EP1844226A1 - Vorrichtung und verfahren zum ermitteln einer stellgr\sse eines reglers einer brennkraftmaschine - Google Patents

Vorrichtung und verfahren zum ermitteln einer stellgr\sse eines reglers einer brennkraftmaschine

Info

Publication number
EP1844226A1
EP1844226A1 EP06700759A EP06700759A EP1844226A1 EP 1844226 A1 EP1844226 A1 EP 1844226A1 EP 06700759 A EP06700759 A EP 06700759A EP 06700759 A EP06700759 A EP 06700759A EP 1844226 A1 EP1844226 A1 EP 1844226A1
Authority
EP
European Patent Office
Prior art keywords
exhaust gas
lam
fuel ratio
cylinder
filter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP06700759A
Other languages
English (en)
French (fr)
Inventor
Paul Rodatz
Gerd RÖSEL
Hong Zhang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Continental Automotive GmbH
Original Assignee
Siemens VDO Automotive AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens VDO Automotive AG filed Critical Siemens VDO Automotive AG
Publication of EP1844226A1 publication Critical patent/EP1844226A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1439Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the position of the sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/009Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00 having two or more separate purifying devices arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2570/00Exhaust treating apparatus eliminating, absorbing or adsorbing specific elements or compounds
    • F01N2570/14Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1413Controller structures or design
    • F02D2041/1431Controller structures or design the system including an input-output delay
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1413Controller structures or design
    • F02D2041/1432Controller structures or design the system including a filter, e.g. a low pass or high pass filter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1433Introducing closed-loop corrections characterised by the control or regulation method using a model or simulation of the system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1439Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the position of the sensor
    • F02D41/1441Plural sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • F02D41/1456Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio with sensor output signal being linear or quasi-linear with the concentration of oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1477Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the regulation circuit or part of it,(e.g. comparator, PI regulator, output)
    • F02D41/1481Using a delaying circuit

