WO2006088256A1 - 1,2−トランスグリコシド化合物の製造方法 - Google Patents

1,2−トランスグリコシド化合物の製造方法 Download PDF

Info

Publication number
WO2006088256A1
WO2006088256A1 PCT/JP2006/303519 JP2006303519W WO2006088256A1 WO 2006088256 A1 WO2006088256 A1 WO 2006088256A1 JP 2006303519 W JP2006303519 W JP 2006303519W WO 2006088256 A1 WO2006088256 A1 WO 2006088256A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
compound
formula
carbon atoms
same
Prior art date
Application number
PCT/JP2006/303519
Other languages
English (en)
French (fr)
Inventor
Shigeru Yamago
Original Assignee
Otsuka Chemical Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Otsuka Chemical Co., Ltd. filed Critical Otsuka Chemical Co., Ltd.
Priority to CN2006800037546A priority Critical patent/CN101111507B/zh
Priority to JP2007503808A priority patent/JP4762973B2/ja
Priority to US11/884,544 priority patent/US8212013B2/en
Priority to EP06714658A priority patent/EP1849794A4/en
Publication of WO2006088256A1 publication Critical patent/WO2006088256A1/ja
Priority to US13/477,950 priority patent/US8664372B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H15/00Compounds containing hydrocarbon or substituted hydrocarbon radicals directly attached to hetero atoms of saccharide radicals
    • C07H15/02Acyclic radicals, not substituted by cyclic structures
    • C07H15/04Acyclic radicals, not substituted by cyclic structures attached to an oxygen atom of the saccharide radical
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H15/00Compounds containing hydrocarbon or substituted hydrocarbon radicals directly attached to hetero atoms of saccharide radicals
    • C07H15/18Acyclic radicals, substituted by carbocyclic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H15/00Compounds containing hydrocarbon or substituted hydrocarbon radicals directly attached to hetero atoms of saccharide radicals
    • C07H15/20Carbocyclic rings
    • C07H15/207Cyclohexane rings not substituted by nitrogen atoms, e.g. kasugamycins
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H17/00Compounds containing heterocyclic radicals directly attached to hetero atoms of saccharide radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07HSUGARS; DERIVATIVES THEREOF; NUCLEOSIDES; NUCLEOTIDES; NUCLEIC ACIDS
    • C07H17/00Compounds containing heterocyclic radicals directly attached to hetero atoms of saccharide radicals
    • C07H17/04Heterocyclic radicals containing only oxygen as ring hetero atoms
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Definitions

  • the present invention relates to a method for selectively producing a glycoside compound having a 1,2-one trans configuration.
  • sugar chains have attracted much attention as the third in vivo polymer after nucleic acids and proteins. It has been clarified that sugar chains existing on the cell surface have various functions such as information transmission between cells and interaction with external matrices such as viruses. Elucidation of the structure-activity relationship of sugar chains Is an urgent issue. However, it is extremely difficult to separate and purify chemically pure glycan compounds from biological samples because glycan compounds exist on the cell surface as a heterogeneous mixture of different structures and binding positions. It is. For this reason, there is a strong demand for the supply of sugar chain compounds that have a well-defined chemical synthesis and are chemically pure.
  • the 1,2-transglycoside bond is a typical glycoside bond often found in sugar chains.
  • this stereoselective synthesis method of bonds has used an acyl group as a protecting group for the hydroxyl group at the 2-position, and has utilized the stereo-orientation effect based on this intramolecular involvement.
  • the by-product of the orthoester has always been a problem.
  • Non-patent Document 1 The present inventor has developed a continuous glycosylation reaction in which oligosaccharides are synthesized by repeating the same reaction using only thioglycoside. This method was extremely effective for sugar derivatives with an amino group at the 2-position, such as dalcosamine, but when sugar derivatives with a hydroxyl group at the 2-position, such as glucose and galactose, were used, Only the ester form was selectively produced and its isomerization to O-glycoside was extremely difficult.
  • Non-Patent Document 1 Ang ew. Ch em. Int Ed. 2004, 43, 2 145
  • An object of the present invention is to provide a method for selectively producing a 1,2-transglycoside compound by suppressing by-production of an orthoester in a sugar derivative having a hydroxyl group at the 2-position. Disclosure of the invention
  • the present invention relates to the following 1,2-transglycoside compound production method and 2-phosphonoyl 1,2-transglycoside compound used in the production method.
  • a glycoside compound from (a) a furanose compound or a pyranoose compound and (b) an alcohol compound, a furanose compound or substituent that may have a substituent in which the hydroxyl group at position 2 is protected with a group
  • [1 2 and 11 3 represent the same or different alkyl group having 1 to 4 carbon atoms, or an aryl group that may have a substituent, or R 2 and R 3 are bonded to each other to form 2 carbon atoms.
  • 4 represents an alkylene group (the alkylene group is an alkyl group having 1 to 4 carbon atoms) It may be substituted or via a phenylene group).
  • m and n represent an integer of 0 or 1.
  • the furanoic compound is alapofuranose, erythrofuranose, darcofuranose, ribofuranose, threofuranose or xylofuranose
  • the pyranose compound is arabovillanose, altroviranose, darcopyranose, galactopyranose, glopyranose, man Nopyranose, lipopyranose, xylopyranose or darcopyranuronic acid, alcohol compound having 1 to 4 carbon atoms, alicyclic alcohol having 5 to 8 carbon atoms, aromatic alcohol, furanose, pyranose
  • the 2-phosphonoyruol represented by the formula (3) is characterized in that the alcohol compound represented by the formula (2) is allowed to act on the 2-phosphonopyranose compound represented by the formula (1).
  • a process for producing one transglycoside compound is characterized in that the alcohol compound represented by the formula (2) is allowed to act on the 2-phosphonopyranose compound represented by the formula (1).
  • R 1 represents an alkyl group having 1 to 20 carbon atoms, an aryl group that may have a substituent, or a heteroaromatic group
  • X represents a halogen atom.
  • R 4 , R 5 and R 6 are the same or different and each represents a protecting group for a sugar hydroxyl group.
  • E represents a methylene group or a carbonyl group. A is the same as above. ]
  • Q 2 represents an alkyl group having 1 to 4 carbon atoms, a cycloalkyl group having 5 to 8 carbon atoms which may have a substituent at an arbitrary position, or the following group.
  • L 1 is basic OA_OG, -N (J x ) (J 2 ).
  • a 1 represents a group shown below
  • G represents a protecting group for a sugar hydroxyl group
  • J 1 and J 2 represent a protecting group for a hydrogen atom or an amino group.
  • R 2 ′ and R 3 ′ are the same or different alkyl groups having 1 to 4 carbon atoms and aryl groups which may have a substituent, or R 2 ′ and R 3 ′ are bonded to each other to form carbon
  • m ′ and n ′ are Represents an integer of 0 or 1.
  • R 1 ′ is an alkyl group having 1 to 20 carbon atoms, an aryl group that may have a substituent, Represents a mouth aromatic group, 'represents a halogen atom
  • G 1 represents a protecting group for a sugar hydroxyl group.
  • R 7 , R 8 and R 9 are the same or different and each represents a protecting group for a sugar hydroxyl group.
  • E 1 represents a methylene group or a force group.
  • the 2-phosphonoylpyranose compound represented by the formula (1) is reacted with the alcohol compound represented by the formula (2 a) on the 2-phosphonoylpyranose compound represented by the formula (3 a). , 2-Transglycoside compound production method.
  • Q 2a represents the following group.
  • a 1 R 7 , R 8 , R 9 and E 1 are the same as above.
  • a process comprising the step of allowing an alcohol compound to act at least once on a bisphosphonoluene 1,2-transdalicoside compound represented by the formula (3a). Compound production method.
  • Q 4 represents an alkyl group having 1 to 4 carbon atoms, a cycloalkyl group having 5 to 8 carbon atoms which may have a substituent at an arbitrary position, or the following group.
  • L 2 is a group —OH, —OG, —N (J 1 ) (J 2 ). ⁇ ⁇ , R 7 , R 8 , R 9 , E 1 , G, JJ 2 are the same as above. ]
  • alkyl group having 1 to 4 carbon atoms examples include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isoptyl group, a sec-butyl group, and a tert-butyl group.
  • Examples of the aryl group include a phenyl group and a naphthyl group.
  • the aryl group may have a substituent at any position.
  • Examples of the substituent include a halogen atom, Examples thereof include alkyl groups having 1 to 4 carbon atoms.
  • Specific examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom. These substituents may be the same or different and may be substituted from 1 to a substitutable number.
  • alkylene group having 2 to 4 carbon atoms examples include a dimethylene group, a trimethylene group, and a tetramethylene group, which may be substituted with an alkyl group having 1 to 4 carbon atoms at any position, and via a phenylene group. It may be.
  • group — (CH 2 ) 2 , group 1 (CH 2 ) 3 —, group 1 (CH 2 ) 4 —, group _C (CH 3 ) 2 C (CH 3 ) 2 —, group 1 CH 2 CH (CH 3 ) CH 2 —, group _CH (CH 3 ) CH 2 CH (CH 3 ) 1, group 1 C (CH 3 ) 2 CH 2 CH 2 —, group — CH 2 C (CH 3 ) 2 CH 2 _, _CH 2 CH 2 — C 6 H 4 — CH 2 — etc. can be exemplified.
  • alkoxy group examples include alkoxy groups having 1 to 4 carbon atoms such as a methoxy group, an ethoxy group, an n-propoxy group, an isopropyl group, an n-butoxy group, an isobutoxy group, a sec-butoxy group, and a tert-butoxy group.
  • alkenyloxy group examples include C2-C4 alkenyloxy groups such as a vinyloxy group, a propenyloxy group, and a butenyloxy group.
  • the protecting group for the sugar hydroxyl group is not particularly limited as long as it is used as a protecting group for the hydroxyl group of the sugar compound.
  • a benzyl group a methoxymethyl group, a tert-butyldimethylsilyl group, a triisopropyl silyl group.
  • a ring may be formed by a methylene group, an ethylene group, an isopropylidene group, or a benzylidene group with respect to two adjacent hydroxyl groups.
  • Examples of the cycloalkyl group having 5 to 8 carbon atoms include cyclopentyl, cyclohexyl, cycloheptyl, and cyclooctyl, and may have a substituent at any position.
  • Examples of the substituent include alkyl groups having 1 to 4 carbon atoms. Specifically, 4,5-dimethylpentyl, 4-methylhexyl, 3,5-monodimethylhexyl, 4-tert- Examples include butyl hexyl, 2, 4, 6-trimethyl hexyl and the like.
  • any furanose compound having a hydroxyl group at the 2-position can be used without any particular limitation.
  • arapofuranose, erythrofuranos, dalcofuranos, ribofuranose, leuofuranos or xylofuranos can be used.
  • These furanose compounds may have a substituent, and examples of the substituent include a group composed of a monosaccharide or a polysaccharide which may be protected with a sugar hydroxyl protecting group and a sugar hydroxyl protecting group. it can.
  • the bilanose compound is not particularly limited as long as it is a pyranose compound having a hydroxyl group at the 2-position.
  • These pyranose compounds may have a substituent, and examples of the substituent include a group consisting of a monosaccharide or a polysaccharide which may be protected with a sugar hydroxyl protecting group or a sugar hydroxyl protecting group. Can do. .
  • the groups (A-3) and (A-5) are particularly preferably used.
  • a pyranose compound in which the hydroxyl group at position 2 is protected with a group A can be produced by reacting a pyranoose compound with a phosphate halide compound represented by the formula (5).
  • a 2-phosphonoyl 1,2-transpyranose compound represented by the formula (1) can be produced according to the following reaction formula 1-1.
  • Reaction Formula-1 by reacting the pyranose compound represented by the formula (6-1), (6-2), (6-3) with the phosphate halide represented by the formula (5), the formula ( expression corresponding to the compound represented by 1) (1- Q 1 - 1 ), (1 -Q 1 - 2), (1 one Q 1 - 3) represented by 2 _ Hosuhonoiru - 1, 2 - trans A pyranose compound can be produced.
