WO2006088227A1 - 分散補償器及びそれを備えた光通信装置 - Google Patents

分散補償器及びそれを備えた光通信装置 Download PDF

Info

Publication number
WO2006088227A1
WO2006088227A1 PCT/JP2006/303206 JP2006303206W WO2006088227A1 WO 2006088227 A1 WO2006088227 A1 WO 2006088227A1 JP 2006303206 W JP2006303206 W JP 2006303206W WO 2006088227 A1 WO2006088227 A1 WO 2006088227A1
Authority
WO
WIPO (PCT)
Prior art keywords
dispersion compensator
pair
transmission lines
dispersion
compensator according
Prior art date
Application number
PCT/JP2006/303206
Other languages
English (en)
French (fr)
Inventor
Kazunori Miyoshi
Original Assignee
Nec Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nec Corporation filed Critical Nec Corporation
Priority to JP2007503798A priority Critical patent/JP5077554B2/ja
Publication of WO2006088227A1 publication Critical patent/WO2006088227A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/18Phase-shifters
    • H01P1/184Strip line phase-shifters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P9/00Delay lines of the waveguide type
    • H01P9/006Meander lines

Definitions

  • the present invention relates to a dispersion compensator used for optical communication and an optical communication device including the same, and more particularly to a dispersion compensator that performs dispersion compensation processing on an electric signal and an optical communication device including the same.
  • optical signals are transmitted between points separated from each other using optical fibers.
  • an optical signal propagates through an optical fiber, the propagation speed varies depending on the wavelength component, so the optical signal waveform deteriorates. This phenomenon is called dispersion.
  • WAN Wide Area Network
  • MAN Metropolitan Area Network
  • a dispersion compensation method a method of inserting an optical fiber such as DCF (Dispersion Compensation Fiber) or DSF (Dispersion Shift Fiber) into an optical signal transmission path has been used.
  • EDC Electrodical Dispersion Compensation
  • an optical circuit converts an optical signal into an electrical signal and then performs dispersion compensation using an electronic circuit.
  • Patent Document 1 Japanese Patent Laid-Open No. 5-2 2960 901
  • Patent Document 2 Japanese Patent Laid-Open No. 5-226900
  • FIG. 1A is a plan view showing a conventional dispersion compensator described in Patent Document 1
  • FIG. 1B is a sectional view taken along line BB ′ shown in FIG. 1A.
  • the conventional dispersion compensator 10 1 1 has a dielectric substrate 10 2.
  • One transmission line 10 3 is provided on the top surface of the dielectric substrate 10 2.
  • the transmission line 103 is formed in a meander shape, that is, zigzag.
  • a conductor layer 10 4 is provided on the entire lower surface of the dielectric substrate 10 2.
  • a ground potential is applied to the conductor layers 104 to form a ground layer.
  • an optical signal-to-electric signal converter is connected to one end side (left side of FIG. 1A) of the transmission line 10 3, and an electric signal is transmitted to the other end side (right side of FIG. 1A) A signal converter is connected.
  • the received optical signal is converted into an electrical signal 1 1 1 by an optical signal-to-electric signal converter, and this electrical signal 1 1 1 is input to the transmission line 1 0 3.
  • Transmission line 10 3 adds a frequency dependent delay to electrical signal 1 1 1 and compensates for dispersion due to the propagation of the optical signal through the optical fiber.
  • the conventional dispersion compensator shown in FIGS. 1A and 1B has low compensation efficiency.
  • an optical signal having a transmission speed of 10 Gbps is transmitted by a normal single mode optical fiber having a dispersion value of 0.12 (psec / GHZ no km).
  • the length of the transmission line 10 3 shown in Fig. 1A needs to be 21 cm to compensate for the optical fiber with a length of 256 km.
  • the present invention has been made in view of such problems, and an object of the present invention is to provide a dispersion compensator having high compensation efficiency and an optical communication apparatus including the dispersion compensator. Disclosure of the invention
  • the dispersion compensator according to the present invention includes an insulating substrate and a dispersion characteristic formed on the substrate. And a pair of transmission lines that are at least partially electromagnetically coupled to each other when electrical signals flow equally to each other.
  • a pair of transmission lines are electromagnetically coupled to each other, so that an electric signal flowing through these transmission lines can be effectively delayed. This effect is particularly great when a differential signal is applied to a pair of transmission lines.
  • the dispersion compensator it is preferable that at least a part of each of the pair of transmission lines is formed in a meander shape. As a result, the dispersion compensator can be reduced in size and reduced in loss.
  • the substrate is preferably formed of a resin.
  • An optical communication apparatus includes the above-described dispersion compensator.
  • the optical communication apparatus according to the present invention converts an input optical signal into an electrical signal and outputs the electrical signal to the dispersion compensator, and a signal for the electrical signal output from the dispersion compensator. And an integrated circuit that performs processing.
  • FIG. 1A is a plan view showing an example of a conventional dispersion compensator.
  • FIG. 1B is a cross-sectional view taken along line BB ′ shown in FIG. 1A.
  • FIG. 2A is a perspective view showing the dispersion compensator according to the first embodiment of the present invention with respect to a pair of transmission lines.
  • FIG. 2B is a cross-sectional view of the dispersion compensator according to the first embodiment of the present invention.
  • FIG. 3 is a graph showing the difference in characteristics between the dispersion compensator according to the first embodiment and the conventional dispersion compensator.
  • FIG. 4A is a plan view showing a dispersion compensator according to the second embodiment of the present invention.
  • Fig. 4B is a cross-sectional view along line 1 shown in Fig. 4.
  • FIG. 5 is a sectional view showing a dispersion compensator according to the third embodiment of the present invention.
  • FIG. 6 is a side view showing an optical communication apparatus according to the fourth embodiment of the present invention.
  • FIG. 2A is a perspective view showing the dispersion compensator according to the first embodiment
  • FIG. 2B is a cross-sectional view of the dispersion compensator shown in FIG. 2A.
  • FIG. 2A only the transmission line is shown to simplify the drawing, and other components are omitted.
  • the dispersion compensator 1 includes a substrate 2 made of resin, for example.
  • a conductor layer 3 a made of a conductive material is provided on the entire upper surface of the substrate 2.
  • a dielectric layer 4a made of resin, for example, is provided on the entire surface of the conductor layer 3a.
  • a wiring layer 5a is provided on the dielectric layer 4a.
  • the wiring layer 5a is composed of one transmission line 6a made of a conductive material and an insulating material portion 7a that embeds the periphery of the transmission line 6a.
  • a dielectric layer 4b made of, for example, resin is provided on the entire surface of the wiring layer 5a.
  • a wiring layer 5b is provided on the entire surface of the dielectric layer 4b.