Definitions

  • the invention relates to a device and a method for determining a manipulated variable of a controller of an internal combustion engine with at least one cylinder, an exhaust tract in which an exhaust gas catalyst and an exhaust gas probe located in the exhaust gas catalyst are arranged.
  • the controller is a lambda controller.
  • a lambda control is known with a linear lambda probe, which is arranged upstream of a catalytic converter , and a binary lambda probe disposed downstream of the catalytic converter.
  • a lambda setpoint is filtered by means of a filter that takes into account gas runtimes and sensor behavior.
  • the lambda setpoint value thus filtered is the controlled variable of a PII ⁇ D lambda controller whose manipulated variable is an injection quantity correction.
  • the object of the invention is to provide a device and a corresponding method for determining a manipulated variable of a controller of an internal combustion engine, which enables precise control of the internal combustion engine.
  • the object is solved by the features of the independent claims.
  • Advantageous embodiments of the invention are characterized in the subclaims.
  • the invention is characterized by a device and a corresponding method for determining a manipulated variable of a controller of an internal combustion engine having at least one cylinder, an exhaust tract in which an exhaust gas catalyst and an exhaust gas probe located in the exhaust gas catalyst are arranged.
  • the device is designed to determine a predetermined air / fuel ratio in the combustion chamber of the cylinder as a function of at least one operating variable of the internal combustion engine.
  • Operating variables of the internal combustion engine include measured variables detected by corresponding sensors or also variables derived therefrom.
  • the upstream region is related to the flow direction of the exhaust gas from the combustion chamber through the exhaust tract.
  • the device is further configured to determine a detected air / fuel ratio in the combustion chamber of the cylinder depending on a measurement signal of the exhaust gas probe and for determining the manipulated variable by means of the controller depending on the filtered predetermined and detected air / fuel ratio in the combustion chamber of the cylinder ,
  • the invention contributes to the controller being limited to a disturbance variable Compensation can be designed and thus a very precise setting of the predetermined air / fuel ratio is possible.
  • a pilot control is particularly advantageous.
  • a high control speed with a good robustness of the controller is easily possible.
  • the device is designed to determine a dead time and / or a delay time depending on a speed and a load.
  • the dead time and / or the delay time are input variables of the filter.
  • an oxygen loading of the catalytic converter upstream of the exhaust gas probe is an input variable of the filter. This enables a particularly precise modeling of the dynamic behavior of the catalytic converter in the upstream region with respect to the exhaust gas probe.
  • a degree of aging of the catalytic converter is an input variable of the filter.
  • the filter comprises a Pade filter.
  • the filter comprises a second order Pade filter. In this way, the dynamic behavior of the catalytic converter can be modeled very precisely with a reasonable amount of computation.
  • the filter comprises a low-pass filter. This has the advantage of being simple and accurate.
  • Advantageous embodiments of the method correspond to advantageous embodiments of the device.
  • FIG 2 is a block diagram of a relevant to the invention part of a control device of the internal combustion engine according to Figure 1 and
  • Figure 3 is a filter.
  • An internal combustion engine (FIG. 1) comprises an intake tract 1, an engine block 2, a cylinder head 3 and an exhaust tract 4.
  • the intake tract 1 preferably comprises a throttle valve 5, furthermore a collector 6 and an intake manifold 7, which leads to a cylinder Z1 via an intake passage is guided in the engine block 2.
  • the engine block 2 further includes a Crankshaft 8, which is coupled via a connecting rod 10 with the piston 11 of the cylinder Zl.
  • the cylinder head 3 includes a valvetrain having a gas inlet valve 12 and a gas outlet valve 13.
  • the cylinder head 3 further includes an injection valve 18 and a spark plug 19.
  • the injection valve 18 may also be arranged in the intake manifold 7.
  • an exhaust gas catalyst is arranged, which is designed as a three-way catalyst 21. Furthermore, a further exhaust gas catalytic converter, which is designed as a NOx catalytic converter 23, is preferably arranged in the exhaust gas tract.
  • a control device 25 is provided, which is associated with sensors which detect different measured variables and in each case determine the value of the measured variable.
  • the control device 25 determines dependent on at least one of the measured variables manipulated variables, which are then converted into one or more actuating signals for controlling the actuators by means of corresponding actuators.
  • the control device 25 may also be referred to as a device for controlling the internal combustion engine.
  • the sensors are a pedal position sensor 26, which detects an accelerator pedal position of an accelerator pedal 27, an air mass sensor 28, which detects an air mass flow upstream of the throttle valve 5, a first temperature sensor 32, which detects an intake air temperature, a Saugrohr horrsen- sensor 34, which an intake manifold pressure in the collector 6 detects a crankshaft angle sensor 36, which detects a crankshaft angle, which is then assigned a speed.
  • a first exhaust gas probe 42 is provided which is arranged in the three-way catalytic converter 21 and which detects a residual oxygen content of the exhaust gas and whose measurement signal MS1 is characteristic for the air / fuel ratio in the combustion chamber of the cylinder Z1 and upstream of the first exhaust gas probe before Oxidation of the fuel, hereinafter referred to as the air / fuel ratio in the cylinders Zl - Z4.
  • the first exhaust gas probe 42 is disposed in the three-way catalyst such that a portion of the catalyst volume is upstream of the first exhaust gas probe 42.
  • a second exhaust gas probe 43 is provided, which is arranged downstream of the three-way catalytic converter 42 and which detects a residual oxygen content of the exhaust gas and whose measurement signal is characteristic for the air / fuel ratio in the combustion chamber of the cylinder Zl and upstream of the second exhaust gas probe 43 before the oxidation of the Fuel, hereinafter referred to as the air / fuel ratio downstream of the catalytic converter.
