WO2006084414A1 - Verfahren und vorrichtung zum erzeugen und rezyklieren von nanoemulsionen sowie zur oberflächenbehandlung von teilen mittels denselben - Google Patents

Verfahren und vorrichtung zum erzeugen und rezyklieren von nanoemulsionen sowie zur oberflächenbehandlung von teilen mittels denselben Download PDF

Info

Publication number
WO2006084414A1
WO2006084414A1 PCT/CH2006/000089 CH2006000089W WO2006084414A1 WO 2006084414 A1 WO2006084414 A1 WO 2006084414A1 CH 2006000089 W CH2006000089 W CH 2006000089W WO 2006084414 A1 WO2006084414 A1 WO 2006084414A1
Authority
WO
WIPO (PCT)
Prior art keywords
recycling
vacuum chamber
nanoemulsions
surface treatment
parts
Prior art date
Application number
PCT/CH2006/000089
Other languages
English (en)
French (fr)
Inventor
Edgar Schmidlin
Original Assignee
Marcoli, Claudia
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Marcoli, Claudia filed Critical Marcoli, Claudia
Priority to AT06701853T priority Critical patent/ATE463299T1/de
Priority to DE502006006639T priority patent/DE502006006639D1/de
Priority to EP06701853A priority patent/EP1855787B1/de
Publication of WO2006084414A1 publication Critical patent/WO2006084414A1/de
Priority to US11/891,478 priority patent/US8083918B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/0008Detergent materials or soaps characterised by their shape or physical properties aqueous liquid non soap compositions
    • C11D17/0017Multi-phase liquid compositions
    • C11D17/0021Aqueous microemulsions

Definitions

  • the invention relates to a method and apparatus in the form of an electromechanical device with which microemulsions can be converted into nanoemulsions, and this process controlled in different phases, so that in a vacuum chamber by a multi-phase process, a surface treatment of substances is possible, in particular - optimal loading and stripping of organic and inorganic solids. The emulsions are then recycled again.
  • a microemulsion is a thermodynamically stable, isotropic, low viscosity mixture consisting of a hydrophilic and a lipophilic component.
  • Lipophile characterizes the property of compounds or molecular groups to easily dissolve in fats, fat-like substances and oils, or to serve as solvents for such substances, whereas lipophobic (fat repelling) substances have the opposite effect.
  • the electrical and electromagnetic system of the device presented here causes changes in the diffuse interface of a so-called star bilayer on the particles within the emulsions. This star bilayer is composed of a rigid and a diffuse layer.
  • the object of the present invention is to provide a device for the surface treatment of parts by means of recyclable nanoemulsions, as well as to provide a method for the production and application of the nanoemulsions in a multiphase interfacial treatment and for the recycling of the nanoemulsions.
  • This object is achieved by a method for generating, applying and recycling of nanoemulsions and for the surface treatment of parts by the same, in which a nanoemulsion is produced by an emulsion flows through an activation device, in which of a High frequency electrode and high frequency electromagnetic coil by means of generators generated electric and electromagnetic fields are superimposed and resonances are generated by means of selectable voltages, frequencies and phase shifts, so that as a result of the change of the particle bilayers, which causes a change in the zeta potential, from a microemulsion becomes a nanoemulsion with which the surface of parts are subsequently treated in a vacuum chamber, which is then recycled in the recycling system and then reused.
  • a device for generating, applying and recycling of nanoemulsions and for the surface treatment of parts by means of the same consisting of a tube circuit with at least one pump for conveying an emulsion in a circuit, this tube circuit containing a vacuum chamber for surface treatment of parts therein, wherein the tube circuit passes through an activating device, and a high voltage and a high frequency coil, each with a separate generator with frequency converter for generating an electric field, whereby they can be generated separate fields for converting a microemulsion into a nanoemulsion, and the device on a transversal resonator for generating an aerosol includes, and injector nozzles for spraying the aerosol / nanoemulsion mixture in the vacuum chamber.
  • Figure 1 The device seen in a view from the rear;
  • Figure 2 The device seen in a view from the front, with more distant
  • Figure 3 activation device with a pump outlet and a
  • FIG. 4 a cross section through the recycling system
  • Figure 5-10 The different phases of delamination by nanoemulsion shown schematically and greatly enlarged.
  • the carrier liquid are now added to various surface-active substances, that is to say substances which enter into physically bonded bonds with their surface in conjunction with another substance. These substances form in the carrier liquid by self-organization so-called micelles. Depending on the task, surface-active substances which form monomolecular or bimolecular micelles are also used.
  • Such surfactants are soluble organic compounds which lower the interfacial tension. They have at least one hydrophobic moiety and one hydrophilic moiety. A prerequisite for the stability and the molecular self-organization of the treatment liquid is that the molecular surfactants are not soluble in the carrier liquid. Enzymes are used to adjust and adjust the interfacial kinetics at the bilayers of nanoparticles. For the formation of organic and aqueous microemulsions various surfactants and surfactants are available. These can be roughly divided into:
  • Anionic surfactants are able to form micelles with a negative charge.
  • Cationic surfactants are able to form micelles with a positive charge.
  • Non-organic surfactants are able to form micelles with a zero charge.
  • Amphoteric surfactants are able to form micelles with a negative or positive charge.
  • the charge strength depends on the zeta potential. The charge type is determined by electrical and magnetic forces acting at the system interface.
  • the enzymes are able to control the energy ratios of micelles, nanoparticles and left- and right-handed molecules. Normally, they act as Catalysts that reduce the reaction energy between two systems. In the microemulsion the enzymes are not consumed. Nanoparticles smaller than 20 nm are very reactive and able to break high energy barriers. In the microemulsion, they are important for the self-assembled reaction in the individual phases of the coating and / or stripping processes. The left- and right-handed molecules (predominantly terpenes) are responsible for the formation, enlargement and stabilization of the microcapillaries, which will be discussed in more detail later.
  • the electrical properties of micelles are in some analogy to the kinetic properties. Since the micelles have almost no electron conductivity in contrast to the metals, the electrical properties depend to a great extent, as do the mechanical properties, on the mobility of the molecular components of the micelles. Characteristic of these properties is the relative permittivity ⁇ r . Is called ⁇ r the "relative permittivity".
  • the size of the dielectric constant of an insulating material is determined by the strength of the polarization. It is dimensionless, but depends both on the material and on the temperature and the frequency.
  • the dielectric constant is greater, the more pronounced the polar behavior and thus P of a substance. If there is only one shift polarization, then the dielectric constant is small. kick but in addition to the displacement polarization additionally an orientation polarization, so the dielectric constant is greater. It can then reach values of 4 to 100. If there is a spontaneous polarization, even peak values of up to 100,000 can be achieved as the dielectric constant. But what exactly is the polarization? Real bodies consist of the same number of positive and negative electrical charges on which an applied electric field exerts kinetic forces. Positive charges are accelerated in the field direction, negative against the field direction. Micelles have virtually no free-moving charge carriers. The charges are bound to carriers (atoms, molecule segments).
  • the presented method can be used in conjunction with a microemulsion in various applications. It works for nanoscale coatings and decoating.
  • the de-coatings serve, for example, the
  • the coatings serve the
  • the method has the aim of converting a microemulsion in the activation device into a nanoemulsion and using the phase resonator by electromagnetic fields on the solid particles of the nanoemulsion to produce active electrical interface bilayers in the molecular, atomic region.
  • Electrical bilayers are known to be responsible for many physical kinetic phenomena such as electro-osmosis, electrophoresis, flow potentials, and sedimentation potentials.
