WO2006088028A1 - 2-アザインドリジン類の製造方法、2-アザインドリジン類金属錯体の製造方法及び2-アザインドリジン類金属錯体 - Google Patents

2-アザインドリジン類の製造方法、2-アザインドリジン類金属錯体の製造方法及び2-アザインドリジン類金属錯体 Download PDF

Info

Publication number
WO2006088028A1
WO2006088028A1 PCT/JP2006/302557 JP2006302557W WO2006088028A1 WO 2006088028 A1 WO2006088028 A1 WO 2006088028A1 JP 2006302557 W JP2006302557 W JP 2006302557W WO 2006088028 A1 WO2006088028 A1 WO 2006088028A1
Authority
WO
WIPO (PCT)
Prior art keywords
azaindolizine
azaindolizines
producing
compound
halogen
Prior art date
Application number
PCT/JP2006/302557
Other languages
English (en)
French (fr)
Inventor
Fumitoshi Shibahara
Toshiaki Murai
Original Assignee
Gifu University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gifu University filed Critical Gifu University
Priority to JP2007503664A priority Critical patent/JPWO2006088028A1/ja
Publication of WO2006088028A1 publication Critical patent/WO2006088028A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/0006Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table compounds of the platinum group
    • C07F15/0033Iridium compounds
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/14Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • H10K85/341Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H10K85/342Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising iridium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers

Definitions

  • the present invention relates to a method for producing 2-azaindolizines, a 2-azaindolizine metal complex, and a method for producing the same. More specifically, the present invention relates to a method for producing 2-azaindolizines exhibiting excellent fluorescence, a metal complex having 2-azaindolizines exhibiting excellent fluorescence or phosphorescence as ligands, and production thereof. Regarding the method. These compounds are useful in light emitters such as EL elements, color displays, dyes such as dye-sensitized solar cells, and other various technical fields.
  • the EL (electroluminescence) phenomenon in which carriers such as electrons in a material are excited by an electric field to emit light, has been known for a long time, and is also called electroluminescence or electroluminescence.
  • Such EL is expected as a surface light source, and there were problems in terms of brightness, life, etc. in the early inorganic EL materials, but these problems were greatly improved by the development of double insulation structure etc. It was.
  • organic EL devices using organic materials operate at a relatively low voltage.
  • organic EL elements have unique characteristics such as light weight and flexibility, and can be applied to full-color thin film displays by selecting appropriate organic dyes and polymer materials.
  • it has the characteristics that can solve the drawbacks of self-light emission, wide viewing angle, high-speed operation, etc. that are pointed out in liquid crystal displays. For this reason, organic EL devices are attracting attention as next-generation display devices.
  • 2-azaindidine (2-azaindolizine is a compound represented by the following chemical formula (1).
  • 2-Azaindolizines are a group of compounds including 2-azaindolizine and 2-azaindolizine skeletons with various substituents, and pyrimidine ring instead of pyridine ring in 2-azaindolizine skeleton, Pyrazine ring, pyridazine ring Or the compound group which has a triazine ring shall be included. It is also a concept that includes those multimers. ).
  • Patent Document 1 proposes an organic electroluminescent device in which a light-emitting layer composed of 2-azaindolizines is sandwiched in a laminated structure.
  • Patent Document 2 also describes the application of 2-azaindolizines to light-emitting elements! RU
  • Non-Patent Document 5 describes that 2-azaindolizine is crosslinked with io by reacting 2-azaindolizine monomer with thiochloride (with io as a linker atom). A method for synthesizing a mer is disclosed. However, this non-patent document 5 is an academic report of an organic synthesis method, and the properties, functions, applications, etc. of the synthesized 2-azaindolizine dimer are not examined.
  • Patent Document 1 Japanese Patent Laid-Open No. 2001-35664
  • Patent Document 2 Japanese Patent Laid-Open No. 2001-6877
  • Non-Patent Literature 1 J. D. Bower, u. R. Ramage Heterocyclic bystemsRelated to Pyrrocoli ne ", J. Chem. Soc, (1955), pages 2834-2837
  • Non-Patent Document 2 Swartz, D ⁇ . Etal., Heterocycles 1989, 28, 239
  • Non-Patent Document 3 Bu.X.R. etal., J. Org. Chem. 2004, 70, 2353
  • Non-Patent Document 4 Doring, M. etal., Angew. Chem. Int. Ed. 2002, 41, 2962
  • Non-Patent Literature 5 Eawara E. Glover, Kenneth D. Vaugnan, Arthur C. Bishop Synthesis and ndQuaterization of Some Heterocyclic Mono- and Di-sulphides ", J. Chem. Soc, Per kin trans. 1, 1972 (1973), page 2595-2599
  • 2-azaindolizines have a strong light-emitting property, and can be easily adjusted in color and other fine tuning by changing substituents. It is considered to be a luminescent compound. Despite this, it has not received much attention in the past. The main reason is the problem in the synthesis method of 2-azaindolizines. That is, according to the conventional general method for synthesizing 2-azaindolizines described in Non-Patent Document 1, it is unstable with respect to moisture and generates a large amount of salt and hydrogen during the reaction.
  • Non-Patent Document 2 has a problem that a harmful mercury-containing compound must be used.
  • for substituents that can be used for R 2 limit is large, on it is difficult to make the desired compounds in the free, that bad yield problems There is.
  • Patent Document 1 the ability to disclose various derivatives by changing the substituents of 2-azaindolizine.
  • These are disclosures about monomers of 2-azaindolizine, and In other words, depending on the properties and utility values of higher-order structures (for example, dimers and trimers by cross-linking or metal coordination bonds), or methods for synthesizing such higher-order structures, Please consider!
  • Non-Patent Document 2 described above discloses a method for synthesizing a 2-azaindolizine dimer that has been cross-linked from a 2-azaindolizine monomer. A method for synthesizing a monomer is also shown.
  • a 2-azaindolizine monomer is prepared in advance by a conventional disadvantageous synthesis method as described in Non-Patent Documents 1 to 4.
  • the dimer synthesis process is a two-step force of the first step of preparing the monomer and the second step of synthesizing the dimer, and the production efficiency (and thus the production cost) is good. Absent.
  • the first step involves the technical difficulties described above.
  • the present invention has been made in view of the above-mentioned conventional problems, and uses a V and a reagent having little irritation and toxicity, and a 2-azaindolizine monomer or dimer and a metal complex thereof. It is a technical problem to be solved to provide a production method that can be obtained in a short time and with a high yield.
  • the present invention provides a technical solution to be solved by providing a metal complex of a monomer or a dimer of 2-azaindolizines as a novel compound that can be used in an organic EL device or the like. Let it be an issue.
  • the method for producing 2-azaindolizines of the present invention comprises a 2-azaindolizine precursor having a methylcarbothioamide group bonded to a carbon next to nitrogen existing in a ring of a heteromonocyclic nitrogen-containing compound as an oxidizing agent. It comprises the cyclization reaction process made to cyclize in presence of.
  • the 2-azaindolizine precursor used as a raw material may be bonded to a substituent such as an aryl group or an alkyl group, provided that it does not interfere with the cyclization reaction. Therefore, a variety of 2-azaindolizines can be produced.
  • 2-azaindolizines in this specification means a compound group including 2-azaindolizine and compounds in which various substituents are bonded to 2-azaindolizine skeleton
  • a compound group having a pyrimidine ring, a pyrazine ring, a pyridazine ring or a triazine ring instead of the pyridine ring of the 2-azaindolizine skeleton is also included.
  • it is the concept also including those multimers.
  • the key point in the method for producing 2-azaindylenes of the present invention is that the carbon adjacent to the nitrogen present in the ring of the heterocyclic monocyclic nitrogen-containing compound as a starting material can be easily inferred from the above reaction mechanism.
  • the methyl carbothioamide group is bonded.
  • N-2-pyridylmethyl It is obvious that the same cyclization reaction occurs even in a compound having a pyrimidine ring, a pyrazine ring, a pyridazine ring and a triazine ring instead of the pyridine ring in the pothiamides.
  • an oxidizing agent such as oxygen, iodine, bromine, chlorine, and hypochlorous acid can be appropriately selected and used.
  • the inventors have confirmed that 2-azaindolizines can be obtained using oxygen, iodine or hypochlorous acid as an oxidant, and in particular, by using oxygen and iodine as an oxidant, a high yield can be obtained. It has been confirmed that azaindolizines can be obtained.
  • a base having a nitrogen-containing heterocycle such as pyridine or pyrimidine is preferably present.
  • oxygen is used as the oxidizing agent, it is preferable to use a transition metal compound such as cuprous chloride as a catalyst.
  • Formula 4 shows the expected reaction mechanism when iodine is used as the oxidizing agent.
  • a substituent can be easily introduced into the 1-position carbon as follows.
  • 2-azaindolizines obtained in the cyclization reaction step are reacted with a halogen alone to form an electron-rich state.
  • Add halogen to the 1-position carbon of the 5-membered ring (see Chemical Formula 5 below).
  • substitution step the halogen of the 2-azaindolizines to which halogen has been added in the halogenation step is substituted with a nucleophile.
  • a Grignard reagent or an organic boronic acid that is, a reagent used in the Suzuki-Kajiura coupling reaction
  • an organic boronic acid that is, a reagent used in the Suzuki-Kajiura coupling reaction
  • the substitution step is performed in the presence of a palladium catalyst (such as a palladium complex having triphenylphosphine as a ligand).
  • an electron-rich carbon at the 2-position of 2-azaindolizines can be used to produce organolithium compounds of 2-azaindolidines, and other substituents can be introduced there.
  • the following steps are performed. That is, the 2-azaindolizines obtained in the cyclization reaction step, the organometallic compound, and the halogen alone are reacted to add halogen to the 1-position carbon of the 2-azaindidines (halogen addition step).
  • the halogen of the 2-azaindolizines to which halogen has been added by the halogen-adding step is substituted with lithium by an organic lithium compound to obtain a lithium compound of the 2-azaindolizines (organic lithiation step).
  • 2-azaindolizines lithium compounds and linker compounds compounds having Si, P, A1 or B as the central atom and having at least one alkyl group or aryl group and at least one chlorine, or , Alkoxy boronic acid
  • a substituent introduction step dimers of 2-azaindolizines linked with a linker element of Si, P, A1 or B instead of S, and other 2-azaindolizines derivatives can be produced.
  • the body can also be easily manufactured. That is, the method for producing a 2-azaindolizine metal complex of the present invention comprises reacting a 2-azaindolizine obtained by the method for producing a 2-azaindolizine according to any one of claims 1 to 7 with a metal ion. It is characterized in that it is made into a 2-azadyne lysine metal complex.
  • the 2-azaindolizine metal complex thus obtained has a fluorescence and phosphorescence that are superior to those of 2-azaindolizines.
  • the metal ion to be reacted with 2-azaindolizines can be a rare earth ion or a transition metal ion belonging to Group 8 to LO in the long-period periodic table. Such metal ions can form stable metal complexes with 2-azaindolizines.
  • an appropriate ligand is further arranged on the transition metal atom in order to exhibit effective phosphorescence.
  • Ligand coordination is not essential when the metal ion is a rare earth element, but ligand coordination may be preferred in order to exhibit more effective phosphorescence.
  • 2-azaindolizines having dimer strength can also be used.
  • the ligand becomes a multidentate ligand, the entropy difference between the state in which the 2-azaindolizine metal complex is released and the state in which it is not dissociated is reduced. For this reason, 2-azaindolizines metal complexes are thermodynamically more stable.
  • an aryl group is bonded to at least one of the 1-position and 3-position carbon atoms of the 2-azaindolizine skeleton.
  • the carbon of the aryl group also contributes to the coordination bond, and the stability of the 2-azaindolizine metal complex is further increased.
  • Patent Document 1 proposes various 2-azaindolizine derivative monomers as organic electroluminescent compounds, but does not present any solution for such a problem in the synthesis method.
  • 2-azaindolizines According to the method for producing 2-azaindolizines of the present invention, a 2-azaindolizine precursor in which a methylcarbothioamide group is bonded to the carbon adjacent to the nitrogen present in the ring of the heteromonocyclic nitrogen-containing compound is called Therefore, 2-azaindolizines can be easily synthesized using raw material compounds that are easy to obtain and have no problems with storage stability or safety during use. In addition, tuning such as selection of emission color in 2-azaindolizines can be performed easily and in various ways by arbitrarily selecting substituents in 2-azaindolizines precursors.
  • the method for producing 2-azaindolizines of the present invention for the first time provides a method for producing 2-azaindolizines having dimer strength from easy-to-handle raw material compounds in a single synthesis step. This point also has extremely great technical significance from the viewpoints of manufacturing cost and improvement of yield by unifying processes.
  • FIG. 1 is 1H-NMR data of the azaindolizine bridged dimer obtained in Examples 1 and 2.
  • FIG. 2 shows 1H-NMR data of 2-azaindolizine monomer (5).
  • FIG. 3 shows 1H-NMR data of 2-azaindolizine monomer (7).
  • FIG. 4 shows 1H-NMR data of 2-azaindolizine monomer (8).
  • FIG. 5 is a fluorescence spectrum of 2-azaindolizine derivatives obtained in Example 9 to Example 13.
  • Fig. 6 Luminescence spectrum of iridium complex with 2-phenyl-2-azaindolizine as a ligand.
  • FIG. 7 is a view showing a crystal structure obtained from an X-ray diffraction analysis result of an iridium complex having 2-ferro-2-azaindolizine as a ligand.
  • R is a dialkylaminophenol group such as a phenyl group or a dimethylaminophenol group, m—, p-methoxyphenyl group, m—, p— Selected from any aromatic group selected from trifluoromethylphenyl group or pyridyl group, methyl group, isopropyl group, t-butyl group or derivatives thereof! /, Any fat Family group etc.
  • Examples of the method for producing 2-azaindolizines according to the present invention include a method of synthesizing 2-azaindolizines dimers in a single synthesis step.
  • the N-2-pyridylmethylcarbothioamide derivative (N-2-pyridylmethylcarbothioamide)
  • the above-mentioned substituent R is bonded
  • Z or N-2-pyridylmethylcarbothioamide (the substituent R is bonded, or the like) is used as a raw material compound.
  • cyclization of the raw material compound and cross-linking dimerization are performed in a single step in the presence of an oxidant or oxygen that is not shown. Or according to conventional methods of organic synthesis It can be synthesized easily and prepared easily.
  • a base is used in the presence of an oxidizing agent.
  • the type of oxidizing agent is not particularly limited, but iodine (I) can be preferably exemplified.
  • the types of bases are particularly limited
  • bases having a nitrogen-containing heterocycle such as pyridine and pyrimidine can be exemplified.
  • oxygen can also be used as an oxidizing agent.
  • a metal catalyst is used in the presence of oxygen.
  • the type of metal catalyst is not particularly limited, but a copper catalyst can be preferably exemplified.
  • dimer strength is also achieved.
  • a method of synthesizing azaindolizines in two steps of synthesis is also achieved.
  • the same raw materials as in the above-described one-step synthesis method are used, and a base is used in the presence of an oxidizing agent in the same meaning as in the above-described one-step synthesis method.
  • an oxidizing agent in the same meaning as in the above-described one-step synthesis method.
  • Such a synthesis step is possible by stopping the reaction in the first step with a reducing agent such as sodium thiosulfate at an appropriate timing.
  • the advantage of this method in comparison with the above-described prior art is that, at least in the first step of synthesizing 2-azaindolizine and 2-azaindolizine derivatives, use as in the above-mentioned prior art, unsatisfactory, N-2-Pyridylmethylcarbothioamide (or its derivatives) can be used because it is easy to obtain and handle as a compound.
  • 2-azaindolizines for example, 2-azaindolizine and 2-azaindolizine derivatives, one example of which is shown in the above-mentioned “Chemical Formula 6”, are grouped into Groups 13 to 16 according to the long-period periodic table. It is possible to produce a product in which any of the atoms to which it belongs is crosslinked as one linker atom.
  • the bonding position with a linker atom in the 2-azaindolizine derivative or 2-azaindolizine is not necessarily limited.
  • This bonding position may be the carbon atom at the 3rd position, but is more preferably the carbon atom at the 1st position in view of the synthesis efficiency of the force 2-azaindolizine bridged dimer.
  • the type and position of the substituents in the 2-azaindolizine derivative various adjustments are made to the emission color, emission efficiency, emission starting voltage, etc. of the 2-azaindolizines having dimer strength. be able to.
  • specific examples of the light emission colors 1 and 2 give orange light when the substituent is a phenyl group.
  • the emission color shifts to the longer wavelength side.
  • the type of the substituent is not limited as long as it meets the purpose of ensuring the luminescent properties of the organic electroluminescent compound and various tunings.
  • the substituents include a phenyl group, dimethylamino. Dialkylaminophenol groups such as phenyl groups, m-, p-methoxyphenyl groups, m-, p-trifluoromethylphenol groups or pyridyl groups And an aliphatic group arbitrarily selected from a methyl group, an isopropyl group, a t-butyl group, or a derivative group thereof.
  • Examples of the use method or application of the diazaindolizines having dimer physical strength include the following. That is, in addition to organic electroluminescent element materials (organic EL element materials) for various applications, electron transport materials that pass electrons to the actual light emitting molecules used in such organic EL elements, hole transport materials (depending on the structure of the derivative), It can be used as a material such as a dye used in a dye-sensitized solar cell and a doping molecule of a nonlinear optical material. On the other hand, it can also be used as a multidentate metal catalyst ligand.
  • the complex compound of the rare earth metal atom emits fluorescence
  • the complex compound of the transition metal atom emits phosphorescence
  • An organic electroluminescent complex compound is a 2-azaindolizine derivative in which a substituent is bonded to a carbon at a position where a substituent can be bonded to 2-azaindolizine (for example, carbon at position 3).
  • 2-azaindolizine nitrogen-containing aromatic derivatives or those whose substituents are aromatic substituents (including nitrogen-containing aromatic substituents) (2-azaindolizines) Aromatic derivatives).
  • Such 2-azaindolizine metal complexes include the following first type and second type.
  • the first type of 2-azaindolizine metal complex is (i) 2-azaindolizine nitrogen-containing aromatic derivative (meaning that a nitrogen-containing aromatic substituent is bonded to carbon at the position where 2-azaindolizine can be substituted) 2—azaindolizine—X— dimer (immediately The two nitrogen atoms in the 2-position of the 2-azaindolysine nitrogen-containing aromatic derivative in each of the 2-azaindolizine-nitrogen-containing aromatic-X-dimer) and the nitrogen constituting the aromatic ring of the aromatic group The atom is coordinated to a rare earth metal atom to form a 4-coordinated metal complex ligand, or (mouth) 2-azaindolizine aromatic derivatives as constituents In the X-dimer (ie, 2-azaindolizine-aromatic-X- dimer), each of the two 2-azaindolizine aromatic derivatives forms the aromatic ring of the aromatic group with the nitrogen atom at position 2.
  • the metal atom of the complex compound is the above-described transition metal atom
  • the transition metal atom emits light due to the interaction with the ligand. Therefore, the ligand is further coordinated to the transition metal atom. It is necessary for effective electroluminescence.
  • the metal atom of the complex compound is a rare earth metal atom
  • the rare earth metal atom itself has a light-emitting property. Therefore, coordination of the ligand is not a necessary condition, but electroluminescence is reinforced by ligand coordination. Therefore, it is a preferable condition.
  • the type of the rare earth metal atom is not necessarily limited, but for example, europium, yttrium, neodymium, and the like are particularly preferable.
  • the type of the transition metal atom is not necessarily limited, but iridium, platinum, palladium, ruthenium, rhodium and the like are particularly preferable.
  • the type of the above-mentioned ligand is not necessarily limited, but various ligands generally used for the construction of this type of complex can be appropriately used. For example, phenolpyridine, acetylacetone, bibilidyl and the like are preferably used. it can. One other molecule of 2-azaindridine can also be used as a ligand.
  • the first type of 2-azaindolizine metal complexes can be synthesized by reacting 2-azaindolizine-nitrogen-containing aromatic X-dimers with ions of rare earth metal atoms under appropriate conditions, or 2— The reaction is carried out by reacting the azaindolizine-aromatic-X-dimer with an ion of a transition metal atom and an appropriate ligand under appropriate conditions.
  • the ligand is indicated as “”.
  • the second type of 2-azaindolizine-type metal complex is composed of (ii) 2 or 3 molecules of 2-azaindolizine nitrogen-containing aromatic derivatives, or 1 molecule of 2-azaindolizine nitrogen-containing aromatic derivatives and 2-azaindolizine-containing compounds. 4-coordination by coordinating a single molecule of a nitrogen aromatic X-dimer with a rare earth metal atom in the same manner as in the case of the first type 2-azaindolizine metal complex described above.
  • Constituent or hexacoordinated metal complex ligands or (2) 2 or 3 molecules of 2-azaindolizine aromatic derivatives, or 1 of 2-azaindolizine aromatic derivatives
  • constituting the 4 coordination sites or 6 coordination sites of the metal complex ligands is also of Ru.
  • the second type of 2-azaindolizine metal complexes can be synthesized by (2) 2-azaindolizine containing 2 or 3 molecules of nitrogen-containing aromatic derivatives, or 2 By reacting one molecule of an aromatic derivative and one molecule of a 2-azaindolizine-nitrogen-containing aromatic-X- dimer with an ion of a rare earth metal atom under appropriate conditions, or (mouth) 2 2 or 3 molecules of azaindolizine aromatic derivative, or 1 molecule of 2 azaindolizine aromatic derivative and 1 molecule of 2-azaindolizine-aromatic- X-dimer under appropriate conditions, transition metal atom By reacting with a suitable ion and an appropriate ligand.
  • “Chemical 9” shows an example of the synthesis of a 2-azaindolizine metal complex in which three molecules of a 2-azaindolizine aromatic derivative whose substituent is a phenol group is coordinated to iridium.
  • Example 1 As shown in the reaction formula of “Chemical Formula 10” below, from the starting compound N-2-methylpyridyl-2-pyridylcarbothioamide (1), 2-azaindolizine Bis 2- (2 pyridyl) -4 azaindolizine sulfide (2), a crosslinked dimer, was synthesized in one step.
  • the raw material compound N-2-methylpyridyl-4-methoxyphenylcarbothioamide (3) is a diazaindridine crosslinked dimer.
  • Di 2- (4-methoxyphenol) -4-azaindolizine sulfide (4) was synthesized in one step.
  • the 2-azaindolizine bridged dimer of (4) has not yet been confirmed, and is di-2- (4-methoxyphenol) -4-azaindolizine sulfide. Is deterministic. It has also been confirmed that this 2-azaindolizine cross-linked dimer exhibits strong electroluminescence (fluorescence).
  • Figure 3 shows the 1 H-NMR structure confirmation data of the above 2azaindolizine monomer (7). It has already been confirmed that the 2-azaindolizine monomer exhibits electroluminescence (fluorescence).
  • Figure 4 shows the 1 H-NMR structure confirmation data of the above 2azaindolizine monomer (8). It has also been confirmed that this 2-azaindolizine monomer exhibits electroluminescence (fluorescence).
  • iridium trichloride hydrate (Ir C1 ⁇ ⁇ 0) 352 mg, bis-1- (4-methoxyphenyl-2-azaindolidyl) sulfur was added to a 20 mL two-necked flask under an argon gas atmosphere.
  • the 2-azaindolizine derivative introduced with iodine at the 1-position thus obtained was reacted with phenylboronic acid in the presence of a palladium catalyst having triphenylphosphine as a ligand and cesium carbonate as a base.
  • the Ura cross-coupling reaction was carried out, and 2-azaindolizines having a phenyl group introduced at the 1-position were obtained in a yield of 60% or more (see the following reaction formula 18).
  • the REI vs. luminescence intensity tended to be stronger as the electron-donating substituent was present.
  • the light emission quantum yield corresponding to the energy conversion efficiency was calculated based on the both, and it increased as the electron-donating substituents increased, and those having a methoxy group on both benzene rings did not have a methoxy group. Compared with 2-azaindolizine derivatives, the emission quantum yield was more than 3 times.
  • 2-azaindolizine dimer containing Si as a linker element was synthesized by reacting a lithium compound of 2-azaindolizine with a dialkyldichlorosilane. The results are shown in Table 2. As shown in this surface force component, 2-azaindolizines dimers having various substituents having Si as a linker element were obtained in good yield.
  • the emission spectrum of the iridium complex thus obtained is shown in FIG. From this figure, it can be seen that, at room temperature, the emission intensity increases significantly when measured by cooling to 77K, which is a very weak emission intensity. This indicates that this iridium complex emits clear fluorescence, strongly suggesting its potential for use as an organic EL material.
  • the present invention provides a fluorescent organic electroluminescent compound useful as an EL element material, a phosphorescent organic electroluminescent complex compound, an effective production method thereof, and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Nitrogen And Oxygen Or Sulfur-Condensed Heterocyclic Ring Systems (AREA)

