WO2006090472A1 - 被検体内導入装置および無線型被検体内情報取得システム - Google Patents

被検体内導入装置および無線型被検体内情報取得システム Download PDF

Info

Publication number
WO2006090472A1
WO2006090472A1 PCT/JP2005/003191 JP2005003191W WO2006090472A1 WO 2006090472 A1 WO2006090472 A1 WO 2006090472A1 JP 2005003191 W JP2005003191 W JP 2005003191W WO 2006090472 A1 WO2006090472 A1 WO 2006090472A1
Authority
WO
WIPO (PCT)
Prior art keywords
subject
temperature
wireless
unit
introduction device
Prior art date
Application number
PCT/JP2005/003191
Other languages
English (en)
French (fr)
Inventor
Hatsuo Shimizu
Seiichiro Kimoto
Takemitsu Honda
Takeshi Mori
Noriyuki Fujimori
Original Assignee
Olympus Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corporation filed Critical Olympus Corporation
Priority to PCT/JP2005/003191 priority Critical patent/WO2006090472A1/ja
Priority to EP10015744A priority patent/EP2301434B1/en
Priority to EP05710741A priority patent/EP1852051B1/en
Priority to US11/571,504 priority patent/US8449458B2/en
Publication of WO2006090472A1 publication Critical patent/WO2006090472A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/041Capsule endoscopes for imaging
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00025Operational features of endoscopes characterised by power management
    • A61B1/00027Operational features of endoscopes characterised by power management characterised by power supply
    • A61B1/00032Operational features of endoscopes characterised by power management characterised by power supply internally powered
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00025Operational features of endoscopes characterised by power management
    • A61B1/00036Means for power saving, e.g. sleeping mode
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/06Devices, other than using radiation, for detecting or locating foreign bodies ; determining position of probes within or on the body of the patient
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/06Devices, other than using radiation, for detecting or locating foreign bodies ; determining position of probes within or on the body of the patient
    • A61B5/065Determining position of the probe employing exclusively positioning means located on or in the probe, e.g. using position sensors arranged on the probe
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/07Endoradiosondes
    • A61B5/073Intestinal transmitters
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00002Operational features of endoscopes
    • A61B1/00011Operational features of endoscopes characterised by signal transmission
    • A61B1/00016Operational features of endoscopes characterised by signal transmission using wireless means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/06Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with illuminating arrangements
    • A61B1/0661Endoscope light sources
    • A61B1/0684Endoscope light sources using light emitting diodes [LED]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2560/00Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
    • A61B2560/02Operational features
    • A61B2560/0204Operational features of power management
    • A61B2560/0209Operational features of power management adapted for power saving
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2560/00Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
    • A61B2560/02Operational features
    • A61B2560/0204Operational features of power management
    • A61B2560/0214Operational features of power management of power generation or supply

