JP3805408B2 - 内燃機関の空燃比制御装置 - Google Patents

内燃機関の空燃比制御装置 Download PDF

Info

Publication number
JP3805408B2
JP3805408B2 JP14899395A JP14899395A JP3805408B2 JP 3805408 B2 JP3805408 B2 JP 3805408B2 JP 14899395 A JP14899395 A JP 14899395A JP 14899395 A JP14899395 A JP 14899395A JP 3805408 B2 JP3805408 B2 JP 3805408B2
Authority
JP
Japan
Prior art keywords
air
fuel ratio
fuel
cylinder
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP14899395A
Other languages
English (en)
Other versions
JPH08338285A (ja
Inventor
恭士 梶
岡本  喜之
飯田  寿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP14899395A priority Critical patent/JP3805408B2/ja
Priority to US08/664,840 priority patent/US5730111A/en
Publication of JPH08338285A publication Critical patent/JPH08338285A/ja
Application granted granted Critical
Publication of JP3805408B2 publication Critical patent/JP3805408B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/008Controlling each cylinder individually
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1439Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the position of the sensor
    • F02D41/1441Plural sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1473Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the regulation method
    • F02D41/1474Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the regulation method by detecting the commutation time of the sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1438Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor
    • F02D41/1444Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases
    • F02D41/1454Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio
    • F02D41/1456Introducing closed-loop corrections using means for determining characteristics of the combustion gases; Sensors therefor characterised by the characteristics of the combustion gases the characteristics being an oxygen content or concentration or the air-fuel ratio with sensor output signal being linear or quasi-linear with the concentration of oxygen

