WO2006092353A1 - Verfahren und vorrichtung zum ermitteln eines korrekturwertes zum beeinflussen eines luft/kraftstoff-verhältnisses - Google Patents

Verfahren und vorrichtung zum ermitteln eines korrekturwertes zum beeinflussen eines luft/kraftstoff-verhältnisses Download PDF

Info

Publication number
WO2006092353A1
WO2006092353A1 PCT/EP2006/050741 EP2006050741W WO2006092353A1 WO 2006092353 A1 WO2006092353 A1 WO 2006092353A1 EP 2006050741 W EP2006050741 W EP 2006050741W WO 2006092353 A1 WO2006092353 A1 WO 2006092353A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
value
air
injection valve
fuel ratio
Prior art date
Application number
PCT/EP2006/050741
Other languages
English (en)
French (fr)
Inventor
Reza Aliakbarzadeh
Manfred Klepatsch
Original Assignee
Siemens Vdo Automotive Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Vdo Automotive Ag filed Critical Siemens Vdo Automotive Ag
Priority to KR1020077022345A priority Critical patent/KR101230556B1/ko
Priority to US11/885,267 priority patent/US7676317B2/en
Publication of WO2006092353A1 publication Critical patent/WO2006092353A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D41/2096Output circuits, e.g. for controlling currents in command coils for controlling piezoelectric injectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/008Controlling each cylinder individually
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2454Learning of the air-fuel ratio control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2477Methods of calibrating or learning characterised by the method used for learning
    • F02D41/248Methods of calibrating or learning characterised by the method used for learning using a plurality of learned values
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/32Controlling fuel injection of the low pressure type
    • F02D41/34Controlling fuel injection of the low pressure type with means for controlling injection timing or duration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/08Exhaust gas treatment apparatus parameters
    • F02D2200/0802Temperature of the exhaust gas treatment apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2464Characteristics of actuators
    • F02D41/2467Characteristics of actuators for injectors