  • This reaction is usually carried out in a solvent. After the base is allowed to act on the pyranose compound represented by the formulas (6-1), (6-2), (6-3), it is represented by the formula (5). Makes phosphate halide act.
  • the solvent used is not particularly limited as long as it is inert to the reaction.
  • aliphatic hydrocarbons such as hexane, heptane, and pentane
  • alicyclic hydrocarbons such as cyclohexane
  • benzene Halogenated aromatic hydrocarbons such as toluene and xylene, dichloromethane, chloroform, 1,2-dichloroethane, 1,1,1-trichloroethane, tetrachloroethylene, trichloroethylene, carbon tetrachloride, chlorobenzene, dichlorobenzene, etc.
  • Hydrocarbons Jetyl ether, Isopropyl ether, Tetrahydrofuran, Dioxane, Monoglyme, etc.
  • Ethers N, N-dimethylformamide, N, N-dimethylacetamide, 1, 3—
  • Examples thereof include amides such as dimethylimidazolidinone, sulfoxides such as dimethyl sulfoxide, and mixed solvents thereof.
  • amides such as dimethylimidazolidinone
  • sulfoxides such as dimethyl sulfoxide
  • mixed solvents thereof Among these, ethers, amides, and sulfoxides are particularly preferable.
  • the amount of these solvents used is about 1 to 100 liters, preferably about 5 to 20 liters per kg of the pyranose compound represented by the formula (6-1), (6-2), or (6-3). do it.
  • Examples of the base to be used include alkali metal carbonates such as sodium carbonate and potassium carbonate, alkali metal hydrides such as sodium hydride, organic bases such as triethylamine, pyridine and DBU, butyllithium, lithium diisopropylamide, lithium pith. Examples thereof include lithium salts such as trimethylsilylamide.
  • bases can be used alone or in combination of two or more, and the amount used is 1 to 10 with respect to the pyranose compound represented by the formula (6-11-1), (6-2), (6-3). Equivalent, preferably :! ⁇ 5 equivalents should be used.
  • the use ratio of the bilanose compound represented by the formulas (6-1), (6-2), and (6-3) and the phosphate halide represented by the formula (5) can be used at any ratio. However, the latter is preferably used in an amount of 1.0 to 2.0 molar equivalents relative to 1 mole of the former.
  • the reaction temperature can be arbitrarily set in the range of ⁇ 20 to 100 ° C., preferably 0 to 30 ° C., and the reaction time is not particularly limited, but is usually about 30 minutes to 3 hours. .
  • the 2-phosphonopyranose compound (1) obtained as described above and having a hydroxyl group at the 2-position protected with a phosphate ester is a novel compound not described in any literature.
  • the pyranose compounds represented by the formulas (6-1), (6-2), and (6-3) can be produced by making use of conventionally known methods as described below, for example.
  • Compound of formula (6-1) Glucose
  • any alcohol compound that forms a glycosidic bond with the 1-position of pyranose can be used without particular limitation.
  • linear or branched aliphatic alcohols such as methanol, ether, propanol, isopropanol, bubutanol, etc.
  • carbons such as cyclohexanol, cyclopentanol, cyclopentanol, etc.
  • Aliphatic alcohols of number 58 aromatic alcohols such as phenol, cresol, naphthol, arabofuranose, erythrofuranose, darcofuranos, galac ⁇ furanose, fructofuranose, ribofuranose, deo Pyranoses such as xylipofuranos, thorefuranos, xylofuranose, etc., arapopiranos, arroviranose, darcopyranose, galactopyranose, gloviranose, mannopyranose, lipopyranose, xylopyranose, darcopyranuronic acid , 2-amino _ 2-deoxy galactopyranose, 2-amino-2-deoxyglucopyranose, etc., aminobilanoses, dalcosane and other anhydrosaccharides, gentiobiose, sucrose, cellobiose, lactose, aralacose, maltose, Polysaccharides
  • R 1 represents an alkyl group having 1 to 20 carbon atoms, an aryl group that may have a substituent, or a heteroaromatic group
  • X represents a halogen atom.
  • alkyl group having 1 to 20 carbon atoms examples include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, a tert_butyl group, a hexyl group, Examples include octyl, decyl, dodecyl, hexadecyl, octyldecyl, and eicosyl groups.
  • the aryl group which may have a substituent is the same as described above.
  • the heteroaromatic group examples include a pyridyl group.
  • the alcohol compound represented by the formula (2) After activating the 2-phosphonylpyranose compound represented by the formula (1) as a pyranose compound in which the 2-position hydroxyl group is protected with the group A, the alcohol compound represented by the formula (2) is allowed to act as the alcohol compound.
  • the 2_phosphonoyl_1,2-transglycoside compound represented by the formula (3) can be produced.
  • Z is a basic S -... If it is R 1 or a group one SO- R 1, for example, J. Am C h em S o c , 20 01, 123, 901 5 Ya '' Ca rb ohyd ratesin Ch em istry and B iolo gy " , Wiley— After activating the 2-phosphonopyranose compound represented by formula (1) according to VCH, 2000, Vol. 1, Ch ap 4 (pp 93-134), The alcohol compound represented can be reacted.
  • This reaction is carried out in a solvent.
  • the solvent used include halogenated hydrocarbons such as dichloromethane, dichloroethane, and tetrachloroethane, and aromatic hydrocarbons such as toluene, but dichloromethane is tetrachloroethane. Should be anhydrous to the extent that it does not affect the reaction.
  • the amount of the solvent used may be about 1 to 100 liters, preferably about 5 to 50 liters per kilogram of compound (1).
  • Compound (1) is activated by the action of 2,6-tert-butyl 4-methylpyridine (D TBMP), benzenesulfinyl piperidine (BSP), trifluoromethane anhydride sulfonic acid (T f 2 0), etc. Is called.
  • D TBMP 2,6-tert-butyl 4-methylpyridine
  • BSP benzenesulfinyl piperidine
  • T f 2 0 trifluoromethane anhydride sulfonic acid
  • the amount of DT BMP is 1-5 molar equivalents, the amount of B SP 1-2 equivalents, the amount of T f 2 0 1-2 and equivalents It ’s good.
  • This reaction is preferably carried out in an anhydrous system, preferably in the presence of a dehydrating agent such as molecular sieve (Molecular sieve 4A).
  • a dehydrating agent such as molecular sieve (Molecular sieve 4A).
  • This reaction is preferably performed at a low temperature of 140 ° C. or lower because the thermal stability of the active species generated in the middle is low.
  • the amount of the alcohol compound (2) used may be 0.8 to 3 mole equivalents, preferably 1.0 to 2.0 mole equivalents per mole of the compound (1).
  • the reaction temperature can be arbitrarily set in the range of 80 to 40 ° C, and is usually preferably 70 to 45 ° C, and the reaction time is not particularly limited, but is usually about 1 minute to 1 hour. Good.
  • the 2-phosphonopyranose compound represented by the formula (1) can be activated, for example, according to the description in the following literature.
  • the 1,2--lance-type bilanose compound glanose compound is conventionally used.
  • the production of orthoester compounds by-produced in the lycosylation reaction can be suppressed, and 1,2-one transglycoside compounds can be produced with extremely high selectivity.
  • the present invention relates to a 2-phosphonoylpyranose compound (I or III) in which a specific phosphate ester compound is used as a protecting group, and the 2-position hydroxyl group of the pyranose compound is protected with the protecting group (A).
  • a specific phosphate ester compound is used as a protecting group
  • the 2-position hydroxyl group of the pyranose compound is protected with the protecting group (A).
  • the alcohol compound represented by the formula (2) the steric bond between the 0-glycoside bond at the 1st position on the pyranose ring of the 0-glycoside compound ( ⁇ or IV) and the protected hydroxyl group at the 2nd position.
  • the arrangement can be a transformer arrangement with high selectivity. Furthermore, this stereoselectivity can be maintained without being greatly affected by the type of alcohol compound to be acted on.
  • the 2-phosphonoyl 1,2-transglycoside compound represented by the formula (3) produced by this production method includes the 2-phosphonoyl _ 1,2-transglycoside compound represented by the formula (3a). It is possible to form a new glycoside bond by using an alcohol compound. If the alcohol compound to be acted on is, for example, the alcohol compound represented by the formula (2a), it is possible to further form a glycosidic bond, and the sugar chain can be arbitrarily extended according to the number of repetitions.
  • the 2-phosphonoleu 1,2--lance glycoside compound represented by the formula (3) obtained above and the 2-phosphonoleu 1,2-trans glycoside compound represented by the formula (3 a) are not described in the literature. It is a novel compound.
  • the protecting group A at the 2-position hydroxyl group can be easily removed from the various glycoside compounds obtained.
  • reaction formula 1 3 a base is allowed to act on the 2-phosphonoyl 1,2-transglycoside compound represented by the formula (3), thereby removing the group A. 1,2-transglycoside compounds can be produced.
  • Examples of the base to be used include alkali metal alkoxides such as sodium methoxide, sodium ethoxide and potassium t-butoxide, and alkali metal hydroxides such as sodium hydroxide and lithium hydroxide.
  • bases can be used alone or in combination of two or more, and the amount used is 1 to 10 equivalents, preferably 2.0 to 5.0 equivalents, relative to compound (3).
  • This reaction is carried out in a solvent, and examples of the solvent used include alcohols such as methanol, ethanol and isopropanol, water or a mixed solvent thereof, or a mixed solvent of water, alcohol and tetrahydrofuran, dioxane or the like. It is possible.
  • the amount of these solvents used may be about 1 to 100 liters, preferably about 5 to 20 liters, per 1 kg of compound (3).
  • the reaction temperature can be arbitrarily set within the range of 0 ° C to the boiling point of the solvent, and is usually room temperature. To about 60 ° C is preferred.
  • the reaction time is not particularly limited, but usually about 0.5 to 10 hours is sufficient.
  • part means “part by weight” unless otherwise specified.
  • SPh is a thiophenyl group
  • Bn is a benzyl group
  • TBS is a tert-butyldimethylsilyl group
  • c-He X is a cyclohexyl group
  • Ph is a phenyl group
  • TCPN is a tetrachlorophthaloyl group.
  • the organic layer is separated, the aqueous layer is extracted with ethyl acetate, and all the extracted organic layers are washed with saturated brine. Then, after drying over magnesium sulfate, filtration is performed, and the filtrate is subjected to distillation of the organic solvent under reduced pressure using a rotary evaporator to obtain a crude product.
  • 2-Phosphonylthiophenyl dalcoside compound (6 3.9 mg, 0.09 mm ol), BS P (20.9 mg, 0.10 mm o 1) and DTB MP (39. Omg) prepared in Example 1 , 0.1 8 mmo 1) and about 90 mg of molecular sieves
  • the 2-phosphonoyl 1,2-glycoside compound (20.5111, 0.01 811111101) prepared in Example 21 was mixed with 1,4-dioxane (0.50 m 1) sodium (7 ⁇ 6 mg, 0. 33 lmmo 1) solution was added at room temperature, and after 2 hours, the reaction mixture was neutralized with saturated aqueous ammonium chloride solution. The organic layer was separated and the water tank was extracted three times with ethyl acetate. The extract was combined with the organic layer, washed with saturated brine, dried over magnesium sulfate, and concentrated under reduced pressure to give a residue (20.5 mg). The residue is an alcohol form from which the 2-position phosphonyl group has been removed.
  • the obtained residue was purified by flash column chromatography (silicc agel 1.0 g; elu ti on w i th 30% et al l acet e te in h x a n e) to obtain a 2-acetoxyglycoside compound.
  • a specific phosphate ester (phosphonoyl group) as a protecting group for the 2-position hydroxyl group of a furanose compound or a pyranose compound can be selectively used as a sugar donor in a glycosylation reaction.
  • _Trans-type glycosidic bonds can be formed, and the generation of by-products corresponding to orthoesters can be suppressed.
  • sugar chains can be arbitrarily extended.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Molecular Biology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Saccharide Compounds (AREA)