  • the first exhaust gas probe 42 is preferably a linear lambda probe.
  • the second exhaust gas probe 43 is a binary lambda probe. However, it can also be a linear lambda probe.
  • any subset of said sensors may be present, or additional sensors may be present.
  • the actuators are, for example, the throttle valve 5, the gas inlet and gas outlet valves 12, 13, the injection valve 18 or the spark plug 19.
  • the cylinder Zl also more cylinders Z2 to Z4 are preferably provided, which then also corresponding actuators and possibly. Sensors are assigned.
  • a block diagram of a part of the control device 25 relevant to the invention is shown in FIG.
  • a predetermined raw air / fuel ratio LAM_SP_RAW can be predefined in a particularly simple embodiment. However, it is preferably determined, for example, as a function of the current operating mode of the internal combustion engine, such as homogeneous or stratified operation, and / or depending on operating variables of the internal combustion engine. Operating variables include measured quantities and quantities derived therefrom.
  • a forced excitation is determined and summed in the first summing point S1 with the predetermined raw air / fuel ratio LAM_SP_RAW.
  • the output of the summing point is then a predetermined air / fuel ratio LAM SP in the combustion chambers of the cylinders Zl to Z4.
  • the predetermined air-fuel ratio LAM SP is supplied to a block B2 which includes a pilot control and generates a lambda advance control factor LAM_FAC_PC depending on the predetermined air-fuel ratio LAM SP.
  • a filter is formed, by means of which the predetermined air / fuel ratio LAM SP is filtered and thus a predetermined filtered air / fuel ratio LAM_SP_FIL is generated.
  • a block B6 is provided, the input variables of which are a rotational speed N and / or a load LOAD.
  • the load may for example be represented by the intake manifold pressure or else the air mass flow.
  • Block B6 is designed to determine a dead time TT depending on the rotational speed N and / or the load LOAD.
  • a map can be stored in block B6 and the dead time T_T can be determined by means of map interpolation.
  • a block B8 is provided, whose input variables are the rotational speed N and / or the load LOAD.
  • the block B8 is designed to determine a delay time T V as a function of its input variables, preferably by means of map interpolation via a map stored in the block B8.
  • the maps are preferably determined in advance by experiments or simulations.
  • the dead time T T and also the delay time T_V are characteristic of the dynamic behavior of the upstream region of the three-way catalyst 21 upstream of the first exhaust gas probe 42 with regard to its storage, reduction and / or oxidation behavior.
  • the dead time T_T and / or the delay time T V are preferably input variables of the block B4 and thus of the filter.
  • the filter preferably comprises a Pade filter, in particular a second order Pade filter, which approximates the dynamic behavior of the three-way catalyst 21 upstream of the first exhaust gas probe 42 as a function of the dead time T_T.
  • the block B4 preferably also includes a low-pass filter which, in particular, approximates the behavior of the first exhaust gas probe 42 with regard to gas transit times and the catalyst behavior as a function of the delay time T V.
  • preferred input variables of the block B4 are an oxygen charge 02_L0AD of the three-way catalytic converter 21 and / or Both the aging degree AGE and the oxygen loading 02 LOAD are preferably determined by means of suitable operating variables, such as the rotational speed N, the load LOAD and / or an air / fuel ratio, preferably by means of corresponding physical models of the Aging behavior of the three-way catalyst 21 and the oxygen loading of the three-way catalyst 21.
  • both the aging degree AGE and the oxygen loading 02 LOAD affect filter parameters of the filter of the block B4.
  • the degree of aging AGE and / or the oxygen loading 02_L0AD can also be input variables of the block B6 and / or of the block B8.
  • the filter is preferably also designed to also take into account a gas running time from the combustion of the air / fuel mixture in the respective combustion chamber of the respective cylinder Z1 to Z4 toward the first lambda probe 42 and also the sensor behavior.
  • the filter of the block B4 is shown schematically.
  • it comprises a first filter 46 and a second filter 48.
  • the first filter 46 is preferably designed as the second-order Pade filter.
  • the line 50 represents the time profile of the predetermined air / fuel ratio LAM SP.
  • the line 52 represents the output of the first filter 46, which is also the input of the second filter 48, which is preferably a low-pass filter, in particular a first-order low-pass filter.
  • the line 54 represents the output of the second filter 48, which may be, for example, the time profile of the filtered air / fuel ratio LAM SP FIL.
  • a trim controller is formed, which is preferably designed as a PI controller.
  • the trim controller the measurement signal MS2 of the second exhaust gas probe 43 is supplied.
  • Its manipulated variable is a displacement value for an air / fuel ratio LAM AV detected by the first exhaust gas probe 42 in the combustion chambers of the cylinders Z1 to Z4, which is determined as a function of the measurement signal MS1 of the first exhaust gas probe 42.
  • the sum of the detected air / fuel ratio LAM AV and the shift value is determined, and thus a corrected detected air / fuel ratio LAM_AV_COR is determined.
  • a control difference D LAM the input quantity of the block B12, is determined in a third summation point S3 by forming a difference.
  • a lambda controller is formed, preferably as a PII ⁇ D controller.
  • the manipulated variable of the lambda controller of the block B12 is a lambda control factor LAM_FAC_FB.
  • a block B14 is provided in which, depending on the load LOAD and the predetermined air / fuel ratio LAM SP, a fuel mass MFF to be metered is determined.
  • the load is preferably an air mass per working cycle flowing into the respective combustion chamber of the respective cylinder Z1-Z4.
  • a corrected fuel quantity MFF COR to be metered is determined by forming the product of the fuel mass MFF to be metered, the lambda advance control factor LAM_FAC_PC and the lambda control factor LAM FAC FB.
  • the injection valve 18 is then driven in accordance with the metering of the corrected metered fuel mass MFF COR.
  • the lambda control factor LAM_FAC_FB can also be used for diagnostic purposes, for example.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Abstract