  • the electric kinetic forces that act on electrically charged particles in a liquid are called Colombian forces.
  • the function of the named method which can be used for film formation and layer removal on solids, different at the bilayers Systems generated by electrical and high-frequency high-voltage fields electrokinetic changes. For this purpose, a gas mixture is admitted into the activation device.
  • a part of the nanoemulsion forms an aerosol, which is sprayed together with the remaining nanoemulsion with the rotating injector nozzles of the transversal resonator into the vacuum chamber, in the vacuum chamber a parabolic, asymmetric, transversely superimposed rotation field is generated by the rotating transversal resonator.
  • the double layers of the sprayed particles react in this field and form functional resonances in the individual process phases.
  • various functional single or multi-phase processes are used for the coating and Ent harshungsclars.
  • a decisive role for the multiphase process is, inter alia, the influence of the composition of the microemulsion used as well as the program-controlled reaction technique in the activation device or in the phase resonator.
  • the individual phases with the phase resonator selective active and high-energy centers are formed with electro-kinetic charges, with which the structure of the organic layer to be replaced is changed.
  • the molecules, enzymes and nanoparticle interface atoms are dissolved and effective, intermolecular forces are generated in the organic layer. This results in different interactions between the layer molecules, which are described in greater detail in the four phases of the multiphase decoating system.
  • a specific application example for the use of such nanoemulsions is the cleaning of tampon printing utensils.
  • a device is used, which is shown in Figure 1 from behind. It is made of chrome steel and has a vacuum chamber 1 accessible from above, into which a treatment basket 2 with two handle bars 3 can be inserted. Abzusjnigende utensils, that is in the example presented tampon printing Clischees are placed in this basket 2 and then introduced into the vacuum chamber 1. Instead of the treatment basket 2 is often used only a grid for receiving the cleaning material.
  • the vacuum chamber can be closed with a cover 4, which is fastened thereto by means of hinges on the upper side of the device.
  • the operator stands on the front side of the device, ie on the side facing away from the image here.
  • the lid is thus, starting from the closed state, swung forwards and forms afterwards a storage area for the to be lifted from the vacuum chamber treatment basket 2 or the items to be cleaned.
  • a recycling system 5 in which the microemulsion is freed from the color, as will be described in more detail later.
  • an opening 6 for the exhaust air which in the generation of the vacuum in the vacuum chamber. 1 arises.
  • an in-house exhaust air system or an active carbon filter can be connected.
  • On a narrow side of the device is also a compressed air connection 7 and an electrical connection. 8
  • the microemulsion leaves the vacuum chamber 1 via a drain, which is connected via the T-piece 11 and the connecting pipes with the circulation pumps 9.
  • This cleaning cycle just described can alternatively be operated with one or more than two pumps, depending on the cleaning requirement.
  • the device also contains a cycle for recycling.
  • the two activation devices 10 are connected to each other via a connecting tube 12.
  • a valve 13 which, after being switched on via the hose 14, supplies a part of the emulsion to the recycling system 5 for recycling.
  • the now clean microemulsion is fed back to the vacuum chamber 1 via the line 15 and the valve 16.
  • the valve 16 When the valve 16 is closed, air is blown into the recycling system 5 for backwashing from below.
  • the backwashing will be discussed in more detail later in FIG.
  • the device-associated electrical circuit 17 which is mounted on the outside of the vacuum chamber 1.
  • This electrical circuit 17 also includes the generators for operating the electrode and the coils and the phase discriminators. These generators can generate high-voltage fields from 1 to 10'000 volts, with superimposed frequencies from 10 Hz to 1 GHz.
  • To the right of the vacuum chamber 1 is a vacuum valve 18 to recognize.
  • the vacuum valve 18 has the task of putting the Vakuumkamrner 1 under vacuum and remove the exhaust air through the opening 6 ( Figure 1).
  • the 3/2-way valve 19 is used for ventilation of the recycle system 5 and the ventilation of the vacuum chamber. 1
  • the activation device 10 consists of a shielding housing 21, consisting of a tube which is welded to the bottom outlet of the vacuum chamber 1.
  • An insulator 22 is installed in the shielding housing 21 In the middle of the insulator 22, ie in the liquid inlet, there are one or two high-voltage electrodes 23 and two sliding contacts 24.
  • the high-voltage electrode 23 is connected to the waveguides 25 and the permanent magnets 26 via a respective sliding contact 24.
  • the transverse resonator 20 consists of a cylindrical rotating part 31 made of plastic or ceramic with internal thread for attachment to the activation unit 10 and two laterally mounted threads for the hollow nozzle rods 32 made of plastic. In the upper part of one or more ring permanent magnets 33 are installed.
  • One or more injector nozzles 34 are screwed onto the hollow nozzle rods 32, while a bore 35 is located at the bottom, slightly offset laterally. Due to the exit of the nanoemulsion from the two bores 35, the transversal resonator 20 rotates about its axis.
  • a waveguide 25 made of tungsten or stainless steel is fixed in the middle, which on the outer side with a permanent magnet 26 is completed.
  • the waveguides 25 are each connected to a sliding contact 24 of the activation device 10.
  • a membrane as a phase resonator 36 which is supplied via the terminal 37 for the production of nanoparticles of defined sizes with a separate high voltage / high frequency generator.
  • the microemulsion is continuously freed in the recycling system 5 from the absorbed color.
  • the recycling system 5, which is visible in FIG. 2, is represented in FIG. 4 in a cross section. It is a pot made of chrome steel. In principle, a conventional chromium steel pressure cooker can be used as a recycling system 5.
  • a distributor 39 with an electromagnetic flow coil 40 is attached in the bottom of the pot.
  • the flow coil 40 has the task to reset the microemulsion back to a defined state.
  • an air inlet valve 41 with upstream check valve 42 is installed at the distributor 39 for the backwashing. Via the line 15, which is also attached to the manifold 39, the clean microemulsion leaves the recycling system 5.
  • inlets 43,44 and 47,48 are pressed with threads.
  • the inlets 43 and 44 are connected to a hose 45.
  • the upper inlet 47 is connected to the compressed air inlet via a nylon hose with a 3/2-way valve.
  • the lower inlet 48 is connected to the hose 14 with valve 13.
  • a portion of the microemulsion is fed to the recycling system 5 for recycling via this tube 14.
  • a partition plate 49 is put into it.
  • This partition plate 49 is fastened with a T-shaped fastening unit 54 on a sealing ring 55 on the bottom of the pot. It consists of a metal insert 50 with twelve drain holes.
  • a stainless steel nose plate 51 as a spacer.
  • a piezo foil 52 made of coated stainless steel or plastic fabric.
  • an electrode consisting of a metal mesh, which is supplied by an external generator with high voltage, are inserted.
  • a fine-meshed stainless steel mesh 53 Above the piezo foil 52 or the high-voltage electrode is a fine-meshed stainless steel mesh 53.
  • the inserted parts are at the edge with a high-resistance potting compound 56 opposite the Metal insert 50 isolated fastened.
  • a stainless steel nozzle with bore 57 In the middle of the partition plate 49 is for fastening and removal a stainless steel nozzle with bore 57.
  • the partition plate 49 has next to the structure of a liquid / liquid double layer for color separation the task to prevent the flow of the fine-grained adsorber.
  • a measuring cup adsorber or a unit vacuum-packed adsorbent paste is first added to the recycling system 5.
  • the adsorber consists of various organic and inorganic substances which are chosen so that they are able to release the expensive active ingredients of the microemulsion by exchange in the re-use.