  • the wiring layer 5 b includes a single transmission line 6 b made of a conductive material and an insulating material portion 7 b that embeds the periphery of the transmission line 6 b.
  • the insulating material portions 7a and 7b are, for example, resin.
  • a dielectric layer 4c made of resin, for example, is provided on the entire surface of the wiring layer 5b.
  • a conductor layer 3b is provided on the entire surface of the dielectric layer 4c. The conductor layer 3a, the dielectric layer 4a, the wiring layer 5a, the dielectric layer 4b, the wiring layer 5b, the dielectric layer 4c, and the conductor layer 3b form a multilayer wiring layer.
  • the transmission line 6a constituting the wiring layer 5a and the transmission line 6b constituting the wiring layer 5b are viewed from the direction perpendicular to the upper surface of the substrate 2, that is, overlap each other in plan view. Has been placed. Also, the transmission lines 6a and 6b are entirely formed in a meander shape. That is, the transmission lines 6 a and 6 b are respectively a part extending in the first direction 11, a part extending in the second direction 1 2 orthogonal to the first direction, and a part extending in the first direction 11. The portions extending in the third direction 13 which is the opposite direction of the second direction 12 are repeatedly arranged in this order to form a zigzag.
  • the transmission lines 6 a and 6 b are equal in shape to each other and their dispersion characteristics are equal to each other. Further, the thicknesses of the wiring layers 5a and 5b are equal to each other, and the insulating material portion 7b is formed of the same material as the insulating material portion 7a. In addition, dielectric Layers 4a and 4c are equal in thickness and material to each other and have a dielectric constant equal to each other. Furthermore, the conductor layers 3a and 3b are equal in thickness and material. Thus, the dispersion compensator 1 is provided with a microstrip differential meander-coupled transmission line.
  • a ground potential reference potential
  • differential signals that is, electrical signals 14 and 15 having opposite polarities are input to the transmission lines 6a and 6b.
  • the transmission line 6a is electromagnetically coupled to the conductor layer 3a
  • the transmission line 6b is electromagnetically coupled to the conductor layer 3b.
  • the transmission line 6 a and the transmission line 6 b are electromagnetically coupled to each other in their entire length.
  • the dispersion compensator 1 also operates as a dispersion compensator while performing impedance matching as a differential transmission line.
  • the effect of the dispersion compensator 1 according to the first embodiment will be described.
  • the coupling coefficients of the two transmission lines be ⁇ / and ⁇ ', respectively.
  • the resonance frequency of the transmission line that is, the frequency at which the meandering length L of the transmission line becomes 1/4 wavelength.
  • be the phase shift amount per turn in the transmission line, that is, the phase shift amount per basic unit of meander-type wiring with a length of (2 L + 2 G).
  • the phase shift amount 0 of the conventional dispersion compensator 1001 shown in FIGS. 1B and 1B is given by the following equation (1).
  • the coupling coefficients ⁇ and ⁇ ′ are the shapes of the transmission lines, that is, the line width W, the line thickness t, and the line gap between the lines shown in FIGS. ⁇ G is a coefficient determined by the meandering length L.
  • the group delay characteristic ⁇ of the dispersion compensator 1 according to the first embodiment shown in FIGS. 2 ⁇ and 2 B is that the coupling coefficient between the transmission line 6 a and the transmission line 6 b is If it is the same as the coupling coefficient at the folded part, the following equation (5) is obtained.
  • the line width W, the line thickness t, the gap G between lines, and the meandering length L are adjusted. Arbitrary group delay frequency characteristics can be obtained.
  • FIG. 3 is a graph showing the difference in characteristics between the dispersion compensator 1 according to the first embodiment shown in FIGS. 2A and 2B and the conventional dispersion compensator shown in FIGS. 1A and 1B.
  • the horizontal axis is the frequency of the electrical signal flowing through the transmission line
  • the vertical axis is the delay amount at that frequency.
  • the differential dispersion compensator 1 according to the first embodiment can obtain a delay amount of up to about twice that of the conventional single-line dispersion compensator. . That is, the dispersion compensator 1 according to the first embodiment can obtain a dispersion compensation amount of up to about twice as long as the length of the transmission line is equal to that of the conventional dispersion compensator. If the same dispersion compensation amount is obtained, the length of the transmission line can be halved.
  • the dispersion compensator 1 according to the first embodiment can expand the compensation range as compared with the conventional single-line meander transmission line type dispersion compensator. Further, in the dispersion compensator 1 according to the first embodiment, since the transmission lines 6a and 6b are formed in a meander shape, it is possible to reduce the size and the loss. Furthermore, since the substrate 2, the dielectric layers 4a to 4c, and the insulating material portions 7a and 7b are made of resin, the dispersion compensator 1 can be provided with flexibility. For this reason, for example, the dispersion compensator 1 can be curved and arranged in a narrow space, and the degree of freedom of arrangement is high.
  • an effective dispersion compensator can be realized with a simple and low-cost configuration without providing an expensive DCF or DSF and without applying an EDC with large power consumption. be able to.
  • FIG. 4A is a plan view showing the dispersion compensator according to the second embodiment
  • FIG. 4B is a cross-sectional view taken along the line AA ′ shown in FIG. 4A.
  • the dispersion compensator 21 according to the second embodiment has a substrate 2 made of, for example, a resin.
  • a substrate 2 made of, for example, a resin.
  • transmission lines 2 6 a and 2 6 b constitute one wiring layer provided on substrate 2.
  • On the entire bottom surface of substrate 2, there is a conductor layer 2 3 are provided.
  • the shapes of the transmission lines 2 6 a and 2 6 b are the same as each other, and their entirety is formed in a meander shape.
  • the transmission lines 26 a and 26 b are arranged at positions that are plane-symmetric with respect to the virtual plane 24 perpendicular to the upper surface of the substrate 2, and their dispersion characteristics are equal to each other.
  • the transmission line 2 6 a and the transmission line 2 6 b have a proximity portion 2 7 where they are closest to each other.
  • the distance between the transmission line 26 a and the conductor layer 23 is equal to the distance between the transmission line 26 b and the conductor layer 23.
  • a ground potential (reference potential) is applied to the conductor layer 2 3.
  • the conductor layer 23 becomes the ground layer.
  • differential signals 1 4 and 1 5 are input to transmission lines 2 6 a and 2 6 b, respectively.
  • the transmission lines 2 6 a and 2 6 b are electromagnetically coupled to the conductor layer 2 3, respectively, and the transmission line 2 6 a and the transmission line 2 6 b are electromagnetically connected to each other in the adjacent portion 2 7.
  • Join