Eine Vorrichtung ist ausgebildet zum Ermitteln eines vorgegebenen Luft/Kraftstoff-Verhältnisses (LAM SP) in dem Brennraum eines Zylinders (Z1 bis Z4) einer Brennkraftmaschine. Sie ist ferner ausgebildet zum Ermitteln eines gefilterten vorgegebenen Luft/Kraftstoff-Verhältnisses (LAM SP FIL) in dem Brennraum des Zylinders (Z1 bis Z4) durch Filtern des vorgegebenen Luft/Kraftstoff-Verhältnisses (LA SP) in dem Brennraum des Zylinders (Z1 bis Z4) mittels eines Filters, das das dynamische Verhalten des stromaufwärtigen Bereichs des Abgaskatalysators bezogen auf die Anordnung der Abgassonde in dem Abgaskatalysator im Hinblick auf sein Speicher-, Reduktion- und/oder Oxidationsverhalten modelliert. Sie ist ferner ausgebildet zum Ermitteln einer Stellgröße mittels eines Reglers abhängig von dem gefilterten vorgegebenen und einem erfassten Luft/Kraftstoff-Verhältnis (LAM SP FIL, LAM AV) in dem Brennraum des Zylinders.

Description

Beschreibung
Vorrichtung und Verfahren zum Ermitteln einer Stellgröße eines Reglers einer Brennkraftmaschine
Die Erfindung betrifft eine Vorrichtung und ein Verfahren zum Ermitteln einer Stellgröße eines Reglers einer Brennkraftmaschine mit mindestens einem Zylinder, einem Abgastrakt, in dem ein Abgaskatalysator und eine in dem Abgaskatalysator befindliche Abgassonde angeordnet sind. Insbesondere ist der Regler ein Lambda-Regler .
Immer strengere gesetzliche Vorschriften bezüglich zulässiger Schadstoffemissionen von Kraftfahrzeugen, in denen Brennkraftmaschinen angeordnet sind, machen es erforderlich, die Schadstoffemissionen beim Betrieb der Brennkraftmaschine so gering wie möglich zu halten . Dies kann zum einen erfolgen, indem die Schadstoffemissionen verringert werden, die während der Verbrennung des Luft/Kraftstoff-Gemisches in dem j eweiligen Zylinder der Brennkraftmaschine entstehen . Zum andern sind in Brennkraftmaschinen Abgasnachbehandlungssysteme im Einsatz , die die Schadstoffemissionen, die während des Verbrennungsprozesses des Luft/Kraftstoff-Gemisches in den j eweiligen Zylindern erzeugt werden, in unschädliche Stoffe umwandeln . Zu diesem Zweck werden Katalysatoren eingesetzt, die Kohlenmonoxid, Kohlenwasserstoffe und Stickoxide in unschädliche Stoffe umwandeln . Sowohl das gezielte Beeinflussen des Erzeugens der Schadstoffemissionen während der Verbrennung als auch das Umwandeln der Schadstoffkomponenten mit einem hohen Wirkungsgrad durch einen Abgaskatalysator setzen ein sehr präzise eingestelltes Luft/Kraftstoff-Verhältnis in dem j eweiligen Zylinder voraus . Aus der SAE International Veröffentlichung "A Metal Substrate with Integrated Oxygen Sensor; Functionality and Influence on Air/Fuel Ratio Control" , Mats Laurell et al . , SAE 2003-01- 0818 ist eine Vorrichtung für eine Brennkraftmaschine bekannt mit einem Abgaskatalysator in einem Abgastrakt . Ein linearer Lambdasensor ist stromaufwärts des Abgaskatalysators in dem Abgastrakt angeordnet . Zusätzlich sind in dem Abgaskatalysator eine erste und eine zweite binäre Lambdasonde angeordnet . Die binäre Lambdasonde wird zum Trimmen des Sondensignals des linearen Lambdasensors eingesetzt . Das so getrimmte Messsignal des linearen Lambdasensors ist die Regelgröße eines Lamb- dareglers .
Aus dem Fachbuch, "Handbuch Verbrennungsmotor" , Herausgeber Richard von Basshuysen, Fred Schäfer, 2. Auflage, Vieweg & Sohn Verlagsgesellschaft mbH, Juni 2002 , Seiten 526 - 528 , ist eine Lambdaregelung bekannt mit einer linearen Lambdasonde, die stromaufwärts eines Abgaskatalysators angeordnet ist, und einer binären Lambdasonde, die stromabwärts des Abgaskatalysators angeordnet ist . Ein Lambdasollwert wird mittels eines Filters gefiltert, das Gaslaufzeiten und das Sensorverhalten berücksichtigt . Der so gefilterte Lambdasollwert ist die Regelgröße eines PII^D-Lambdareglers , dessen Stellgröße eine Einspritzmengenkorrektur ist .
Die Aufgabe der Erfindung ist es eine Vorrichtung und ein entsprechendes Verfahren zum Ermitteln einer Stellgröße eines Reglers einer Brennkraftmaschine zu schaffen, die beziehungsweise das ein präzises Steuern der Brennkraftmaschine ermöglicht . Die Aufgabe wird gelöst durch die Merkmale der unabhängigen Patentansprüche . Vorteilhafte Ausgestaltungen der Erfindung sind in den Unteransprüchen gekennzeichnet .
Die Erfindung zeichnet sich aus durch eine Vorrichtung und ein entsprechendes Verfahren zum Ermitteln einer Stellgröße eines Reglers einer Brennkraftmaschine mit mindestens einem Zylinder, einem Abgastrakt, in dem ein Abgaskatalysator und eine in dem Abgaskatalysator befindliche Abgassonde angeordnet sind. Die Vorrichtung ist ausgebildet zum Ermitteln eines vorgegebenen Luft/Kraftstoff-Verhältnisses in dem Brennraum des Zylinders abhängig von mindestens einer Betriebsgröße der Brennkraftmaschine . Betriebsgrößen der Brennkraftmaschine umfassen durch entsprechende Sensoren erfasste Messgrößen oder auch von diesen abgeleitete Größen . Sie ist ferner ausgebildet zum Ermitteln eines gefilterten vorgegebenen Luft/Kraftstoff-Verhältnisses in dem Brennraum des Zylinders durch Filtern des vorgegebenen Luft/Kraftstoff-Verhältnisses in dem Brennraum des Zylinders mittels eines Filters , welches das dynamische Verhalten des stromaufwärtigen Bereichs des Abgaskatalysators bezogen auf die Anordnung der Abgassonde in dem Abgaskatalysator im Hinblick auf sein Speicher-, Redukti- ons- und/oder Oxidationsverhalten modelliert . Der stromauf- wärtige Bereich ist bezogen auf die Strömungsrichtung des Abgases von dem Brennraum durch den Abgastrakt hindurch .
Die Vorrichtung ist ferner ausgebildet zum Ermitteln eines erfassten Luft/Kraftstoff-Verhältnisses in dem Brennraum des Zylinders abhängig von einem Messsignal der Abgassonde und zum Ermitteln der Stellgröße mittels des Reglers abhängig von dem gefilterten vorgegebenen und erfassten Luft/Kraftstoff- Verhältnis in dem Brennraum des Zylinders . Die Erfindung trägt dazu bei, dass der Regler auf eine Störgrößen- Kompensation ausgelegt sein kann und somit ein sehr präzises Einstellen des vorgegebenen Luft/Kraftstoff-Verhältnisses möglich ist . In diesem Zusammenhang ist eine Vorsteuerung besonders vorteilhaft . Ferner ist eine hohe Regelgeschwindigkeit bei einer guten Robustheit des Reglers einfach möglich .