Definitions

  • the present invention uses an in-subject introduction device as a wireless in-subject information acquisition device that is used in a state of being introduced into a subject and executes a predetermined function inside the subject.
  • the present invention relates to a wireless intra-subject information acquisition system using an intra-subject introduction apparatus.
  • image data imaged in the body cavity by the capsule endoscope is sequentially applied to the subject based on a preset sequence by a wireless function such as wireless communication. Is sent to an external device provided outside and stored in the memory.
  • a wireless function such as wireless communication
  • the subject acts without inconvenience during the period from swallowing the capsule endoscope until it is discharged. Is possible.
  • a doctor or nurse can make a diagnosis by displaying the image in the body cavity on a display means such as a display based on the image data stored in the memory of the external device. Can do.
  • a reed switch that is turned on and off by an external magnetic field is provided inside the capsule endoscope, and a magnetic field is provided in a package that accommodates the capsule endoscope.
  • a configuration including a permanent magnet for supply has been proposed.
  • the reed switch provided in the capsule endoscope has a structure that maintains an off state in an environment where an external magnetic field of a certain strength or higher is applied and turns on when the strength of the external magnetic field decreases.
  • the capsule endoscope when the capsule endoscope starts to be driven before being introduced into the subject, there is a problem when useless image data is acquired without being used for diagnosis or the like. .
  • the capsule endoscope is configured to start driving and start imaging operation, and to start radio transmission of the obtained image data. When it is driven before being introduced into the subject, Performs an imaging operation or the like outside the subject.
  • the imaging rate of the capsule endoscope is configured so that, for example, about 2 images are captured per second. Therefore, even if it is a short time such as several tens of seconds, the force endoscope is outside the subject. Acquire a large amount of unnecessary image data by driving with It will be. Therefore, in order to avoid unnecessary useless acquisition of image data, it is necessary to prevent the capsule endoscope from starting driving before being introduced into the subject.
  • the present invention has been made in view of the above problems, and introduces an in-subject into a subject, such as a capsule endoscope, that prevents inadvertent driving outside the subject, and introduces the subject into the subject.
  • the object is to realize a wireless in-vivo information acquisition system using an apparatus.
  • Another object of the present invention is to perform power supply timing to the wireless device after the capsule endoscope is introduced into the subject, thereby reducing wasteful power consumption. It is an object of the present invention to provide an intra-subject introduction apparatus that can accurately perform image collection and image transmission within a specimen.
  • the in-subject introduction apparatus is used in a state of being introduced into the subject, and a predetermined amount is provided inside the subject.
  • An in-subject introduction apparatus that executes a function comprising: a drive control unit that controls a drive state of the predetermined function.
  • the in-subject introduction device is characterized in that, in the above invention, the function execution means for executing the predetermined function and the temperature change in the surrounding environment of the in-subject introduction device. Temperature sensor means for detecting a temperature that fluctuates continuously, and the drive control means controls the drive state of the function execution means based on the temperature obtained by the temperature sensor means. According to the second aspect of the present invention, since the drive state of the function execution unit is controlled based on the temperature detected by the temperature sensor unit, for example, the temperature when the external force of the subject is introduced into the subject The drive can be started based on the change.
  • the drive control unit is configured such that the temperature obtained by the temperature sensor unit rises to a value equal to or higher than a predetermined threshold temperature.
  • the function executing means is controlled so as to be driven.
  • the drive control unit is configured to reduce the temperature obtained by the temperature sensor unit to a value less than a predetermined threshold temperature. In this case, the drive of the function execution means is stopped.
  • the threshold temperature is higher than a temperature outside the subject and is equal to or lower than a body temperature of the subject. It is a degree.
  • the function execution unit executes the predetermined function based on the supplied drive power
  • the drive control unit includes: The drive state of the function execution means is controlled by controlling the supply of drive power to the function execution means.
  • the temperature sensor means and the drive control means are integrally formed, and the temperature sensor formed integrally is provided.
  • Means and a drive control means a first contact electrically connected to the power supply source, a second contact electrically connected to the function execution means, the first contact and the vicinity of the second contact And a shape memory member having a critical temperature equal to a threshold temperature and changing into a shape in contact with the first contact and the second contact at a temperature equal to or higher than the threshold temperature.
  • the temperature sensor means and the drive control means are integrally formed, and are formed integrally. Said The temperature sensor means and the drive control means are electrically connected to a power supply source.
  • a second contact electrically connected to the function execution means, and the first contact and the second contact are arranged in the vicinity of the first contact and the first contact and the second contact under a temperature condition such as a threshold temperature.
  • a bimetal member formed so as to come into contact with the two contacts.
  • the in-subject introduction device is characterized in that, in the above-described invention, the apparatus further includes heat conduction inhibiting means arranged to cover at least the temperature sensor means.
  • the function execution unit is acquired by an imaging unit that acquires image data inside the subject and the imaging unit. And wireless means for wirelessly transmitting image data to the outside.
  • the in-subject introduction apparatus is the information acquisition means for acquiring in-subject information from the test site in the subject in the above invention, and the information acquisition means.
  • the in-subject introduction device further includes illumination means for emitting illumination light for illuminating the test site, in the above invention, and the detection means includes the illumination means power. The distance to the test site is detected based on the amount of reflected light of the test site force of the emitted illumination light.
  • the supply control means detects that the distance to the test site is below a predetermined value set in advance.
  • the power supply means starts the supply of driving power to the wireless means in response to the detection of the power.
  • the information acquisition unit images the test site illuminated by the illumination unit and generates an image signal. It is the imaging means which is characterized by the above-mentioned.
  • the imaging unit captures an imaging plane arranged at a position separated by a predetermined distance from the imaging unit force.
  • the detecting means detects a distance to the test site imaged by the imaging means based on a distance from the imaging means of the imaging surface imaged by the imaging means.
  • the imaging unit includes an autofocus unit, and an autofocus unit configured to perform auto-focusing based on an image signal generated by the imaging unit. It further comprises an operation control means for controlling a focus operation, and the detection means detects a distance to the detected portion based on an operating state of the autofocus portion.
  • the in-subject introduction device includes, in the above invention, a function execution unit that executes the predetermined function, and a photoelectric conversion unit in which dark current intensity has temperature dependence.
  • the drive control means controls the drive state of the function execution means based on the dark current intensity in the photoelectric conversion means.
  • the driving state is controlled using the temperature dependence of the dark current intensity in the photoelectric conversion means, the driving state is controlled based on the temperature of the in-subject introduction device. can do.
  • the drive control unit causes the function execution unit to stop driving when the dark current intensity is less than a predetermined threshold intensity. It is characterized by performing such control.
  • the in-subject introduction device is the above-described invention, wherein an illuminating unit that outputs irradiation light for illuminating the inside of the subject and a plurality of photoelectric conversion units arranged in a matrix form And imaging means for acquiring image information inside the subject illuminated by the illumination means, and wireless means for wirelessly transmitting the image information acquired by the imaging means to the outside, wherein the drive control means
  • the driving state of at least one of the illumination unit and the wireless unit is controlled based on a temperature characteristic of dark current intensity obtained in the one or more photoelectric conversion units.
  • the imaging hand Since the temperature dependence of the dark current intensity in the photoelectric conversion means provided in the stage is also controlled by the bow I, the driving state can be controlled based on the temperature of the in-subject introduction device, and the existing state can be controlled. By using the components, the drive state can be controlled with a simple configuration.
  • the drive control means is based on the number of the photoelectric conversion means whose dark current intensity is equal to or higher than a predetermined threshold intensity! This is characterized in that the drive state is controlled.
  • the drive control unit is configured such that the number of the photoelectric conversion units that are equal to or higher than a predetermined threshold intensity is less than a predetermined number. Control is performed so that at least the driving of the wireless means is stopped.
  • the in-subject introduction device is characterized in that, in the above invention, the predetermined number is determined based on a temperature inside the subject.
  • the drive control means includes one or more specific photoelectric conversion means among a plurality of photoelectric conversion means forming the imaging means. Control is performed so that at least the driving of the wireless means is stopped when the dark current intensity at the current is less than a predetermined threshold intensity.
  • the threshold intensity is higher than a dark current intensity at a temperature outside the subject, and the inside of the subject The intensity is less than or equal to the dark current intensity at temperature.
  • the in-subject introduction device is characterized in that, in the above invention, the photoelectric conversion means includes a photodiode.
  • a wireless in-vivo information acquiring system is disposed inside the subject and introduced into the subject, and is disposed outside the subject, and is installed in the in-subject introducing device.
  • a wireless in-vivo information acquiring system including a receiving device that acquires the obtained information via wireless communication, wherein the in-subject introducing device has a predetermined amount based on the supplied driving power.
  • the in-subject introduction device responds to a temperature change in a surrounding environment of the in-subject introduction device.
  • Temperature sensor means for detecting a temperature fluctuating in response to the temperature sensor means, wherein the drive control means controls the drive state of the function execution means based on the temperature obtained by the temperature sensor means.
  • the function executing means includes a photoelectric conversion means in which dark current intensity has temperature dependence.
  • the wireless unit wirelessly transmits the image data acquired by the imaging unit to the outside, and the drive control unit sets a temperature equal to or lower than a temperature of the subject higher than a temperature outside the subject to a threshold value. The temperature is controlled so that the imaging unit and the wireless unit are driven above the threshold temperature.
  • the in-subject introducing device includes a photoelectric conversion means in which dark current intensity has temperature dependence, Further, the drive control means controls the drive state of the function execution means based on the dark current intensity in the photoelectric conversion means.
  • the in-subject introduction device outputs illumination light for illuminating the inside of the subject.
  • a plurality of photoelectric conversion means arranged in a matrix, and an imaging means for acquiring image information inside the subject illuminated by the illuminating means, wherein the wireless means is the imaging means.
  • the image information acquired by the means is wirelessly transmitted to the outside, and the drive control means determines whether the illumination means and the wireless means are based on a temperature characteristic of dark current intensity obtained in one or more of the photoelectric conversion means. It is characterized by controlling at least one drive state.
  • An in-subject introduction apparatus and a wireless in-subject information acquisition system include: Since the drive state of the function execution means is controlled based on the temperature detected by the temperature sensor means, for example, based on the temperature change when introduced inside the subject from the subject external force! The driving can be started, and it is possible to prevent the in-subject introduction apparatus from starting driving outside the subject.
  • the in-subject introduction device detects the distance to the test site, and based on the detected distance, detects whether the own device is present in the body cavity, thereby allowing the radio device to Therefore, the timing of power supply to the wireless device is performed after the capsule endoscope is introduced into the subject, thereby reducing wasteful power consumption and in the subject. There is an effect that image collection and image transmission can be performed accurately.
  • the in-subject introduction device detects the distance to the subject from the relationship between the amount of reflected light and the distance of the test site force, and the own apparatus enters the body cavity based on the detected distance. By detecting whether the wireless device is present, the power supply to the wireless device is determined. Therefore, it is not necessary to perform the power supply timing to the wireless device after the capsule endoscope is introduced into the subject. If the power consumption can be reduced and the image collection and image transmission within the subject can be performed accurately, there is an effect.
  • the intra-subject introduction device detects the distance to the subject based on the control of the auto force operation by the auto focus function, and the own device enters the body cavity based on the detected distance. By detecting whether the wireless device is present, the power supply to the wireless device is determined. Therefore, the timing of supplying power to the wireless device is performed after the capsule endoscope is introduced into the subject. There is an effect that wasteful power consumption can be reduced, and image collection and image transmission within the subject can be performed accurately.
  • the in-subject introduction apparatus and the wireless in-subject information acquisition system according to the present invention are configured to control the driving state of the function execution means based on the temperature detected by the temperature sensor means. Based on the external force of the sample, it can be driven based on the temperature change when it is introduced inside the subject, and the in-subject introduction device can be prevented from starting outside the subject. There is an effect.
  • FIG. 1 shows an overall configuration of a wireless in-vivo information acquiring system according to a first embodiment. It is a schematic diagram.
  • FIG. 2 is a block diagram schematically showing a configuration of a receiving device that constitutes a wireless in-vivo information acquiring system.
  • FIG. 3 is a block diagram schematically illustrating a configuration of a capsule endoscope that constitutes the wireless in-vivo information acquiring system according to the first embodiment.
  • FIG. 4 is a flowchart for explaining the operation of the capsule endoscope.
  • FIG. 5 is a schematic diagram showing a configuration of a temperature sensor drive control unit provided in the capsule endoscope in Example 1 of Example 1.
  • FIG. 5 is a schematic diagram showing a configuration of a temperature sensor drive control unit provided in the capsule endoscope in Example 1 of Example 1.
  • Fig. 6-1 is a schematic diagram showing the state of the temperature sensor / drive controller at a temperature equal to or higher than the threshold temperature.
  • Fig. 6-2 is a schematic diagram showing the state of the temperature sensor and drive controller at a temperature below the threshold temperature.
  • FIG. 7 is a schematic diagram showing the configuration of a temperature sensor drive control unit provided in the capsule endoscope in Example 2 of Example 1.
  • Fig. 8-1 is a schematic diagram showing the state of the temperature sensor / drive controller at a temperature equal to or higher than the threshold temperature.
  • Fig. 8-2 is a schematic diagram showing the state of the temperature sensor and drive controller at a temperature below the threshold temperature.
  • FIG. 9 is a block diagram schematically showing a configuration of a capsule endoscope that constitutes a wireless in-vivo information acquiring system according to the second embodiment.
  • FIG. 10 is a cross-sectional view showing a schematic configuration of the capsule endoscope shown in FIG. 1.
  • Fig. 11 is a block diagram showing a configuration of the electric system in the capsule endoscope shown in Fig. 1 according to the third embodiment.
  • FIG. 12 is a flowchart for explaining the power supply operation of the capsule endoscope shown in FIG. 11.
  • FIG. 13 is a block diagram showing another configuration of Embodiment 3 of the electric system in the capsule endoscope shown in FIG. 1.
  • FIG. 14 is a relationship diagram showing the relationship between the amount of reflected light and the position (distance) of each subject.
  • FIG. 15 is a block diagram showing a configuration of a fourth embodiment of the electrical system in the wireless in-vivo information acquiring apparatus shown in FIG. 1.
  • FIG. 16 is a block diagram showing a configuration of Example 5 of the electrical system in the wireless in-vivo information acquiring apparatus shown in FIG. 1.
  • FIG. 17 is a block diagram schematically showing a configuration of a capsule endoscope constituting the wireless in-vivo information acquiring system according to the sixth embodiment.
  • FIG. 18 is a schematic graph for explaining the electrical characteristics of the photodiode.
  • FIG. 19 is a schematic graph showing the temperature dependence of the dark current intensity of a photodiode.
  • FIG. 20 is a flowchart for explaining the operation of the capsule endoscope in the sixth embodiment.
  • FIG. 21 is a block diagram showing a configuration of a capsule endoscope in the seventh embodiment.
  • FIG. 22 is a flowchart for explaining the operation of the capsule endoscope in the seventh embodiment.
  • FIG. 23 is a block diagram showing a configuration of a capsule endoscope in the eighth embodiment.
  • FIG. 24 is a flowchart for explaining the operation of the capsule endoscope in the eighth embodiment.
  • RF transmission unit wireless device
  • Transmitting antenna transmitting antenna
  • A1 An receiving antenna
  • Example 1 a capsule endoscope system that captures an in-subject image will be described as an example.
  • the in-subject information is not limited to the in-subject image, and is a wireless type.
  • the in-subject information acquisition system is not limited to the capsule endoscope system.
  • Example 1 an example of a capsule endoscope system that captures an image of a body cavity will be described as an example.
  • in-subject information is not limited to an in-subject image
  • a wireless subject Of course, the internal information acquisition system is not limited to the capsule endoscope system.
  • the wireless in-vivo information acquiring system according to the first embodiment is configured so that a capsule endoscope, which is an example of an in-subject introduction apparatus, is prevented from operating outside the subject.
  • a drive state control unit that controls the drive state of each component in the capsule endoscope using the temperature difference is provided. More specifically, the drive state control unit has a configuration for driving each component under a temperature condition equal to or higher than a threshold temperature determined based on the body temperature of the subject 1, for example.
  • FIG. 1 is a schematic diagram illustrating the overall configuration of the wireless in-vivo information acquiring system according to the first embodiment.
  • the wireless in-vivo information acquiring system includes a receiving device 2 having a wireless receiving function and a body 1 that is introduced into the body of the subject 1 and captures an image of the body cavity to the receiving device 2. And a capsule endoscope 3 for transmitting data.
  • the wireless in-vivo information acquiring system is configured to display data in the body cavity based on data received by the receiving device 2, and to exchange data between the receiving device 2 and the display device 4.
  • a portable recording medium 5 The receiving device 2 includes a receiving jacket 2a worn by the subject 1 and an external device 2b that performs processing of a radio signal received through the receiving jacket 2a.
  • the display device 4 is for displaying an in-vivo image captured by the capsule endoscope 3, and is a workstation or the like that displays an image based on data obtained by the portable recording medium 5.
  • the configuration is as follows. Specifically, the display device 4 may be configured to directly display an image using a CRT display, a liquid crystal display, or the like. A configuration that outputs an image to another medium, such as a computer, is also possible.
  • the portable recording medium 5 is detachable from the external device 2b and the display device 4, and has a structure capable of outputting or recording information when inserted into both. Specifically, the portable recording medium 5 is inserted into the external device 2b and transmitted from the capsule endoscope 3 while the capsule endoscope 3 is moving in the body cavity of the subject 1. Record the data. After the capsule endoscope 3 is ejected from the subject 1, that is, after the imaging of the inside of the subject 1 is finished, the capsule endoscope 3 is taken out from the external device 2b and inserted into the display device 4, and the display device The data recorded by 4 is read out.
  • the external device 2b and the display device 4 are wired. Unlike the case, the subject 1 can freely move during imaging in the body cavity.
  • a portable recording medium 5 such as a Compact Flash (registered trademark) memory
  • the receiving device 2 has a function of receiving in-vivo image data wirelessly transmitted from the capsule endoscope 3.
  • FIG. 2 is a block diagram schematically showing the configuration of the receiving device 2. As shown in FIG. 2, the receiving device 2 has a shape that can be worn by the subject 1, and includes a receiving jacket 2a equipped with a receiving antenna A1-An, and an external device that processes received radio signals. And a device 2b.
  • the external device 2b has a function of processing a radio signal transmitted from the capsule endoscope 3. Specifically, as shown in FIG. 2, the external device 2b includes an RF receiving unit 11 as a radio receiving means for demodulating a radio signal received by the receiving antenna A1-An, and demodulated image data. An image processing unit 12 as processing means for performing necessary processing, and a storage unit 13 as storage means for recording image data subjected to image processing are provided. Note that image data is recorded on the portable recording medium 5 via the storage unit 13.
  • FIG. 3 is a block diagram schematically showing the configuration of the capsule endoscope 3.
  • the capsule endoscope 3 includes an LED 19 as an illuminating means for illuminating the imaging region when imaging the inside of the subject 1, and an LED driving circuit that controls the driving state of the LED 19 20 and a photoelectric conversion means or an imaging hand that captures a reflected light image from an area irradiated by the LED 19 and generates image data. It has CCD21 as a stage.
  • the capsule endoscope 3 includes a CCD drive circuit 22 that controls the drive state of the CCD 21, an RF transmission unit 23 that modulates image data captured by the CCD 21 and generates an RF signal, and an RF transmission unit 23.
  • a transmission antenna section 24 as a wireless means for wirelessly transmitting the output RF signal
  • a system control circuit 32 as an operation control means for controlling the operation of the LED drive circuit 20, the CCD drive circuit 22 and the RF transmission unit 23; Is provided.
  • the capsule endoscope 3 acquires the image information of the region to be examined illuminated by the LED 19 while being introduced into the subject 1 by the CCD 21.
  • the acquired image information is converted into an RF signal by the RF transmission unit 23 and then transmitted to the outside via the transmission antenna unit 24.
  • the capsule endoscope 3 includes an internal portion of the capsule endoscope 3 such as an LED drive circuit 20, a CCD drive circuit 22, an RF transmission unit 23, etc. as function execution means for executing predetermined functions. And a battery 100 as power supply means for driving the components.
  • the system control circuit 32 includes the LED drive circuit 20, the CCD drive circuit 22, the operation state corresponding to the RF transmission mute, that is, the LED 19 emission period, the CCD 21 frame rate, the RF signal transmission timing, etc.
  • the operation of the function execution means is controlled based on predetermined contents.
  • the capsule endoscope 3 controls the driving state of the temperature sensor unit 33 and the LED drive circuit 20, the CCD drive circuit 22, the system control circuit 32, and the like based on the temperature detected by the temperature sensor unit 33.
  • a drive control unit 34 as drive control means.
  • the drive control unit 34 also has a function of distributing the drive power supplied from the battery 100 to each component such as the LED drive circuit 20, the CCD drive circuit 22, and the system control circuit 32 as function execution means.
  • the capsule endoscope 3 in the first embodiment has a configuration in which a drive control unit 34 is disposed between the system control circuit 32 and the battery 100, and the drive control unit 34 has a configuration for controlling the drive state of the components in the capsule endoscope 3 based on the output signal from the temperature sensor unit 33.
  • the temperature sensor unit 33 is a cap that varies depending on the temperature of the surrounding environment of the capsule endoscope 3. This is for detecting the temperature inside the cell-type endoscope 3.
  • the temperature sensor unit 33 has a function of outputting temperature data to the drive control unit 34 by repeating temperature detection at predetermined time intervals.
  • the threshold temperature is a value that is equal to or lower than the temperature detected by the temperature sensor 33 when the capsule endoscope 3 is introduced into the subject 1 and is close to the temperature at which the capsule endoscope 3 works.
  • the temperature is higher than the temperature of the environment outside the subject 1, for example, a temperature of about room temperature.
  • the threshold temperature is preferably set to about 34.5 ° C, which is slightly lower than the body temperature.
  • the drive control unit 34 controls the drive state of the components of the capsule endoscope 3 based on the signal output from the temperature sensor unit 33. Specifically, for example, when the temperature detected by the temperature sensor unit 33 is equal to or higher than the threshold value, control is performed so that the components in the capsule endoscope 3 are turned on, and the temperature is lower than the threshold value. Has a function to control the components to be turned off. In the configuration shown in FIG. 3, the temperature sensor unit 33 and the drive control unit 34 may be formed integrally as will be described later.
  • FIG. 4 is a flowchart for explaining the operation of the capsule endoscope 3 according to the first embodiment.
  • the operation will be described with reference to FIG. 4 as appropriate. Note that at the time of the start in the flowchart of FIG. 4, the components inside the capsule endoscope 3 are maintained in the off state.
  • step S101 temperature measurement is performed by the temperature sensor unit 33, and the temperature sensor unit 33 outputs temperature information obtained by the measurement to the drive control unit 34 (step S101). Then, the drive control unit 34 determines whether or not the temperature obtained as a result of the temperature measurement is a value equal to or higher than the threshold temperature (step S102). If it is determined that the temperature obtained as a result of the measurement is less than the threshold value, the process returns to step S101 and the above operation is repeated.
  • the drive control unit 34 uses the power stored in the battery 100 as a capsule endoscope 3 such as the system control circuit 32. Supplying to the internal components and driving of each component is started (step S103) o That is, the drive control unit 34 determines that the capsule endoscope It is determined that the mirror 3 has been introduced into the subject 1, and the electric power stored in the battery 100 is supplied to each component based on the strong determination.
  • step S104 irradiation light that illuminates the inside of the subject 1 is output by the LED 19, and an imaging operation by the CCD 21 is performed based on the return light of the irradiation light (step S104).
  • the image data obtained by the CCD is sent to the RF transmission unit 23, and after a predetermined modulation operation or the like is performed, the image data is transmitted to the outside via the transmission antenna unit 24 (step S105).
  • the transmitted image data is received by the reception mechanism provided in the reception jacket 2a, and then supplied to the display device 4 via the portable recording medium 5, and displayed as an in-vivo image on the screen of the display device 4. .
  • step S106 temperature measurement is again performed by the temperature sensor unit 33, and temperature data is output to the drive control unit 34 (step S106). Then, the drive control unit 34 determines whether or not the force obtained by the temperature measurement is less than the threshold value (step S107). If it is determined that the temperature is not lower than the threshold value, it is considered that the capsule endoscope 3 still remains in the subject 1, so that the process returns to step S104 again and the operations of steps S104 to S106 are repeated.
  • the drive control unit 34 stops the power supply to the components in the capsule endoscope 3 and stops driving the components (step). S108). Since the threshold temperature is set to a temperature lower than the body temperature of the subject 1, if the temperature obtained as a result of the measurement falls below the threshold temperature, the capsule endoscope 3 is placed outside the subject 1. It is because it is judged that it was discharged. Thus, the operation of the capsule endoscope 3 in the first embodiment is completed.
  • the start and stop of driving of the capsule endoscope 3 are controlled based on the temperature measured by the temperature sensor provided in the capsule endoscope 3. It has a configuration to control. The advantages of having a strong configuration will be described below.
  • the temperature sensor unit 33 measures the temperature.
  • the capsule endoscope 3 it is possible to directly detect whether the capsule endoscope 3 has been introduced into the subject 1, and by controlling the driving state based on the temperature, the capsule endoscope 3 It is possible to drive the capsule endoscope 3 only while it is being introduced into the camera.
  • driving outside the subject it is possible to prevent acquisition of image data obtained by imaging the outside of the subject 1, which cannot be used for diagnosis or the like, and to waste power consumption. It is possible to avoid it.
  • the wireless in-vivo information acquiring system has an advantage that it is possible to form a mechanism that operates only in the subject 1 with a simple configuration. That is, by using a shape memory alloy member, a bimetal member, or the like whose shape physically changes in response to a temperature change, a simple structure that can quickly respond to the temperature change can be realized. Further, by providing a forceful member in the switching mechanism, a configuration in which the temperature sensor unit 33 and the drive control unit 34 are integrated can be realized, and the temperature sensor unit 33 and the drive can be driven without supplying power. The control unit 34 can be driven.
  • Example 1 of Example 1 is characterized in that a temperature sensor / drive control unit 35 in which a temperature sensor unit 33 and a drive control unit 34 are integrally formed in a capsule endoscope 3 is provided.
  • FIG. 5 is a schematic diagram showing the structure of the temperature sensor and the drive control unit 35 in Example 1 of the first embodiment. Components other than the temperature sensor drive control unit 35 are the same as those of the capsule endoscope 3 in the first embodiment.
  • the temperature sensor / drive control unit 35 in the first embodiment includes a temperature deformation member 38 arranged in a state of being fixed to a fixing member 37 arranged on a pedestal 36, and a battery 100. And a second contact 40 electrically connected to components such as the system control circuit 32 and the like. Further, between the pedestal 36 and the temperature deformation member 38, tensile stress supply members 41 and 42 that apply a tensile stress to the temperature deformation member 38 are arranged.
  • the temperature deforming member 38 includes a shape memory alloy or a shape memory resin that takes the above threshold temperature as a critical point temperature and recovers the memorized shape at the critical temperature or higher.
  • the temperature deformation member 38 has at least the first contact 39 and the first contact.
  • a conductive layer is provided on the surface facing the two contacts 40, and the first contact 39 and the second contact 40 are electrically connected to each other when the shape is restored by a strong conductive layer.
  • the tensile stress supply members 41 and 42 are formed of an elastic member such as an elastic panel, and apply tensile stress toward the pedestal 36 to the temperature deformation member 38.
  • FIG. 6A is a schematic diagram showing a state of the temperature sensor / drive control unit 35 at a temperature equal to or higher than the threshold temperature.
  • the first contact 39 and the second contact 40 are electrically connected.
  • the first contact 39 is electrically connected to the battery 100
  • the second contact 40 is electrically connected to each component in the capsule endoscope.
  • Driving power is supplied from the battery 100 to each component in the endoscope, and driving is started.
  • the power supply is performed. It is possible to stop.
  • a soft martensite phase is generated inside the shape memory alloy (shape memory resin) constituting the temperature deformable member 38.
  • the stress supplied from the tensile stress supply members 41 and 42 becomes dominant.
  • the temperature deforming member 38 returns to the rod shape shown in FIG. 5, the electrical connection between the first contact 39 and the second contact 40 is released, and the power supply from the battery 100 is stopped. Stop and drive of each component stops
  • Example 1 of Example 1 the temperature deformation member 38 including a shape memory alloy or a shape memory resin having a critical temperature equal to the threshold temperature is provided, so that the temperature can be adjusted.
  • the drive state can be controlled.
  • the temperature deformation member 3 By devising the shape of 8, it is possible to have a structure in which the tensile stress supplying members 41 and 42 are omitted. That is, by adopting a configuration in which the weights at both ends of the temperature deforming member 38 are increased compared to other regions, the temperature deforming member 38 is connected to the first contact 39 and the weight by the weights at both ends at a temperature below the threshold temperature. It can be configured to be away from the second contact 40.
  • Example 2 of Example 1 includes a temperature sensor / drive control unit in which a temperature sensor unit 33 and a drive control unit 34 are formed integrally as in Example 1 of Example 1 above.
  • the configuration other than the temperature sensor unit 33 and the drive control unit 34 is the same as that of the wireless in-vivo information acquiring system according to the first example.
  • FIG. 7 is a schematic diagram showing a configuration of the temperature sensor / drive control unit 43 in Example 2 of the first embodiment.
  • parts common to Example 1 are denoted by a common name “symbol”, and the specific configuration, action, etc. are the same as in Example 1.
  • the temperature sensor / drive control unit 43 includes a base 36, a fixing member 37 fixed on the base 36, and a bimetal member 44 formed on the fixing member 37. Further, the temperature sensor drive control unit 43 includes a first contact 39 electrically connected to the battery 100 and a second contact electrically connected to each component in the capsule endoscope. 40.
  • the bimetal member 44 is formed by bonding a first metal member 45 having a high coefficient of thermal expansion and a second metal member 46 having a coefficient of thermal expansion lower than that of the first metal member 45.
  • the bimetal member 44 since it is necessary to have a function of bending both ends of the bimetal member 44 close to the first contact 39 and the second contact 40 when the temperature is equal to or higher than the threshold temperature, the bimetal member 44 is provided with the first contact 39.
  • the second metal member 46 having a low coefficient of thermal expansion is provided on the side where the second contact 40 is located.
  • FIG. 8A is a schematic diagram showing the state of the temperature sensor / drive control unit 43 when the bimetal member 44 is heated to a temperature equal to or higher than the threshold temperature.
  • the first metal member 45 has a high coefficient of thermal expansion
  • the second metal member 46 has a lower coefficient of thermal expansion than the first metal member 45. Therefore, when the bimetal member 44 is heated, the first metal member 45 While the volume expands significantly, the volume of the second metal member 46 does not expand so much. Therefore, as shown by the arrows in FIG. 8-1, the bimetal member 44 has a large spreading stress in the lateral direction in the first metal member 45, while the small stress in the lateral direction in the second metal member 46. Produce.
  • the bimetal member 44 changes from a rod-like shape at a low temperature to a curved shape having a downward convex shape. Then, by bending, both ends of the metal member 44 approach the first contact 39 and the second contact 40, and contact the first contact 39 and the second contact 40 when the threshold temperature is reached.
  • the first contact 39 and the second contact 40 are electrically connected, and driving power is supplied to each component.
  • the shape of the bimetal member 44 is changed from a curved state at the time of temperature rise to a large curvature radius, that is, a gentle curve shape, and finally to a rod shape before the temperature rise.
  • a large curvature radius that is, a gentle curve shape
  • a rod shape before the temperature rise Return.
  • both ends of the bimetal member 44 are separated from both the first contact 39 and the second contact 40, and the electrical connection between the first contact 39 and the second contact 40 is lost, and each component is connected to each component.
  • the power supply will be cut off.
  • the temperature sensor / drive control unit 43 performs a powerful operation, the power supply can be stopped when the temperature of the bimetal member 44 drops below the threshold temperature from the high temperature state.
  • Example 1 and Example 2 of Example 1 it is possible to realize a mechanism that functions as the temperature sensor unit 33 and the drive control unit 34 with a simple configuration.
  • Examples 1 and 2 do not require a complicated electronic circuit because the switching mechanism is realized by using a member whose physical shape changes with temperature change.
  • the temperature sensor unit 33 and the drive control unit 34 can be configured.
  • a member whose shape changes physically with respect to temperature changes it is possible to have a configuration that does not require power for the operation of the temperature sensor unit 33 and the drive control unit 34. This will contribute to a reduction in power consumption in the capsule endoscope 3.
  • the wireless intra-subject information acquisition system includes a temperature sensor unit and a drive control unit in a capsule endoscope serving as an intra-subject introduction apparatus, and at least a low thermal conductivity member that covers the temperature sensor unit. It has the composition provided with.
  • FIG. 9 is a block diagram schematically illustrating the configuration of the capsule endoscope 47 that configures the wireless in-vivo information acquiring system according to the second embodiment.
  • the receiving device, the display device, and the portable recording medium which are other components of the wireless in-vivo information acquiring system, have the same configuration as that of the first embodiment unless otherwise specified below. Have the same function.
  • the capsule endoscope 47 includes an LED 19 for illuminating the inside of the subject, an LED drive circuit 20 for controlling the drive of the LED 19, and an imaging operation C CD21, CCD drive circuit 22 that controls the drive of CCD21, RF transmission unit 23 that modulates image data captured by CCD, transmission antenna unit 24 that performs transmission operation, and battery 100 .
  • the capsule endoscope 47 includes a system control circuit 32 that controls the LED drive circuit 20, the CCD drive circuit 22, and the RF transmission unit 23 with respect to these operation states. Furthermore, a temperature sensor unit 33 covered with the heat conduction inhibiting member 48 and a drive control unit 34 for controlling power supply from the battery 100 based on the temperature data output from the temperature sensor unit also are provided.
  • the heat conduction inhibiting member 48 is for preventing heat existing in the surrounding environment from being transmitted to the temperature sensor unit 33.
  • the heat conduction-inhibiting member 48 is configured by a member that transfers heat at a certain rate that does not prevent heat transfer in the surrounding environment.
  • the temperature detected by the temperature sensor 33 is The temperature change of the surrounding environment, for example, the influence of the temperature change due to the introduction of the capsule endoscope into the subject 1 is detected after a predetermined time has elapsed. That is, by being covered with the heat conduction inhibiting member 48, the temperature detected by the temperature sensor 33 immediately after the capsule endoscope 47 is introduced into the subject 1 maintains a value lower than the threshold temperature. As time passes, heat is gradually transferred to the temperature sensor unit 33 via the heat conduction inhibiting member 48, so that the temperature changes to a value equal to or higher than the threshold temperature only after a certain amount of time has passed. Become.
  • the temperature sensor unit 33 is covered with the heat conduction inhibiting member 48 so that the temperature detected by the temperature sensor unit 33 reaches the threshold temperature or higher.
  • the configuration requires a certain period of time to prevent each component included in the capsule endoscope 47 from starting driving immediately after being introduced into the subject 1. Then, by devising the structure of the heat conduction inhibiting member 48 and adjusting the time required to reach the threshold temperature, the drive can be started for the first time when the image data reaches a predetermined test site. it can.