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

【0001】
【産業上の利用分野】
この発明は、内燃機関の空燃比制御装置に関するものである。
【0002】
【従来の技術】
近年、内燃機関によるエミッション排出を低減させるべく、様々な空燃比制御装置が提案されており、その一つとして排気ガス中の酸素濃度(空燃比)に対してリニアな出力信号が得られるリニア出力式空燃比センサ(例えば、限界電流式酸素センサ)を用いた空燃比制御装置がある(例えば、特開平3−185244号公報、特開平4−209940号公報)。これら空燃比制御装置では、リニア式空燃比センサにより得られた空燃比と目標空燃比との偏差をなくすべくフィードバック制御を行うことで、精度の高い空燃比制御が実現できる。
【0003】
【発明が解決しようとする課題】
ところが、上記従来の空燃比制御装置では、以下に示す問題が生ずる。つまり、多気筒内燃機関の場合、各気筒の吸気マニホールドの形状差や吸気バルブの動作バラツキ等により吸気効率が気筒毎にばらつく。また、MPI(マルチポイントインジェクション)噴射方式であれば、燃料噴射弁の固体差も存在する。そのため、上述した気筒毎の差異を考慮せずに空燃比制御を行う従来の空燃比制御装置では、気筒間で空燃比がばらついてしまうという問題を招く。そして、この空燃比バラツキによりエミッションの悪化が生じるおそれがあった。
【0004】
本発明は、上記問題に着目してなされたものであって、その目的とするところは、多気筒内燃機関における空燃比制御の気筒間バラツキを解消し、より精密な空燃比制御を実現することができる空燃比制御装置を提案するものである。
【0005】
【発明が解決するための手段】
請求項1に記載の発明は、図16に示すように、多気筒内燃機関M1に適用され、燃料噴射弁M2により各気筒へ燃料を噴射供給する空燃比制御装置において、前記内燃機関M1の排気マニホールドM3の集合部に配置され、前記内燃機関M1の各気筒への燃料噴射から同内燃機関M1の全気筒数の整数倍のストロークが経過した時点であって、エキゾーストマニホールドの上流端から1m以内に、被計測ガスを排出した気筒の空燃比を計測するよう配置されたリニア出力式空燃比センサM4と、前記空燃比センサM4による空燃比計測時にその時の被計測ガスを排出した気筒を特定し、当該特定気筒に対して前記計測された空燃比を目標空燃比に一致させるように前記燃料噴射弁M2による燃料噴射量を制御する空燃比制御手段M5とを備えたことを要旨としている。
請求項2に記載の発明は、多気筒内燃機関に適用され、燃料噴射弁により各気筒へ燃料を噴射供給する空燃比制御装置において、前記内燃機関がV型多気筒内燃機関又は水平対向型内燃機関の場合、各気筒への燃料噴射から前記内燃機関の片バンクの気筒数の整数倍のストロークが経過した時点であって、エキゾーストマニホールドの上流端から1m以内に被計測ガスを排出した気筒の空燃比を計測するよう配置されたリニア出力式空燃比センサと、前記空燃比センサによる空燃比計測時にその時の被計測ガスを排出した気筒を特定し、当該特定気筒に対して前記計測された空燃比を目標空燃比に一致させるように前記燃料噴射弁による燃料噴射量を制御する空燃比制御手段とを備えたことを要旨としている。
【0006】
請求項3に記載の発明は、図17に示すように、多気筒内燃機関M11に適用され、燃料噴射弁M12により各気筒へ燃料を噴射供給する空燃比制御装置において、前記内燃機関M11の排気マニホールドM13の集合部に配置され、前記内燃機関M11の各気筒への燃料噴射から同内燃機関M11の全気筒数の整数倍のストロークが経過した時点であって、エキゾーストマニホールドの上流端から1m以内に、被計測ガスを排出した気筒の空燃比を計測するよう配置されたリニア出力式空燃比センサM14と、目標空燃比に対応して設定される各気筒への目標燃料量を記憶保持する目標燃料量記憶手段M15と、前記空燃比センサM14による空燃比計測時において当該空燃比の計測結果に基づき、その被計測ガスの排出気筒に対して所定ストローク前の流入燃料量を推定する流入燃料量推定手段M16と、前記流入燃料量推定手段M16により推定された気筒への流入燃料量と、前記目標燃料量記憶手段M15により記憶されている同一気筒に対する所定ストローク前の目標燃料量との偏差を求め、該燃料量の偏差に基づき空燃比補正量を算出する空燃比補正量算出手段M17と、前記空燃比補正量算出手段M17により算出された空燃比補正量を用いて燃料噴射量を補正し、その補正結果に基づき前記燃料噴射弁M12を制御する空燃比制御手段M18とを備えたことを要旨としている。
請求項4に記載の発明は、多気筒内燃機関に適用され、燃料噴射弁により各気筒へ燃料を噴射供給する空燃比制御装置において、前記内燃機関がV型多気筒内燃機関又は水平対向型内燃機関の場合、各気筒への燃料噴射から前記内燃機関の片バンクの気筒数の整数倍のストロークが経過した時点であって、エキゾーストマニホールドの上流端から1m以内に、被計測ガスを排出した気筒の空燃比を計測するよう配置されたリニア出力式空燃比センサと、目標空燃比に対応して設定される各気筒への目標燃料量を記憶保持する目標燃料量記憶手段と、前記空燃比センサによる空燃比計測時において当該空燃比の計測結果に基づき、その被計測カスの排出気筒に対して所定ストローク前の流入燃料量を推定する流入燃料量推定手段と、前記流入燃料量推定手段により推定された気筒への流入燃料量と、前記目標燃料量記憶手段により記憶されている同一気筒に対する所定ストローク前の目標燃料量との偏差を求め、該燃料量の偏差に基づき空燃比補正量を算出する空燃比補正量算出手段と、前記空燃比補正量算出手段により算出された空燃比補正量を用いて燃料噴射量を補正し、その補正結果に基づき前記燃料噴射弁を制御する空燃比制御手段とを備えたことを要旨としている。
【0007】
請求項5に記載の発明は、図18に示すように、多気筒内燃機関M21に適用され、燃料噴射弁M22により各気筒へ燃料を噴射供給する空燃比制御装置において、前記内燃機関M21の排気マニホールドM23の集合部に配置され、前記内燃機関M21の各気筒への燃料噴射から同内燃機関M21の全気筒数の整数倍のストロークが経過した時点であって、エキゾーストマニホールドの上流端から1m以内に、被計測ガスを排出した気筒の空燃比を計測するよう配置されたリニア出力式空燃比センサM24と、前記各気筒の燃料噴射時における目標空燃比を記憶保持する目標空燃比記憶手段M25と、前記空燃比センサM24による空燃比計測時に、当該空燃比の計測結果と、前記目標空燃比記憶手段M25により記憶されている同一気筒に対する所定ストローク前の目標空燃比との偏差を求め、該空燃比の偏差に基づき空燃比補正量を算出する空燃比補正量算出手段M26と、前記空燃比補正量算出手段M26により算出された空燃比補正量を用いて燃料噴射量を補正し、その補正結果に基づき前記燃料噴射弁M22を制御する空燃比制御手段M27とを備えたことを要旨としている。
【0008】
請求項6に記載の発明は、多気筒内燃機関に適用され、燃料噴射弁により各気筒へ燃料を噴射供給する空燃比制御装置において、前記内燃機関がV型多気筒内燃機関又は水平対向型内燃機関の場合、各気筒への燃料噴射から前記内燃機関の片バンクの気筒数の整数倍のストロークが経過した時点であって、エキゾーストマニホールドの上流端から1m以内に、被計測ガスを排出した気筒の空燃比を計測するよう配置されたリニア出力式空燃比センサと、前記各気筒の燃料噴射時における目標空燃比を記憶保持する目標空燃比記憶手段と、前記空燃比センサによる空燃比計測時に、当該空燃比の計測結果と、前記目標空燃比記憶手段により記憶されている同一気筒に対する所定ストローク前の目標空燃比との偏差を求め、該空燃比の偏差に基づき空燃比補正量を算出する空燃比補正量算出手段と前記空燃比補正量算出手段により算出された空燃比補正量を用いて燃料噴射量を補正し、その補正結果に基づき前記燃料噴射弁を制御する空燃比制御手段とを備えたことを要旨としている。
【0010】
請求項に記載の発明では、請求項1〜のいずれかに記載の発明において、前記空燃比補正量算出手段は、前記空燃比センサによる計測結果から算出したその時の制御対象気筒に対する補正項と、同じく空燃比センサによる計測結果から算出したその時よりも少なくとも1気筒前に対する補正項とについて、所定の重み付けを行う。
【0011】
請求項に記載の発明では、請求項に記載の発明において、前記内燃機関の運転状態に応じて各気筒の重み付けの比率を変更する。
【0012】
【作用】
請求項1,2に記載の発明によれば、図16において、空燃比制御手段M5は空燃比センサM4による空燃比計測時にその時の被計測ガスを排出した気筒を特定し、当該特定気筒に対して前記計測された空燃比を目標空燃比に一致させるように燃料噴射弁M2による燃料噴射量を制御する。つまり、空燃比センサM4は、内燃機関M1の各気筒への燃料噴射から同内燃機関M1の所定ストロークが経過した時点であって、エキゾーストマニホールドの上流端から1m以内に当該燃料噴射に対応する空燃比を計測する。これは、空燃比センサM4による空燃比計測時に、その被計測ガスがいずれの気筒の排出ガスであるかが既知であることを意味し、それにより、現時点で空燃比センサM4により計測された空燃比がいずれの気筒の燃焼に対応するかが特定できる。そして、その特定気筒に対して前記空燃比の計測結果を用いた燃料噴射量補正を行うことで、気筒毎の空燃比制御が可能となり、気筒問バラツキが解消される。
【0013】
請求項3,4に記載の発明によれば、図17において、目標燃料量記億手段M15は、目標空燃比に対応して設定される各気筒への目標燃料量を記憶保持している。流入燃料量推定手段M16は、エキゾーストマニホールドの上流端から1m以内に配設される空燃比センサM14による空燃比計測時において当該空燃比の計測結果に基づき、その被計測ガスの排出気筒に対して所定ストローク前の流入燃料量を推定する。空燃比補正量算出手段M17は、流入燃料量推定手段M16により推定された気筒への流入燃料量と、目標燃料量記憶手段M15により記憶されている同一気筒に対する所定ストローク前の目標燃料量との偏差を求め、該燃料量の偏差に基づき空燃比補正量を算出する。そして、空燃比制御手段M18は、空燃比補正量算出手段M17により算出された空燃比補正量を用いて燃料噴射量を補正し、その補正結果に基づき燃料噴射弁M12を制御する。
【0014】
要するに、空燃比センサM14により計測される空燃比は、所定ストローク前の燃料噴射(及びそれによる排気ガス)の状態を反映している。この場合、その空燃比に基づき推定された気筒内への実際の流入燃料量と、所定ストローク前に設定された目標燃料量との偏差は気筒毎に個々に存在し、それは気筒間の制御バラツキに相当する。そこで、上記空燃比補正量算出手段M17の如く空燃比補正量を設定することにより、個々の気筒に対応した空燃比制御が可能となり、気筒間バラツキが解消される。
【0015】
請求項5,6に記載の発明によれば、図18において、目標空燃比記憶手段M25は、内燃機関M21の各気筒の燃料噴射時における目標空燃比を記憶保持している。空燃比補正量算出手段M26は、エキゾーストマニホールドの上流端から1m以内に配設される空燃比センサM24による空燃比計測時に、当該空燃比の計測結果と、目標空燃比記憶手段M25により記憶されている同一気筒に対する所定ストローク前の目標空燃比との偏差を求め、該空燃比の偏差に基づき空燃比補正量を算出する。そして、空燃比制御手段M27は、空燃比補正量算出手段M26により算出された空燃比補正量を用いて燃料噴射量を補正し、その補正結果に基づき燃料噴射弁M22を制御する。