Abstract

 刺激性や有毒性の少ない試薬を用い、単量体や2量体の2-アザインドリジン類及びその金属錯体を短い工程及び高い収率で得ることのできる製造方法を提供する。また、有機EL素子等に用いることができる新規化合物として、単量体や2量体の2-アザインドリジン類金属錯体を提供する。  N-2-ピリジルメチルカルボチオアミド類を酸化剤の存在下で環化させて2-アザインドリジン類を製造する。さらに、2-アザインドリジン類を金属イオンと反応させて2-アザインドリジン類金属錯体とする。

Description

明 細 書
2 -ァザインドリジン類の製造方法、 2 -ァザインドリジン類金属錯体の製 造方法及び 2—ァザインドリジン類金属錯体
技術分野
[0001] 本発明は、 2—ァザインドリジン類の製造方法、 2—ァザインドリジン類金属錯体及 びその製造方法に関する。更に詳しくは、本発明は、優れた蛍光発光性を示す 2— ァザインドリジン類の製造方法と、優れた蛍光発光性又はリン光発光性を示す 2—ァ ザインドリジン類をリガンドとする金属錯体及びその製造方法に関する。これらの化合 物は、 EL素子のような発光体、カラーディスプレー、色素増感太陽電池等の色素、 その他の各種の技術分野にお 、て有用である。
背景技術
[0002] 電界により材料中の電子等のキャリアを励起状態にして発光させると言う EL (エレク トロルミネッセンス)現象はかなり以前力 知られており、電界発光、又は電場発光とも 呼ばれる。このような ELは、面光源として期待され、初期の無機 EL材料においては 輝度や寿命等の点で問題があつたが、二重絶縁構造等の開発によって、これらの問 題が大幅に改善された。
[0003] 一方、 1980年代の後半頃、有機材料を用いた有機 EL素子が比較的低電圧で動 作することが報告された。更に、有機 EL素子は軽量性や柔軟性と言う固有の特徴を 持ち、しカゝも、適切な有機色素や高分子材料を選ぶことで、フルカラー薄膜ディスプ レー等への応用が可能である。又、液晶ディスプレーで指摘されている自発光、広視 野角、高速動作等の面での欠点を解消することができる特性を備えている。そのため に、有機 EL素子は次世代ディスプレー素子等として注目されて 、る。
[0004] このような有機 EL材料 (有機電界発光化合物)の好ましい具体例として、 2—ァザィ ンドリジン類(2—ァザインドリジンとは下記化学式(1)で示される化合物である。また 、本明細書において 2—ァザインドリジン類とは、 2—ァザインドリジン及び 2—ァザィ ンドリジン骨格に様々な置換基が結合したィ匕合物も含めた化合物群、さらには、 2- ァザインドリジン骨格のピリジン環の替わりにピリミジン環、ピラジン環、ピリダジン環あ るいはトリアジン環を有する化合物群も含まれるものとする。また、それらの多量体を も含む概念である。)を挙げることができる。
[化 1]
Figure imgf000003_0001
2—ァザインドリジン類は強い発光性を示すと共に、様々な置換基を導入することに より、色彩その他のファインチューニングを容易に行うことができる。例えば、下記の 特許文献 1では、 2—ァザインドリジン類を含有して構成された発光層を積層構造中 に挟持してなる、有機電界発光素子が提案されている。また、特許文献 2においても 、 2 -ァザインドリジン類の発光素子への応用が記載されて!、る。
[0005] 2—ァザインドリジン類の合成方法としては、下記反応式化 2による方法が知られて いる (非特許文献 1〜4参照)。
[0006] [化 2]
Figure imgf000003_0002
[0007] 更に下記の非特許文献 5には、 2—ァザインドリジン単量体に対して二塩化ィォゥを 反応させることにより、ィォゥで架橋された (ィォゥをリンカ一原子とする) 2—ァザイン ドリジン 2量体を合成する方法が開示されている。但し、この非特許文献 5は有機合 成法の学術的な報告であって、合成された 2—ァザインドリジン 2量体の特性、機能、 用途等は検討していない。
[0008] 特許文献 1 :特開 2001— 35664号公報 特許文献 2:特開 2001— 6877号公報
非特干文献 1 :J. D. Bower, u. R. Ramage Heterocyclic bystemsRelated to Pyrrocoli ne",J. Chem. Soc, (1955), page 2834-2837
非特許文献 2 : Swartz,D丄. etal.,Heterocycles 1989,28,239
非特許文献 3: Bu.X.R. etal.,J.Org.Chem.2004,70,2353
非特許文献 4 : Doring,M. etal.,Angew.Chem.Int.Ed.2002,41,2962
非特干文献 5: Eawara E. Glover, Kenneth D. Vaugnan, Derek C. Bishop Synthesis a ndQuaterization of Some Heterocyclic Mono- and Di- sulphides", J. Chem. Soc, Per kin trans. 1, 1972(1973), page 2595-2599
発明の開示
発明が解決しょうとする課題
[0009] 上述のように、 2—ァザインドリジン類は強い発光性を持つ点や、置換基を変化させ ることにより色彩その他のファインチューニングを容易に行うことができる等の点から、 有利な有機電界発光化合物であると考えられる。それにも関わらず、従来は余り注目 されていなかった。その主たる理由は、 2—ァザインドリジン類の合成方法上の問題 にある。即ち、上記非特許文献 1に記載された、従来の一般的な 2—ァザインドリジン 類の合成方法によれば、湿気に対して不安定で、し力も反応中に大量の塩ィ匕水素を 発生すると言う取扱い困難な化合物である塩ィ匕ホスホリルを用いる必要があるため、 結果的に 2—ァザインドリジン類の合成自体が敬遠される傾向が強力つたのである。 また、上記非特許文献 2に記載の製造方法では、有害な水銀ィ匕合物を用いなけれ ばならないという問題がある。さらに上記非特許文献 3及び 4に記載の製造方法では 、 R2に用いることのできる置換基の制限が多いため、望みの化合物を自由に作ること が困難である上、収率も悪いという問題がある。
[0010] また、上述した特許文献 1では、 2—ァザインドリジンの置換基の変更による多様な 誘導体を開示している力 これらは 2—ァザインドリジンの単量体についての開示で あって、 2—ァザインドリジンのいわば高次構造体 (例えば、架橋等による、又は金属 配位結合による 2量体や 3量体等)の特性や利用価値、あるいはそのような高次構造 体の合成方法等にっ 、ては検討して!/、な 、。 [0011] この点に関して、上述した非特許文献 2では 2—ァザインドリジン単量体からィォゥ 架橋された 2—ァザインドリジン 2量体を合成する方法を開示するが、この方法では 原料である 2—ァザインドリジン単量体の合成方法も示して 、な 、ので、前提条件と して、非特許文献 1〜4に記載されているような、従来の不利な合成方法によって 2— ァザインドリジン単量体を予め準備する必要がある。即ち、 2量体の合成プロセスが、 単量体を準備する第 1工程と、 2量体を合成する第 2工程の 2段階力 なり、製造効 率 (ひいては、製造コスト)が良いとは言えない。しかも、第 1工程において前記の技 術的困難を伴う。
[0012] 本発明は上記従来の問題点に鑑みなされたものであって、刺激性や有毒性の少な V、試薬を用い、 2—ァザインドリジン類の単量体や 2量体及びその金属錯体を短 ヽェ 程及び高い収率で得ることのできる製造方法を提供することを解決すべき技術的課 題とする。
[0013] また、本発明は、有機 EL素子等に用いることができる新規ィ匕合物として、単量体や 2量体の 2—ァザインドリジン類の金属錯体を提供することを解決すべき技術的課題 とする。
課題を解決するための手段
[0014] 本発明の 2—ァザインドリジン類の製造方法は、複素単環含窒素化合物の環に存 在する窒素の隣の炭素にメチルカルボチォアミド基が結合した 2—ァザインドリジン 類前駆体を酸化剤の存在下で環化させる環化反応工程を備えることを特徴とする。
[0015] 発明者らの試験結果によれば、複素単環含窒素化合物の環に存在する窒素の隣 の炭素にメチルカルボチォアミド基が結合した 2-ァザインドリジン類前駆体は、酸ィ匕 剤の存在下で容易に環化反応を行い、下記反応式化 3に示すように、相当する 2— ァザインドリジン類となる。
[0016] [化 3]
Figure imgf000006_0001
Figure imgf000006_0002
[0017] この環化反応工程においては、単量体のみならず 2量体も生成する。さらに詳しく は、環化反応工程の時間が短いときは単量体が多く生成し、反応時間の経過ととも に 2量体の割合が増力!]してくる。このため、時間や温度等、反応条件を適宜制御する こと〖こより、単量体ある 、は 2量体の 2—ァザインドリジン類を 1工程のみで製造するこ とが可能となる。また、チォ硫酸ナトリウムのような還元剤によって適宜なタイミングで 反応を停止させることによって、単量体あるいは 2量体の 2—ァザインドリジン類を 1ェ 程のみで製造することも可能である。また、例え反応生成物として単量体と 2量体とが 混合していたとしても、カラムクロマトグラフィー等の分離手段によって、容易に両者 を分別採取することができる。
[0018] 原料となる 2-ァザインドリジン類前駆体は、環化反応を妨害しな 、ことを条件として 、ァリール基やアルキル基等の置換基が結合していても良い。このため、多様な 2— ァザインドリジン類を製造することができる。
また、先にも述べたように、本明細書において 2—ァザインドリジン類とは、 2—ァザ インドリジン及び 2—ァザインドリジン骨格に様々な置換基が結合した化合物も含め た化合物群、さらには、 2—ァザインドリジン骨格のピリジン環の替わりにピリミジン環 、ピラジン環、ピリダジン環あるいはトリアジン環を有する化合物群も含まれるものとす る。また、それらの多量体も含む概念である。すなわち、本発明の 2—ァザインドリジ ン類の製造方法におけるキーポイントは、上記反応機構力 容易に推察できるように 、出発物質となる複素単環含窒素化合物の環に存在する窒素の隣の炭素にメチル カルボチォアミド基が結合していることである。このため、 N— 2—ピリジルメチルカル ポチオアミド類におけるピリジン環の替わりに、ピリミジン環、ピラジン環、ピリダジン環 及びトリアジン環を有する化合物でも、同様の環化反応が生じることは自明である。
[0019] 環化反応工程に用いる酸化剤としては、酸素、ヨウ素、臭素、塩素、次亜塩素酸等 、適宜酸化剤を選択して用いることができる。発明者らは、酸素、ヨウ素あるいは次亜 塩素酸を酸化剤として 2—ァザインドリジン類が得られることを確認しており、特に酸 素及びヨウ素を酸化剤として用いることにより、高い収率で 2—ァザインドリジン類が 得られることを確認している。酸化剤としてヨウ素を用いる場合には、ピリジンやピリミ ジン等の含窒素複素環を有する塩基を存在させることが好ましい。また、酸素を酸化 剤として用いる場合には、触媒として塩化化第 1銅等の遷移金属化合物を用いること が好ましい。
[0020] 下記化 4に酸化剤としてヨウ素を用いた場合の、予想される反応機構について示す
[化 4]
Reaction Pathway
Figure imgf000007_0001
[0021] 本発明の 2—ァザインドリジン類の製造方法では、次のようにして 1位の炭素に置換 基を容易に導入することができる。すなわち、まずハロゲン付加工程として、環化反 応工程で得られた 2—ァザインドリジン類とハロゲン単体とを反応させて、電子リッチと なっている 5員環の 1位の炭素(下記化学式化 5参照)にハロゲンを付加させる。そし て、さらに置換工程として該ハロゲン付カ卩工程によってハロゲンが付加された 2—ァ ザインドリジン類のハロゲンを求核試薬で置換する。こうして、 2—ァザインドリジン類 の 1位の炭素に任意の置換基を簡単に導入することができる。