  • the recycling system 5 is sealed, for which purpose the associated lid can be used in the case of a pressure cooker.
  • the backwashing is started first. It mixes the adsorber with the soiled emulsion.
  • the recycling system 5 is cyclically filled via the dirty emulsion valve 13.
  • the fill volume is determined by the capacitive level probe 46.
  • the molecular active substances bound to the color agglomerations are released again and replaced by adsorber molecules.
  • the released active substances partially form micelles again and assume a negative charge.
  • Due to the pressure and / or the vacuum acting on the piezomembrane a liquid / liquid separating layer with a negative field voltage is formed between the adsorber and the separating plate.
  • This field voltage (high voltage) forms an electrostatic filter and separates the positively charged color agglomerations from the negatively charged microemulsion.
  • the liberated from the color microemulsion leaves the recycle system 5 via the bottom of the existing discharge opening 38.
  • the ink residues bound to the adsorbent remain until the color in the pot.
  • the micelles of their charge are restored to their original state.
  • the regenerated microemulsion is fed back to the vacuum chamber 1 via the line 15 and through the valve 16.
  • the deposited amount of color becomes temporal and / or monitored by a probe in relation to the amount.
  • a color picker process automatically runs. In the process, the recycling system 5 is emptied and the residual substance is dried with air from the inlet 47. After completion of this process, the lid is opened by hand and manually removed the separation plate 49 with the powdered and dry paint residues bound to the spent adsorber.
  • the partition plate 49 is again inserted into the recycling system 5 and firmly screwed to the T-shaped fixing unit 54.
  • a new cleaning process can only be started again when the recycle system 5 has been refilled with adsorber and the lid has been closed.
  • the recycling system allows a practically unlimited use of the microemulsion. Only the carryover losses have to be replaced from time to time.
  • FIG. 5 shows phase 1:
  • the organic layer is produced from the rear side. dismantled and built in the layer formation from the front. Therefore, in the layer degradation in the phase 1, the organic layer is provided with a void structure, that is, it is made permeable.
  • a polar, transversal alternating field gas-loaded nanoparticles with attached left- and right-handed molecules are accelerated from the aerosol mixture generated in the transversal resonator in the direction of the substrate surfaces.
  • the energy levels of the nanoparticle phase boundary layers are periodically raised and lowered. This speeds up the injection process.
  • the channel walls of the microchannels generated by the penetration of the gas-loaded nanoparticles are occupied by left- and right-handed molecules.
  • This process is performed by a tandem reaction. This is a reaction sequence in which two different reactions follow one another directly, with the first reaction, the injection, the second, the occupancy of the channel walls, practically enforcing.
  • the capillaries thus produced remain stable for about 30 to 60 seconds.
  • Phase 2 ( Figure 6) By changing the electric double layer on the nanoparticles M 2 , an injection process in the direction of substrate, or adhering to the substrate organic layer. At the phase transition of the (aerosol / liquid) ⁇ (layer) there is a potential drop and thus a change in the resonance frequency at the particle boundary surfaces M 2 .
  • the particles M 2 flow through the microcapillaries formed in phase 1 in the direction of the substrate surface. Once there, they transfer part of the kinetic energy to the phase interface "substrate ⁇ layer", where they form a molecular separation layer by the local change of the zeta potential.
  • Phase 3a ( Figure 7) In phase 3a noniogenic molecules are attached to the outside of the organic layer. After a molecular occupation of the outer boundary layer, the surface tension is increased in it. The boundary layer thus bulges outward in a concave manner. At the same time, amphoteric molecules diffuse into the open capillaries. After losing their kinetic energy, they remain stuck in the shift system. A distribution in the layer system results from the different amounts of kinetic energy of the individual amphoteric molecules.
  • Phase 3b ( Figure 8) In a high-frequency energy field, the low-energy, amphoteric molecules resonate and mutate into anions. At the same time, they form a network of small districts, creating gap-shaped capillaries in the organic layer in which the substances active in phase 4 are transported to the anions.
  • Phase 4 ( Figures 9 and 10) In Phase 4, the method "phase This reaction allows for reactions between substances that are in different, immiscible phases, but nothing happens at the contact of the anionic phase M x with the nanoparticle-loaded enzyme phase M y extracts an ion from the phase M x through the interface M x , y into the phase M y .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Paints Or Removers (AREA)

Abstract

Die Vorrichtung besteht aus einem Rohrkreislauf mit mindestens einer Pumpe (9), einer Vakuumkammer (1) zur Oberflächenbehandlung von darin befindlichen Teilen, eine Aktivierungseinrichtung (10), sowie Hochspannungselektroden (23) und eine Hochfrequenzspule (27) mit je separatem Generator mit Frequenzwandler zur Erzeugung eines elektrischen Feldes zur Umwandlung einer Mikroemulsion in eine Nanoemulsion. Die Vorrichtung weist weiter einen Transversal-Resonator zur Erzeugung eines Aerosols auf, sowie Injektordüsen zum Einsprühen des Aerosols in die Vakuumkammer (1). Eine Emulsion fliesst durch die Aktivierungseinrichtung (10), in welcher von einer Hochfrequenzelektrode (23) und elektromagnetischen Hochfrequenzspule (27) mittels Generatoren elektrische und elektromagnetische Felder von 1 bis 10'000 Volt mit überlagerten Frequenzen von 10 Hz bis 1 GHz erzeugt werden, die einander überlagert werden und mittels wählbarer Spannungen, Frequenzen und Phasenverschiebungen Resonanzen erzeugt werden, sodass infolge der Veränderung des Zeta-Potentials aus einer Mikroemulsion eine Nanoemulsion wird. Mit dieser Nanoemulsion wird die Oberfläche von Teilen in der Vakuumkammer (1) behandelt, und sie wird anschliessend im Rezyklierungssystem (5) rezykliert und dann wieder verwendet.

Description

Verfahren und Vorrichtung zum Erzeugen und Rezyklieren von Nanoemulsionen sowie zur Oberflächenbehandlung von Teilen mittels denselben
[0001] Die Erfindung betrifft ein Verfahren und eine Vorrichtung in Form einer elektromechanischen Einrichtung, mit welchen Mikroemulsionen in Nanoemulsionen umgewandelt werden können, und dieses prozessgesteuert in verschiedenen Phasen, so dass in einer Vakuumkammer durch ein Mehrphasenverfahren eine Oberflächenbehandlung von Stoffen möglich ist, insbesondere auch -eine optimale Be- und Entschichtung organischer und anorganischer Festkörper. Die Emulsionen werden anschliessend wieder rezykliert.