【0016】
要するに、上述した通り空燃比センサM24により計測される空燃比は、所定ストローク前の燃料噴射(及びそれによる排気ガス)の状態を反映している。この場合、その時に計測結果(空燃比)と、所定ストローク前の目標空燃比との偏差は気筒毎に個々に存在し、それは気筒間の制御バラツキに相当する。そこで、上記空燃比補正量算出手段M27の如く空燃比補正量を設定することにより、個々の気筒に対応した空燃比制御が可能となり、気筒間バラツキが解消される。
【0017】
請求項1,3,5に記載の発明によれば、空燃比センサは、各気筒への燃料噴射から内燃機関の全気筒数の整数倍のストロークが経過した時点であって、エキゾーストマニホールドの上流端から1m以内に、被計測ガスを排出した気筒の空燃比を計測する。そのため、該空燃比の計測タイミング(サンプリングタイミング)と、空燃比補正量の算出タイミング(噴射量演算タイミング)とが一致し、例えばRAMデータの削減や、マイコンによる各種演算処理の簡素化が可能となる。
【0018】
請求項2,4,6に記載の発明によれば、空燃比センサは、各気筒への燃料噴射から内燃機関の片バンクの気筒数の整数倍のストロークが経過した時点であって、エキゾーストマニホールドの上流端から1m以内に、被計測ガスを排出した気筒の空燃比を計測する。そのため、上記請求項4と同様に、該空燃比の計測タイミングと、空燃比補正量の算出タイミングとが一致し、例えばRAMデータの削減や、マイコンによる各種演算処理の簡素化が可能となる。
【0019】
請求項に記載の発明によれば、空燃比補正量算出手段は、前記空燃比センサによる計測結果から算出したその時の制御対象気筒に対する補正項と、同じく空燃比センサによる計測結果から算出したその時よりも少なくとも1気筒前に対する補正項とについて、所定の重み付けを行う。
【0020】
つまり、上述したように空燃比センサは、内燃機関の各気筒からの排気ガスが所定ストローク後に到達するように配置されているが、空燃比センサによる被計測ガスには、所定ストローク前の気筒の排気ガスに加え、それよりも少なくとも1気筒前の排気ガスを含むことが考えられる。そこで、上記の如く重み付けを行うことで、より信頼性の高い空燃比制御が可能となる。
【0021】
請求項に記載の発明によれば、内燃機関の運転状態に応じて各気筒の重み付けの比率を変更する。つまり、排気ガスの混合割合は機関運転状態に対応しており、例えば機関回転数が大きくなるほど排気ガスが混合される可能性が高くなる。そこで、上記の如く構成することで、機関運転状態の変化に伴う排気ガスの混合割合の変化に対処できる。
【0022】
【実施例】
(第1実施例)
以下、本発明を内燃機関の空燃比制御装置において具体化した第1実施例を説明する。
【0023】
図1は本実施例における内燃機関の空燃比制御装置が設けられた内燃機関とその周辺機器の概略構成図である。図1に示すように、内燃機関1は直列4気筒4サイクルの火花点火式として構成されている。その吸入空気は上流よりエアクリーナ2、吸気管3、スロットルバルブ4、サージタンク5及びインテークマニホールド6を通過して、インテークマニホールド6内で各燃料噴射弁7から噴射された燃料と混合され、所定空燃比の混合気として各気筒に供給される。図示の如く、本実施例では、各インテークマニホールド6毎に燃料噴射弁7を配置するMPI噴射方式が採用されている。
【0024】
また、内燃機関1の各気筒に設けられた点火プラグ8には、点火回路9から供給される高電圧がディストリビュータ10にて分配供給され、点火プラグ8は前記各気筒の混合気を所定タイミングで点火する。そして、燃焼後の排気ガスはエキゾーストマニホールド(排気マニホールド)11及び排気管12を通過し、排気管12に設けられた三元触媒13にて有害成分(CO、HC、NOX 等) が浄化されて大気に排出される。
【0025】
前記吸気管3には吸気温センサ21及び吸気圧センサ22が設けられ、吸気温センサ21は吸入空気の温度(吸気温Tam)を、吸気圧センサ22はスロットルバルブ4の下流側の吸入空気の圧力(吸気圧PM)をそれぞれ検出する。また、前記スロットルバルブ4には同バルブ4の開度(スロットル開度TH)を検出するためのスロットルセンサ23が設けられ、このスロットルセンサ23はスロットル開度THに応じたアナログ信号を出力すると共に、スロットルバルブ4が略全閉である旨の検出信号を出力する。また、内燃機関1のシリンダブロックには水温センサ24が設けられ、この水温センサ24は内燃機関1内の冷却水の温度(冷却水温Thw)を検出する。前記ディストリビュータ10には内燃機関1の回転数(機関回転数Ne)を検出するための回転数センサ25が設けられ、この回転数センサ25は内燃機関1の2回転、即ち720°CA毎に等間隔で24個のパルス信号を出力する。
【0026】
さらに、前記三元触媒13の上流側となるエキゾーストマニホールド11には、内燃機関1から排出される排気ガスの酸素濃度に比例して広域で且つリニアな空燃比信号を出力する、限界電流式酸素センサからなるA/Fセンサ26(リニア出力式空燃比センサ)が設けられている。また、三元触媒13の下流側となる排気管12には、空燃比が理論空燃比(λ=1)に対してリッチかリーンかに応じた電圧VOX2を出力する下流側O2 センサ27が設けられている。なお、本実施例では、理論空燃比を「空燃比=14.5」として記載する。
【0027】
図2は、A/Fセンサ26の概略を示す断面図である。図2において、A/Fセンサ26はエキゾーストマニホールド11の内部に向けて突設されており、同センサ26はカバー31、センサ本体32及びヒータ33に大別される。カバー31は断面コ字状をなし、その周壁にはカバー内外を連通する多数の小孔31aが形成されている。センサ本体32は、空燃比リーン領域における酸素濃度、若しくは空燃比リッチ領域における一酸化炭素(CO)濃度に対応する限界電流を発生する。
【0028】
センサ本体32の構成について詳述する。センサ本体32において、断面カップ状に形成された固体電解質層34の外表面には、排気ガス側電極層36が固着され、内表面には大気側電極層37が固着されている。また、排気ガス側電極層36の外側には、プラズマ溶射法等により拡散抵抗層35が形成されている。固体電解質層34は、ZrO2 、HfO2 、ThO2 、Bi2 O3 等にCaO、MgO、Y2 O3 、Yb2 O3 等を安定剤として固溶させた酸素イオン伝導性酸化物焼結体からなり、拡散抵抗層35は、アルミナ、マグネシャ、ケイ石質、スピネル、ムライト等の耐熱性無機物質からなる。排気ガス側電極層36及び大気側電極層37は共に、白金等の触媒活性の高い貴金属からなり、多孔質の化学メッキとして固体電解質層34の両表面に形成されている。なお、排気ガス側電極層36の面積及び厚さは、10〜100mm2 及び0.5〜2.0μm程度となっており、一方、大気側電極層37の面積及び厚さは、10mm2 以上及び0.5〜2.0μm程度となっている。
【0029】
ヒータ33は大気側電極層37内に収容されており、その発熱エネルギーによりセンサ本体32(大気側電極層37、固体電極質層34、排気ガス側電極層36及び拡散抵抗層35)を加熱する。ヒータ33は、センサ本体32を活性化するに十分な発熱容量を有している。
【0030】
上記構成のA/Fセンサ26において、センサ本体32は理論空燃比点にて濃淡起電力を発生し、理論空燃比点よりリーン領域の酸素濃度に応じた限界電流を発生する。この場合、酸素濃度に対応する限界電流は、排気ガス側電極層36の面積、拡散抵抗層35の厚さ、気孔率及び平均孔径により決定される。また、センサ本体32は酸素濃度を直線的特性にて検出し得るものであるが、このセンサ本体32を活性化するのに約650℃以上の高温が必要とされると共に、同センサ本体32の活性温度範囲が狭いため、エンジン1の排気ガスのみによる加熱では活性領域を制御できない。そのため、本実施例では、後述するECU41によりヒータ33が加熱制御され、センサ本体32が所定温度に保持されるようになっている。なお、理論空燃比よりもリッチ側の領域では、未燃ガスである一酸化炭素(CO)の濃度が空燃比に対してほぼリニアに変化し、センサ本体32はCO濃度に応じた限界電流を発生する。
【0031】
センサ本体32の電圧−電流特性について図3を用いて説明する。図3に示すように電流−電圧特性は、A/Fセンサ26の検出酸素濃度(空燃比)に比例するセンサ本体32の固体電解質層34への流入電流と、同固体電解質層34への印加電圧との関係が直線的であることを示す。そして、センサ本体32が温度T=T1にて活性状態にあるとき、図3の実線で示すように特性線L1でもって安定した状態を示す。かかる場合、特性線L1の電圧軸Vに平行な直線部分がセンサ本体32の限界電流を特定する。この限界電流の増減は空燃比の増減(即ち、リーン・リッチ)に対応しており、空燃比がリーン側になるほど限界電流は増大し、空燃比がリッチ側になるほど限界電流は減少する。
【0032】
また、この電圧−電流特性において電圧軸Vに平行な直線部分よりも小さい電圧域は抵抗支配域となっており、その抵抗支配域における特性線L1の傾きは、センサ本体32における固体電解質層34の内部抵抗により特定される。固体電解質層34の内部抵抗は温度変化に伴い変化するため、センサ本体32の温度が低下すると抵抗の増大により上記傾きが小さくなる。つまり、センサ本体32の温度TがT1よりも低いT2にあるとき、電圧−電流特性は図3の破線で示すように特性線L2でもって特定される。かかる場合、特性線L2の電圧軸Vに平行な直線部分がT=T2におけるセンサ本体32の限界電流を特定するもので、この限界電流は特性線L1による限界電流とほぼ一致している。
【0033】
そして、特性線L1において、センサ本体32の固体電解質層34に正の印加電圧Vposを印加すれば、センサ本体32に流れる電流が限界電流Iposとなる(図3の点Pa参照)。また、センサ本体32の固体電解質層34に負の印加電圧Vnegを印加すれば、センサ本体32に流れる電流が酸素濃度に依存せず、温度のみに比例する負の温度電流Inegとなる(図3の点Pb参照)。
【0034】
また、図1において、内燃機関1の運転を制御する電子制御装置(以下、ECUという)41は、CPU(中央処理装置)42、ROM(リードオンリメモリ)43、RAM(ランダムアクセスメモリ)44、バックアップRAM45等を中心に論理演算回路として構成され、前記各センサの検出信号を入力する入力ポート46及び各アクチュエータに制御信号を出力する出力ポート47等に対しバス48を介して接続されている。そして、ECU41は、入力ポート46を介して前記各センサから吸気温Tam、吸気圧PM、スロットル開度TH、冷却水温Thw、機関回転数Ne、空燃比信号等を入力して、それらの各値に基づいて燃料噴射時間TAU、点火時期Ig等の制御信号を算出し、さらに、それら制御信号を出力ポート47を介して燃料噴射弁7及び点火回路9等にそれぞれ出力する。なお、本実施例では、ECU41内のCPU42により流入燃料量推定手段、空燃比補正量算出手段及び空燃比制御手段が構成され、RAM44により目標燃料量記憶手段が構成されている。
【0035】