[化 5]
readily takes place
Figure imgf000008_0001
[0022] 求核試薬としては、グリニャール試薬や有機ボロン酸 (すなわち、鈴木—宫浦カツ プリング反応に用いられる試薬)を用いることができる。有機ボロン酸を求核試薬とし て用いる場合には、パラジウム触媒(トリフエニルホスフィンをリガンドとするパラジウム 錯体など)の存在下で置換工程を行う。
[0023] また、 2—ァザインドリジン類における電子リッチな 1位の炭素を利用して 2—ァザィ ンドリジン類の有機リチウム化合物をつくり、さらにそこへ他の置換基を導入することも できる。このためには、以下のような工程を行う。すなわち、環化反応工程で得られた 2—ァザインドリジン類と有機金属化合物とハロゲン単体とを反応させて、 2—ァザィ ンドリジン類の 1位の炭素にハロゲンを付加させる (ハロゲン付加工程)。次に、該ハ ロゲン付カ卩工程によってハロゲンが付加された 2—ァザインドリジン類のハロゲンを有 機リチウム化合物によってリチウムと置換させて 2—ァザインドリジン類のリチウム化合 物とする (有機リチウム化工程)。最後に、該 2—ァザインドリジン類のリチウム化合物 とリンカ一化合物(中心原子として Si、 P、 A1若しくは Bを有し、少なくとも 1つのアルキ ル基若しくはァリール基と少なくとも 1つの塩素とを有する化合物、又は、アルコキシ ボロン酸のことをいう)とを反応させて置換基を導入する(置換基導入工程)。こうして 、 Sの替わりに Si、 P、 A1又は Bというリンカ一元素でリンクされた 2—ァザインドリジン 類の 2量体、その他の 2—ァザインドリジン類誘導体を製造することができる。
[0024] また、本発明の 2—ァザインドリジン類をリガンドとする 2—ァザインドリジン類金属錯 体も容易に製造することができる。すなわち、本発明の 2—ァザインドリジン類金属錯 体の製造方法は、請求項 1乃至 7のいずれか 1項記載の 2—ァザインドリジン類の製 造方法によって得られた 2—ァザインドリジン類を金属イオンと反応させて 2—ァザィ ンドリジン類金属錯体とすることを特徴とする。
こうして得られた 2—ァザインドリジン類金属錯体は、 2—ァザインドリジン類よりもさ らに優れた蛍光性やりん光性を有する。
[0025] 2—ァザインドリジン類と反応させる金属イオンは希土類元素のイオン又は長周期 型周期表における 8〜: LO族に属する遷移金属のイオンとすることができる。このような 金属イオンであれば、 2—ァザインドリジン類と安定な金属錯体を形成することができ る。金属イオンを長周期型周期表による 8〜10族に属する遷移金属イオンとする場 合には、有効なリン光発光性を示すためには、遷移金属原子に対して更に適宜なリ ガンドが配位している必要がある。金属イオンが希土類元素の場合にはリガンドの配 位は不可欠ではな 、が、より有効なリン光発光性を示すためにリガンドの配位が好ま しい場合がある。
また、リガンドとしては 2量体力もなる 2—ァザインドリジン類を用いることもできる。こ うであれば、リガンドが多座配位子となるため、 2—ァザインドリジン類金属錯体が解 離した状態と解離していない状態とのエントロピー差が小さくなる。このため、 2—ァザ インドリジン類金属錯体が熱力学的に安定さを増す。
さらには、 2—ァザインドリジン骨格の 1位及び 3位の炭素原子の少なくとも一方にァ リール基が結合していることとすることも好ましい。こうであれば、ァリール基の炭素も 配位結合に寄与するため、さら〖こ、 2—ァザインドリジン類金属錯体の安定性が増大 する。
発明の効果
[0026] 前記したように、 2—ァザインドリジン系統の化合物は、本来的に優れた有機電界 発光化合物であると考えられるにも関わらず、不安定で取扱いの難しい原料ィ匕合物 を用いると言う合成方法上の問題力も余り実用化されていな力つた。特許文献 1にお いては、有機電界発光化合物としての種々の 2—ァザインドリジン誘導体の単量体を 提案するが、このような合成方法上の問題についての解決策は、全く提示していない [0027] 本発明の 2—ァザインドリジン類の製造方法によれば、複素単環含窒素化合物の 環に存在する窒素の隣の炭素にメチルカルボチォアミド基が結合した 2—ァザインド リジン類前駆体という、入手が容易で保存性や使用時の安全性にも問題のない原料 化合物を用いて、 2—ァザインドリジン類を容易に合成することができる。また、 2—ァ ザインドリジン類前駆体における置換基の任意の選択により、 2—ァザインドリジン類 における発光色彩の選択等のチューニングも、容易かつ多様に行うことができる。
[0028] また、本発明の 2—ァザインドリジン類の製造方法によって、取り扱いの容易な原料 化合物から 2量体力もなる 2—ァザインドリジン類を単一の合成ステップで製造する方 法が初めて提供された。この点も、製造コスト、工程の単一化による収率の向上等の 面から、極めて大きな技術的意義を持つ。
[0029] 本発明の 2—ァザインドリジン類の製造方法においては、原料ィ匕合物の環化と 2量 体化の過程で、原料化合物中のィォゥ原子が一旦脱離した後、環化(2—ァザインド リジン単量体の形成)の際に架橋 2量体のリンカ一原子として再度組み込まれると言う 特異な挙動を示し、このようなィォゥ原子の挙動が重要な意味を持つらし 、ことが判 明している。従って、この製造方法は、到底、通常の有機合成の一般論に基づいて 推測できるものではない。
[0030] また、本発明の 2—ァザインドリジン類金属錯体の製造方法にぉ 、ては、上記本発 明の 2—ァザインドリジン類の製造方法にぉ 、て述べた効果の他、 2 -ァザインドリジ ン類よりもさらに優れた蛍光性やりん光性を有するという効果が発揮される。このため 、発光素子材料としてさらに有望な材料を提供することができる。
図面の簡単な説明
[0031] [図 1]実施例 1, 2で得たァザインドリジン架橋 2量体の 1H— NMRのデータである。
[図 2] 2—ァザインドリジン単量体(5)の 1H— NMRのデータである。
[図 3] 2—ァザインドリジン単量体(7)の 1H— NMRのデータである。
[図 4] 2—ァザインドリジン単量体(8)の 1H— NMRのデータである。
[図 5]実施例 9〜実施例 13で得た 2 -ァザインドリジン誘導体の蛍光スペクトルである [図 6] 2—フエ-ル - 2-ァザインドリジンをリガンドとするイリジウム錯体の発光スぺク トルである。
[図 7] 2—フエ-ルー 2—ァザインドリジンをリガンドとするイリジウム錯体の X線回折の 解析結果から求めた結晶構造を示す図である。
発明を実施するための最良の形態
[0032] 次に、本発明を実施するための実施形態を、その最良の形態を含めて説明する。
[0033] 〔2—ァザインドリジンと 2—ァザインドリジン誘導体〕
本願発明において製造される 2—ァザインドリジン類の一例として、例えば下記「ィ匕
6」に示すィ匕合物を挙げることができる。
[0034] [化 6]
Figure imgf000011_0001
(上記の「ィ匕 6」式中、 Rは、フエ-ル基、ジメチルァミノフエ-ル基等のジアルキルアミ ノフエ-ル基、 m—, p—メトキシフヱ-ル基、 m—, p—トリフルォロメチルフヱ-ル基 又はピリジル基カゝら選ばれるいずれかの芳香族基、メチル基、イソプロピル基、 t—ブ チル基又はこれらの誘導体基から選ばれる!/、ずれかの脂肪族基等である。 )
[0035] 〔2—ァザインドリジン類 2量体の 1ステップ合成法〕
本願発明に係る 2—ァザインドリジン類の製造方法として、 2—ァザインドリジン類 2 量体を単一の合成ステップで合成する方法が挙げられる。
[0036] この方法は、下記の「ィ匕 7」に示すように、 N— 2—ピリジルメチルカルボチオアミド誘 導体(N— 2—ピリジルメチルカルボチォアミドにおけるチォカルボ-ルの (X位の炭素 に上記した置換基 Rが結合したもの)、及び Z又は、 N— 2—ピリジルメチルカルボチ オアミド (置換基 Rが結合して 、な 、もの)を原料ィ匕合物とし、「化 7」には示して ヽな い酸化剤又は酸素の存在下に、原料化合物の環化と架橋 2量体化とを一段階で行う 方法である。上記の原料ィ匕合物は、市販品を購入したり、有機合成の常法に従い適 宜に合成したりして、容易に準備することができる。
[0037] [化 7]
Figure imgf000012_0001
前記した従来技術との比較におけるこの方法の利点は、第 1に、原料化合物である N— 2—ピリジルメチルカルボチォアミドやその誘導体が、安全 ·容易に保管や取扱 いをできることである。第 2に、単一の合成ステップで 2量体力もなる 2—ァザインドリジ ン類を合成できる初めての方法であることである。
[0038] この 1ステップ合成法における上記の「酸化剤の存在下で」の条件の具体的な内容 は必ずしも限定されないが、例えば、次の好ましい実施形態を例示することができる 。これらの実施形態において、酸化剤、塩基、金属触媒等の使用量や反応条件、生 成した 2—ァザインドリジン類の回収方法等は、当業者の技術常識に鑑みて適宜に 設計される事項である。
[0039] 酸化剤の存在下に、塩基を併用する。この場合、酸化剤の種類は特段に限定され ないが、ヨウ素 (I )を好ましく例示することができる。又、塩基の種類も特段に限定さ
2
れないが、ピリジンやピリミジン等の含窒素複素環を有する塩基を例示することができ る。
また、酸化剤として酸素を用いることもできる。すなわち、酸素の存在下に、金属触 媒を併用する。この場合、金属触媒の種類は特段に限定されないが、銅触媒を好ま しく例示することができる。
[0040] 以上の 2—ァザインドリジン類の製造方法において、例えば酸化剤、塩基、金属触 媒等の使用量や、反応条件、生成した有機電界発光化合物の回収方法等は当業者 の技術常識に鑑みて適宜に設計される事項である。
[0041] 〔2—ァザインドリジン類 2量体の 2ステップ合成法〕
本願発明に係る 2—ァザインドリジン類の他の製造方法として、 2量体力もなる 2— ァザインドリジン類を二段階の合成ステップで合成する方法が挙げられる。
[0042] この方法の第 1工程においては、上記の 1ステップ合成法の場合と同じ原料を用い て、上記の 1ステップ合成法の場合と同じ意味での酸化剤の存在下に塩基を併用す ることにより、 2—ァザインドリジン誘導体及び/又は 2—ァザインドリジンを合成する。 このような合成工程は、第 1工程の反応を、例えば、チォ硫酸ナトリウムのような還元 剤によって適宜なタイミングで停止させることによって、可能である。
[0043] この方法の第 1工程においては、上記の第 1工程で得られた 2—ァザインドリジン及 び Z又は 2—ァザインドリジン誘導体を用いて、公知の 2—ァザインドリジン架橋 2量 体合成方法も含めた適宜な方法により、 2量体力ゝらなる 2—ァザインドリジン類を合成 する。
[0044] 前記した従来技術との比較におけるこの方法の利点は、少なくとも 2—ァザインドリ ジンや 2—ァザインドリジン誘導体を合成する第 1工程にぉ 、て前記従来技術のよう な使 、勝手の悪 、原料化合物でなぐ入手も取り扱 、も容易な N— 2—ピリジルメチ ルカルボチオアミド (又はその誘導体)を利用できる点である。
[0045] 〔本発明の 2—ァザインドリジン類の製造方法によって得られる、 2—ァザインドリジ ン類 2量体〕
本願発明 2—ァザインドリジン類の製造方法により、例えば、 2—ァザインドリジンや 前記「化 6」にその一例を示す 2—ァザインドリジン誘導体の 2分子が、長周期型周期 表による第 13族〜第 16族に属するいずれかの原子をリンカ一原子として架橋結合し たもの等を製造することができる。
[0046] このような 2量体からなる 2—ァザインドリジン類において、 2—ァザインドリジン誘導 体や 2—ァザインドリジンにおけるリンカ一原子との結合位置は必ずしも限定されない 。この結合位置は、 3番位置の炭素原子でも良いが、 1番位置の炭素原子であること 力 2—ァザインドリジン架橋 2量体の合成効率上、更に好ましい。