  • the electromagnetic field caused by the current flowing through the transmission line 26a and the electromagnetic field caused by the current flowing through the transmission line 26b Strengthens each other in the proximity portion 27 and acts to delay the electrical signals flowing in the transmission lines 26a and 26b. As a result, the electrical signal flowing through the transmission lines 26 a and 26 b can be greatly delayed.
  • the impedance of the transmission lines 2 6 a and 26 b in a specific frequency range is electromagnetic
  • the proximity portion 27 that is coupled to is maintained at about 100 ⁇ , for example, and the uncoupled portion, that is, the portion other than the proximity portion 27 is maintained at about 50 ⁇ , for example, as a single line.
  • the dispersion compensator 21 according to the second embodiment operates as a dispersion compensator while performing impedance matching as a differential transmission line.
  • the dispersion compensator 21 according to the second embodiment adjusts the distance between the transmission line 26a and the transmission line 26b.
  • an arbitrary dispersion compensation characteristic can be obtained.
  • the transmission lines 2 6 a and 2 6 b are formed on the same plane, the thickness of the dispersion compensator can be reduced.
  • the transmission lines 26a and 26b can be formed at the same time, the manufacturing process can be simplified.
  • the other effects of the second embodiment are the same as the effects of the first embodiment.
  • FIG. 5 is a cross-sectional view showing a dispersion compensator according to the third embodiment.
  • the plan view of the dispersion compensator 3 1 shown in FIG. 5 is the same as FIG. 4A.
  • the dispersion compensator 31 according to the third embodiment has a substrate 2 made of, for example, resin.
  • a conductor layer 3 a made of a conductive material is provided on the entire upper surface of the substrate 2.
  • a dielectric layer 4a made of, for example, resin is provided on the entire surface of the conductor layer 3a.
  • a wiring layer 35 is provided on the dielectric layer 4a.
  • the wiring layer 35 is composed of two transmission lines 2 6 a and 26 b made of a conductive material, and an insulating material portion 37 that embeds the periphery of these transmission lines 2 6 a and 26 b. ing.
  • the insulating material portion 37 is, for example, a resin.
  • a dielectric layer 4c made of, for example, resin is provided on the entire surface of the wiring layer 35.
  • a conductor layer 3b is provided on the entire surface of the dielectric layer 4c.
  • the conductor layer 3a, the dielectric layer 4a, the wiring layer 35, the dielectric layer 4c, and the conductor layer 3b form a multilayer wiring layer.
  • the transmission lines 26a and 26b are the same as the transmission lines 26a and 26b in the second embodiment.
  • the dielectric layers 4a and 4c have the same thickness and material, and the dielectric constants are the same.
  • the conductor layers 3a and 3b are equal in thickness and material to each other. .
  • a ground potential reference potential
  • the conductor layers 3a and 3'b become ground layers.
  • differential signals are input to the transmission lines 2 6 a and 2 6 b, respectively.
  • the transmission line 2 6 a is electromagnetically coupled to the conductor layers 3 a and 3 b
  • the transmission line 2 6 b is electromagnetically coupled to the conductor layers 3 a and 3 b
  • the transmission line 26 b and force S, and their adjacent parts 27 are electromagnetically coupled to each other.
  • FIG. 6 is a side view showing an optical communication apparatus according to the fourth embodiment.
  • An optical communication device 51 shown in FIG. 6 is a receiver in an optical communication system using an optical fiber.
  • the optical communication device 51 includes a wiring board 52.
  • Solder bumps 5 3 a and 5 3 b are provided on terminal pads (not shown) of the wiring board 52.
  • the dispersion compensator 1 is mounted on the wiring board 5 2 through these solder bumps 5 3 a and 5 3 b.
  • the dispersion compensator 1 is the dispersion compensator according to the first embodiment described above.
  • the dispersion compensator 1 is curved and is arranged compactly on the wiring board 52.
  • the optical module 5 5 On dispersion compensator 1 via the solder bumps 5 4 a and 5 4 b, the optical module 5 5 is mounted. An optical fiber 56 is coupled to the optical module 55. Further, in the optical module 55, an LSI (Large Scale Integrated circuit) (not shown) for a reception amplifier is provided. The optical module 55 converts the optical signal input from the optical fiber 5 6 into an electrical signal, amplifies it, and outputs it to the dispersion compensator 1.
  • LSI Large Scale Integrated circuit
  • solder bumps 5 3 c to 5 3 f are provided on the terminal pads (not shown) of the wiring board 5 2, and these solder bumps 5 3 c, 5 3 d, 5 3 e, 5 3
  • the LSI 5 7 is mounted on the wiring board 52 through f.
  • the solder bumps 53 b are connected to at least a part of the solder bumps 53 c to 53 f through wiring (not shown) in the wiring board 52.
  • the LSI 57 performs signal processing on the electrical signal output from the dispersion compensator 1 and input via the solder bump 5 3 b and the wiring board 52.
  • the dispersion compensator 1 is connected between the optical module 5 5 and the LSI 5
  • the optical signal propagates through the optical fiber 56 and is input to the optical module 55. At this time, the waveform of the optical signal is degraded due to dispersion caused by the optical fiber 56.
  • the optical module 55 converts the input optical signal into an electrical signal, amplifies it, and outputs it to the dispersion compensator 1.
  • the dispersion compensator 1 is described in the above first embodiment. Through the above operation, dispersion compensation is performed on the input electrical signal, and the compensated electrical signal is output to the LSI 57. LSI 57 processes this electric signal.
  • the dispersion compensator 1 since the dispersion compensator 1 is downsized and can be further curved, the dispersion compensator 1 is also mounted on the wiring board 5 2 on which the optical module 55 is mounted. can do.
  • the other effects of the fourth embodiment are the same as those of the first embodiment described above.
  • the dispersion compensator 1 according to the first embodiment described above is used as the dispersion compensator.
  • the present invention is not limited to this, and the second compensator described above.
  • the dispersion compensator 21 according to the embodiment or the dispersion compensator 3 1 according to the third embodiment may be used.
  • the dispersion compensator of the present invention can be provided inside L S I.
  • a dispersion compensator can be provided inside the reception amplifier L S I or the L S I 57 of the optical module 55.
  • an LSI interlayer insulating film can be used as the dispersion compensator substrate, and an LSI wiring can be used as the transmission line.
  • the dispersion compensator of the present invention can be easily formed on a normal circuit board or a flexible resin board.
  • the dispersion compensator according to the present invention includes a pair of transmission lines that are electromagnetically coupled to each other when the electrical signal flows with the same dispersion characteristics, thereby effectively delaying the electrical signal. Compensation efficiency can be realized.
  • the present invention can be suitably used for an optical communication device and a dispersion compensator on the receiving side of an optical communication system using an optical fiber.