図4は、内燃機関1の吸気系及び排気系を概略的に示す構造図である。図4において、インテークマニホールド6には、各気筒毎に燃料噴射弁7が配設されており、同燃料噴射弁7は、#1→#3→#4→#2→#1の順に各気筒への燃料噴射を行う。
【0036】
エキゾーストマニホールド11は、#1気筒〜#4気筒の各排気ポートに連通する分岐部11a〜11dと、それらが集合する集合部11eとからなり、A/Fセンサ26は上記集合部11eの所定位置に取り付けられている。このとき、各気筒の排気ポートからA/Fセンサ26までの距離がほぼ等しく、また、各気筒からの排気ガスが常に均等にA/Fセンサ26に当たるよう、当該A/Fセンサ26が取り付け位置が設定されている。
【0037】
詳しくは、センサ取り付け位置は、前記集合部11eのX位置〜Y位置の範囲内に規定される。ここで、A/Fセンサ26の最上流取り付け位置に相当するX位置は、集合部11eの根元よりも下流側であればよく、A/Fセンサ26の最下流取り付け位置に相当するY位置は、センサ活性化のための排気加熱が得られる範囲内であればよい。また、本実施例では、#1気筒〜#4気筒からの排気ガス中の酸素濃度(空燃比)をA/Fセンサ26により気筒毎に計測する。そのため、各気筒からの排気ガスが混合(ミキシング)されない位置でA/Fセンサ26を取り付けることが望ましく、概ねエキゾーストマニホールド11の上流端から1m以内が望ましいと考えられる。
【0038】
さらに、同A/Fセンサ26は、各気筒での燃料噴射から全気筒数の倍数分のストローク後に、当該燃料噴射に対応する空燃比が計測できるように取り付け位置が設定されている。即ち、本実施例の4気筒内燃機関の場合、「8」,「12」,「16」,「20」といったストローク数がそれに相当する。このとき、センサ取り付け位置が内燃機関1の排気ポートに近づくほど、前記ストローク数は小さい値になる。
【0039】
以下、上記の如くセンサ取り付け位置を設定するための設計上の手順を図5,図6のタイムチャートを用いて詳細に説明する。なお、図5,図6において、上段には内燃機関1の各4行程を気筒毎に示し、中段には空燃比制御量の増減状態を示し、下段にはA/Fセンサ26にて計測される空燃比を示す。
【0040】
つまり図5は、中負荷定常状態(例えばNe=2000rpm)での挙動を示すタイムチャートであり、同図の時間t1では、空燃比制御量を論理空燃比近傍(λ=1)から10%増量(リッチ化)させる旨の指令が出される。そして、その直後の#1気筒に対する燃料噴射量の演算タイミング(時間t2)では、上記燃料増量に応じた燃料噴射量が設定され、その後、#1気筒の吸入行程中の所定の噴射タイミング(時間t3)で当該#1気筒に対する燃料噴射が実施される。以降、続く#3気筒,#4気筒,#2気筒・・・においても吸入行程で増量燃料が各気筒に噴射供給され、それら増量燃料は各気筒で圧縮行程、爆発行程を経て排気される。
【0041】
そして、時間t4では、前記燃料増量に伴いA/Fセンサ26の初期応答(63%応答)が得られる。この時間t4は、燃料増量後の最初の噴射燃料(時間t3での#1気筒に対する噴射燃料)から12ストローク後のタイミングにほぼ一致し、これは前記燃料噴射から12ストロークが経過した時点で、当該燃料噴射に対応する空燃比がA/Fセンサ26により計測されることを意味する。また、この時間t4では、前記空燃比の計測結果に基づいて#1気筒の空燃比補正量が算出されると共に、その補正量を用いて燃料噴射量が算出される。その算出結果は時間t5の燃料噴射に反映される。
【0042】
また、図6は、図5と同じ条件下でA/Fセンサ26の応答性を実験的に調べたものであり、時間t11で示す#1気筒の噴射量演算タイミングでは、理想空燃比(λ=1)から10%増量(リッチ化)させた燃料噴射量が算出される。そして、その直後の吸入行程で#1気筒に増量燃料が噴射供給される。なお、後続の#3気筒,#4気筒,#2気筒・・・に対しては燃料増量を実施しない。この場合、燃料増量から12ストローク後の時間t12において、A/Fセンサ26により前記燃料増量による空燃比のリッチ化が計測される。
【0043】
上記図5,図6は、燃料増量に伴うA/Fセンサ26の応答性を実験的に知り得たものであるが、これによれば、燃料噴射から12ストローク後に前記燃料噴射に対応する空燃比変化がA/Fセンサ26にて計測可能となることが分かる。そして、この「12ストローク」とは、内燃機関1の気筒数の倍数であることから、センサの被計測ガス(排気ガス)を12ストローク前に排出した気筒と、現時点(噴射から12ストローク後)で燃料噴射すべき制御対象気筒とは一致することになる。
【0044】
以下、上記概念を具体化するためにCPU42により実行される演算プログラムについて、図7,図8のフローチャートを用いて説明する。
図7は、燃料噴射量算出ルーチンを示すフローチャートであり、同ルーチンは、各気筒の噴射毎(180°CA毎)に実行される。
【0045】
図7において、CPU42は、先ずステップ101で図示しない噴射時間マップを用い、その時の吸気圧PM、機関回転数Ne等に応じた基本燃料噴射時間TP〔ms〕を算出する。噴射時間マップは理論空燃比(=14.5)を達成するために設定されたマップ値を有する。また、CPU42は、続くステップ102で空燃比フィードバック制御を実現するためのフィードバック補正量ΔFi〔ms〕を算出する。フィードバック補正量ΔFiは、図8のルーチンに従い算出される補正時間であり、その詳細は後述する。
【0046】
その後、CPU42は、ステップ103で水温補正,エアコン補正等、他の増減量補正係数FALLを算出する。また、CPU42は、ステップ104で前記基本燃料噴射時間TPに前記増減補正係数FALLを乗算すると共に、それにフィードバック補正量ΔFiを加算して燃料噴射時間TAU〔ms〕を算出する(TAU=TP・FALL+ΔFi)。そして、上記燃料噴射時間TAUに応じた作動信号が燃料噴射弁7へ出力される。
【0047】
図8は、フィードバック補正量ΔFiの算出ルーチンを示すフローチャートであり、これは図7のステップ102の処理に相当する。
ここで図8のルーチンの処理内容を説明する前に、同ルーチンで用いる各種演算パラメータを説明しておく。つまり本実施例の制御装置は、A/Fセンサ26による空燃比計測時に、その時の被計測ガス(排気ガス)を排出した気筒を特定し、当該特定気筒の燃料噴射に対して前記A/Fセンサ26の計測結果を直接反映させるものであり、各気筒の燃料噴射時には、以下の(1)〜(3)式により燃料噴射量FQR〔mg〕,目標燃料量QFR〔mg〕,吸入空気量GA〔mg〕が算出される。
【0048】
FQR〔mg〕=TP・KFBSE ・・・(1)
QFR〔mg〕=FQR・14.5/AFREF ・・・(2)
GA〔mg〕=FQR・14.5 ・・・(3)
即ち、上記(1)式では、機関運転状態に応じて設定された基本燃料噴射時間TP〔ms〕が、換算係数KFBSEを用いて質量値としての燃料噴射量FQRに換算される。また(2)式では、(1)式の燃料噴射量FQRに「理論空燃比(=14.5)/目標空燃比AFREF」を乗算することにより、目標燃料量QFRが算出される。さらに(3)式では、燃料噴射量FQRを理想空燃比(=14.5)で除算することにより、吸入空気量GAが算出される。
【0049】
上記の如く算出された目標燃料量QFR,吸入空気量GAは、RAMデータとして記憶され、そのRAMデータを用いることにより、12ストローク前に実際に気筒内に流入した燃料量〔mg〕(以下、筒内流入燃料量QFOLDという)が下記の(4)式により算出される。また、筒内流入燃料量QFOLDと目標燃料量QFRとの偏差量〔mg〕(以下、筒内燃料偏差量DQFOLDという)が下記の(5)式により算出される。
【0050】
QFOLD〔mg〕=GA12/AFNOW ・・・(4)
DQFOLD〔mg〕=QFOLD−QFR12 ・・・(5)
なお、「GA」,「QFR」の添字「12」は現時点から12ストローク前のデータであることを示し、「AFNOW」はその時にA/Fセンサ26により計測された空燃比を示す。
【0051】
また、上記(5)式による筒内燃料偏差量DQFOLDの積分値〔mg〕(以下、偏差積分値SMQFという)が次の(6)式により求められる。
SMQF〔mg〕=SMQFi-1 +DQFOLD ・・・(6)
そして、上記(5)式の筒内燃料偏差量DQFOLDと、上記(6)式の偏差積分値SMQFとを用いて、次の(7)式によりフィードバック補正量ΔFi〔ms〕が求められる。
【0052】
ΔFi〔ms〕=KGN(α・SMQF+β・DQFOLD)・・・(7)
なお、「KGN」は負荷に応じた補正係数、「α」は積分項反映係数、「β」は比例項反映係数である。
【0053】
以上の基本ロジックを用いて作成された図8のΔFi算出ルーチンを説明する。さて、図8のルーチンがスタートすると、CPU42は、先ずステップ201で空燃比制御のフィードバック条件が成立しているか否かを判別する。ここでフィードバック条件とは、周知の如く冷却水温Thwが所定水温以上で、且つ高回転・高負荷でないときに成立する。現時点でフィードバック条件が成立していなければ、CPU42はステップ202に進む。そして、CPU42は、ステップ202でフィードバック補正量ΔFiを「0」として本ルーチンを終了する。
【0054】
一方、前記ステップ201でフィードバック条件が成立していれば、CPU42はステップ203に進む。CPU42は、ステップ203で前述の(4)式を用い、12ストローク前の吸入空気量GA12とその時の空燃比AFNOW(A/Fセンサ26の計測結果)とから筒内流入燃料量QFOLDを算出する。
【0055】
また、CPU42は、ステップ204で前述の(5)式を用い、前記ステップ203の筒内流入燃料量QFOLDと12ストローク前の目標燃料量QFR12とから筒内燃料偏差量DQFOLDを算出する。さらに、CPU42は、ステップ205で前述の(6)式を用い、前回の偏差積分値SMQFi-1 と前記ステップ204の筒内燃料偏差量DQFOLDとから今回の偏差積分値SMQFを算出する。
【0056】
その後、CPU42は、ステップ206で前述の(7)式を用い、前記ステップ205の偏差積分値SMQFと前記ステップ204の筒内燃料偏差量DQFOLDとからフィードバック補正量ΔFiを算出する。
【0057】
その後、CPU42は、ステップ207〜211で次回の演算処理のためにRAMデータの保管処理を行う。つまり、CPU42は、ステップ207で符号iに「11」をセットする。また、CPU42は、ステップ208で吸入空気量GAについてのRAMデータ「GAi 」を「GAi+1 」へ移し替え、続くステップ209で目標燃料量QFRについてのRAMデータ「QFRi 」を「QFRi+1 」へ移し替える。
【0058】
その後、CPU42は、ステップ210で符号iを「1」デクリメントし、続くステップ211でi=0であるか否かを判別する。このとき、i≠0であれば、CPU42はステップ208に戻り、ステップ208〜211を実行する。即ち、i=0が成立するまで、ステップ208〜211が繰り返し実行される。かかる場合、それまで「GA1 」〜「GA11」として保管されていたデータ(吸入空気量GA)が「GA2 」〜「GA12」に移されてRAM44に保管される。また、それまで「QFR1 」〜「QFR11」として保管されていたデータ(目標燃料量QFR)が「QFR2 」〜「QFR12」に移されてRAM44に保管される。