[0002] Eine Mikroemulsion ist eine thermodynamisch stabile, isotrope, niedrig viskose Mischung, die aus einer hydrophilen und einer lipophilen Komponente besteht. Der hydrophile Charakter einer Substanz wird durch ihre Eigenschaft bestimmt, sich in Wasser zu lösen. (Gegenteil: hydrophob = wasserabstoßend). Lipophil kennzeichnet die Eigenschaft von Verbindungen oder Molekülgruppen, sich in Fetten, fettähnlichen Substanzen und Ölen leicht zu lösen oder selbst als Lösungsmittel für derartige Substanzen zu dienen, wogegen lipophobe (fettabstossende) Stoffe sich gegenteilig auswirken. Das elektrische und elektromagnetische System der hier vorgestellten Vorrichtung bewirkt Veränderungen an der diffusen Grenzfläche einer sogenannten Stern-Doppelschicht an den Partikeln innerhalb der Emulsionen. Diese Stern-Doppelschicht setzt sich aus einer starren und einer diffusen Schicht zusammen. Nach der Theorie von Otto Stern (1888-1969), Nobelpreisträger in Physik, baut sich aufgrund der Ladungsverteilung ein Potential auf, das in der starren Schicht linear und in der diffusen Schicht exponentiell abnimmt. Für die funktionale Wirkung an der diffusen Grenzfläche ist das jeweilige Zetapotential einer Emulsion massgebend, welches die Stabilität einer Mikroemulsion bzw. einer einzelnen Mizelle beschreibt. Das Zeta-Potential ist dabei ein Maß für die Abstoßung oder Anziehung zwischen Partikeln und eine Mizelle ist ein Kolloidteilchen, das aus zahlreichen kleineren Einzelmolekülen aufgebaut ist.
[0003] In elektrischen Isolationen von hochfrequenzführenden Leitungen oder in hochfrequenten Feldern stehenden Isolationen will man die Verluste so klein als möglich halten. Man benutzt dafür Werkstoffe, welche in solchen Feldern eine möglichst geringe Wirkleistung in ihrem Innern erzeugen und so zu niedrigen Verlusten führen. Umgekehrt wählt man Mikroemulsionen so, dass in ihrem Innern, d.h. an den Mizellenoberflächen, möglichst hohe Verluste und somit gewünschte Veränderungen entstehen. Man verfügt damit über eine Möglichkeit, die Struktur der Mizellen gesteuert und geregelt beeinflussen zu können, sodass sie kinetische Zustände annehmen, welche eine Entschichtung sowie eine Beschichtung von Materialien im molekularen Bereich ermöglichen. Ein System für solche Zwecke arbeitet mit einem Durchlaufverfahren, was eine Aktivierung bei kleinstmöglichem Energieeinsatz erlaubt. Mit Hilfe des Verfahrens besteht zusätzlich die Möglichkeit, das zu behandelnde Medium mit den unterschiedlichen Ladungen in einer Vakuumkammer zusammenzuführen, womit ein Ladungsausgleich, d.h. eine Umwandlung der Mikroemulsion in eine Nanoemulsion nahe an der Oberfläche des Behandlungsgutes stattfindet.
[0004] Die Aufgabe der vorliegenden Erfindung ist es, eine Vorrichtung zur Oberflächenbehandlung von Teilen mittels rezyklierbarer Nanoemulsionen zu schaffen, sowie ein Verfahren zur Erzeugung und zur Anwendung der Nanoemulsionen in einer Mehrphasen-Grenzflächenbehandlung sowie zur Rezyklierung der Nanoemulsionen anzugeben.
[0005] Diese Aufgabe wird gelöst von einem Verfahren zum Erzeugen, Anwenden und Rezyklieren von Nanoemulsionen sowie zur Oberflächenbehandlung von Teilen mittels denselben, bei welchem eine Nanoemulsion erzeugt wird, indem eine Emulsion durch eine Aktivierungseinrichtung fliesst, in welcher von einer Hochfrequenzelektrode und elektromagnetischen Hochfrequenzspule mittels Generatoren erzeugte elektrische und elektromagnetische Felder einander überlagert werden und mittels wählbarer Spannungen, Frequenzen und Phasenverschiebungen Resonanzen erzeugt werden, sodass infolge der Veränderung der Partikel-Doppelschichten, die eine Veränderung des Zeta- Potentials bewirkt, aus einer Mikroemulsion eine Nanoemulsion wird, mit dieser hernach die Oberfläche von Teilen in einer Vakuumkammer behandelt werden, und die anschliessend im Rezyklierungssystem rezykliert und dann wieder verwendet wird.
[0006] Die Aufgabe wird weiter gelöst von einer Vorrichtung zum Erzeugen, Anwenden und Rezyklieren von Nanoemulsionen sowie zur Oberflächenbehandlung von Teilen mittels denselben, bestehend aus einem Rohrkreislauf mit mindestens einer Pumpe zur Förderung einer Emulsion in einem Kreislauf, dieser Rohrkreislauf enthaltend eine Vakuumkammer zur Oberflächenbehandlung von darin befindlichen Teilen, wobei der Rohrkreislauf eine Aktivierungseinrichtung durchläuft, sowie eine Hochspannungs- und eine Hochfrequenzspule mit je separatem Generator mit Frequenzwandler zur Erzeugung eines elektrischen Feldes, wobei von ihnen separate Felder zur Umwandlung einer Mikroemulsion in eine Nanoemulsion erzeugbar sind, und die Vorrichtung weiter einen Transversal-Resonator zur Erzeugung eines Aerosols einschliesst, sowie Injektordüsen zum Einsprühen des Aerosols-/Nanoemulsionsgemisch in die Vakuumkammer.
[0007] In den Zeichnungen ist eine beispielsweise Vorrichtung mit ihren wesentlichen Bauelementen in verschiedenen Ansichten dargestellt und sie wird nachfolgend anhand dieser Zeichnungen beschrieben und das damit betriebene Verfahren wird erläutert. Die physikalischen Abläufe im Zuge des Entschichtungsverfahrens werden anhand schematischer, stark vergrösserter Darstellungen erklärt.
Es zeigt:
Figur 1 : Die Vorrichtung in einer Ansicht von hinten gesehen; Figur 2: Die Vorrichtung in einer Ansicht von vorne gesehen, mit entfernter
Frontseiten-Abdeckung;
Figur 3: Aktivierungseinrichtung mit einem Pumpenausgang und einem
Transversal-Resonator;
Figur 4: Einen Querschnitt durch das Rezyklierungssystem;
Figur 5-10: Die verschiedenen Phasen einer Entschichtung mittels Nanoemulsion schematisch und stark vergrössert dargestellt.
[0008] Um die Vorrichtung und das mit ihr betriebene Verfahren besser beschreiben und verstehen zu können, wird hier zunächst eine kleiner Exkurs über Mikroemulsionen gegeben: Diese Mikroemulsionen können rein organisch oder wässrig organisch aufgebaut sein. Bei der rein organischen Mikroemulsion wird eine Trägerflüssigkeit eingesetzt, welche aus einer oder mehreren Molekülarten besteht. Bei den wässrigen Mikroemulsionen hingegen besteht die Trägerflüssigkeit aus Wasser.
[0009] Der Trägerflüssigkeit werden nun verschiedene oberflächenaktive Stoffe beigegeben, das heisst Stoffe, die mit ihrer Oberfläche in Verbindung mit einem anderen Stoff physikalisch begründete Bindungen eingehen. Diese Stoffe bilden in der Trägerflüssigkeit durch Selbstorganisation sogenannte Mizellen. Je nach Aufgabenstellung werden zudem oberflächenaktive Stoffe eingesetzt, welche monomolekulare oder bimolekulare Mizellen bilden. Solche Tenside sind lösliche organische Verbindungen, welche die Grenzflächenspannung herabsetzen. Sie weisen mindestens einen hydrophoben Molekülteil und eine hydrophile Gruppe auf. Grundvoraussetzung für die Stabilität und die molekulare Selbstorganisation der Behandlungsflüssigkeit ist, dass die molekularen, oberflächenaktiven Stoffe in der Trägerflüssigkeit nicht lösbar sind. Für die Einstellung und Anpassung der Grenzflächenkinetik an den Doppelschichten der Nanopartikeln werden Enzyme eingesetzt. [0010] Für die Bildung der organischen und der wässrigen Mikroemulsionen stehen verschiedene ober- und grenzflächenaktive Stoffe zur Verfügung. Diese können grob eingeteilt werden in:
• Anionische Stoffe
• Kationische Stoffe
• Nichtiogene Stoffe
• Amphotere Stoffe
Anionische oberflächenaktive Stoffe sind in der Lage, Mizellen mit einer negativen Ladung zu bilden. Kationische oberflächenaktive Stoffe sind in der Lage, Mizellen mit einer positiven Ladung zu bilden. Nichtiogene oberflächenaktive Stoffe sind in der Lage, Mizellen mit einer Null-Ladung zu bilden. Amphotere oberflächenaktive Stoffe sind in der Lage, Mizellen mit einer negativen oder positiven Ladung zu bilden. Bei all diesen Stoffen ist die Ladungsstärke vom Zetapotential abhängig. Die Ladungsart wird durch elektrische und magnetische Kräfte bestimmt, welche an der Systemgrenzfläche wirksam sind.