  • the capsule endoscope 47 can prevent acquisition of unnecessary image data not only outside the subject 1, but also inside the subject 1. . Therefore, it is possible to more effectively prevent unnecessary image data from being acquired and suppress waste of driving power.
  • the heat conduction-inhibiting member 48 need not be limited to a forceful configuration that covers only the temperature sensor unit 33.
  • each of the capsule endoscope 47 The capsule housing that houses the components may be configured by a member having a heat conduction inhibiting function.
  • the capsule casing may be formed of a normal material, and the outside of the capsule casing may be covered with a member having a heat conduction inhibiting function.
  • the portion covered by the heat conduction inhibiting member 48 may be only a part of the temperature sensor unit 33.
  • the thermal conduction inhibiting member 48 it is only necessary that the thermal conduction of the ambient environmental force is inhibited in the part where the temperature is actually detected.
  • the temperature deforming member 38 in the configuration of FIG. 5 may be covered with the thermal conduction inhibiting member 48. .
  • the members constituting the heat conduction inhibiting member 48 can be roughly divided into two types. First, it is possible to form the heat conduction inhibiting member 48 using a member having a small thermal conductivity coefficient, for example, a member such as polystyrene foam. By using a powerful member, the amount of heat conduction per unit time with respect to the temperature sensor unit 33 can be reduced, and a certain time can be required until the temperature sensor unit 33 detects the ambient temperature.
  • a member having a small thermal conductivity coefficient for example, a member such as polystyrene foam.
  • a member that is held at a temperature lower than the temperature of the surrounding environment can be used as the heat conduction blocking member 48. That is, when a member maintained at a temperature lower than the ambient temperature is used as the heat conduction inhibiting member 48, the heat transmitted when the heat is transmitted to the ambient force temperature sensor unit 33. Is used to raise the temperature of the heat conduction inhibiting member 48 itself, and after the temperature of the heat conduction inhibiting member 48 reaches a predetermined temperature, the temperature of the temperature sensor unit 33 rises. Therefore, even when the temperature of the surrounding environment changes to a temperature equal to or higher than the threshold temperature, a certain time elapses from the change, and the force is detected by the temperature sensor unit 33 so that the temperature is higher than the threshold temperature. A member held at a temperature lower than the temperature can function as the heat conduction inhibiting member 48.
  • the heat conduction inhibiting member 48 When introducing the psel type endoscope into the subject 1, for example, it may be introduced together with tap water of about 20 ° C. In this case, the tap water introduced together is at a temperature lower than the ambient temperature of the capsule endoscope at least inside the subject 1, and strong water is present around the capsule endoscope. As a result, the heat transfer to the capsule endoscope is disturbed, and the capsule endoscope acquires image data until a certain time has elapsed after the capsule endoscope is introduced into the subject 1. It is also possible to prevent the wireless transmission of the acquired image data from being started.
  • a capsule endoscope power LED, a CCD, and the like are provided to capture an image inside the subject 1.
  • the intra-subject introduction device introduced into the subject is not limited to such a configuration.
  • in-subject information such as temperature information and PH information may be acquired.
  • the intra-subject introduction apparatus includes a vibrator
  • a configuration in which an ultrasonic image in the subject 1 is acquired may be used.
  • a configuration may be adopted in which a plurality of pieces of information are acquired from the in-subject information.
  • the receiving device 2 is configured not only to receive a radio signal output from the capsule endoscope, but also configured to send a power supply signal for supplying power to the capsule endoscope.
  • a configuration may be adopted in which the signal power for power feeding received in the capsule endoscope is regenerated.
  • a storage unit may be provided inside the capsule endoscope so that information can be extracted from the storage unit after it is ejected from the subject 1! ,.
  • the threshold temperature is not necessarily lower than the body temperature of the subject 1 and need not be set to a temperature.
  • the particular specific diseased part has a higher temperature than other regions in the subject 1. If this is the case, it is also effective to set the temperature corresponding to the sensible temperature as the threshold temperature.
  • drive power is supplied to each component such as the LED 19 via the drive control unit 34.
  • the power may be directly supplied to each component.
  • the drive is controlled by the drive controller Only a part of the components in the capsule endoscope such as the RF transmission unit 23 may be used.
  • the drive control unit includes each component before the capsule endoscope is introduced into the subject and after the subject is discharged from the subject. Stop control may be performed only when the force V is configured to stop the drive, or when the displacement is one of them. This is because even when only one of them is controlled to stop, it is possible to avoid useless acquisition of image data and reduce power consumption compared to the conventional case.
  • FIG. 10 is a cross-sectional view showing a schematic configuration of the capsule endoscope shown in FIG.
  • the same components as those shown in the first embodiment are denoted by the same reference numerals for convenience of explanation.
  • the capsule endoscope 3 has a substantially cylindrical capsule force at both ends, and is a transparent dome provided on the front side of the capsule endoscope. 11 la, an information acquisition unit that captures an image of a body cavity to obtain image data, an imaging mechanism unit as an imaging unit, and a wireless mechanism unit as a wireless unit that transmits various types of information including the image data. ing.
  • a cap 131 for protecting the dome is attached so as to surround the dome 11 la.
  • the cap 131 is detachably attached to the dome 11 la.
  • the imaging mechanism section includes an illumination device 19 such as a plurality of light emitting elements (LEDs) that irradiates the body cavity of the subject 1, and a charge coupled device (CCD) that captures an image of the body cavity as reflected light. It is configured with an imaging device 21 such as a CM OS type imaging camera and an optical system component 114 that forms an image on the imaging device 21.
  • the illuminating device 19 illuminates the inner part of the body cavity through the front dome 11 la, and the imaging device 21 captures the reflected light and captures an image of the test site inside the body cavity.
  • the radio mechanism unit modulates the captured image signal into an RF signal and transmits the radio signal (RF transmission unit) 23, and a transmission antenna (transmission) that emits radio waves of the RF signal to the outside of the subject 1.
  • Antenna part) 24 and is provided in the dome 111b on the rear surface.
  • the capsule endoscope 3 includes a power supply device (battery) 100 such as a silver oxide battery that supplies electric power to internal electrical components such as the LED 19, the CCD 21, the wireless device 23, and the transmitting antenna 24. Further, in the capsule endoscope 3, for example, if a receiver and a receiving antenna are provided, it is possible to control the driving of the above-described LED, CCD, etc. based on various control signals from the external device 2b. .
  • FIG. 11 is a configuration diagram showing a configuration of the electrical system in the capsule endoscope according to the third embodiment of the present invention.
  • a normal in-subject introduction apparatus 3 includes an illumination apparatus 19 (illumination means) that also has LED power, an imaging apparatus 21 that includes an imaging camera, a radio apparatus 23 that communicates radio waves of RF signals, and an electric power thereof.
  • the power supply device 100 includes a battery for supplying power to the components, and a power switch 100 and a reed switch 119 provided between the electrical components. The reed switch 119 is turned on and off by suppression or release from the magnetic member (magnet) 130 provided in the package that holds the capsule endoscope 3 before use.
  • the reed switch 119 is configured to be turned on and off by, for example, separation or approach of the magnet 130, and the reed switch 119 is in an initial state held by the knocker.
  • the magnet 130 provided in the vicinity of the reed switch 119 is separated, the magnet 130 is turned on. Once the magnet 130 is turned on, this state is maintained, so that electric power is continuously supplied from the battery 100 to each part of the electrical component. Will be supplied.
  • the reed switch 119 can also be configured to be turned on / off when the magnet 130 approaches or separates.
  • the capsule endoscope 3 shown in FIG. 11 connects the wireless device 23 to the battery 100 via the reed switch 1 19 and the sub switch 120, and the subject and the capsule endoscope 3 A distance sensor 121 as a detecting means for detecting the distance to the sub-switch 120, a supply control unit 122 as a supply control means for controlling on / off of the subswitch 120, and a latch circuit 123. That is, in this embodiment, even when only the reed switch 119 is turned on (the subswitch 120 is turned off), power is not supplied to the wireless device 23. Therefore, the wireless device 23 is not powered on, and the imaging device 21 is configured to not be able to transmit the image data taken! RU
  • the reed switch 119 When the reed switch 119 is turned on, the distance sensor 121 and the supply control unit 122 When the power supply device 100 is connected so that power is supplied, and the distance sensor 121 detects the distance between the subject and the capsule endoscope 3, the supply control unit 122 is based on the detected distance! Then, the sub switch 120 is controlled to be turned on.
  • the distance sensor 121 is a general distance detection sensor.
  • the reed switch 119 When the reed switch 119 is turned on, for example, infrared rays are emitted forward from the dome 11 la and reflected from the subject. The distance between the subject in front of the dome 11 la and the capsule endoscope 3 is detected from the arrival time of.
  • the supply control unit 122 is connected so that power is supplied from the power supply device 100 when the reed switch 119 is turned on.
  • the distance sensor 121 detects the distance to the subject
  • the detected distance is equal to or less than a predetermined value (information that the capsule endoscope 3 has been introduced into the body cavity)
  • it is determined that the capsule endoscope 3 has been swallowed into the subject and the control signal is
  • the latch circuit 123 is output and the operation of the latch circuit 123 is controlled, and the subswitch 120 is controlled to be turned on.
  • the latch circuit 123 is composed of, for example, a D-type flip-flop.
  • the control signal is input from the supply control unit 122, the sub-switch 120 is turned on, and thereafter, the on-state is held. The power supply of the wireless device 23 is maintained.
  • the power supply operation of the wireless in-vivo information acquiring apparatus will be described using the flow chart of FIG. In FIG. 12, when the capsule endoscope 3 also takes out the package force, the capsule endoscope 3 is not affected by the magnetic force from the magnet 130, and the reed switch 119 is turned on (step 201). When the reed switch 119 is turned on, power is supplied to each electrical component (in this embodiment, the LED 19, the imaging device 21, the distance sensor 121, and the supply control unit 122) except for the wireless device 23 (step 202). 21 starts the imaging operation, and the distance sensor 121 detects the distance to the subject in front and outputs the distance data to the supply control unit 122 (step 203).
  • the electrical component in this embodiment, the LED 19, the imaging device 21, the distance sensor 121, and the supply control unit 122
  • supply control unit 122 determines whether or not the detected distance is less than or equal to a predetermined value (step 204). If the distance is equal to or smaller than the predetermined value, the supply control unit 122 determines that the capsule endoscope 3 has entered the body cavity and controls the subswitch 120 to be in the ON state (step 205). . As a result, from the battery 100 to the wireless device 23 Is supplied with power (step 206). With this power supply, the wireless device 23 is powered on, can be illuminated by the LED 19, and can transmit image data in the body cavity imaged by the imaging device 21 to the outside.
  • the timing of power supply to the wireless device can be performed after the capsule endoscope is reliably introduced into the subject, thereby reducing power consumption and collecting images in the subject. And image transmission can be performed accurately.
  • FIG. 13 is a block diagram showing another configuration of the embodiment 3 devised in response to such a request.
  • FIG. 13 differs from FIG. 11 in that a timer 124 is connected to the supply control unit 122 and power is supplied to the wireless device 23 after a certain period of time after the distance from the subject has become a predetermined value or less. The point is that image data is transmitted.
  • the detected distance becomes a predetermined value or less, and the capsule endoscope 3 reaches the stomach in terms of force.
  • a predetermined time is set in the timer 124 in advance, and the supply control unit 122 activates the timer 124 when the fetched distance falls below a predetermined value, and controls the latch circuit 123 after the predetermined time elapses. Then, the sub switch 120 is turned on.
  • Example 4 It should be noted that the distance sensor used in Example 3 has a complicated configuration and is expensive, and it is assumed that the distance sensor is difficult to use for a capsule endoscope. Therefore, in this embodiment, the light amount sensor is used to detect the light amount in front of the dome 11 la, the distance to the subject is detected from the correlation between the light amount and the distance, and the wireless device 23 is supplied with power. An in-subject introduction apparatus is provided.
  • Fig. 15 is a configuration diagram showing a configuration of an electric system according to the fourth embodiment of the capsule endoscope according to the present invention.
  • a light amount sensor 125 is provided to detect the amount of reflected light from the subject power illuminated by the LED 19.
  • the capsule endoscope when the capsule endoscope is outside the subject, the amount of light detected by the illumination light of the LED 19 reaching the subject is reduced, and when the capsule endoscope is inside the subject.
  • the body cavity that is the subject is in close contact, and the amount of light detected increases.
  • the correlation between the light amount and the distance shown in FIG. 14 is set in advance in the supply control unit 122 connected to the light amount sensor 125. Based on this relationship, the supply control unit 122 detects the data force distance of the input light quantity, and when the distance between the inside (inside the body cavity) of the subject 1 and the outside (indoor) subject falls below a predetermined value, It is determined that the capsule endoscope 3 has been introduced into the subject, and the latch circuit 123 is controlled to control the operation of the subswitch 120 in the ON state.
  • the distance to the subject is detected from the correlation between the light amount and the distance, and whether the capsule endoscope is present in the body cavity based on the detected distance data. Since the power supply to the wireless device is determined by detecting whether or not the power is supplied to the wireless device, the power supply to the wireless device can be performed after the capsule endoscope has been reliably introduced into the subject. Accurate image collection and image transmission within the subject with reduced consumption In addition, the capsule endoscope can be manufactured at a low cost with a simple configuration.
  • the dome is determined from the amount of reflected light. Since the distance to the inner wall can be detected, it is possible to easily detect whether the capsule endoscope is present in the body cavity.
  • FIG. 16 is a configuration diagram showing a configuration of the fifth embodiment of the electrical system in the capsule endoscope that is useful in the present invention.
  • the capsule endoscope 3 has an autofocus function for controlling the autofocus operation. That is, in this embodiment, the autofocus unit 126 is connected to the imaging device 21, and image data captured by the imaging device 21 is output to the autofocus unit 126.
  • the auto force unit 126 controls the auto force operation based on the image data output from the imaging device 21 and moves the lens of the optical system component 114 (see FIG. 10) to focus. Perform matching.
  • the supply control unit 122 detects the distance from the subject as well as the moving amount force of the lens. Further, the supply control unit 122 determines whether or not the detected distance is equal to or smaller than a predetermined value. If the distance is equal to or smaller than the predetermined value, the supply control unit 122 determines that the capsule endoscope 3 has entered the body cavity. Control sub-switch 120 to ON state. As a result, power is supplied from the battery 100 to the wireless device 23, and the wireless device 23 is powered on.
  • the optimal focus position is determined by (for example, the slope of the edge when transitioning from a black image to a white image).
  • the distance from the subject is based on the amount of lens movement to the optimal focus position. Is detected.
  • the force that defines the position of the reference lens in the initial state for example, the imaging device 21 is attached to the inner wall of the cap with the cap 131 shown in FIG. 2 attached to the capsule endoscope 3.
  • the distance at the focal position of the lens by the autofocus unit 126 at this time can be set as a reference distance.
  • the distance from the subject is detected based on the lens movement amount at the time of focusing by the autofocus function, and the capsule endoscope is detected based on the detected distance data. Therefore, the timing of power supply to the wireless device can be determined after the capsule endoscope is reliably introduced into the subject. Thus, power consumption can be reduced, and image collection and image transmission within the subject can be performed accurately.
  • the timer shown in FIG. 13 is provided so that power is supplied to the wireless device after the capsule endoscope is reliably introduced into the organ to be examined. It is pretty easy to compose.
  • the wireless in-vivo information acquisition system according to the sixth embodiment is configured so that a capsule endoscope, which is an example of an in-subject introduction apparatus, is prevented from operating outside the subject. And a driving state control unit for controlling the driving state of each component in the capsule endoscope using a photoelectric conversion means whose dark current intensity has temperature dependence.
  • FIG. 17 is a block diagram schematically showing the configuration of the capsule endoscope 3.
  • the capsule endoscope 132 includes an LED 19 as an illuminating means for illuminating the imaging region when photographing the inside of the subject 1, and an LED driving circuit for controlling the driving state of the LED 19 20 and a CCD 21 as a photoelectric conversion means or an image pickup means for picking up a reflected light image from an area irradiated by the LED 19 and generating image data.
  • the capsule endoscope 132 includes a CCD drive circuit 22 that controls the drive state of the CCD 21, an RF transmission unit 23 that modulates image data captured by the CCD 21 and generates an RF signal, and an RF transmission unit 23.
  • a transmission antenna 24 as a wireless means for wirelessly transmitting the output RF signal
  • a system control circuit 32 as an operation control means for controlling the operation of the LED drive circuit 20, CCD drive circuit 22 and RF transmission unit 23; Is provided.
  • the capsule endoscope 132 is introduced into the subject 1. During this time, the image information of the test site illuminated by the LED 19 is acquired by the CCD 21. The acquired image information is converted into an RF signal by the RF transmission unit 23 and then transmitted to the outside via the transmission antenna unit 24.
  • the capsule endoscope 132 is an internal part of the capsule endoscope 132 such as the LED drive circuit 20, the CCD drive circuit 22, the RF transmission unit 23, etc. as function execution means for executing a predetermined function. And a battery 100 as power supply means for driving the components.
  • the system control circuit 32 is a function execution means such as the LED drive circuit 20, the CCD drive circuit 22, the RF transmission unit operating state, that is, the LED 19 emission period, the CCD 21 frame rate, the RF signal transmission timing, etc. The operation is controlled based on predetermined contents.
  • the capsule endoscope 132 is based on the dark current detection unit 33 and the dark current detected by the dark current detection unit 133!
  • the drive control unit 34 includes a photodiode 135 and a light shielding member 136 formed so as to cover at least the light receiving surface of the photodiode 135.
  • the dark current detection unit 133 includes the photodiode 135 and the light shielding member 136, and has a configuration for outputting the dark current intensity generated in the photodiode 135 to the drive control unit 34. .
  • the dark current which is one of the electrical characteristics of photodiodes.
  • FIG. 18 is a schematic graph for explaining the current flowing through the photodiode.
  • a structure having a PN junction as in a normal diode, or a so-called PIN structure in which a reverse voltage is applied to a semiconductor member having a PN junction is known. . Regardless of which structure is adopted, basic The electrical characteristics are similar to those of a diode, and it is used with a reverse voltage applied to a powerful structure.
  • curve 1 shows the current of the photodiode without light irradiation.
  • a voltage characteristic is shown, and a curve 12 is a curve showing a current-voltage characteristic of the photodiode in a state where light is irradiated. As shown in curves 1 and 1, the reverse voltage is applied and used.
  • the magnitude of the current flowing in the reverse direction is increased by light irradiation.
  • the increase in the applied current is called the photocurrent, and the intensity of the irradiated light can be detected by the value of the photocurrent.
  • the photoelectric current is detected by subtracting the amount of dark current that is applied from the photodiode, and the light intensity is detected. Detection is performed.
  • attention is paid to the characteristics of the dark current generated in the photodiode, and the capsule endoscope 132 is driven outside the subject 1 by actively using the dark current. To prevent it.
  • FIG. 19 is a graph showing an example of the temperature dependence of dark current intensity. Note that the graph shown in FIG. 19 is a result obtained for a general photodiode, and does not necessarily match that of the photodiode 135 used in Example 1. It can be considered that these tendencies are almost the same.
  • dark current has a tendency to increase in intensity with increasing temperature.
  • the temperature inside the subject 1 into which the capsule endoscope 132 is introduced differs greatly from the temperature outside the subject 1, for example, the temperature inside the subject 1 is 35 ° C-37 ° The temperature outside the subject 1 is about 10 ° C-20 ° C, depending on the environment. Therefore, there is no need for this Example 6.
  • the dark current of the photodiode is used as a means for detecting the temperature change, so that the capsule endoscope 132 is located outside the subject 1. Unintentional driving is prevented.
  • the control unit 34 performs control so that each component of the capsule endoscope 132 is driven. More specifically, by controlling the power supplied to the system control circuit 32 by the drive control unit 34, the system control circuit 32 is configured to operate according to a predetermined operation method. Control the operating state of the element.
  • FIG. 20 is a flowchart for explaining the operation of the capsule endoscope 132 according to the sixth embodiment, which will be described below with reference to FIG.
  • the dark current detector 133 detects the dark current generated in the photodiode 135 (step S301).
  • the detected dark current is output to the drive control unit 34, and the drive control unit 34 determines whether or not the dark current value is greater than or equal to a threshold value (step S302).
  • the threshold value used in this step is, for example, a value corresponding to the temperature in the subject 1. If the dark current value is less than the threshold value, the process returns to step S301 again to detect the dark current and determine the magnitude relationship with the threshold value.
  • the drive control unit 34 determines that the capsule endoscope 132 has been introduced into the subject 1, and the function execution unit Driving of the (function execution means) is started (step S303).
  • the function execution unit starts driving based on powerful control and executes a predetermined function.
  • the inside of the subject 1 is irradiated by the LED 19, and after the return light of the irradiated light is imaged by the CCD 21, the image data is modulated as necessary by the RF transmission unit 23, It is transmitted to the outside via the transmitting antenna unit 24.
  • the dark current detection unit 133 detects again the dark current generated in the photodiode 135 (step S304), and the drive control unit 34 determines whether or not the dark current is greater than or equal to the threshold (step S304). S305). And when it is determined that the dark current value is greater than or equal to the threshold value Since it is presumed that the capsule endoscope 132 still remains in the subject 1, the process returns to step S303 and continues to execute the predetermined function.
  • the capsule endoscope 132 according to the sixth embodiment estimates the detected dark current force temperature by using the temperature dependence of the dark current generated in the photodiode 135, and the estimated temperature force is also capsule type. It is estimated whether the endoscope 132 is located inside or outside the subject 1. Then, if it is estimated that it is located outside the subject 1 based on the powerful estimation result, by stopping the drive of the function execution unit such as the CCD 21 provided in the capsule endoscope 132, The capsule endoscope 132 is prevented from being driven outside the subject 1. Therefore, the capsule endoscope 132 according to the sixth embodiment can prevent execution of extra functions outside the subject 1, for example, acquisition of image data outside the subject 1, and is stored in the battery 100. It is possible to prevent waste of electric power.
  • Example 6 there is an advantage due to the configuration in which temperature detection is performed using the photodiode 135. That is, as shown in FIG. 19 and the equation (1), the value of the dark current increases with an exponential power with respect to the temperature. Therefore, the soot current detection unit 133 using the photodiode 135 is high, Accurate temperature detection is possible.
  • the temperature outside the subject 1 is about 20 ° C
  • the temperature inside the subject 1 is 35 ° C
  • the photodiode 135 has the voltage-current characteristics shown in FIG.
  • the value of dark current at C is about ⁇ ⁇
  • the value of dark current increases to 500 nA.
  • the dark current is 300 nA. This value is about the same level as the 500 nA inside the subject 1.
  • the capsule endoscope 3 is 1 It is possible to reliably prevent the occurrence of malfunctions such as the start of driving even though it exists inside.
  • the dark current detection unit 133 also has an advantage due to the configuration in which the photodiode 135 is covered with the light shielding member 136.
  • a photodiode used as a photoelectric conversion element repeats the generation of electron-hole pairs based on light irradiation and the energy of the irradiation light at a high frequency, resulting in deterioration in the crystal structure and the like. May change.
  • light does not enter the photodiode 135 due to the presence of the light shielding member 136, and generation of an electron-hole pair based on the energy of the incident light does not occur.
  • the dark current detection unit 133 is configured by arranging a light shielding member around the photodiode 135, it is possible to prevent the malfunction of the photodiode 135 more reliably by preventing fluctuations in the electrical characteristics of the photodiode 135. Can do.
  • FIG. 21 is a block diagram of the configuration of the capsule endoscope 137 that forms the wireless in-vivo information acquiring system according to the seventh embodiment.
  • the other components of the wireless in-vivo information acquiring system that is, the receiving device, the display device, and the portable recording medium have the same configuration and function as in the sixth embodiment.
  • the capsule endoscope 137 in the seventh embodiment controls the driving of the LED 19 and the LED 19 that outputs light for illuminating the inside of the subject 1 as in the sixth embodiment.
  • a drive circuit 20, a CCD 21 that captures the return light of the illumination light, and a CCD drive circuit 22 that controls the drive of the CCD 21 are provided.
  • the image data acquired by the CCD 21 can also be obtained.
  • the RF transmission unit 23 modulates the image data as necessary and transmits it wirelessly via the transmission antenna 24, the LED drive circuit 20, the CCD drive circuit 22, RF
  • a system control circuit 32 that controls the transmission unit 23 is provided.
  • the capsule endoscope 137 detects the noise pixel detection unit 138 that detects pixels that form noise in the imaging data acquired by the CCD 21 and the imaging data.
  • a noise pixel processing unit 139 that performs processing on the generated noise pixels and generates image data from which noise has been removed.
  • the capsule endoscope 137 receives noise pixels detected by the noise pixel detection unit 138, and the noise pixels that count the number of noise pixels based on the input information A number count unit 140 and a drive control unit 141 that controls the drive state of the LED 19, the RF transmission unit 23, and the like based on the number of noise pixels counted by the noise pixel number count unit 140.
  • the noise pixel detection unit 138 is for detecting a pixel that forms noise from among a large number of pixels constituting the imaging data obtained by the CCD 21.
  • Various detection mechanisms for noise pixels are already known.For example, the brightness is significantly higher than the surrounding V, and a configuration that detects pixels as noise pixels, or a pixel that has a brightness greater than a predetermined threshold. A configuration for detecting a noise pixel is known.
  • the noise pixel detection unit 138 After detecting the noise pixel, the noise pixel detection unit 138 generates information obtained by adding the position information of the noise pixel to the imaging data acquired by the CCD 21, and then displays the information to be used as the noise pixel processing unit 139 and the noise pixel.
  • Number counting section 140 has a function of outputting to 140.
  • the noise pixel processing unit 139 is based on the information output from the noise pixel detection unit 138. This is for generating image data in which the luminance of the noise pixel is corrected to an appropriate luminance, and outputting the generated image data to the RF transmission unit 23.
  • the pixel data is generated, for example, by taking the average of the luminance values of the pixels located around the noise pixel and correcting the average luminance value of the noise pixel.
  • the noise pixel number counting unit 140 is for counting the number of noise pixels in the imaging data based on the information output from the noise pixel detection unit 138. That is, since the information generated by the noise pixel detection unit 138 includes the position information of the noise pixel, the number of noise pixels is counted based on the strong position information, and the counted number of noise pixels is driven and controlled. A function of outputting to the unit 141 is provided.
  • the drive control unit 141 is for controlling the drive states of the components of the capsule endoscope 137 other than the CCD 21, the CCD drive circuit 22, the noise pixel detection unit 138, and the noise pixel number counting unit 140. is there. Specifically, power supply is performed when the number of noise pixels is equal to or greater than a threshold value determined based on the temperature in the subject 1, and when the number of noise pixels is less than the threshold value, power supply is stopped. The driving state is controlled. The drive control by the drive control unit 141 prevents the capsule endoscope 137 from being driven outside the subject 1.
  • FIG. 22 is a flowchart showing the operation of the capsule endoscope 137, and will be described below with reference to FIG.
  • the CCD 21 acquires imaging data by performing an imaging operation (step S401). In this step, it is assumed that the LED 19 does not output illumination light during imaging.
  • the acquired imaging data is output to the noise pixel detection unit 138.
  • the noise pixel detection unit 138 detects a noise pixel constituting a noise component in the imaging data (step S402). Information regarding the detected noise pixel is output to the noise pixel count section 140. Although it is possible to output information to the noise pixel processing unit 139 in this step, it is preferable to stop driving the noise pixel processing unit 139 in this step from the viewpoint of power consumption reduction. Information shall not be output. [0166] After that, the noise pixel number counting unit 140 counts the number of noise pixels present in the imaging data (step S403). The counted number of noise pixels is output to the drive control unit 141.
  • the drive control unit 141 determines whether or not the number of noise pixels is greater than or equal to a predetermined threshold value (step S404). If it is determined that the number of noise pixels is less than the threshold, the process returns to step S401 again, and the above operation is repeated.
  • the drive control unit 141 supplies power to each component such as the LED 19 and starts driving each component.
  • the illumination light from the LED is irradiated, and the imaging data of the return light of the irradiation light is acquired by the CCD 21 (step S405).
  • the acquired imaging data force also detects a noise pixel (step S406), and based on the information generated by the noise pixel detection unit 138, the noise pixel processing unit 139 generates image data from which noise has been removed. (Step S407).
  • the RF transmission unit 23 modulates the generated image data as necessary, and transmits clear image data from which noise has been removed to the outside via the transmission antenna unit 24 (step S408). ).
  • step S406 the information on the noise pixel detected in step S406 is output to the noise pixel number counting unit 140, and the number of pixels is counted by the noise pixel number counting unit 140 (step S409).
  • step S410 it is determined again whether or not the number of pixels is equal to or greater than the threshold value. If it is determined that the number of noise pixels is greater than or equal to the threshold value, the process returns to step S405 and the above operation is repeated again.
  • the drive control unit 141 stops the power supply to all the components in the capsule endoscope 3 and stops the drive. (Step S411). Thus, the operation of the capsule endoscope 137 in the seventh embodiment is completed.
  • the capsule endoscope 137 has a large number of elements included in the CCD 21 that is not the dark current value itself of the photodiode.
  • drive control is performed based on the number of internally generated current values that exceed a certain threshold.
  • the electrical characteristics of a photodiode are temperature dependent.
  • a CCD used in a digital camera has a temperature It is known that the number of pixels that output noise increases as it rises.
  • the capsule endoscope 137 exists outside the subject 1 when the number of noise pixels is below a certain threshold. Therefore, the driving is stopped.
  • the wireless in-vivo information system according to the seventh embodiment can detect temperature with a simple configuration by using existing components. That is, the CCD 21 used for temperature detection is provided with a conventional force to capture an image inside the subject 1.
  • the noise pixel detection unit 138 is conventionally provided to remove noise components from the imaging data obtained by the CCD 21 when acquiring image data inside the subject 1.
  • the noise pixel count unit 140 is required as a new component for temperature detection, and the noise pixel count unit 140 is a noise detector.
  • Information power on pixels Temperature can be detected with a simple configuration such as an electronic circuit that counts the number of noise pixels. Therefore, by providing a new noise pixel count unit 140, the manufacturing cost can be suppressed to the same level as in the conventional case, as in the case of providing a separate temperature sensor mechanism that does not increase the size of the capsule endoscope 137. Can do.
  • the wireless in-vivo information system according to the seventh embodiment has an advantage that occurrence of false detection can be suppressed by using a large number of photodiodes present in the CCD 21. By using a large number of photodiodes, it is possible to obtain a reliable detection result as a whole even if some of the photodiodes change their electrical characteristics.
  • FIG. 3 is a block diagram illustrating the configuration of the capsule endoscope 143 according to the eighth embodiment.
  • the receiving device, the display device, and the portable recording medium are the same as those in the sixth embodiment. It shall have the configuration and function.
  • the capsule endoscope 143 according to the eighth embodiment has the same basic configuration as that of the capsule endoscope 137 according to the seventh embodiment. Instead, the reference pixel state determination unit 144 and a drive control unit 145 that performs drive control based on the determination result in the reference pixel state determination unit 144 are provided.
  • the reference pixel state determination unit 144 is for determining whether or not a predetermined single or plural reference pixels are detected as noise pixels in the imaging data acquired by the CCD 21. That is, the noise pixel detection unit 138 has a function of adding information related to noise pixels, for example, noise pixel position information to the imaging data and outputting the information, so that the reference belonging to a predetermined position is based on the output information. Determining whether or not a pixel is a noise pixel! /
  • FIG. 24 is a flowchart for explaining the operation of the capsule endoscope 143 according to the eighth embodiment, which will be described below with reference to FIG.
  • the CCD 21 performs an imaging operation without illuminating the illumination light by the LED 19 (step S501), and noise pixel detection is performed on the acquired imaging data by the noise pixel detection unit 138 ( Step S502). Thereafter, the reference pixel state determination unit 144 determines whether or not the predetermined reference pixel is detected as a noise pixel (step S503).
  • the reference pixel state determination unit 144 determines whether or not the predetermined reference pixel is detected as a noise pixel (step S503).
  • the reference pixel was detected as a noise pixel. Is determined. If it is determined that the reference pixel is not detected as a noise pixel, the process returns to step S501 and the above operation is repeated.
  • the drive control unit 145 supplies power to each component such as the LED 19, and driving of each component is started. That is, Imaging is performed while illuminating the LED 19 illumination light (step S504), noise components are detected from the imaging data (step S505), and noise pixel processing unit 139 generates image data from which noise has been removed (step S505). (S506), wirelessly transmit image data (Step S507)
  • step S508 it is again determined whether or not the reference pixel in the image data captured in step S504 is detected as a noise pixel (step S508). If the reference pixel is detected as a noise pixel, the process returns to step S504 and the above operation is repeated. On the other hand, when the reference pixel is not detected as a noise pixel, the drive control unit 145 stops power supply to each component such as the LED 19 and stops driving (step S509). This is the end of the operation of the capsule endoscope 143 according to the eighth embodiment.
  • the eighth embodiment it is also possible to detect the temperature based on whether or not noise is generated in a specific reference pixel. That is, each of the photodiodes provided in the CCD 21 has a temperature dependency with respect to the current intensity, and also has a temperature dependency with respect to whether or not to output noise. Therefore, it is possible to detect the temperature of the capsule endoscope 143 by detecting whether or not a certain reference pixel outputs noise. As a result, the capsule endoscope 143 can detect the subject 1. It is possible to determine whether or not it has been installed inside. Therefore, the wireless in-vivo information acquiring system according to the eighth embodiment can prevent the capsule endoscope 143 from being driven outside the subject 1 and can consume power as in the sixth and seventh embodiments. The amount can be reduced.
  • a specific configuration of the photodiode preferably employs a shape in which an electric field concentrates in a specific region in a state where a reverse voltage is applied.
  • Example 6 the capsule endoscope 3 includes an LED 19, a CCD 21, and the like, so that an image inside the subject 1 is captured.
  • the intra-subject introduction device introduced into the subject is not limited to a conspicuous configuration. Other in-subject information such as temperature information and pH information may be acquired.
  • the intra-subject introduction apparatus includes a vibrator, an ultrasonic image in the subject 1 may be acquired.
  • a configuration may be adopted in which a plurality of pieces of information are acquired from the in-subject information.
  • the power supply signal that supplies power for driving the function execution means to the capsule endoscope may regenerate the driving power.
  • a storage unit may be provided in the capsule endoscope, and the storage unit force information may be taken out after being discharged out of the subject 1.
  • the threshold value is not necessarily set to a value corresponding to a temperature lower than the body temperature of the subject 1.
  • the specific diseased part having a higher temperature has a higher temperature than other regions in the subject 1.
  • Example 6-8 the driving power is supplied to each component such as the LED 19 via the drive control unit.
  • power may be directly supplied to each component.
  • the drive control unit may control only a part of the components in the capsule endoscope such as the RF transmission unit 23 alone. Further, the drive control unit may be provided in the system control circuit 32. Further, in Example 6-8, the drive control unit stops driving the components even if there is a deviation before the capsule endoscope is introduced into the subject and after the subject force is discharged. Force configured to stop Stop control may be performed only in either case. This is because even if only one of them is controlled to stop, it is possible to avoid acquisition of useless image data and reduce power consumption compared to the conventional case.
  • Examples 6-8 the example using the CCD as the component of the imaging unit has been described.
  • a configuration using a CMOS may be used.
  • CMOS since it has a configuration including photoelectric conversion means such as a photodiode, it can be applied to the present invention as in the case of CCD.
  • the photoelectric conversion hand For example, a photodiode is used as an example of the stage.
  • a phototransistor may be used. That is, the photoelectric conversion means applicable to the present invention may be other than a photodiode as long as a dark current having temperature dependence is generated inside! /.
  • the in-subject introduction apparatus is useful for a medical observation apparatus that is introduced into a human body and observes a test site. Suitable for accurate image collection and image transmission within the specimen.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pathology (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Human Computer Interaction (AREA)
  • Endoscopes (AREA)