Landscapes

  • Optical Communication System (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
  • Waveguide Connection Structure (AREA)

Abstract

分散補償器1において、樹脂からなる基板2上に、導体層3a、誘電体層4a、配線層5a、誘電体層4b、配線層5b、誘電体層4c及び導体層3bをこの順に設ける。配線層5aを構成する伝送線路6aの形状と、配線層5bを構成する伝送線路6bの形状とを相互に等しくし、それらの分散特性を相互に等しくする。伝送線路6a及び6bはミアンダ状に形成し、平面視で相互に重なるように配置する。伝送線路6a及び6bには、差動信号14及び15を入力する。

Description

明 細 書 分散補償器及びそれを備えた光通信装置
技術分野
本発明は、光通信に使用される分散補償器及びそれを備えた光通信装置に関し、 特に、 電気信号に対して分散補償処理を施す分散補償器及びそれを備えた光通信 装置に関する。 背景技術
光通信システムにおいては、 光ファイバを使用して相互に離隔した地点間で光 信号の伝送を行っている。 しかし、 光信号が光ファイバ中を伝播すると、 波長成 分によって伝播速度が異なるため、 光信号の波形が劣化する。 この現象を分散と いう。 近時、 幹線系の光通信ケーブルのみならず、 WAN (Wide Area Network) 及び MAN (Metropolitan Area Network) 等の技術分野においても、 光ファイバ による信号伝送時に、 種々の分散の影響による信号劣化が問題となっている。 こ のため、 光信号の受信側において、 受信した光信号に対して分散補償を行うこと が必須となってきている。
従来は、 分散補償方法として、 D C F (Dispersion Compensation Fiber) 又は D S F (Dispersion Shift Fiber) 等の光ファイバを、 光信号の伝送路中に挿入 する方法が用いられてきた。 また、最近では、光信号を電気信号に変換した後に、 電子回路により分散ネ甫償を行う E D C (Electrical Dispersion Compensation) が行われている。
し力 し、 光ファイバを用いる方法は伝送コストの増大を招く。 また、 E D Cの 場合は、 F P G A (Field Programmable Gate Array:プログラミング型 L S I ) 化等により動的分散補償が実現する可能性はあるが、 消費電力の増大が避けられ ないという問題がある。
そこで、 電気伝送線路を用いた分散補償器として、 伝送線路をジグザクに配線 したミアンダ伝送線路が知られている (例えば、 特許文献 1 :特開平 5— 2 2 6 9 0 1号公報、 特許文献 2 :特開平 5— 2 2 6 9 0 2号公報)。
図 1 Aは、 特許文献 1に記載された従来の分散補償器を示す平面図であり、 図 1 Bは図 1 Aに示す B— B ' 線による断面図である。 図 1 A及び図 1 Bに示すよ うに、 従来の分散補償器 1 0 1は、 誘電体基板 1 0 2を有する。 誘電体基板 1 0 2の上面上には 1本の伝送線路 1 0 3が設けられている。 誘電体基板 1 0 2の表 面に垂直な方向から見て (以下、 平面視で、 という)、 伝送線路 1 0 3はミアンダ 状に、 即ちジグザグに形成されている。 誘電体基板 1 0 2の下面上の全面には、 導体層 1 0 4が設けられている。 導体層 1 0 4には接地電位が印加され、 グラン ド層となっている。 図示していないが、 伝送線路 1 0 3の一端側 (図 1 Aの左側) には光信号一電気信号変換器が接続され、 他端側 (図 1 Aの右側) には電気信号 一光信号変換器が接続される。
受信した光信号は光信号一電気信号変換器で電気信号 1 1 1に変換され、 この 電気信号 1 1 1は伝送線路 1 0 3に入力される。 伝送線路 1 0 3により、 電気信 号 1 1 1に周波数に依存する遅延が付加され、 光信号が光ファイバ中を伝播した ことによる分散が補償される。
しかしながら、 上述の従来技術には、 以下に示すような問題点がある。 即ち、 図 1 A及び図 1 Bに示す従来の分散補償器は、 補償効率が低い。 例えば、 分散値 が 0 . 1 2 ( p秒/ G H zノ k m) である通常のシングルモード光ファイバによ り、 伝送速度が 1 0 G b p sの光信号を伝送するものとする。 この場合、 伝送に よる分散を補償しようとすると、 2 5 6 k mの長さの光ファイバを補償するため には、 図 1 Aに示す伝送線路 1 0 3の長さを 2 1 c mとする必要がある。 この長 さの伝送線路を通常の光モジュール内又は光モジュールが実装されている基板上 に配置することは極めて困難である。
本発明はかかる問題点に鑑みてなされたものであって、 補償効率が高い分散補 償器及びこの分散補償器を備えた光通信装置を提供することを目的とする。 発明の開示
本発明による分散補償器は、 絶縁性の基板と、 この基板上に形成され分散特性 が相互に等しく電気信号が流れたときにそれぞれの少なくとも一部が相互に電磁 気的に結合する一対の伝送線路とを有することを特徴とする。
本発明による分散補償器は、一対の伝送線路が相互に電磁気的に結合するため、 これらの伝送線路を流れる電気信号を効果的に遅延させることができる。 特に、 一対の伝送線路に差動信号を流したときに、 この効果が大きい。
本発明による分散補償器においては、 一対の伝送線路のそれぞれの少なくとも 一部がミアンダ状に形成されていることが好ましい。 これにより、 分散補償器の 小型化及び低損失化を実現することができる。
本発明による分散補償器においては、 基板が樹脂により形成されていることが 好ましい。 これにより、 分散補償器にフレキシブル性を付与することができ、 配 設の自由度が増大する。
本発明による光通信装置は、 前述の分散補償器を有することを特徴とする。 ま た、 本発明による光通信装置は、 入力された光信号を電気信号に変換して分散補 償器に対して出力する光モジュールと、 分散補償器から出力された電気信号に対 して信号処理を施す集積回路とを有していても良い。 図面の簡単な説明
図 1 Aは、 従来の分散補償器の一例を示す平面図である。
図 1 Bは、 図 1 Aに示す B— B ' 線による断面図である。
図 2 Aは、 本発明の第 1の実施形態による分散補償器を、 一対の伝送線路につ いて示す斜視図である。
図 2 Bは、 本発明の第 1の実施形態による分散補償器の断面図である。
図 3は、 第 1の実施形態による分散補償器と従来の分散補償器との特性の違い を示すグラフ図である。
図 4 Aは、 本発明の第 2の実施形態による分散補償器を示す平面図である。 図 4 Bは、 図 4 に示す 一 , 線による断面図である。
図 5は、 本発明の第 3の実施形態による分散補償器を示す断面図である。
図 6は、 本発明の第 4の実施形態による光通信装置を示す側面図である。 発明を実施するための最良の形態
本発明の実施形態について図面を参照して具体的に説明する。 先ず、 本発明の 第 1の実施形態について説明する。 図 2 Aは第 1の実施形態による分散補償器を 示す斜視図であり、 図 2 Bは図 2 Aに示す分散補償器の断面図である。 図 2 Aに おいては、 図を簡単にするために伝送線路のみを示しており、 他の構成要素を省 略している。