Definitions

  • the invention relates to a method and a device for determining a correction value for influencing an air / fuel ratio in a respective cylinder of an internal combustion engine having a plurality of cylinders, the injection valves associated with cylinders which meter fuel and an exhaust gas probe arranged in an exhaust tract and whose measurement signal is characteristic of the air / fuel ratio in the respective cylinder.
  • a method for an internal combustion engine having a plurality of cylinders for the cylinder-selective control of an air / fuel mixture to be combusted is known in which the lambda values for different cylinders or cylinder groups are sensed and regulated separately.
  • a probe evaluation unit is provided, in which a time-resolved evaluation of the exhaust gas probe signal takes place, and thus a cylinder-selective lambda value is determined for each cylinder of the internal combustion engine.
  • Each cylinder is associated with a single controller, which is designed as a PI or PID controller, whose controlled variable is a cylinder-specific lambda value and whose reference variable is a cylinder-specific desired value of the lambda.
  • the manipulated variable of the respective controller then influences the injection of the fuel in the respective associated cylinder.
  • the object of the invention is to provide a method and a device for determining a correction value for influencing an air / fuel ratio, which enables a precise determination of the correction value and thus enables a precise control of an internal combustion engine.
  • the invention is characterized by a method and a corresponding device for determining a correction value for influencing an air / fuel ratio in a respective cylinder of an internal combustion engine with several cycles. alleviate, relieve.
  • the cylinders are assigned injectors that meter fuel.
  • An exhaust gas probe is arranged in an exhaust tract. Their measurement signal is characteristic of the air / fuel ratio in the respective cylinder.
  • the measurement signal is detected and assigned to the respective cylinder.
  • a controller value for influencing the air / fuel ratio in the respective cylinder is determined as a function of the measured signal detected for the respective cylinder.
  • a first adaptation value is determined depending on the controller value.
  • a second adaptation value is determined depending on the controller value.
  • the correction value for influencing the air / fuel ratio in the respective cylinder is determined as a function of the first and / or second adaptation value as a function of the temperature that is representative of the temperature of the respective injection valve.
  • the first and second temperature ranges preferably do not have a common overlap area.
  • the temperature may be, for example, an injection valve temperature or a coolant temperature.
  • the correction value valid for the respective cylinder can thus be determined very precisely, which is particularly advantageous in particular when injection characteristics of the different injection valves change depending on the temperature of the respective injection valve. This is particularly relevant in connection with injectors with piezo actuators.
  • an upper temperature limit of the first temperature range is smaller than a catalyst start temperature value of the temperature which is representative of the temperature of the respective injection valve, wherein the catalyst start temperature value is characteristic for a temperature-related operational readiness of the catalytic converter.
  • the catalyst start temperature value of the temperature, which is representative of the temperature of the respective injection valve is thus representative of the temperature of the respective injection valve when the operational readiness of the catalytic converter is reached.
  • This can have a particularly advantageous effect on pollutant emissions produced by the internal combustion engine during cold operation and thus contribute greatly to reducing emissions, since, when the internal combustion engine is still cold, there is no or only insignificant convergence. tion of pollutants can be done by the catalytic converter of the engine.
  • the correction value is determined by predetermined weighting of the first and second adaptation value if the temperature which is representative of the temperature of the respective injection valve lies between the first and second temperature ranges.
  • the correction value can also be determined very precisely between the first and second temperature ranges given a suitable specification of the weighting.
  • a third or further adaptation values are determined as a function of the controller value.
  • the correction value for influencing the air / fuel ratio in the respective cylinder is then determined as a function of the third and / or further adaptation values as a function of the temperature which is representative of the temperature of the respective injection valve. If necessary, an even more precise determination of the correction value can take place in this way.
  • an upper temperature limit of the third or further temperature ranges is smaller than the catalyst start temperature value of the temperature, which is representative of the temperature of the respective injection valve. In this way, especially when the correction value for controlling an internal combustion engine is used, the pollutant emissions are very clearly reduced.
  • FIG. 2 is a block diagram of the control device
  • FIGS 3 and 4 are flowcharts of programs that are executed in the control device.
  • FIG. 5 shows a temperature-dependent profile of first and second weighting values.
  • An internal combustion engine (FIG. 1) comprises an intake tract 1, an engine block 2, a cylinder head 3 and an exhaust tract 4.
  • the intake tract 1 preferably comprises a throttle valve 5, furthermore a collector 6 and an intake manifold 7, which leads to a cylinder Z1 via an intake passage is guided in the engine block 2.
  • the engine block 2 further includes a crankshaft 8, which is coupled via a connecting rod 10 with the piston 11 of the cylinder Zl.
  • the cylinder head 3 comprises a valve drive with a gas inlet valve 12 and a gas outlet valve 13.
  • the cylinder head 3 further comprises an injection valve 18 and an ignition valve. candle 19.
  • the injection valve 18 may be arranged in the suction pipe 7.
  • an exhaust gas catalyst is arranged, which is designed as a three-way catalyst 21. Furthermore, a further exhaust gas catalytic converter, which is designed as a NOx catalytic converter 23, is preferably arranged in the exhaust gas tract.
  • a control device 25 is provided which is associated with sensors which detect different measured variables and in each case determine the value of the measured variable.
  • the control device 25 determines dependent on at least one of the measured variables manipulated variables, which are then converted into one or more actuating signals for controlling the actuators by means of corresponding actuators.
  • the control device 25 may also be referred to as a device for controlling the internal combustion engine or as a device for determining a correction value.
  • the sensors are a pedal position sensor 26, which detects an accelerator pedal position of an accelerator pedal 27, an air mass sensor 28, which detects an air mass flow upstream of the throttle valve 5, a first temperature sensor 32, which detects an intake air temperature, a Saugrohr horrsen- sensor 34, which an intake manifold pressure in the collector 6 detects a crankshaft angle sensor 36, which detects a crankshaft angle, which then a speed N is assigned. Furthermore, a second temperature sensor 38 is provided which detects a coolant temperature TCO. In addition, in the injection valve 18, a further temperature sensor may be arranged, which detects the injection valve temperature. If the injection valve 18 comprises a piezo actuator, then this can form the further temperature sensor.
  • a first exhaust gas probe 42 is provided, which is arranged upstream of the three-way catalytic converter 21 and which detects a residual oxygen content of the exhaust gas and whose measurement signal MS1 is characteristic for the air / fuel ratio in the combustion chamber of the cylinder Zl and upstream first exhaust gas probe before the oxidation of the fuel , hereinafter referred to as the air / fuel ratio in the cylinders Zl - Z4.
  • a second exhaust gas probe 43 is provided, which is arranged downstream of the three-way catalytic converter 21 and which detects a residual oxygen content of the exhaust gas and whose measurement signal is characteristic for the air / fuel ratio in the combustion chamber of the cylinder Zl and upstream of the second exhaust gas probe 43 before the oxidation of the Fuel, hereinafter referred to as the air / fuel ratio downstream of the catalytic converter.
  • the first exhaust gas probe 42 is preferably a linear lambda probe.
  • the second exhaust gas probe 43 is a binary lambda probe. However, it can also be a linear lambda probe.
  • any subset of said sensors may be present, or additional sensors may be present.
  • the actuators are, for example, the throttle valve 5, the gas inlet and gas outlet valves 12, 13, the injection valve 18 or the spark plug 19.
  • a block Bl corresponds to the internal combustion engine.
  • a block B2 is supplied with the measurement signal MS1 emitted by the exhaust gas probe 42.
  • the reference position of the respective piston 11 is preferably its top dead center.
  • a mean air / fuel ratio LAM_MW is determined by averaging the cylinder-individually detected air / fuel ratio LAM_I [Z1-Z4]. Furthermore, a cylinder-specific air / fuel ratio deviation D_LAM_I [Z1-Z4] is determined in the block B3. This is then fed to a block B4.
  • the block B4 comprises a regulator whose output is a regulator value RW [Z1-Z4] for influencing the air / fuel ratio in the respective cylinder Z1-Z4.
  • the controller comprises an integral component, but it may also comprise a so-called I-component or proportional component.
  • the controller of block B4 can also be referred to as a cylinder-specific lambda controller.
  • a block B5 is designed to determine a first, second or further adaptation values AD1 [Z1-Z4], AD2 [Z1-Z4], ADX [Z1-Z4] depending on a temperature which is representative of the temperature of the respective injection valve 18. Preferred is as the temperature which is representative for the temperature of the respective injection valve 18, the injection valve temperature TE is supplied to the block B5. Alternatively, for example, the coolant temperature TCO may also be supplied to block B5 for this purpose.
  • the block B5 comprises a program, which is explained in more detail below with reference to FIG.
  • a block B6 is designed to determine a correction value LAM FAC I [Z1-Z4], specifically as a function of the first, second or further adaptation value AD1 [Z1-Z4], AD2 [Z1-Z4], ADX [Z1-Z4]. , the temperature which is representative of the temperature of the respective injection valve 18 and optionally the controller value RW [Z1-Z4].
  • the block B6 preferably comprises a program, which is explained in greater detail below with reference to FIG.
  • a lambda controller is provided whose command variable is an air / fuel ratio LAM SP predetermined for all cylinders Z1-Z4 of the internal combustion engine and whose controlled variable is the average air / fuel ratio LAM MW.
  • the manipulated variable of the lambda controller is a lambda control factor LAM_FAC_ALL.
  • the lambda controller thus has the task that, viewed over all cylinders of the internal combustion engine, the predetermined air / fuel ratio is set.
  • block B8 can be omitted.
  • a fuel mass MFF to be metered is determined as a function of an air mass flow MAF into the respective cylinder Z1-Z4 and optionally the rotational speed N and the air / fuel ratio LAM_SP predetermined for all cylinders of the internal combustion engine.
  • a corrected fuel quantity MFF COR to be metered is determined by multiplying the fuel mass MFF to be metered, the lambda control factor LAM_FAC_ALL and the correction value LAM_FA_I [Z1-Z4].
  • an actuating signal is then generated with which the respective injection valve 18 is actuated.
  • control structures B_Z2 to B_Z4 for the respective further cylinders Z2 to Z4 are provided for each further cylinder Z1-Z4.
  • a program for block B5 is started in a step S1 (see FIG. 3) in which variables can be initialized, if necessary.
  • a step S2 it is checked whether there is a quasi-stationary operating state ST as the operating state BZ of the internal combustion engine.
  • the quasi-stationary operating state ST can be present, for example, when the rotational speed N is only subject to predetermined small fluctuations, wherein in this context it is crucial that respective exhaust gas packets, caused by the combustion of the air / fuel mixture in the respective cylinders Z1-Z4, based the measurement signal MS of the first exhaust gas probe 42 with sufficient accuracy turi the respective cylinder Z1-Z4 can be assigned.
  • step S4 the processing is continued in a step S4, in which the program pauses for a predefined waiting time period TW or remains for a predetermined crankshaft angle range, before the processing is continued again in step S2.
  • step S6 it is checked in a step S6 whether the injection valve temperature TE lies in a first temperature range TB1.
  • the first temperature range TB1 is set such that its upper temperature limit value is smaller than a catalyst start temperature value of the injection valve temperature. If the condition of step S6 is fulfilled, then in a step S8 the first adaptation value AD1 [Z1-Z4] is determined as a function of the current controller value RW [Z1]. This can be done, for example, with the calculation rule specified in step S8, where e denotes a renewal factor, which is preferably smaller than 1 in terms of magnitude.
  • step S6 it is checked in a step S10 whether the current injection valve temperature TE is within a second temperature range TB2.
  • a lower temperature limit of the second temperature range TB2 is preferably set to be larger than the catalyst start temperature value.
  • the second temperature range may include the entire temperature range of the possible operating temperatures, which is greater than the lower temperature limit. If the condition of step S10 is met, the second adaptation value AD2 [Z1] is determined in a step S12 as a function of the current controller value RW [Z1]. This is done, for example, according to the procedure of step S8. Subsequently, the processing is continued in step S4.
  • step S10 If the condition of step S10 is not fulfilled, either the processing in step S4 can be continued or an additional step S14 can be provided, in which it is checked whether the current injection valve temperature TE is within a further temperature range. If the condition of step S14 is then not met, the processing in step S4 is continued. If, on the other hand, the condition of step S14 is fulfilled, the current controller value RW [Z1] is assigned to the further adaptation values ADX [Z1] in accordance with the procedure of step S8 in a step S16.
  • a program for the block B6 is started in a step S20 (FIG. 4) in which variables can be initialized if necessary.
  • a step S22 it is checked whether the current injection valve temperature TE is in the first temperature range TBl. If this is the case, an adaptation value AD [Z1-Z4] is assigned the first adaptation value AD [Z1] in a step S24. If, on the other hand, the condition of step S22 is not satisfied, it is checked in a step S26 whether the injection valve temperature TE lies in the second temperature range TB2. If this is the case, the second adaptation value AD2 [Z1] is assigned to the adaptation value AD [Z1] in a step S28.
  • step S26 If, on the other hand, the condition of step S26 is not fulfilled, the sum of a first and second term is assigned to the adaptation value AD [Z1] in a step S30, the first term being the product of a first weighting value W1 and first adaptation value AD1 [Z1] and the second term is the product of the second weighting value W2 and the second adaptation value AD2 [Zl].
  • the injector temperature TE is out of both the first and second temperature ranges TB1, TB2 but between the first and second temperature ranges TB1, TB2.
  • the first and second weighting values w1, w1 are preferably predefined as a function of the respective temperature, which is representative of the temperature of the respective injection valve, that is, for example, the injection valve temperature TE or, as shown in FIG. 5, the coolant temperature TCO.
  • the injection valve temperature TE is then replaced by the coolant temperature TCO in steps S6, Sl0, S14, S22 and S26.
  • a step S32 the correction value LAM_FAC_I [Z1] is subsequently determined. This takes place as a function of the adaptation value AD [Z1] and preferably also as a function of the controller value RW [Z1]. For example, however, very early in a start of the internal combustion engine, in which the exhaust gas probe 42 is not ready, the calculation in step S32 independently of the controller value RW [Zl] done. For example, in the step S22 the adaptation value AD [Z1] and the controller value RW [Z1] can be added.
  • the program then remains for the given waiting time T_W or the predetermined crankshaft angle. Blocks B5 and B6 thus ensure compliance with strict emission limit values, in particular during cold starting. In addition, however, an improvement in the driving behavior of the internal combustion engine in the cold engine operating state can be achieved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

Eine Brennkraftmaschine hat mehrere Zylinder (Z1-Z4), den Zylindern (Z1-Z4) zugeordnete Einspritzventile (18), die Kraftstoff zumessen und eine Abgassonde (42, 43) die in einem Abgastrakt (4) angeordnet ist, und deren Messsignal (MS) charakteristisch ist für das Luft/Kraftstoff-Verhältnis in dem jeweiligen Zylinder (Z1-Z4). Zu einem vorgegebenen Abtast-Kurbelwellenwinkel (CRK SAMP) bezogen auf eine Bezugsposition des Kolbens des jeweiligen Zylinders (Z1-Z4) wird das Messsignal (MS) erfasst und dem jeweiligen Zylinder (Z1-Z4) zugeordnet. Mittels jeweils eines Reglers wird ein Reglerwert (RW[Z1-Z4]) zum Beeinflussen des Luft/Kraftstoff-erhältnisses in dem jeweiligen Zylinder (Z1-Z4) abhängig von dem für den jeweiligen Zylinder erfassten Messsignal (MS) ermittelt. Bei einem Erfülltsein vorgegebener erster Bedingungen, die einen vorgegebenen ersten Temperaturbereich (TB1) einer Temperatur einschließen, die repräsentativ ist für eine Temperatur des jeweiligen Einspritzventils (18), wird ein erster Adaptionswert (AD[Z1-Z4]) abhängig von dem Reglerwert (RW[Z1-Z4]) ermittelt. Bei einem Erfülltsein vorgegebener zweiter Bedingungen, die einen zweiten Temperaturbereich (TB2) der Temperatur einschließen, die repräsentativ ist für die Temperatur des jeweiligen Einspritzventils (18), wird ein zweiter Adaptionswert (AD2[Z1-Z4]) abhängig von dem Regler- wert (RW[Z1-Z4]) ermittelt. Der Korrekturwert (LAM FAC I[Z1- Z4]) zum Beeinflussen des Luft/Kraftstoff-Verhältnisses in dem jeweiligen Zylinder (Z1-Z4) wird abhängig von dem ersten und/oder zweiten Adaptionswert (AD1[Z1-Z4], AD2[Z1-Z4]) abhängig von der Temperatur ermittelt, die repräsentativ ist für die Temperatur des jeweiligen Einspritzventils (18).

Description

Beschreibung
Verfahren und Vorrichtung zum Ermitteln eines Korrekturwertes zum Beeinflussen eines Luft/Kraftstoff-Verhältnisses
Die Erfindung betrifft ein Verfahren und eine Vorrichtung zum Ermitteln eines Korrekturwertes zum Beeinflussen eines Luft/Kraftstoff-Verhältnisses in einem jeweiligen Zylinder einer Brennkraftmaschine mit mehreren Zylindern, den Zylindern zugeordneten Einspritzventilen, die Kraftstoff zumessen, und mit einer Abgassonde, die in einem Abgastrakt angeordnet ist und deren Messsignal charakteristisch ist für das Luft/Kraftstoff-Verhältnis in dem jeweiligen Zylinder.
Immer strengere gesetzliche Vorschriften bezüglich zulässiger Schadstoffemissionen von Kraftfahrzeugen, in denen Brennkraftmaschinen angeordnet sind, machen es erforderlich, die Schadstoffemissionen beim Betrieb der Brennkraftmaschine so gering wie möglich zu halten. Dies kann zum einen erfolgen, indem die Schadstoffemissionen verringert werden, die während der Verbrennung des Luft/Kraftstoff-Gemisches in dem jeweiligen Zylinder der Brennkraftmaschine entstehen. Zum andern sind in Brennkraftmaschinen Abgasnachbehandlungssysteme im Einsatz, die die Schadstoffemissionen, die während des Verbrennungsprozesses des Luft/Kraftstoff-Gemisches in den jeweiligen Zylindern erzeugt werden, in unschädliche Stoffe umwandeln. Zu diesem Zweck werden Abgaskatalysatoren eingesetzt, die Kohlenmonoxid, Kohlenwasserstoffe und Stickoxide in unschädliche Stoffe umwandeln. Sowohl das gezielte Beeinflussen des Erzeugens der Schadstoffemissionen während der Verbrennung als auch das Umwandeln der Schadstoffkomponenten mit einem hohen Wirkungsgrad durch einen Abgaskatalysator setzen ein sehr präzise eingestelltes Luft/Kraftstoff- Verhältnis in dem jeweiligen Zylinder voraus.
Aus der DE 199 03 721 Cl ist ein Verfahren für eine Brennkraftmaschine mit mehreren Zylindern zur zylinderselektiven Regelung eines zu verbrennenden Luft/Kraftstoff-Gemisches bekannt, bei dem die Lambdawerte für verschiedene Zylinder oder Zylindergruppen getrennt sensiert und geregelt werden. Dazu ist eine Sonden-Auswerteeinheit vorgesehen, in der eine zeitaufgelöste Auswertung des Abgassondensignals erfolgt und so ein zylinderselektiver Lambdawert für jeden Zylinder der Brennkraftmaschine ermittelt wird. Jedem Zylinder ist ein einzelner Regler zugeordnet, der als PI- oder PID-Regler ausgebildet ist, dessen Regelgröße ein zylinderindividueller Lambdawert ist und dessen Führungsgröße ein zylinderindividueller Sollwert des Lambdas ist. Die Stellgröße des jeweiligen Reglers beeinflusst dann die Einspritzung des Kraftstoffs in dem jeweils zugeordneten Zylinder.
Die Aufgabe der Erfindung ist es ein Verfahren und eine Vorrichtung zum Ermitteln eines Korrekturwertes zum Beeinflussen eines Luft/Kraftstoff-Verhältnisses zu schaffen, das bzw. die ein präzises Ermitteln des Korrekturwertes ermöglicht und so ein präzises Steuern einer Brennkraftmaschine ermöglicht.
Die Aufgabe wird gelöst durch die Merkmale der unabhängigen Ansprüche. Vorteilhafte Ausgestaltungen der Erfindung sind in den Unteransprüchen gekennzeichnet.
Die Erfindung zeichnet sich aus durch ein Verfahren und eine entsprechende Vorrichtung zum Ermitteln eines Korrekturwertes zum Beeinflussen eines Luft/Kraftstoff-Verhältnisses in einem jeweiligen Zylinder einer Brennkraftmaschine mit mehreren Zy- lindern. Den Zylindern sind Einspritzventile zugeordnet, die Kraftstoff zumessen. Eine Abgassonde ist in einem Abgastrakt angeordnet. Ihr Messsignal ist charakteristisch für das Luft/Kraftstoff-Verhältnis in dem jeweiligen Zylinder. Zu einem vorgegebenen Abtast-Kurbelwellenwinkel, bezogen auf eine Bezugsposition des Kolbens des jeweiligen Zylinders wird das Messsignal erfasst und dem jeweiligen Zylinder zugeordnet. Mittels jeweils eines Reglers wird ein Reglerwert zum Beeinflussen des Luft/Kraftstoff-Verhältnisses in dem jeweiligen Zylinder abhängig von dem für den jeweiligen Zylinder erfass- ten Messsignal ermittelt.
Bei einem Erfülltsein vorgegebener erster Bedingungen, die einen vorgegebenen ersten Temperaturbereich einer Temperatur einschließen, die repräsentativ ist für eine Temperatur des jeweiligen Einspritzventils, wird ein erster Adaptionswert abhängig von dem Reglerwert ermittelt.
Bei einem Erfülltsein vorgegebener zweiter Bedingungen, die einen vorgegebenen zweiten Temperaturbereich der Temperatur einschließen, die repräsentativ ist für die Temperatur des jeweiligen Einspritzventils, wird ein zweiter Adaptionswert abhängig von dem Reglerwert ermittelt. Der Korrekturwert zum Beeinflussen des Luft/Kraftstoff-Verhältnisses in dem jeweiligen Zylinder wird abhängig von dem ersten und/oder zweiten Adaptionswert abhängig von der Temperatur ermittelt, die repräsentativ ist für die Temperatur des jeweiligen Einspritzventils. Die ersten und zweiten Temperaturbereiche haben bevorzugt keinen gemeinsamen Überlappungsbereich. Die Temperatur kann beispielsweise eine Einspritzventiltemperatur sein oder auch eine Kühlmitteltemperatur sein. Erfindungsgemäß kann so der für den jeweiligen Zylinder gültige Korrekturwert sehr präzise ermittelt werden, was insbesondere dann besonders vorteilhaft ist, wenn Einspritzcharakteristiken der unterschiedlichen Einspritzventile sich abhängig von der Temperatur des jeweiligen Einspritzventils ändern. Dies ist insbesondere im Zusammenhang mit Einspritzventilen mit Piezo-Aktuatoren relevant.
Gemäß einer vorteilhaften Ausgestaltung der Erfindung ist ein oberer Temperaturgrenzwert des ersten Temperaturbereichs kleiner als ein Katalysator-Start-Temperaturwert der Temperatur, die repräsentativ ist für die Temperatur des jeweiligen Einspritzventils, wobei der Katalysator-Start-Temperaturwert charakteristisch ist für eine temperaturbezogene Betriebsbereitschaft des Abgaskatalysators. Der Katalysator-Start- Temperaturwert der Temperatur, die repräsentativ ist für die Temperatur des jeweiligen Einspritzventils, ist somit repräsentativ für die Temperatur des jeweiligen Einspritzventils, wenn die Betriebsbereitschaft des Abgaskatalysators erreicht wird.
Dies hat den Vorteil, dass insbesondere in einem kalten Betrieb der Brennkraftmaschine ein separater, erster, Adaptionswert ermittelt wird und so im Falle des Einsatzes des Korrekturwertes zum Steuern der Brennkraftmaschine bereits zu einem sehr frühen Zeitpunkt bezogen auf den Start der Brennkraftmaschine eine sehr genaue zylinderindividuelle Einstellung des Luft/Kraftstoff-Verhältnisses in den jeweiligen Zylindern möglich ist. Dies kann sich so besonders vorteilhaft auf von der Brennkraftmaschine im kalten Betrieb erzeugte Schadstoffemissionen auswirken und so stark zur Senkung der Emissionen beitragen, da bei noch kaltem Betrieb der Brennkraftmaschine noch keine oder nur eine unwesentliche Konver- tierung der Schadstoffe durch den Abgaskatalysator der Brennkraftmaschine erfolgen kann.
Gemäß einer weiteren vorteilhaften Ausgestaltung der Erfindung wird der Korrekturwert durch vorgegebenes Wichten des ersten und zweiten Adaptionswertes ermittelt, wenn die Temperatur, die repräsentativ ist für die Temperatur des jeweiligen Einspritzventils, zwischen den ersten und zweiten Temperaturbereichen liegt. Auf diese Weise kann mit nur wenigen Adaptionswerten, wie dem ersten und zweiten Adaptionswert, bei geeigneter Vorgabe der Wichtung der Korrekturwert auch sehr präzise zwischen dem ersten und zweiten Temperaturbereich ermittelt werden.
In einer weiteren vorteilhaften Ausgestaltung der Erfindung wird bei einem Erfülltsein vorgegebener dritter oder weiterer Bedingungen, die einen vorgegebenen dritten oder weitere Temperaturbereiche der Temperatur einschließen, die repräsentativ ist für die Temperatur des jeweiligen Einspritzventils, ein dritter oder weitere Adaptionswerte abhängig von dem Reglerwert ermittelt. Der Korrekturwert zum Beeinflussen des Luft/Kraftstoff-Verhältnisses in dem jeweiligen Zylinder wird dann abhängig von den dritten und/oder weiteren Adaptionswerten abhängig von der Temperatur ermittelt, die repräsentativ ist für die Temperatur des jeweiligen Einspritzventils. Auf diese Weise kann gegebenenfalls ein noch präziseres Ermitteln des Korrekturwertes erfolgen.
In diesem Zusammenhang ist es vorteilhaft, wenn ein oberer Temperaturgrenzwert des dritten oder weiterer Temperaturbereiche kleiner ist als der Katalysator-Start-Temperaturwert der Temperatur, die repräsentativ ist für die Temperatur des jeweiligen Einspritzventils. Auf diese Weise können insbeson- dere beim Einsatz des Korrekturwertes zum Steuern einer Brennkraftmaschine die Schadstoffemissionen sehr deutlich verringert werden.
Ausführungsbeispiele der Erfindung sind im Folgenden anhand der schematischen Zeichnungen erläutert. Es zeigen:
Figur 1 eine Brennkraftmaschine mit einer Steuervorrichtung,
Figur 2 ein Blockschaltbild der Steuervorrichtung,
Figuren 3 und 4 Ablaufdiagramme von Programmen, die in der Steuervorrichtung abgearbeitet werden, und
Figur 5 einen temperaturabhängigen Verlauf erster und zweiter Wichtungswerte .
Elemente gleicher Konstruktion oder Funktion sind figurenübergreifend mit den gleichen Bezugszeichen gekennzeichnet.
Eine Brennkraftmaschine (Figur 1) umfasst einen Ansaugtrakt 1, einen Motorblock 2, einen Zylinderkopf 3 und einen Abgastrakt 4. Der Ansaugtrakt 1 umfasst vorzugsweise eine Drosselklappe 5, ferner einen Sammler 6 und ein Saugrohr 7, das hin zu einem Zylinder Zl über einen Einlasskanal in den Motorblock 2 geführt ist. Der Motorblock 2 umfasst ferner eine Kurbelwelle 8, welche über eine Pleuelstange 10 mit dem Kolben 11 des Zylinders Zl gekoppelt ist.
Der Zylinderkopf 3 umfasst einen Ventiltrieb mit einem Gaseinlassventil 12 und einem Gasauslassventil 13. Der Zylinderkopf 3 umfasst ferner ein Einspritzventil 18 und eine Zünd- kerze 19. Alternativ kann das Einspritzventil 18 auch in dem Saugrohr 7 angeordnet sein.
In dem Abgastrakt 4 ist ein Abgaskatalysator angeordnet, der als Dreiwegekatalysator 21 ausgebildet ist. Ferner ist in dem Abgastrakt ein weiterer Abgaskatalysator bevorzugt angeordnet, der als NOx-Katalysator 23 ausgebildet ist.
Eine Steuervorrichtung 25 ist vorgesehen, der Sensoren zugeordnet sind, die verschiedene Messgrößen erfassen und jeweils den Wert der Messgröße ermitteln. Die Steuervorrichtung 25 ermittelt abhängig von mindestens einer der Messgrößen Stellgrößen, die dann in ein oder mehrere Stellsignale zum Steuern der Stellglieder mittels entsprechender Stellantriebe umgesetzt werden. Die Steuervorrichtung 25 kann auch als Vorrichtung zum Steuern der Brennkraftmaschine oder als Vorrichtung zum Ermitteln eines Korrekturwertes bezeichnet werden.
Die Sensoren sind ein Pedalstellungsgeber 26, welcher eine Fahrpedalstellung eines Fahrpedals 27 erfasst, ein Luftmassensensor 28, welcher einen Luftmassenstrom stromaufwärts der Drosselklappe 5 erfasst, ein erster Temperatursensor 32, welcher eine Ansauglufttemperatur erfasst, ein Saugrohrdrucksen- sor 34, welcher einen Saugrohrdruck in dem Sammler 6 erfasst, ein Kurbelwellenwinkelsensor 36, welcher einen Kurbelwellenwinkel erfasst, dem dann eine Drehzahl N zugeordnet wird. Ferner ist ein zweiter Temperatursensor 38 vorgesehen, welcher eine Kühlmitteltemperatur TCO erfasst. Darüber hinaus kann in dem Einspritzventil 18 ein weiterer Temperatursensor angeordnet sein, der die Einspritzventiltemperatur erfasst. Falls das Einspritzventil 18 einen Piezo-Aktuator umfasst, so kann dieser den weiteren Temperatursensor bilden. Ferner ist eine erste Abgassonde 42 vorgesehen, die stromaufwärts des Dreiwegekatalysators 21 angeordnet ist und die einen Restsauerstoffgehalt des Abgases erfasst und deren Messsignal MSl charakteristisch ist für das Luft/Kraftstoff- Verhältnis in dem Brennraum des Zylinders Zl und stromaufwärts ersten Abgassonde vor der Oxidation des Kraftstoffs, im folgenden bezeichnet als das Luft/Kraftstoff-Verhältnis in den Zylindern Zl - Z4. Ferner ist eine zweite Abgassonde 43 vorgesehen, die stromabwärts des Dreiwegekatalysators 21 angeordnet ist und die einen Restsauerstoffgehalt des Abgases erfasst und deren Messsignal charakteristisch ist für das Luft/Kraftstoff-Verhältnis in dem Brennraum des Zylinders Zl und stromaufwärts der zweiten Abgassonde 43 vor der Oxidation des Kraftstoffs, im folgenden bezeichnet als das Luft/Kraftstoff-Verhältnis stromabwärts des Abgaskatalysators .
Die erste Abgassonde 42 ist bevorzugt eine lineare Lambdason- de . Die zweite Abgassonde 43 ist eine binäre Lambdasonde. Sie kann jedoch auch eine lineare Lambdasonde sein.
Je nach Ausführungsform der Erfindung kann eine beliebige Untermenge der genannten Sensoren vorhanden sein oder es können auch zusätzliche Sensoren vorhanden sein.
Die Stellglieder sind beispielsweise die Drosselklappe 5, die Gaseinlass- und Gasauslassventile 12, 13, das Einspritzventil 18 oder die Zündkerze 19.
Neben dem Zylinder Zl sind auch noch weitere Zylinder Z2 bis Z4 vorgesehen, denen dann auch entsprechende Stellglieder und ggf. Sensoren zugeordnet sind. Anhand des Blockschaltbilds der Figur 2 sind für die Erfindung relevante Blöcke der Steuervorrichtung 25 dargestellt.
Ein Block Bl entspricht der Brennkraftmaschine. Einem Block B2 wird das von der Abgassonde 42 abgegebene Messsignal MSl zugeleitet. Zu jeweils ermittelten Abtast-Kurbelwellenwinkeln CRK SAMP bezogen auf eine Bezugsposition des jeweiligen Kolbens 11 des jeweiligen Zylinders Z1-Z4 erfolgt dann in dem Block B2 eine Zuordnung des in diesem Zeitpunkt aktuellen Messsignals MSl der ersten Abgassonde 42 zu dem jeweiligen zylinderindividuell erfassten Luft/Kraftstoff-Verhältnis LAM_I [Z1-Z4] . Die Bezugsposition des jeweiligen Kolbens 11 ist bevorzugt sein oberer Totpunkt.
In einem Block B3 wird ein mittleres Luft/Kraftstoff- Verhältnis LAM_MW durch Mitteln des zylinderindividuell erfassten Luft/Kraftstoff-Verhältnisses LAM_I [Z1-Z4] ermittelt. Ferner wird in dem Block B3 eine zylinderindividuelle Luft/Kraftstoff-Verhältnis-Abweichung D_ LAM_I [Z1-Z4] ermittelt. Diese wird dann einem Block B4 zugeführt. Der Block B4 umfasst einen Regler, dessen Ausgangsgröße ein Reglerwert RW[Z1-Z4] ist zum Beeinflussen des Luft/Kraftstoff- Verhältnisses in dem jeweiligen Zylinder Z1-Z4. Der Regler umfasst einen Integralanteil, er kann jedoch auch eine so genannten I^-Anteil oder Proportionalanteil umfassen. Der Regler des Blocks B4 kann auch als zylinderindividueller Lambda- regler bezeichnet werden.
Ein Block B5 ist ausgebildet zum Ermitteln eines ersten, zweiten oder weiterer Adaptionswerte ADl[Zl-Z4], AD2[Zl-Z4], ADX[Z1-Z4] und zwar abhängig von einer Temperatur, die repräsentativ ist für die Temperatur des jeweiligen Einspritzventils 18. Bevorzugt wird als Temperatur, die repräsentativ ist für die Temperatur des jeweiligen Einspritzventils 18, die Einspritzventiltemperatur TE dem Block B5 zugeführt. Alternativ kann beispielsweise auch zu diesem Zweck dem Block B5 die Kühlmitteltemperatur TCO zugeführt sein. Bevorzugt umfasst der Block B5 ein Programm, welches weiter unten anhand der Figur 3 näher erläutert ist.
Ein Block B6 ist dazu ausgebildet, einen Korrekturwert LAM FAC I[Zl-Z4] zu ermitteln und zwar abhängig von dem ersten, zweiten oder weiteren Adaptionswert ADl[Zl-Z4], AD2[Zl- Z4], ADX[Zl-Z4], der Temperatur, die repräsentativ ist für die Temperatur des jeweiligen Einspritzventils 18 und gegebenenfalls des Reglerwertes RW[Z1-Z4] . Der Block B6 umfasst bevorzugt ein Programm, das weiter unten anhand der Figur 4 näher erläutert ist.
In einem Block B8 ist ein Lambdaregler vorgesehen, dessen Führungsgröße ein für alle Zylinder Z1-Z4 der Brennkraftmaschine vorgegebenes Luft/Kraftstoff-Verhältnis LAM SP ist und dessen Regelgröße das mittlere Luft/Kraftstoff-Verhältnis LAM MW ist. Die Stellgröße des Lambdareglers ist ein Lambda- regelfaktor LAM_FAC_ALL. Der Lambdaregler hat somit die Aufgabe, dass betrachtet über alle Zylinder der Brennkraftmaschine, das vorgegebene Luft/Kraftstoff-Verhältnis eingestellt wird.
Alternativ kann dies auch dadurch erreicht werden, dass in dem Block B3 die zylinderindividuelle Luft/Kraftstoff- Verhältnisabweichung D_LAM_I aus der Differenz des für alle Zylinder Z1-Z4 der Brennkraftmaschine vorgegebene Luft/Kraftstoff-Verhältnisses und des zylinderindividuellen Luft/Kraftstoff-Verhältnis LAM_I[Z1-Z4] ermittelt wird. In diesem Fall kann dann der Block B8 entfallen. In einem Block B9 wird eine zuzumessende Kraftstoffmasse MFF abhängig von einem Luftmassenstrom MAF in den jeweiligen Zylinder Z1-Z4 und gegebenenfalls der Drehzahl N und dem für alle Zylinder der Brennkraftmaschine vorgegebenen Luft/Kraftstoff-Verhältnis LAM_SP ermittelt.
In der Multiplizierstelle Ml wird eine korrigierte zuzumessende Kraftstoffmasse MFF COR durch Multiplizieren der zuzumessenden Kraftstoffmasse MFF, des Lambdaregelfaktors LAM_FAC_ALL und des Korrekturwertes LAM_FA_I [Z1-Z4] ermittelt. Abhängig von der korrigierten zuzumessenden Kraftstoffmasse MFF COR wird dann ein Stellsignal erzeugt, mit dem das jeweilige Einspritzventil 18 angesteuert wird.
Neben der in dem Blockschaltbild der Figur 4 dargestellten Reglerstruktur sind für jeden weiteren Zylinder Z1-Z4 entsprechende Reglerstrukturen B_Z2 bis B_Z4 für die jeweiligen weiteren Zylinder Z2 bis Z4 vorgesehen.
Ein Programm für den Block B5 wird in einem Schritt Sl (siehe Figur 3) gestartet, in dem gegebenenfalls Variablen initialisiert werden können.
In einem Schritt S2 wird geprüft, ob als Betriebszustand BZ der Brennkraftmaschine ein quasi stationärer Betriebszustand ST vorliegt. Der quasi stationäre Betriebszustand ST kann beispielsweise dann vorliegen, wenn die Drehzahl N lediglich vorgegebenen geringen Schwankungen unterliegt, wobei in diesem Zusammenhang entscheidend ist, dass jeweilige Abgaspakete, hervorgerufen durch die Verbrennung des Luft/Kraftstoff- Gemisches in den jeweiligen Zylindern Z1-Z4, anhand des Messsignals MS der ersten Abgassonde 42 mit ausreichender Genau- igkeit dem jeweiligen Zylinder Z1-Z4 zugeordnet werden können.
Ist die Bedingung des Schrittes S2 nicht erfüllt, so wird die Bearbeitung in einem Schritt S4 fortgesetzt, in dem das Programm für eine vorgebbare Wartezeitdauer TW verharrt oder auch für einen vorgegebenen Kurbelwellenwinkelbereich verharrt, bevor die Bearbeitung erneut in dem Schritt S2 fortgesetzt wird.
Ist die Bedingung des Schrittes S2 hingegen erfüllt, so wird in einem Schritt S6 geprüft, ob die Einspritzventiltemperatur TE in einem ersten Temperaturbereich TBl liegt. Der erste Temperaturbereich TBl ist so vorgegeben, dass sein oberer Temperaturgrenzwert kleiner ist als ein Katalysator-Start- Temperaturwert der Einspritzventiltemperatur. Ist die Bedingung des Schrittes S6 erfüllt, so wird in einem Schritt S8 der erste Adaptionswert ADl[Zl-Z4] abhängig von dem aktuellen Reglerwert RW[Zl] ermittelt. Dies kann beispielsweise mit der in dem Schritt S8 angegebenen Berechnungsvorschrift erfolgen, wobei e einen Erneuerungsfaktor bezeichnet, der bevorzugt betragsmäßig kleiner 1 ist.
Ist die Bedingung des Schrittes S6 hingegen nicht erfüllt, so wird in einem Schritt SlO geprüft, ob die aktuelle Einspritzventiltemperatur TE innerhalb eines zweiten Temperaturbereichs TB2 liegt. Ein unterer Temperaturgrenzwert des zweiten Temperaturbereichs TB2 ist bevorzugt so vorgegebenen, dass er größer ist als der Katalysator-Start-Temperaturwert. Besonders einfach kann der zweite Temperaturbereich den gesamten Temperaturbereich der möglichen Betriebstemperaturen umfassen, der größer ist als der untere Temperaturgrenzwert. Ist die Bedingung des Schrittes SlO erfüllt, so wird in einem Schritt S12 der zweite Adaptionswert AD2[Zl] abhängig von dem aktuellen Reglerwert RW[Zl] ermittelt. Dies erfolgt beispielsweise entsprechend der Vorgehensweise des Schrittes S8. Anschließend wird die Bearbeitung in dem Schritt S4 fortgesetzt. Ist die Bedingung des Schrittes SlO nicht erfüllt, so kann entweder die Bearbeitung in dem Schritt S4 fortgesetzt werden oder es kann ein zusätzlicher Schritt S14 vorgesehen sein, in dem geprüft wird, ob die aktuelle Einspritzventiltemperatur TE innerhalb eines weiteren Temperaturbereichs liegt. Ist die Bedingung des Schrittes S14 dann nicht erfüllt, so wird die Bearbeitung in dem Schritt S4 fortgesetzt. Ist die Bedingung des Schrittes S14 hingegen erfüllt, so wird in einem Schritt S16 den weiteren Adaptionswerten ADX[Zl] der aktuelle Reglerwert RW[Zl] entsprechend der Vorgehensweise des Schrittes S8 zugeordnet.
Ein Programm für den Block B6 wird in einem Schritt S20 (Figur 4) gestartet, in dem gegebenenfalls Variablen initialisiert werden können.
In einem Schritt S22 wird geprüft, ob die aktuelle Einspritzventiltemperatur TE in dem ersten Temperaturbereich TBl liegt. Ist die der Fall, so wird einem Adaptionswert AD[Zl- Z4] der erste Adaptionswert AD[Zl] zugeordnet in einem Schritt S24. Ist die Bedingung des Schrittes S22 hingegen nicht erfüllt, so wird in einem Schritt S26 geprüft, ob die Einspritzventiltemperatur TE in dem zweiten Temperaturbereich TB2 liegt. Ist dies der Fall, so wird in einem Schritt S28 dem Adaptionswert AD[Zl] der zweite Adaptionswert AD2[Zl] zugeordnet . Ist die Bedingung des Schrittes S26 hingegen nicht erfüllt, so wird in einem Schritt S30 dem Adaptionswert AD[Zl] die Summe eines ersten und zweiten Terms zugeordnet, wobei der erste Term das Produkt eines ersten Wichtungswertes Wl und ersten Adaptionswertes ADl[Zl] ist und der zweite Term das Produkt des zweiten Wichtungswertes W2 und des zweiten Adaptionswertes AD2[Zl] ist. In diesem Fall ist vorausgesetzt, dass bei einem Nicht-Erfülltsein der Bedingung des Schrittes S26 die Einspritzventiltemperatur TE außerhalb sowohl des ersten und des zweiten Temperaturbereichs TBl, TB2, aber zwischen den ersten und zweiten Temperaturbereichen TBl, TB2 liegt. Die ersten und zweiten Wichtungswerte wl, wl sind bevorzugt abhängig von der jeweiligen Temperatur vorgegeben, die repräsentativ ist für die Temperatur des jeweiligen Einspritzventils, also zum Beispiel die Einspritzventiltemperatur TE oder, wie es anhand der Figur 5 dargestellt ist, der Kühlmitteltemperatur TCO. In diesem Fall ist dann in den Schritten S6, SlO, S14, S22 und S26 die Einspritzventiltemperatur TE durch die Kühlmitteltemperatur TCO ersetzt.
In einem Schritt S32 wird anschließend der Korrekturwert LAM_FAC_I [ Z1 ] ermittelt. Dies erfolgt abhängig von dem Adaptionswert AD[Zl] und bevorzugt auch abhängig von dem Reglerwert RW[Zl]. Beispielsweise kann jedoch sehr zeitnah zu einem Start der Brennkraftmaschine, bei dem die Abgassonde 42 noch nicht betriebsbereit ist, die Berechnung in dem Schritt S32 unabhängig von dem Reglerwert RW[Zl] erfolgen. Beispielsweise können in dem Schritt S22 der Adaptionswert AD[Zl] und der Reglerwert RW[Zl] addiert werden. In einem Schritt S34 verharrt das Programm anschließend für die gegebene Wartezeitdauer T_W oder dem vorgegebenen Kurbelwellenwinkel. Durch die Blöcke B5 und B6 kann so zum einen das Einhalten von strengen Emissionsgrenzwerten insbesondere im Kaltstart gewährleistet werden. Darüber hinaus kann jedoch auch eine Verbesserung im Fahrverhalten der Brennkraftmaschine im kalten Motorbetriebszustand erreicht werden.

Claims

Patentansprüche
1. Verfahren zum Ermitteln eines Korrekturwertes (LAM_FAC_I [Z1-Z4] ) zum Beeinflussen eines Luft/Kraftstoff- Verhältnisses in einem jeweiligen Zylinder (Z1-Z4) einer Brennkraftmaschine mit mehreren Zylindern (Z1-Z4), den Zylindern (Z1-Z4) zugeordneten Einspritzventilen (18), die Kraftstoff zumessen, und einer Abgassonde (42), die in einem Abgastrakt (4) angeordnet ist und deren Messsignal charakteristisch ist für das Luft/Kraftstoff-Verhältnis in dem jeweiligen Zylinder (Z1-Z4), bei dem
- zu einem vorgegebenen Abtast-Kurbelwellenwinkel (CRK_SAMP) bezogen auf eine Bezugsposition des Kolbens (11) des jeweiligen Zylinders (Z1-Z4) das Messsignal erfasst wird und dem jeweiligen Zylinder (Z1-Z4) zugeordnet wird,
- mittels jeweils eines Reglers ein Reglerwert zum Beeinflussen des Luft/Kraftstoff-Verhältnisses in dem jeweiligen Zylinder (Z1-Z4) abhängig von dem für den jeweiligen Zylinder (Z1-Z4) erfassten Messsignal (MS) ermittelt wird,
- bei einem Erfülltsein vorgegebener erster Bedingungen, die einen vorgegebenen ersten Temperaturbereich (TBl) einer Temperatur einschließen, die repräsentativ ist für eine Temperatur des jeweiligen Einspritzventils (18), ein erster Adaptionswert (AD1[Z1-Z4]) abhängig von dem Reglerwert (RW[Z1-Z4]) ermittelt wird und
- bei einem Erfülltsein vorgegebener zweiter Bedingungen, die einen vorgegebenen zweiten Temperaturbereich (TB2) der Temperatur einschließen, die repräsentativ ist für die Temperatur des jeweiligen Einspritzventils (18) , ein zweiter Adaptionswert (AD2[Z1-Z4]) abhängig von dem Reglerwert (RW[Z1-Z4]) ermittelt wird und
- der Korrekturwert (LAM_FAC_I [Z1-Z4] ) zum Beeinflussen des Luft/Kraftstoff-Verhältnisses in dem jeweiligen Zylinder (Zl- Z4) abhängig von dem ersten und/oder zweiten Adaptionswert (AD1[Z1-Z4], AD2[Z1-Z4]) abhängig von der Temperatur ermittelt wird, die repräsentativ ist für die Temperatur des jeweiligen Einspritzventils (18) .
2. Verfahren nach Anspruch 1, bei dem ein oberer Temperaturgrenzwert des ersten Temperaturbereichs (TWl) kleiner ist als ein Katalysator-Start- Temperaturwert der Temperatur, die repräsentativ ist für die Temperatur des jeweiligen Einspritzventils (18) , wobei der Katalysator-Start-Temperaturwert charakteristisch ist für eine temperaturbezogene Betriebsbereitschaft des Abgaskatalysators .
3. Verfahren nach einem der vorstehenden Ansprüche, bei dem der Korrekturwert (LAM_FAC_I_[Z1-Z4] ) durch vorgegebenes Wichten des ersten und zweiten Adaptionswertes (ADl[Zl- Z4], AD2[Z1-Z4]) ermittelt wird, wenn die Temperatur, die repräsentativ ist für die Temperatur des jeweiligen Einspritzventils (18) , zwischen den ersten und zweiten Temperaturbereichen (TWl, TW2) liegt.
4. Verfahren nach einem der vorstehenden Ansprüche, bei dem bei einem Erfülltsein vorgegebener dritter oder weiterer Bedingungen, die einen vorgegebenen dritten beziehungsweise weitere Temperaturbereiche der Temperatur einschließen, die repräsentativ ist für die Temperatur des jeweiligen Einspritzventils (18) , ein dritter oder weiterer Adaptionswerte (ADX[Z1-Z4]) abhängig von dem Reglerwert (RW[Z1-Z4]) ermittelt werden und
- der Korrekturwert (LAM_FAC_I [Z1-Z4] ) zum Beeinflussen des Luft/Kraftstoff-Verhältnisses in dem jeweiligen Zylinder (Zl- Z4) abhängig von dem dritten und/oder weiteren Adaptionswer- ten (ADX[Z1-Z4]) abhängig von der Temperatur ermittelt wird, die repräsentativ ist für die Temperatur des jeweiligen Einspritzventils (18) .
5. Verfahren nach Anspruch 4, bei dem ein oberer Temperaturgrenzwert des dritten oder weiteren Temperaturbereichs kleiner ist als der Katalysator- Start-Temperaturwert der Temperatur, die repräsentativ ist für die Temperatur des jeweiligen Einspritzventils (18) .
6. Vorrichtung zum Ermitteln eines Korrekturwertes (LAM_FAC_I [Z1-Z4] ) zum Beeinflussen eines Luft/Kraftstoff- Verhältnisses in einem jeweiligen Zylinder (Z1-Z4) einer Brennkraftmaschine mit mehreren Zylindern (Z1-Z4), den Zylindern (Z1-Z4) zugeordneten Einspritzventilen (18), die Kraftstoff zumessen, und einer Abgassonde (42), die in einem Abgastrakt (4) angeordnet ist und deren Messsignal charakteristisch ist für das Luft/Kraftstoff-Verhältnis in dem jeweiligen Zylinder (Z1-Z4), wobei die Vorrichtung ausgebildet ist zum
- Erfassen des Messsignals zu einem vorgegebenen Abtast- Kurbelwellenwinkel (CRK_SAMP) bezogen auf eine Bezugsposition des Kolbens (11) des jeweiligen Zylinders (Z1-Z4) und Zuordnen zu dem jeweiligen Zylinder (Z1-Z4),
- Ermitteln eines Reglerwertes mittels jeweils eines Reglers zum Beeinflussen des Luft/Kraftstoff-Verhältnisses in dem jeweiligen Zylinder (Z1-Z4) abhängig von dem für den jeweiligen Zylinder (Z1-Z4) erfassten Messsignal (MS),
- Ermitteln bei einem Erfülltsein vorgegebener erster Bedingungen, die einen vorgegebenen ersten Temperaturbereich (TBl) einer Temperatur einschließen, die repräsentativ ist für eine Temperatur des jeweiligen Einspritzventils (18), eines ersten Adaptionswertes (ADl[Zl-Z4]) abhängig von dem Reglerwert (RW[Z1-Z4]) und
- Ermitteln bei einem Erfülltsein vorgegebener zweiter Bedingungen, die einen vorgegebenen zweiten Temperaturbereich (TB2) der Temperatur einschließen, die repräsentativ ist für die Temperatur des jeweiligen Einspritzventils (18) , eines zweiten Adaptionswertes (AD2[Zl-Z4]) abhängig von dem Reglerwert (RW[Z1-Z4]) und
- Ermitteln des Korrekturwertes (LAM_FAC_I [Z1-Z4] ) zum Beeinflussen des Luft/Kraftstoff-Verhältnisses in dem jeweiligen Zylinder (Z1-Z4) abhängig von dem ersten und/oder zweiten A- daptionswert (ADl[Zl-Z4], AD2[Zl-Z4]) abhängig von der Temperatur, die repräsentativ ist für die Temperatur des jeweiligen Einspritzventils (18) .
PCT/EP2006/050741 2005-02-28 2006-02-08 Verfahren und vorrichtung zum ermitteln eines korrekturwertes zum beeinflussen eines luft/kraftstoff-verhältnisses WO2006092353A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020077022345A KR101230556B1 (ko) 2005-02-28 2006-02-08 공연비 조절에 사용되는 수정값을 결정하기 위한 방법 및장치
US11/885,267 US7676317B2 (en) 2005-02-28 2006-02-08 Method and device for determining a corrective value used for influencing an air/fuel ratio

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005009101.6 2005-02-28
DE102005009101A DE102005009101B3 (de) 2005-02-28 2005-02-28 Verfahren und Vorrichtung zum Ermitteln eines Korrekturwertes zum Beeinflussen eines Luft/Kraftstoff-Verhältnisses

Publications (1)

Publication Number Publication Date
WO2006092353A1 true WO2006092353A1 (de) 2006-09-08

Family

ID=35852821

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2006/050741 WO2006092353A1 (de) 2005-02-28 2006-02-08 Verfahren und vorrichtung zum ermitteln eines korrekturwertes zum beeinflussen eines luft/kraftstoff-verhältnisses

Country Status (4)

Country Link
US (1) US7676317B2 (de)
KR (1) KR101230556B1 (de)
DE (1) DE102005009101B3 (de)
WO (1) WO2006092353A1 (de)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006006552B8 (de) 2006-02-13 2007-06-06 Siemens Ag Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
DE102006026390B4 (de) 2006-06-07 2017-04-27 Bayerische Motoren Werke Aktiengesellschaft Elektronische Steuereinrichtung zur Steuerung der Brennkraftmaschine in einem Kraftfahrzeug
DE102006044073B4 (de) 2006-09-20 2017-02-23 Bayerische Motoren Werke Aktiengesellschaft Verwendung einer elektronischen Steuereinrichtung zur Steuerung der Brennkraftmaschine in einem Kraftfahrzeug
DE102008009033B3 (de) * 2008-02-14 2009-04-23 Audi Ag Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
DE102008009034B3 (de) 2008-02-14 2009-04-23 Audi Ag Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
DE102010025662B4 (de) 2010-06-30 2014-02-27 Continental Automotive Gmbh Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
DE102011004562B4 (de) 2011-02-23 2013-07-18 Continental Automotive Gmbh Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
DE102011004824B3 (de) * 2011-02-28 2012-09-06 Continental Automotive Gmbh Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
DE102011077416B3 (de) * 2011-06-10 2012-11-15 Ford Global Technologies, Llc Verfahren zum Betreiben einer fremdgezündeten Brennkraftmaschinemit Direkteinspritzung
DE102011088403B3 (de) 2011-12-13 2013-01-10 Continental Automotive Gmbh Bestimmen eines Werts für einen Ventilhub eines Ventils eines individuellen Zylinders einer Brennkraftmaschine mit mehreren Zylindern
DE102011088843B4 (de) 2011-12-16 2014-02-27 Continental Automotive Gmbh Bestimmung eines individuellen Luft/Kraftstoffverhältnisses in einem ausgewählten Zylinder einer Brennkraftmaschine
DE102012204332B4 (de) 2012-03-19 2014-11-06 Continental Automotive Gmbh Vorrichtung zum Betreiben einer Brennkraftmaschine
GB2502283B (en) * 2012-05-21 2018-12-12 Ford Global Tech Llc An engine system and a method of operating a direct injection engine
DE102012213387B3 (de) * 2012-07-31 2013-05-16 Continental Automotive Gmbh Vorrichtung zum Betreiben einer Brennkraftmaschine
DE102013227023A1 (de) * 2013-06-04 2014-12-04 Robert Bosch Gmbh Verfahren zur Zylindergleichstellung einer lambdageregelten Brennkraftmaschine insbesondere eines Kraftfahrzeugs
DE102013220117B3 (de) * 2013-10-04 2014-07-17 Continental Automotive Gmbh Vorrichtung zum Betreiben einer Brennkraftmaschine
DE102014220367A1 (de) 2014-10-08 2016-04-14 Continental Automotive Gmbh Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
DE102015203458B3 (de) * 2015-02-26 2016-05-12 Continental Automotive Gmbh Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
DE102015219362B3 (de) 2015-10-07 2016-10-20 Continental Automotive Gmbh Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
DE102015219526B4 (de) 2015-10-08 2017-09-14 Continental Automotive Gmbh Verfahren und System zum Betreiben einer Brennkraftmaschine
US10330035B2 (en) * 2016-06-02 2019-06-25 Ford Global Technologies, Llc Method and system for determining air-fuel imbalance

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5661971A (en) * 1994-12-02 1997-09-02 Volkswagen Ag Method for reducing pollutants in the exhaust gas of a multi-cylinder internal combustion engine
US6325056B1 (en) * 1999-01-30 2001-12-04 Daimlerchrysler Ag Operating method for an internal combustion engine with lambda-value control
US20020121268A1 (en) * 1999-09-30 2002-09-05 Johann Graf Method for controlling an internal combustion engine
US20050022797A1 (en) * 2003-07-30 2005-02-03 Denso Corporation Cylinder-by-cylinder air-fuel ratio calculation apparatus for multi-cylinder internal combustion engine

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2830001B2 (ja) * 1989-01-27 1998-12-02 三菱自動車工業株式会社 内燃エンジンの空燃比フィードバック制御装置
DE4236008C2 (de) * 1992-10-24 2002-03-28 Bosch Gmbh Robert Verfahren und Vorrichtung zur adaptiven Einzelzylinder-Lambdaregelung bei einem Motor mit variabler Ventilsteuerung
JP2869911B2 (ja) * 1993-04-15 1999-03-10 本田技研工業株式会社 内燃エンジンの酸素センサ劣化検出装置
JP2858288B2 (ja) * 1993-09-02 1999-02-17 株式会社ユニシアジェックス 内燃機関の空燃比制御装置における自己診断装置
JP3577728B2 (ja) * 1993-12-03 2004-10-13 株式会社デンソー 内燃機関の空燃比制御装置
JPH07229439A (ja) * 1994-02-17 1995-08-29 Unisia Jecs Corp 内燃機関の空燃比制御装置
US5715796A (en) * 1995-02-24 1998-02-10 Honda Giken Kogyo Kabushiki Kaisha Air-fuel ratio control system having function of after-start lean-burn control for internal combustion engines
EP0826100B1 (de) * 1995-05-03 1999-11-03 Siemens Aktiengesellschaft Verfahren zur zylinderselektiven lambda-regelung einer mehrzylinder-brennkraftmaschine
JP3805408B2 (ja) * 1995-06-15 2006-08-02 株式会社デンソー 内燃機関の空燃比制御装置
JP3284862B2 (ja) * 1995-12-20 2002-05-20 トヨタ自動車株式会社 空燃比センサの活性状態判定装置
JPH1073040A (ja) * 1996-08-29 1998-03-17 Honda Motor Co Ltd 内燃機関の空燃比制御装置
JP3683363B2 (ja) * 1996-09-26 2005-08-17 本田技研工業株式会社 内燃機関の空燃比制御装置
JP3644172B2 (ja) * 1997-01-16 2005-04-27 日産自動車株式会社 エンジンの空燃比制御装置
FR2775315B1 (fr) * 1998-02-25 2000-05-05 Magneti Marelli France Procede et dispositif d'autoadaptation rapide de richesse pour moteur a injection avec sonde d'oxygene dans les gaz d'echappement
JP3623881B2 (ja) * 1998-03-19 2005-02-23 株式会社日立ユニシアオートモティブ 広域空燃比センサの異常診断装置
DE19906378A1 (de) * 1999-02-16 2000-08-17 Bosch Gmbh Robert Verfahren und Vorrichtung zum Betrieb einer Brennkraftmaschine
JP3655145B2 (ja) * 1999-10-08 2005-06-02 本田技研工業株式会社 多気筒内燃機関の空燃比制御装置
JP3922980B2 (ja) * 2001-07-25 2007-05-30 本田技研工業株式会社 制御装置
DE50209108D1 (de) * 2001-10-25 2007-02-08 Bosch Gmbh Robert Vorrichtung zur korrektur eines signals
DE10206906C1 (de) * 2002-02-19 2003-11-06 Siemens Ag Verfahren zur Steuerung einer durch Pienoinjektor eingespritzten Kraftstoffmenge
JP3824959B2 (ja) * 2002-03-29 2006-09-20 本田技研工業株式会社 排ガスセンサの温度制御装置
JP2003315305A (ja) * 2002-04-22 2003-11-06 Honda Motor Co Ltd 排ガスセンサの温度制御装置
JP3863467B2 (ja) * 2002-07-22 2006-12-27 本田技研工業株式会社 排ガスセンサの温度制御装置
DE10325338B4 (de) * 2003-06-04 2008-04-10 Siemens Ag Verfahren zur Dämpfung von Druckschwingungen im Messsignal einer Lambdasonde
JP4094538B2 (ja) * 2003-12-11 2008-06-04 三菱電機株式会社 空燃比センサの故障診断装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5661971A (en) * 1994-12-02 1997-09-02 Volkswagen Ag Method for reducing pollutants in the exhaust gas of a multi-cylinder internal combustion engine
US6325056B1 (en) * 1999-01-30 2001-12-04 Daimlerchrysler Ag Operating method for an internal combustion engine with lambda-value control
US20020121268A1 (en) * 1999-09-30 2002-09-05 Johann Graf Method for controlling an internal combustion engine
US20050022797A1 (en) * 2003-07-30 2005-02-03 Denso Corporation Cylinder-by-cylinder air-fuel ratio calculation apparatus for multi-cylinder internal combustion engine

Also Published As

Publication number Publication date
US7676317B2 (en) 2010-03-09
DE102005009101B3 (de) 2006-03-09
KR20070114200A (ko) 2007-11-29
KR101230556B1 (ko) 2013-02-06
US20080201057A1 (en) 2008-08-21

Similar Documents

Publication Publication Date Title
DE102005009101B3 (de) Verfahren und Vorrichtung zum Ermitteln eines Korrekturwertes zum Beeinflussen eines Luft/Kraftstoff-Verhältnisses
EP1749149B1 (de) Verfahren zum erfassen eines zylinderindividuellen luft/kraftstoff-verhältnisses bei einer brennkraftmaschine
EP1888897B1 (de) Verfahren und vorrichtung zum ermitteln einer sauerstoffspeicherkapazität des abgaskatalysators einer brennkraftmaschine und verfahren und vorrichtung zum ermitteln einer dynamik-zeitdauer für abgassonden einer brennkraftmaschine
DE102006047190B3 (de) Verfahren und Vorrichtung zum Überwachen einer Abgassonde
DE102006047188B4 (de) Verfahren und Vorrichtung zum Überwachen einer Abgassonde
DE102006019894B3 (de) Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
WO2006069845A2 (de) Verfahren und vorrichtung zum ermitteln einer sauerstoffspeicherkapazität des abgaskatalysators einer brennkraftmaschine und verfahren und vorrichtung zum ermitteln einer dynamik-zeitdauer für abgassonden einer brennkraftmaschine
DE102006037752B3 (de) Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
WO2013045526A1 (de) Verfahren und vorrichtung zum betreiben einer brennkraftmaschine
DE102005059794B3 (de) Verfahren und Vorrichtung zum Kalibrieren einer Abgassonde und Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
EP1774161B1 (de) Verfahren und vorrichtung zum steuern einer brennkraftmaschine
DE102004004291B3 (de) Verfahren zum Anpassen des Erfassens eines Messsignals einer Abgassonde
EP1857659A2 (de) Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
EP1844226A1 (de) Vorrichtung und verfahren zum ermitteln einer stellgr\sse eines reglers einer brennkraftmaschine
WO2007012542A1 (de) Verfahren und vorrichtung zum anpassen des erfassens eines messsignals einer abgassonde
DE102005010028B4 (de) Reglervorrichtung zur Kompensation von Streuungen von Injektoren
EP1608861B1 (de) Vorrichtung zum steuern einer brennkraftmaschine
DE102007007815B4 (de) Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
WO2013079368A1 (de) Verfahren und vorrichtung zum betreiben einer linearen lambdasonde
DE102012204332B4 (de) Vorrichtung zum Betreiben einer Brennkraftmaschine
WO2012113786A1 (de) Diagnoseverfahren und -vorrichtung zum betreiben einer brennkraftmaschine
DE102007045264B4 (de) Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
DE102008009033B3 (de) Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
DE102008005881B4 (de) Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
DE102011004824B3 (de) Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11885267

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1020077022345

Country of ref document: KR

122 Ep: pct application non-entry in european phase

Ref document number: 06708088

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 6708088

Country of ref document: EP