[0047] また、 2—ァザインドリジン誘導体における置換基の種類とその置換位置を変更す ることにより、 2量体力 なる 2—ァザインドリジン類における発光色彩、発光効率、発 光開始電圧等を種々にチューニングすることができる。例えば発光色彩に関して 1, 2の具体例を挙げると、置換基がフエニル基である場合は、オレンジ色に発光する。 また、一般的に置換基がベンゼン環を多く持つ場合は、発光色彩は長波長側へシフ トする。
[0048] 置換基の種類は、有機電界発光化合物の発光特性の確保及び各種のチューニン グの目的に合致する限りにおいて限定されないが、 2, 3の具体例として、フエ-ル基 、ジメチルァミノフエ-ル基等のジアルキルァミノフエ-ル基、 m—, p—メトキシフエ- ル基、 m—, p—トリフルォロメチルフエ-ル基又はピリジル基力 任意に選ばれる芳 香族基や、メチル基、イソプロピル基、 t ブチル基あるいはこれらの誘導体基から任 意に選ばれる脂肪族基等を好ましく例示することができる。
[0049] 2量体力もなる 2 ァザインドリジン類の使用方法あるいは用途として、下記のような ものが例示される。即ち、各種用途の有機電界発光素子材料 (有機 EL素子材料)の 他、このような有機 EL素子に用いる実際の発光分子に電子を渡す電子輸送材料、 ホール輸送材料 (誘導体の構造によっては)、色素増感太陽電池に用いる色素、非 線形光学材料のドーピング分子等の材料として利用できる。一方、多座配位型の金 属触媒配位子としても利用することができる。
[0050] 〔 2 ァザインドリジン類金属錯体とその用途 ·使用方法〕
本願発明に係る 2—ァザインドリジン類金属錯体において、希土類金属原子の錯 体化合物は蛍光発光を行い、遷移金属原子の錯体化合物はリン光発光を行う。そし て、有機電界発光錯体化合物は、 2—ァザインドリジンの置換基結合可能位置の炭 素 (例えば、 3番位置の炭素)に置換基が結合した 2 ァザインドリジン誘導体の内、 その置換基が含窒素芳香族の置換基であるもの(2—ァザインドリジン含窒素芳香族 誘導体)あるいはその置換基が芳香族の置換基 (この中には、含窒素芳香族置換基 も含まれる)であるもの(2—ァザインドリジン芳香族誘導体)を用いて構成される。こ のような 2—ァザインドリジン類金属錯体には、下記の第 1のタイプと第 2のタイプとが 含まれる。
[0051] 〔第 1のタイプの 2 -ァザインドリジン類金属錯体〕
第 1のタイプの 2—ァザインドリジン類金属錯体は、(ィ) 2—ァザインドリジン含窒素 芳香族誘導体 (2—ァザインドリジンの置換基結合可能位置の炭素に含窒素芳香族 置換基が結合したものをいう)を構成要素とする 2—ァザインドリジン—X— 2量体 (即 ち、 2—ァザインドリジン—含窒素芳香族— X— 2量体)における 2個の 2—ァザインド リジン含窒素芳香族誘導体のそれぞれ 2番位置の窒素原子と、芳香族基の芳香環を 構成する窒素原子とが、希土類金属原子と配位結合することにより 4配位座の金属 錯体配位子を構成しており、または、(口) 2—ァザインドリジン芳香族誘導体を構成 要素とする 2—ァザインドリジン— X— 2量体 (即ち、 2—ァザインドリジン—芳香族— X- 2量体)における 2個の 2—ァザインドリジン芳香族誘導体のそれぞれ 2番位置の 窒素原子と、芳香族基の芳香環を構成する炭素原子とが長周期型周期表による 8〜 10族に属する遷移金属原子と配位結合することにより、 4配位座の金属錯体配位子 を構成しているものである。
[0052] なお、錯体化合物の金属原子が上記の遷移金属原子である場合、この遷移金属 原子はリガンドとの相互作用により発光するので、遷移金属原子に対して、更にリガ ンドが配位して 、ることが有効な電界発光のために必要である。錯体化合物の金属 原子が希土類金属原子である場合、希土類金属原子は自ら発光性を持つので、リガ ンドの配位は必要条件ではな 、が、リガンドが配位することにより電界発光が補強さ れるため、好ましい条件ではある。
[0053] 上記の希土類金属原子の種類は必ずしも限定されないが、例えば、ユーロピウム、 イットリウム、ネオジム等が特に好ましい。上記の遷移金属原子の種類も必ずしも限 定されないが、イリジウム、白金、パラジウム、ルテニウム、ロジウム等が特に好ましい 。上記のリガンドの種類も必ずしも限定されないが、この種の錯体の構成に一般的に 用いる各種のリガンドを適宜に使用することができ、例えば、フエ-ルビリジン、ァセチ ルアセトン、ビビリジル等を好ましく用いることができる。なお、他 1分子の 2—ァザイン ドリジン類をリガンドとして用いることも可能である。
[0054] 〔第 1のタイプの 2 ァザインドリジン類金属錯体の合成方法〕
第 1のタイプの 2—ァザインドリジン類金属錯体の合成は、 2 -ァザインドリジン―含 窒素芳香族 X— 2量体を適宜な条件下に希土類金属原子のイオンと反応させるこ とにより、あるいは、 2—ァザインドリジン—芳香族— X— 2量体を適宜な条件下に遷 移金属原子のイオン及び適宜なリガンドと反応させることにより、行われる。
[0055] 第 1のタイプの 2 ァザインドリジン類金属錯体の一合成例を下記の「ィ匕 8」に示す。 「ィ匕 8」において、 2 ァザインドリジン一芳香族
ル基である 2—ァザインドリジン—芳香族 S— 2
である。又、リガンドは「 」として表記している。
[化 8]
Figure imgf000016_0001
〔第 2のタイプの 2—ァザインドリジン類金属錯体〕
第 2のタイプの 2—ァザインドリジン類金属錯体は、(ィ) 2—ァザインドリジン含窒素 芳香族誘導体の 2分子又は 3分子を、あるいは 2 ァザインドリジン含窒素芳香族誘 導体の 1分子と 2—ァザインドリジン-含窒素芳香族— X— 2量体の 1分子とを、上記 した第 1のタイプの 2—ァザインドリジン類金属錯体の場合と同様の形態で、希土類 金属原子と配位結合させることにより、 4配位座又は 6配位座の金属錯体配位子を構 成しているもの、あるいは、(口) 2 ァザインドリジン芳香族誘導体の 2分子又は 3分 子を、ある 、は 2—ァザインドリジン芳香族誘導体の 1分子と 2—ァザインドリジン―芳 香族—X— 2量体の 1分子とを、上記した第 1のタイプの有機電界発光錯体ィ匕合物の 場合と同様の形態で、長周期型周期表による 8〜10族に属する遷移金属原子と配 位結合させることにより、 4配位座又は 6配位座の金属錯体配位子を構成して 、るも のである。
[0057] 好ま ヽ希土類金属原子の種類、好ま ヽ遷移金属原子の種類、リガンドを配位さ せることの必要性あるいは有利性、好ましいリガンドの種類、等については、第 1のタ イブの有機電界発光錯体化合物の場合と同様である。
[0058] 〔第 2のタイプの 2 ァザインドリジン類金属錯体の合成方法〕
第 2のタイプの 2—ァザインドリジン類金属錯体の合成は、(ィ) 2—ァザインドリジン 含窒素芳香族誘導体の 2分子又は 3分子を、あるいは 2 ァザインドリジン含窒素芳 香族誘導体の 1分子と 2—ァザインドリジン—含窒素芳香族— X— 2量体の 1分子とを 、適宜な条件下に、希土類金属原子のイオンと反応させることにより、あるいは、(口) 2 ァザインドリジン芳香族誘導体の 2分子又は 3分子を、あるいは 2 ァザインドリジ ン芳香族誘導体の 1分子と 2—ァザインドリジン—芳香族— X— 2量体の 1分子とを、 適宜な条件下に、遷移金属原子のイオン及び適宜なリガンドと反応させることにより、 行われる。
[0059] 第 2のタイプの 2 ァザインドリジン類金属錯体の一合成例を下記の「化 9」に示す。
「化 9」においては、置換基がフエ-ル基である 2 ァザインドリジン芳香族誘導体の 3 分子をイリジウムに対して配位させた 2—ァザインドリジン類金属錯体の合成例を示し ている。
[0060] [化 9]
Figure imgf000017_0001
実施例
[0061] 〔実施例 1, 2 : 2 ァザインドリジン架橋 2量体の 1ステップ合成—その 1〕
下記の実施例 1及び実施例 2によって、いずれも下記の「化 10」の反応式に示すよ うに、原料化合物たる N - 2—メチルピリジル— 2 -ピリジルカルボチォアミド( 1)から 、 2 ァザインドリジン架橋 2量体たるビス 2— (2 ピリジル)—4 ァザインドリジンス ルフイド(2)を 1ステップで合成した。
[0062] [化 10]
Figure imgf000018_0001
(実施例 1)
上記(1)の原料化合物 230mg (l. OOmmol)のテトラヒドロフラン 0. 2mL溶液に、 室温下で、ヨウ素 762mg (3. OOmmol)及びピリジン 0. 24mL (3. OOmmol)をカロえ て 15分攪拌した。
[0063] 次に、上記の溶液を 5% チォ硫酸ナトリウム水溶液で処理した後、塩化メチレン で抽出し、更に硫酸マグネシウムで乾燥した後、減圧濃縮した。残渣をシリカゲル力 ラムクロマトグラフィー(へキサン Z酢酸ェチル = 1 : 1)で分離し、上記(2)の 2—ァザ インドリジン架橋 2量体を 108mg (51%)得た。
[0064] (実施例 2)
酸素雰囲気下、上記(1)の原料化合物 1. 145g (5. OOmmol)のジメチルスルホキ シド 5mL溶液に、塩化銅(1) 5. OOmg (0. O5mmol)をカ卩えて 90° Cで 15時間攪拌 した。ジメチルスルホキシドを減圧留去した残渣をシリカゲルカラムクロマトグラフィー( へキサン Z酢酸ェチル = 3 : 1→0: 1)で分離し、上記(2)のァザインドリジン架橋 2量 体を 878mg (83%)得た。
[0065] 以上の実施例 1, 2で得たァザインドリジン架橋 2量体について H—NMRiCDCl
)で構造確認を行い、いずれもビス 2— (2 ピリジル) 4 ァザインドリジンスルフ
3
イドであることを確認した。図 1にその構造確認のデータを示す。又、この 2—ァザイン ドリジン架橋 2量体が強 ヽ電界発光 (蛍光)を示すことも確認して!/ヽる。
[0066] 〔実施例 3 :ァザインドリジン架橋 2量体の 1ステップ合成—その 2〕
本実施例においては、下記の「化 11」の反応式に示すように、原料化合物たる N— 2—メチルピリジル— 4—メトキシフエ-ルカルボチオアミド(3)から、 2 ァザインドリ ジン架橋 2量体たるジ 2—(4ーメトキシフエ-ル)ー4ーァザインドリジンスルフイド(4) を 1ステップで合成した。
[0067] [化 11]
Figure imgf000019_0001
[0068] 即ち、 酸素雰囲気下、上記(3)の原料化合物 0. 258g (l. OOmmol)のジメチル スルホキシド lmL溶液に、塩化銅(1) 19. 8mg (0. 2mmol)をカ卩えて 90° Cで 16時 間攪拌した。その後、氷を入れた飽和塩ィ匕アンモ-ゥム水溶液に反応溶液を注ぎ、 塩化メチレンで抽出した。残渣をシリカゲルカラムクロマトグラフィー(へキサン Z酢酸 ェチル = 1: 1)で分離して、上記 (4)のァザインドリジン架橋 2量体を 74mg (31%)得 た。
[0069] この(4)の 2—ァザインドリジン架橋 2量体は未だ構造確認を完了して 、な 、が、ジ 2- (4ーメトキシフエ-ル)ー4ーァザインドリジンスルフイドであることは確定的である 。又、この 2—ァザインドリジン架橋 2量体が強い電界発光 (蛍光)を示すことも、確認 している。
〔実施例 4: 2 -ァザインドリジン単量体の合成—その 1〕
本実施例においては、下記の「化 12」の反応式に示すように、原料化合物たる N— 2—メチルピリジル— 2—ピリジルカルボチオアミドから、 2—ァザインドリジン単量体た る 2—(2—ピリジル)ァザインドリジン(5)を合成した。
[0070] [化 12]
Figure imgf000019_0002
即ち、上記の原料ィ匕合物 115mg (0. 5mmol)のテトラヒドロフラン lmL溶液に、室 温下で、ヨウ素 381mg (l. 5mmol)及びピリジン 0. 12mL (l. 5mmol)をカ卩えて 15 分間攪拌した。