図 2 A及び図 2 Bに示すように、 第 1の実施形態による分散補償器 1は、 例え ば樹脂からなる基板 2を有する。 基板 2の上面上の全面には導電材料からなる導 体層 3 aが設けられている。 導体層 3 a上の全面には、 例えば樹脂からなる誘電 体層 4 aが設けられている。 誘電体層 4 a上には配線層 5 aが設けられている。 配線層 5 aは、 導電材料からなる 1本の伝送線路 6 aと、 伝送線路 6 aの周囲を 埋め込む絶縁材料部 7 aとから構成されている。更に、配線層 5 a上の全面には、 例えば樹脂からなる誘電体層 4 bが設けられている。 誘電体層 4 b上の全面には 配線層 5 bが設けられている。 配線層 5 bは、 導電材料からなる 1本の伝送線路 6 bと、 伝送線路 6 bの周囲を埋め込む絶縁材料部 7 bとから構成されている。 絶縁材料部 7 a、 7 bは例えば樹脂である。 配線層 5 b上の全面には、 例えば樹 脂からなる誘電体層 4 cが設けられている。 誘電体層 4 c上の全面には導体層 3 bが設けられている。 導体層 3 a、 誘電体層 4 a、 配線層 5 a、 誘電体層 4 b、 配線層 5 b、誘電体層 4 c及び導体層 3 bにより、多層配線層が形成されている。 配線層 5 aを構成する伝送線路 6 aと、 配線層 5 bを構成する伝送線路 6 bと は、 基板 2の上面に垂直な方向から見て、 即ち、 平面視で、 相互に重なるように 配置されている。 また、 伝送線路 6 a及ぴ 6 bは、 それらの全体がミアンダ状に 形成されている。 即ち、 伝送線路 6 a及ぴ 6 bは、 それぞれ、 第 1の方向 1 1に 延びる部分、 第 1の方向に直交する第 2の方向 1 2に延びる部分、 第 1の方向 1 1に延びる部分、 第 2の方向 1 2の反対方向である第 3の方向 1 3に延びる部分 が、 この順に繰り返し配列されて、 ジグザグに形成されている。
伝送線路 6 a及び 6 bは、 それらの形状が相互に等しく、 それらの分散特性が 相互に等しくされている。 また、 配線層 5 a及ぴ 5 bの厚さは相互に等しく、 絶 縁材料部 7 bは絶縁材料部 7 aと同じ材料により形成されている。 更に、 誘電体 層 4 a及び 4 cはその厚さ及ぴ材料が相互に等しく、 誘電率が相互に等しい。 更 にまた、 導体層 3 a及び 3 bはその厚さ及ぴ材料が相互に等しい。 このようにし て、 分散補償器 1には、 マイクロストリップ差動ミアンダ結合伝送線路が設けら れている。
次に、 上述の如く構成された第 1の実施形態による分散補償器 1の動作につい て説明する。 先ず、 導体層 3 a及び 3 bに接地電位 (基準電位) を印加する。 こ れにより、 導体層 3 a及び 3 bがグランド層となる。 この状態で、 伝送線路 6 a 及び 6 bに差動信号、 即ち、 極性が相互に逆となる電気信号 1 4及び 1 5を入力 する。 そうすると、 伝送線路 6 aは導体層 3 aに電磁気的に結合し、 伝送線路 6 bは導体層 3 bに電磁気的に結合する。また、伝送線路 6 aと伝送線路 6 bとは、 それらの全長が相互に電磁気的に結合する。 このとき、 伝送線路 6 a及び 6わに は差動信号が流れているため、 伝送線路 6 aに流れる電流に起因する電磁場と伝 送線路 6 bに流れる電流に起因する電磁場とが相互に強め合い、 伝送線路 6 a及 ぴ 6 bに流れる電気信号を遅延させるように作用する。 この結果、 伝送線路 6 a 及び 6 bに流れる電気信号を大きく遅延させることができる。 これにより、 大き な分散補償特性を得ることができる。 伝送線路 6 a及ぴ 6 bはそれらの全長にわ たって電磁界的に結合関係にあり、 伝送線路 6 a及ぴ 6 bのインピーダンスは特 定の周波数範囲において 1 0 0 Ωに保たれている。このように、分散補償器 1は、 差動伝送線路としてのインピーダンス整合を行いながら、 分散捕償器としても動 作する。
次に、 第 1の実施形態による分散補償器 1の効果について説明する。 2つの伝 送線路の結合係数を、 それぞれ τ /及び γ ' とする。 また、伝送線路の共振周波数、 即ち、 伝送線路の蛇行長さ Lが 1 / 4波長となる周波数を とする。 更に、 伝送 線路における折り返し 1回当たりの位相のシフト量、 即ち、 長さが (2 L + 2 G) であるミアンダ型配線の基本単位当たりの位相シフト量を Θとする。 この場合、 図 1 Α及び図 1 Bに示す従来の分散補償器 1 0 1の位相シフト量 0は下記数式 ( 1 ) により与えられる。 なお、 数式 (1 ) における α及び は、 それぞれ下記 数式 (2 ) 及び (3 ) により与えられる。 また、 結合係数 γ及び γ ' は、 伝送線 路の形状、 即ち、 図 1 Α及び図 1 Βに示す線路幅 W、 線路厚さ t、 線路間ギヤッ ^G, 蛇行長さ Lによって決定される係数である。
— 1 1 + 2γ'
Θ二 cos
ογ'
Figure imgf000008_0001
a = (2)
Figure imgf000008_0002
Figure imgf000008_0003
群遅延特性 τ (=d θ /ά ω) は、 数式 (1) を角速度 ωで微分して、 下記数 式 (4) のように求められる。
て (4)
Figure imgf000008_0004
これに対して、 図 2 Α及び図 2 Bに示す第 1の実施形態による分散補償器 1の 群遅延特性 τは、 伝送線路 6 aと伝送線路 6 bとの間の結合係数が各伝送線路に おける折り返し部分での結合係数と同じである場合、 下記数式 (5) のように求 められる。
て (5)
Figure imgf000008_0005
上記数式 (4 ) 及び数式 (5 ) からわかるように、 ミアンダ型の分散補償器に おいては、 線路幅 W、 線路厚さ t、 線路間ギャップ G、 蛇行長さ Lを調整するこ とにより、 任意の群遅延周波数特性を得ることができる。
図 3は、 図 2 A及び図 2 Bに示す第 1の実施形態による分散補償器 1と、 図 1 A及び図 1 Bに示す従来の分散補償器との特性の違いを示すグラフ図である。 図 3において、 横軸は伝送線路に流れる電気信号の周波数であり、 縦軸はその周波 数における遅延量である。 図 3から理解できるように、 第 1の実施形態による差 動型の分散補償器 1は、 従来の単線型の分散補償器と比較して、 最大で約 2倍の 遅延量を得ることができる。 即ち、 第 1の実施形態による分散補償器 1は、 従来 の分散補償器と比較して、 伝送線路の長さを等しくした場合には最大で約 2倍の 分散補償量を得ることができ、 同じ分散補償量を得る場合には伝送線路の長さを 約半分にすることができる。
また、 第 1の実施形態による分散補償器 1は、 従来の単線型のミアンダ伝送線 路型分散補償器と比較して、 補償範囲を拡大することができる。 更に、 第 1の実 施形態による分散補償器 1においては、 伝送線路 6 a及び 6 bがミアンダ状に形 成されているため、小型化及び低損失化を図ることができる。更にまた、基板 2、 誘電体層 4 a乃至 4 c並びに絶縁材料部 7 a及び 7 bが樹脂により形成されてい るため、 分散補償器 1にフレキシブル性を付与することができる。 このため、 例 えば分散補償器 1を湾曲させて狭いスペースに配設することができ、 配設の自由 度が高い。
第 1の実施形態によれば、 高価な D C Fや D S Fを設けることなく、 また、 消 費電力が大きい E D Cを適用することなく、 簡易で低コストな構成で効果的な分 散補償器を実現することができる。
次に、 本発明の第 2の実施形態について説明する。 図 4 Aは第 2の実施形態に よる分散補償器を示す平面図であり、 図 4 Bは図 4 Aに示す A— A ' 線による断 面図である。 図 4 A及び図 4 Bに示すように、 第 2の実施形態による分散補償器 2 1は、 例えば樹脂からなる基板 2を有する。 基板 2の上面上には 2本の伝送線 路 2 6 a及び 2 6 bが設けられている。 伝送線路 2 6 a及ぴ 2 6 bは、 基板 2上 に設けられた 1層の配線層を構成している。 基板 2の下面上の全面には、 導体層 2 3が設けられている。
伝送線路 2 6 a及ぴ 2 6 bの形状は相互に同一であり、 それらの全体がミアン ダ状に形成されている。 伝送線路 2 6 a及ぴ 2 6 bは、 基板 2の上面に垂直な仮 想平面 2 4に関して面対称となる位置に配置されており、 それらの分散特性が相 互に等しくなつている。 これにより、 伝送線路 2 6 aと伝送線路 2 6 bには、 こ れらが最も接近しあう近接部分 2 7が存在することとなる。 伝送線路 2 6 aと導 体層 2 3との間の距離は、 伝送線路 2 6 bと導体層 2 3との間の距離と等しくな つている。