【0059】
そして、ステップ211が肯定判別された後、CPU42は、ステップ212で前述の(1)式を用い噴射燃料量FQRを算出する。また、CPU42は、ステップ213で前述の(2)式を用い、ステップ212の噴射燃料量FQRとその時の目標空燃比AFREFに応じた目標燃料量QFRを算出する。この目標燃料量QFRは「QFR1 」としてRAM44に保管される。最後に、CPU42は、ステップ214で前述の(3)式を用い吸入空気量GAを算出する。この吸入空気量GAは「GA1 」としてRAM44に保管される。
【0060】
以上詳述したように本実施例の空燃比制御装置では、A/Fセンサ26により計測される空燃比が、12ストローク前の燃焼(及びそれによる排気ガス)を反映できるように、センサ取り付け位置を設定した。そして、A/Fセンサ26による空燃比計測時において当該空燃比の計測結果に基づき、その被計測ガス(排気ガス)の排出気筒に対して12ストローク前の流入燃料量(筒内流入燃料量QFOLD)を推定した(図8のステップ203)。また、筒内流入燃料量QFOLDと、その時の同一気筒に対する12ストローク前の目標燃料量QFR12(RAMデータ)との偏差(筒内燃料偏差量DQFOLD)を求め(図8のステップ204)、その筒内燃料偏差量DQFOLDに基づきフィードバック補正量ΔFiを算出した(図8のステップ206)。そして、そのフィードバック補正量ΔFiを用いて燃料噴射量を補正し、その補正結果に基づき燃料噴射弁7を制御した(図7のルーチン)。
【0061】
要するに、上記構成によれば、A/Fセンサ26により計測される空燃比がどの気筒の燃焼に対応するものかが特定でき、その特定気筒に対して個々に燃料噴射量補正を行うことで、気筒毎の空燃比制御が可能となり、気筒間バラツキを解消することができる。つまり、多気筒内燃機関の場合、各気筒には燃料噴射弁7の固体差や吸気効率の差により空燃比の気筒間バラツキを生じ易く、この気筒間バラツキは、従来より開示されている技術(例えば、特開平3−185244号公報、特開平4−209940号公報)では解消できなかった。しかし、上記構成によれば、空燃比制御時において、A/Fセンサ26による被計測ガスの排出気筒とその時の制御対象気筒とを一致させることで、空燃比計測結果を気筒の個々に反映させることができるようにした。それ故に、個々の気筒に対応した空燃比制御が簡単に可能となり、気筒間バラツキが解消される。
【0062】
また、本実施例では、筒内燃料偏差量DQFOLDを処理毎に積算して偏差積分値SMQFを求め(図8のステップ205)、その偏差積分値SMQFからフィードバック補正量ΔFiを求めたため、空燃比制御の安定性が増し、その制御精度をさらに向上させることができる。さらに、本実施例では、各気筒からの排気ガスが当該気筒の燃料噴射から12ストローク後にA/Fセンサ26で計測されるように設定した。この場合、ストローク数「12」は全気筒数の倍数に相当し、それにより、該空燃比の計測タイミング(サンプリングタイミング)と、フィードバック補正量ΔFiの算出タイミング(噴射量演算タイミング)とを一致させることができる。その結果、RAMデータの削減や、CPU42による演算処理の簡素化が実現できる。また、空燃比の被計測ガス(排気ガス)の排出気筒は、常にその時の制御対象気筒に一致するため、当該排出気筒の判定処理を省略することができる
【0063】
(第2実施例)次に、第2実施例について、上記第1実施例との相違点を中心に説明する。つまり、上記第1実施例では、各気筒の排気ガスが異なる気筒間で混合(ミキシング)されることがない状況を想定し、個々の気筒についてA/Fセンサ26の計測結果を該当気筒の燃料補正に反映させた。しかし、実際には、異なる気筒から排出される排気ガスが所定割合で混合され、その混合ガスがA/Fセンサ26に達することが考えられる。つまり、A/Fセンサ26での被計測ガス(排気ガス)には、所定ストローク前(実施例では、12ストローク前)の気筒からの排気ガスに加え、その直前気筒からの排気ガスが含まれる。そこで、本実施例では、現時点での制御対象気筒において、当該気筒の排気ガスとその直前気筒の排気ガスとで所定の混合割合に応じた重み付けを行い、その重み付けに応じてフィードバック補正量ΔFiを設定する。
【0064】
具体的には、直前気筒に関する筒内燃料偏差量DQFOLDをRAMデータ「DQFX」として保管すると共に、直前気筒に関する偏差積分値SMQFをRAMデータ「SMX」として保管しておく。そして、上記RAMデータ「DQFX」,「SMX」と今回の制御対象気筒の筒内燃料偏差量DQFOLD,偏差積分値SMQFとを用いてフィードバック補正量ΔFiを算出する。この場合、混合割合を7:3とすれば、フィードバック補正量ΔFiは次の(8)式で算出される。
【0065】
Figure 0003805408
本第2実施例のΔFi算出ルーチンを図9に示す。なお、図9のステップ301〜305は前記図8のステップ201〜205に、図9の307〜311は前記図8のステップ207〜211に、さらに、図9のステップ313〜315は前記図8のステップ212〜214に同一である。即ち、図9において、図8との相違点は、ステップ306とステップ312のみである。ここでは、図8との相違点のみを説明する。
【0066】
つまり、図9では、ステップ312でその時の筒内燃料偏差量DQFOLDが「DQFX」としてRAM44に保管されると共に、その時の偏差積分値SMQFが「SMX」としてRAM44に保管される。そして、ステップ306では、CPU42は、前述の(8)式を用いてフィードバック補正量ΔFiを算出する。
【0067】
本第2実施例によれば、A/Fセンサ26による計測結果から算出したその時の制御対象気筒に対する補正項(SMQF,DQFOLD)と、同じく空燃比センサによる計測結果から算出したその時よりも少なくとも1気筒前に対する補正項(SMX,DQFX)とについて、所定の重み付けを行うようにした。かかる場合、上記の如く重み付けを行うことで、より信頼性の高い空燃比制御が可能となる。
【0068】
(第3実施例)次に、上記第2実施例の一部を変更した第3実施例について説明する。上記第2実施例では、現時点での制御対象気筒において、当該気筒の排気ガスとその直前気筒の排気ガスとで所定の混合割合を7:3に設定し、その割合に応じてフィードバック補正量ΔFiを設定していた。しかし、このような排気ガスの混合割合は機関運転状態に応じて変更されることが考えられる。従って、本実施例では、機関運転状態に応じて混合割合を選択する構成を備える。
【0069】
具体的には、フィードバック補正量ΔFiが次の(9)式で算出される。
Figure 0003805408
ここで、「K1」,「K2」は、K1+K2=1となる係数であって、K1:K2は、現時点での制御対象気筒において、当該気筒の排気ガスとその直前気筒の排気ガスとの混合割合に相当する。
【0070】
図10は、本第3実施例におけるΔFi算出ルーチンの一部を示す。なお、図10には、図9のステップ301〜306に代替されるルーチンを示しており、図10の末尾は図9のステップ307へと続く。かかる場合、CPU42は、ステップ401〜405でフィードバック補正量ΔFiの算出に必要な筒内燃料偏差量DQFOLD,偏差積分値SMQFを算出している。また、それ以前に、RAM44には、直前気筒のRAMデータとして「DQFX」,「SMX」が保管されている(前記図9のステップ312に同じ)。
【0071】
そして、CPU42は、ステップ406で機関運転状態に基づき排気ガスが混合されているか否かを判別する。具体的には、Ne≧3000rpmの場合、又はPM≦100mmHgの場合には、ステップ406が肯定判別される。ステップ406が否定判別された場合、CPU42はステップ407に進み、K1=1.0,K2=0とする。また、ステップ406が肯定判別された場合、CPU42はステップ408に進み、K1=0.7,K2=0.3とする。その後、CPU42は、上記の如く設定された係数K1,K2を前述の(9)式に代入してフィードバック補正量ΔFiを算出する。
【0072】
即ち、本実施例の場合、ステップ407のK1,K2を用いれば、フィードバック補正量ΔFiは第1実施例と同様の数値となり(排気ガスの混合無し)、ステップ408のK1,K2を用いれば、フィードバック補正量ΔFiは第2実施例と同様の数値となる。なお、係数K1,K2の比率を変更することは勿論可能であり、3つ以上の混合割合を選択可能に設定することもできる(例えば、▲1▼K1=1.0,K2=0、▲2▼K1=0.85,K2=0.15、▲3▼K1=0.7,K2=0,3)。
【0073】
本第3実施例によれば、内燃機関1の運転状態に応じて各気筒の重み付けの比率を変更することで、実際の機関運転状態に近い空燃比の精密制御が実現できる。
(第4実施例)
次に、第4実施例について、前記各実施例との相違点を中心に説明する。なお、本実施例では、CPU42により空燃比補正量算出手段及び空燃比制御手段が構成され、RAM44により目標空燃比記憶手段が構成されている。
【0074】
つまり、上記各実施例では、気筒内への流入燃料量と目標燃料量との偏差に基づきフィードバック補正量ΔFiを算出したが、本第4実施例では、空燃比の偏差量に基づきフィードバック補正量ΔFiを算出するものである。図11のフローチャートは本第4実施例における燃料噴射量算出ルーチンを示し、これは第1実施例の図7のフローチャートに相当する。また、図12のフローチャートは本第4実施例におけるΔFi算出ルーチンを示し、これは第1実施例の図8のフローチャートに相当する。
【0075】
図11において、CPU42は、先ずステップ501でその時の吸気圧PM、機関回転数NE等に応じた基本燃料噴射時間TP〔ms〕を算出する。また、CPU42は、続くステップ502で空燃比フィードバック制御を実現するためのフィードバック補正量ΔFiを算出する。フィードバック補正量ΔFiは、図12のルーチンに従い算出される補正係数であり、その詳細は後述する。
【0076】
その後、CPU42は、ステップ503で水温補正,エアコン補正等、他の増減量補正係数FALLを算出する。また、CPU42は、ステップ504で上記基本燃料噴射時間TP、フィードバック補正量ΔFi及び増減量補正係数FALLの積にて燃料噴射時間TAU〔ms〕を算出する(TAU=TP・FALL・ΔFi)。
【0077】
ここで、前記図7との相違点としては、図7ではフィードバック補正量ΔFiを補正時間(絶対値)として設定していたのに対し、本図11ではフィードバック補正量ΔFiを基準値を「1」とする係数値として設定している。そのため、前記図7(ステップ104)ではフィードバック補正量ΔFiを他の項に加算していたのに対し、上記図11(ステップ504)ではフィードバック補正量ΔFiを他の項に乗算している。
【0078】
次いで、図12のルーチンの処理内容を説明する前に、同ルーチンで用いる各種演算パラメータを説明する。つまり本第4実施例では、12ストローク前の目標空燃比AFREFのRAM値「AFREF12」と現時点の空燃比AFNOWとの比に基づき、空燃比の偏差量(以下、空燃比偏差量DAFOLDという)が次の(10)式で算出される。
【0079】
DAFOLD〔%〕=100・(1−AFREF12/AFNOW)・・・(10)
また、上記(10)式による空燃比偏差量DAFOLDの積分値(以下、偏差積分値SMAFという)が次の(11)式により求められる。