[0072] 次に、上記の溶液を 5% チォ硫酸ナトリウム水溶液で処理した後、塩化メチレン で抽出し、更に硫酸マグネシウムで乾燥した後、減圧濃縮した。残渣をシリカゲル力 ラムクロマトグラフィー(へキサン Z酢酸ェチル = 2 : 1)で分離し、上記(5)の 2 ァザ インドリジン単量体を 86.5mg (89%)得た。
[0073] この 2 ァザインドリジン単量体(5)について 1 H— NMR(CDC1 )で構造確認を
3
行い、 2— (2—ピリジル)ァザインドリジンであることを確認した。図 2にその構造確認 のデータを示す。又、このァザインドリジン単量体が電界発光 (蛍光)を示すことも既 に確認している。
〔実施例 5 :ァザインドリジン単量体の合成 その 2〕
本実施例においては、下記の「化 13」の反応式に示すように、原料化合物たる N— 2—メチルピリジル— 4 トリフルォロメチルフエ-ルカルボチオアミド(6)から、ァザィ ンドリジン単量体たる 2— (4—トリフルォロメチルフエ-ル)ァザインドリジン(7)を合成 した。
[0074] [化 13]
Figure imgf000020_0001
[0075] 即ち、上記の原料化合物 148mg (0. 5mmol)のテトラヒドロフラン lmL溶液に、室 温下で、ヨウ素 381mg (l. 5mmol)及びピリジン 0. 12mL (l. 5mmol)をカ卩えて 15 分間攪拌した。
[0076] 次に、上記の溶液を 5% チォ硫酸ナトリウム水溶液で処理した後、塩化メチレン で抽出し、更に硫酸マグネシウムで乾燥した後、減圧濃縮した。残渣をシリカゲル力 ラムクロマトグラフィー(へキサン Z酢酸ェチル = 1: 3)で分離し、上記(7)のァザイン ドリジン単量体を 11 lmg (85%)得た。
[0077] この 2 ァザインドリジン単量体について、質量分析(マススペクトル)や NM R (CDC1 )で構造確認を行!ヽ、 2— (4 トリフルォロメチルフエ-ル)ァザインドリジ
3
ンであることを確認した。図 3に上記 2 ァザインドリジン単量体(7)の1 H— NMRの 構造確認のデータを示す。又、この 2—ァザインドリジン単量体が電界発光 (蛍光)を 示すことも既に確認して 、る。
〔実施例 6: 2 -ァザインドリジン単量体の合成—その 3〕
本実施例においては、下記の「化 14」の反応式に示すように、原料化合物たる N— 2—メチルピリジル— 4—メトキシフエ二ルカルボチオアミドから、 2 ァザインドリジン 単量体たる 2— (4—メトキシフエ-ル)ァザインドリジン (8)を合成した。
[0078] [化 14]
Figure imgf000021_0001
[0079] 即ち、上記の原料化合物 129mg (0. 5mmol)のテトラヒドロフラン lmL溶液に、室 温下で、ヨウ素 381mg (l. 5mmol)及びピリジン 0. 12mL (l. 5mmol)をカ卩えて 15 分間攪拌した。
[0080] 次に、上記の溶液を 5% チォ硫酸ナトリウム水溶液で処理した後、塩化メチレン で抽出し、更に硫酸マグネシウムで乾燥した後、減圧濃縮した。残渣をシリカゲル力 ラムクロマトグラフィー(へキサン Z酢酸ェチル = 1: 1)で分離し、上記(8)の 2 ァザ インドリジン単量体を 78. 4mg (70%)得た。
[0081] この 2 ァザインドリジン単量体について質量分析(マススペクトル)や NMR( CDC1 )で構造確認を行! \ 2- (4—メトキシフエ-ル)ァザインドリジンであることを
3
確認した。図 4に上記 2 ァザインドリジン単量体(8)の1 H— NMRの構造確認のデ ータを示す。又、この 2—ァザインドリジン単量体が電界発光 (蛍光)を示すことも既に 確認している。
〔実施例 7: 2 -ァザインドリジン錯体ィ匕合物の合成—その 3〕
本実施例においては、下記の「化 15」及び「化 16」の反応式に示すように、ビスー1 一(4ーメトキシフエ-ル 2 ァザインドリジル)スルフイド及び三塩化イリジウム水和 物を用い、「化 15」に示す(1)の錯体ィ匕合物を経由して、「化 16」に示す(2)の 2—ァ ザインドリジン錯体ィ匕合物を合成した。
[0082] (第 1段階)
即ち、アルゴンガス雰囲気下、 20mLの二口フラスコに三塩化イリジウム水和物(Ir C1 ·ηΗ 0) 352mg、ビス一 1— (4—メトキシフエ-ル一 2—ァザインドリジル)スル
3 2
フイド 479mgと 2—エトキシエタノール:水 = 3 : 1 (v/v) lmLをカ卩え、還流下で 24時 間反応させた。その後に反応溶液をろ過し、得られた固体をエタノールで洗浄、乾燥 した。
[0083] こうして得られた固体は、「化 15」に示す(1)の錯体ィ匕合物であると考えられる力 こ の固体をこれ以上の精製はせずに、そのまま下記の第 2段階の反応に用いた。
[0084] [化 15]
Figure imgf000022_0001
1
(第 2段階)
「化 16」に示すように、上記(1)の錯体化合物 64mgと 4ーメトキシフエ-ルー 2—ァ ザインドリジン 56mg、及びトリフルォロメタンスルホン酸銀 26. 5mgを、 2—エトキシ エタノール:水 = 3 : 1 (v/v) lmLに溶解し、還流下で 24時間反応させた。その後に 反応溶液をろ過し、得られた固体をエタノールで抽出した後、ろ液を濃縮してシリカ ゲルカラムクロマトグラフィー(塩化メチレン:エタノール = 10 : 1)で精製して、 2—ァ ザインドリジン錯体ィ匕合物を得た。
[0085] この 2—ァザインドリジン錯体ィ匕合物は未だ構造確認を完了していないが、質量分 祈から、「化 16」に示す(2)の錯体ィ匕合物であることは確定的である。又、この 2—ァ ザインドリジン錯体ィ匕合物が強 ヽ電界発光 (リン光)を示すことを、既に確認して 、る。
[0086] [化 16]
Figure imgf000023_0001
[0087] 〔選択的ハロゲン化を経由する 2 アサインドリジン類への置換基の導入〕
<鈴木 宫浦クロスカップリング反応を利用した置換基の導入 >
実施例 8
(ハロゲン化工程)
下記反応式化 17に示すように、 2 ァザインドリジン類をヨウ素の存在下で反応さ せることにより、 1位の位置にヨウ素を導入した 2 ァザインドリジン類を 95%以上の 収率で得た。
[0088] [化 17]
Figure imgf000023_0002
[0089] (置換工程)
こうして得られた 1位の位置にヨウ素が導入された 2—ァザインドリジン誘導体を、トリ フエニルホスフィンをリガンドとするパラジウム触媒、及び塩基として炭酸セシウムの存 在下でフエニルボロン酸と反応させることによって鈴木ー宫浦クロスカップリング反応 を行 、、 1位の位置にフエ-ル基が導入された 2 ァザインドリジン類を収率 60%以 上で得た (下記反応式化 18参照)。
[化 18]
Figure imgf000023_0003
実施例 9〜実施例 13
実施例 8と同様の方法により、下記反応式 19に示す一連の反応を行い、各種の置 換基が導入された様々な誘導体を高収率で得ることができた。
[化 19]
Figure imgf000024_0001
[0091] 実施例 14〜実施例 16
<グリニャール試薬を用いた置換基の導入 >
(ハロゲン化工程)
上記反応式化 17に示す方法により、 2 ァザインドリジンの 3位の炭素にフエニル 基が結合した化合物をヨウ素の存在下で反応させ、 1位の位置にヨウ素を導入した( 収率は 95%以上)。
[0092] (置換工程)
こうして得られた 1位の位置にヨウ素が導入された 2—ァザインドリジン類縁体を、グ リニヤール試薬として p—メトキシフエ-ルマグネシウムブロマイドを用い、各種の-ッ ケル化合物触媒の存在下でグリニャール反応を行い、 1位の炭素に p—メトキシフエ -ルを導入した (下記化学式ィ匕 20参照)。
[化 20]
Figure imgf000025_0001
結果を表 1に示す。この表から、 2—ァザインドリジン類縁体の 1位の炭素に p キシフエ-ルを高 、収率で導入できることが分かる。
1]
Nl cat. temp (¾) time yield(%)
NiCl2 rt 3h 44 a
NiCl2 rt 40m in 49
Ni (dppp)Cl2 rt 3h 83
a Isolated by GPC グリニャール試薬として、パラ位の位置に様々な置換基を有する p—置換フエニル マグネシウムブロマイドを用い、実施例 14〜16と同様の操作を行レ、、 2—ァザインドリ ジン類縁体に様々な P—置換フエ-ル基を導入した(下記化学式ィ匕 21参照)。その 結果、 、ずれの化合物も高 、収率で得ることができた。
[化 21]
Figure imgf000025_0002
また、こうして得られた 2—ァザインドリジン骨格の 1位の位置にァリール基が導入さ れた 2—ァザインドリジン誘導体の蛍光スペクトルを測定した。結果を図 5に示す。こ れらの結果から、こうした一連の 2—ァザインドリジン類は 450〜480nm付近に蛍光 が認められることが分かる。この結果は、パイ結合が高度に共役していることに起因 するものである。そして、この蛍光を利用することにより、これらの一連の 2—ァザイン ドリジン類は、有機 EL材料として利用可能であることが示唆される。また、蛍光スぺク トルと UVスペクトルの測定結果を表 2に示す。蛍光スペクトルにおける蛍光波長は、 電子供与性の置換基がついたものほど長波長側へシフトし、電子求引性の置換基が ついたものほど短波長側へシフトした。また、 REI湘対発光強度)は、電子供与性の 置換基がっ 、たものほど強くなる傾向が見られた。両者をふまえてエネルギー変換 効率に相当する発光量子収率を算出したところ、電子供与性の置換基を持つものほ ど増加し、ベンゼン環の両方にメトキシ基を有するものは、メトキシ基を持たない 2— ァザインドリジン誘導体に比べて、 3倍以上の発光量子収率を示した。
[表 2]
UV Fluorecence m
(%)
Figure imgf000026_0001
〔Siをリンカ一元素とする 2—ァザインドリジン類 2量体合成〕 Siをリンカ一元素とする 2—アサインドリジン類 2量体を合成した。
(ハロゲンィ匕付加工程)
まず上記反応式化 16に示す方法により、 2 ァザインドリジンの 2位の炭素にフエ二 ル基が結合し 1位の位置にヨウ素を導入した (収率は 95%以上)。
(有機リチウム化工程)
次に、下記反応式化 22に示すようにハロゲン付加工程によってハロゲンが付加さ れた 2 -ァザインドリジン類のハロゲンを有機リチウム化合物によってリチウムと置換さ せて 2—ァザインドリジン類のリチウム
[化 22]
I
Figure imgf000027_0001
(置換基導入工程)
さらに、 2—ァザインドリジン類のリチウム化合物とジアルキルジクロロシランとを反応 させて Siをリンカ一元素とする 2—ァザインドリジン類 2量体を合成した。結果を表 2に 示す。この表力 分力るように、 Siをリンカ一元素とする各種の置換基を有する 2—ァ ザインドリジン類 2量体が良 、収率で得られた。
[表 3]
Figure imgf000027_0002
〔りん光を発する 2—アサインドリジン類イリジウム金属錯体の合成〕
2 -フエニル - 2-ァザインドリジンをリガンドとし、下記化学式化 23にしたがってィ リジゥム錯体を合成した。この構造は、得られた錯体の結晶の X線回折からの解析結 果カも明確にされた(図 7参照)。 [化 23]
Figure imgf000028_0001
[0098] こうして得られたイリジウム錯体の発光スペクトルを図 6に示す。この図から、室温下 においては、発光強度が極めて弱力つたもの力 77Kまで冷やして測定した場合に は、発光強度が著しく増大し手いることが分かる。このことは、このイリジウム錯体が、 明らかなりん光を発していることを示しており、有機 EL材料として利用可能性を強く 示唆している。
産業上の利用可能性
[0099] 本願発明によって、 EL素子材料等として有用な蛍光発光性の有機電界発光化合 物、リン光発光性の有機電界発光錯体化合物、及びそれらの有効な製造方法等が 提供される。