次に、 上述の如く構成された第 2の実施形態による分散補償器 2 1の動作につ いて説明する。 先ず、 導体層 2 3に接地電位 (基準電位) を印加する。 これによ り、 導体層 2 3がグランド層となる。 この状態で、 伝送線路 2 6 a及び 2 6 bに それぞれ差動信号 1 4及ぴ 1 5を入力する。 そうすると、 伝送線路 2 6 a及ぴ 2 6 bがそれぞれ導体層 2 3と電磁気的に結合すると共に、 伝送線路 2 6 aと伝送 線路 2 6 bとが、 近接部分 2 7において電磁気的に相互に結合する。 このとき、 伝送線路 2 6 a及び 2 6 bには差動信号が流れているため、 伝送線路 2 6 aに流 れる電流に起因する電磁場と伝送線路 2 6 bに流れる電流に起因する電磁場とが 近接部分 2 7において相互に強め合い、 伝送線路 2 6 a及び 2 6 bに流れる電気 信号を遅延させるように作用する。 この結果、 伝送線路 2 6 a及ぴ 2 6 bに流れ る電気信号を大きく遅延させることができる。 なお、 伝送線路 2 6 a及ぴ 2 6 b は近接部分 2 7において電磁界的に結合関係にあるため、 伝送線路 2 6 a及ぴ 2 6 bの特定の周波数範囲におけるインピーダンスは、 電磁界的に結合している近 接部分 2 7では例えば約 1 0 0 Ωに保たれており、 結合していない部分、 即ち、 近接部分 2 7以外の部分では単線で例えば約 5 0 Ωに保たれている。 このように、 第 2の実施形態による分散補償器 2 1は、 差動伝送線路としてのインピーダンス 整合を行いながら、 分散補償器としても動作する。
第 2の実施形態による分散補償器 2 1は、 第 1の実施形態による分散補償器 1 と比較して、 伝送線路 2 6 aと伝送線路 2 6 bとの間の距離を調整することによ り、 任意の分散補償特性を得ることができる。 また、 伝送線路 2 6 a及び 2 6 b を同一面上に形成しているため、 分散補償器の厚さを薄くすることができる。 更 に、 伝送線路 2 6 a及ぴ 2 6 bを同時に形成することができるため、 製造工程を 簡略化することができる。 第 2の実施形態における上記以外の効果は、 第 1の実 施形態による効果と同様である。
次に、 本発明の第 3の実施形態による分散補償器について説明する。 図 5は第 3の実施形態による分散補償器を示す断面図である。 図 5に示す分散補償器 3 1 の平面図は、 図 4 Aと同じ図になる。 図 5に示すように、 第 3の実施形態による 分散捕償器 3 1は、 例えば樹脂からなる基板 2を有する。 基板 2の上面上の全面 には導電材料からなる導体層 3 aが設けられている。 導体層 3 a上の全面には、 例えば樹脂からなる誘電体層 4 aが設けられている。 誘電体層 4 a上には配線層 3 5が設けられている。 配線層 3 5は、 導電材料からなる 2本の伝送線路 2 6 a 及ぴ 2 6 bと、 これらの伝送線路 2 6 a及ぴ 2 6 bの周囲を埋め込む絶縁材料部 3 7とから構成されている。 絶縁材料部 3 7は例えば樹脂である。 更に、 配線層 3 5上の全面には、 例えば樹脂からなる誘電体層 4 cが設けられている。 誘電体 層 4 c上の全面には導体層 3 bが設けられている。 導体層 3 a、 誘電体層 4 a、 配線層 3 5、誘電体層 4 c及び導体層 3 bにより、多層配線層が形成されている。 伝送線路 2 6 a及び 2 6 bは、 第 2の実施形態における伝送線路 2 6 a及び 2 6 bと同じものである。 また、 誘電体層 4 a及ぴ 4 cはその厚さ及び材料が相互 に等しく、 誘電率が相互に等しい。 更にまた、 導体層 3 a及び 3 bはその厚さ及 び材料が相互に等しい。 .
次に、 上述の如く構成された第 3の実施形態による分散補償器 3 1の動作につ いて説明する。 先ず、 導体層 3 a及び 3 'bに接地電位 (基準電位) を印加する。 これにより、 導体層 3 a及び 3 bがグランド層となる。 この状態で、 伝送線路 2 6 a及び 2 6 bにそれぞれ差動信号を入力する。 そうすると、 伝送線路 2 6 aが 導体層 3 a及ぴ 3 bと電磁気的に結合し、 伝送線路 2 6 bが導体層 3 a及ぴ 3 b と電磁気的に結合すると共に、 伝送線路 2 6 aと伝送線路 2 6 bと力 S、 その近接 部分 2 7 (図 4 A参照) において相互に電磁気的に結合する。 第 3の実施形態に おける上記以外の動作及び効果は、第 2の実施形態の動作及び効果と同様である。 なお、 上述の第 1乃至第 3の実施形態においては、 伝送線路の全体をミアンダ 状に形成する例を示したが、 本発明はこれに限定されず、 伝送線路の一部をミア ンダ状に形成してもよい。
次に、 本発明の第 4の実施形態について説明する。 第 4の実施形態によれば光 通信装置が提供される。 図 6は、 第 4の実施形態による光通信装置を示す側面図 である。 図 6に示す光通信装置 5 1は、 光ファイバを使用した光通信システムに おける受信器である。 光通信装置 5 1は配線基板 5 2を有する。 配線基板 5 2の 端子パッド(図示せず)上には、半田バンプ 5 3 a及ぴ 5 3 bが設けられている。 これらの半田バンプ 5 3 a及び 5 3 bを介して、 分散捕償器 1が配線基板 5 2に 実装されている。 分散補償器 1は、 前述の第 1の実施形態による分散補償器であ る。 分散補償器 1は湾曲されており、 配線基板 5 2上にコンパクトに配設されて レ、る。
分散補償器 1上には、 半田バンプ 5 4 a及び5 4 bを介して、 光モジュール5 5が搭載されている。 光モジュール 5 5には光ファイバ 5 6が結合されている。 また、 光モジュール 5 5内には、 受信アンプ用の L S I (Large Scale Integrated circuit) (図示せず) が設けられている。 光モジュール 5 5は、 光ファイバ 5 6 から入力された光信号を電気信号に変換し増幅して、 分散補償器 1に対して出力 する。
更に、 配線基板 5 2の端子パッド (図示せず) 上には、 半田バンプ 5 3 c乃至 5 3 f が設けられており、 この半田バンプ 5 3 c、 5 3 d、 5 3 e、 5 3 f を介 して、 L S I 5 7が配線基板 5 2に実装されている。また、半田バンプ 5 3 bは、 配線基板 5 2内の配線 (図示せず) を介して、 半田バンプ 5 3 c乃至 5 3 f の少 なくとも一部に接続されている。 L S I 5 7は、 分散補償器 1から出力され、 半 田バンプ 5 3 b及ぴ配線基板 5 2を介して入力された電気信号に対して、 信号処 理を施す。 分散補償器 1は、 光モジュール 5 5と L S I 5 7との間で、 インピー
Figure imgf000012_0001
次に、 上述の如く構成された第 4の実施形態による光通信装置の動作について 説明する。光信号が、光ファイバ 5 6を伝播して光モジュール 5 5に入力される。 このとき、光信号の波形は、光ファイバ 5 6に起因する分散により劣化している。 光モジュール 5 5は、 入力された光信号を電気信号に変換し増幅して、 分散補償 器 1に対して出力する。 分散補償器 1は、 前述の第 1の実施形態において説明し た動作により、 入力された電気信号に対して分散補償を行い、 補償された電気信 号を L S I 5 7に対して出力する。 L S I 5 7はこの電気信号を信号処理する。 第 4の実施形態においては、 分散補償器 1が小型化されており、 更に湾曲させ ることができるため、 光モジュール 5 5が搭載される配線基板 5 2上に、 分散補 償器 1も搭載することができる。 第 4の実施形態における上記以外の効果は、 前 述の第 1の実施形態と同様である。
なお、 第 4の実施形態においては、 分散補償器として前述の第 1の実施形態に よる分散補償器 1を使用する例を示したが、 本発明はこれに限定されず、 前述の 第 2の実施形態による分散補償器 2 1又は第 3の実施形態による分散補償器 3 1 を使用してもよい。
また、 要求される分散補償量が小さい場合には、 本発明の分散補償器を L S I の内部に設けることも可能である。 例えば、 前述の第 4の実施形態においては、 光モジュール 5 5の受信アンプ用 L S Iの内部又は L S I 5 7の内部に分散捕償 器を設けることもできる。 この場合、 分散補償器の基板として L S Iの層間絶縁 膜を使用し、 伝送線路として L S Iの配線を使用することもできる。 更に、 本発 明の分散補償器は、 通常の回路基板又はフレキシブルな樹脂基板上にも容易に形 成可能である。
本発明による分散補償器は、 分散特性が相互に等しく電気信号が流れたときに 相互に電磁気的に結合する一対の伝送線路を備えることにより、 電気信号を効果 的に遅延させることができ、 高い補償効率を実現することができる。
本発明は、 光ファイバを使用した光通信システムの受信側の光通信装置及ぴそ の分散補償器に好適に利用することができる。