[0011] Die amphoter-aktiven Stoffe werden in Entschichtungs- und Beschichtungssystemen eingesetzt, bei welchen sehr kurze Umwandlungszeiten gefordert sind. Aus diesem Grund sind diese Stoffe besonders gut für das vorliegende Verfahren geeignet. Mit der vorgestellten Vorrichtung können sie mit Hilfe der magnetischen und elektrischen Phasensteuerung in Bruchteilen von Sekunden umgeladen werden. Die Ladungsmöglichkeiten bewegen sich zwischen negativ (anionisch), Nullpotential (neutral) und positiv (kationisch). Durch geeignete Resonanzen kann mit dieser Vorrichtung und dem damit betriebenen Verfahren das Zeta-Potential an einer Stern-Doppelschicht unabhängig vom chemischen Potential gesteuert und geregelt werden. Es sind dabei Zetapotential-Einstellungen von -15 bis +15 möglich.
[0012] Weitere Stoffe, die in Mikroemulsionen eingesetzt werden, sind:
• Enzyme
• Organische und anorganische Nanopartikel
• Lins- und rechtsdrehende Terpene
Die Enzyme sind in der Lage, die Energieverhältnisse von Mizellen, Nanopartikeln und links- und rechtsdrehenden Molekülen zu steuern. Im Normalfall wirken sie als Katalysatoren, die die Reaktionsenergie zwischen zwei Systemen verkleinem. In der Mikroemulsion werden die Enzyme nicht verbraucht. Nanopartikel die kleiner als 20 nm gross sind, sind sehr reaktionsfreudig und in der Lage, hohe Energieschranken zu durchbrechen. In der Mikroemulsion sind sie wichtig für die selbstorganisierte Reaktion in den einzelnen Phasen der Be- und/oder Entschichtungsverfahren. Die links- und rechtsdrehenden Moleküle (vorwiegend Terpene) sind verantwortlich für die Bildung, Vergrösserung und Stabilisierung der Mikrokapillaren, auf weiche später noch genauer eingegangen wird.
[0013] Die elektrischen Eigenschaften von Mizellen stehen in einer gewissen Analogie zu den kinetischen Eigenschaften. Da in den Mizellen im Gegensatz zu den Metallen nahezu keine Elektronenleitfähigkeit vorhanden ist, hängen die elektrischen Eigenschaften in besonderem Masse, ebenso wie die mechanischen Eigenschaften, von der Beweglichkeit der molekularen Bausteine der Mizellen ab. Kennzeichnend für diese Eigenschaften ist die Dielektrizitätszahl εr . Man nennt εr die „Relative Dielektrizitätszahl". Die Größe der Dielektrizitätszahl eines Isolierstoffes wird bestimmt durch die Stärke der Polarisation. Sie ist dimensionslos, hängt aber sowohl vom Werkstoff als auch von der Temperatur und der Frequenz ab. An der Oberfläche der Mizellen entstehen unter dem Einfluss eines elektrischen Feldes sogenannte Polarisationsladungen, die influenzieren. Mit Influenz ist dabei die Trennung von Ladungen eines leitenden Körpers unter dem Einfluss der von äußeren Ladungen ausgeübten elektrischen Kräfte gemeint. Die dielektrische Polarisation ist der Anteil der Verschiebungsflussdichte, der auf das Dielektrikum entfällt. Die Größe der dielektrischen Polarisation P ergibt sich nach der Beziehung:
P = εQ - E - (εr - l) (1 )
ε0 elektrische Feldkonstante (ε0 = 8.854-1 CT12AsV"1 m"1) εr Dielektrizitätszahl (relative Dielektrizitätskonstante) E elektrische Feldstärke
[0014] Aus der Gleichung (1) kann abgeleitet werden, daß die Dielektrizitätszahl um so größer ist, je ausgeprägter das polare Verhalten und somit P eines Stoffes ist. Liegt nur eine Verschiebungspolarisation vor, so ist die Dielektrizitätszahl klein. Tritt aber neben der Verschiebungspolarisation zusätzlich eine Orientierungspolarisation auf, so ist die Dielektrizitätszahl größer. Sie kann dann Werte von 4 bis 100 erreichen. Liegt eine spontane Polarisation vor, können sogar Spitzenwerte bis zu 100.000 als Dielektrizitätszahl erreicht werden. Was aber genau ist die Polarisation? Reale Körper bestehen aus gleich vielen positiven und negativen elektrischen Ladungen, auf die ein einwirkendes elektrisches Feld kinetische Kräfte ausübt. Positive Ladungen werden in Feldrichtung, negative entgegen der Feldrichtung beschleunigt. Mizellen haben praktisch keine frei beweglichen Ladungsträger. Die Ladungen sind an Träger (Atome, Molekülsegmente) gebunden. Sie können somit nur elastisch um ein der Feldstärke proportionales Mass verschoben werden. Die Schwerpunkte der positiven und negativen Ladungen fallen damit nicht mehr zusammen; es bilden sich elektrische Dipole. Bei der Elektronenpolarisation bewirkt das äussere Feld eine Deformation der Elektronenhülle der Atome. Sie tritt bei unpolaren Stoffen auf. Bei der reinen Elektronenpolarisation ist εr = n2 (n = optischer Brechungsindex). Sie ändert sich auch mit der Frequenz praktisch nicht, mit der Temperatur nimmt sie ab, da infolge der Wärmedehnung die Zahl der polarisierbaren Teilchen kleiner wird. Da einzig die zum Bau von Mizellen verwendeten Moleküle selbst oder Teile von ihnen „permanente Dipole" darstellen, lassen sie sich in elektrischen Feldern ausrichten, so dass eine makroskopische Polarisation entsteht, welche bei polaren, oberflächenaktiven Stoffen höher ist als bei unpolaren. Die Polarisationsanteile sind entsprechend den unterschiedlichen Mechanismen auch unterschiedlich beweglich. Da in Mizellen die permanenten Dipole relativ grosse Gruppen sind, können sie nur verhältnismässig niedrigen Frequenzen folgen. Von erheblichem praktischen Interesse ist die Frage des Einflusses von Farbpigmenten auf die relative Dielektrizitätskonstante. Die wichtigste Mischregel errechnet sich näherungsweise aus der Summe der Dipolmomente der Farbpigmente und derjenigen der Trägermatrix auf die gesamte Ladungsdichte zu:
' MMaattrriixx c "rr,, PPiiggmmeenntt
Seff ~ S Matrix 1 - 3/7 -
O . p .L p (2)
Matrix cr, Pigment wobei p = Volumengehalt.