Abstract

 被検体内導入装置の一例たるカプセル型内視鏡3内に電池100と、電池100から駆動電力を供給されるコントロール情報検出回路31、システムコントロール回路32を備え、電池100とコントロール情報検出回路31、システムコントロール回路32との間に配置された駆動制御部34とを備える。駆動制御部34は、温度センサ部33で検出された温度に基づいてコントロール情報検出回路31、システムコントロール回路32等の駆動を制御することで、被検体の外部におけるカプセル型内視鏡3の駆動を防止する。

Description

明 細 書
被検体内導入装置および無線型被検体内情報取得システム 技術分野
[0001] 本発明は、被検体内に導入されされた状態で使用され、前記被検体内部において 所定の機能を実行する無線型被検体内情報取得装置としての被検体内導入装置と 、力かる被検体内導入装置を用いた無線型被検体内情報取得システムに関するも のである。
背景技術
[0002] 近年、内視鏡の分野では、撮像機能と無線機能とが装備された飲み込み型のカブ セル型内視鏡が登場している。このカプセル型内視鏡は、観察 (検査)のために被検 体である被検者に飲み込まれた後、被検者の生体 (被検体)から自然排出されるまで の観察期間、胃、小腸などの臓器の内部 (体腔内)をその蠕動運動に伴って移動し、 撮像機能を用いて順次撮像する構成である。
[0003] また、これら臓器内の移動によるこの観察期間、カプセル型内視鏡によって体腔内 で撮像された画像データは、順次無線通信などの無線機能によって、予め設定され たシーケンスに基づき、被検体の外部に設けられた外部装置に送信され、メモリに蓄 積される。被検者がこの無線機能とメモリ機能を備えた外部装置を携帯することにより 、被検者は、カプセル型内視鏡を飲み込んだ後、排出されるまでの期間、不自由を 被ることなく行動が可能になる。外部装置による画像データの取得後は、医師もしく は看護士によって、外部装置のメモリに蓄積された画像データに基づいて、体腔内 の画像をディスプレイなどの表示手段に表示させて診断を行うことができる。
[0004] 力かるカプセル型内視鏡の駆動を制御するため、カプセル型内視鏡内部に外部磁 場によってオン'オフするリードスィッチを備えると共に、カプセル型内視鏡を収容す るパッケージに磁場供給用の永久磁石を備えた構成が提案されている。すなわち、 カプセル型内視鏡内に備わるリードスィッチは、一定強度以上の外部磁場が与えら れた環境下ではオフ状態を維持し、外部磁場の強度が低下することによってオンす る構造を有する。このため、飲み込み前のノ¾ /ケージ内に収容されている状態では、 この磁石によってバッテリなどの電源装置力ゝら撮像機能や無線機能を有する装置な どの電気部品への電力供給が抑止されて、カプセル型内視鏡は駆動せずにバッテリ の消耗を防いでいる。一方、飲み込み時に、このカプセル型内視鏡は、パッケージか ら取り出されることによって永久磁石力 離隔して磁力の影響下力 離れ、この電気 部品への電力供給の抑止が解除される。これによつて、カプセル型内視鏡内の上述 した電気部品にバッテリから電力が供給されて画像の撮像および送信が行われてい た。力かる構成を備えることで、カプセル型内視鏡力パッケージ内に収容されている 間に駆動を開始することを防止することが可能である (例えば、特許文献 1参照。 ) [0005] 特許文献 1:国際公開第 01Z35813号パンフレット
発明の開示
発明が解決しょうとする課題
[0006] し力しながら、上記のようにカプセル型内視鏡の駆動状態を制御する機構を設けた 場合であっても、被検体外部におけるカプセル型内視鏡の駆動を必ずしも防止でき ないという課題が存在する。すなわち、カプセル型内視鏡をパッケージカゝら取り出し て被検体内に導入するまでにはある程度の時間を要することから、被検体内に導入 されるまでにカプセル型内視鏡が駆動を開始してしまうという課題が存在する。以下 、被検体内に導入される前にカプセル型内視鏡が駆動を開始した場合に生じる問題 について説明する。
[0007] まず、被検体内に導入される前にカプセル型内視鏡が駆動を開始することで、診 断等に用いることのな 、無駄な画像データが取得されると 、う問題を有する。カプセ ル型内視鏡は、駆動を開始すると共に撮像動作を開始し、得られた画像データの無 線送信を開始するよう構成されており、被検体内に導入される前に駆動した場合に は、被検体外部で撮像動作等を行うこととなる。
[0008] この結果、カプセルを開封して力 被検体内に導入されるまでの間に多数の画像 データが取得されることとなり、医者等は力かる無駄な画像データを削除した上で診 断等を行う必要性が生じる。カプセル型内視鏡の撮像レートは、例えば 1秒あたり 2枚 程度撮像するよう構成されていることから、仮に数十秒程度の短時間であっても、力 プセル型内視鏡が被検体外で駆動することで不要な画像データを大量に取得する こととなる。従って、力かる無駄な画像データの取得を回避するために、被検体に導 入される前にカプセル型内視鏡が駆動を開始することを防止する必要がある。
[0009] また、力かる不要な画像データの取得を行うには一定量の駆動電力を必要とするこ とから、被検体内にカプセル型内視鏡が導入される前に各電気部品に電力供給が 行われ、特に被検体導入前の早い段階で電力消費の大きい無線装置に電力供給 がなされてしまうと、撮影の必要な臓器での画像収集が十分に行われる前にバッテリ の電力が消尽して、電力供給が停止してしまう恐れがある。従って、電力消費の観点 からも被検体に導入される前にカプセル型内視鏡の駆動が開始することを防止する 必要がある。
[0010] なお、以上の問題は、被検体内で電力が消尽されずにカプセル型内視鏡が再び 体外に排出された後にも生じ得るものである。従って、上記の問題を回避するために は、被検体に導入される前や被検体力も排出された後に駆動することのないカプセ ル型内視鏡およびカプセル型内視鏡を用いたシステムの実用化が強く要請される。
[0011] 本発明は、上記問題に鑑みてなされたものであって、被検体の外部において不用 意に駆動することを防止したカプセル型内視鏡等の被検体内導入装置および被検 体内導入装置を用いた無線型被検体内情報取得システムを実現することを目的とす る。
[0012] また、本発明の他の目的は、無線装置への電力供給のタイミングを、カプセル型内 視鏡が被検体内に導入された後に行うことで、無駄な電力消費を削減して被検体内 での画像収集および画像送信を的確に行うことができる被検体内導入装置を提供す ることを目的とする。
課題を解決するための手段
[0013] 上述した課題を解決し、目的を達成するために、請求項 1にカゝかる被検体内導入 装置は、被検体内部に導入された状態で使用され、前記被検体内部において所定 の機能を実行する被検体内導入装置であって、前記所定の機能の駆動状態を制御 する駆動制御手段とを備えることを特徴とする。
[0014] また、請求項 2にかかる被検体内導入装置は、上記発明において、前記所定の機 能を実行する機能実行手段と、当該被検体内導入装置の周辺環境の温度変化に応 じて変動する温度を検出する温度センサ手段を、さらに備え、前記駆動制御手段は 、前記温度センサ手段で得られる温度に基づいて、前記機能実行手段の駆動状態 を制御することを特徴とする。この請求項 2の発明によれば、温度センサ手段で検出 された温度に基づいて機能実行手段の駆動状態を制御することとしたため、例えば 、被検体外部力 被検体内部に導入された際の温度変化に基づいて駆動を開始さ せることができる。
[0015] また、請求項 3にかかる被検体内導入装置は、上記の発明において、前記駆動制 御手段は、前記温度センサ手段で得られる温度が所定の閾値温度以上の値まで上 昇した際に前記機能実行手段が駆動するよう制御を行うことを特徴とする。
[0016] また、請求項 4に力かる被検体内導入装置は、上記の発明において、前記駆動制 御手段は、前記温度センサ手段で得られた温度が所定の閾値温度未満の値まで下 降した際に、前記機能実行手段の駆動を停止させることを特徴とする。
[0017] また、請求項 5にかかる被検体内導入装置は、上記の発明において、前記閾値温 度は、前記被検体外部の温度よりも高い温度であって、前記被検体の体温以下の温 度であることを特徴とする。
[0018] また、請求項 6にかかる被検体内導入装置は、上記の発明において、前記機能実 行手段は、供給される駆動電力に基づき前記所定の機能を実行し、前記駆動制御 手段は、前記機能実行手段に対する駆動電力の供給を制御することによって前記機 能実行手段の駆動状態を制御することを特徴とする。
[0019] また、請求項 7にかかる被検体内導入装置は、上記の発明において、前記温度セ ンサ手段と前記駆動制御手段とは一体的に形成され、該一体的に形成された前記 温度センサ手段および前記駆動制御手段は、電力供給源に電気的に接続された第 1接点と、前記機能実行手段に電気的に接続された第 2接点と、前記第 1接点および 前記第 2接点近傍に配置され、閾値温度と等しい臨界温度を有し、該臨界温度以上 の温度で前記第 1接点および前記第 2接点と接触する形状に変化する形状記憶部 材とを備えることを特徴とする。
[0020] また、請求項 8にかかる被検体内導入装置は、上記の発明にお 、て、前記温度セ ンサ手段と前記駆動制御手段とは一体的に形成され、該一体的に形成された前記 温度センサ手段および前記駆動制御手段は、電力供給源に電気的に接続された第
1接点と、前記機能実行手段に電気的に接続された第 2接点と、前記第 1接点および 前記第 2接点近傍に配置され、閾値温度と等 、温度条件下で前記第 1接点および 前記第 2接点と接触するよう形成されたバイメタル部材とを備えることを特徴とする。
[0021] また、請求項 9にかかる被検体内導入装置は、上記の発明において、少なくとも前 記温度センサ手段を覆うよう配置された熱伝導阻害手段をさらに備えることを特徴と する。
[0022] また、請求項 10にかかる被検体内導入装置は、上記の発明において、前記機能 実行手段は、被検体内部の画像データを取得する撮像手段と、前記撮像手段によ つて取得された画像データを外部に無線送信する無線手段とを備えることを特徴と する。
[0023] また、請求項 11に力かる被検体内導入装置は、上記の発明にお 、て、被検体内の 被検部位から被検体内情報を取得する情報取得手段と、前記情報取得手段が生成 した被検体内情報に関する信号を変調して無線送信する無線手段と、前記情報取 得手段と前記無線手段とを駆動する駆動電力を蓄積する電源手段と、前記被検部 位までの距離を検出する検出手段と、を備え、前記駆動制御手段は、前記検出手段 による検出結果に応じて、前記電源手段から前記無線手段への駆動電力の供給を 制御する供給制御手段を備えることを特徴とする。
[0024] また、請求項 12にかかる被検体内導入装置は、上記の発明において、前記被検 部位を照明する照明光を発光する照明手段をさらに備え、前記検出手段は、前記照 明手段力 発光された照明光の前記被検部位力 の反射光の光量に基づいて、前 記被検部位までの距離を検出することを特徴とする。
[0025] また、請求項 13にかかる被検体内導入装置は、上記の発明において、前記供給 制御手段は、前記被検部位までの距離があらかじめ設定した所定の値を下回ったこ とを前記検出手段が検出したことに応じて、前記無線手段への駆動電力の供給を前 記電源手段に開始させることを特徴とする。
[0026] また、請求項 14にかかる被検体内導入装置は、上記の発明において、前記情報 取得手段は、前記照明手段が照明した前記被検部位を撮像して画像信号を生成す る撮像手段であることを特徴とする。
[0027] また、請求項 15にかかる被検体内導入装置は、上記の発明において、前記撮像 手段は、前記撮像手段力 既知の所定の距離だけ離間した位置に配置される被撮 像面を撮像し、前記検出手段は、前記撮像手段が撮像した前記被撮像面の前記撮 像手段からの距離に基づ ヽて、前記撮像手段が撮像する前記被検部位までの距離 を検出することを特徴とする。
[0028] また、請求項 16にかかる被検体内導入装置は、上記の発明において、前記撮像 手段は、オートフォーカス部と、前記撮像手段で生成された画像信号に基づいて該 オートフォーカス部によるオートフォーカス動作を制御する動作制御手段とをさらに具 え、前記検出手段は、前記オートフォーカス部の動作状態に基づいて、前記被検部 位までの距離を検出することを特徴とする。
[0029] また、請求項 17にかかる被検体内導入装置は、上記の発明において、前記所定の 機能を実行する機能実行手段と、暗電流強度が温度依存性を有する光電変換手段 と、を備え、前記駆動制御手段は、前記光電変換手段における暗電流強度に基づ いて前記機能実行手段の駆動状態を制御することを特徴とする。この請求項 17の発 明によれば、光電変換手段における暗電流強度の温度依存性を用いて駆動状態を 制御することとしたため、被検体内導入装置の温度に基づ 、て駆動状態を制御する ことができる。
[0030] また、請求項 18にかかる被検体内導入装置は、上記の発明において、前記駆動 制御手段は、前記暗電流強度が所定の閾値強度未満の場合に前記機能実行手段 が駆動を停止するよう制御を行うことを特徴とする。
[0031] また、請求項 19にかかる被検体内導入装置は、上記の発明において、前記被検 体内部を照明する照射光を出力する照明手段と、行列状に配列された複数の光電 変換手段と、前記照明手段によって照明された前記被検体内部の画像情報を取得 する撮像手段と、前記撮像手段で取得された画像情報を外部に無線送信する無線 手段と、を備え、前記駆動制御手段は、 1以上の前記光電変換手段において得られ る暗電流強度の温度特性に基づいて前記照明手段と前記無線手段との少なくとも一 方の駆動状態を制御することを特徴とする。この請求項 19の発明によれば、撮像手 段内に備わる光電変換手段における暗電流強度の温度依存性をも弓 I 、て駆動状態 を制御することとしたため、被検体内導入装置の温度に基づいて駆動状態の制御が 行えると共に、既存の構成要素を流用することで、簡易な構成で駆動状態制御を行 うことができる。
[0032] また、請求項 20に力かる被検体内導入装置は、上記の発明において、前記駆動 制御手段は、暗電流強度が所定の閾値強度以上となる前記光電変換手段の個数に 基づ!/、て駆動状態の制御を行うことを特徴とする。
[0033] また、請求項 21にかかる被検体内導入装置は、上記の発明において、前記駆動 制御手段は、所定の閾値強度以上となる前記光電変換手段の個数が所定数を下回 つた場合に少なくとも前記無線手段の駆動が停止するよう制御を行うことを特徴とす る。
[0034] また、請求項 22にかかる被検体内導入装置は、上記の発明において、前記所定 数は、前記被検体内部の温度に基づいて定まることを特徴とする。
[0035] また、請求項 23にかかる被検体内導入装置は、上記の発明において、前記駆動 制御手段は、前記撮像手段を形成する複数の光電変換手段のうち、 1以上の特定光 電変換手段における暗電流強度が所定の閾値強度未満である場合に少なくとも前 記無線手段の駆動が停止するよう制御を行うことを特徴とする。
[0036] また、請求項 24に力かる被検体内導入装置は、上記の発明において、前記閾値 強度は、前記被検体外部の温度における暗電流強度よりも高い強度であり、前記被 検体内部の温度における暗電流強度以下の強度であることを特徴とする。
[0037] また、請求項 25にかかる被検体内導入装置は、上記の発明において、前記光電 変換手段は、フォトダイオードを含んで形成されることを特徴とする。
[0038] また、請求項 26に力かる無線型被検体内情報取得システムは、被検体内部に導 入される被検体内導入装置と、被検体外部に配置され、前記被検体内導入装置に よって得られた情報を無線通信を介して取得する受信装置とを備える無線型被検体 内情報取得システムであって、前記被検体内導入装置は、供給される駆動電力に基 づ 、て所定の機能を実行する機能実行手段と、前記機能実行手段によって得られ た情報を無線送信する無線手段と、前記機能実行手段の駆動状態を制御する駆動 制御手段とを備え、前記受信装置は、前記無線手段から送信された情報を受信する 無線受信手段と、前記受信した情報を解析する処理手段とを備えることを特徴とする
[0039] また、請求項 27にかかる無線型被検体内情報取得システムは、上記の発明にお ヽ て、前記被検体内導入装置は、当該被検体内導入装置の周辺環境の温度変化に 応じて変動する温度を検出する温度センサ手段を、さらに備え、前記駆動制御手段 は、前記温度センサ手段で得られる温度に基づいて、前記機能実行手段の駆動状 態を制御することを特徴とする。
[0040] また、請求項 28に力かる無線型被検体内情報取得システムは、上記の発明にお ヽ て、前記機能実行手段は、暗電流強度が温度依存性を有する光電変換手段を、備 え、前記無線手段は、前記撮像手段によって取得された画像データを外部に無線送 信し、前記駆動制御手段は、前記被検体外部の温度よりも高ぐ前記被検体の温度 以下の温度を閾値温度とし、該閾値温度以上で前記撮像手段および前記無線手段 が駆動するよう制御することを特徴とする。
[0041] また、請求項 29にかかる無線型被検体内情報取得システムは、上記の発明にお ヽ て、前記被検体内導入装置は、暗電流強度が温度依存性を有する光電変換手段を 、さらに備え、前記駆動制御手段は、前記光電変換手段における暗電流強度に基づ いて前記機能実行手段の駆動状態を制御することを特徴とする。
[0042] また、請求項 30にかかる無線型被検体内情報取得システムは、上記の発明にお ヽ て、前記被検体内導入装置は、前記被検体内部を照明する照射光を出力する照明 手段と、行列状に配列された複数の光電変換手段を有し、前記照明手段によって照 明された前記被検体内部の画像情報を取得する撮像手段と、を備え、前記無線手 段は、前記撮像手段で取得された画像情報を外部に無線送信し、前記駆動制御手 段は、 1以上の前記光電変換手段において得られる暗電流強度の温度特性に基づ いて前記照明手段と前記無線手段との少なくとも一方の駆動状態を制御することを 特徴とする。
発明の効果
[0043] 本発明にかかる被検体内導入装置および無線型被検体内情報取得システムは、 温度センサ手段で検出された温度に基づいて機能実行手段の駆動状態を制御する 構成としたため、例えば、被検体外部力ゝら被検体内部に導入された際の温度変化に 基づ!/ヽて駆動を開始させることができ、被検体内導入装置が被検体外で駆動を開始 することを防止できるという効果を奏する。
[0044] 本発明にかかる被検体内導入装置は、被検部位との距離を検出し、該検出した距 離に基づき、自装置が体腔内に存在するかどうか検出することで、無線装置への電 力供給を判断するので、無線装置への電力供給のタイミングを、カプセル型内視鏡 が被検体内に導入された後に行うことで、無駄な電力消費を削減して被検体内での 画像収集および画像送信を的確に行うことができるという効果を奏する。
[0045] 本発明にかかる被検体内導入装置は、被検部位力もの反射光量と距離との関係か ら、被写体との距離を検出し、該検出した距離に基づき、自装置が体腔内に存在す るかどうか検出することで、無線装置への電力供給を判断するので、無線装置への 電力供給のタイミングを、カプセル型内視鏡が被検体内に導入された後に行うことで 、無駄な電力消費を削減して被検体内での画像収集および画像送信を的確に行うこ とができると!、う効果を奏する。
[0046] 本発明にかかる被検体内導入装置は、オートフォーカス機能によるオートフォー力 ス動作の制御に基づいて、被写体との距離を検出し、該検出した距離に基づき、自 装置が体腔内に存在するかどうか検出することで、無線装置への電力供給を判断す るので、無線装置への電力供給のタイミングを、カプセル型内視鏡が被検体内に導 入された後に行うことで、無駄な電力消費を削減して被検体内での画像収集および 画像送信を的確に行うことができるという効果を奏する。
[0047] 本発明にかかる被検体内導入装置および無線型被検体内情報取得システムは、 温度センサ手段で検出された温度に基づいて機能実行手段の駆動状態を制御する 構成としたため、例えば、被検体外部力ゝら被検体内部に導入された際の温度変化に 基づ!/ヽて駆動を開始させることができ、被検体内導入装置が被検体外で駆動を開始 することを防止できるという効果を奏する。
図面の簡単な説明
[0048] [図 1]図 1は、実施例 1にかかる無線型被検体内情報取得システムの全体構成を示す 模式図である。
[図 2]図 2は、無線型被検体内情報取得システムを構成する受信装置の構成を模式 的に示すブロック図である。
[図 3]図 3は、実施例 1にかかる無線型被検体内情報取得システムを構成するカプセ ル型内視鏡の構成を模式的に示すブロック図である。
[図 4]図 4は、カプセル型内視鏡の動作を説明するためのフローチャートである。
[図 5]図 5は、実施例 1の例 1におけるカプセル型内視鏡内に備わる温度センサ '駆動 制御部の構成を示す模式図である。
[図 6-1]図 6— 1は、閾値温度以上の温度における温度センサ ·駆動制御部の状態を 示す模式図である。
[図 6-2]図 6— 2は、閾値温度未満の温度における温度センサ,駆動制御部の状態を 示す模式図である。
[図 7]図 7は、実施例 1の例 2におけるカプセル型内視鏡内に備わる温度センサ '駆動 制御部の構成を示す模式図である。
[図 8-1]図 8— 1は、閾値温度以上の温度における温度センサ ·駆動制御部の状態を 示す模式図である。
[図 8-2]図 8— 2は、閾値温度未満の温度における温度センサ,駆動制御部の状態を 示す模式図である。
[図 9]図 9は、実施例 2にかかる無線型被検体内情報取得システムを構成するカプセ ル型内視鏡の構成を模式的に示すブロック図である。
[図 10]図 10は、図 1に示したカプセル型内視鏡の概略構成を示す断面図である。
[図 11]図 11は、図 1に示したカプセル型内視鏡における電気系統の実施例 3の構成 を示すブロック図である。
[図 12]図 12は、図 11に示したカプセル型内視鏡の電力供給動作を説明するための フローチャートである。
[図 13]図 13は、図 1に示したカプセル型内視鏡における電気系統の実施例 3の他の 構成を示すブロック図である。
[図 14]図 14は、反射光の光量と各被写体の位置 (距離)の関係を示す関係図である [図 15]図 15は、図 1に示した無線型被検体内情報取得装置における電気系統の実 施例 4の構成を示すブロック図である。
[図 16]図 16は、図 1に示した無線型被検体内情報取得装置における電気系統の実 施例 5の構成を示すブロック図である。
[図 17]図 17は、実施例 6にかかる無線型被検体内情報取得システムを構成するカブ セル型内視鏡の構成を模式的に示すブロック図である。
[図 18]図 18は、フォトダイオードの電気的特性を説明するための模式的なグラフであ る。
[図 19]図 19は、フォトダイオードの暗電流強度の温度依存性を示す模式的なグラフ である。
[図 20]図 20は、実施例 6におけるカプセル型内視鏡の動作を説明するためのフロー チャートである。
[図 21]図 21は、実施例 7におけるカプセル型内視鏡の構成を示すブロック図である。
[図 22]図 22は、実施例 7におけるカプセル型内視鏡の動作を説明するためのフロー チャートである。
[図 23]図 23は、実施例 8におけるカプセル型内視鏡の構成を示すブロック図である。
[図 24]図 24は、実施例 8におけるカプセル型内視鏡の動作を説明するためのフロー チャートである。
符号の説明
1 被検体
2 受信装置
2a 受信ジャケット
2b 外部装置
3, 132, 137, 143 カプセル型内視鏡 (被検体内導入装置)
4 表示装置
5 携帯型記録媒体
11 RF受信ユニット 画像処理ユニット
記憶ユニット
電力供給ユニット
LED (照明装置)
LED駆動回路
CCD (撮像装置)
CCD駆動回路
RF送信ユニット (無線装置) 送信アンテナ部(送信用アンテナ) システムコントロール回路 温度センサ部
, 141, 145 駆動制御部
温度センサ'駆動制御部 台座
固定部材
温度変形部材
第 1接点
第 2接点
、 42 応力供給部材
温度センサ,駆動制御部 バイメタル部材
第 1金属部材
第 2金属部材
カプセル型内視鏡
熱伝導阻害部材
0 電池 (電源装置)
1a, 111b ドーム
光学系部品 119 リードスィッチ
120 サブスィッチ
121 距離センサ
122 供給制御部
123 ラッチ回路
124 タイマ
125 光量センサ
126 オートフォーカス部
130 磁石
131 キャップ
133 暗電流検出部
135 フォトダイオード
136 遮光部材
138 ノイズ画素検出部
139 ノイズ画素処理部
140 ノイズ画素数カウント部
144 基準画素状態判別部
A1— An 受信用アンテナ
発明を実施するための最良の形態
[0050] 以下、この発明を実施するための最良の形態である無線型被検体内情報取得シス テムについて説明する。なお、図面は模式的なものであり、各部分の厚みと幅との関 係、それぞれの部分の厚みの比率などは現実のものとは異なることに留意すべきで あり、図面の相互間にお 、ても互 、の寸法の関係や比率が異なる部分が含まれて!/ヽ ることはもちろんである。また、以下の実施例 1では、被検体内画像を撮像するカプセ ル型内視鏡システムを例としたものについて説明を行うが、被検体内情報は被検体 内画像に限定されず、無線型被検体内情報取得システムがカプセル型内視鏡シス テムに限定されることはないのはもちろんである。
[0051] 以下、この発明を実施するための最良の形態である無線型被検体内情報取得シス テムについて説明する。なお、図面は模式的なものであり、各部分の厚みと幅との関 係、それぞれの部分の厚みの比率などは現実のものとは異なることに留意すべきで あり、図面の相互間にお 、ても互 、の寸法の関係や比率が異なる部分が含まれて!/ヽ ることはもちろんである。また、以下の実施例 1では、体腔内画像を撮像するカプセル 型内視鏡システムを例としたものについて説明を行うが、被検体内情報は被検体内 画像に限定されず、無線型被検体内情報取得システムがカプセル型内視鏡システ ムに限定されることはないのはもちろんである。