Abstract

(a)フラノース化合物又はピラノース化合物と(b)アルコール化合物とからグリコシド化合物を得る方法において、2位水酸基が基Aで保護された置換基を有することのあるフラノース化合物又は置換基を有することのあるピラノース化合物を用いることを特徴とする、2位水酸基に対して選択的にトランス配置のグリコシド化合物を製造する方法。(A)[R2及びR3は、同一又は異なって炭素数1から4のアルキル基、置換基を有することのあるアリール基を表し、或いはR2及びR3が互いに結合して炭素数2から4のアルキレン基を示す(該アルキレン基は、炭素数1から4のアルキル基で置換されてもよく、フェニレン基を介していてもよい)。m及びnは0又は1の整数を表す。]

Description

1 , 2 _トランスグリコシド化合物の製造方法
技術分野
本発明は、 1 , 2一トランス配置のグリコシド化合物を選択的に製造する方法に 関する。
明 背景技術
糖鎖は核酸やタンパク質に次ぐ第 3の生体内高分子として近年大いに注目を集 めている。 細胞表面に存在する糖鎖は、 細胞間の情報伝達やウィルスなどの外部 マトリックスとの相互作用など、 多様な機能を持つことが明らかになつてきてお り、 糖鎖の構造一活性相関の解明は急務の課題である。 しかし、 糖鎖化合物は構 造 ·結合位置'長さの異なる不均一な混合物として細胞表面に存在しているため、 生体サンプルから化学的に純粋な糖鎖化合物を分離、 精製することは極めて困難 である。 このようなことから、 化学合成による構造が明確で化学的に純粋な糖鎖 化合物の供給が強く望まれている。
1, 2—トランスグリコシド結合は、糖鎖に多く見られる代表的なグリコシド結 合である。 これまでこの結合の立体選択的な合成法は、 2位水酸基の保護基とし てァシル基を用い、 この分子内関与に基づく立体配向性効果を利用してきた。 し かし、 この方法ではオルトエステル体の副生が常に問題となっていた。
本発明者はチォグリコシドのみを用いて同じ反応を繰り返すことでオリゴ糖を 合成する連続的なグリコシル化反応を開発した(非特許文献 1 )。 この方法はダル コサミンのような 2位にアミノ基を持つ糖誘導体に対してはきわめて有効であつ たが、 グルコース、 ガラクトースなどの 2位に水酸基を持つ糖誘導体を用いた場 合には、 オルトエステル体のみが選択的に生成すると共に、 その O—グリコシド への異性化はきわめて困難であった。
Figure imgf000003_0001
o -グルコシド体
オル卜エステル体
[P hはフエ二ル基を表す。 Bnはベンジル基を表す。]
〔非特許文献 1〕 An g ew. C h em. I n t. Ed. 2004, 43, 2 145
本発明の目的は、 2位に水酸基を有する糖誘導体において、 オルトエステル体 の副生を抑制し、選択的に 1, 2—トランスグリコシド化合物を製造する方法を提 供することにある。 発明の開示
本発明は以下の 1, 2—トランスグリコシド化合物の製造方法及びその製造方 法に用いられる、 2—ホスホノィル一 1, 2—トランスグリコシド化合物に係る。
1. (a) フラノース化合物又はピラノ一ス化合物と (b) アルコール化合物とか らグリコシド化合物を得る方法において、 2位水酸基が基 Aで保護された置換基 を有することのあるフラノース化合物又は置換基を有することのあるピラノース 化合物を用いることを特徴とする、 2位水酸基に対して選択的にトランス配置の グリコシド化合物を製造する方法。
0 2
ー R2
(0)— R3 (A)
[1 2及び113は、 同一又は異なって炭素数 1から 4のアルキル基、 置換基を有す ることのあるァリール基を表し、或いは R 2及び R 3が互いに結合して炭素数 2か ら 4のアルキレン基を示す (該アルキレン基は、 炭素数 1から 4のアルキル基で 置換されてもよく、 フエ二レン基を介していてもよい)。 m及び nは 0又は 1の整 数を表す。]
2. フラノ一ス化合物がァラポフラノース、 エリ トロフラノース、 ダルコフラノ ース、 リボフラノース、 トレオフラノース又はキシロフラノースであり、 ピラノ ース化合物がァラボビラノース、 アルトロビラノース、 ダルコピラノース、 ガラ クトピラノース、 グロピラノース、 マンノピラノース、 リポピラノース、 キシロ ピラノース又はダルコピラヌロン酸であり、 アルコール化合物が炭素数 1〜4の 脂肪族アルコール類、炭素数 5〜8の脂環式アルコール類、芳香族アルコール類、 フラノース類、 ピラノース類、 アミノピラノース類、 アンヒドロ糖類、 多糖類、 N—ァセチルピラノース類又はグリセロール類である請求項 1記載のトランス配 置のダリコシド化合物を製造する方法。
3. 式 (1) で表される 2—ホスホノィルピラノース化合物に式 (2) で表され るアルコール化合物を作用させることを特徴とする式 (3) で表される 2—ホス ホノィルー 1, 2一トランスグリコシド化合物の製造方法。
Q1— Z (1)
Figure imgf000004_0001
[式中、 Zは基—S— R1, 基—SO— R1 基一 Se— R 基 _0_C (=NH) CX3、 ハロゲン原子、 アルコキシ基、 アルケニルォキシ基、 基— P (OR1) 3、 基— P〇 (OR1) 3を表す。 ここで R1は炭素数 1から 20のアルキル基、 置換 基を有することのあるァリール基、 ヘテロ芳香族基を表し、 Xはハロゲン原子を 表す。 R4、 R5、 R6は同一又は異なって、 糖水酸基の保護基を表す。 Eはメチ レン基又はカルボ二ル基を表す。 Aは前記に同じ。]
Q2 OH (2) [式中、 Q 2は炭素数 1から 4のアルキル基、 任意の位置に置換基を有すること のある炭素数 5から 8のシクロアルキル基又は下記の基を表す。
Figure imgf000005_0001
L 1は基一 OA _OG、 -N (J x) (J 2) である。
A1は以下に示す基、 Gは糖水酸基の保護基、 J 1及び J 2は水素原子又はアミノ 基の保護基を表す。
― メ O — R2'
、(0)n,—R3' (A1)
ここで R2'及び R3'は、 同一又は異なって炭素数 1から 4のアルキル基、 置換 基を有することのあるァリール基を表し、 或いは R2'及び R3'が互いに結合して 炭素数 2から 4のアルキレン基を表し (該アルキレン基は、 炭素数 1から 4のァ ルキル基で置換されてもよく、 フエ二レン基を介していても.よい)、 m'及び n' は 0又は 1の整数を表す。 Z1は基一 S— Rr、 基一 SO— R 、 基一 Se— R1' 基一 O— C ( = NH) CX'3、 ハロゲン原子、 アルコキシ基、 アルケニルォキシ 基、 基一 P (OR1 ) 3、 基一 PO (OR1') 3基、 一 OG1を表す。 ここで R1' は炭素数 1から 20のアルキル基、 置換基を有することのあるァリール基、 へテ 口芳香族基を表し、 'はハロゲン原子を表し、 G1は糖水酸基の保護基を表す。 R7、 R8、 R9は同一又は異なって、 糖水酸基の保護基を表す。 E1はメチレン基 又は力ルポ二ル基を表す。]
Qla-0-Q2 (3)
ο 1 a =
Figure imgf000006_0001
[式中、 Q2、 A、 R4、 R5、 R6は前記に同じ。]
4. 式 (1) で表される 2—ホスホノィルピラノース化合物に式 (2 a) で表さ れるアルコール化合物を作用させることを特徴とする式 (3 a) で表される 2一 ホスホノィルー 1, 2-トランスグリコシド化合物の製造方法。
Q2a-OH (2 a)
[式中、 Q2aは下記の基を表す。 A1 R7、 R8、 R9、 E1は前記に同じ。 Z2 は基— S_Rr、 基— SO— R 、 基一 Se— R 、 基— O— C ( = NH) CX'3、 ハロゲン原子、 アルコキシ基、 アルケニルォキシ基、 基— P (OR1') 3、 基— P
〇 (OR1') 3基を表す。 R 、 X'は前記に同じ。]
Figure imgf000007_0001
(Q2a-9)
Ql a-0-Q2a (3 a)
[式中、 Qla及び Q2aは前記に同じ。]
5. 式(3 a)で表される 2一ホスホノィルー 1, 2-トランスダリコシド化合物 に少なくとも 1回以上アルコール化合物を作用させる工程を繰り返すことを特徴 とする 2一ホスホノィルー 1, 2一トランスグリコシド化合物の製造方法。
6. 式(3) で表される 2一ホスホノィルー 1, 2—トランスグリコシド化合物に 塩基を作用させることを特徴とする式(4)で表される 1, 2—トランスダリコシ ド化合物の製造方法。
Q3-0-Q4 (4)
Figure imgf000007_0002
[式中、 R4、 R5、 R6、 Eは前記に同じ。 Q4は炭素数 1から 4のアルキル基、 任意の位置に置換基を有することのある炭素数 5力 ら 8のシクロアルキル基又は 下記の基を表す。
Figure imgf000008_0001
(Q4-9)
L2は基—OH、 — OG、 — N (J 1) (J 2) である。 τΎ、 R7、 R8、 R9、 E1, G、 J J 2は前記に同じ。]
7. 式 (1) で表される 2 _ホスホノィルピラノース化合物。
8. 式 (3) で表される 2一ホスホノィル一 1, 2—トランスグリコシド化合物。
9. 式 (3 a) で表される 2 _ホスホノィルー 1, 2—トランスグリコシド化合物。 本発明においては、 フラノース化合物又はピラノ一ス化合物の 2位水酸基が特 定のリン酸エステルで保護された 2—ホスホノィルフラノ一ス化合物又は 2—ホ スホノィルピラノース化合物を用いることにより、選択的に 1, 2—トランス型の 立体配置を有するグリコシド化合物を製造できることを見出して本発明を完成し た。
本明細書において、 各置換基は以下の通りである。
炭素数 1〜4のアルキル基としてはメチル基、 ェチル基、 n—プロピル基、 イソ プロピル基、 n—ブチル基、 イソプチル基、 s e c -ブチル基、 t e r t—プチ ル基等が挙げられる。
ァリール基としては、 例えばフエニル基、 ナフチル基等を挙げることができ、 任意の位置に置換基を有していてもよレ^置換基としては、例えばハロゲン原子、 炭素数 1から 4のアルキル基等が挙げられる。 ハロゲン原子としては具体的には フッ素原子、 塩素原子、 臭素原子、 ヨウ素原子を挙げることができる。 これらの 置換基は同一又は異なって 1から置換可能な数までで置換していてもよい。
炭素数 2〜 4のアルキレン基としては、 ジメチレン基、 トリメチレン基、 テト ラメチレン基が挙げられ、 任意の位置に炭素数 1から 4のアルキル基で置換され ていてもよく、 フエ二レン基を介していてもよい。 具体的には、 基— (CH2) 2 一、 基一 (CH2) 3—、 基一 (CH2) 4—、 基 _C (CH3) 2C (CH3) 2—、 基一 CH2CH (CH3) CH2—、 基 _CH (CH3) CH2CH (CH3) 一、 基一 C (CH3) 2CH2CH2—、 基— CH2C (CH3) 2CH2_、 _CH2CH 2— C6H4— CH2—等を例示できる。
アルコキシ基としては、 メトキシ基、 エトキシ基、 n—プロポキシ基、 イソプ 口ポキシ基、 n—ブトキシ基、 イソブトキシ基、 s e c—ブトキシ基、 t e r t ーブトキシ基等の炭素数 1〜 4のアルコキシ基が挙げられる。
アルケニルォキシ基としては、 ビニルォキシ基、 プロぺニルォキシ基、 ブテニ ルォキシ基等の炭素数 2〜4のアルケニルォキシ基が挙げられる。
糖水酸基の保護基としては、 糖化合物の水酸基の保護基として使用されるもの であれば特に制限されず、 例えば、 ベンジル基、 メ卜キシメチル基、 t e r t— プチルジメチルシリル基、 トリイソプロビルシリル基、 ベンゾィル基、 ァセチル 基、 ピバロイル基、 レブリル基等を挙げることができ、 隣接する 2つの水酸基に 対してメチレン基、 エチレン基、 イソプロピリデン基、 ベンジリデン基で環を形 成してもよい。
炭素数 5から 8のシクロアルキル基としては、 シクロペンチル、 シクロへキシ ル、 シクロへプチル、 シクロォクチルを挙げることができ、 任意の位置に置換基 を有していてもよい。 置換基としては、 炭素数 1から 4のアルキル基を挙げるこ とができ、 具体的には、 4, 5—ジメチルペンチル、 4 _メチルへキシル、 3, 5 一ジメチルへキシル、 4- t e r t—ブチルへキシル、 2, 4, 6—トリメチルへ キシル等を例示できる。 本発明においては、 2位水酸基が基 Aで保護された、 置換基を有することのあ るフラノ一ス化合物又は置換基を有することのあるビラノース化合物とアルコ一 ル化合物を用いて、 1, 2 -トランスダルコシド化合物を製造する。
Figure imgf000010_0001
[R 2、 R 3、 m、 nは前記に同じ。]
フラノース化合物としては、 水酸基を 2位にもつフラノース化合物であれば特 に制限されず使用することができ、 例えばァラポフラノース、 エリ トロフラノ一 ス、 ダルコフラノ一ス、 リボフラノース、 卜レオフラノ一ス又はキシロフラノー スが挙げられる。 これらフラノース化合物は置換基を有していても良く、 置換基 としては、 糖水酸基の保護基、 糖水酸基の保護基で保護されていてもよい単糖類 又は多糖類からなる基を例示することができる。
ビラノース化合物としては、 水酸基を 2位にもつピラノース化合物であれば特 に制限されず使用することができ、 例えばァラポピラノース、 アルトロビラノー ス、 ダルコピラノース、 ガラク卜ピラノース、 グロピラノース、 マンノピラノー ス、 リポピラノース、 キシロビラノース、 ダルコピラヌロン酸等が挙げられる。 これらピラノース化合物は置換基を有していても良く、 置換基としては、 例えば 糖水酸基の保護基、 糖水酸基の保護基で保護されていてもよい単糖類又は多糖類 からなる基を例示することができる。 .
基 Aとしては、 具体的には以下に示すものが挙げられる。
Figure imgf000011_0001
(A - 1) (A-2) (A-3) (A-4) (A-5)
Figure imgf000011_0002
これらのリン酸エステル基の中でも、 基 (A— 3) 及び (A— 5) が特に好ま しく使用される。
以下、 説明を簡略化するためにビラノース化合物のみを用いて発明の実施につ いて説明するが、 フラノース化合物についても同様に実施することができる。
2位水酸基が基 Aで保護されたピラノース化合物は、 ピラノ一ス化合物に式 (5) で表されるリン酸ハライド化合物を反応させることによって製造すること ができる。
A-X3 (5)
[式中、 Aは前記に同じ。 X3はハロゲン原子を示す。]
例えば、 式 (1) で表される 2—ホスホノィル一 1, 2—トランスピラノース化 合物は、 以下の反応式一 1に従って製造することができる。
反応式一 l
Figure imgf000012_0001
(6-3) (1-Q1-3)
[式中、 A、 R4、 R5、 R6、 Z、 X3は前記に同じ。]
反応式— 1によると式 (6— 1)、 (6— 2)、 (6-3) で表されるピラノース 化合物に式 (5) で表されるリン酸ハライドを作用させることによって、 式(1) で表される化合物に相当する式 (1— Q1— 1)、 (1 -Q1- 2), (1一 Q1— 3) で表される 2 _ホスホノィル— 1, 2 -トランスピラノース化合物を製造するこ とができる。
本反応は通常溶媒中で行われ、 式 (6— 1)、 (6-2), (6 -3) で表される ピラノース化合物に塩基を作用させた後、 式 (5) で表されるリン酸ハライドを 作用させる。 使用する溶媒としては、 反応に不活性な溶媒であれば特に制限され ず、 例えば、 へキサン、 ヘプタン、 ペンタン等の脂肪族炭化水素類、 シクロへキ サン等の脂環式炭化水素類、 ベンゼン、 トルエン、 キシレン等の芳香族炭化水素 類、 ジクロロメタン、 クロ口ホルム、 1, 2—ジクロロェタン、 1, 1, 1—トリク ロロェタン、 テトラクロロエチレン、 トリクロロエチレン、 四塩化炭素、 クロル ベンゼン、 ジクロロベンゼン等のハロゲン化炭化水素類、 ジェチルエーテル、 ィ ソプロピルエーテル、 テ卜ラヒドロフラン、 ジォキサン、 モノグライム等のエー テル類、 N, N—ジメチルホルムアミド、 N, N—ジメチルァセトアミド、 1, 3— ジメチルイミダゾリジノン等のアミド類、 ジメチルスルホキシド等のスルホキシ ド類又はこれらの混合溶媒等が挙げられる。 これらの中でも、 特にエーテル類、 アミド類、 スルホキシド類が好ましい。
これら溶媒の使用量は、 式 (6— 1)、 (6— 2)、 (6-3) で表されるピラノ ース化合物 1 k g当たり 1〜 100リツトル程度、 好ましくは 5〜 20リツトル 程度とすればよい。
使用する塩基としては、 例えば炭酸ナトリウム、 炭酸カリウム等のアルカリ金属 炭酸塩、 水素化ナトリウム等のアルカリ金属水素化物、 卜リエチルァミン、 ピリ ジン、 DBU等の有機塩基、 ブチルリチウム、 リチウムジイソプロピルアミド、 リチウムピストリメチルシリルアミド等のリチウム塩が挙げられる。
これら塩基は 1種または 2種以上を併用することができ、 その使用量は式 (6 一 1)、 (6— 2)、 (6— 3)で表されるピラノース化合物に対して 1〜10当量、 好ましくは:!〜 5当量とするのがよい。