Claims

請 求 の 範 囲
I . 絶縁性の基板と、 この基板上に形成され分散特性が相互に等しく電気信 号が流れたときにそれぞれの少なくとも一部が相互に電磁気的に結合する一対の 伝送線路と、 を有することを特徴とする分散補償器。
2 . 前記一対の伝送線路は、 それぞれ少なくとも一部がミアンダ状に形成さ れていることを特徴とする請求項 1に記載の分散補償器。
3 . 前記一対の伝送線路の形状が相互に等しいことを特徴とする請求項 2に 記載の分散補償器。
4 . 前記一対の伝送線路は、 差動信号が流れるものであることを特徴とする 請求項 3に記載の分散補償器。
5 . 更に、 前記基板上に設けられた多層配線層を有し、 前記一対の伝送線路 は、 前記多層配線層における相互に異なる配線層を構成しており、 前記一対の伝 送線路は、 前記基板の表面に垂直な方向に関して相互に重なるように配置されて いることを特徴とする請求項 4に記載の分散補償器。
6 . 前記基板上に設けられた配線層を有し、 前記一対の伝送線路はこの配線 層を構成しており、 前記一対の伝送線路は前記基板の表面に垂直な面に関して対 称な位置に配置されていることを特徴とする請求項 4に記載の分散補償器。
7 . 前記多層配線層は、 誘電体層を介して前記一対の伝送線路を挟むように 形成された一対の導体層を有することを特徴とする請求項 5に記載の分散補償器。
8 . 更に、 誘電体層を介して前記一対の伝送線路を挟むように形成された一 対の導体層を有することを特徴とする請求項 6に記載の分散補償器。
9 . 更に、 前記一対の伝送線路からのそれぞれの距離が相互に等しくなる位 置に配置された導体層を有することを特徴とする請求項 6に記載の分散補償器。
1 0 . 前記一対の導体層には基準電位が印加されることを特徴とする請求項 7に記載の分散補償器。
I I . 前記一対の導体層には基準電位が印加されることを特徴とする請求項 8に記載の分散補償器。
1 2 . 前記導体層には基準電位が印加されることを特徴とする請求項 9に記 載の分散補償器。
1 3 . 請求項 1乃至 1 2のいずれか 1項に記載の分散補償器を有することを 特徴とする光通信装置。
1 4 . 請求項 1 3に記載の光通信装置において、 更に、 入力された光信号を 電気信号に変換して前記分散補償器に対して出力する光モジュールと、 前記分散 補償器から出力された電気信号に対して信号処理を施す集積回路と、 を有するこ とを特徴とする光通信装置。
1 5 . 請求項 1 4に記載の光通信装置において、 更に、 配線基板を有し、 前 記分散補償器はフレキシブル性を有し、 前記分散補償器は湾曲されて前記配線基 板に実装されていることを特徴とする光通信装置。
PCT/JP2006/303206 2005-02-16 2006-02-16 分散補償器及びそれを備えた光通信装置 WO2006088227A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007503798A JP5077554B2 (ja) 2005-02-16 2006-02-16 光通信装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-039709 2005-02-16
JP2005039709 2005-02-16