【0080】
SMAF〔%〕=SMAFi-1 +DAFOLD ・・・(11)
そして、上記(10)式の空燃比偏差量DAFOLDと、上記(11)式の偏差積分値SMAFとを用いて、次の(12)式によりフィードバック補正量ΔFiが求められる。
【0081】
ΔFi=1+(α・SMAF+β・DAFOLD)/100・・・(12)
なお、「α」は積分項反映係数、「β」は比例項反映係数である。
【0082】
以上の基本ロジックを用いて作成された図12のΔFi算出ルーチンを説明する。図12のルーチンがスタートすると、CPU42は、先ずステップ601で空燃比制御のフィードバック条件が成立しているか否かを判別し、同条件が成立していなければ、ステップ602に進む。CPU42は、ステップ602でフィードバック補正量ΔFiを「1」として本ルーチンを終了する。
【0083】
一方、前記ステップ601でフィードバック条件が成立していれば、CPU42はステップ603に進む。CPU42は、ステップ603で前述の(10)式を用い、12ストローク前の目標空燃比AFREF12とその時の空燃比AFNOW(A/Fセンサ26の計測結果)とから空燃比偏差量DAFOLDを算出する。また、CPU42は、ステップ604で前述の(11)式を用い、前回の偏差積分値SMAFi-1 と前記ステップ603の空燃比偏差量DAFOLDとから今回の偏差積分値SMAFを算出する。
【0084】
さらに、CPU42は、ステップ605で前述の(12)式を用い、前記ステップ604の偏差積分値SMAFと前記ステップ603の空燃比偏差量DAFOLDとからフィードバック補正量ΔFiを算出する。
【0085】
その後、CPU42は、ステップ606〜609で、次回の演算処理のためにRAMデータの保管処理を行う。つまり、CPU42は、ステップ606で符号iに「11」をセットし、続くステップ607で目標空燃比AFREFについてのRAMデータ「AFREFi 」を「AFREFi+1 」に移し替える。また、CPU42は、ステップ608で符号iを「1」デクリメントし、続くステップ609でi=0であるか否かを判別する。このとき、i≠0であれば、CPU42はステップ607に戻り、ステップ607〜609を実行する。即ち、i=0が成立するまで、ステップ607〜609が繰り返し実行される。かかる場合、それまで「AFREF1 」〜「AFREF11」として保管されていたデータ(目標空燃比AFREF)が「AFREF2 」〜「AFREF12」に移されてRAM44に保管される。
【0086】
そして、ステップ609が肯定判別された後、CPU42は、ステップ610で現時点の空燃比AFNOW(A/Fセンサ26の計測値)を「AFREF1 」としてRAM44に保管して、本ルーチンを終了する。
【0087】
以上詳述したように本第4実施例では、A/Fセンサ26による空燃比計測時に、当該空燃比の計測結果(現在の空燃比AFNOW)と、同一気筒の12ストローク前の目標空燃比AFREF12との偏差(空燃比偏差量DAFOLD)を算出し(図12のステップ603)、該空燃比偏差量DAFOLDに基づきフィードバック補正量ΔFiを算出した(図12のステップ605)。そして、そのフィードバック補正量ΔFiを用いて燃料噴射量を補正し、その補正結果に基づき燃料噴射弁7を制御した(図11のルーチン)。
【0088】
要するに、A/Fセンサ26による空燃比計測時に当該被計測ガスを排出した気筒と、その時の制御対象気筒が同一であるため、その時の空燃比AFNOWと、12ストローク前の目標空燃比AFREF12との偏差に応じた空燃比制御を行うことで、個々の気筒に対応した空燃比制御が可能となり、気筒間バラツキを解消することができる。
【0089】
なお、本発明は上記各実施例の他に、以下の如く具体化することもできる。
(1)上記実施例では、直列4気筒内燃機関に具体化した事例を説明したが、他の多気筒内燃機関にて具体化することもできる。図13(a)〜(c)は主な多気筒内燃機関の形態を示している。そのうち(a)は、直列6気筒内燃機関の形態を示し、エキゾーストマニホールド11の集合部にはA/Fセンサ26が取り付けられている。(b)は、V型6気筒内燃機関(又は水平対向型6気筒内燃機関)の形態を示し、エキゾーストマニホールド11A,11Bの各集合部にはA/Fセンサ26A,26Bが取り付けられている。また、(c)は、V型8気筒内燃機関(又は水平対向型8気筒内燃機関)の形態を示し、エキゾーストマニホールド11A,11Bの各集合部にはA/Fセンサ26A,26Bが取り付けられている。
【0090】
かかる場合、上記内燃機関の各気筒から排出された排気ガスは、図14に示すストローク後にA/Fセンサにより計測されるのが望ましい。具体的には、直列多気筒内燃機関では全気筒数の倍数分のストローク後に空燃比が計測されるのが望ましく、V型又は水平対向型内燃機関では片バンクの気筒数の倍数分のストローク後に空燃比が計測されるのが望ましい。それにより、上記実施例で説明した通りRAMデータの削減やCPU42による演算処理の簡素化が実現できる
【0091】
(2)上記実施例では、燃料噴射から気筒数の倍数分のストローク後に当該燃料噴射に対応する空燃比をA/Fセンサが計測するように構成しており、そのことは例えばマイコンの設計上望ましいと記載したがこれを変更することも可能である。即ち、空燃比の計測タイミングと空燃比補正量の演算タイミングとを必ずしも一致させなくとも、本発明を具体化することができる。例えば図15では、時間t21で#1気筒に対して燃料増量(リッチ化)すべく燃料噴射量が演算され、その直後に当該#1気筒に燃料噴射が行われる。そして、その燃料噴射時の吸気行程から10ストローク後の時間t22では、前記燃料増量による空燃比のリッチ化がA/Fセンサ26により計測される。この場合、時間t22は、#4気筒が燃料噴射の制御対象気筒となる演算タイミングであるが、その時の計測空燃比は空燃比補正に使用されない。そして、#1気筒が制御対象気筒となる時間t23(時間t22から2ストローク後)で前記時間t22で計測された空燃比を用いて空燃比補正が行われる。つまり、前記燃料増量から10ストローク後の計測結果を用いて空燃比補正量(フィードバック補正量ΔFi)が算出される。かかる場合にも、A/Fセンサ26により計測された空燃比を制御対象の気筒(ここでは、#1気筒)に対応させることができ、気筒間バラツキを解消することができる。
【0092】
そして、上記構成によれば、A/Fセンサの取り付け位置を特に規定していない既存の内燃機関に対しても、本発明のマイコン処理を適用し、上記の効果を得ることができる。つまり、A/Fセンサの応答がどのタイミングで得られるかが判明すれば、ハード的な構成(センサ取り付け位置等)を変更せずとも、本発明を具体化することができる。
【0093】
(3)上記第2,第3実施例では、2つの気筒の排気ガスが混合される場合について、空燃比補正手順(ΔFi算出手順)を説明したが、その応用例として、3つ以上の気筒の排気ガスが混合されることを想定してΔFi算出手順を確立してもよい。具体的には、前記第3実施例の(9)式を以下の如く変形して使用すればよい。
【0094】
Figure 0003805408
なお、上式において、「K1」はその時の制御対象気筒の排気ガス割合、「K2」は1回前の気筒の排気ガス割合、「K3」は2回前の気筒の排気ガス割合を示す(但し、K1+K2+K3=1)。また、「SMXX」は2回前の燃料噴射に関する偏差積分値を示し、「DQFXX」は2回前の燃料噴射に関する筒内燃料偏差量を示す。このとき、例えばK1=0.7,K2=0.2,K3=0.1のような固定値を与えるようにしてもよいし、機関運転状態に応じて係数K1〜K3を可変に設定するようにしてもよい。
【0095】
(4)上記各実施例では、筒内燃料偏差量DOFOLD,空燃比偏差量DAFOLDの積分処理(図8のステップ205,図12のステップ604)を気筒間で区別せずに行ったが、これを気筒毎に個々に行うように変更してもよい。つまり、気筒判別装置を設け、各気筒毎に上記偏差量の積分処理を行う。この場合、偏差積分値SMQF,SMAFは気筒毎に区分されたRAMデータとして記憶保持される。
【0096】
(5)上記各実施例では、MPI噴射方式を採用した多気筒内燃機関で具体化したが、SPI(シングルポイントインジェクション)噴射方式を採用した多気筒内燃機関で具体化することも可能である。
【0097】
【発明の効果】
請求項1,2に記載の発明によれば、多気筒内燃機関における空燃比制御の気筒間バラツキを解消し、より精密な空燃比制御を実現することができるという優れた効果を発揮する。
【0098】
請求項3,4に記載の発明によれば、その時の空燃比の計測結果に基づき算出された気筒内への流入燃料量と、所定ストローク前の目標燃料量との偏差に応じて空燃比フィードバック制御を行うことで、多気筒内燃機関における空燃比制御の気筒間バラツキを解消し、より精密な空燃比制御を実現することができる。
【0099】
請求項5,6に記載の発明によれば、その時の空燃比の計測結果と、所定ストローク前の目標空燃比との偏差に応じて空燃比フィードバック制御を行うことで、多気筒内燃機関における空燃比制御の気筒間バラツキを解消し、より精密な空燃比制御を実現することができる。
【0100】
請求項1〜6に記載の発明によれば、RAMデータの削減やマイコンによる演算処理の簡素化を実現することができる。請求項7,8に記載の発明によれば、気筒間バラツキを解消するための個々の気筒に対する空燃比制御を実施する上で、より精密な制御を行うことができる。つまり、各気筒から排出される排気ガスは、燃焼行程の連続する気筒どうしで混合される。従って、気筒間で補正項の重み付けを行うことでより現実的な制御が可能となる。
【図面の簡単な説明】
【図1】実施例における内燃機関の空燃比制御装置の全体構成図。
【図2】A/Fセンサの詳細な構成を示す断面図。
【図3】A/Fセンサの電圧−電流特性を示す図。
【図4】内燃機関の吸気系及び排気系の概略を示す構成図。
【図5】A/Fセンサの応答性を説明するためのタイミングチャート。
【図6】A/Fセンサの応答性を説明するためのタイミングチャート。
【図7】第1実施例における燃料噴射量算出ルーチンを示すフローチャート。
【図8】第1実施例におけるΔFi算出ルーチンを示すフローチャート。
【図9】第2実施例におけるΔFi算出ルーチンを示すフローチャート。
【図10】第3実施例におけるΔFi算出ルーチンを示すフローチャート。
【図11】第4実施例における燃料噴射量算出ルーチンを示すフローチャート。
【図12】第4実施例におけるΔFi算出ルーチンを示すフローチャート。
【図13】多気筒内燃機関の各種形態を示す図。
【図14】多気筒内燃機関の各々についてA/Fセンサの応答ストロークを設定するための図。
【図15】他の実施例を説明するためのタイムチャート。
【図16】請求項1,2に記載した発明に対応するブロック図。
【図17】請求項3,4に記載した発明に対応するブロック図。
【図18】請求項5,6に記載した発明に対応するブロック図。
【符号の説明】
1…内燃機関、7…燃料噴射弁、11…排気マニホールド(エキゾーストマニホールド)、26…リニア出力式空燃比センサとしてのA/Fセンサ、42…空燃比制御手段,流入燃料量推定手段,空燃比補正量算出手段としてのCPU、44…目標燃料量記憶手段,目標空燃比記憶手段としてのRAM。