Claims

請求の範囲
[I] 複素単環含窒素化合物の環に存在する窒素の隣の炭素にメチルカルボチォアミド 基が結合した 2—ァザインドリジン類前駆体を酸化剤の存在下で環化させる環化反 応工程を備えることを特徴とする 2—ァザインドリジン類の製造方法。
[2] 2—ァザインドリジン類前駆体は N— 2—ピリジルメチルカルボチオアミド類であること を特徴とする請求項 1に記載の 2—ァザインドリジン類の製造方法。
[3] 酸化剤はヨウ素であることを特徴とする請求項 1又は 2記載の 2—ァザインドリジン類 の製造方法。
[4] 環化反応工程にお!、て含窒素複素環を有する塩基を存在させることを特徴とする請 求項 3に記載の 2—ァザインドリジン類の製造方法。
[5] 含窒素複素環を有する塩基はピリジンであることを特徴とする請求項 4に記載の 2— ァザインドリジン類の製造方法。
[6] 酸化剤は酸素であることを特徴とする請求項 1又は 2に記載の 2—ァザインドリジン類 の製造方法。
[7] 触媒として遷移金属化合物を用 V、ることを特徴とする請求項 6に記載の 2—ァザイン ドリジン類の製造方法。
[8] 触媒は銅化合物であることを特徴とする請求項 7に記載の 2—ァザインドリジン類の 製造方法。
[9] 環化反応工程で得られた 2—ァザインドリジン類とハロゲン単体とを反応させて、 2- ァザインドリジン類の 1位の炭素にハロゲンを付加させるハロゲン付カ卩工程と、 該ハロゲン付カ卩工程によってハロゲンが付加された 2—ァザインドリジン類のハロゲ ンを求核試薬で置換する置換工程とを備えることを特徴とする請求項 1乃至 8のいず れカ 1項記載の 2—ァザインドリジン類の製造方法。
[10] 置換工程では求核試薬としてグリニャール試薬を用いることを特徴とする請求項 9記 載の 2—ァザインドリジン類の製造方法。
[II] 置換工程では求核試薬として有機ボロン酸を用い、パラジウム触媒を存在させること を特徴とする請求項 9記載の 2—ァザインドリジン類の製造方法。
[12] 環化反応工程で得られた 2—ァザインドリジン類と有機金属化合物とハロゲン単体と を反応させて、 2 -ァザインドリジン類の 1位の炭素にハロゲンを付加させるハロゲン 付加工程と、
該ハロゲン付カ卩工程によってハロゲンが付加された 2—ァザインドリジン類のハロゲ ンを有機リチウム化合物によってリチウムと置換させて 2—ァザインドリジン類のリチウ ム化合物とする有機リチウム化工程と、
該 2—ァザインドリジン類のリチウム化合物とリンカ一化合物(中心原子として Si、P
、 A1若しくは Bを有し、少なくとも 1つのアルキル基若しくはァリール基と少なくとも 1つ の塩素とを有する化合物、又は、アルコキシボロン酸のことをいう)とを反応させて置 換基を導入する置換基導入工程とを備えることを特徴とする請求項 1乃至 8のいずれ 力 1項記載の 2—ァザインドリジン類の製造方法。
[13] 請求項 1乃至 12のいずれか 1項記載の 2—ァザインドリジン類の製造方法によって得 られた 2—ァザインドリジン類を金属イオンと反応させて 2—ァザインドリジン類金属錯 体とすることを特徴とする 2—ァザインドリジン類金属錯体の製造方法。
[14] 2—ァザインドリジン類と反応させる金属イオンは希土類元素のイオン又は長周期型 周期表における 8〜: LO族に属する遷移金属のイオンであることを特徴とする請求項 1
3記載の 2—ァザインドリジン類金属錯体の製造方法。
[15] 中心金属として希土類元素のイオン又は長周期型周期表による 8〜10族に属する 遷移金属のイオンを有しており、リガンドとして 2—ァザインドリジン類が配位して 、る ことを特徴とする 2—ァザインドリジン類金属錯体。
[16] 2量体力もなる 2—ァザインドリジン類をリガンドとして有していることを特徴とする請求 項 15記載の 2—ァザインドリジン類金属錯体。
[17] 2-ァザインドリジン骨格の 1位及び 3位の炭素原子の少なくとも一方にァリール基が 結合していることを特徴とする請求項 15又は 16記載の 2—ァザインドリジン類金属錯 体。
PCT/JP2006/302557 2005-02-15 2006-02-14 2-アザインドリジン類の製造方法、2-アザインドリジン類金属錯体の製造方法及び2-アザインドリジン類金属錯体 WO2006088028A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007503664A JPWO2006088028A1 (ja) 2005-02-15 2006-02-14 2−アザインドリジン類の製造方法、2−アザインドリジン類金属錯体の製造方法及び2−アザインドリジン類金属錯体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005038070 2005-02-15
JP2005-038070 2005-02-15