実施例 1
[0052] まず、実施例 1にかかる無線型被検体内情報取得システムにつ 、て説明する。本 実施例 1にかかる無線型被検体内情報取得システムは、被検体内導入装置の一例 たるカプセル型内視鏡が被検体外部で動作することを防止するため、被検体外部と 被検体内部との温度差を利用してカプセル型内視鏡内の各構成要素の駆動状態を 制御する駆動状態制御部を備えることとしている。より具体的には、駆動状態制御部 は、例えば被検体 1の体温に基づいて定まる閾値温度以上の温度条件下で、各構 成要素を駆動させる構成を有する。
[0053] 図 1は、本実施例 1にかかる無線型被検体内情報取得システムの全体構成を示す 模式図である。図 1に示すように、無線型被検体内情報取得システムは、無線受信 機能を有する受信装置 2と、被検体 1の体内に導入され、体腔内画像を撮像して受 信装置 2に対してデータ送信を行うカプセル型内視鏡 3とを備える。また、無線型被 検体内情報取得システムは、受信装置 2が受信したデータに基づいて体腔内画像を 表示する表示装置 4と、受信装置 2と表示装置 4との間のデータ受け渡しを行うため の携帯型記録媒体 5とを備える。受信装置 2は、被検体 1によって着用される受信ジ ャケット 2aと、受信ジャケット 2aを介して受信される無線信号の処理等を行う外部装 置 2bとを備える。
[0054] 表示装置 4は、カプセル型内視鏡 3によって撮像された体腔内画像を表示するため のものであり、携帯型記録媒体 5によって得られるデータに基づいて画像表示を行う ワークステーション等のような構成を有する。具体的には、表示装置 4は、 CRTデイス プレイ、液晶ディスプレイ等によって直接画像を表示する構成としても良いし、プリン タ等のように、他の媒体に画像を出力する構成としても良 、。
[0055] 携帯型記録媒体 5は、外部装置 2bおよび表示装置 4に対して着脱可能であって、 両者に対する挿着時に情報の出力または記録が可能な構造を有する。具体的には 、携帯型記録媒体 5は、カプセル型内視鏡 3が被検体 1の体腔内を移動している間 は外部装置 2bに挿着されてカプセル型内視鏡 3から送信されるデータを記録する。 そして、カプセル型内視鏡 3が被検体 1から排出された後、つまり、被検体 1の内部の 撮像が終わった後には、外部装置 2bから取り出されて表示装置 4に挿着され、表示 装置 4によって記録したデータを読み出される構成を有する。外部装置 2bと表示装 置 4との間のデータの受け渡しをコンパクトフラッシュ(登録商標)メモリ等の携帯型記 録媒体 5によって行うことで、外部装置 2bと表示装置 4との間が有線接続された場合 と異なり、被検体 1が体腔内の撮影中に自由に動作することが可能となる。
[0056] 受信装置 2は、カプセル型内視鏡 3から無線送信された体腔内画像データを受信 する機能を有する。図 2は、受信装置 2の構成を模式的に示すブロック図である。図 2 に示すように、受信装置 2は、被検体 1によって着用可能な形状を有し、受信用アン テナ A1— Anを備えた受信ジャケット 2aと、受信された無線信号の処理等を行う外部 装置 2bとを備える。
[0057] 外部装置 2bは、カプセル型内視鏡 3から送信された無線信号の処理を行う機能を 有する。具体的には、外部装置 2bは、図 2に示すように、受信用アンテナ A1— Anに よって受信された無線信号を復調する無線受信手段としての RF受信ユニット 11と、 復調された画像データに必要な処理を行う処理手段としての画像処理ユニット 12と、 画像処理が施された画像データを記録するための記憶手段としての記憶ユニット 13 とを備える。なお、記憶ユニット 13を介して携帯型記録媒体 5に画像データが記録さ れる。
[0058] 次に、カプセル型内視鏡 3について説明する。図 3は、カプセル型内視鏡 3の構成 を模式的に示すブロック図である。図 3に示すように、カプセル型内視鏡 3は、被検体 1の内部を撮影する際に撮像領域を照射するための照明手段としての LED19と、 L ED19の駆動状態を制御する LED駆動回路 20と、 LED19によって照射された領域 からの反射光像の撮像を行って画像データを生成する光電変換手段または撮像手 段としての CCD21とを備える。また、カプセル型内視鏡 3は、 CCD21の駆動状態を 制御する CCD駆動回路 22と、 CCD21によって撮像された画像データを変調して R F信号を生成する RF送信ユニット 23と、 RF送信ユニット 23から出力された RF信号 を無線送信する無線手段としての送信アンテナ部 24と、 LED駆動回路 20、 CCD駆 動回路 22および RF送信ユニット 23の動作を制御する動作制御手段としてのシステ ムコントロール回路 32とを備える。
[0059] これらの機構を備えることにより、カプセル型内視鏡 3は、被検体 1内に導入されて いる間、 LED19によって照明された被検部位の画像情報を CCD21によって取得す る。そして、取得された画像情報は、 RF送信ユニット 23において RF信号に変換され た後、送信アンテナ部 24を介して外部に送信される。
[0060] また、カプセル型内視鏡 3は、各々所定の機能を実行する機能実行手段としての L ED駆動回路 20、 CCD駆動回路 22、 RF送信ユニット 23等のカプセル型内視鏡 3の 内部の構成要素を駆動するための電源手段としての電池 100とを備える。ここで、シ ステムコントロール回路 32は、 LED駆動回路 20、 CCD駆動回路 22、 RF送信ュ-ッ ト当の動作状態、つまり LED19の発光期間や、 CCD21のフレームレート、 RF信号 送出のタイミング等、機能実行手段の動作をあらかじめ定められた内容に基づいて 制御するものである。さらに、カプセル型内視鏡 3は、温度センサ部 33と、温度セン サ部 33で検出された温度に基づいて LED駆動回路 20、 CCD駆動回路 22、システ ムコントロール回路 32等の駆動状態を制御する駆動制御手段としての駆動制御部 3 4とを備える。なお、駆動制御部 34は、電池 100から供給される駆動電力を機能実行 手段としての LED駆動回路 20、 CCD駆動回路 22、システムコントロール回路 32等 の各構成要素に対して分配する機能も有する。
[0061] 次に、カプセル型内視鏡 3内に備わる温度センサ部 33および駆動制御部 34につ いて説明する。図 3にも示すように、本実施例 1においてカプセル型内視鏡 3は、シス テムコントロール回路 32と、電池 100との間に駆動制御部 34が配置された構成を有 し、駆動制御部 34は、温度センサ部 33からの出力信号に基づいてカプセル型内視 鏡 3内の構成要素の駆動状態を制御する構成を有する。
[0062] 温度センサ部 33は、カプセル型内視鏡 3の周囲環境の温度によって変動するカプ セル型内視鏡 3内部の温度を検出するためのものである。温度センサ部 33は、例え ば、所定時間間隔で温度検出を繰り返して温度データを駆動制御部 34に出力する 機能を有する。閾値温度は、カプセル型内視鏡 3が被検体 1内に導入された際に温 度センサ部 33にて検出される温度以下の値であって、かつ力かる温度近傍の値とす ることが好ましぐさらには、被検体 1外部の環境の温度、例えば室温程度の温度より も高い温度とすることが好ましい。具体的には、例えば被検体 1が人体の場合、閾値 温度を体温よりも若干低い 34. 5°C程度に設定することが好ましい。
[0063] 駆動制御部 34は、温度センサ部 33から出力される信号に基づいてカプセル型内 視鏡 3の構成要素の駆動状態を制御する。具体的には、例えば温度センサ部 33で 検出された温度が閾値以上の場合にカプセル型内視鏡 3内の構成要素がオン状態 となるよう制御を行うと共に、温度が閾値未満となった場合に構成要素がオフ状態と なるよう制御する機能を有する。なお、図 3に示す構成では、温度センサ部 33と駆動 制御部 34とを別個独立のものとして表示している力 後述するように一体的に形成 することとしても良い。
[0064] 次に、本実施例 1におけるカプセル型内視鏡 3の動作について説明する。図 4は、 本実施例 1におけるカプセル型内視鏡 3の動作を説明するためのフローチャートであ り、以下、図 4を適宜参照しつつ説明を行う。なお、図 4のフローチャートにおけるスタ ートの時点では、カプセル型内視鏡 3内部の構成要素はオフ状態に維持されている ものとする。
[0065] まず、温度センサ部 33による温度計測が行われ、温度センサ部 33は、計測によつ て得られた温度情報を駆動制御部 34に出力する (ステップ S101)。そして、駆動制 御部 34は、温度計測の結果得られた温度が閾値温度以上の値であるか否かを判定 する (ステップ S102)。計測の結果得られた温度が閾値未満であると判定された場合 には再びステップ S 101に戻って上記の動作を繰り返す。
[0066] 温度計測の結果得られた温度が閾値以上であると判定された場合には、駆動制御 部 34は、電池 100に蓄積された電力をシステムコントロール回路 32等のカプセル型 内視鏡 3内部の構成要素に供給し、各構成要素の駆動が開始される (ステップ S103 ) oすなわち、駆動制御部 34は、温度が閾値以上であることによってカプセル型内視 鏡 3が被検体 1内に導入されたと判断し、力かる判断に基づいて各構成要素に対し て電池 100に蓄積された電力を供給する。
[0067] その後、 LED19によって被検体 1内を照明する照射光が出力され、かかる照射光 の戻り光に基づいて CCD21による撮像動作が行われる (ステップ S104)。そして、 C CDによって得られた画像データは RF送信ユニット 23に送られ、所定の変調動作等 が行われた後に送信アンテナ部 24を介して画像データは外部に送信される (ステツ プ S105)。送信された画像データは、受信ジャケット 2aに備わる受信機構によって受 信され、後に携帯型記録媒体 5を介して表示装置 4に供給され、表示装置 4の画面 上に被検体内画像として表示される。
[0068] その後、再び温度センサ部 33によって温度計測が行われ、温度データが駆動制御 部 34に出力される (ステップ S106)。そして、駆動制御部 34は、温度計測によって 得られた温度が閾値未満である力否かの判定を行う(ステップ S 107)。温度が閾値 未満ではないと判定された場合には、カプセル型内視鏡 3が被検体 1内に依然として 留まっていると考えられることから再びステップ S104に戻ってステップ S104— S106 の動作を繰り返す。
[0069] 温度が閾値未満であると判定された場合には、駆動制御部 34は、カプセル型内視 鏡 3内の構成要素に対する電力供給を停止し、構成要素の駆動を停止させる (ステツ プ S108)。閾値温度は被検体 1の体温よりも低い温度に設定されていることから、計 測の結果得られた温度が閾値温度を下回った場合には、カプセル型内視鏡 3が被 検体 1の外部に排出されたものと判断されるためである。以上で、本実施例 1におけ るカプセル型内視鏡 3の動作は終了する。
[0070] 以上のように、本実施例 1では、カプセル型内視鏡 3内に備わる温度センサによつ て計測される温度に基づいてカプセル型内視鏡 3の駆動開始および駆動停止を制 御する構成を有する。力かる構成としたことによる利点について以下で説明する。
[0071] まず、計測される温度に基づ!/ヽて駆動状態を制御することで、被検体 1の外部で力 プセル型内視鏡 3が動作を開始することを防止することが可能である。温度センサ部 33によって計測される温度が閾値温度を上回るのは、カプセル型内視鏡 3が被検体 1内部に導入されている間のみである。このため、温度センサ部 33によって温度を計 測することでカプセル型内視鏡 3が被検体 1内部に導入されたカゝ否カゝを直接検出す ることが可能となり、温度に基づいて駆動状態を制御することで、被検体 1内に導入さ れている間のみカプセル型内視鏡 3を駆動させることが可能である。そして、被検体 1 外部での駆動を防止することで、診断等に用いることのできない、被検体 1外部を撮 像した画像データが取得されることを防ぐと共に、無駄に電力を消費することを回避 することが可能である。
[0072] また、本実施例 1にかかる無線型被検体内情報取得システムは、簡易な構成で被 検体 1内のみで動作する機構を形成することが可能という利点を有する。すなわち、 温度変化に対して物理的に形状が変化する形状記憶合金部材、バイメタル部材等 を用いることで、簡易かつ温度変化に即応可能な構造を実現することができる。また 、力かる部材をスイッチング機構内に備えることで、温度センサ部 33と駆動制御部 34 とを一体化した構成を実現することができると共に、電力を供給することなく温度セン サ部 33、駆動制御部 34を駆動させることが可能である。
[0073] 次に、本実施例 1の例 1について説明する。本実施例 1の例 1では、カプセル型内視 鏡 3内に温度センサ部 33と駆動制御部 34とを一体的に形成した温度センサ ·駆動制 御部 35を備えた構成を有することを特徴とする。図 5は、本実施例 1の例 1における 温度センサ,駆動制御部 35の構造を示す模式図である。なお、温度センサ'駆動制 御部 35以外の構成要素については、実施例 1におけるカプセル型内視鏡 3と同様で ある。
[0074] 本実施例 1における温度センサ ·駆動制御部 35は、図 5に示すように、台座 36上に 配置された固定部材 37に固着した状態で配置された温度変形部材 38と、電池 100 と電気的に接続された第 1接点 39と、システムコントロール回路 32等の構成要素と電 気的に接続された第 2接点 40とを備える。また、台座 36と温度変形部材 38との間に は、温度変形部材 38に対して引っ張り応力を印加する引っ張り応力供給部材 41、 4 2が配置されている。
[0075] 温度変形部材 38は、上記した閾値温度を臨界点温度とし、かかる臨界温度以上で 、記憶した形状を回復する形状記憶合金または形状記憶榭脂を備える。また、形状 記憶榭脂を備えた構成の場合には、温度変形部材 38は、少なくとも第 1接点 39、第 2接点 40と対向する面上に導電層を備え、力かる導電層によって、形状回復時に第 1接点 39と第 2接点 40との間を電気的に接続する構成を有する。また、引っ張り応力 供給部材 41、 42は、弾性パネ等の弾性部材によって形成され、温度変形部材 38に 対して台座 36側に向けた引つ張り応力を印加するためのものである。
[0076] 図 6— 1は、閾値温度以上の温度における温度センサ ·駆動制御部 35の状態を示 す模式図である。温度変形部材 38は、あら力じめ臨界点温度以上の温度において 第 1接点 39および第 2接点 40に接触する U字形状に加工されたのち、温度を臨界 点以下まで下げて、図 5で示したような棒状の形状に整形されている。このため、再 び閾値温度(=臨界点温度)以上の温度条件下にさらされることによって元来の形状 に戻り、温度変形部材 38は、図 6— 1に示すように第 1接点 39と第 2接点 40とに接触 した形状となる。力かる構造を採用することによって、カプセル型内視鏡が被検体 1 内に導入されて温度センサ ·駆動制御部 35の温度が閾値温度以上となった際に第 1 接点 39と第 2接点 40とが電気的に接続される。そして、第 1接点 39は電池 100に、 第 2接点 40はカプセル型内視鏡内の各構成要素にそれぞれ電気的に接続されてい ることから、閾値温度以上の温度となることで、カプセル型内視鏡内の各構成要素に 対して電池 100から駆動電力が供給され、駆動が開始されることとなる。
[0077] また、引っ張り応力供給部材 41、 42を備えることで、一度閾値温度以上の温度に 到達して駆動電力の供給が開始された後、再び温度が閾値温度を下回った際に電 力供給を停止することが可能である。すなわち、温度変形部材 38の温度が閾値以下 となることで、温度変形部材 38を構成する形状記憶合金 (形状記憶榭脂)内部で軟 らかいマルテンサイト相が発生することから、図 6— 2に示すように、引っ張り応力供給 部材 41、 42から供給される応力が優勢となる。この結果、温度変形部材 38は図 5で 示した棒状の形状に再び戻り、第 1接点 39と第 2接点 40との間の電気的接続は解除 されることとなり、電池 100からの電力供給が停止して各構成要素の駆動が停止する
[0078] 以上説明したように、実施例 1の例 1では、閾値温度と等しい臨界温度を有する形 状記憶合金または形状記憶榭脂を含む温度変形部材 38を備えることで、温度に応 じた駆動状態の制御を可能としている。なお、本実施例 1において、温度変形部材 3 8の形状を工夫することによって、引っ張り応力供給部材 41、 42を省いた構造とする ことも可能である。すなわち、他の領域と比較して温度変形部材 38の両端部の重さ を増した構成とすることで、閾値温度以下の温度では、両端部の重みにより温度変形 部材 38が第 1接点 39および第 2接点 40から離れるよう構成することが可能である。
[0079] 次に、本実施例 1の例 2について説明する。実施例 1の例 2では、上記実施例 1の 例 1と同様に温度センサ部 33と駆動制御部 34とを一体的に形成した温度センサ ·駆 動制御部を備える。また、例 1の場合と同様に、温度センサ部 33、駆動制御部 34以 外の構成については、実施例 1にかかる無線型被検体内情報取得システムと同様の ものとする。
[0080] 図 7は、実施例 1の例 2における温度センサ ·駆動制御部 43の構成を示す模式図 である。なお、図 7において、例 1と共通する部分については、共通の名称'符号を付 すこととし、具体的構成、作用等についても例 1と同様のものとする。
[0081] 温度センサ ·駆動制御部 43は、図 7に示すように、台座 36と、台座 36上に固定され た固定部材 37と、固定部材 37上に形成されたバイメタル部材 44とを備える。また、 温度センサ.駆動制御部 43は、電池 100に対して電気的に接続された第 1接点 39と 、カプセル型内視鏡内の各構成要素に対して電気的に接続された第 2接点 40とを 備える。
[0082] バイメタル部材 44は、高い熱膨張率を有する第 1金属部材 45と、第 1金属部材 45 よりも低い熱膨張率を有する第 2金属部材 46とを貼り合わせて形成される。本実施例 2では、閾値温度以上でバイメタル部材 44の両端部が第 1接点 39、第 2接点 40に近 接するよう湾曲する機能を持たせる必要があるため、バイメタル部材 44は、第 1接点 39、第 2接点 40が位置する側に低熱膨張率の第 2金属部材 46を備えた構成を有す る。
[0083] 次に、例 2における温度センサ ·駆動制御部 43の動作について説明する。図 8—1 は、バイメタル部材 44が閾値温度以上の温度にまで昇温された際の温度センサ ·駆 動制御部 43の状態を示す模式図である。バイメタル部材 44は、第 1金属部材 45が 高い熱膨張率を有する一方、第 2金属部材 46は第 1金属部材 45よりも低い熱膨張 率を有する。従って、バイメタル部材 44が昇温された場合には、第 1金属部材 45の 体積は著しく膨張するのに対し、第 2金属部材 46の体積はそれほど膨張しない。従 つて、図 8— 1の矢印で示すように、バイメタル部材 44は、第 1金属部材 45には横方 向に大きな広がり応力が生じる一方、第 2金属部材 46には横方向に小さな応力が生 じる。
[0084] この結果、バイメタル部材 44は、図 7で示すように低温時に棒状形状だったものが 、下向きに凸形状を有するよう湾曲した形状に変化する。そして、湾曲することによつ てノ ィメタル部材 44の両端部は第 1接点 39および第 2接点 40に接近し、閾値温度 に達した時点で第 1接点 39および第 2接点 40に接触し、第 1接点 39と第 2接点 40と が電気的に接続され、各構成要素に対して駆動電力の供給が行われる。温度セン サ'駆動制御部 43が力かる動作を行うことで、低温状態力も閾値温度以上にバイメタ ル部材 44の温度が上昇した場合に、駆動電力の供給を開始することが可能となる。
[0085] 一方、一度昇温されたバイメタル部材 44が再び閾値温度以下の温度まで冷却され た場合について、図 8— 2を参照して説明する。力かる場合には、ノ ィメタル部材 44を 構成する第 1金属部材 45、第 2金属部材 46のそれぞれが収縮するよう、圧縮方向に 応力が生じる。そして、この場合も熱膨張率の違いにより、第 1金属部材 45に生じる 圧縮応力は、図 8— 2に示すように第 2金属部材 46に生じる圧縮応力よりも小さなもの となる。
[0086] 従って、バイメタル部材 44の形状は、昇温時の湾曲した状態から、曲率半径が大き くなるよう、すなわちなだらかな湾曲形状に移行し、最終的には昇温前の棒状の形状 に戻る。この結果、バイメタル部材 44の両端部は第 1接点 39および第 2接点 40の双 方から離れ、第 1接点 39と第 2接点 40との間の電気的接続が失われ、各構成要素に 対する電力供給が絶たれることとなる。温度センサ ·駆動制御部 43が力かる動作を行 うことで、高温状態から閾値温度以下にバイメタル部材 44の温度が低下した場合に 、電力供給を停止することが可能となる。
[0087] 以上、実施例 1の例 1、例 2について説明した力 いずれの例でも、簡易な構成で 温度センサ部 33および駆動制御部 34の機能を果たす機構を実現することが可能で ある。すなわち、例 1, 2は、それぞれ温度変化に対して物理的形状が変化する部材 を用いてスイッチング機構を実現していることから、複雑な電子回路等を必要とせず に温度センサ部 33および駆動制御部 34を構成することが可能である。また、温度変 化に対して物理的に形状が変化する部材を採用したことから、温度センサ部 33およ び駆動制御部 34の動作に電力を必要としない構成とすることが可能であり、カプセ ル型内視鏡 3内の消費電力の低減に資することとなる。
実施例 2
[0088] 次に、実施例 2にかかる無線型被検体内情報取得システムについて説明する。本 実施例 2にかかる無線型被検体内情報取得システムは、被検体内導入装置たるカブ セル型内視鏡内に温度センサ部および駆動制御部を備えると共に、少なくとも温度 センサ部を覆う低熱伝導部材を備えた構成を有する。
[0089] 図 9は、実施例 2にかかる無線型被検体内情報取得システムを構成するカプセル 型内視鏡 47の構成を模式的に示すブロック図である。なお、本実施例 2において、 無線型被検体内情報取得システムの他の構成要素たる受信装置、表示装置および 携帯型記録媒体は、以下で特に言及しない限り実施例 1のものと同様の構成を有し 、同様の機能を果たすものとする。
[0090] 実施例 2におけるカプセル型内視鏡 47は、図 9に示すように、被検体内を照明する ための LED19と、 LED19の駆動を制御する LED駆動回路 20と、撮像動作を行う C CD21と、 CCD21の駆動を制御する CCD駆動回路 22と、 CCDで撮像した画像デ ータの変調等を行う RF送信ユニット 23と、送信動作を行う送信アンテナ部 24と、電 池 100とを備える。
[0091] また、カプセル型内視鏡 47は、 LED駆動回路 20、 CCD駆動回路 22、 RF送信ュ ニット 23に対してこれらの動作状態に関する制御を及ぼすシステムコントロール回路 32とを備える。さらに、熱伝導阻害部材 48に覆われた温度センサ部 33と、温度セン サ部カも出力される温度データに基づき電池 100からの電力供給を制御する駆動制 御部 34とを備える。
[0092] 熱伝導阻害部材 48は、周囲環境に存在する熱が温度センサ部 33に伝わるのを阻 害するためのものである。具体的には、熱伝導阻害部材 48は、周囲環境の熱の伝達 を防止するものではなぐある程度の速度で熱を伝達する部材によって構成される。 力かる熱伝導阻害部材 48を配置することで、温度センサ部 33で検出される温度は、 周囲環境の温度変化、例えばカプセル型内視鏡が被検体 1内に導入されたことによ る温度変化の影響を、所定時間経過後に検出することとなる。すなわち、熱伝導阻害 部材 48に覆われることによって、カプセル型内視鏡 47が被検体 1内に導入された直 後には温度センサ部 33で検出される温度は閾値温度未満の値を維持する。そして、 時間の経過に伴い熱伝導阻害部材 48を経由して温度センサ部 33に対して徐々に 熱が伝えられることで、ある程度時間が経過して初めて閾値温度以上の値に変化す ることとなる。
[0093] 熱伝導阻害部材 48によって温度センサ部 33を覆う構成としたことによる利点につ いて説明する。通常のカプセル型内視鏡は、小型形状を有すると共に構成部材につ Vヽても熱伝導性が良好なものを用いて 、るため、例えば被検体 1内に導入されると、 カプセル型内視鏡内の温度は、被検体 1内に導入した直後に被検体 1の体温とほぼ 同等の温度となる。従って、カプセル型内視鏡内に温度センサ部を設け、体温と同じ 温度もしくは体温よりも若干低い温度を閾値温度として駆動状態を制御することとし た場合には、被検体 1内にカプセル型内視鏡を導入した直後に駆動が開始され、迅 速な撮像等を行うことが可能である。
[0094] し力しながら、例えば小腸等のように、カプセル型内視鏡が被検体 1内に導入され て力 到達するまで一定の時間を必要とするような場所に位置する臓器について画 像データを取得する場合には、撮像部位よりも手前に位置する部位の画像データは 不要である。このように、ある特定の部位の画像データを必要とする場合には、力か る特定部位に到達するまではカプセル型内視鏡内の各構成要素に駆動電力が供給 されるのを防止することが要請される。