Claims (8)

  1. 多気筒内燃機関に適用され、燃料噴射弁により各気筒への燃料を噴射供給する空燃比制御装置において、
    前記内燃機関の排気マニホールドの集合部に配置され、前記内燃機関の各気筒への燃料噴射から同内燃機関の全気筒数の整数倍のストロークが経過した時点であって、エキゾーストマニホールドの上流端から1m以内に、被計測ガスを排出した気筒の空燃比を計測するよう配置されたリニア出力式空燃比センサと、
    前記空燃比センサによる空燃比計測時にその時の被計測ガスを排出した気筒を特定し、当該特定気筒に対して前記計測された空燃比を目標空燃比に一致させるように前記燃料噴射弁による燃料噴射量を制御する空燃比制御手段と
    を備えたことを特徴とする内燃機関の空燃比制御装置。
  2. 多気筒内燃機関に適用され、燃料噴射弁により各気筒へ燃料を噴射供給する空燃比制御装置において、
    前記内燃機関がV型多気筒内燃機関又は水平対向型内燃機関の場合、各気筒への燃料噴射から前記内燃機関の片バンクの気筒数の整数倍のストロークが経過した時点であって、エキゾーストマニホールドの上流端から1m以内に、被計測ガスを排出した気筒の空燃比を計測するように配置されたリニア出力式空燃比センサと、
    前記空燃比センサによる空燃比計測時にその時の被計測ガスを排出した気筒を特定し、当該特定気筒に対して前記計測された空燃比を目標空燃比に一致させるように前記燃料噴射弁による燃料噴射量を制御する空燃比制御手段と
    を備えたことを特徴とする内燃機関の空燃比制御装置。
  3. 多気筒内燃機関に適用され、燃料噴射弁により各気筒へ燃料を噴射供給する空燃比制御装置において、
    前記内燃機関の排気マニホールドの集合部に配置され、前記内燃機関の各気筒への燃料噴射から同内燃機関の全気筒数の整数倍のストロークが経過した時点であって、エキゾーストマニホールドの上流端から1m以内に、被計測ガスを排出した気筒の空燃比を計測するよう配置されたリニア出力式空燃比センサと、
    目標空燃比に対応して設定される各気筒への目標燃料量を記憶保持する目標燃料量記憶手段と、
    前記空燃比センサによる空燃比計測時において当該空燃比の計測結果に基づき、その被計測ガスの排出気筒に対して所定ストローク前の流入燃料量を推定する流入燃料量推定手段と、
    前記流入燃料量推定手段により推定された気筒への流入燃料量と、前記目標燃料量記憶手段により記憶されている同一気筒に対する所定ストローク前の目標燃料量との偏差を求め、該燃料量の偏差に基づき空燃比補正量を算出する空燃比補正量算出手段と、
    前記空燃比補正量算出手段により算出された空燃比補正量を用いて燃料噴射量を補正し、その補正結果に基づき前記燃料噴射弁を制御する空燃比制御手段と
    を備えたことを特徴とする内燃機関の空燃比制御装置。
  4. 多気筒内燃機関に適用され、燃料噴射弁により各気筒へ燃料を噴射供給する空燃比制御装置において、
    前記内燃機関がV型多気筒内燃機関又は水平対向型内燃機関の場合、各気筒への燃料噴射から前記内燃機関の片バンクの気筒数の整数倍のストロークが経過した時点であって、エキゾーストマニホールドの上流端から1m以内に、被計測ガスを排出した気筒の空燃比を計測するよう配置されたリニア出力式空燃比センサと、
    目標空燃比に対応して設定される各気筒への目標燃料量を記憶保持する目標燃料量記憶手段と、
    前記空燃比センサによる空燃比計測時において当該空燃比の計測結果に基づき、その被計測ガスの排出気筒に対して所定ストローク前の流入燃料量を推定する流入燃料量推定手段と、
    前記流入燃料量推定手段により推定された気筒への流入燃料量と、前記目標燃料量記憶手段により記憶されている同一気筒に対する所定ストローク前の目標燃料量との偏差を求め、核燃料量の偏差に基づき空燃比補正量を算出する空燃比補正量算出手段と、
    前記空燃比補正量算出手段により算出された空燃比補正量を用いて燃料噴射量を補正し、その補正結果に基づき前記燃料噴射弁を制御する空燃比制御手段と
    を備えたことを特徴とする内燃機関の空燃比制御装置。
  5. 多気筒内燃機関に適用され、燃料噴射弁により各気筒へ燃料を噴射供給する空燃比制御装置において、
    前記内燃機関の排気マニホールドの集合部に配置され、前記内燃機関の各気筒への燃料噴射から同内燃機関の全気筒数の整数倍のストロークが経過した時点であって、エキゾーストマニホールドの上流端から1m以内に、被計測ガスを排出した気筒の空燃比を計測するよう配置されたリニア出力式空燃比センサと
    前記各気筒の燃料噴射時における目標空燃比を記憶俣持する目標空燃比記憶手段と、
    前記空燃比センサによる空燃比計測時に、当該空燃比の計測結果と、前記目標空燃比記憶手段により記憶されている同一気筒に対する所定ストローク前の目標空燃比との偏差を求め、該空燃比の偏差に基づき空燃比補正量を算出する空燃比
    補正量算出手段と、
    前記空燃比補正量算出手段により算出された空燃比補正量を用いて燃料噴射量を補正し、その補正結果に基づき前記燃料噴射弁を制御する空燃比制御手段と
    を備えたことを特徴とする内燃機関の空燃比制御装置。
  6. 多気筒内燃機関に適用され、燃料噴射弁により各気筒へ燃料を噴射供給する空燃比制御装置において、
    前記内燃機関がV型多気筒内燃機関又は水平対向型内燃機関の場合、各気筒への燃料噴射から前記内燃機関の片バンクの気筒数の整数倍のストロークが経過した時点であって、エキゾーストマニホールドの上流端から1m以内に、被計測ガスを排出した気筒の空燃比を計測するよう配置されたリニア出力式空燃比センサと、
    前記各気筒の燃料噴射時における目標空燃比を記憶保持する目標空燃比記憶手段と、
    前記空燃比センサによる空燃比計測時に、当該空燃比の計測結果と、前記目標空燃比記憶手段により記憶されている同一気筒に対する所定ストローク前の目標空燃比との偏差を求め、該空燃比の偏差に基づき空燃比補正量を算出する空燃比補正量算出手段と、
    前記空燃比補正量算出手段により算出された空燃比補正量を用いて燃料噴射量を補正し、その補正結果に基づき前記燃料噴射弁を制御する空燃比制御手段と
    を備えたことを特徴とする内燃機関の空燃比制御装置。
  7. 請求項1〜6のいずれかに記載の内燃機関の空燃比制御装置において、
    前記空燃比補正量算出手段は、前記空燃比センサによる計測結果から算出したその時の制御対象気筒に対する補正項と、同じく空燃比センサによる計測結果から算出したその時よりも少なくとも1気筒前に対する補正項とについて、所定の重み付けを行う内燃機関の空燃比制御装置。
  8. 請求項7に記載の内燃機関の空燃比制御装置において、
    前記内燃機関の運転状態に応じて各気筒の重み付けの比率を変更する内燃機関の空燃比制御装置。
JP14899395A 1995-06-15 1995-06-15 内燃機関の空燃比制御装置 Expired - Fee Related JP3805408B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP14899395A JP3805408B2 (ja) 1995-06-15 1995-06-15 内燃機関の空燃比制御装置
US08/664,840 US5730111A (en) 1995-06-15 1996-06-17 Air-fuel ratio control system for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14899395A JP3805408B2 (ja) 1995-06-15 1995-06-15 内燃機関の空燃比制御装置