So ergibt sich beispielsweise für Lufteinschlüsse (Schaum, Fliesszonen, etc.) mit εr,Luft K ' g4T = W| l-3p - "M;trix ~l A (3)
Z " b Matrix ~*~ l
und bei Metalleinschlüssen mit ε r,Meiair~ '-
£eff = £Malrtc(l + 3P) (4)
[0015] Das vorgestellte Verfahren kann in Verbindung mit einer Mikroemulsion in verschiedenen Anwendungen genutzt werden. Es funktioniert für Beschichtungen und Entschichtungen im Nanobereich. Die EntSchichtungen dienen zum Beispiel der
• Entfernung von nassen und angetrockneten Druckfarben
• Entfernung von ein- und zweikomponentigen Farben
• Entfernung von Kunststoffbeschichtungen
• Entfernung von industriellen Schmutzschichten
• usw.
Die Beschichtungen dienen der
• Veränderung der Leitfähigkeit von Kunststoffoberflächen
• Veränderung der Oberflächenenergie von Kunststoffoberflächen, z.B. Epilamisierung, Verbesserung der Gleiteigenschaft, etc.
• Auftragung funktioneller Nanoschichten auf Festkörper
• usw.
[0016] Das Verfahren hat zum Ziel, in der Aktivierungseinrichtung eine Mikroemulsion in eine Nanoemulsion umzuwandeln und mit Hilfe des Phasenresonators durch elektromagnetische Felder auf den Feststoffpartikeln der Nanoemulsion aktive elektrische Grenzflächen-Doppelschichten im molekularen, respektiv atomaren Bereich zu erzeugen. Elektrische Doppelschichten sind bekanntlich für viele physikalisch kinetische Phänome wie Elektro-Osmose, Elektrophorese, Strömungspotentiale und Sedimentationspotentiale verantwortlich. Die elektrisch kinetischen Kräfte, die in einer Flüssigkeit auf elektrisch geladene Partikel wirken, werden als Colombsche-Kräfte bezeichnet. Für die Funktion des benannten Verfahrens, das für die Schichtbildung und Schichtentfernung auf Festkörpern eingesetzt werden kann, werden an den Doppelschichten verschiedener Systeme durch elektrische und hochfrequente Hochspannungsfelder elektrokinetische Veränderungen erzeugt. Dazu wird in die Aktivierungseinrichtung ein Gasgemisch eingelassen. Dabei entsteht aus einem Teil der Nanoemulsion ein Aerosol, das zusammen mit der restlichen Nanoemulsion mit den rotierenden Injektordüsen des Transversal-Resonators in die Vakuumkammer gesprüht wird, in der Vakuumkammer wird durch den rotierenden Transversal-Resonator ein parabolisches, asymmetrisches, transversal überlagertes Rotationsfeld erzeugt. In diesem Feld reagieren die Doppelschichten der eingesprühten Partikel und bilden in den einzelnen Prozessphasen funktionelle Resonanzen. Für das Be- und Entschichtungsverfahren werden verschiedene funktionelle Ein- oder Mehrphasenverfahren eingesetzt.
[0017] Eine entscheidende Rolle für das Mehrphasenverfahren ist unter anderem der Einfluss der Zusammensetzung der verwendeten Mikroemulsion als auch die programmgesteuerte Reaktionstechnik in der Aktivierungseinrichtung bzw. im Phasenresonator. In den einzelnen Phasen werden mit dem Phasenresonator punktuelle aktive und energiereiche Zentren mit elektrokinetischen Ladungen gebildet, mit denen die Struktur der abzulösenden organischen Schicht verändert wird. In diesen aktiven Zentren werden die Moleküle, Enzyme und Nanopartikel- Grenzflächenatome gelöst und es entstehen in der organischen Schicht wirkungsvolle, intermolekulare Kräfte. Dadurch entstehen zwischen den Schichtmolekülen unterschiedliche Wechselwirkungen, die in den vier Phasen des Mehrphasen-Entschichtungssystems noch genauer beschrieben werden. Eine Besonderheit dieses Verfahrens ist die Selbstorganisation von Nanopartikeln, die durch die Adsorption von Ionen und durch Eigendissoziation gebildet wird. Nanopartikel, die sich in diesem Zustand befinden, können in Kontakt mit ionischen Grenzflächen zu Systeminstabilitäten führen. Dieser Effekt wird in der nachfolgend beschriebenen Phase 4 beim Abtragen grosserer Schichtagglomerationen wirksam. Ein weiterer Effekt, der im Verfahren der nachfolgend beschriebenen Phase 1 genutzt wird, ist das Entstehen von Materiewellen, die in der organischen Schicht ein Netzwerk von Spaltkapillaren bilden. Aus der Bildungserscheinung der Elektronen und Neutronen weiss man, dass materiellen Teilchen Eigenschaften von Materiewellen zukommen, wenn die molekulare Kraftkonstanten sehr gross sind (Erweiterung des Maxwellschen Gleichungsgesetzes der Translationsenergie). Im Gegensatz zu den elektromagnetischen Wellen bzw. Protonen ist bei Materiewellen die Ausbreitungsgeschwindigkeit verschieden von der Teilchengeschwindigkeit. Bei. der Erzeugung eines Teilchenstrahles durch einen unendlich langen Wellenzug ist der Impuls des Teilchens durch die Wellenlänge eindeutig festgelegt. Der Ort, der ein Teilchen zu einem bestimmten Zeitpunkt einnimmt bzw. durchläuft, ist jedoch völlig unbestimmt. Um die örtliche Lage eines Teilchens, das in die organische Schicht eindringt, wenigstens ungefähr kennzeichnen zu können, muss man ein Wellenpaket heranziehen. Ein solches Wellenpaket entsteht durch Überlagerung zahlreicher Wellenzüge, in der die Wellenlänge und die Amplitude so gewählt sind, dass es zu Interferenzen kommt. Mithilfe eines Wellenpaketes, das in der nachfolgend beschriebenen Phase 3 zum Einsatz kommt, kann die Unbestimmtheit der örtlichen Lage der Teilchen eingeengt werden. Allerdings ist dies nur möglich auf Kosten der Schärfe in der Angabe des Impulses. Die Wellennatur materieller Teilchen bringt daher eine grundsätzliche Unscharfe der gleichzeitigen Angabe von Ort und Impuls eines Teilchens (Unschärferelation, Physiker Werner Heisenberg, 1927).
[0018] Ein spezifisches Anwendungsbeispiel für den Einsatz solcher Nanoemulsionen ist die Reinigung von Tampondruckerei-Utensilien. Hierzu wird eine Vorrichtung eingesetzt, die in Figur 1 von hinten dargestellt ist. Sie ist aus Chromstahl gefertigt und weist eine von oben zugängliche Vakuumkammer 1 auf, in welche ein Behandlungskorb 2 mit zwei Griffbügeln 3 einführbar ist. Abzurejnigende Utensilien, das heisst im vorgestellten Beispiel Tampondruck-Clischees, werden in diesen Korb 2 gelegt und danach in die Vakuumkammer 1 eingebracht. Anstelle des Behandlungskorbes 2 wird vielfach nur ein Gitter zur Aufnahme des Reinigungsgutes eingesetzt. Die Vakuumkammer ist mit einem Deckel 4 verschliessbar, der hierzu mit Hilfe von Scharnieren auf der Oberseite der Vorrichtung befestigt ist. Der Bediener steht auf der Vorderseite der Vorrichtung, das heisst auf der hier im Bild abgewandten Seite. Der Deckel wird also, ausgehend aus dem geschlossenen Zustand, nach vorne aufgeschwenkt und bildet hernach eine Ablagefläche für den aus der Vakuumkammer zu hebenden Behandlungskorb 2 oder das Reinigungsgut. Neben der Vakuumkammer 1 erkennt man ein Rezyklierungssystem 5, in welchem die Mikroemulsion von der Farbe befreit wird, wie das später noch genauer beschrieben wird. An der Rückseite der Vorrichtung befindet sich eine Öffnung 6 für die Abluft, welche bei der Erzeugung des Vakuums in der Vakuumkammer 1 entsteht. An der Öffnung 6 kann ein betriebsinternes Abluftsystem oder ein Aktiv- Kohlenfilter angeschlossen werden. Auf einer Schmalseite der Vorrichtung befindet sich zudem ein Druckluftanschluss 7 und ein Elektroanschluss 8.
[0019] In Figur 2 sieht man die Vorrichtung in einer Ansicht von vorne gesehen, mit entfernter Frontseiten-Abdeckung. Unter der Vakuumkammer 1 sind zwei Umlaufpumpen 9 zu erkennen. An jedem Pumpenausgang ist eine hier nicht vollständig sichtbare Aktivierungseinrichtung 10 angeschlossen. Diese Aktivierungseinrichtung 10 ist jeweils mit Hilfe einer Verschraubung mit dem entsprechenden Transversal-Resonator (hier nicht sichtbar) in der Vakuumkammer 1 verbunden. Im Boden der Vakuumkammer 1 befindet sich der Ablauf, der über ein T- Stück 11 und je eine Verschraubung mit den Pumpeneingängen verbunden ist. Die Umlaufpumpen 9 fördern die Mikroemulsion also über die Aktivierungseinheiten 10 in die Transversal-Resonatoren, wo sie als Aerosol-/.Nanoemulsionsgemisch in die Vakuumkammer 1 auf das Reinigungsgut gesprüht wird. Die Mikroemulsion verlässt die Vakuumkammer 1 über einen Ablauf, welcher über das T-Stück 11 und den Verbindungsrohren mit den Umlaufpumpen 9 verbunden ist. Dieser soeben beschriebene Reinigungskreislauf kann je nach Reinigungsanforderung alternativ auch mit einer oder mehr als zwei Pumpen betrieben werden. Neben dem Reinigungskreislauf enthält die Vorrichtung zudem einen Kreislauf zur Rezyklierung. Die beiden Aktivierungseinrichtungen 10 sind dabei über ein Verbindungsrohr 12 miteinander verbunden. In dessen Mitte befindet sich ein Ventil 13, welches nach Einschaltung über den Schlauch 14 dem Rezyklierungssystem 5 einen Teil der Emulsion zur Rezyklierung zuführt. Nach dem Rezyklierungsprozess wird die nun saubere Mikroemulsion über die Leitung 15 und das Ventil 16 wieder der Vakuumkammer 1 zugeführt. Bei geschlossenem Ventil 16 wird dem Rezyklierungssystem 5 für eine Rückspülung von unten Luft eingeblasen. Auf die Rückspülung wird später in der Figur 4 noch genauer eingegangen. Oberhalb der Aktivierungseinrichtungen 10 erkennt man die zur Vorrichtung gehörige elektrische Schaltung 17, die auf der Aussenseite der Vakuumkammer 1 angebracht ist. Zu dieser elektrischen Schaltung 17 gehören auch die Generatoren zum Betrieb der Elektrode und der Spulen sowie die Phasendiskriminatoren. Mit diesen Generatoren können Hochspannungsfelder von 1 bis 10'0OO Volt erzeugt werden, mit überlagerten Frequenzen von 10 Hz bis 1 GHz. Rechts der Vakuumkammer 1 ist ein Vakuumventil 18 zu erkennen. Das Vakuumventil 18 hat die Aufgabe, die Vakuumkamrner 1 unter Vakuum zu setzen und die Abluft über die Öffnung 6 (Figur 1) abzuführen. Das 3/2- Wegeventil 19 dient der Be- und Entlüftung des Rezyklierungssystems 5 sowie der Belüftung der Vakuumkammer 1.
[0020] Die Figur 3 zeigt in einer vergrösserten Ansicht den Ausgang einer Umlaufpumpe 9, eine Aktivierungseinrichtung 10 und einen Transversal-Resonator 20. Mit Hilfe der Aktivierungseinrichtung 10 wird die Mikroemulsion in eine Nanoemulsion umgewandelt. Mit dem rotierenden Transversal-Resonator 20 werden die einzelnen Prozess-Schritte für das 4-Phasen-Verfahren erzeugt. Am Pumpenausgang 9, befestigt mit einer 1"-Verschraubung, befindet sich die Aktivierungseinrichtung 10. Die Aktivierungseinrichtung 10 besteht aus einem Abschirmgehäuse 21 , bestehend aus einem Rohr, das am Bodenabgang der Vakuumkammer 1 angeschweisst ist. In dem Abschirmgehäuse 21 ist ein Isolator 22 eingebaut. In der Mitte des Isolators 22, d.h. im Flüssigkeitseinlass, befinden sich eine oder zwei Hochspannungselektroden 23 und zwei Schleifkontakte 24. Die Hochspannungselektrode 23 ist über je einen Schleifkontakt 24 mit den Wellenleitern 25 und den Permanentmagneten 26 verbunden. Ausserhalb des Abschirmgehäuses 21 ist eine elektromagnetische Hochfrequenzspule 27 aufgesetzt. Im oberen Teil des Isolators 22, welcher in die Vakuumkammer 1 hineinragt, befindet sich ein Kugellager 28 und ein Befestigungsgewinde für den Transversal-Resonator 20. Am unteren Ende, unterhalb der Hochfrequenzspule 27 befindet sich der Anschluss 29 für die Hochspannungselektrode 23. Auf der gegenüberliegenden Seite befindet sich der Einlass 30, über welchen dem System gasförmige, dampfförmige oder flüssige Wirkstoffe zugeführt werden können. Der Transversal-Resonator 20 besteht aus einem zylindrischen Drehteil 31 aus Kunststoff oder Keramik mit Innengewinde zur Befestigung auf der Aktivierungseinheit 10 und zwei seitlich angebrachten Gewinden für die Hohl-Düsenstäbe 32 aus Kunststoff. Im oberen Teil sind ein oder mehrere Ring-Permanentmagnete 33 eingebaut. Auf den Hohl-Düsenstäben 32 sind je eine oder mehrere Injektordüsen 34 eingeschraubt, während sich unten, leicht seitlich versetzt je eine Bohrung 35 befindet. Durch den Austritt der Nanoemulsion aus den beiden Bohrungen 35 rotiert der Transversal-Resonators 20 um seine Achse. In den Hohl-Düsenstäben 32 ist in der Mitte je ein Wellenleiter 25 aus Wolfram oder Edelstahl befestigt, welcher auf der äusseren Seite mit einem Permanentmagneten 26 abgeschlossen ist. Auf der Innenseite sind die Wellenleiter 25 mit je einem Schleifkontakt 24 der Aktivierungseinrichtung 10 verbunden. Im unteren Teil der Aktivierungseinheit 10 befindet sich eine Membrane als Phasenresonator 36, die über den Anschluss 37 für die Herstellung von Nanopartikeln mit definierten Grössen mit einem separaten Hochspannungs-/Hochfrequenzgenerator versorgt wird.