式 (6— 1)、 (6 -2), (6-3) で表されるビラノース化合物と式 (5) で 表されるリン酸ハライドとの使用割合は任意の割合で使用することができるが、 前者 1モルに対して、後者を好ましくは 1. 0〜2.0モル当量使用するのがよい。 反応温度は— 20〜100°Cの範囲で任意に設定することができ、 通常 0〜3 0°Cが好ましく、 反応時間は特に限定されないが、 通常 30分〜 3時間程度とす ればよい。
以上のようにして得られた、 2位水酸基がリン酸エステルで保護された 2—ホ スホノィルピラノース化合物 (1) は文献未記載の新規化合物である。
式 (6— 1)、 (6-2), (6-3) で表されるピラノース化合物は、 例えば下 記のように従来公知の方法を駆使して製造することができる。 式 (6-1) の化合物 グルコース
Figure imgf000014_0001
Figure imgf000014_0002
参考文献:
Ca r b ohyd r. Re s. 1992, 236, 73
C an. J. Chem. 1965, 43, 2199.
O r . L e t t. 2004, 3797. 式 (6— 2) の化合物 ガラクトース
Figure imgf000014_0003
TL : Te t r ahe d r on L e t t. 1989, 30, 2537. NAP : 2 -n aph t hy lme t hy l 式 ( 6 - 3 ) の化合物 マンノース eq) eq)
h
Figure imgf000015_0001
61 % (3 steps) アルコール化合物としては、 ピラノースの 1位とグリコシド結合を形成するも のであれば特に制限されず使用することができる。 例えば、 メタノール、 ェ夕ノ —ル、 プロパノール、 イソプロパノール、 ブ夕ノール等の直鎖又は分岐鎖の炭素 数 1 4の脂肪族アルコール類、 シクロへキサノール、 シクロペン夕ノール、 シ クロォク夕ノール等の炭素数 5 8の脂環式アルコール類、 フエノール、 クレゾ ール、 ナフトール等の芳香族アルコール類、 ァラボフラノース、 エリ トロフラノ ース、 ダルコフラノ一ス、 ガラク卜フラノース、 フルクトフラノース、 リボフラ ノース、 デォキシリポフラノ一ス、 トレォフラノ一ス、 キシロフラノース等のフ ラノース類、 ァラポピラノ一ス、 アル卜ロビラノース、 ダルコピラノース、 ガラ クトピラノース、 グロビラノース、 マンノピラノース、 リポピラノース、 キシロ ピラノース、 ダルコピラヌロン酸等のピラノース類、 2—ァミノ _ 2—デォキシ ガラクトピラノース、 2—アミノー 2—デォキシグルコピラノース等のアミノビ ラノース類、 ダルコサン等のアンヒドロ糖類、 ゲンチオビオース、 スクロース、 セロビオース、 ラクトース、 アロラク卜一ス、 マルト一ス、 トレハロース、 N— ァセチルラクトサミン、 カナマイシン、 カスガマィシン等の多糖類、 2 -ァセト アミドー 2—デォキシガラク卜ビラノース、 2一ァセ卜アミドー 2—デォキシグ ルコピラノース、 2—ァセトアミドー 2—デォキシマンノピラノース、 ァスパル チルダリコシラミン等の N—ァセチルピラノース類、 グリセ口ール類等が挙げら れ、 反応に悪影響を及ぼさない置換基が置換されていてもよい。
2位水酸基が基 Aで保護されたビラノース化合物にアルコール化合物を作用さ せトランス配置のグリコシド化合物を得ることができ、 該反応はビラノース化合 物の 1位炭素を活性化して、 アルコール化合物を作用させる従来公知の方法を適 用することができる。 該反応は例えば下記反応式一 2で示すことができる。 反応式一 2
Q2— OH (2)
Q1— Z ^ Q1a— 0-Q2
0) (3)
[式中、 Q Qla、 Q2は前記に同じ。 Zは基 _S— R1 基一 SO— R1 基一 Se-R1, 基一 0 - C ( = NH) CX3、 ハロゲン原子、 アルコキシ基、 ァルケ ニルォキシ基、 基— P (OR1) 3、 基 _PO (OR1) 3を表す。 ここで R1は炭 素数 1から 20のアルキル基、 置換基を有することのあるァリール基、 ヘテロ芳 香族基を表し、 Xはハロゲン原子を表す。]
炭素数 1から 20のアルキル基としては、 例えばメチル基、 ェチル基、 n—プ 口ピル基、 イソプロピル基、 n—プチル基、 イソブチル基、 s e c—ブチル基、 t e r t _ブチル基、 へキシル基、 ォクチル基、 デシル基、 ドデシル基、 へキサ デシル基、 ォク夕デシル基、 エイコシル基等が挙げられる。 置換基を有すること のあるァリール基は前記と同様である。 ヘテロ芳香族基としては、 例えばピリジ ル基等が挙げられる。
2位水酸基が基 Aで保護されたピラノース化合物として式 (1) で表される 2 一ホスホノィルピラノース化合物を活性化した後、 アルコール化合物として式 (2) で表されるアルコール化合物を作用させて、 式 (3) で表される 2 _ホス ホノィル _ 1, 2—トランスグリコシド化合物を製造することができる。
式 (1) で表される 2—ホスホノィルピラノース化合物において、 Zが基一 S — R1や基一 S O— R1である場合、 例えば J. Am. C h em. S o c., 20 01, 123, 901 5や'' Ca r b ohyd r a t e s i n Ch em i s t r y and B i o l o gy", Wi l e y— VCH, 2000, Vo l . 1, Ch ap 4 (p p 93 - 134) に準じて、 式 (1) で表される 2—ホスホノ ィルピラノース化合物を活性化した後、 式 (2) で表されるアルコール化合物を 反応させることができる。
本反応は溶媒中で行われ、 使用される溶媒としてはジクロロメタン、 ジクロロ ェタン、 テトラクロ口エタン等のハロゲン系炭化水素、 トルエン等の芳香族炭化 水素が挙げられるが、 ジクロロメ夕ンゃテトラクロロェタンが好ましく、 反応に 影響しない程度に無水とすべきである。 溶媒の使用量としては、 化合物 (1) 1 k g当たり、 1〜 100リツトル、 好ましくは 5〜 50リツトル程度とすればよ い。
化合物 (1) の活性化は、 2, 6 - t e r t一プチルー 4 _メチルピリジン (D TBMP)、 ベンゼンスルフィニルピペリジン (B S P)、 無水トリフルォロメ夕 ンスルホン酸 (T f 20) 等を作用させることで行われる。
化合物 (1) 1モルに対して、 DT BMPの使用量は 1〜 5モル当量程度、 B SPの使用量は 1〜2当量程度、 T f 20の使用量は 1〜2当量程度とすればよ い。
本反応は無水系で行うのが好ましく、 モレキュラーシーブ (モレキュラーシー ブ 4A) 等の脱水剤の存在下で行うのが好ましい。
本反応は、 中間に生じる活性種の熱安定性が低いため、 一 40°C以下の低温で 行うのが好ましい。
以上のようにして、 化合物 (1) を活性化した後、 アルコール化合物 (2) を 添加することにより、 2一ホスホノィルー 1, 2—グリコシド化合物 (3) を製造 することができる。
アルコール化合物 (2) の使用量は、 化合物 (1) 1モルに対して 0· 8〜3モ ル当量、 好ましくは 1. 0〜2.0モル当量とすればよい。 反応温度は一 80〜一 40°Cの範囲で任意に設定することができ、 通常— 70 〜一 45°Cが好ましく、 反応時間は特に限定されないが、 通常 1分〜 1時間程度 とすればよい。
式 (1) で表される 2—ホスホノィルピラノース化合物は、 例えば以下の文献 の記載に準じて活性化することができる。
(a) Zが基— O— C ONH) CX である場合:" P r e p a r a t i v e C a r b ohyd r a t e Ch em i s t ry , Ma r c e l De kk e r, I n c., 1997, Ch ap 1 2 ( p p 283— 312 ) および" C a r b o hyd r a t e s i n Ch em i s t r y an d B i o l o gy", W i 1 e y-VCH, 2000, Vo l . 1, Ch a 2 (p p 5 - 59)
(b) Zが塩素原子又は臭素原子である場合: An g ew. Ch em. I n t. Ed. 1982, 2 1 , 155 - 224
(c ) Zがフッ素原子である場合:" P r e p a r a t i v e C a r bo hyd r a t e Ch em i s t r y , Ma r c e l D e k e r , I n c., 1 9 97, Ch ap 13 (pp 313— 338)
(d) Zがアルケニルォキシ基である場合:" P r e p a r a t i ve C a r b ohyd r a t e Chem i s t r y , Ma r c e l De kke r, I n c., 1997, Ch ap 14 (p p 339— 356) および', C a r b ohyd r a t e s i n Chemi s t r y and B i o l o gy "'Wi l e y— VCH, 2000, Vo l. 1, Ch a 6 ( p l 35- 154)
(e) Zが基一 P (OR1) 3である場合: " Ca r b ohyd r a t e s i n Ch em i s t r y and B i o l o gy , Wi l e y-VCH, 20 00, Vo l . 1, Chap 5 (p p 1 17 - 134)
( f ) Zが基一 PO (OR1) 3である場合: J. Ch em. S o c., Ch e m. Commun. 1989, 685および J. Am. C h em. So c. 20 01, 123, 9545
本製造方法によれば、従来より 1, 2—卜ランスタイプのビラノース化合物のグ リコシル化反応において副生するオルトエステル化合物の生成を抑制することが でき、極めて高い選択性で 1, 2一トランスグリコシド化合物を製造することがで さる。
本発明の製造方法の効果を次の図— 1に簡略化して示した。
図一 1
Figure imgf000019_0001
[式中、 A、 Q2、 Zは前記に同じ。]
図一 1において、 本発明は特定のリン酸エステル化合物を保護基とし、 該保護 基 (A) でピラノース化合物の 2位水酸基を保護した 2—ホスホノィルピラノー ス化合物 (I又は III) を使用することで、 式(2) で表されるアルコール化合物 を作用させて生成する 0—グリコシド化合物(Π又は IV)のピラノース環上 1位 の 0—グリコシド結合と 2位の保護水酸基との立体配置を高い選択性でトランス 配置とすることができる。 更に、 作用させるアルコール化合物の種類に大きく影 響されずに本立体選択性を維持することができる。
本製造方法により製造された式( 3 )で表される 2—ホスホノィルー 1 , 2—ト ランスグリコシド化合物中、 式(3 a)で表される 2—ホスホノィル _ 1, 2—ト ランスグリコシド化合物を用いて、 アルコール化合物を作用させることで新たに グリコシド結合を形成させることができる。 作用させるアルコール化合物を例え ば式 (2 a) で表されるアルコール化合物とすれば、 更にグリコシド結合を形成 させることが可能となり、 繰り返し回数に応じて、 任意に糖鎖を伸長させること ができる。
Qla-0-Q2a (3 a) [式中、 Ql a及び Q2aは前記に同じ。]
Q2a-OH (2 a)
[式中、 Q 2 aは前記に同じ。]
上記において得られた式(3)で表される 2—ホスホノィルー 1, 2—卜ランス グリコシド化合物、及び式(3 a) で表される 2—ホスホノィルー 1, 2—トラン スグリコシド化合物は文献未記載の新規化合物である。
次に得られた各種のグリコシド化合物から 2位水酸基の保護基 Aを容易に除去 することができる。
例えば、 下記反応式一 3のように、 式(3) で表される 2—ホスホノィルー 1, 2—トランスグリコシド化合物に塩基を作用させることで、 基 Aが除去された式 (4) で表される 1, 2—トランスグリコシド化合物を製造することができる。 反応式一 3
Q1a— 0— Q2 ^ Q3— 0— Q4
(3) (4)
[式中、 Ql a、 Q2、 Q3、 Q4は前記に同じ。 ]
使用される塩基としては、 例えばナトリウムメトキシド、 ナトリウムエトキシ ド、カリウム t一ブトキシド等のアルカリ金属アルコキシド、水酸化ナトリウム、 水酸化力リゥム等のアル力リ金属水酸化物が挙げられる。
これら塩基は 1種又は 2種以上を併用することができ、 その使用量は化合物 (3) に対して 1〜10当量、 好ましくは 2. 0〜5. 0当量とするのがよい。 本反応は溶媒中で行われ、 使用される溶媒としては、 例えばメタノール、 エタ ノール、 イソプロパノール等のアルコール類、 水又はこれらの混合溶媒、 または 水やアルコールとテトラヒドロフランやジォキサンなどの混合溶媒等が挙げられ る。
これら溶媒の使用量は、 化合物 (3) 1 k g当たり 1〜100リットル程度、 好ましくは 5〜20リツトル程度とすればよい。
反応温度は 0°Cから溶媒の沸点の範囲で任意に設定することができ、 通常室温 から 60°C程度が好ましい。反応時間は特に限定されないが、通常 0. 5 1 0時 間程度で十分である。 発明を実施するための最良の形態
以下に、 実施例を挙げて、 本発明をより具体的に説明するが、 本発明はこれら に限定されるものではない。 尚、 下記において特に断らない限り、 部は重量部を 意味する。 表中、 SPhはチオフェニル基、 Bnはべンジル基、 TBSは t e r t—ブチルジメチルシリル基、 c - He Xはシクロへキシル基、 P hはフエニル 基、 TCPNはテトラクロ口フタロイル基を示す。
参考例 1 リン酸ハライド A— X3の合成 (A A— 2 X3-C 1 )
Figure imgf000021_0001
ォキシ塩化リン (3. 7 g, 24. Ommo 1 ) とトリェチルァミン (4. 9 g, 4 8. 0 mm o 1 )溶液に 2, 3— d ime t hy l— 2, 3— bu t an e d i o l (2.4 g, 20.0 mm o 1 ) のジクロ口メタン溶液 (40.0ml) を室温で加 え、 そのままの温度で 2時間撹拌する。 得られた反応物を減圧下で濃縮すると粗 生成物が得られる。 昇華精製により 80%の収率で上記目的化合物を白色固体と して得た。
— NMR (400MHz, CDC13) 1. 51 (s, 6 H), 1. 53 (s: 6H).
実施例 1
Ph e ny l 3, 4, 6 - t r i— O - b e n z y l— 2_〇—(1, 1, 2, 2 - t e t r ame t hy l d ime t hy l e n e pho s phon oy 1 ) ― jS— D— t h i o g 1 u c o py r ano s i d e NaH
Figure imgf000022_0001
60— 72 %水素化ナトリウム (80. 0mg, 2. 0 mm o 1 ) の溶液に室温 下で 3, 4, 6— t r i—〇一 b e n z y l— j8— D— t h i o g l u c o py r ano s i d e (542. 7mg, 1. Ommo 1 ) を THF 2. 0mlに溶解させ て加える。 30分後に反応液に 2, 3— d i me t hy l— 2, 3— b u t y l e n e pho s ph o r o c h l o r i d a t e (297. 9 m g , 1. 5 mm o 1) を加える。 3. 5時間後に飽和重曹水で反応をとめる。 有機層を分離し、 水層 部を酢酸ェチルで抽出し、 抽出有機層は全て合せて飽和食塩水で洗浄する。 その 後硫酸マグネシウムで乾燥後、 ろ過処理をし濾液を減圧下ロータリ一エバポレー 夕一で有機溶媒を溜去し、 粗生成物を得る。 '
フラッシュクロマ卜 s i l i c a g e l 37 g ; e l u t i on w i t h 40% e t hy l a c e t a t e i n h e x an e) により、 標記 化合物 (456. 5mg) を得た。
収率: 65 %
性状:非晶質粉体
NMR (400MHz , CDC 13): 1- 35 (s, 3 H), 1.39 (s, 3H), 1.42 (s, 3 H), 1.49 (s, 3H), 3. 50— 3. 57 (m, 1 H), 3.61 ( t , J -9. 2Hz, 1 H), 3.65 - 3. 73 (m, 2H), 3.77 (d d, J = 1 1. 0, 1.4Hz, 1 H), 4.42-4. 52 (m, 1H), 4. 51 (d, J =l 2. 0Hz, 1 H), 4. 53 (d, J = 12. 8Hz , 1 H), 4.56 (d, J =l 2. 0Hz, 1 H), 4.66 (d, J =l 0. 0Hz, 1 H), 4.76 (d, J = 10. 8Hz, 2H), 4. 96 (d, J =l 0. 8Hz, 1 H), 7. 14— 7. 20 (m, 2 H), 7. 22 - 7. 35 (m, 14H), 7. 38 - 7.43 (m, 2 H), 7. 60 - 7. 66 (m, 2 H) . 13C NMR (1 0 OMHz, CDC 13) : 2 3. 67 (CH3, J CP=4. 6 Hz ), 23. 7 2 (CH3, JCP= 5. 4Hz), 24. 02 (CH3, J CP= 5. 3Hz), 24. 1 5 (CH3, JCP=5. 4Hz), 68. 89 (CH2), 7 3. 4 2 (CH2), 74. 92 (CH2), 7 5. 39 (CH2), 77. 55 (CH), 77. 9 5 (CH, J CP=6. 9Hz), 7 9. 3 7 (CH), 84. 94 (CH, J CP- 3. 1Hz), 86. 82 (CH, J CP=3. 8Hz), 88. 20 (C), 88. 38 (C), 1 27. 5 1 (CH), 12 7. 54 (CH), 127. 62 (CH, 2 C), 1 27. 75 (CH, 2 C), 127. 84 (CH, 2 C), 1 28. 1 1 (CH, 2 C), 1 28. 1 7 (CH, 2 C), 1 2 8. 30 (CH, 2 C), 1 2 8. 36 (C H, 2 C), 1 28. 74 (CH, 2 C), 1 3 2. 86 (CH, 2 C), 1 33. 0 9 (C), 137. 92 (C), 13 8. 0 7 (C), 1 38. 1 8 (C) .
以下同様にして、 実施例 2〜10を行った。
実施例 2 '
Ph e ny l 3, 4, 6— t r 卜〇— b e n z y l _2— O— (d i p h e n o x y pho s p h on oy l) ~ β—D— t h i o g 1 u c op y r an o s i d e.
Figure imgf000023_0001
収率: 57%
性状:白色粉末
一 NMR (400 MHz, CDC l 3) : 3. 53— 3. 60 (m, 1 H), 3. 66 - 3. 85 (m, 4H), 4. 52 (d, J = 1 2. 0Hz , 1 H), 4. 55 (d J = 1 1. 6Hz , 1 H), 4. 58 (d, J = 1 2. 0Hz, 1 H), 4. 54-4. 66 (m, 1H), 4. 7 3 (d, J = 8. 8Hz, 1 H), 4. 7 3 (d, J = 9. 6Hz , 1 H), 4. 83 (d, J = 1 0. 4H z , 1 H), 4. 90 (d, J = 10. 4Hz, 1 H), 7. 00 - 7. 53 (m, 30 H) .
実施例 3
Ph e ny l 3, 4, 6— t r i— O— b e n z y l— 2—0— ( t r ime t hy l e n e ph o s phon oy l) — j8— D— t h i o g l u c o py r a n o s i d e.
Figure imgf000024_0001
収率: 52%
性状:非晶質粉体
XH NMR (400MHz , CD C I 3) : 1. 73- 1.87 (m, 1 H), 1. 96-2. 1 1 (m, 1 H), 3. 57 - 3.63 (m, 1 H), 3. 66 (d d, J = 9. 8, 8. 6Hz, 1 H), 3. 72 (dd, J = 1 1. 0, 4. 6Hz , 1 H), 3. 76 - 3. 83 (m, 1 H), 3. 86 (t, J = 8. 6Hz, 1 H), 4. 32- 4. 23 (m, 5H), 4. 54 (d, J = 12.4H z , 1 H), 4. 57 (d, J = 1 1. 2 H z , 1H), 4. 59 (d, J = 1 0. 8 H z , 1 H), 4. 78 (d, J = 1 1. 2 H z , 1 H), 4. 79 (d, J = 10. OH z , 1 H), 4. 82. (d, J = 10.4Hz, 1H), 4. 96 (d, J = 10.4Hz , 1 H), 7. 17-7. 22 (m, 2 H), 7. 22 - 7. 39 (m, 14H), 7.40 - 7.45 (m, 2 H), 7. 61 -7.67 (m, 2 H) .
13C NMR (100MHz , CDC 13) : 25. 86 (CH2, J CP=6. 9 Hz), 68. 41 (CH2, J Cp= 8.4Hz), 68. 48 (CH2, J CP=6. 8Hz), 68. 82 (CH2), 73.39 (CH2), 74. 87 (CH2), 75. 34 (CH2), 77.65 (CH, JCP=3. 8Hz), 77.66 (CH), 79. 31 (CH), 84. 63 (CH, JCP= 1. 5Hz), 85. 94 (CH, J CP = 4. 6 H z), 1 2 7. 5 3 (CH), 1 2 7. 5 8 (CH, 2 C), 1 2 7. 6 0 (C H), 1 2 7. 7 8 (CH), 1 2 7. 8 3 (CH, 2 C), 1 2 7. 94 (CH), 1 2 8. 0 7 (CH, 2 C), 1 2 8. 2 7 (CH, 2 C), 1 2 8. 3 1 (CH, 2 C) 1 2 8. 3 8 (CH, 2 C), 1 2 8. 8 5 (CH, 2 C), 1 3 2. 1 9 (C), 1
3 2. 9 1 (CH, 2 C), 1 3 7. 8 3 (C), 1 3 7. 9 7 (C), 1 3 8. 1 5 (C). HRMS (FAB) mZ z : C a 1 c d f o r C36H40O8P S (M + H) +, 6 6 3. 2 1 8 2 ; F o un d 6 6 3. 2 1 94.
実施例 4
P h e n y l 3, 4, 6— t r i一 0_ b e n z y 1 - 2—O— ( 2—me t h y l t r ime t h y l e n e p h o s p h o n o y l ) — β—Ό— t h i o g l u c o p y r a n o s i d e.
NaH
Figure imgf000025_0001
収率: 5 5% (ジァステレオマ一率 7 9 : 2 1)
性状: 白色粉体
HRMS (FAB) m/z ·· C a 1 c d f o r C37H4208P S (M + H) +, 6 7 7. 2 3 3 8 ; F o u n d 6 7 7. 2 346.
実施例 5
Ph e n y l 3, 4, 6— t r i—O— b e n z y 1 _ 2— O— [( 1 R, 3 R) — 1, 3— d i me t h y l t r i me t hy l e n e p h o s p h o n o y 1 ] — jS— D— t h i o g l u c o p y r a n o s i d e. NaH
Figure imgf000026_0001
収率: 51%
性状:非晶質粉体
NMR (400MHz, CD C 13): 1. 31 (d d, J = 6.4, 1. 6 Hz, 3H), 1.45 (dd, J = 6. 6, 1 0Hz, 1 H), 1. 80— 1.88 (m, 1 H), 1. 93 - 2. 02 (m, 11-1), 3. 52 - 3. 60 (m, 1 H), 3. 61 (t, J = 9. 2Hz, 1 H), 3. 68 (dd, J = 1 1. 0, 4.6Hz , 1 H), 3. 76 (dd, J = 10. 8, 1. 6 H z , 1H), 3. 84 (t, J = 8.
6 H z , 1H), 4. 38 -4. 50 (m, 1 H), 4. 51 (d, J = 12. 0 H z , 1 H), 4. 53 (d, J = 1 1.2Hz , 1 H), 4.57 (d, J = 1 1. 6Hz , 1 H), 4. 67— 4. 77 (m, 1 H), 4.74 (d, J = 10.4Hz , 2H), 4. 79 (d, J = 10.4Hz, 1 H), 4. 78 -4. 90 (m, 1 H), 4. 94
(d, J = l 0. 8Hz, 1 H), 7. 14- 7. 18 (m, 2 H), 7. 22- 7.
34 (m, 16 H), 7. 38— 7.43 (m, 2 H), 7. 59 - 7. 64 (m, 2 H) .
13C NMR (100MHz, CDC 13) : 21. 26 (CH3, JCP=3. 8 Hz), 21. 72 (CH3, JCP=6. 9Hz), 37. 71 (CH2, JCP=6. 1 Hz), 68. 89 (CH2), 72. 83 (CH, JCP=6. 9Hz), 73.39 (CH2), 74. 01 (CH, JCP=6. 1Hz), 74. 90 (CH2), 75. 2
4 (CH2), 77. 62 (CH), 78. 02 (CH, J CP=6. 9Hz ), 79. 24 (CH), 84. 79 (CH, JCP=2. 3Hz), 86. 36 (CH, J CP = 3. 8Hz), 127. 52 (CH, 2 C), 127. 60 (CH, 2 C), 127.
76 (CH, 2 C), 127. 86 (CH, 4 C), 128. 20 (CH, 2 C), 1 2 8. 3 0 (CH, 2 C), 1 2 8. 3 6 (CH, 2 C), 1 2 8. 8 0 (CH, 2 C): 1 32. 7 2 (CH, 2 C), 1 3 2. 8 2 (C), 1 3 7. 8 8 (C), 1 3 8. 1 3 (C), 1 3 8. 1 9 (C) .
HRMS (FAB) m/z : C a 1 c d f o r C38H4408P S (M + H) +, 6 9 1. 249 5 ; F o u n d 6 9 1. 24 9 1.
実施例 6
P h e n y l 3, 4, 6 - t r i -O-b e n z y 1 - 2 -0- [( I S, 3 S) 一 1, 3— d i me t h y l t r i me t h y l e n e p h o s p h o n o y 1 ] — β—D— t h i o g l u c o p y r a n o s i d e.
NaH
Figure imgf000027_0001
収率: 48 %
性状:非晶質粉体
λΗ NMR (40 OMHz, CDC 1 3) : 1. 3 7 (d d, J = 6. 4, 0. 8 Hz, 3H), 1. 4 5 (d d, J - 6. 4, 2. OHz , 3 H), 1. 8 0— 1. 8 8 (m, 1 H), 1. 9 6 - 2. 03 (m, 1 H), 3. 5 2 - 3. 64 (m, 2H), 3. 6 7 (d d, J = 1 1. 0, 4. 6 Hz ,. 1 H), 3. 7 3 ( t , J = 8. 4Hz , 1 H), 3. 7 6 (d d, J = 1 1. 0, 1. 8Hz, 1 H), 4. 43 (d d d, J = 1 1. 4, 9. 4, 9. 0Hz , 1 H), 4. 5 1 (d, J = 1 2. OHz , 1 H), 4. 5 2 (d, J = 1 0. 8Hz , 1 H), 4. 5 6 (d, J = 1 2. OHz , 1 H), 4. 6 9 (d, J = 9. 6Hz , 1H), 4. 7 5 (d, J = 1 0. 8Hz, 2H), 4. 7 1 - 4. 8 4 (m, 2H), 4. 9 9 (d, i = 1 0. 8Hz , 1 H), 7. 1 3 - 7. 1 8 (m, 2H), 7. 2 1 - 7. 3 6 (m, 14H), 7. 3 9 - 7. 44 (m, 2H), 7. 5 8 - 7. 64 (m, 2 H) . 13C NMR (10 OMHz , CDC 13) : 2 1. 30 (CH3, J CP= 5.4 Hz), 21. 86 (CH3, J CP= 7. 6Hz), 37. 79 (CH2, J CP=6. 9Hz), 68. 93 (CH2), 72. 54 (CH, J CP=6. 1 Hz ), 73. 39 (CH2), 74. 04 (CH, J CP= 6. 9H z ), 74. 93 (CH2), 7 5.4 6 (CH2), 77.44 (CH), 77. 56 (CH, J CP=6. 8Hz ), 79. 36 (CH), 85. 1 1 (CH, J CP=2.3Hz), 86. 1 1 (CH, J CP = 4. GHz), 127. 52 (CH), 127.54 (CH), 1 27. 58 (CH, 2 C), 127. 76 (CH), 127. 83 (CH), 1 27. 88 (CH, 2 C), 1
28. 1 2 (CH, 2 C), 128. 22 (CH, 2 C), 128. 30 (CH, 2 C) 128. 36 (CH, 2 C), 128. 83 (CH, 2 C), 132.47 (C), 1
32. 79 (CH, 2 C), 137. 89 (C), 138. 08 (C), 138. 18 (C). HRMS (FAB) m/z : C a 1 c d f o r C38H4408 P S (M + H) +, 691.2495 ; Fo und 69 1. 25 15.
実施例 7
Ph e ny l 3, 4, 6 - t r i -O-b en z y 1 - 2- 0-(l, 1 - d i m e t hy l t r ime t hy l e n e pho s p h on oy 1) — j3— D— t h i o g l u c opy r an o s i d e.
Figure imgf000028_0001
収率: 54% (d i a s t e r e o r a t i o 69 : 31)
性状:非晶質粉体
HRMS (FAB) m/z : C a 1 c d f o r C38H4408P S (M + H) +, 691. 2495 ; Found 691. 2483.
実施例 8 Ph e ny l 3, 4, 6— t r i— O - b e n z y l— 2—〇_(1, 1, 3, 3— t e t r ame t hy l t r ime t hy l e n e p h o s pho n oy 1 ) — jS— D— t h i o— g 1 u c o py r an o s i d e.
Figure imgf000029_0001
収率: 91 %
性状:非晶質粉末
XH NMR (400 MHz, CDC 13): 1. 36 (s, 3H), 1.48 ( s , 3H), 1. 49 (s, 3H), 1. 57 (s, 3H), 1. 97 (dd, J = 14. 8, 0. 8Hz, 1 H), 2. 04 ( d d, J = 14. 8, 1. 2Hz, 1H), 3. 55 (ddd, J = 9.7, 4. 9, 1.7Hz , 1 H), 3. 61 (t, J = 9. 2
Hz , 1 H), 3. 64-3. 76 (m, 3H), 4.45- 4. 50 (m, 1H), 4.
52 (d , J = 10.4H z , 1H), 4.52 (d, J = 10. 8Hz, 1H), 4.
57 (d , J = 12.0 H z , 1H), 4.68 (d, J = 10. 0Hz, 1H), 4.
74 (d , J = 11.2Hz , 1H), 4.77 (d, J = 10. 0Hz , 1H), 5.
01 (d , J = 10.4Hz , 1H), 7. 15-7. 17 (m, 2H), 7. 23 -
7. 3 3 (m, 14H), 7. 42-7. 4.4 (m, 2 H), 7. 61-7. 63 (m,
2H) .
13C NMR ( 100MHz , CDC 13) : 30. 53 (d, J CP=3. 8Hz CH3), 30. 56 (d, JCP=3. 8Hz, CH3), 30. 69 (d, JCP=5. 3 Hz, CH3), 31. 10 (d, JCP=5.4Hz, CH3), 47. 30 (d, J CP=6. 8Hz, CH2), 68. 97 (CH2), 73. 38 (CH2), 74. 86 (CH2), 75. 11 (CH2), 77. 56 (CH), 77. 73 (d, JCP=6. 8Hz, CH), 79.25 (CH), 82. 13 (d, JCP=6.1Hz , C), 8 2. 1 9 (d, J Cp=6. 1 Hz, C), 8 5. 1 1 (d, J CP=2. 3Hz, CH) 8 6. 7 0 (d, J CP= 5 4. 6H z , CH), 1 2 7. 3 6 (CH), 1 2 7. 48 (CH), 1 2 7. 6 0 (CH, 3 C), 1 2 7. 7 2 (CH, 2 C), 1 2 7. 7 9 (CH, 2 C), 1 2 7. 8 8 (CH, 2 C), 1 2 8. 1 0 (CH, 2 C), 1 2 8.
2 8 (CH, 2 C), 1 2 8. 3 3 (CH, 2 C), 1 2 8. 7 3 (CH, 2 C), 1
3 2. 5 6 (CH, 2 C), 1 3 3. 2 6 (C), 1 3 7. 9 1 (C), 1 3 8. 2 0 (C) 1 3 8. 3 1 (C) .
HRMS (FAB) m/z : C a 1 c d f o r C40H48O8P S (M + H) +, 7 1 9. 2 8 0 8 ; F o u n d 7 1 9. 28 1 0.
実施例 9
P h e n y l 3, 4, 6 - t r i— O— b e n z y l — 2 _0— (2, 2— d i m e t h y l t r i me t h y l e n e p h o s p h o n o y l ) — β—Ό— t h i o g l u c o p y r a n o s i d e .
Figure imgf000030_0001
収率: 94%
性状:非晶質粉末
NMR (40 0MHz, CDC 1 3): 0. 9 0 (s , 3H), 1. 24 (s 3H), 3. 5 3 - 3. 6 0 (m, 1 H), 3. 6 2 ( t , J = 9. 2Hz , 1 H), 3. 6 9 (d d, J = 1 1. 0, 4. 6Hz , 1 H), 3. 7 6 (d d, J = 1 0. 8, 2. 0Hz , 1H), 3. 8 3 ( t , J = 8. 8 Hz , 1 H), 3. 8 6 -4. 0 2 (m, 2H), 4. 1 2 (d d, J = 1 0. 8, 4. 8Hz , 1 H), 4. 1 9 (d d, J = 1 1. 2, 4. 8Hz , 1 H), 4. 40 (d t , J = 1 2. 8, 9. 2Hz , 1 H), 4. 5 1 (d, J = 1 2. 0 Hz, 1 H), 4. 54 (d, J = 1 2. 8Hz , 1 H), W
4. 57 (d, J = 12. 0 Hz , 1 H) 75 (d, J = 12.8Hz , 1 H), 4. 75 (d, J - 9. 6 H z , 1 H), 8 (d, J = 10.0Hz , 1 H), 4. 92 (d, J = 10.4H z , 1 H) 14- 7. 19 (m, 2 H), 7. 22 -7. 36 (m, 14H), 7. 36- 7 (m, 2H), 7.58 - 7. 63 (m 2H) .
実施例 10
Ph e ny l 3, 4, 6 - t r i -O-b e n z y l -2-Ο- (b e n z y l i d e n e pho s p h o r on oy l ) — /3— D— t h i o g 1 u c o py r a n o s i d e .
Figure imgf000031_0001
収率: 84%
性状:白色粉体
^ NMR (400MHz , CDC 13): 3. 55 (ddd, J = 9.6, 4. 6, 1. 8Hz, 1 H), 3. 64 (t, J = 9.4Hz, 1 H), 3.70 (d d, J = 1 1.0, 4.6Hz , 1 H), 3. 73 - 3. 82 (m, 2H), 4.44— 4. 54 (m, 1 H), 4. 51 (d, J = 12.0Hz , 1 H), 4.54 (d, J = 1 1. 6Hz, 1 H), 4. 57 (d, J =12. 0Hz , 1 H), 4. 72 (d, J = 9. 6Hz , 1 H), 4. 75 (d, J = 10.6Hz , 1 H), 4. 82 (d, J = 10. 6Hz, 1 H), 4. 92 - 5.05 (m, 2 H), 5. 19— 5. 36 (m, 3 H), 7. 13-7.20 (m, 2H), 7.20 - 7. 37 (m, 18H), 7. 38 -7.43 (m, 2H), 7. 60 - 7. 65 (m, 2 H) .
実施例 11
Cy c 1 o h e xy l 3, 4, 6— t r i一 O— b e n z y l— 2—〇一 (1, 1, 2, 2— t e t r ame t hy l d ime t hy l e n e pho s pho r n o y 1 ) — —Ό— g 1 u c o py r an o s i d e.
1) BSPTf20/DTB P
Figure imgf000032_0001
実施例 1で製造した 2—ホスホノィルチオフエニルダルコシド化合物 (6 3. 9mg, 0. 09 mm o l ) と BS P (20. 9mg, 0. 10 mm o 1 ) と D T B MP (39. Omg, 0. 1 8mmo 1 ) と、 約 90 m gのモレキユラ一シーブス
4 Aを入れたジクロロメタン 0. 9m 1の混合溶液に T f 2〇 (33. 9mg, 0. 1 2mmo 1 ) を 60°Cで加える。 30分後にシクロへキサノール ( 1 3. Omg, 0. 14mmo 1 ) を加える。 更に 30分後 E t 3N (0. 09m l ) を加えて反 応をクェンチし、 反応混合物を室温に温めて飽和重曹水で中和する。 有機層を別 け、 水層部を酢酸ェチルで 3回抽出し、 抽出有機層は全て合せて飽和食塩水で洗 浄する。 その後硫酸マグネシウムで乾燥後、 ろ過し、 濾液を減圧下で有機溶媒を 溜去した。 残渣をフラッシュクロマトグラフィーして標記化合物を得た。
収率 87 %
性状: 白色非晶質粉末 ·
異性体比 α体: 3体 = <1 : 99
^ NMR (400MHz, CDC l 3) : 1. 1 7— 1. 30 (m, 2H), 1. 37 (s, 3H), 1. 38 (s, 3H), 1.44 (s, 3H), 1.45 (s , 3 H), 1. 44- 1. 58 (m, 4H), 1. 72 - 1. 82 (m, 2H), 1. 86- 1. 9 9 (m, 2 H), 3.47 (d dd, J = 9. 7, 5. 3, 1. 9Hz 1 H), 3.
5 7 (t, J = 9. 2 h z , 1H), 3. 60- 3. 7 1 (m, 2 H), 3. 69 ( t , J = 9. 0Hz , 1 H), 3. 73 (d d, J - 1 0. 8, 2. 0Hz , 1 H), 4, 40 (d dd, J = 1 0. 7, 9. 1, 7. 9Hz 1 H), 4. 49 (d, J = 8. 0 Hz, 1H), 4. 52 (d, J = 1 1. 2 Hz , 1 H), 4. 55 (d, J = 1 2. 0Hz , 1H), 4. 59 (d, J = 12. 0Hz , 1 H), 4. 73 (d, J = 1 0. 8Hz, 1 H), 4. 78 (d, J二 10. 8Hz, 1 H), 4. 94 (d, J = 10. 4Hz, 1 H), 7. 12-7. 19 (m, 2H), 7.23 - 7. 35 (m, 11 H), 7. 38 - 7.43 (m, 2 H) .
13C NMR (10 OMHz, CD C 13) : 23.70 (CH3, JCP=3. 1 Hz), 23. 76 (CH3, J CP=3. 0Hz), 23. 81 (CH2), 23. 91 (CH2), 24. 09 ( C H 3 , J CP= 2. 2Hz), 24. 1 5 (CH3, J CP = 3. 1Hz), 25. 64 (CH2), 31.48 (CH2), 33. 37 (CH2), 6 8. 96 (CH2), 73. 36 (CH2), 74. 89 (CH2), 75. 04 (CH2), 75. 07 (CH), 77. 75 (CH), 78. 03 (CH), 79. 55 (CH, J CP=6.8Hz), 83. 56 (CH, JCP=4. 6Hz), 87. 88 (C, J CP =9. 2Hz , 2 C), 99. 68 (CH, JCP=3. 1Hz), 127.48 (CH),
127. 53 (CH), 127. 62 (CH, 2 C), 127. 69 (CH), 127. 91 (CH, 2 C), 128. 20 (CH, 2 C), 128. 28 (CH, 2 C), 1
28. 30 (CH, 2 C), 1 28.33 (CH, 2 C), 1 37. 99 (C), 13 8. 21 (C), 138. 24 (C) .
以下同様にして、 実施例 12〜 22を行った。
実施例 12
Me t hy l 3, 4, 6— t r i— O— b e n z y l— 2— O— (d i p h e n o x y pho s p honoy l)— D— g l u c o py r an o s i d e.
Figure imgf000033_0001
収率 : 88%
性状:白色非晶質粉末
異性体比 α体: ;8体 =<1 : 99
XH NMR (400MHz, CDC 13): 3. 35 (s , 3Η), 3. 50 dd, J = 9. 6., 4.4, 2. OHz, 1 H), 3. 65 - 3. 80 (m, 4H) 38 (d, J = 7. 6Hz , 1H), 4.48 -4. 57 (m, 3 H), 4. 61 (d,
J = 12.4Hz , 1 H), 4.75 (d, J =l 0. 8Hz, 1H), 4. 75 (d,
J = 12.4H z , 1 H), 4. 83 (d, J = 10. 8H z , 1H), 7.05- 7. 35 (m, 15 H) .
実施例 13
Cyc l oh e xy l 3, 4, 6 - t r i -O- b e n z y 1 - 2-0- ( t r ime t hy l e n e pho s ph on oy l) — jS— D— g 1 u c o py r a n o s i d e .
1) BSP/Ti20/DTBMP
Figure imgf000034_0001
収率: 84 %
性状: 白色非晶質粉末
異性体比 α体: J3体二ぐ 1 : 99
2H NMR (400MHz , CDC 13) : 1. 12— 1. 59 (m, 6H), 1. 70 - 1. 82 (m, 3 H), 1. 91— 2. 04 (m, 2 H), 2. 12- 2.26 (m 1 H), 3. 51 (d d d, J = 9. 7 , 5. 1, 1. 9H z 1 H), 3. 58- 3. 7 2 (m, 3H), 3. 73 (d d, J = 10. 8, 2. OHz , 1H), 3.80 ( t , J = 9. 0Hz, 1 H), 4.27 (ddd, J = 1 1. 8, 9. 2, 7. 8Hz , 1 H), 4. 30— 4.46 (m, 4H), 4. 54 (d, J = 1 1. 2Hz , 1 H), 4. 54 (d, J = 12.4Hz , 1 H), 4. 60 (d, J = 12.4Hz , 1 H), 4. 62 (d, J = 7. 6Hz, 1H), 4. 79 (d, J = 10. OHz, 2H), 4. 96 (d, J = 10.4Hz, 1 H), 7. 15-7. 20 (m, 2H), 7. 23- 7.36 (m, 1 1 H), 7.38 - 7.43 (m, 2 H) .
13C NMR (100 MHz, CDC 13) : 24. 03 (CH2), 24. 13 (C H2), 25. 55 (CH2), 25. 9 1 (CH2, JCP=6. 9Hz), 31.74 (C H2), 33. 64 (CH2), 68. 18 (CH2, J CP= 6. 9H z), 68. 28 (C H2, J 7Hz), 68. 79 (CH2), 73. 34 (CH2), 74. 86 (C H2), 74. 89 (CH), 74. 25 (CH2), 77. 89 (CH), 78. 01 (C H), 79.49 (CH, J Cp= 6. 8 H z ), 83. 50 (CH, J CP= 3. 0 Hz): 99. 28 (CH, J CP= 3. 1 Hz), 127. 52 (CH), 127. 59 (CH 3 C), 127. 75 (CH), 127. 85 (CH, 2 C), 128.17 (CH, 2 C), 128. 24 (CH, 2 C), 128.30 (CH, 2 C), 128. 36 (C H, 2 C), 137. 87 (C), 1 38. 12 (C), 138. 14 (C) .
HRMS (FAB) mZz : C a l c d f o r C36H4609 P (M + H) +, 653. 2879 ; Fo und 653. 2886.
実施例 14
Cyc l oh e xy l 3, 4, 6- t r i -O-b e n z y l -2-Ο- ( 2 - me t h y 1 t r i m e t h y 1 e n e pho s phonoy l) — /3— D— g l u c o py r ano s i d e.
1) BSPTf20/DTBMP
Figure imgf000035_0001
収率: 82% (d i a s t e r e o r a t i o 80 : 20)
性状: 白色非晶質粉末
異性体比 ひ体: ]3体 =<1 : 99
実施例 1 5
Cy c 1 oh e xy l 3, 4, 6 - t r i— O— b e n z y l— 2— O— [(1 R 3R)— 1, 3— d ime t hy 1 t r ime t hy l e n e pho s pho r n o y 1 ] — /3-D— g l u c o py r ano s i d e. 1) BSPTf20/DTBMP
Figure imgf000036_0001
収率: 65%
性状: 白色非晶質粉体
異性体比 α体: ]3体 = 0 : 100
XH NMR (40 OMHz , CDC l 3) : 1. 14— 1. 34 (m, 3 Η), 1. 34- 1. 56 (m, 9Η), 1. 70 - 2. 02 (m, 6 H), 3.49 (d dd, J = 9. 9, 5. 1, 1. 9Hz 1 H), 3. 59 (t, J = 9.2Hz , 1 H), 3. 61 -3. 72 (m, 2 H), 3. 73 (d d, J = 10. 8, 2.0 h z , 1 H), 3. 76 ( t , J = 8. 8 H z , 1 H), 4. 29 (ddd, J = 12. 0, 9. 2, 8. 0Hz, 1 H), 4. 52 (d, J =l 0. 8Hz, 1 H), 4. 54 (d, J = 12. 0Hz, 1 H), 4. 57 (d, J = 10. OH z , 1 H), 4.60 (d, J = 1 2. 0Hz, 1H), 4. 62 - 4.73 (m, 1 H), 4. 73— 4. 84 (m, 1 H), 4. 76 (d, J = 10. 8 Hz , 1 H), 4. 78 (d, J = 1 1. 2Hz , 1H), 4. 95 (d, J = 10.4Hz, 1H), 7. 13- 7. 18 (m, 2H), 7. 23 - 7. 35 (m, 1 1 H), 7.39 - 7.44 (m, 2 H) .
実施例 16
Cy c l oh e xy l 3, 4, 6— t r i— O— b e n z y l— 2— O— [(I S, 3 S)— 1, 3— d ime t hy l t r ime t hy l e n e pho s ph o r n o y 1 ] — j3— D— g l u c opy r an o s i d e.
1) BSP rfgO/DTB P
Figure imgf000036_0002
収率: 81 %
性状: 白色非晶質粉体
異性体比 体: ]3体 = <1 : 99
XH NMR (400MHz, CDC l 3) : 1. 13— 1. 34 (m, 3H), 1. 34- 1. 58 (m, 9 H), 1.72 - 2. 03 (m, 6 H), 3.49 (d d d, J = 9. 8, 5.0, 2. 0Hz, 1 H), 3. 59 ( t , J = 9.4Hz , 1 H), 3.
62 -3. 71 (m, 2H), 3.73 (d d, J = 1 1. 2, 2. OHz , 1H), 3. 73 ( t , J = 8. 8 H z , 1H), 4. 29 (ddd, J = 1 1.4, 9.2, 7. 8Hz, 1 H), 4. 52 (d, J = 10. 8H z , 1H), 4. 54 (d, J = 12. 0Hz, 1 H), 4. 56 (d, J = 7. 6Hz, 1H), 4. 59 (d, J = 12. 0Hz, 1H), 4. 62—4.72 (m, 1 H), 4.72 -4. 84 (m, 1 H), 4. 75 (d, J = 10.4Hz , 1 H), 4. 79 (d, J = 10. 8Hz ,
1 H), 4. 98 (d, J = 10.8Hz , 1 H), 7. 14-7. 20 (m, 2H), 7. 22 - 7. 36 (m, 1 1 H), 7. 39 - 7.45 (m, 2 H) .
13C NMR (10 OMHz, CDC 13) : 2 1. 35 (CH3, JCP=5.3 Hz), 21. 75 (CH3, JCP=6. 8 H z ), 23. 92 (CH2), 24.05 (CH2), 25. 59 (CH2), 31. 68 (CH2), 33. 52 (CH2), 37. 83 (CH2, J CP=6. 8Hz), 68. 87 (CH2), 72. 61 (CH, J CP =6. 8Hz), 73. 24 (CH, JCP=6. 1Hz), 73.31 (CH2), 74. 86 (CH2), 74. 92 (CH), 75. 28 (CH2), 77. 77 (CH, 2 C),
79.45 (CH, J Cp= 7. 7Hz), 83. 80 (CH, JCP=3.8Hz), 9 9.45 (CH, J CP= 3. 8 Hz), 127.46 (CH), 127. 50 (CH), 127. 57 (CH, 2 C), 127.69 (CH), 127. 85 (CH, 2 C), 128. 17 (CH, 4C), 128.25 (CH, 2 C), 128. 31 (CH, 2 C), 137. 91 (C), 138. 15 (C), 138. 18 (C) .
実施例 17
Cy c 1 o h e x y 1 3, 4, 6 - t r i—O— b e n z y l— 2— O— (1, 1一 d ime t hy l t r ime t hy l e n e p h o s p h on oy l ) j3— D— g l u c o p y r an o s i d e .
1) BSP/Tf20/DTBMP
Figure imgf000038_0001
収率: 40 % (d i a s t e r e o r a t i o 6 7 : 33)
性状: 白色非晶質粉体
異性体比 α体: jS体二ぐ 1 : 9 9
実施例 18
Cy c l o h e xy l 3, 4, 6— t r i— O— b e n z y l— 2— 0— ( 1 , 1, 3, 3— t e t r ame t hy l t r ime t hy l e n e ph o s p h o n o y 1 ) — /3—D— g l u c o py r an o s i d e.
1) BSP/Tf20/DTBMP
Figure imgf000038_0002
収率: 34%
性状: 白色非晶質粉末
異性体比 ひ体: jS体 = <1 : 99
^ NMR (40 OMHz, C D C 13) : 1. 16 - 2. 1 2 (m, 24H), 3.49 (d d d, J = 9. 8, 5. 2, 1. 8Hz, 1H), 3. 57 ( t, 1 = 7. 4Hz , 1H), 3. 58 - 3. 77 (m, 4H), 4. 34 (d d d, J = 1 1. 8, 9. 0, 7. 8Hz, 1 H), 4.48— 4. 62 (m, 4H), 4. 75 (d, J = 1 0. 8Hz, 1 H), 4. 78 (d, J = 1 1. 2Hz, 1 H), 4. 99 (d, J = 10. 4Hz, 1 H), 7. 14-7. 20 (m, 2 H), 7. 22 - 7. 35 (m, 1 1 H), 7.40 - 7.45 (m, 2 H) .
実施例 19
Cyc l o h e xy l 3, 4, 6— t r i— O— b e n z y l— 2—〇_ (2, 2— d ime t hy l t r ime t hy l e n e p ho s p hon oy l ) 一 jS— D— g l u c opy r an o s i d e.
1) BSPTf20/DTBMP
Figure imgf000039_0001
収率 : 77%
性状: 白色非晶質粉体
異性体比 ひ体: )3体 =0 : 100
JH NMR (400MH z , CDC 13): 0.87 (s, 3H), 1. 12— 1. 58 (m, 8 H), 1.70 - 1. 82 (m, 3H), 1. 90— 2. 04 (m, 2 H)3 3. 50 (ddd, J = 9. 6 , 5. 0, 1. 8Hz, 1 H), 3. 61 ( t , J = 9. 4Hz, 1H), 3. 62-3. 7 1 (m, 2 H), 3. 73 (dd, J = 1 1. 0, 1. 8Hz, 1 H), 3.80 ( t , J = 9.0 H z , 1 H), 3. 83— 4. 16 (m, 4H), 4. 22 -4. 32 (m, 1 H), 4. 51— 4. 64 (m, 4H), 4. 78 (d, J = 10.4Hz, 1 H), 4. 79 (d, J = 1 1. 2 H z , 1 H), 4. 9 5 (d, J = 10.4Hz , 1 H), 7. 15-7. 21 (m, 2 H), 7. 24- 7. 36 (m, 1 1 H), 7.37 - 7.44 (m, 2H) .
実施例 20
Cy c 1 o h e x y 1 3, 4, 6 - t r i—〇— b e n z y l— 2_0— (b e n z y 1 i d e n e pho s pho r onoy l ) — i3— D— g l u c o py r a n o s i d e. 1) BSP/Tf20/DTB P
Figure imgf000040_0001
収率: 8 7 %
性状:白色非晶質粉体
異性体比 a体: ]3体 = < 1 : 9 9
:H NMR (40 OMHz , CDC 1 3) 1. 1 7 - 1. 6 8 (m, 5Η), 1. 7 1 - 1. 84 (m, 3H), 1. 9 0 - 2. 0 2 (m, 2 H), 3. 4 9 (d d d, J = 9. 7, 5. 1, 1. 9 H z 1 H), 3. 6 1 ( t, J = 9. 2Hz , 1 H), 3. 6 5 (d d, J = 1 0. 8, 5. 2 Hz , 1 H), 3. 64 - 3. 74 (m, 1 H), 3. 7 3 (d d, J = 1 1. 0, 1. 8Hz , 1 H), 3. 7 5 ( t , J = 9. OHz , 1 H), 4. 3 9 (d t , J = 9. 6, 7. 9 Hz 1 H), 4. 50 -4. 6 2 (m, 4 H), 4. 7 8 (d, J = 1 0. 4Hz , 2 H), 4. 9 7 (d, J = 1 0. 8Hz, 1 H), 5. 0 4- 5. 3 2 (m, 4H), 7. 1 4 - 7. 6 8 (m, 1 9 H) .
実施例 2 1
2, 3, 6 - t i r— O— b e n z y l — 4— 0_[3', 4', 6'— t r i —O— b e n z y l — 2' -0— (1, 1 , 2 , 2— t e t r ame t hy l d i me t h y 1 e n e p h o s p h o n o y l )_/3— D— g l u c o p y r a n o s y l ] — β—D— t h i o g 1 u c o p y r a n o s i d e.
1) BSP/Tf20/DTBMP
Figure imgf000040_0002
収率: 5 6 %
性状:白色非晶質粉体 異性体比 α体: 体 = 9 : 91
JU NMR (40 OMHz , CDC ") : 1. 30 (s, 3H), 1. 33 ( s , 3H), 1. 38 (s, 3H), 1.46 (s, 3H), 3.34 (b r d d, J = 9. 6, 2. 8Hz, 1H), 3.42 (t, J = 9.4Hz, 1 H), 3.47- 3. 56 (m, 3H), 3. 60 - 3.80 (m, 4H), 3. 95 (dd, J = 1 1. 2, 3. 2Hz, 1 H), 4. 08 (t, J = 9.4Hz, 1 H), 4. 33 (d, J = 1 2. 0Hz, 1H), 4. 37 (d, J =12. OHz, 1H), 4. 37 - 4.49 (m, 1H), 4. 50 (d, J =9. 6Hz, 1 H), 4. 50 (d, J = 1 2. OHz , 1 H), 4. 58 (d, J = 8. OHz, 1 H), 4. 63 (d, J = 1 0. OHz , 1 H), 4. 68 -4. 76 (m, 6H), 4. 87 (d, J = 10. 8Hz, 1H), 5. 13 (d, J = 1 1. 2Hz, 1 H), 7. 10- 7. 16 (m, 4H), 7. 18 -7. 35 (m, 27 H), 7. 36 - 7.40 (m, 2 H), 7. 54- 7. 60 (m, 2H) .
13C NMR ( 10 OMHz , CDC 13) : 23.69 (CH3, J CP= 6. 9Hz), 23. 87 (CH3, JCP=6. 9Hz), 24. 11 (CH3, JCP=3. OHz), 24.43 (CH3, JCP=3. 8Hz), 68.27 (CH2), 6 8. 7 7 (CH2), 73. 27 (CH2), 73.47 (CH2), 74. 74 (CH2), 7 5. 13 (CH2), 75. 21 (CH2), 75. 30 (CH), 75. 68 (CH2), 76. 04 (CH), 77. 88 (CH), 78. 83 (CH), 79. 67 (CH, J CP=6. 9Hz), 79. 79 (CH), .83. 24 (CH, JCP=3. 8Hz ), 8 4. 85 (CH), 87. 09 (CH), 87. 92 (C), 88. 33 (C), 99. 99 (CH, J Cp= 3. 9 H z ), 126. 94 (CH), 127. 21 (CH), 1 27. 28 (CH), 127. 34 (CH, 2 C), 1 27.39 (CH), 127. 42 (CH), 127. 52 (CH), 127. 55 (CH, 3 C), 127. 60 (C H, 2 C), 127. 85 (CH, 2 C), 127. 88 (CH, 6 H), 128. 0 6 (CH, 2 C), 128. 09 (CH, 4 C), 128. 18 (CH, 2 C), 12 8. 33 (CH, 2 C), 128.67 (CH, 2 C), 13 . 10 (CH, 2 C), 133. 34 (C), 137.88 (C), 1 37.97 (C), 1 38. 05 (C),
138. 13 (C), 138. 14 (C), 1 38.99 (C) .
HRMS (FAB) m/z: C a l c d f o r C66H7413PS (M
+ H) +, 1 137.4588 ; Foun d 1 137.4596.
実施例 22
6-0- [6' -0- t e r t -bu t y l d ime t hy l s i 1 y 1 - 2 ' - O— (2, 2— d ime t hy l t r ime t hy l e n e p ho s ph o n o y 1 )— 3 ' , 4 '— O— p r o p y r i d e n e_/3— D— g 1 u c o p y r a n o s y l ]— 2— O— ( 2 , 2— d ime t hy l t r ime t hy l e n e p ho s ph o n oy l)— 3, 4— O— p r opy r i d e n e— j3— D— t h i og l u c o Dv r ano s i d e.
1) BSP/Tf20/DTB P
Figure imgf000042_0001
収率: 67% ( a : j3 = 9 : 91 )
性状: 白色非晶質粉末
異性体比 ひ体: )3体 =9 : 91
NMR (40 OMHz , CDC 13): 0. 07 (s , 6H): 0.77 (s 3H), 0. 89 (s, 3H), 0. 89 (s, 9H), 1. 19 ( s , 3H), 1. 2 5 (s , 3H), 1. 34 (s, 3H), 1. 35 (s , 3 H), 1. 51 (s , 3 H) 1.56 (s , 3H), 3. 70— 4. 28 (m, 17H), 4. 32—4.49 (m, 3H), 4. 61 (d, J = 8.0Hz, 1 H), 4. 86 (d, J =8. 8Hz , 1 H), 7. 22 - 7. 36 (m, 3H), 7. 52 - 7. 58 (m, 2 H) .
実施例 23 (保護基の脱離)
Dep r o t e c t i on o f 2, 3, 6- t i r— O— b e nz y l— 4— O— [2'— O— a c e t y l— 3', 4', 6'— t r i— O— b e n z y l— — D— g l u c opy r an o s y l] — ;6— D— t h i o g l u c o py r a n o s i d e .
Figure imgf000043_0001
実施例 21で製造した 2—ホスホノィルー 1, 2—グリコシド化合物 (20. 5 111 , 0. 0 1 81111110 1 )に1, 4一ジォキサン(0. 50 m 1 )のナトリウム( 7 · 6mg, 0. 33 lmmo 1 ) 溶液を室温で加え、 2時間後、 反応混合物を飽和塩 化アンモニゥム水溶液で中和した。 有機層を分離し、 水槽を酢酸ェチルで 3回抽 出した。 抽出液を有機層と合わせて、 飽和食塩水で洗い、 硫酸マグネシウムで乾 燥した後、 減圧下濃縮して残渣 (20. 5mg) を得た。 該残渣は 2位のホスホノ ィル基が除去されたアルコール体である。
該残渣 (14. 9mg) を塩化メチレン (0. 5m l ) に溶かし、 無水酢酸 (8. Omg, 0. 078mmo 1 )、 採りェチルァミン (8. 0mg, 0. 079mmo 1 ) 及 DMAP (1. Omg, 0. 0082 mm o 1 ) を室温で加えた。 2時間後、 反応混合物を飽和炭酸水素ナトリウム水溶液で中和し、 有機層を分離し、 水槽を 酢酸ェチルで 3回抽出した。 抽出液を有機層と合わせて、 飽和食塩水で洗い、 硫 酸マグネシウムで乾燥した後、 減圧下濃縮した。 得られた残渣をフラッシュカラ ムクロマトグラフィー (s i l i c a g e l 1. 0 g ; e l u t i on w i t h 30% e t hy l a c e t a t e i n h e x a n e) で精製し て、 2—ァセトキシグリコシド化合物を得た。
収率 : 90%
性状:白色非晶質粉末
NMR (400 MHz, CDC 13) : 1. 82 (s, 3H), 3. 20- 3. 27 (m, 1 H), 3. 30 (d t, J = 9. 9, 2. 7Hz, 1H), 3. 35 (t, J = 9. 2 H z , 1 H), 3. 39 - 3.48 (m, 2 H), 3. 32 - 3. 72 (m, 5H), 3. 87 (t, J = 9. 6Hz , 1H), 4. 22— 4. 32 (m, 2 H), 4. 44 (d, J = 12.0Hz, 2H), 4.47 -4. 73 (m, 9H), 4. 88 (d d, J = 9. 0, 8.2Hz , 1 H), 5. 03 (d, J = 1 1. 6Hz , 1 H), 7. 04 - 7. 28 (m, 33H), 7.43 - 7.49 (m, 2 H) .
13C NMR (100MHz, CDC 13) : 21. 08 (CH3), 68. 07 (C H2), 68. 60 (CH2), 73. 23 (CH2), 73. 52 (CH2), 7 3. 65 (CH), 74. 87 (CH2), 75. 07 (CH2), 75. 16 (CH), 75. 3 0 (CH2), 75. 39 (CH2), 76. 62 (CH), 77. 98 (CH), 78. 98 (CH), 80.23 (CH), 83.01 (CH), 84. 75 (CH), 87. 40 (CH), 100.28 (CH), 127.00 (CH), 127.30 (CH, 2 C), 127. 39 (CH, 2 C), 127.44 (CH, 2 C), 127. 57 (C H, 4 C), 127.60 (CH), 127. 65 (CH, 2 C), 127. 68 (C H), 127. 79 (CH, 2 C), 1 27.96 (CH, 2 C), 128. 04 (C H, 2 C), 128. 13 (CH, 4 C), 128. 26 (CH, 2 C), 128. 3 0 (CH, 4C), 128. 72 (CH, 2 C), 13 1. 85 (CH, 2 C), 13 3. 52 (C), 137.73 (C), 137. 87 (C), 1 37. 90 (C), 13 7.96 (C), 138.06 (C), 138. 94 (C), 169.09 (C = 0) . 産業上の利用可能性
本発明によれば、 フラノース化合物又はピラノース化合物の 2位水酸基の保護 基としてある特定のリン酸エステル (ホスホノィル基) をグリコシル化反応にお ける糖供与体として用いることで、選択的に 1 , 2 _トランス型のグリコシド結合 形成を行うことができ、 オルトエステルに相当する副生成物の生成を抑えること ができる。 更に、 任意に糖鎖の伸長を行うことを可能とした。

Claims

請求の範囲
1 . ( a ) フラノース化合物又はピラノース化合物と (b ) アルコール化合物 とからグリコシド化合物を得る方法において、 2位水酸基が基 Aで保護された置 換基を有することのあるフラノース化合物又は置換基を有することのあるピラノ —ス化合物を用いることを特徴とする、 2位水酸基に対して選択的にトランス配 置のダリコシド化合物を製造する方法。
Figure imgf000045_0001
[!^及び ま、 同一又は異なって炭素数 1から 4のアルキル基、 置換基を有す ることのあるァリール基を表し、 或いは R 2及び R 3が互いに結合して炭素数 2か ら 4のアルキレン基を示す (該アルキレン基は、 炭素数 1から 4のアルキル基で 置換されてもよく、 フエ二レン基を介していてもよい)。 m及び nは 0又は 1の整 数を表す。]
2 . フラノ一ス化合物がァラボフラノース、 エリトロフラノース、 ダルコフラ ノース、 リボフラノース、 トレオフラノース又はキシロフラノ一スであり、 ビラ ノース化合物がァラボビラノース、 アルトロビラノース、 ダルコビラノース、 ガ ラクトピラノース、 グロピラノース、 マンノピラノース、 リポビラノース、 キシ ロビラノース又はダルコピラヌ口ン酸であり、 アルコール化合物が炭素数 1〜 4 の脂肪族アルコール類、 炭素数 5〜 8の脂環式アルコール類、 芳香族アルコール 類、 フラノース類、 ピラノース類、 アミノピラノース類、 アンヒドロ糖類、 多糖 類、 N—ァセチルピラノース類又はグリセロール類である請求の範囲第 1項記載 のトランス配置のダリコシド化合物を製造する方法。
3 . 式 (1 ) で表される 2—ホスホノィルピラノース化合物に式 (2 ) で表さ れるアルコール化合物を作用させることを特徴とする式 ( 3 ) で表される 2—ホ スホノィルー 1 , 2—トランスグリコシド化合物の製造方法。
Figure imgf000046_0001
[式中、 Zは基 _S— R 基— SO— R1 基— Se— R1 基一 O— C ( = NH) CX3、 ハロゲン原子、 アルコキシ基、 アルケニルォキシ基、 基— P (OR1) 3、 基— PO (OR1) 3を表す。 ここで R1は炭素数 1から 20のアルキル基、 置換 基を有することのあるァリール基、 ヘテロ芳香族基を表し、 Xはハロゲン原子を 表す。 R4、 R5、 R6は同一又は異なって、 糖水酸基の保護基を表す。 Eはメチ レン基又は力ルポ二ル基を表す。 Aは前記に同じ。]
Q2— OH (2)
[式中、 Q 2は炭素数 1から 4のアルキル基、 任意の位置に置換基を有すること のある炭素数 5から 8のシクロアルキル基又は下記の基を表す。
Figure imgf000046_0002
(Q2-9)
L1は基一 OA1, —OG、 一 N (J 1) (J 2) である A1は以下に示す基、 Gは糖水酸基の保護基、 J 1及び J 2は水素原子又はアミノ 基の保護基を表す。
Figure imgf000047_0001
(A1) ここで R2'及び R3'は、 同一又は異なって炭素数 1から 4のアルキル基、 置換 基を有することのあるァリール基を表し、 或いは R2'及び R3'が互いに結合して 炭素数 2から 4のアルキレン基を表し (該アルキレン基は、 炭素数 1から 4のァ ルキル基で置換されてもよく、 フエ二レン基を介していてもよい)、 m'及び n' は 0又は 1の整数を表す。 Z 1は基— S— R 、 基— S O— Rr、 基— Se_Rr、 基—〇— C ( = NH) CX' 3、 ハロゲン原子、 アルコキシ基、 アルケニルォキシ 基、 基— P (OR1') 3、 基一 PO (OR1 ) 3基、 一 OG1を表す。 ここで R1' は炭素数 1から 2 0のアルキル基、 置換基を有することのあるァリール基、 へテ 口芳香族基を表し、 X'はハロゲン原子を表し、 G1は糖水酸基の保護基を表す。 R7、 R8、 R9は同一又は異なって、 糖水酸基の保護基を表す。 E1はメチレン基 又は力ルポ二ル基を表す。]
Ql a-0-Q2 (3)
Figure imgf000047_0002
[式中、 Q2、 A、 R4、 R5、 R6は前記に同じ。]
4. 式 (1) で表される 2—ホスホノィルピラノース化合物に式 (2 a) で表 されるアルコール化合物を作用させることを特徵とする式 (3 a) で表される 2 一ホスホノィルー 1, 2—トランスグリコシド化合物の製造方法。
Q2 a-OH (2 a) [式中、 Q2aは下記の基を表す。 A1 R7、 R8、 R9、 E1は前記に同じ。 Z2 は基— S— Rr、 基— SO— Rr、 基— Se— Rr、 基一〇— C (=NH) CX' 3、 ハロゲン原子、 アルコキシ基、 アルケニルォキシ基、 基一 P (OR1 ) 3、 基一 P O (OR1') 3基を表す。 Rr、 X'は前記に同じ。]
Figure imgf000048_0001
(Q2a-9)
Qla-0-Q2a (3 a)
[式中、 Qla及び Q2aは前記に同じ。]
5. 式 (3 a)で表される 2一ホスホノィル— 1, 2一トランスグリコシド化合 物に少なくとも 1回以上アルコール化合物を作用させる工程を繰り返すことを特 徵とする 2—ホスホノィルー 1, 2—トランスグリコシド化合物の製造方法。
6. 式(3) で表される 2—ホスホノイルー 1, 2—トランスグリコシド化合物 に塩基を作用させることを特徴とする式(4)で表される 1, 2—トランスグリコ シド化合物の製造方法。
Q3-0-Q4 (4)
Figure imgf000049_0001
[式中、 R4、 R5、 R6、 Eは前記に同じ。 Q4は炭素数 1から 4のアルキル基、 任意の位置に置換基を有することのある炭素数 5から 8のシクロアルキル基又は 下記の基を表す。
Figure imgf000049_0002
L2は基— OH、 _OG、 一 N (J x)- ( J 2) である。
τχ、 R7、 R8、 R9、 E G、 J J 2は前記に同じ。]
7. 式 (1) で表される 2—ホスホノィルピラノース化合物。
8. 式(3)で表される 2—ホスホノィル一 1, 2—トランスダリコシド化合物
9. 式(3 a)で表される 2—ホスホノィル一 1, 2 - コシド化合 物。
PCT/JP2006/303519 2005-02-18 2006-02-20 1,2−トランスグリコシド化合物の製造方法 WO2006088256A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN2006800037546A CN101111507B (zh) 2005-02-18 2006-02-20 1,2-反式糖苷化合物的制造方法
JP2007503808A JP4762973B2 (ja) 2005-02-18 2006-02-20 1,2−トランスグリコシド化合物の製造方法
US11/884,544 US8212013B2 (en) 2005-02-18 2006-02-20 Process for producing 1,2-trans-glycoside compound
EP06714658A EP1849794A4 (en) 2005-02-18 2006-02-20 PROCESS FOR THE SYNTHESIS OF A 1,2-TRANS-GLYCOSIDE DERIVATIVE
US13/477,950 US8664372B2 (en) 2005-02-18 2012-05-22 Process for producing 1,2-trans-glycoside compound

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005043220 2005-02-18
JP2005-043220 2005-02-18

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US11/884,544 A-371-Of-International US8212013B2 (en) 2005-02-18 2006-02-20 Process for producing 1,2-trans-glycoside compound
US13/477,950 Division US8664372B2 (en) 2005-02-18 2012-05-22 Process for producing 1,2-trans-glycoside compound

Publications (1)

Publication Number Publication Date
WO2006088256A1 true WO2006088256A1 (ja) 2006-08-24

Family

ID=36916637

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/303519 WO2006088256A1 (ja) 2005-02-18 2006-02-20 1,2−トランスグリコシド化合物の製造方法

Country Status (6)

Country Link
EP (1) EP1849794A4 (ja)
JP (1) JP4762973B2 (ja)
KR (1) KR100966986B1 (ja)
CN (1) CN101111507B (ja)
TW (1) TWI331609B (ja)
WO (1) WO2006088256A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008055964A1 (de) * 2006-11-09 2008-05-15 Rheinisch-Westfälische Technische Hochschule Aachen Verfahren zur herstellung von cyclischen phosphinen oder bisphosphinen, cyclische phosphonate von optisch aktiven diolen und deren herstellung

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2935975B1 (fr) * 2008-09-16 2010-12-17 Sanofi Aventis Procede de preparation du 1,6:2,3-dianhydro-b-d- mannopyranose.

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
CRICH D. ET AL.: "Chemistry of beta-(Phosphatoxy) alkyl and beta-(Acyloxy)alkyl Radicals", J. AM. CHEM. SOC., vol. 117, no. 46, 1995, pages 11455 - 11470, XP003002305 *
KOCH A. ET AL.: "Radical rearrangement of 2-O-(diphenylphosphoryl)glycosyl bromides", J. ORG. CHEM., vol. 58, no. 5, 1993, pages 1083 - 1089, XP001062151 *
KOCH A. ET AL.: "Radical rearrangements of 2-O-(diphenoxyphosphoryl)glycosyl bromides", HELV. CHIM. ACTA, vol. 76, no. 4, 1993, pages 1687 - 1701, XP003002306 *
RABUKA D. ET AL.: "Synthesis and NMR characterization of the six regioisomeric monophosphates of octyl beta-D-galactopyranosyl-(1 4)-2-acetamido-2-deoxy-beta-D-glucopyranoside", CARBOHYDR. RES., vol. 337, no. 21 TO 23, 2002, pages 2127 - 2151, XP004392207 *
See also references of EP1849794A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008055964A1 (de) * 2006-11-09 2008-05-15 Rheinisch-Westfälische Technische Hochschule Aachen Verfahren zur herstellung von cyclischen phosphinen oder bisphosphinen, cyclische phosphonate von optisch aktiven diolen und deren herstellung

Also Published As

Publication number Publication date
TW200700428A (en) 2007-01-01
KR100966986B1 (ko) 2010-06-30
CN101111507B (zh) 2011-08-31
TWI331609B (en) 2010-10-11
CN101111507A (zh) 2008-01-23
JP4762973B2 (ja) 2011-08-31
KR20070103075A (ko) 2007-10-22
EP1849794A1 (en) 2007-10-31
JPWO2006088256A1 (ja) 2008-07-17
EP1849794A4 (en) 2012-08-08

Similar Documents

Publication Publication Date Title
JP7280248B2 (ja) アミダイト化合物及び該化合物を用いたポリヌクレオチドの製造方法
CN102459295A (zh) 2’-o-岩藻糖基乳糖的合成
JP6144686B2 (ja) β−C−アリールグルコシドの調製方法
US20110245488A1 (en) Process for the synthesis of l-fucosyl di- or oligo-saccharides and novel 2,3,4 tribenzyl-fucosyl derivatives intermediates thereof
US9834533B2 (en) Process for preparing SGLT2 inhibitors and intermediates thereof
EP1412369B1 (en) Process for preparing purine nucleosides
WO2006088256A1 (ja) 1,2−トランスグリコシド化合物の製造方法
WO2001064701A1 (fr) Procede de preparation de flavonoides
KR100699099B1 (ko) 1-α-할로-2,2-다이플루오로-2-데옥시-D-라이보퓨라노스유도체 및 이의 제조방법
WO1993018051A1 (en) Process for producing nucleoside derivative
US8212013B2 (en) Process for producing 1,2-trans-glycoside compound
JP5800729B2 (ja) 2,4−o−架橋反転ピラノース化合物
CN110041377B (zh) 一种o-甘露聚糖核心结构的合成方法
CN113861246B (zh) 一种β -D-阿拉伯呋喃糖苷键的立体选择性合成方法
KR101241321B1 (ko) 수율 및 순도가 개선된 데시타빈의 제조방법
JP4890805B2 (ja) コア3型構造を有するo−結合型糖アミノ酸誘導体およびその製造方法
JP2832356B2 (ja) ハイグロマイシン類の合成中間体および製造法
JP2006083091A (ja) トレハロース型二糖類及びその誘導体の製造方法並びに新規トレハロース型二糖類誘導体
US20050033043A1 (en) Process for preparing purine nucleosides
JPS6221353B2 (ja)
WO2014125967A1 (ja) 3,6-O-架橋ピラノース化合物及びα-O-ピラノシドの製造方法
WO1998004572A1 (fr) Nouveaux derives de coumarine et glycosides, et procedes pour la preparation de ces composes
JPH06256372A (ja) マンノース−β−1−4−グルコサミン誘導体の製造方法
JP2005289964A (ja) 2−デオキシ−l−リボース化合物の製造方法
JP2006028083A (ja) 6−デオキシ−ヘキソ−2−ウロースの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007503808

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 200680003754.6

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 11884544

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006714658

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020077021258

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2006714658

Country of ref document: EP