Publications (2)

Publication Number Publication Date
JPH08338285A JPH08338285A (ja) 1996-12-24
JP3805408B2 true JP3805408B2 (ja) 2006-08-02

Family

ID=15465310

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14899395A Expired - Fee Related JP3805408B2 (ja) 1995-06-15 1995-06-15 内燃機関の空燃比制御装置

Country Status (2)

Country Link
US (1) US5730111A (ja)
JP (1) JP3805408B2 (ja)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6205776B1 (en) * 1998-02-24 2001-03-27 Toyota Jidosha Kabushiki Kaisha Air-fuel ration control system for multi-cylinder internal combustion engine
GB2343967A (en) * 1998-11-21 2000-05-24 Lucas Industries Ltd Deriving fuel supply control algorithms for each engine cylinder to maintain balanced air/fuel ratio
JP4357863B2 (ja) * 2003-04-14 2009-11-04 株式会社デンソー 多気筒内燃機関の気筒別空燃比算出装置
JP4314573B2 (ja) 2003-07-30 2009-08-19 株式会社デンソー 多気筒内燃機関の気筒別空燃比算出装置
JP2005163696A (ja) 2003-12-04 2005-06-23 Denso Corp 内燃機関の失火検出装置
US7089922B2 (en) * 2004-12-23 2006-08-15 Cummins, Incorporated Apparatus, system, and method for minimizing NOx in exhaust gasses
US7591135B2 (en) * 2004-12-29 2009-09-22 Honeywell International Inc. Method and system for using a measure of fueling rate in the air side control of an engine
DE102005009101B3 (de) * 2005-02-28 2006-03-09 Siemens Ag Verfahren und Vorrichtung zum Ermitteln eines Korrekturwertes zum Beeinflussen eines Luft/Kraftstoff-Verhältnisses
US7356985B2 (en) 2005-07-19 2008-04-15 Denso Corporation Air-fuel ratio controller for internal combustion engine
JP2007113515A (ja) * 2005-10-21 2007-05-10 Nissan Motor Co Ltd エンジンの気筒別空燃比分配推定装置
US7933710B2 (en) * 2008-01-31 2011-04-26 Denso Corporation Abnormality diagnosis device of internal combustion engine
US7802563B2 (en) * 2008-03-25 2010-09-28 Fors Global Technologies, LLC Air/fuel imbalance monitor using an oxygen sensor
JP4766074B2 (ja) 2008-05-30 2011-09-07 株式会社デンソー 内燃機関の燃料噴射制御装置
JP5447558B2 (ja) 2012-02-23 2014-03-19 トヨタ自動車株式会社 空燃比ばらつき異常検出装置
JP6102885B2 (ja) * 2013-10-29 2017-03-29 トヨタ自動車株式会社 気筒間空燃比ばらつき異常検出装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5710259A (en) * 1980-06-20 1982-01-19 Hitachi Ltd Full-wave rectifier
JPH01216047A (ja) * 1988-02-24 1989-08-30 Hitachi Ltd エンジンの空燃比制御方法および装置
JPH0337020A (ja) * 1989-07-03 1991-02-18 Kamata Eisetsu Kiki Kk 便器装置
JP2765136B2 (ja) * 1989-12-14 1998-06-11 株式会社デンソー エンジン用空燃比制御装置
JPH04209940A (ja) * 1990-12-10 1992-07-31 Nippondenso Co Ltd エンジン用空燃比制御装置

Also Published As

Publication number Publication date
US5730111A (en) 1998-03-24
JPH08338285A (ja) 1996-12-24

Similar Documents

Publication Publication Date Title
US8510017B2 (en) Cylinder-to-cylinder air/fuel ratio imbalance determination system of internal combustion engine
JP4836021B2 (ja) 多気筒内燃機関の気筒間空燃比ばらつき異常検出装置及びその方法
JP4496549B2 (ja) 多気筒内燃機関の気筒間空燃比ばらつき異常検出装置
JP3805408B2 (ja) 内燃機関の空燃比制御装置
US10151262B2 (en) Abnormality diagnosis system of air-fuel ratio sensors
JP5488307B2 (ja) 空燃比気筒間インバランス判定装置
JP5206877B2 (ja) 内燃機関の空燃比気筒間インバランス判定装置
US10156200B2 (en) Abnormality diagnosis system of downstream side air-fuel ratio sensor
JP2009030455A (ja) 多気筒内燃機関の気筒間空燃比ばらつき異常を検出するための装置及び方法
WO2011070688A1 (ja) 内燃機関の空燃比気筒間インバランス判定装置
JP5041100B2 (ja) 内燃機関の空燃比気筒間インバランス判定装置
US9194316B2 (en) Inter-cylinder air-fuel ratio imbalance determining apparatus for internal combustion engine
US10352263B2 (en) Fuel injection amount control apparatus for an internal combustion engine
JP2012007496A (ja) 内燃機関の制御装置
EP2514957B1 (en) Device for determining imbalance in air-fuel ratio between cylinders of internal combustion engine
US9677490B2 (en) Abnormality diagnosis system of internal combustion engine
JP5170320B2 (ja) 内燃機関の空燃比気筒間インバランス判定装置
JP3525545B2 (ja) 空燃比センサの異常診断装置
JP6669100B2 (ja) 内燃機関の異常診断装置
JP3834898B2 (ja) 空燃比センサの異常診断装置
JP3622597B2 (ja) 内燃機関の排気浄化装置
JP7115335B2 (ja) 内燃機関の制御装置
JP5360289B2 (ja) 内燃機関の空燃比気筒間インバランス判定装置
JP6734019B2 (ja) 下流側空燃比センサの異常診断装置
JPH089390Y2 (ja) 内燃機関の空燃比フィードバック制御装置

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060328

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060510

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees