP2001103969A (ja) * 1999-10-08 2001-04-17 Nippon Shokuhin Kako Co Ltd サイクロデキストリン・デンドリマー結合体及びその使用
JP2003231748A (ja) * 2001-11-28 2003-08-19 Keio Gijuku 医用高分子及びその用途
JP2004026866A (ja) * 2002-06-21 2004-01-29 Tetsuji Yamaoka 遺伝子送達用担体

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120115962A1 (en) * 2010-10-18 2012-05-10 Rutgers, The State University Of New Jersey Cyclodextrin-modified polyamines for delivery of therapeutic molecules
US8697667B2 (en) * 2010-10-18 2014-04-15 Rutgers, The State University Of New Jersey Cyclodextrin-modified polyamines for delivery of therapeutic molecules
CN110420198A (zh) * 2019-08-15 2019-11-08 南华大学 靶向动脉粥样硬化巨噬细胞树状纳米载体系统及制备方法
CN110420198B (zh) * 2019-08-15 2021-06-08 南华大学 靶向动脉粥样硬化巨噬细胞树状纳米载体系统及制备方法

Also Published As

Publication number Publication date
JPWO2006093108A1 (ja) 2008-08-07
JP5092123B2 (ja) 2012-12-05

Similar Documents

Publication Publication Date Title
JP7100629B2 (ja) 化学修飾されたカプシドを有するraav
US7358223B2 (en) Biodegradable cationic polymers
Uritu et al. Hybrid fullerene conjugates as vectors for DNA cell-delivery
Sun et al. Synthesis and evaluation of pH-sensitive multifunctional lipids for efficient delivery of CRISPR/Cas9 in gene editing
KR100751105B1 (ko) 작용화된 폴리알킬렌이민의 제조방법, 이를 함유하는조성물 및 이의 용도
US7521433B2 (en) Gene carriers with the use of polysaccharide and process for producing the same
WO2012082483A2 (en) Multifunctional linkers and methods for the use thereof
Chen et al. Galactose-poly (ethylene glycol)-polyethylenimine for improved lung gene transfer
JP5092123B2 (ja) 遺伝子導入剤
CN108753830B (zh) 萘酰亚胺修饰的树形高分子转基因载体、其制备方法及应用
CN108753829B (zh) 骨靶向肽与萘酰亚胺修饰的树形高分子转基因载体、其制备方法及应用
AU2020398192A1 (en) Peptide docking vehicle for targeted nucleic acid delivery
KR100427259B1 (ko) 양이온성 고분자 물질과 막활성 물질을 이용한 새로운 유전자 전달 복합체
Patnaik et al. Engineered PEI-piperazinyl nanoparticles as efficient gene delivery vectors: evidence from both in vitro and in vivo studies
JP4649571B2 (ja) 細胞にrnaを導入する方法
WO2023220454A1 (en) Conjugated composition and method for delivering a therapeutic nucleic acid sequence to a living cell
JP2003529633A (ja) 機能的ポリアルキレンイミンの製造方法、前記化合物を含む組成物及びその使用
CN117695405A (zh) 一种包裹核酸药物的多肽递送系统及其应用
CN116199666A (zh) 两亲性化合物及其药物组合物
JP2011103811A (ja) 肝実質細胞に特異的なrnaデリバリー試薬
JP2001103969A (ja) サイクロデキストリン・デンドリマー結合体及びその使用
CN102181464A (zh) 一种改性葡聚糖转基因载体及其制备方法与应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2007505934

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06714806

Country of ref document: EP

Kind code of ref document: A1