[0095] かかる要請に基づ!/、て、本実施例 2では、温度センサ部 33を熱伝導阻害部材 48 で覆うことによって温度センサ部 33で検出する温度が閾値温度以上に到達するまで に一定時間を必要とする構成とし、被検体 1内に導入直後にカプセル型内視鏡 47内 に備わる各構成要素が駆動を開始することを防止している。そして、熱伝導阻害部材 48の構造を工夫して閾値温度に到達するまでに要する時間を調整することで、画像 データが必要な所定の被検部位に到達した時点で初めて駆動を開始させることがで きる。 [0096] カゝかる構成を採用することで、カプセル型内視鏡 47は、被検体 1の外部のみならず 、被検体 1内部においても不要な画像データの取得を防止することが可能となる。従 つて、さらに効果的に不要な画像データの取得を防止し、駆動電力を浪費することを 抑制することが可能である。
[0097] なお、図 9に示す構成では、熱伝導阻害部材 48は、温度センサ部 33のみを覆う構 造としている力 力かる形態に限定する必要はなぐ例えば、カプセル型内視鏡 47の 各構成要素を内部に収容するカプセル筐体を、熱伝導阻害機能を有する部材によ つて構成することとしてもよい。また、カプセル筐体を通常の材料で形成し、カプセル 筐体外部を熱伝導阻害機能を有する部材によって覆うこととしてもよい。
[0098] また、熱伝導阻害部材 48が覆う部分を、温度センサ部 33の一部のみとしてもよ 、。
すなわち、実際に温度を検出する部分において、周囲環境力 の熱伝導が阻害され ていれば良ぐ例えば、図 5の構成における温度変形部材 38のみを熱伝導阻害部 材 48によって覆う構成としても良い。
[0099] また、熱伝導阻害部材 48を構成する部材は、大きく分けて 2種類のものを用いるこ とが可能である。まず、熱伝導係数の小さい部材、例えば発泡スチロール等の部材 を用いて熱伝導阻害部材 48を形成することが可能である。力かる部材を用いること で、温度センサ部 33に対する単位時間あたりの熱伝導量を低減し、温度センサ部 3 3が周囲環境温度を検出するまで一定の時間を要するよう構成することができる。
[0100] 他の例としては、周囲環境の温度に対して低い温度に保持された部材を熱伝導阻 害部材 48として用いることが可能である。すなわち、周囲の温度よりも低い温度に保 持された部材を熱伝導阻害部材 48として用いた場合には、周囲力 温度センサ部 3 3に対して熱が伝達される際に、伝達される熱が熱伝導阻害部材 48自身の温度上 昇に使用され、熱伝導阻害部材 48の温度が所定の温度に達した後に温度センサ部 33の温度が上昇することとなる。従って、周囲環境の温度が閾値温度以上の温度に 変化した場合であっても、かかる変化から一定時間が経過して力も温度センサ部 33 で閾値温度以上の温度が検出されることとなり、周囲の温度よりも低い温度に保持さ れた部材は熱伝導阻害部材 48として機能することが可能である。
[0101] 低 、温度に保持された部材を熱伝導阻害部材 48として用いた具体例としては、力 プセル型内視鏡を被検体 1内に導入する際に、例えば 20°C程度の水道水と一緒に 導入する構成が挙げられる。この場合、一緒に導入される水道水は少なくとも被検体 1内部におけるカプセル型内視鏡の周囲環境の温度よりも低い温度であり、力かる水 道水がカプセル型内視鏡の周囲に存在することで、周囲環境力 カプセル型内視鏡 に対する熱伝導が阻害され、被検体 1内にカプセル型内視鏡が導入されてから一定 時間が経過するまで、カプセル型内視鏡による画像データの取得および取得した画 像データの無線送信が開始されることを防ぐことが可能である。
[0102] 以上、実施例 1, 2を用いて本発明を説明してきた力 本発明は上記のものに限定 されず、当業者であれば様々な実施例、変形例および応用例に想到することが可能 である。例えば、実施例 1および実施例 2では、カプセル型内視鏡力LED、 CCD等 を備えることによって被検体 1内部の画像を撮像する構成としている。しかしながら、 被検体内に導入される被検体内導入装置は、かかる構成に限定されるものではなく
、たとえば温度情報や PH情報などの他の被検体内情報を取得するものとしても良い
。また、被検体内導入装置が振動子を備える構成として、被検体 1内の超音波画像 を取得する構成としても良い。さらに、これらの被検体内情報の中から複数の情報を 取得する構成としても良い。
[0103] 受信装置 2は、カプセル型内視鏡から出力される無線信号の受信のみを行う構成 に加え、カプセル型内視鏡へ電力を供給する給電用信号を送出するような構成とし て、カプセル型内視鏡内に受信した給電用信号力 駆動用電力を再生する構成とし ても良い。さらに、カプセル型内視鏡内部に記憶部を設け、被検体 1外部に排出され た後に記憶部から情報を取り出す構成としても良!、。
[0104] また、閾値温度は、必ずしも被検体 1の体温よりも低!、温度に設定する必要はな ヽ 。例えば、被検体 1内に存在する特定の疾患部を撮像する目的でシステムが構成さ れて 、る場合、力かる特定の疾患部が被検体 1内の他の領域よりも高 、温度を有す るのであれば、力かる温度に対応した温度を閾値温度とすることも有効である。
[0105] さらに、実施例 1, 2では、駆動制御部 34を介して LED19等の各構成要素に対し て駆動電力が供給される構成としている。し力しながら、各構成要素に対して直接電 力が供給される構成としても良い。また、駆動制御部によって駆動を制御されるのは 、 RF送信ユニット 23のみ等、カプセル型内視鏡内の構成要素の一部のみとしても良 い。また、実施例 1, 2および例 1, 2では、駆動制御部はカプセル型内視鏡が被検体 内に導入される前および被検体カゝら排出された後のいずれについても各構成要素 の駆動を停止する構成とした力 V、ずれか一方の場合のみ停止制御を行うこととして も良い。いずれか一方のみ停止制御する場合であっても、従来と比較して無駄な画 像データの取得を回避し、消費電力を低減することが可能なためである。
実施例 3
[0106] 図 10は、図 1に示したカプセル型内視鏡の概略構成を示す断面図である。なお、 以下の図において、実施例 1に示した図と同様の構成部分に関しては、説明の都合 上、同一符号を付記する。
[0107] カプセル型内視鏡 3は、たとえば図 10の断面図に示すように、両端が球形の略円 筒形のカプセル力 なり、カプセル型内視鏡の前面側に設けられた透明なドーム 11 laと、体腔内を撮像して画像データを得る情報取得手段乃至撮像手段としての撮像 機構部と、この画像データを含む各種情報を送信する無線手段としての無線機構部 などカゝら構成されている。被検体内に導入される前のカプセル型内視鏡 3において は、ドーム 11 laを囲繞するように、ドーム保護用のキャップ 131が装着されている。こ のキャップ 131は、ドーム 11 laに対して着脱可能に設けられており、被検者がカプセ ル型内視鏡 3を被検体内に導入する時に、このキャップ 131をカプセル型内視鏡 3か らはずしてロカも飲み込むことで体腔内の撮像を可能にする。
[0108] 撮像機構部は、被検体 1の体腔内を照射する複数の発光素子 (LED)などの照明 装置 19と、その反射光である体腔内の画像を撮像する電荷結合素子 (CCD)や CM OS型の撮像カメラなどの撮像装置 21と、この撮像装置 21へ像を結像させる光学系 部品 114と力 構成されている。照明装置 19は、前面のドーム 11 laを通して体腔の 内部部分を照明しており、撮像装置 21は、その反射光を取り込んで体腔内部の被検 部位像を撮像している。
[0109] 無線機構部は、この撮像された画像信号を RF信号に変調して送信する無線装置( RF送信ユニット) 23と、 RF信号の電波を被検体 1外部に放出する送信用アンテナ( 送信アンテナ部) 24とから構成されて、後面のドーム 111b内に設けられている。また 、カプセル型内視鏡 3は、 LED19、 CCD21、無線装置 23、送信用アンテナ 24など の内部の電気部品に電力を供給する酸化銀電池などの電源装置 (電池) 100を備え ている。さらに、カプセル型内視鏡 3では、たとえば受信機と受信用アンテナを備えれ ば、外部装置 2bからの各種制御信号に基づいて、上述した LEDや CCDなどの駆動 を制御することも可能である。
[0110] 図 11は、本発明に力かるカプセル型内視鏡における電気系統の実施例 3の構成を 示す構成図である。ところで、通常の被検体内導入装置 3は、 LED力もなる照明装 置 19 (照明手段)と、撮像カメラからなる撮像装置 21と、 RF信号の電波を通信する無 線装置 23と、これらの電気部品に電力を供給する電池からなる電源装置 100と、電 源装置 100と各電気部品間に設けられたリードスィッチ 119とから構成されている。な お、このリードスィッチ 119は、使用前のカプセル型内視鏡 3を把持するパッケージに 設けられた磁性部材 (磁石) 130からの抑制または開放によってオン Zオフしている。
[0111] この構成において、リードスィッチ 119は、たとえば磁石 130の離隔または接近によ つてオン Zオフするように構成されており、このリードスィッチ 119は、ノ ッケージに把 持された初期状態から、このリードスィッチ 119の近傍に設けられた磁石 130を離隔 することでオン状態になり、一度オン状態になるとこの状態を保持することで、電池 10 0から電気部品の各部位に電力が連続的に供給されることとなる。なお、このリードス イッチ 119は、磁石 130の接近または離隔によってオン/オフするように構成すること も可能である。
[0112] これに対して、図 11に示したカプセル型内視鏡 3は、無線装置 23をリードスィッチ 1 19とサブスィッチ 120を介して電池 100と接続させるとともに、被写体とカプセル型内 視鏡 3との距離を検出する検出手段としての距離センサ 121と、このサブスィッチ 12 0をオン Zオフ制御する供給制御手段としての供給制御部 122およびラッチ回路 12 3を設けて構成される。すなわち、この実施例では、リードスィッチ 119のみがオン状 態になっても(サブスィッチ 120はオフ状態)、無線装置 23には電力供給されないの で、無線装置 23は、パワーオンせず、撮像装置 21が撮像した画像データの送信を 行うことができな 、ように構成されて!、る。
[0113] 距離センサ 121および供給制御部 122は、リードスィッチ 119がオン状態になると、 電源装置 100から電力の供給が行われるように接続されており、距離センサ 121が 被写体とカプセル型内視鏡 3との距離を検出すると、供給制御部 122は、検出された 距離に基づ!/、て、サブスィッチ 120をオン状態に動作制御する。
[0114] すなわち、距離センサ 121は、一般的な距離検出用のセンサで、リードスィッチ 11 9がオン状態になると、たとえば赤外線をドーム 11 la前方に出射して、被写体から反 射してくる赤外線の到達時間から、ドーム 11 la前方の被写体とカプセル型内視鏡 3 との距離を検出している。
[0115] 供給制御部 122は、リードスィッチ 119がオン状態になると、電源装置 100から電 力の供給が行われるように接続されており、距離センサ 121で被写体との距離が検 出されると、検出された距離が所定値以下 (カプセル型内視鏡 3が体腔内に導入さ れたという情報)の場合に、カプセル型内視鏡 3が被検体内に飲み込まれたと判断し 、制御信号を出力してラッチ回路 123を動作制御して、サブスィッチ 120をオン状態 に動作制御する。
[0116] ラッチ回路 123は、たとえば D型フリップフロップなどで構成されており、供給制御 部 122からー且制御信号が入力すると、サブスィッチ 120をオン状態にし、それ以降 はこのオン状態を保持して、無線装置 23の電力供給を維持させて 、る。
[0117] 次に、この無線型被検体内情報取得装置の電力供給動作を、図 12のフローチヤ ートを用いて説明する。図 12において、カプセル型内視鏡 3がパッケージ力も取り出 されると、カプセル型内視鏡 3が磁石 130からの磁力の影響を受けなくなり、リードス イッチ 119がオン状態になる (ステップ 201 )。このリードスィッチ 119がオンになると、 無線装置 23を除く各電気部品 (この実施例では LED19、撮像装置 21、距離センサ 121および供給制御部 122)に電力が供給されて (ステップ 202)、撮像装置 21が撮 像動作を開始し、距離センサ 121は、前方の被写体との距離を検出して、その距離 データを供給制御部 122に出力する (ステップ 203)。
[0118] 供給制御部 122は、この距離データを取り込むと、この検出された距離が所定値以 下かどうか判断する (ステップ 204)。ここで、この距離が所定値以下の場合には、供 給制御部 122は、カプセル型内視鏡 3が体腔内に入ったと判断して、サブスィッチ 1 20をオン状態に制御する(ステップ 205)。これによつて、電池 100から無線装置 23 に電力が供給される (ステップ 206)。この電力供給により、無線装置 23は、パワーォ ンし、 LED19によって照明され、かつ撮像装置 21によって撮像された体腔内の画像 データを外部へ送信することが可能になる。
[0119] このように、この実施例では、距離センサで検出された距離データに基づき、カプセ ル型内視鏡が体腔内に存在するかどうか検出して無線装置への電力供給を判断す るので、無線装置への電力供給のタイミングを、カプセル型内視鏡が被検体内に確 実に導入された後に行うことでき、これによつて電力消費を削減して被検体内での画 像収集および画像送信を的確に行うことができる。
[0120] ところで、上述した実施例 3の被検体内導入装置では、被検者の口内に導入された 瞬間にサブスィッチがオン状態になってしまうことが考えられ、このように飲み込んだ 瞬間ではなぐ確実に検査対象の臓器に導入された状態で無線装置 15に電力供給 を行いたい場合がある。
[0121] 図 13は、このような要望に応じて案出された実施例 3の他の構成を示すブロック図 である。図 13において、図 11と異なる点は、供給制御部 122にタイマ 124を接続さ せて、被写体との距離が所定値以下になつてから、一定時間後に無線装置 23に電 力を供給して、画像データの送信を行う点である。
[0122] たとえば、カプセル型内視鏡が胃に導入されてから画像データの送信を始める場 合には、検出される距離が所定値以下になって力もカプセル型内視鏡 3が胃に到達 するまでの一定時間を、タイマ 124に予めセットしておき、供給制御部 122は、取り込 んだ距離が所定値以下になると、タイマ 124を起動させ、一定時間経過後にラッチ回 路 123を制御してサブスィッチ 120をオン状態にさせる。これによつて、カプセル型内 視鏡 3が確実に検査対象の胃に導入された時点で、電池 100から無線装置 23に電 力が供給され、 LED19によって照明され、かつ撮像装置 21によって撮像された胃 内部の画像データの外部への送信が行われることになる。
[0123] このように、この実施例では、カプセル型内視鏡が検査対象に導入された時点で、 無線装置に電力供給を行うので、さらに電力消費を削減して、被検体内での検査対 象の画像収集および画像送信を的確に行うことができる。
実施例 4 [0124] なお、実施例 3で用いた距離センサは、構成が複雑で、高価であるので、カプセル 型内視鏡に用いることが難しい場合が想定される。そこで、この実施例では、光量セ ンサを用いてドーム 11 la前方の光量を検出して、この光量と距離との相関関係から 、被写体までの距離を検出して、無線装置 23に電力供給を行う被検体内導入装置 を提供する。
[0125] すなわち、図 14の反射光の光量と各被写体の位置に示すように、キャップ装着時( キャップ内壁との距離)、キャップ離脱時 (被検体外の被写体との距離)、被検体内導 入時 (体腔内との距離)、被検体外と被検体内の温度差に伴ってドーム 11 la内壁が くもる状態 (ハレーション)の時 (ドーム内壁との距離)に、被写体からの反射光の光量 力 図 14に示すように変化する相関関係にあるので、この光量と被写体の距離との 相関関係から、被写体までの距離を検出することができる。
[0126] 図 15は、本発明にカゝかるカプセル型内視鏡における電気系統の実施例 4の構成を 示す構成図である。この実施例では、光量センサ 125を設けて、 LED19によって照 明された被写体力ゝらの反射光の光量を検出するものである。この場合、カプセル型 内視鏡が被検体外にある場合には、 LED19の照明光が被写体に届きにくぐ検出さ れる光量は少なくなり、カプセル型内視鏡が被検体内にある場合には、被写体であ る体腔が密着した状態にあり、検出される光量は多くなる。
[0127] そこで、この実施例では、この光量センサ 125に接続された供給制御部 122に、予 め図 14に示した光量と距離との相関関係を設定しておく。そして、供給制御部 122 は、この関係に基づき、入力する光量のデータ力 距離を検出し、被検体 1の内部( 体腔内)と外部 (室内)の被写体との距離が所定値以下になると、被検体内にカプセ ル型内視鏡 3が導入されたと判断してラッチ回路 123を制御して、サブスィッチ 120 をオン状態に動作制御する。
[0128] このように、この実施例では、光量と距離との相関関係から、被写体との距離を検出 し、この検出された距離データに基づき、カプセル型内視鏡が体腔内に存在するか どうか検出して無線装置への電力供給を判断するので、無線装置への電力供給のタ イミングを、カプセル型内視鏡が被検体内に確実に導入された後に行うことでき、こ れによって電力消費を削減して被検体内での画像収集および画像送信を的確に行 うことができるとともに、簡単な構成でカプセル型内視鏡を安価に製造することが可能 となる。
[0129] また、この実施例では、たとえば被検体外と被検体内の温度差に伴って、ドーム 11 la内壁にくもり状態 (ノ、レーシヨン)が発生しても、反射光の光量から、ドーム内壁ま での距離を検出することが可能となるので、カプセル型内視鏡が体腔内に存在する 力どうか容易に検出することができる。
実施例 5
[0130] 図 16は、この発明に力かるカプセル型内視鏡における電気系統の実施例 5の構成 を示す構成図である。この実施例では、カプセル型内視鏡 3がオートフォーカス動作 の制御を行うオートフォーカス機能を備えている場合を想定している。すなわち、この 実施例では、撮像装置 21にオートフォーカス部 126が接続され、この撮像装置 21で 撮像された画像データがオートフォーカス部 126に出力されて 、る。オートフォー力 ス部 126は、この撮像装置 21から出力される画像データに基づいて、オートフォー力 ス動作の制御を行って、光学系部品 114 (図 10参照)のレンズを移動させて、焦点合 わせを行う。
[0131] 供給制御部 122は、このレンズの移動量力も被写体との距離を検出する。さらに、 供給制御部 122は、この検出された距離が所定値以下かどうか判断して、この距離 が所定値以下の場合には、カプセル型内視鏡 3が体腔内に入ったと判断して、サブ スィッチ 120をオン状態に制御する。これによつて、電池 100から無線装置 23に電力 が供給され、無線装置 23は、パワーオンする。
[0132] なお、オートフォーカス部 126によるレンズの焦点合わせでは、画像のエッジの強さ
(たとえば黒画像から白画像へ移行する時のエッジの傾き)によって最適な焦点位置 を求めており、この実施例では、この最適な焦点位置までのレンズの移動量に基づ いて被写体との距離を検出する。また、この場合に、初期状態で基準となるレンズの 位置を規定することとなる力 たとえば図 2に示したキャップ 131がカプセル型内視鏡 3に装着された状態で、撮像装置 21がキャップ内壁の画像を撮像し、この時のオート フォーカス部 126によるレンズの焦点位置での距離を、基準の距離に設定することが 可能である。 [0133] このように、この実施例では、オートフォーカス機能による焦点合わせ時のレンズ移 動量カゝら被写体との距離を検出し、この検出された距離データに基づき、カプセル型 内視鏡が体腔内に存在するかどうか検出して無線装置への電力供給を判断するの で、無線装置への電力供給のタイミングを、カプセル型内視鏡が被検体内に確実に 導入された後に行うことでき、これによつて電力消費を削減して被検体内での画像収 集および画像送信を的確に行うことができる。
[0134] また、実施例 4, 5においても、図 13に示したタイマを設けて、カプセル型内視鏡が 確実に検査対象の臓器に導入されてから、無線装置に電力供給を行うように構成す ることち可會である。
実施例 6
[0135] まず、実施例 6にかかる無線型被検体内情報取得システムについて説明する。本 実施例 6にかかる無線型被検体内情報取得システムは、被検体内導入装置の一例 たるカプセル型内視鏡が被検体外部で動作することを防止するため、被検体外部と 被検体内部との温度差を利用し、暗電流強度が温度依存性を有する光電変換手段 を用いてカプセル型内視鏡内の各構成要素の駆動状態を制御する駆動状態制御 部を備えることとしている。
[0136] 次に、カプセル型内視鏡 3について説明する。図 17は、カプセル型内視鏡 3の構 成を模式的に示すブロック図である。図 17に示すように、カプセル型内視鏡 132は、 被検体 1の内部を撮影する際に撮像領域を照射するための照明手段としての LED1 9と、 LED19の駆動状態を制御する LED駆動回路 20と、 LED19によって照射され た領域からの反射光像の撮像を行って画像データを生成する光電変換手段または 撮像手段としての CCD21とを備える。また、カプセル型内視鏡 132は、 CCD21の 駆動状態を制御する CCD駆動回路 22と、 CCD21によって撮像された画像データを 変調して RF信号を生成する RF送信ユニット 23と、 RF送信ユニット 23から出力され た RF信号を無線送信する無線手段としての送信アンテナ部 24と、 LED駆動回路 2 0、 CCD駆動回路 22および RF送信ユニット 23の動作を制御する動作制御手段とし てのシステムコントロール回路 32とを備える。
[0137] これらの機構を備えることにより、カプセル型内視鏡 132は、被検体 1内に導入され ている間、 LED 19によって照明された被検部位の画像情報を CCD21によって取得 する。そして、取得された画像情報は、 RF送信ユニット 23において RF信号に変換さ れた後、送信アンテナ部 24を介して外部に送信される。
[0138] また、カプセル型内視鏡 132は、各々所定の機能を実行する機能実行手段として の LED駆動回路 20、 CCD駆動回路 22、 RF送信ユニット 23等のカプセル型内視鏡 132の内部の構成要素を駆動するための電源手段としての電池 100とを備える。ここ で、システムコントロール回路 32は、 LED駆動回路 20、 CCD駆動回路 22、 RF送信 ユニット当の動作状態、つまり LED19の発光期間や、 CCD21のフレームレート、 RF 信号送出のタイミング等、機能実行手段の動作をあらかじめ定められた内容に基づ いて制御するものである。さらに、カプセル型内視鏡 132は、暗電流検出部 33と、暗 電流検出部 133で検出された暗電流に基づ!/、て LED駆動回路 20、 CCD駆動回路 22、システムコントロール回路 32等の駆動状態を制御する駆動制御手段としての駆 動制御部 34とを備える。なお、駆動制御部 34は、電池 100から供給される駆動電力 を機能実行手段としての LED駆動回路 20、 CCD駆動回路 22、システムコントロー ル回路 32等の各構成要素に対して分配する機能も有する。暗電流検出部 133は、 フォトダイオード 135と、フォトダイオード 135の少なくとも受光面を覆うよう形成された 遮光部材 136とを備えた構成を有する。
[0139] 次に、暗電流検出部 133と、暗電流検出部 133から出力される電流値に基づいて 機能実行手段たるカプセル型内視鏡 132内の各構成要素に対して駆動制御を行う 駆動制御部 34とによる駆動制御について説明する。上記したように、暗電流検出部 133は、フォトダイオード 135と遮光部材 136とによって構成されており、フォトダイォ ード 135内で発生する暗電流強度を駆動制御部 34に対して出力する構成を有する 。まず、フォトダイオードの電気的特性の一つである暗電流について簡単に説明する
[0140] 図 18は、フォトダイオード内を流れる電流について説明するための模式的なグラフ である。フォトダイオードの具体的構成は、通常のダイオードと同様に PN接合を備え た構造や、 PN接合を有する半導体部材に対して逆方向電圧を印加した状態で使用 するいわゆる PIN構造等が知られている。いずれの構造を採用した場合にも、基本 的な電気的特性はダイオードのものと同様であり、力かる構造のものに対して逆方向 電圧を印加した状態で使用される。
[0141] 図 18において、曲線 1は、光照射を行わない状態におけるフォトダイオードの電流
1
電圧特性を示し、曲線 1 2は、光を照射した状態におけるフォトダイオードの電流ー電 圧特性を示す曲線である。曲線 1、 1力も明らかなように、逆方向電圧を印加して使用
1 2
するフォトダイオードでは、光照射によって逆方向に流れる電流の大きさが増加して いる。力かる電流の増加分を光電流と称し、光電流の値によって照射される光の強度 の検出等が可能である。
[0142] 一方、全く光を照射しな 、状態であっても、曲線 1に示すように、逆電圧を印加した
1
領域(図 18における「フォトダイオード使用領域」)において、一定強度の電流が存在 する。かかる電流を暗電流と称し、フォトダイオードを光電変換手段として使用する際 には、フォトダイオードから出力される電流の内、力かる暗電流の分を控除して光電 流を検出し、光強度の検出等を行っている。し力しながら、本実施例 6では、フォトダ ィオード内で生じる暗電流の特性に注目し、積極的に暗電流を利用することで、被検 体 1の外部でカプセル型内視鏡 132が駆動することを防止している。