Publications (1)

Publication Number Publication Date
WO2006088028A1 true WO2006088028A1 (ja) 2006-08-24

Family

ID=36916434

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/302557 WO2006088028A1 (ja) 2005-02-15 2006-02-14 2-アザインドリジン類の製造方法、2-アザインドリジン類金属錯体の製造方法及び2-アザインドリジン類金属錯体

Country Status (2)

Country Link
JP (1) JPWO2006088028A1 (ja)
WO (1) WO2006088028A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018143663A1 (en) * 2017-02-01 2018-08-09 Rohm And Haas Electronic Materials Korea Ltd. Organic electroluminescent compound and organic electroluminescent device comprising the same
CN109890815A (zh) * 2016-11-04 2019-06-14 罗门哈斯电子材料韩国有限公司 有机电致发光化合物和包含其的有机电致发光装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6143191A (ja) * 1984-08-07 1986-03-01 Kyorin Pharmaceut Co Ltd イミダゾ〔1,5−a〕ピリミジン誘導体
JP2001006877A (ja) * 1999-06-21 2001-01-12 Toray Ind Inc 発光素子
JP2001035664A (ja) * 1999-07-21 2001-02-09 Mitsui Chemicals Inc 有機電界発光素子
WO2002044189A1 (fr) * 2000-11-30 2002-06-06 Canon Kabushiki Kaisha Element luminescent et afficheur
JP2002367785A (ja) * 2001-06-08 2002-12-20 Toray Ind Inc 発光素子
JP2003252888A (ja) * 2001-12-26 2003-09-10 Mitsubishi Chemicals Corp 有機イリジウム錯体およびこれを用いた有機電界発光素子
JP2004168756A (ja) * 2002-11-06 2004-06-17 National Institute Of Advanced Industrial & Technology オルトメタル化イリジウム錯体の製造方法
JP2005044790A (ja) * 2003-07-08 2005-02-17 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子、照明装置および表示装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6143191A (ja) * 1984-08-07 1986-03-01 Kyorin Pharmaceut Co Ltd イミダゾ〔1,5−a〕ピリミジン誘導体
JP2001006877A (ja) * 1999-06-21 2001-01-12 Toray Ind Inc 発光素子
JP2001035664A (ja) * 1999-07-21 2001-02-09 Mitsui Chemicals Inc 有機電界発光素子
WO2002044189A1 (fr) * 2000-11-30 2002-06-06 Canon Kabushiki Kaisha Element luminescent et afficheur
JP2002367785A (ja) * 2001-06-08 2002-12-20 Toray Ind Inc 発光素子
JP2003252888A (ja) * 2001-12-26 2003-09-10 Mitsubishi Chemicals Corp 有機イリジウム錯体およびこれを用いた有機電界発光素子
JP2004168756A (ja) * 2002-11-06 2004-06-17 National Institute Of Advanced Industrial & Technology オルトメタル化イリジウム錯体の製造方法
JP2005044790A (ja) * 2003-07-08 2005-02-17 Konica Minolta Holdings Inc 有機エレクトロルミネッセンス素子、照明装置および表示装置

Non-Patent Citations (10)

* Cited by examiner, † Cited by third party
Title
ABUSHANAB E. ET AL.: "Imidazo[1,5-a]pyrazines. III. The Preparation and Chemistry of 3-(Phenylthiomethyl)imidazo[1,5-a]pyrazine (1,2)", J. HETEROCYCL. CHEM., vol. 12, no. 1, 1975, pages 207 - 209, XP003000913 *
ABUSHANAB E. ET AL.: "Imidazo[1,5-a]pyrazines. IV. Aromatic Substitution Reactions", J. ORG. CHEM., vol. 40, no. 23, 1975, pages 3373 - 3375, XP003000918 *
ANDERSON S. ET AL.: "The n-Amination and Subsequent Oxidation by Bromide of Imidazo[1,5-a]-pyridines", J. CHEM. SOC. PERKIN TRANS, vol. 1, no. 16, 1976, pages 1722 - 1724, XP003000919 *
BLUHM M.E. ET AL.: "Complexes of Schiff Bases and Intermediates in the Copper-Catalyzed Oxidative Heterocyclization by Atmospheric Oxygen", INORGANIC CHEMISTRY, vol. 42, no. 26, 2003, pages 8878 - 8885, XP003000911 *
DAVEY D. ET AL.: "Cardiotonic Agents. 1. Novel 8-Aryl-Substituted Imidazo[1,2-a]- and -[1,5-a]pyridines and Imidazo[1,5-a]pyridinones as Potential Positive Inotropic Agents", J. MED. CHEM., vol. 30, 1987, pages 1337 - 1342, XP002339564 *
EL KHADEM H.S. ET AL.: "SYNTHESIS AND REARRANGEMENTS OF IMIDAZOLO- AND TRIAZOLO-DIAZINES", HETEROCYCLES, vol. 28, no. 1, 1989, pages 239 - 248, XP003000915 *
EL KHADEM H.S. ET AL.: "SYNTHESIS OF NITROGEN-BRIDGED PURINE-LIKE C-NUCLEOSIDES FROM ETHYL 2,5-ANHYDRO-6-O-BENZOYL-D-ALLONODITHIOATE", CARBOHYDRATE RESEARCH, vol. 189, 1989, pages 149 - 160, XP003000916 *
GLOVER E.E. ET AL.: "Synthesis and Quaternization of Some Heterocyclic Mono- and Di-sulphides", J. CHEM. SOC., PERKIN TRANS, vol. 1, no. 21, 1973, pages 2595 - 2599, XP003000914 *
IRRGANG T. ET AL.: "Early and Late Transition Metal Complexes Stabilised by Imidazopyridazine-Substituted Bisamido Ligands", EUR. J. INORG. CHEM., 2005, pages 4382 - 4392, XP003000910 *
LIGTENBARG A.G. ET AL.: "Vanadium(v) complexes based on a bis(pyridine)-imine ligand (HL); synthesis and crystal structure of a dioxovanadium(v) complex involving a ligand cyclization", J. CHEM. SOC., DALTON TRANS., 1999, pages 659 - 661, XP001010414 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109890815A (zh) * 2016-11-04 2019-06-14 罗门哈斯电子材料韩国有限公司 有机电致发光化合物和包含其的有机电致发光装置
CN109890815B (zh) * 2016-11-04 2022-12-13 罗门哈斯电子材料韩国有限公司 有机电致发光化合物和包含其的有机电致发光装置
WO2018143663A1 (en) * 2017-02-01 2018-08-09 Rohm And Haas Electronic Materials Korea Ltd. Organic electroluminescent compound and organic electroluminescent device comprising the same
US11289662B2 (en) 2017-02-01 2022-03-29 Rohm And Haas Electronic Materials Korea Ltd. Organic electroluminescent compound and organic electroluminescent device comprising the same

Also Published As

Publication number Publication date
JPWO2006088028A1 (ja) 2008-07-03

Similar Documents

Publication Publication Date Title
Xu et al. Synthesis and properties of iridium complexes based 1, 3, 4-oxadiazoles derivatives
JP5818864B2 (ja) 赤から緑までのスペクトル領域において発光する新規の有機金属錯体中のトリフェニレン誘導体およびそのoledにおける使用
JP5677836B2 (ja) フェノチアジン−s−オキシドまたはフェノチアジン−s,s−ジオキシド基を含有するシラン、およびoledにおけるその使用
Shan et al. Intramolecular π-stacking in cationic iridium (iii) complexes with a triazole–pyridine type ancillary ligand: synthesis, photophysics, electrochemistry properties and piezochromic behavior
JP5973009B2 (ja) 化合物
Edkins et al. The synthesis and photophysics of tris-heteroleptic cyclometalated iridium complexes
KR101278000B1 (ko) 신규화합물 및 그 용도
KR100783711B1 (ko) 금속 화합물 및 이를 포함하는 유기 전계 발광 소자
JP5421242B2 (ja) 有機電界発光素子用化合物及びこれを用いた有機電界発光素子
Ding et al. Highly efficient phosphorescent bis-cyclometalated iridium complexes based on quinoline ligands
EP2019108A2 (en) Novel red electroluminescent compounds and organic electronluminescent device using same
JP2006501144A (ja) ロジウム錯体およびイリジウム錯体とその生産方法およびこれを用いた電子部品
Kanbara et al. Preparation of platinum complexes containing a thioamide-based SCS pincer ligand and their light emitting properties
EP1534799A1 (en) Organic light emitting materials and devices
JP2008532998A (ja) 新規イリジウム錯体及びこれを用いた有機電界発光素子
JP2006501144A5 (ja)
Li et al. Sky blue-emitting iridium (III) complexes bearing nonplanar tetradentate chromophore and bidentate ancillary
Koshiyama et al. Redox-controlled luminescence of a cyclometalated dinuclear platinum complex bridged with pyridine-2-thiolate ions
CA2448718A1 (en) Phosphorescent osmium (ii) complexes and uses thereof
Yan et al. Regioselective Syntheses of Imidazo [4, 5-b] pyrazin-2-ylidene-Based Chelates and Blue Emissive Iridium (III) Phosphors for Solution-Processed OLEDs
WO2011006353A1 (en) Luminescent gold(iii) compounds containing bidentate ligand for organic light-emitting devices and their preparation
EP1944308A1 (en) Process for production of ortho-metallized 1:3 complex of iridium with homoligand
Yun et al. Homoleptic cyclometalated dibenzothiophene–NHC–iridium (iii) complexes for efficient blue phosphorescent organic light-emitting diodes
WO2015151914A1 (ja) 有機金属錯体の合成方法及び当該合成方法により合成された化合物を用いた有機エレクトロルミネッセンス素子
Su et al. Four-membered red iridium (III) complexes with Ir–S–P–S structures: Rapid room-temperature synthesis and application in OLEDs

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007503664

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06713698

Country of ref document: EP

Kind code of ref document: A1