Gemäß einer vorteilhaften Ausgestaltung der Vorrichtung ist sie ausgebildet zum Ermitteln einer Totzeit und/oder einer Verzögerungszeit abhängig von einer Drehzahl und einer Last . Die Totzeit und/oder die Verzögerungszeit sind Eingangsgrößen des Filters . So kann einfach ein präzises Modellieren des dynamischen Verhaltens des Abgaskatalysators stromaufwärts der Abgassonde erfolgen .
Gemäß einer weiteren vorteilhaften Ausgestaltung der Vorrichtung ist eine Sauerstoffbeladung des Abgaskatalysators stromaufwärts der Abgassonde eine Eingangsgröße des Filters . Dies ermöglicht ein besonders präzises Modellieren des dynamischen Verhaltens des Abgaskatalysators in dem stromaufwär- tigen Bereich in Bezug auf die Abgassonde .
Gemäß einer weiteren vorteilhaften Ausgestaltung der Vorrichtung ist ein Alterungsgrad des Abgaskatalysators eine Eingangsgröße des Filters . So ist ein besonders präzises Modellieren des dynamischen Verhaltens des Abgaskatalysators stromaufwärts der Abgassonde einfach über eine lange Betriebsdauer hinweg möglich .
Gemäß einer weiteren vorteilhaften Ausgestaltung der Vorrichtung umfasst das Filter ein Pade-Filter . Dies hat den Vorteil, dass es einfach und präzise ist . In diesem Zusammenhang ist es besonders vorteilhaft wenn das Filter ein Pade-Filter zweiter Ordnung umfasst . Auf diese Weise kann das dynamische Verhalten des Abgaskatalysators sehr präzise bei gleichzeitig angemessenem Rechenaufwand modelliert werden .
Gemäß einer weiteren vorteilhaften Ausgestaltung der Vorrichtung umfasst das Filter ein Tiefpassfilter . Dies hat den Vorteil, dass es einfach und präzise ist .
Vorteilhafte Ausgestaltungen des Verfahrens korrespondieren zu vorteilhaften Ausgestaltungen der Vorrichtung .
Ausführungsbeispiele der Erfindung sind im Folgenden anhand der schematischen Zeichnungen näher erläutert . Es zeigen :
Figur 1 eine Brennkraftmaschine,
Figur 2 ein Blockdiagramm eines für die Erfindung relevanten Teils einer Steuervorrichtung der Brennkraftmaschine gemäß Figur 1 und
Figur 3 ein Filter .
Elemente gleicher Konstruktion oder Funktion sind figurenübergreifend mit den gleichen Bezugszeichen gekennzeichnet .
Eine Brennkraftmaschine (Figur 1 ) umfasst einen Ansaugtrakt 1 , einen Motorblock 2 , einen Zylinderkopf 3 und einen Abgastrakt 4. Der Ansaugtrakt 1 umfasst vorzugsweise eine Drosselklappe 5, ferner einen Sammler 6 und ein Saugrohr 7 , das hin zu einem Zylinder Zl über einen Einlasskanal in den Motorblock 2 geführt ist . Der Motorblock 2 umfasst ferner eine Kurbelwelle 8 , welche über eine Pleuelstange 10 mit dem Kolben 11 des Zylinders Zl gekoppelt ist .
Der Zylinderkopf 3 umfasst einen Ventiltrieb mit einem Gaseinlassventil 12 und einem Gasauslassventil 13.
Der Zylinderkopf 3 umfasst ferner ein Einspritzventil 18 und eine Zündkerze 19. Alternativ kann das Einspritzventil 18 auch in dem Saugrohr 7 angeordnet sein .
In dem Abgastrakt ist ein Abgaskatalysator angeordnet, der als Dreiwegekatalysator 21 ausgebildet ist . Ferner ist in dem Abgastrakt ein weiterer Abgaskatalysator bevorzugt angeordnet, der als NOx-Katalysator 23 ausgebildet ist .
Eine Steuervorrichtung 25 ist vorgesehen, der Sensoren zugeordnet sind, die verschiedene Messgrößen erfassen und j eweils den Wert der Messgröße ermitteln . Die Steuervorrichtung 25 ermittelt abhängig von mindestens einer der Messgrößen Stellgrößen, die dann in ein oder mehrere Stellsignale zum Steuern der Stellglieder mittels entsprechender Stellantriebe umgesetzt werden . Die Steuervorrichtung 25 kann auch als Vorrichtung zum Steuern der Brennkraftmaschine bezeichnet werden .
Die Sensoren sind ein Pedalstellungsgeber 26, welcher eine Fahrpedalstellung eines Fahrpedals 27 erfasst, ein Luftmassensensor 28 , welcher einen Luftmassenstrom stromaufwärts der Drosselklappe 5 erfasst, ein erster Temperatursensor 32 , welcher eine Ansauglufttemperatur erfasst, ein Saugrohrdrucksen- sor 34 , welcher einen Saugrohrdruck in dem Sammler 6 erfasst, ein Kurbelwellenwinkelsensor 36, welcher einen Kurbelwellenwinkel erfasst, dem dann eine Drehzahl zugeordnet wird. Ferner ist eine erste Abgassonde 42 vorgesehen, die in dem Dreiwegekatalysator 21 angeordnet ist und die einen Restsau- erstoffgehalt des Abgases erfasst und deren Messsignal MSl charakteristisch ist für das Luft/Kraftstoff-Verhältnis in dem Brennraum des Zylinders Zl und stromaufwärts der ersten Abgassonde vor der Oxidation des Kraftstoffs , im folgenden bezeichnet als das Luft/Kraftstoff-Verhältnis in den Zylindern Zl - Z4. Die erste Abgassonde 42 ist so in dem Dreiwegekatalysator angeordnet, dass sich ein Teil des Katalysatorvolumens stromaufwärts der ersten Abgassonde 42 befindet . Ferner ist eine zweite Abgassonde 43 vorgesehen, die stromabwärts des Dreiwegekatalysators 42 angeordnet ist und die einen Restsauerstoffgehalt des Abgases erfasst und deren Messsignal charakteristisch ist für das Luft/Kraftstoff- Verhältnis in dem Brennraum des Zylinders Zl und stromaufwärts der zweiten Abgassonde 43 vor der Oxidation des Kraftstoffs , im folgenden bezeichnet als das Luft/Kraftstoff- Verhältnis stromabwärts des Abgaskatalysators .
Die erste Abgassonde 42 ist bevorzugt eine lineare Lambdason- de . Die zweite Abgassonde 43 ist eine binäre Lambdasonde . Sie kann j edoch auch eine lineare Lambdasonde sein .
Je nach Ausführungsform der Erfindung kann eine beliebige Untermenge der genannten Sensoren vorhanden sein oder es können auch zusätzliche Sensoren vorhanden sein .
Die Stellglieder sind beispielsweise die Drosselklappe 5, die Gaseinlass- und Gasauslassventile 12 , 13, das Einspritzventil 18 oder die Zündkerze 19. Neben dem Zylinder Zl sind bevorzugt auch noch weitere Zylinder Z2 bis Z4 vorgesehen, denen dann auch entsprechende Stellglieder und ggf . Sensoren zugeordnet sind.
Ein Blockdiagramm eines für die Erfindung relevanten Teils der Steuervorrichtung 25 ist in der Figur 2 dargestellt . Ein vorgegebenes Roh-Luft/Kraftstoff-Verhältnis LAM_SP_RAW kann in einer besonders einfachen Ausgestaltung fest vorgegeben sein . Es wird j edoch bevorzugt beispielsweise abhängig von dem aktuellen Betriebsmodus der Brennkraftmaschine, wie einem Homogen- oder einem Schichtbetrieb und/oder abhängig von Betriebsgrößen der Brennkraftmaschine ermittelt . Betriebsgrößen umfassen Messgrößen und von diesen abgeleitete Größen .