[0143] 次に、暗電流の温度依存性について説明する。図 19は、暗電流強度の温度依存 性の一例について示すグラフである。なお、図 19に示すグラフは、あくまで一般的な フォトダイオードに関して得られた結果であって、本実施例 1で用いられるフォトダイ オード 135のものと必ず一致するというものではないが、温度依存性の傾向としては ほぼ一致すると考えて良い。
[0144] 図 19に示すように、暗電流は、温度の上昇に伴い強度が増加する傾向を有する。
より具体的には、暗電流 Id(nA)と周囲温度 T(°C)との間に、
eT · · · (1)
の関係を有し、暗電流の値は温度の上昇に対して急激な増加を示すことが図 19の グラフから明らかである。
[0145] 一方、カプセル型内視鏡 132が導入される被検体 1内の温度と、被検体 1外部の温 度とは大きく異なり、例えば、被検体 1内の温度は 35°C— 37°C程度、被検体 1外部 の温度は、環境にもよるが、 10°C— 20°C程度である。従って、本実施例 6にかかる無 線型被検体内情報取得システムでは、被検体 1内外の温度変化に注目すると共に、 温度変化の検出手段として、フォトダイオードの暗電流を用いることで、カプセル型内 視鏡 132が被検体 1外部で意図せず駆動することを防止している。具体的には、暗 電流検出部 133内に備わるフォトダイオード 135の暗電流の温度依存性をあらかじ め把握した上で、被検体 1内の温度に対応した暗電流が検出された場合に駆動制 御部 34はカプセル型内視鏡 132の各構成要素が駆動するよう制御を行っている。よ り具体的には、駆動制御部 34がシステムコントロール回路 32に対して供給する電力 を制御することによって、システムコントロール回路 32は、あら力じめ定められた動作 方法に従って動作するように各構成要素の動作状態を制御して 、る。
[0146] 次に、本実施例 6にかかるカプセル型内視鏡 132の動作について説明する。図 20 は、本実施例 6にかかるカプセル型内視鏡 132の動作を説明するためのフローチヤ ートであり、以下図 20を参照しつつ説明を行う。
[0147] まず、暗電流検出部 133において、フォトダイオード 135内で生じる暗電流を検出 する (ステップ S301)。そして、検出した暗電流は駆動制御部 34に出力され、駆動制 御部 34は、暗電流値が閾値以上である力否かを判定する (ステップ S302)。本ステ ップで用いる閾値は、例えば、被検体 1内の温度に対応した値とする。暗電流値が閾 値未満の場合には、再びステップ S301に戻り、暗電流の検出および閾値との大小 関係の判定を行う。
[0148] 検出された暗電流の値が閾値以上である場合には、駆動制御部 34は、カプセル 型内視鏡 132が被検体 1内に導入された状態であると判断し、機能実行部 (機能実 行手段)の駆動を開始させる (ステップ S303)。機能実行部は力かる制御に基づき駆 動を開始し、所定の機能を実行する。本実施例 6で示す構成の場合には、被検体 1 内を LED19によって照射し、照射した光の戻り光を CCD21で撮像した後、 RF送信 ユニット 23で必要に応じて画像データが変調され、送信アンテナ部 24を介して外部 に送信される。
[0149] その後、再び暗電流検出部 133において、フォトダイオード 135内で生じる暗電流 を検出し (ステップ S304)、駆動制御部 34は暗電流が閾値以上である力否かの判定 を行う(ステップ S305)。そして、暗電流の値が閾値以上であると判定された場合に は、依然としてカプセル型内視鏡 132は被検体 1内に留まっていると推測されること から、ステップ S303に戻って所定の機能の実行を継続する。
[0150] 一方、暗電流の値が閾値未満であると判定された場合には、カプセル型内視鏡 13 2が被検体 1の外部に排出されたと推測されることから、駆動制御部 34は、機能実行 部に対して電力供給を停止し、駆動を停止させる (ステップ S306)。以上で、カプセ ル型内視鏡 3の動作は終了する。
[0151] 次に、本実施例 6にかかる無線型被検体内情報取得システムの利点について説明 する。まず、本実施例 6におけるカプセル型内視鏡 132は、フォトダイオード 135内で 生じる暗電流の温度依存性を利用することで、検出する暗電流力 温度を推定し、 推定された温度力もカプセル型内視鏡 132が被検体 1の内外いずれに位置するかを 推定している。そして、力かる推定結果に基づいて、被検体 1の外部に位置すると推 定される場合には、カプセル型内視鏡 132内に備わる CCD21等の機能実行部の駆 動を停止させることによって、被検体 1外部でカプセル型内視鏡 132が駆動すること を防止している。従って、本実施例 6におけるカプセル型内視鏡 132は、被検体 1外 部で余分な機能実行、例えば被検体 1外部の画像データの取得などを行うことを防 止でき、電池 100に蓄えられた電力の浪費の防止等が可能となる。
[0152] また、本実施例 6では、フォトダイオード 135を用いて温度検出を行う構成としたこと による利点が存在する。すなわち、図 19および(1)式で示したように、暗電流の値は 、温度に対して指数のべき乗で増加することから、フォトダイオード 135を用いた喑電 流検出部 133は、高 、精度の温度検出が可能である。
[0153] 例えば、被検体 1外部の温度を 20°C程度とし、被検体 1内部の温度を 35°Cとし、フ オトダイオード 135が図 19の電圧 電流特性を有すると仮定した場合、 20°Cにおけ る暗電流の値は Ι ΙΟηΑ程度であるのに対し、 35°Cでは暗電流の値は 500nAにま で増加することとなる。また、仮に被検体 1が熱帯でカプセル型内視鏡 3を使用するよ うに、被検体 1外部の温度が高い場合、例えば被検体外部の温度が 30°Cの場合で も、暗電流は 300nA程度の値となり、被検体 1内部における 500nAとは著しく異なる 値となる。このように、被検体 1の内外において、暗電流の値が著しく異なることから、 フォトダイオード 135を用いて温度検出を行った場合、カプセル型内視鏡 3が被検体 1内部に存在するのに駆動が開始されるといった誤動作の発生を確実に防止するこ とが可能である。
[0154] また、暗電流検出部 133について、フォトダイオード 135が遮光部材 136によって 覆われた構成を有することによる利点も存在する。すなわち、光電変換素子として使 用されるフォトダイオードは、光照射および照射光のエネルギーに基づく電子一正孔 対の発生を高い頻度で繰り返すことによって、結晶構造中の劣化等が生じ、電気的 特性が変化することがある。し力しながら、本実施例 6では、遮光部材 136の存在に よりフォトダイオード 135に対して光が入射することはなく、入射光のエネルギーに基 づく電子一正孔対の生成も生じない。また、検出対象たる暗電流の値の絶対値はき わめて低い値であることから、暗電流がフォトダイオード 135の結晶構造等に及ぼす 影響は無視することができる。従って、本実施例 6において、フォトダイオード 135の 電気特性はきわめて安定した状態を維持することが可能であり、温度と暗電流の相 関関係もほぼ一定の関係を維持することが可能である。従って、暗電流検出部 133 の構成を、フォトダイオード 135の周囲に遮光部材を配置することとしたため、フォト ダイオード 135の電気特性の変動を防止することで、さらに確実に誤動作の発生を 防止することができる。
実施例 7
[0155] 次に、実施例 7にかかる無線型被検体内情報取得システムについて説明する。実 施例 7にかかる無線型被検体内除法取得システムでは、被検体内画像の撮像を行う CCD内に備わるフォトダイオードの暗電流が温度上昇と共に増加して、暗電流の影 響により撮像データ中に生じたノイズ画素の数に基づいて駆動制御を行う構成を有 する。
[0156] 図 21は、本実施例 7にかかる無線型被検体内情報取得システムを形成するカプセ ル型内視鏡 137の構成を示すブロック図である。なお、本実施例 7において、無線型 被検体内情報取得システムの他の構成要素、すなわち受信装置、表示装置、携帯 型記録媒体に関しては実施例 6と同様の構成、機能を有するものとする。
[0157] 図 21に示すように、本実施例 7におけるカプセル型内視鏡 137は、実施例 6と同様 に、被検体 1内を照明する光を出力する LED19と、 LED19の駆動を制御する LED 駆動回路 20と、照明光の戻り光を撮像する CCD21と、 CCD21の駆動を制御する C CD駆動回路 22とを備える。また、 CCD21で取得された撮像データ力も得られる画 像データを必要に応じて変調し、送信アンテナ部 24を介して無線送信する RF送信 ユニット 23と、 LED駆動回路 20、 CCD駆動回路 22、 RF送信ユニット 23に対して制 御を行うシステムコントロール回路 32とを備える。また、 LED駆動回路 20、 CCD駆 動回路 22、 RF送信ユニット 23等、各々が所定の機能を実行する機能実行手段とし て、カプセル型内視鏡 137の内部に設けられた内部構成要素を駆動するための電 力を蓄積する電池 100とを備える。
[0158] さらに、本実施例 7におけるカプセル型内視鏡 137は、 CCD21で取得された撮像 データの中でノイズを形成する画素を検出するノイズ画素検出部 138と、撮像データ にお 、て検出されたノイズ画素に対して処理を行 、、ノイズを除去した画像データを 生成するノイズ画素処理部 139とを備える。ノイズ画素検出部 138およびノイズ画素 処理部 139を有することで、 CCD21で得られた撮像データカゝらノイズ成分を除去し た鮮明な画像データを得ることができる。
[0159] また、本実施例 7におけるカプセル型内視鏡 137は、ノイズ画素検出部 138で検出 されたノイズ画素に関する情報が入力され、入力された情報に基づいてノイズ画素数 をカウントするノイズ画素数カウント部 140と、ノイズ画素数カウント部 140でカウントさ れたノイズ画素数に基づ 、て LED19、 RF送信ユニット 23等の駆動状態を制御する 駆動制御部 141とを備える。
[0160] ノイズ画素検出部 138は、 CCD21で得られた撮像データを構成する多数の画素 の中から、ノイズを形成する画素を検出するためのものである。ノイズ画素の検出メカ -ズムは様々なものが既に知られている力 例えば、輝度が周囲と比べて著しく大き V、画素をノイズ画素として検出する構成や、所定の閾値以上の輝度を有する画素を ノイズ画素として検出する構成などが知られている。ノイズ画素検出部 138は、ノイズ 画素を検出した後、 CCD21で取得された撮像データにノイズ画素の位置情報を付 カロした情報を生成した上で、力かる情報をノイズ画素処理部 139およびノイズ画素数 カウント部 140に対して出力する機能を有する。
[0161] ノイズ画素処理部 139は、ノイズ画素検出部 138から出力された情報に基づいて、 ノイズ画素における輝度を適正な輝度に修正した画像データを生成し、生成した画 像データを RF送信ユニット 23に対して出力するためのものである。画素データの生 成は、例えば、ノイズ画素の周囲に位置する画素の輝度値の平均をとり、ノイズ画素 の輝度値を力かる平均値に修正することによって行われる。
[0162] ノイズ画素数カウント部 140は、ノイズ画素検出部 138から出力された情報に基づ いて、撮像データにおけるノイズ画素の数をカウントするためのものである。すなわち 、ノイズ画素検出部 138で生成される情報は、ノイズ画素の位置情報も含まれている ことから、力かる位置情報に基づいてノイズ画素の数をカウントし、カウントしたノイズ 画素数を駆動制御部 141に出力する機能を有する。
[0163] 駆動制御部 141は、 CCD21、 CCD駆動回路 22、ノイズ画素検出部 138、ノイズ画 素数カウント部 140以外のカプセル型内視鏡 137の構成要素の駆動状態を制御す るためのものである。具体的には、ノイズ画素数が被検体 1内の温度に基づいて定ま る閾値以上となった場合に電力供給を行い、閾値未満の場合には電力供給を停止 することで、各構成要素の駆動状態を制御している。駆動制御部 141による駆動制 御が行われることで、カプセル型内視鏡 137が被検体 1の外部で駆動することを防止 している。
[0164] 次に、本実施例 7におけるカプセル型内視鏡 137の動作について説明する。図 22 は、カプセル型内視鏡 137の動作を示すフローチャートであり、以下では図 22を参 照しつつ説明を行う。まず、 CCD駆動回路 22の制御に基づいて、 CCD21は、撮像 動作を行うことによって撮像データを取得する (ステップ S401)。なお、本ステップで は、撮像の際に LED19は照明光を出力しないこととする。取得した撮像データは、ノ ィズ画素検出部 138に出力される。
[0165] そして、ノイズ画素検出部 138は、撮像データの中でノイズ成分を構成するノイズ画 素の検出を行う(ステップ S402)。検出されたノイズ画素に関する情報は、ノイズ画素 数カウント部 140に出力される。なお、本ステップでノイズ画素処理部 139に対しても 情報を出力することとしても良いが、消費電力低減の観点からは、本ステップでノイズ 画素処理部 139の駆動を停止することが好ましいため、情報は出力されないものとす る。 [0166] その後、ノイズ画素数カウント部 140で、撮像データ内に存在するノイズ画素数の力 ゥントを行う(ステップ S403)。カウントされたノイズ画素数は、駆動制御部 141に出力 される。そして、駆動制御部 141は、ノイズ画素数があら力じめ定めた閾値以上であ る力否かの判定を行う(ステップ S404)。ノイズ画素数が閾値未満であると判定され た場合には、再びステップ S401に戻り、上記の動作を繰り返す。
[0167] ノイズ画素数が閾値以上であると判定された場合には、駆動制御部 141は、 LED1 9等の各構成要素に対して電力を供給し、各構成要素の駆動が開始される。すなわ ち、 LEDによる照明光が照射され、照射光の戻り光について CCD21による撮像デ ータの取得が行われる(ステップ S405)。そして、取得された撮像データ力もノイズ画 素を検出し (ステップ S406)、ノイズ画素検出部 138で生成された情報に基づいて、 ノイズ画素処理部 139においてノイズを除去した画像データの生成が行われる (ステ ップ S407)。そして、生成された画像データについて、 RF送信ユニット 23は必要に 応じて変調を施した上で、送信アンテナ部 24を介してノイズを除去した鮮明な画像 データを外部に対して送信する (ステップ S408)。
[0168] 一方、ステップ S406で検出されたノイズ画素に関する情報は、ノイズ画素数カウン ト部 140に出力され、ノイズ画素数カウント部 140で画素数がカウントし (ステップ S40 9)、駆動制御部 141において画素数が閾値以上であるか否かの判定が再び行われ る (ステップ S410)。そして、ノイズ画素数が閾値以上であると判定された場合には、 ステップ S405に戻って上記の動作を再び繰り返すことになる。
[0169] ノイズ画素数が閾値未満であると判定された場合には、駆動制御部 141は、カプセ ル型内視鏡 3内のすべての構成要素に対する電力供給をストップし、駆動を停止さ せる(ステップ S411)。以上で、本実施例 7におけるカプセル型内視鏡 137の動作は 終了する。
[0170] 以上説明したように、本実施例 7にかかる無線型被検体内情報取得システムでは、 カプセル型内視鏡 137は、フォトダイオードの暗電流の値そのものではなぐ CCD2 1内に備わる多数のフォトダイオードについて、内部で生じる電流値がある閾値を超 えたものの個数に基づいて駆動制御を行っている。一般に、フォトダイオードの電気 特性は温度依存性を有し、例えばディジタルカメラに用いられる CCD等は、温度の 上昇につれてノイズを出力する画素の数が増加することが知られて 、る。本実施例 7 では、カゝかるフォトダイオードのノイズ強度の温度依存性を利用することで、ノイズ画 素数がある閾値未満の場合には、カプセル型内視鏡 137が被検体 1外部に存在す ると判断して駆動を停止することとしている。
[0171] 次に、本実施例 7にかかる無線型被検体内情報システムの利点について説明する 。まず、実施例 6の場合と同様に、フォトダイオード内で生じる暗電流の値が温度依 存性を有することを利用して駆動制御を行うことで、被検体 1内外における温度差を 利用してカプセル型内視鏡 137が被検体 1外部で駆動することを防止することができ る。
[0172] また、本実施例 7にかかる無線型被検体内情報システムは、既存の構成要素を流 用することで、簡易な構成によって温度検出が可能である。すなわち、温度検出を行 う際に用いられる CCD21は、被検体 1内部の画像を撮像するために従来力も設けら れているものである。また、ノイズ画素検出部 138は、被検体 1内部の画像データを 取得する際に、 CCD21で得られた撮像データ中からノイズ成分を除去するために従 来から設けられて ヽるものである。
[0173] 力かる既存の構成要素を流用することで、温度検出のために新たに設けた構成要 素としてはノイズ画素数カウント部 140のみで足り、ノイズ画素数カウント部 140は、ノ ィズ画素に関する情報力 ノイズ画素数をカウントする電子回路等の簡易な構成によ つて温度検出を行うことが可能である。従って、ノイズ画素数カウント部 140を新たに 設けることによってカプセル型内視鏡 137が大型化することもなぐ別途温度センサ 機構を設けた場合のように、製造コストも従来と同程度に抑制することができる。
[0174] さらに、本実施例 7にかかる無線型被検体内情報システムは、 CCD21内に多数存 在するフォトダイオードを利用することで、誤検出の発生を抑制できるという利点を有 する。多数のフォトダイオードを利用することで、仮に一部のフォトダイオードに電気 特性の変化が生じた場合であっても、全体として信頼しうる検出結果を得ることができ る。
実施例 8
[0175] 次に、実施例 8にかかる無線型被検体内情報取得システムについて説明する。図 2 3は、本実施例 8におけるカプセル型内視鏡 143の構成を示すブロック図である。な お、実施例 7の場合と同様に、本実施例 8にかかる無線型被検体内情報取得システ ムの他の構成要素、すなわち受信装置、表示装置および携帯型記録媒体は実施例 6と同様の構成、機能を有するものとする。
[0176] 図 23に示すように、本実施例 8におけるカプセル型内視鏡 143は、実施例 7におけ るカプセル型内視鏡 137と基本的な構成は共通する力 ノイズ画素数カウント部 140 の代わりに、基準画素状態判別部 144と、基準画素状態判別部 144における判別結 果に基づいて駆動制御を行う駆動制御部 145とを備えた構成を有する。
[0177] 基準画素状態判別部 144は、 CCD21で取得された撮像データのうち、あらかじめ 定めた単数もしくは複数の基準画素がノイズ画素として検出されたカゝ否かを判定する ためのものである。すなわち、ノイズ画素検出部 138は、ノイズ画素に関する情報、例 えばノイズ画素の位置情報を撮像データに付加して出力する機能を有することから、 力かる出力情報に基づいて、所定の位置に属する基準画素がノイズ画素となってい る力否かを判定することとして!/、る。
[0178] 次に、本実施例 8におけるカプセル型内視鏡 143の動作について説明する。図 24 は、本実施例 8におけるカプセル型内視鏡 143の動作を説明するためのフローチヤ ートであり、以下図 24を参照しつつ説明を行う。
[0179] まず、 LED19による照明光の照射を行わずに CCD21において撮像動作を行い( ステップ S501)、取得された撮像データに対して、ノイズ画素検出部 138によるノィ ズ画素の検出が行われる (ステップ S502)。その後、基準画素状態判別部 144は、 あら力じめ定めた基準画素がノイズ画素として検出されたか否かを判定する (ステツ プ S503)。ここで、基準画素が複数である場合には、すべての基準画素がノイズ画 素であった場合もしくは一定数の基準画素がノイズ画素であった場合に「基準画素 がノイズ画素として検出された」と判定する。基準画素がノイズ画素として検出されな 力つたと判定された場合には、再びステップ S501に戻って、上記の動作を繰り返す
[0180] 基準画素がノイズ画素として検出された場合には、駆動制御部 145は、 LED19等 の各構成要素に対して電力を供給し、各構成要素の駆動が開始される。すなわち、 LED 19による照明光を照射しつつ撮像を行い (ステップ S 504)、撮像データからノ ィズ成分を検出し (ステップ S505)、ノイズ画素処理部 139によってノイズを除去した 画像データを生成し (ステップ S506)、画像データを無線送信する (ステップ S507)
[0181] その後、ステップ S504で撮像された撮像データ中における基準画素がノイズ画素 として検出された力否かの判定を再び行う (ステップ S508)。基準画素がノイズ画素 として検出された場合には、再びステップ S504に戻って上記の動作を繰り返す。一 方、基準画素がノイズ画素として検出されな力つた場合には、駆動制御部 145は、 L ED19等の各構成要素に対する電力供給を停止し、駆動を停止させる (ステップ S5 09)。以上で、本実施例 8におけるカプセル型内視鏡 143の動作は終了する。
[0182] 本実施例 8のように、特定の基準画素においてノイズが生じる力否かに基づいて温 度を検出することも可能である。すなわち、 CCD21内に備わるフォトダイオードは、そ れぞれが喑電流強度に関して温度依存性を有し、ノイズを出力する力否かについて も温度依存性を有することとなる。従って、ある基準画素がノイズを出力するか否かを 検出することで、カプセル型内視鏡 143の温度を検出することが可能であって、ひい てはカプセル型内視鏡 143が被検体 1内に導入されているカゝ否かを判定することが 可能である。従って、本実施例 8にかかる無線型被検体内情報取得システムは、実 施例 6, 7と同様に、カプセル型内視鏡 143が被検体 1の外部で駆動することを防止 でき、電力消費量の低減等が可能である。
[0183] なお、基準画素がノイズを生じる温度を被検体 1内部の温度と対応させるためには 、フォトダイオードの具体的構成を工夫する必要がある。このため、例えばフォトダイ オードの具体的構成について、逆電圧を印加した状態において特定領域に電界が 集中するような形状等を採用することが好ましい。
[0184] 以上、実施例 6— 8を用いて本発明を説明してきた力 本発明は上記のものに限定 されず、当業者であれば様々な実施例、変形例および応用例に想到することが可能 である。例えば、実施例 6では、カプセル型内視鏡 3が LED19、 CCD21等を備える ことによって被検体 1内部の画像を撮像する構成としている。しかしながら、被検体内 に導入される被検体内導入装置は、カゝかる構成に限定されるものではなぐたとえば 温度情報や pH情報などの他の被検体内情報を取得するものとしても良い。また、被 検体内導入装置が振動子を備える構成として、被検体 1内の超音波画像を取得する 構成としても良い。さらに、これらの被検体内情報の中から複数の情報を取得する構 成としても良い。
[0185] また、受信装置 2は、カプセル型内視鏡から出力される無線信号の受信のみを行う 構成に加えて、カプセル型内視鏡へ機能実行手段を駆動する電力を供給する給電 用信号を送出するような構成としても良いし、カプセル型内視鏡内に受信した給電用 信号力も駆動用電力を再生するような構成にしても良い。さらに、カプセル型内視鏡 内に記憶部を設け、被検体 1外部に排出された後に記憶部力 情報を取り出す構成 としても良い。
[0186] また、閾値は、必ずしも被検体 1の体温よりも低い温度に対応した値に設定する必 要はない。例えば、被検体 1内に存在する特定の疾患部を撮像する目的でシステム が構成されて 、る場合、力かる特定の疾患部が被検体 1内の他の領域よりも高 ヽ温 度を有するのであれば、閾値を力かる温度に対応した値とすることも有効である。
[0187] さらに、実施例 6— 8では、駆動制御部を介して LED19等の各構成要素に対して 駆動電力が供給される構成としている。し力しながら、各構成要素に対して直接電力 が供給される構成としても良い。また、駆動制御部によって駆動を制御されるのは、 R F送信ユニット 23のみ等、カプセル型内視鏡内の構成要素の一部のみとしても良い 。さらに、駆動制御部がシステムコントロール回路 32内に設けられるように構成しても 良い。また、実施例 6— 8では、駆動制御部はカプセル型内視鏡が被検体内に導入 される前および被検体力も排出された後の ヽずれにっ ヽても各構成要素の駆動を停 止する構成とした力 いずれか一方の場合のみ停止制御を行うこととしても良い。い ずれか一方のみ停止制御する場合であっても、従来と比較して無駄な画像データの 取得を回避し、消費電力を低減することが可能なためである。
[0188] また、実施例 6— 8では、撮像手段を構成するものとして CCDを用いた例について 説明したが、 CCD以外にも、例えば CMOSを用いた構成としても良い。 CMOSの場 合にも、フォトダイオード等の光電変換手段を備えた構成となるため、 CCDの場合と 同様に本発明に適用することが可能である。さらに、実施例 6— 8では、光電変換手 段の一例としてフォトダイオードを用いた例にっ 、て説明した力 フォトダイオード以 外にも、例えばフォトトランジスタを使用する構成としても良い。すなわち、本発明に 適用可能な光電変換手段としては、温度依存性を有する暗電流が内部で生じるもの であれば、フォトダイオード以外のものであってもよ!/、。
産業上の利用可能性
以上のように、本発明にかかる被検体内導入装置は、人体の内部に導入されて、 被検部位を観察する医療用観察装置に有用であり、特に、無駄な電力消費を削減し て被検体内での画像収集および画像送信を的確に行うのに適して ヽる。