Publications (1)

Publication Number Publication Date
WO2006088227A1 true WO2006088227A1 (ja) 2006-08-24

Family

ID=36916622

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/303206 WO2006088227A1 (ja) 2005-02-16 2006-02-16 分散補償器及びそれを備えた光通信装置

Country Status (2)

Country Link
JP (1) JP5077554B2 (ja)
WO (1) WO2006088227A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2184803A1 (fr) * 2008-11-07 2010-05-12 Commissariat à l'Energie Atomique Ligne à retard bi-ruban différentielle coplanaire, filtre différentiel d'ordre supérieur et antenne filtrante munis d'une telle ligne
WO2012140732A1 (ja) * 2011-04-12 2012-10-18 松江エルメック株式会社 超高周波差動回路

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5623002A (en) * 1979-08-03 1981-03-04 Nippon Telegr & Teleph Corp <Ntt> Microwave strip line
JPS62272411A (ja) * 1986-05-21 1987-11-26 株式会社ケンウッド 遅延線回路
JPH05226901A (ja) * 1992-02-12 1993-09-03 Nippon Telegr & Teleph Corp <Ntt> 高周波通信系の等化器
JPH10224128A (ja) * 1996-12-27 1998-08-21 Thin Film Technol Corp 差動遅延線

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2816273A (en) * 1952-08-01 1957-12-10 Sprague Electric Co Artificial transmission line
US3849745A (en) * 1973-01-26 1974-11-19 Westinghouse Electric Corp Method and system for varying the characteristics of a dispersive delay line
JPH01286493A (ja) * 1988-05-13 1989-11-17 Hitachi Ltd 多層配線基板
JPH04104531A (ja) * 1990-08-23 1992-04-07 Nec Corp 分散等化器
JP2000185972A (ja) * 1998-12-21 2000-07-04 Murata Mfg Co Ltd セラミック組成物及びセラミック多層基板
JP2002064429A (ja) * 2000-08-15 2002-02-28 Mitsubishi Electric Corp 光多重伝送装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5623002A (en) * 1979-08-03 1981-03-04 Nippon Telegr & Teleph Corp <Ntt> Microwave strip line
JPS62272411A (ja) * 1986-05-21 1987-11-26 株式会社ケンウッド 遅延線回路
JPH05226901A (ja) * 1992-02-12 1993-09-03 Nippon Telegr & Teleph Corp <Ntt> 高周波通信系の等化器
JPH10224128A (ja) * 1996-12-27 1998-08-21 Thin Film Technol Corp 差動遅延線

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2184803A1 (fr) * 2008-11-07 2010-05-12 Commissariat à l'Energie Atomique Ligne à retard bi-ruban différentielle coplanaire, filtre différentiel d'ordre supérieur et antenne filtrante munis d'une telle ligne
FR2938378A1 (fr) * 2008-11-07 2010-05-14 Commissariat Energie Atomique Ligne a retard bi-ruban differentielle coplanaires, filtre differentiel d'ordre superieur et antenne filtrante munis d'une telle ligne
US8305283B2 (en) 2008-11-07 2012-11-06 Commissariat à l'Energie Atomique Coplanar differential bi-strip delay line, higher-order differential filter and filtering antenna furnished with such a line
WO2012140732A1 (ja) * 2011-04-12 2012-10-18 松江エルメック株式会社 超高周波差動回路
JP5694515B2 (ja) * 2011-04-12 2015-04-01 松江エルメック株式会社 超高周波差動回路

Also Published As

Publication number Publication date
JP5077554B2 (ja) 2012-11-21
JPWO2006088227A1 (ja) 2008-07-10

Similar Documents

Publication Publication Date Title
CN106537683B (zh) 多层基板上信号的耦合
US7755447B2 (en) Multilayer balun, hybrid integrated circuit module, and multilayer substrate
US20050122185A1 (en) Bi-level coupler
WO2012111639A1 (ja) モジュール間通信装置
JP2010530690A (ja) 高い帯域幅の信号を3次元分配するためのインピーダンス管理されたコプレーナ導波路システム
TW201739100A (zh) 用於傳送電磁波信號之微帶波導轉移器
US10128557B2 (en) Chip-to-chip interface comprising a microstrip circuit to waveguide transition having an emitting patch
CN114284669A (zh) 使用微带电路和介质波导的芯片到芯片接口
US6646518B2 (en) Balun and semiconductor device including the balun
US20050001695A1 (en) Microstrip coupler
WO2006088227A1 (ja) 分散補償器及びそれを備えた光通信装置
US7688164B2 (en) High frequency circuit board converting a transmission mode of high frequency signals
JP6128859B2 (ja) 光モジュール
US8587388B2 (en) Multi-section velocity compensated microstrip directional coupler
US20040108921A1 (en) Parallel plate wave-guide structure in a layered medium for transmitting complementary signals
US8803629B2 (en) Electromagnetic coupler and information communication device including same
WO2013001705A1 (ja) プリント基板伝送系
JP3959545B2 (ja) 伝送線路、および半導体装置
Janisz et al. Compensated 3-dB lange directional coupler in suspended microstrip technique
JP6379754B2 (ja) プリント配線基板
US20090269078A1 (en) Dispersion compensator and optical communication device having same
JP6548608B2 (ja) プリント回路基板
JP6649195B2 (ja) 差動信号伝送装置
JP2006524954A (ja) 改良型方向性結合器
CN110729545A (zh) 用于通信系统的耦合器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007503798

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06714346

Country of ref document: EP

Kind code of ref document: A1