In einem Block Bl wird eine Zwangsanregung ermittelt und in der ersten Summierstelle Sl mit dem vorgegebenen Roh- Luft/Kraftstoff-Verhältnis LAM_SP_RAW summiert . Die Ausgangsgröße der Summierstelle ist dann ein vorgegebenes Luft/Kraftstoff-Verhältnis LAM SP in den Brennräumen der Zylinder Zl bis Z4. Das vorgegebene Luft/Kraftstoff-Verhältnis LAM SP ist einem Block B2 zugeführt, der eine Vorsteuerung beinhaltet und einen Lambdavorsteuerfaktor LAM_FAC_PC abhängig von dem vorgegebenen Luft/Kraftstoff-Verhältnis LAM SP erzeugt .
In einem Block B4 ist ein Filter ausgebildet, mittels dessen das vorgegebene Luft/Kraftstoff-Verhältnis LAM SP gefiltert wird und so ein vorgegebenes gefiltertes Luft/Kraftstoff- Verhältnis LAM_SP_FIL erzeugt wird.
Ein Block B6 ist vorgesehen, dessen Eingangsgrößen eine Drehzahl N und/oder eine Last LOAD sind. Die Last kann beispielsweise repräsentiert sein durch den Saugrohrdruck oder auch den Luftmassenstrom. Block B6 ist dazu ausgebildet abhängig von der Drehzahl N und/oder der Last LOAD eine Totzeit T T zu ermitteln . Dazu kann beispielsweise in dem Block B6 ein Kennfeld gespeichert sein und die Totzeit T_T mittels Kennfeldinterpolation ermittelt werden .
Ferner ist ein Block B8 vorgesehen, dessen Eingangsgrößen die Drehzahl N und/oder die Last LOAD sind. Der Block B8 ist ausgebildet zum Ermitteln einer Verzögerungszeit T V abhängig von seinen Eingangsgrößen und zwar bevorzugt mittels Kennfeldinterpolation über ein in dem Block B8 abgelegtes Kennfeld.
Die Kennfelder sind bevorzugt vorab durch Versuche oder Simulationen ermittelt . Die Totzeit T T und auch die Verzögerungszeit T_V sind charakteristisch für das dynamische Verhalten des stromaufwärtigen Bereichs des Dreiwegekatalysators 21 stromaufwärts der ersten Abgassonde 42 im Hinblick auf sein Speicher-, Reduktion- und/oder Oxidationsverhalten . Bevorzugt sind die Totzeit T_T und/oder die Verzögerungszeit T V Eingangsgrößen des Blocks B4 und somit des Filters .
Das Filter umfasst bevorzugt ein Pade-Filter, insbesondere ein Pade-Filter zweiter Ordnung, das das dynamische Verhalten des Dreiwegekatalysators 21 stromaufwärts der ersten Abgassonde 42 in Abhängigkeit von der Totzeit T_T approximiert . Darüber hinaus umfasst der Block B4 bevorzugt auch ein Tiefpassfilter, das insbesondere das Verhalten der ersten Abgassonde 42 im Hinblick auf Gaslaufzeiten und das Katalysatorverhalten approximiert abhängig von der Verzögerungszeit T V.
Ferner sind bevorzugt Eingangsgrößen des Blocks B4 eine Sau- erstoffbeladung 02_L0AD des Dreiwegekatalysators 21 und/oder ein Alterungsgrad AGE des Dreiwegekatalysators 21. Sowohl der Alterungsgrad AGE als auch die Sauerstoffbeladung 02 LOAD werden bevorzugt mittels geeigneter Betriebsgrößen, wie der Drehzahl N, der Last LOAD und oder einem Luft/Kraftstoff- Verhältnis , ermittelt, und zwar bevorzugt mittels entsprechender physikalischer Modelle des Alterungsverhaltens des Dreiwegekatalysators 21 und der Sauerstoffbeladung des Dreiwegekatalysators 21. Bevorzugt beeinflussen sowohl der Alterungsgrad AGE als auch die Sauerstoffbeladung 02 LOAD Filterparameter des Filters des Blocks B4.
Der Alterungsgrad AGE und/oder die Sauerstoffbeladung 02_L0AD können auch Eingangsgrößen des Blocks B6 und/oder des Blocks B8 sein .
Das Filter ist vorzugsweise ferner dazu ausgebildet auch eine Gaslaufzeit von der Verbrennung des Luft/Kraftstoff-Gemisches in dem j eweiligen Brennraum des j eweiligen Zylinders Zl bis Z4 hin zu der ersten Lambdasonde 42 und auch das Sensorverhalten zu berücksichtigen . In der Figur 3 ist das Filter des Blocks B4 schematisch dargestellt . Es umfasst insbesondere ein erstes Filter 46 und ein zweites Filter 48. Das erste Filter 46 ist bevorzugt als das Pade-Filter zweiter Ordnung ausgebildet . Die Linie 50 stellt den zeitlichen Verlauf des vorgegebenen Luft/Kraftstoff-Verhältnisses LAM SP dar . Die Linie 52 stellt die Ausgangsgröße des ersten Filters 46 dar, die gleichzeitig die Eingangsgröße des zweiten Filters 48 ist, das bevorzugt ein Tiefpassfilter, insbesondere ein Tiefpassfilter erster Ordnung ist . Die Linie 54 stellt die Ausgangsgröße des zweiten Filters 48 dar, die beispielsweise der zeitliche Verlauf des gefilterten Luft/Kraftstoff- Verhältnisses LAM SP FIL sein kann . In einem Block BIO ist ein Trimmregler ausgebildet, der bevorzugt als PI-Regler ausgebildet ist . Dem Trimmregler wird das Messsignal MS2 der zweiten Abgassonde 43 zugeführt . Seine Stellgröße ist ein Verschiebungswert für ein durch die erste Abgassonde 42 erfasstes Luft/Kraftstoff-Verhältnis LAM AV in den Brennräumen der Zylinder Zl bis Z4 , welches abhängig von dem Messsignal MSl der ersten Abgassonde 42 ermittelt wird. In der zweiten Summierstelle S2 wird die Summe des erfassten Luft/Kraftstoff-Verhältnisses LAM AV und dem Verschiebungswert ermittelt und so ein korrigiertes erfasstes Luft/Kraftstoff-Verhältnis LAM_AV_COR ermittelt . Abhängig von dem vorgegebenen gefilterten Luft/Kraftstoff-Verhältnis LAM SP FIL und dem korrigierten erfassten Luft/Kraftstoff- Verhältnis LAM_AV_COR wird in einer dritten Summierstelle S3 durch Bilden einer Differenz eine Regeldifferenz D LAM ermittelt, die Eingangsgröße des Block B12 ist . In dem Block B12 ist ein Lambda-Regler ausgebildet und zwar bevorzugt als PII^D-Regler . Die Stellgröße des Lambda-Reglers des Blocks B12 ist ein Lambdaregelfaktor LAM_FAC_FB .
Ferner ist ein Block B14 vorgesehen, in dem abhängig von der Last LOAD und dem vorgegebenen Luft/Kraftstoff-Verhältnis LAM SP eine zuzumessende Kraftstoffmasse MFF ermittelt wird. Bevorzugt ist die Last in diesem Fall eine in den j eweiligen Brennraum des j eweiligen Zylinders Z1-Z4 einströmende Luftmasse pro Arbeitsspiel . In der Multiplizierstelle Ml wird eine korrigierte zuzumessende Kraftstoffmasse MFF COR durch Bilden des Produkts der zuzumessenden Kraftstoffmasse MFF, des Lambdavorsteuerfaktors LAM_FAC_PC und des Lambdaregelfak- tors LAM FAC FB ermittelt . Das Einspritzventil 18 wird dann entsprechend zum Zumessen der korrigierten zuzumessenden Kraftstoffmasse MFF COR angesteuert . Der Lambdaregelfaktor LAM_FAC_FB kann beispielsweise auch zu Diagnosezwecken eingesetzt werden .