Claims

請求の範囲
[1] 被検体内部に導入された状態で使用され、前記被検体内部において所定の機能 を実行する被検体内導入装置であって、
前記所定の機能の駆動状態を制御する駆動制御手段とを備えることを特徴とする 被検体内導入装置。
[2] 前記被検体内導入装置は、
前記所定の機能を実行する機能実行手段と、
当該被検体内導入装置の周辺環境の温度変化に応じて変動する温度を検出する 温度センサ手段を、
さらに備え、前記駆動制御手段は、前記温度センサ手段で得られる温度に基づい て、前記機能実行手段の駆動状態を制御することを特徴とする請求項 1に記載の被 検体内導入装置。
[3] 前記駆動制御手段は、前記温度センサ手段で得られる温度が所定の閾値温度以 上の値まで上昇した際に前記機能実行手段が駆動するよう制御を行うことを特徴と する請求項 2に記載の被検体内導入装置。
[4] 前記駆動制御手段は、前記温度センサ手段で得られた温度が所定の閾値温度未満 の値まで下降した際に、前記機能実行手段の駆動を停止させることを特徴とする請 求項 2または 3に記載の被検体内導入装置。
[5] 前記閾値温度は、前記被検体外部の温度よりも高!、温度であって、前記被検体の 体温以下の温度であることを特徴とする請求項 2— 4のいずれか一つに記載の被検 体内導入装置。
[6] 前記機能実行手段は、供給される駆動電力に基づき前記所定の機能を実行し、 前記駆動制御手段は、前記機能実行手段に対する駆動電力の供給を制御するこ とによって前記機能実行手段の駆動状態を制御することを特徴とする請求項 2— 5の いずれか一つに記載の被検体内導入装置。
[7] 前記温度センサ手段と前記駆動制御手段とは一体的に形成され、該一体的に形 成された前記温度センサ手段および前記駆動制御手段は、
電力供給源に電気的に接続された第 1接点と、 前記機能実行手段に電気的に接続された第 2接点と、
前記第 1接点および前記第 2接点近傍に配置され、閾値温度と等しい臨界温度を 有し、該臨界温度以上の温度で前記第 1接点および前記第 2接点と接触する形状に 変化する形状記憶部材と、
を備えたことを特徴とする請求項 6に記載の被検体内導入装置。
[8] 前記温度センサ手段と前記駆動制御手段とは一体的に形成され、該一体的に形 成された前記温度センサ手段および前記駆動制御手段は、
電力供給源に電気的に接続された第 1接点と、
前記機能実行手段に電気的に接続された第 2接点と、
前記第 1接点および前記第 2接点近傍に配置され、閾値温度と等 、温度条件下 で前記第 1接点および前記第 2接点と接触するよう形成されたバイメタル部材と、 を備えることを特徴とする請求項 6に記載の被検体内導入装置。
[9] 少なくとも前記温度センサ手段を覆うよう配置された熱伝導阻害手段をさらに備える ことを特徴とする請求項 2— 8のいずれか一つに記載の被検体内導入装置。
[10] 前記機能実行手段は、
被検体内部の画像データを取得する撮像手段と、
前記撮像手段によって取得された画像データを外部に無線送信する無線手段と、 を備えることを特徴とする請求項 2— 9のいずれか一つに記載の被検体内導入装 置。
[11] 被検体内の被検部位力 被検体内情報を取得する情報取得手段と、
前記情報取得手段が生成した被検体内情報に関する信号を変調して無線送信す る無線手段と、
前記情報取得手段と前記無線手段とを駆動する駆動電力を蓄積する電源手段と、 前記被検部位までの距離を検出する検出手段と、
を備え、前記駆動制御手段は、
前記検出手段による検出結果に応じて、前記電源手段から前記無線手段への駆 動電力の供給を制御する供給制御手段と、
を備えることを特徴とする請求項 1に記載の被検体内導入装置。
[12] 前記被検部位を照明する照明光を発光する照明手段をさらに備え、 前記検出手段は、前記照明手段力 発光された照明光の前記被検部位力 の反 射光の光量に基づいて、前記被検部位までの距離を検出することを特徴とする請求 項 11に記載の被検体内導入装置。
[13] 前記供給制御手段は、前記被検部位までの距離があらかじめ設定した所定の値を 下回ったことを前記検出手段が検出したことに応じて、前記無線手段への駆動電力 の供給を前記電源手段に開始させることを特徴とする請求項 12に記載の被検体内 導入装置。
[14] 前記情報取得手段は、前記照明手段が照明した前記被検部位を撮像して画像信 号を生成する撮像手段であることを特徴とする請求項 12または 13に記載の被検体 内導入装置。
[15] 前記撮像手段は、前記撮像手段から既知の所定の距離だけ離間した位置に配置 される被撮像面を撮像し、
前記検出手段は、前記撮像手段が撮像した前記被撮像面の前記撮像手段からの 距離に基づ!/ヽて、前記撮像手段が撮像する前記被検部位までの距離を検出するこ とを特徴とする請求項 14に記載の被検体内導入装置。
[16] 前記撮像手段は、
オートフォーカス部と、
前記撮像手段で生成された画像信号に基づいて該オートフォーカス部によるォー トフォーカス動作を制御する動作制御手段と、
をさらに備え、前記検出手段は、前記オートフォーカス部の動作状態に基づいて、 前記被検部位までの距離を検出することを特徴とする請求項 14または 15に記載の 被検体内導入装置。
[17] 前記被検体内導入装置は、
前記所定の機能を実行する機能実行手段と、
暗電流強度が温度依存性を有する光電変換手段と、
を備え、前記駆動制御手段は、前記光電変換手段における暗電流強度に基づい て前記機能実行手段の駆動状態を制御することを特徴とする請求項 1に記載の被検 体内導入装置。
[18] 前記駆動制御手段は、前記暗電流強度が所定の閾値強度未満の場合に前記機 能実行手段が駆動を停止するよう制御を行うことを特徴とする請求項 17に記載の被 検体内導入装置。
[19] 前記被検体内導入装置は、
前記被検体内部を照明する照射光を出力する照明手段と、
行列状に配列された複数の光電変換手段と、
前記照明手段によって照明された前記被検体内部の画像情報を取得する撮像手 段と、
前記撮像手段で取得された画像情報を外部に無線送信する無線手段と、 を備え、前記駆動制御手段は、 1以上の前記光電変換手段において得られる喑電 流強度の温度特性に基づいて前記照明手段と前記無線手段との少なくとも一方の 駆動状態を制御することを特徴とする請求項 1に記載の被検体内導入装置。
[20] 前記駆動制御手段は、暗電流強度が所定の閾値強度以上となる前記光電変換手 段の個数に基づいて駆動状態の制御を行うことを特徴とする請求項 19に記載の被 検体内導入装置。
[21] 前記駆動制御手段は、所定の閾値強度以上となる前記光電変換手段の個数が所 定数を下回った場合に少なくとも前記無線手段の駆動が停止するよう制御を行うこと を特徴とする請求項 20に記載の被検体内導入装置。
[22] 前記所定数は、前記被検体内部の温度に基づいて定まることを特徴とする請求項
21に記載の被検体内導入装置。
[23] 前記駆動制御手段は、前記撮像手段を形成する複数の光電変換手段のうち、 1以 上の特定光電変換手段における暗電流強度が所定の閾値強度未満である場合に 少なくとも前記無線手段の駆動が停止するよう制御を行うことを特徴とする請求項 19 に記載の被検体内導入装置。
[24] 前記閾値強度は、前記被検体外部の温度における暗電流強度よりも高い強度であ り、前記被検体内部の温度における暗電流強度以下の強度であることを特徴とする 請求項 18または 23に記載の被検体内導入装置。
[25] 前記光電変換手段は、フォトダイオードを含んで形成されることを特徴とする請求項
17— 24の 、ずれか一つに記載の被検体内導入装置。
[26] 被検体内部に導入される被検体内導入装置と、被検体外部に配置され、前記被検 体内導入装置によって得られた情報を、無線通信を介して取得する受信装置とを備 える無線型被検体内情報取得システムであって、
前記被検体内導入装置は、
供給される駆動電力に基づ!、て所定の機能を実行する機能実行手段と、 前記機能実行手段によって得られた情報を無線送信する無線手段と、 前記機能実行手段の駆動状態を制御する駆動制御手段とを備え、
前記受信装置は、
前記無線手段から送信された情報を受信する無線受信手段と、
前記受信した情報を解析する処理手段と、
を備えることを特徴とする無線型被検体内情報取得システム。
[27] 前記被検体内導入装置は、
当該被検体内導入装置の周辺環境の温度変化に応じて変動する温度を検出する 温度センサ手段を、
さらに備え、前記駆動制御手段は、
前記温度センサ手段で得られる温度に基づ!、て、前記機能実行手段の駆動状態 を制御することを特徴とする請求項 26に記載の無線型被検体内情報取得システム。
[28] 前記機能実行手段は、
被検体内部の画像データを取得する撮像手段を、
備え、前記無線手段は、前記撮像手段によって取得された画像データを外部に無 目し、
前記駆動制御手段は、前記被検体外部の温度よりも高ぐ前記被検体の温度以下 の温度を閾値温度とし、該閾値温度以上で前記撮像手段および前記無線手段が駆 動するよう制御することを特徴とする請求項 27に記載の無線型被検体内情報取得シ ステム。
[29] 前記被検体内導入装置は、 暗電流強度が温度依存性を有する光電変換手段を、
さらに備え、前記駆動制御手段は、前記光電変換手段における暗電流強度に基づ いて前記機能実行手段の駆動状態を制御することを特徴とする請求項 26に記載の 無線型被検体内情報取得システム。
[30] 前記被検体内導入装置は、
前記被検体内部を照明する照射光を出力する照明手段と、
行列状に配列された複数の光電変換手段を有し、前記照明手段によって照明され た前記被検体内部の画像情報を取得する撮像手段と、
を備え、前記無線手段は、前記撮像手段で取得された画像情報を外部に無線送 信し、
前記駆動制御手段は、 1以上の前記光電変換手段にお!、て得られる暗電流強度 の温度特性に基づいて前記照明手段と前記無線手段との少なくとも一方の駆動状 態を制御することを特徴とする請求項 27に記載の無線型被検体内情報取得システ ム。
PCT/JP2005/003191 2005-02-25 2005-02-25 被検体内導入装置および無線型被検体内情報取得システム WO2006090472A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/JP2005/003191 WO2006090472A1 (ja) 2005-02-25 2005-02-25 被検体内導入装置および無線型被検体内情報取得システム
EP10015744A EP2301434B1 (en) 2005-02-25 2005-02-25 Body-insertable apparatus
EP05710741A EP1852051B1 (en) 2005-02-25 2005-02-25 Device to be introduced into subject, and radio-type system for acquiring information inside subject
US11/571,504 US8449458B2 (en) 2005-02-25 2005-02-25 Body-insertable apparatus and radio in-vivo information acquiring system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2005/003191 WO2006090472A1 (ja) 2005-02-25 2005-02-25 被検体内導入装置および無線型被検体内情報取得システム

Publications (1)

Publication Number Publication Date
WO2006090472A1 true WO2006090472A1 (ja) 2006-08-31

Family

ID=36927123

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/003191 WO2006090472A1 (ja) 2005-02-25 2005-02-25 被検体内導入装置および無線型被検体内情報取得システム

Country Status (3)

Country Link
US (1) US8449458B2 (ja)
EP (2) EP2301434B1 (ja)
WO (1) WO2006090472A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103370001A (zh) * 2010-12-30 2013-10-23 基文影像公司 基于体内捕捉的图像流自动导航胶囊的系统和方法

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1712176B1 (en) * 2004-02-06 2011-04-06 Olympus Corporation Receiver
CN101102711B (zh) * 2005-03-09 2010-09-22 奥林巴斯株式会社 被检体内导入装置和被检体内导入系统
JP4695432B2 (ja) * 2005-04-12 2011-06-08 オリンパスメディカルシステムズ株式会社 被検体内導入装置、被検体内情報表示装置、及び被検体内情報取得システム
US7519329B2 (en) * 2005-07-01 2009-04-14 Research In Motion Limited Determination of antenna noise temperature for handheld wireless devices
US8187174B2 (en) 2007-01-22 2012-05-29 Capso Vision, Inc. Detection of when a capsule camera enters into or goes out of a human body and associated operations
JP4875691B2 (ja) 2007-12-17 2012-02-15 オリンパスメディカルシステムズ株式会社 撮像装置、画像表示装置、および画像表示システム
JP5296396B2 (ja) * 2008-03-05 2013-09-25 オリンパスメディカルシステムズ株式会社 生体内画像取得装置、生体内画像受信装置、生体内画像表示装置およびノイズ除去方法
JP5336749B2 (ja) * 2008-03-24 2013-11-06 オリンパス株式会社 カプセル型医療装置とその作動方法
JP2009226066A (ja) * 2008-03-24 2009-10-08 Olympus Corp カプセル型医療装置
JP2010081716A (ja) * 2008-09-25 2010-04-08 Toshiba Corp 電池情報取得装置
JP5355979B2 (ja) * 2008-09-26 2013-11-27 株式会社東芝 電池情報取得装置
JP5284846B2 (ja) * 2009-03-30 2013-09-11 オリンパス株式会社 生体内観察システム、該生体内観察システムの作動方法
WO2010114920A1 (en) * 2009-03-31 2010-10-07 Ohio University Automatically adjustable endoscopes
JP2010240104A (ja) * 2009-04-03 2010-10-28 Olympus Corp 体内観察システム、該体内観察システムの駆動方法
JP5489513B2 (ja) * 2009-04-08 2014-05-14 オリンパス株式会社 体内観察システムおよび体内観察システムの駆動方法
JP4701322B2 (ja) 2009-06-15 2011-06-15 オリンパスメディカルシステムズ株式会社 被検体内導入装置および生体内情報取得システム
US9237839B2 (en) 2009-12-17 2016-01-19 Given Imaging Ltd. Device, system and method for activation, calibration and testing of an in-vivo imaging device
EP2525848B1 (en) * 2010-01-22 2016-08-03 DEKA Products Limited Partnership System for shape-memory alloy wire control
WO2012006454A2 (en) * 2010-07-07 2012-01-12 Therasyn Sensors, Inc. A device and method for continuous chemical sensing
JP5534997B2 (ja) * 2010-08-03 2014-07-02 富士フイルム株式会社 電子内視鏡システム
CN105899122B (zh) * 2014-05-27 2018-09-07 奥林巴斯株式会社 胶囊型内窥镜装置
CN106714647B (zh) * 2014-09-30 2018-08-07 奥林巴斯株式会社 雾气防止装置和内窥镜装置
WO2016084467A1 (ja) * 2014-11-27 2016-06-02 オリンパス株式会社 カプセル型内視鏡及びカプセル型内視鏡システム
DE102016002800A1 (de) * 2016-03-05 2017-04-06 Schölly Fiberoptic GmbH Verfahren zum Betrieb einer Bildaufnahmevorrichtung und korrespondierende Bildaufnahmevorrichtung
JP6351794B2 (ja) * 2017-06-08 2018-07-04 Hoya株式会社 内視鏡装置
CN111281316A (zh) * 2020-01-15 2020-06-16 安翰科技(武汉)股份有限公司 胶囊内窥镜的控制方法、系统,电子设备及可读存储介质
CN112716430B (zh) * 2020-12-24 2022-09-20 安翰科技(武汉)股份有限公司 胶囊内窥镜排出检测方法和胶囊内窥镜

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08248326A (ja) * 1995-03-10 1996-09-27 Olympus Optical Co Ltd 立体視内視鏡
JP2003144385A (ja) 2001-11-13 2003-05-20 Pentax Corp 電子内視鏡
US20040109488A1 (en) 1999-08-04 2004-06-10 Arkady Glukhovsky Device, system and method for temperature sensing in an in-vivo device
JP2004236167A (ja) * 2003-01-31 2004-08-19 Fuji Photo Film Co Ltd 画像読取装置
US20040193010A1 (en) 2003-03-28 2004-09-30 Olympus Corporation Capsule endoscope

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5469840A (en) * 1991-12-10 1995-11-28 Olympus Optical, Ltd. Electromotive warping type endoscope with velocity control
US5729129A (en) 1995-06-07 1998-03-17 Biosense, Inc. Magnetic location system with feedback adjustment of magnetic field generator
IL132944A (en) 1999-11-15 2009-05-04 Arkady Glukhovsky Method for running a photo collection process
US7273457B2 (en) * 2000-10-16 2007-09-25 Remon Medical Technologies, Ltd. Barometric pressure correction based on remote sources of information
JP2004041709A (ja) * 2002-05-16 2004-02-12 Olympus Corp カプセル医療装置
US8142350B2 (en) * 2003-12-31 2012-03-27 Given Imaging, Ltd. In-vivo sensing device with detachable part
CN101107038A (zh) * 2005-01-18 2008-01-16 皇家飞利浦电子股份有限公司 电控胶囊
JP2007082664A (ja) * 2005-09-21 2007-04-05 Fujifilm Corp カプセル内視鏡
US8162821B2 (en) * 2005-12-28 2012-04-24 Olympus Medical Systems Corp. Body-insertable device positioning system and in-vivo observation method
EP2046434B1 (en) * 2006-06-23 2012-02-08 Koninklijke Philips Electronics N.V. Medicament delivery system
US8187174B2 (en) * 2007-01-22 2012-05-29 Capso Vision, Inc. Detection of when a capsule camera enters into or goes out of a human body and associated operations

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08248326A (ja) * 1995-03-10 1996-09-27 Olympus Optical Co Ltd 立体視内視鏡
US20040109488A1 (en) 1999-08-04 2004-06-10 Arkady Glukhovsky Device, system and method for temperature sensing in an in-vivo device
JP2003144385A (ja) 2001-11-13 2003-05-20 Pentax Corp 電子内視鏡
JP2004236167A (ja) * 2003-01-31 2004-08-19 Fuji Photo Film Co Ltd 画像読取装置
US20040193010A1 (en) 2003-03-28 2004-09-30 Olympus Corporation Capsule endoscope

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103370001A (zh) * 2010-12-30 2013-10-23 基文影像公司 基于体内捕捉的图像流自动导航胶囊的系统和方法

Also Published As

Publication number Publication date
US8449458B2 (en) 2013-05-28
EP2301434A1 (en) 2011-03-30
EP1852051B1 (en) 2011-07-20
EP1852051A1 (en) 2007-11-07
US20080045792A1 (en) 2008-02-21
EP2301434B1 (en) 2013-01-23
EP1852051A4 (en) 2010-03-10

Similar Documents

Publication Publication Date Title
WO2006090472A1 (ja) 被検体内導入装置および無線型被検体内情報取得システム
US10682045B2 (en) Wireless capsule endoscope and power supply control method thereof
JP5031986B2 (ja) 口腔内画像センサ
JP2007082664A (ja) カプセル内視鏡
US8128555B2 (en) In-vivo information acquiring apparatus
US20040199061A1 (en) Apparatus and methods for in vivo imaging
JP2010524557A (ja) 画像のフレームレートを制御できるカプセル型内視鏡
US20080051642A1 (en) Device, system and method of displaying in -vivo images at variable rate
JP2002248095A (ja) X線デジタル撮影装置
EP1757214B1 (en) Encapsulated endoscope and encapsulated endoscope system
JP2010046315A (ja) 放射線画像生成システム及び放射線画像検出器
KR20160070014A (ko) 방사선 촬상 시스템, 방사선 촬상 시스템을 위한 제어 방법 및 상기 제어 방법을 실행하기 위한 프로그램이 저장된 기억 매체
JP4445732B2 (ja) 被検体内導入装置および無線型被検体内情報取得システム
JP2010184054A (ja) カプセル型内視鏡および無線通信可能な撮影装置
JP2010104398A (ja) 可搬型放射線画像撮影装置および放射線画像撮影システム
JP2006208306A (ja) 放射線画像検出器及び放射線画像撮影システム
JP2011130878A (ja) 放射線画像検出装置
JP4656824B2 (ja) 無線型被検体内情報取得装置
JP4383134B2 (ja) 無線型被検体内情報取得装置
JP2005080933A (ja) カプセル型医療装置
JP5701812B2 (ja) カプセル型内視鏡およびカプセル型内視鏡システム
US11612303B2 (en) Method and apparatus for leveraging residue energy of capsule endoscope
US20230218139A1 (en) Method and Apparatus for Extending Battery Life of Capsule Endoscope
JP2005073885A (ja) 被検体内導入装置および無線型被検体内情報取得システム
JP2023087712A (ja) 放射線撮像装置及び放射線撮影システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11571504

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2005710741

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 2005710741

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11571504

Country of ref document: US