Claims

Patentansprüche
1. Vorrichtung zum Ermitteln einer Stellgröße eines Reglers einer Brennkraftmaschine mit mindestens einem Zylinder (Zl bis Z4 ) , einem Abgastrakt (4 ) , in dem ein Abgaskatalysator und eine in dem Abgaskatalysator befindliche Abgassonde angeordnet sind, wobei die Vorrichtung ausgebildet ist zum
- Ermitteln eines vorgegebenen Luft/Kraftstoff-Verhältnisses (LAM SP) in dem Brennraum des Zylinders (Zl bis Z4 ) abhängig von mindestens einer Betriebsgröße der Brennkraftmaschine,
- Ermitteln eines gefilterten vorgegebenen Luft/Kraftstoff- Verhältnisses (LAM_SP_FIL) in den Brennraum des Zylinders (Zl bis Z4 ) durch Filtern des vorgegebenen Luft/Kraftstoff- Verhältnisses (LAM_SP) in dem Brennraum des Zylinders (Zl bis Z4 ) mittels eines Filters , das das dynamische Verhalten des stromaufwärtigen Bereichs des Abgaskatalysators bezogen auf die Anordnung der Abgassonde in dem Abgaskatalysator im Hinblick auf sein Speicher-, Reduktion- und/oder Oxidationsver- halten modelliert,
- Ermitteln eines erfassten Luft/Kraftstoff-Verhältnisses (LAM AV) in dem Brennraum des Zylinders (Zl bis Z4 ) abhängig von einem Messsignal der Abgassonde und
- Ermitteln der Stellgröße mittels des Reglers abhängig von dem gefilterten vorgegebenen und dem erfassten
Luft/Kraftstoff-Verhältnis (LAM_SP_FIL, LAM_AV) in dem Brennraum des Zylinders (Zl bis Z4 ) .
2. Vorrichtung nach Anspruch 1 , die ausgebildet ist zum Ermitteln einer Totzeit (T_T) und/oder einer Verzögerungszeit (T V) abhängig von einer Drehzahl (N) und einer Last (LOAD) , und bei der die Totzeit (T T) und/oder die Verzögerungszeit (T V) Eingangsgrößen des Filters sind.
3. Vorrichtung nach einem der vorstehenden Ansprüche, bei der eine Sauerstoffbeladung (O2_LOAD) des Abgaskatalysators stromaufwärts der Abgassonde eine Eingangsgröße des Filters ist .
4. Vorrichtung nach einem der vorstehenden Ansprüche, bei der ein Alterungsgrad (AGE) des Abgaskatalysators eine Eingangsgröße des Filters ist .
5. Vorrichtung nach einem der vorstehenden Ansprüche, bei der das Filter ein Pade-Filter umfasst .
6. Vorrichtung nach Anspruch 5, bei der das Filter ein Pade-Filter zweiter Ordnung umfasst .
7. Vorrichtung nach einem der vorstehenden Ansprüche, bei der das Filter ein Tiefpassfilter umfasst .
8. Verfahren zum Ermitteln einer Stellgröße eines Reglers einer Brennkraftmaschine mit mindestens einem Zylinder (Zl bis Z4 ) , einem Abgastrakt (4 ) , in dem ein Abgaskatalysator und eine in dem Abgaskatalysator befindliche Abgassonde angeordnet sind, wobei
- ein vorgegebenes Luft/Kraftstoff-Verhältnis (LAM SP) in dem Brennraum des Zylinders (Zl bis Z4 ) abhängig von mindestens einer Betriebsgröße der Brennkraftmaschine ermittelt wird,
- ein gefiltertes vorgegebenes Luft/Kraftstoff-Verhältnis (LAM_SP_FIL) in dem Brennraum des Zylinders (Zl bis Z4 ) durch Filtern des vorgegebenen Luft/Kraftstoff-Verhältnisses (LAM_SP) in den Brennräumen der Zylinder (Zl bis Z4 ) mittels eines Filters ermittelt wird, das das dynamische Verhalten des stromaufwärtigen Bereichs des Abgaskatalysators bezogen auf die Anordnung der Abgassonde in dem Abgaskatalysator (4 ) im Hinblick auf sein Speicher-, Reduktion- und/oder Oxidati- onsverhalten modelliert,
- Abhängig von einem Messsignal der Abgassonde ein erfasstes Luft/Kraftstoff-Verhältnis (LAM_AV) in dem Brennraum des Zylinders (Zl bis Z4 ) ermittelt wird und
- mittels des Reglers eine Stellgröße ermittelt wird abhängig von dem gefilterten vorgegebenen und dem erfassten Luft/Kraftstoff-Verhältnis (LAM_SP_FIL, LAM_AV) in dem Brennraum des Zylinders (Zl bis Z4 ) .
EP06700759A 2005-01-31 2006-01-04 Vorrichtung und verfahren zum ermitteln einer stellgr\sse eines reglers einer brennkraftmaschine Withdrawn EP1844226A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005004441A DE102005004441B3 (de) 2005-01-31 2005-01-31 Vorrichtung und Verfahren zum Ermitteln einer Stellgröße eines Reglers einer Brennkraftmaschine
PCT/EP2006/050040 WO2006082116A1 (de) 2005-01-31 2006-01-04 Vorrichtung und verfahren zum ermitteln einer stellgrösse eines reglers einer brennkraftmaschine

Publications (1)

Publication Number Publication Date
EP1844226A1 true EP1844226A1 (de) 2007-10-17

Family

ID=35613065

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06700759A Withdrawn EP1844226A1 (de) 2005-01-31 2006-01-04 Vorrichtung und verfahren zum ermitteln einer stellgr\sse eines reglers einer brennkraftmaschine

Country Status (4)

Country Link
US (1) US7502683B2 (de)
EP (1) EP1844226A1 (de)
DE (1) DE102005004441B3 (de)
WO (1) WO2006082116A1 (de)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005034690B3 (de) * 2005-07-25 2007-01-04 Siemens Ag Verfahren und Vorrichtung zum Anpassen des Erfassens eines Messsignals einer Abgassonde
DE102005059794B3 (de) * 2005-12-14 2007-03-29 Siemens Ag Verfahren und Vorrichtung zum Kalibrieren einer Abgassonde und Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
DE102007022592A1 (de) * 2007-05-14 2008-11-27 Robert Bosch Gmbh Verfahren zur Bestimmung einer Kraftstoffzusammensetzung
DE102008024177B3 (de) * 2008-05-19 2009-09-03 Continental Automotive Gmbh Verfahren, Vorrichtung und System zur Diagnose eines NOx-Sensors für eine Brennkraftmaschine
DE102008058008B3 (de) * 2008-11-19 2010-02-18 Continental Automotive Gmbh Vorrichtung zum Betreiben einer Brennkraftmaschine
US8793058B2 (en) * 2010-10-12 2014-07-29 Toyota Jidosha Kabushiki Kaisha Control device for internal combustion engine
DE102012209384A1 (de) * 2012-06-04 2013-12-05 Robert Bosch Gmbh Verfahren und Vorrichtung zum Durchführen einer adaptiven Regelung einer Stellung eines Stellglieds eines Stellgebers
DE102014019195B4 (de) * 2014-12-19 2023-01-19 Audi Ag Verfahren zum Betreiben einer Antriebseinrichtung sowie entsprechende Antriebseinrichtung

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3826527A1 (de) * 1988-08-04 1990-02-08 Bosch Gmbh Robert Stereolambdaregelung
DE4024210C2 (de) * 1990-07-31 1999-09-02 Bosch Gmbh Robert Verfahren zur Lambdaregelung einer Brennkraftmaschine mit Katalysator
DE4112478C2 (de) * 1991-04-17 2001-03-08 Bosch Gmbh Robert Verfahren und Vorrichtung zum Beurteilen des Alterungszustandes eines Katalysators
US5623913A (en) 1995-02-27 1997-04-29 Honda Giken Kogyo Kabushiki Kaisha Fuel injection control apparatus
DE19606652B4 (de) * 1996-02-23 2004-02-12 Robert Bosch Gmbh Verfahren der Einstellung des Kraftstoff-Luftverhältnisses für eine Brennkraftmaschine mit nachgeschaltetem Katalysator
FR2746851B1 (fr) 1996-03-27 1998-04-30 Siemens Automotive Sa Procede et dispositif de regulation en boucle fermee de la richesse d'un melange air/carburant destine a l'alimentation d'un moteur a combustion interne
JP3261038B2 (ja) * 1996-04-05 2002-02-25 本田技研工業株式会社 内燃機関の空燃比制御装置
JP4265704B2 (ja) 1999-04-14 2009-05-20 本田技研工業株式会社 内燃機関の空燃比制御装置及びプラントの制御装置
US6591183B2 (en) * 2000-04-21 2003-07-08 Denso Corporation Control apparatus for internal combustion engine
DE10042010C2 (de) * 2000-08-26 2002-08-22 Bosch Gmbh Robert Vorrichtung zur Abgasbehandlung
DE10147491A1 (de) * 2001-09-26 2003-04-24 Bosch Gmbh Robert Verfahren zur Regelung des Kraftstoff/Luftverhältnisses für einen Verbrennungsmotor
FR2832183B1 (fr) * 2001-11-13 2005-10-28 Peugeot Citroen Automobiles Sa Systeme d'aide a la regeneration d'un filtre a particules catalyse dispose dans une ligne d'echappement de moteur diesel de vehicule automobile
DE10250219A1 (de) * 2002-10-23 2004-05-06 Volkswagen Ag Regler und Verfahren zur Regelung eines in einem Abgaskanal einer Verbrennungskraftmaschine angeordneten NOx-Sensors
DE10253739B3 (de) * 2002-11-19 2004-05-06 Mtu Friedrichshafen Gmbh Verfahren zur Drehzahl-Regelung einer Brennkraftmaschine

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BASSHUYSEN V ET AL: "Handbuch Verbrennungsmotor", 1 January 2002, HANDBUCH VERBRENNUNGSMOTOR : GRUNDLAGEN, KOMPONENTEN, SYSTEME, PERSPEKTIVEN, WIESBADEN : VIEWEG VERLAG, DE, PAGE(S) 559 - 561,568, ISBN: 978-3-528-13933-9, XP002351673 *
See also references of WO2006082116A1 *

Also Published As

Publication number Publication date
US7502683B2 (en) 2009-03-10
WO2006082116A1 (de) 2006-08-10
US20080120017A1 (en) 2008-05-22
DE102005004441B3 (de) 2006-02-09

Similar Documents

Publication Publication Date Title
EP1888897B1 (de) Verfahren und vorrichtung zum ermitteln einer sauerstoffspeicherkapazität des abgaskatalysators einer brennkraftmaschine und verfahren und vorrichtung zum ermitteln einer dynamik-zeitdauer für abgassonden einer brennkraftmaschine
DE102006047190B3 (de) Verfahren und Vorrichtung zum Überwachen einer Abgassonde
DE102006014916B4 (de) Diagnoseverfahren für eine Abgassonde und Diagnosevorrichtung für eine Abgassonde
DE102006047188B4 (de) Verfahren und Vorrichtung zum Überwachen einer Abgassonde
EP1749149B1 (de) Verfahren zum erfassen eines zylinderindividuellen luft/kraftstoff-verhältnisses bei einer brennkraftmaschine
WO2008095904A1 (de) Diagnoseverfahren und -vorrichtung zum betreiben einer brennkraftmaschine
DE102005004441B3 (de) Vorrichtung und Verfahren zum Ermitteln einer Stellgröße eines Reglers einer Brennkraftmaschine
WO2006092353A1 (de) Verfahren und vorrichtung zum ermitteln eines korrekturwertes zum beeinflussen eines luft/kraftstoff-verhältnisses
WO2006069845A2 (de) Verfahren und vorrichtung zum ermitteln einer sauerstoffspeicherkapazität des abgaskatalysators einer brennkraftmaschine und verfahren und vorrichtung zum ermitteln einer dynamik-zeitdauer für abgassonden einer brennkraftmaschine
DE102005059794B3 (de) Verfahren und Vorrichtung zum Kalibrieren einer Abgassonde und Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
DE102006019894B3 (de) Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
WO2008095906A1 (de) Diagnoseverfahren und -vorrichtung zum betreiben einer brennkraftmaschine
DE102005045888B3 (de) Vorrichtung zum Betreiben einer Brennkraftmaschine
DE102010063215B3 (de) Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
DE10358988B3 (de) Vorrichtung zum Steuern einer Brennkraftmaschine
DE102009007572A1 (de) Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
DE102008009034B3 (de) Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
DE102005020139B4 (de) Verfahren und Vorrichtung zum Erkennen eines Verbrennungsaussetzers in einem Brennraum eines Zylinders einer Brennkraftmaschine
DE102006002257B4 (de) Verfahren und Vorrichtung zum Betreiben eines Abgaskatalysators einer Brennkraftmaschine
DE102008018013B3 (de) Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
DE102008009033B3 (de) Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
DE102005035747B3 (de) Verfahren und Vorrichtung zum Ermitteln einer ein Luft/Kraftstoff-Verhältnis beeinflussenden Stellgrösse eines Reglers einer Brennkraftmaschine
DE102008014070B4 (de) Verfahren und Vorrichtung zum Betreiben einer Brennkraftmaschine
WO2008095838A1 (de) Diagnoseverfahren und -vorrichtung zum betreiben einer brennkraftmaschine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070706

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): DE FR GB IT

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: VDO AUTOMOTIVE AG

17Q First examination report despatched

Effective date: 20080310

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: CONTINENTAL AUTOMOTIVE GMBH

RTI1 Title (correction)

Free format text: PROCESS AND DEVICE FOR DETERMINING AN ACTUATING VARIABLE OF AN INTERNAL COMBUSTION ENGINE CONTROLLER

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20100803