[0021] Die Mikroemulsion wird im Rezyklierungssystem 5 kontinuierlich von der aufgenommenen Farbe befreit. Das Rezyklierungssystem 5, welches in Figur 2 sichtbar ist, wird in Figur 4 in einem Querschnitt dargestellt. Es handelt sich um einen Topf aus Chromstahl. Im Prinzip lässt sich ein üblicher Chromstahl-Dampfkochtopf als Rezyklierungssystem 5 verwenden. Im Topfboden befindet sich eine Ablassöffnung 38. An dieser Ablass-Öffung 38 ist ein Verteiler 39 mit einer elektromagnetischen Durchfluss-Spule 40 befestigt. Die Durchfluss-Spule 40 hat die Aufgabe, die Mikroemulsion wieder in einen definierten Zustand zurückzusetzen. Unterhalb der Spule 40 ist am Verteiler 39 ein Lufteinlassventil 41 mit vorgeschaltetem Rückschlagventil 42 für die Rückspülung eingebaut. Über die Leitung 15, welche ebenfalls am Verteiler 39 angebracht ist, verlässt die saubere Mikroemulsion das Rezyklierungssystem 5. Seitlich am Topf sind vier Einlasse 43,44 und 47,48 mit Gewinden eingepresst. Die Einlasse 43 und 44 sind mit einem Schlauch 45 verbunden. Für die Niveaukontrolle befindet sich auf dem Schlauch 45 eine einstellbare kapazitive Niveausonde 46. Der obere Einlass 47 ist mit einem 3/2- Wege-Ventil mit dem Drucklufteingang über einen Nylonschlauch verbunden. Der untere Einlass 48 ist mit dem Schlauch 14 mit Ventil 13 verbunden. Über diesen Schlauch 14 wird ein Teil der Mikroemulsion dem Rezyklierungssystem 5 zur Rezyklierung zugeführt. In das Rezyklierungssystem 5 wird eine Trennplatte 49 hineingelegt. Diese Trennplatte 49 wird mit einer T-förmigen Befestigungseinheit 54 auf einem Dichtungsring 55 auf dem Topfboden befestigt. Sie besteht aus einem Metalleinsatz 50 mit zwölf Ablassbohrungen. Angeschweisst in den Metalleinsatz 50 ist ein Edelstahlnasenblech 51 als Distanzhalter. Darauf liegt eine Piezo-Folie 52 aus beschichtetem Edelstahl- oder Kunststoffgewebe. Alternativ kann auch eine Elektrode, bestehend aus einem Metallgewebe, die von einem externen Generator mit Hochspannung versorgt wird, eingelegt werden. Über der Piezofolie 52 oder der Hochspannungselektrode liegt ein feinmaschiges Edelstahlgitter 53. Die eingelegten Teile sind am Rand mit einer hochohmigen Vergussmasse 56 gegenüber dem Metalleinsatz 50 isoliert befestigt. In der Mitte der Trennplatte 49 befindet sich für die Befestigung und Entnahme ein Edelstahlstutzen mit Bohrung 57. Die Trennplatte 49 hat neben dem Aufbau einer flüssig/flüssig Doppelschicht zur Farbabtrennung die Aufgabe, das Abfliessen des feinkörnigen Adsorbers zu verhindern.
[0022] Bei der ersten Inbetriebnahme oder nach einer Farbentnahme wird zuerst ein Messbecher Adsorber oder eine Einheit vakuumverpackte Adsorberpaste in das Rezyklierungssystem 5 zugegeben. Der Adsorber besteht aus verschiedenen organischen und anorganischen Stoffen die so gewählt werden, dass diese in der Lage sind, bei der Rezyklierung die teuren Wirkstoffe der Mikroemulsion durch Austausch wieder freizugeben. Nach der Zugabe des Adsorbers wird das Rezyklierungssystem 5 dicht verschlossen, wozu im Falle eines Dampfkochtopfes der dazugehörige Deckel verwendbar ist. Nach dem Starten des Reinigunsprozesses ist parallel dazu die Rezyklierung der Emulsion aktiv. Im Rezyklierungssystem 5 wird dabei zuerst die Rückspülung gestartet. Sie vermischt den Adsorber mit der verschmutzten Emulsion. Während dem Reinigungsprozess wird das Rezyklierungssystem 5 zyklisch über das Ventil 13 mit verschmutzter Emulsion befüllt. Das Füllvolumen wird durch die kapazitive Niveausonde 46 bestimmt. Während der Vermischung mit dem Adsorber werden die an die Farbagglomerationen gebundenen molekularen Wirkstoffe wieder freigegeben und durch Adsorbernnoleküle ersetzt. Die freigegebenen Wirkstoffe bilden teilweise wieder Mizellen und nehmen eine negative Ladung an. Durch den auf die Piezomembrane wirkenden den Druck und/oder das Vakuum bildet sich zwischen dem Adsorber und der Trennplatte eine flüssig/flüssig Trennschicht mit einer negativen Feldspannung. Diese Feldspannung (Hochspannung) bildet einen elektrostatischen Filter und trennt die positiv geladenen Farbagglomerationen von der negativ geladenen Mikroemulsion. Die von der Farbe befreite Mikroemulsion verlässt das Rezyklierungssystem 5 über die am Boden vorhandene Ablass-Öffnung 38. Die an den Adsorber gebundenen Farbrückstände bleiben hingegen bis zur Farbentnahme im Topf. Beim Durchgang der Mikroemulsion durch die elektromagnetische Durchfluss-Spule 40 werden die Mizellen ihrer Ladung entsprechend wieder in den Ursprungszustand zurückversetzt. Anschliessend wird die regenerierte Mikroemulsion über die Leitung 15 und durch das Ventil 16 wieder der Vakuumkammer 1 zugeführt. Die abgeschiedene Farbmenge wird zeitlich und/oder durch eine Sonde in Bezug auf die Menge überwacht. Wenn die maximal zulässige Farbmenge erreicht ist, wird automatisch ein Farbentnahmeprozess ausgeführt. Dabei wird das Rezyklierungssystem 5 entleert und die Restsubstanz mit Luft aus dem Einlass 47 getrocknet. Nach Beendigung dieses Prozesses wird der Deckel von Hand geöffnet und die Trennplatte 49 mit den an den verbrauchten Adsorber gebundenen, pulverförmigen und trockenen Farbrückständen manuell entnommen. Nach Entfernung der Rückstände wird die Trennplatte 49 wieder in das Rezyklierungssystem 5 eingesetzt und mit der T-förmigen Befestigungseinheit 54 fest verschraubt. Ein neuer Reinigungsprozess kann erst wieder gestartet werden, wenn das Rezyklierungssystem 5 wieder mit Adsorber frisch befüllt und der Deckel geschlossen wurde. Das Rezyklierungssystem erlaubt eine zeitlich praktisch unbeschränkte Nutzung der Mikroemulsion. Lediglich die Verschleppungsverluste müssen von Zeit zu Zeit ersetzt werden.
[0023] Im Folgenden werden jetzt noch die einzelnen Phasen des Mehrphasen- Verfahrens im Einzelnen beschrieben und erläutet: Figur 5 zeigt dabei die Phase 1 : In dem Mehrphasenverfahren werden organische Schichten von der Rückseite her. abgebaut und bei der Schichtbildung von der Vorderseite her aufgebaut. Deshalb wird beim Schichtabbau in der Phase 1 die organische Schicht mit einer Hohlraumstruktur versehen, d.h. sie wird durchlässig gemacht. Es werden dazu in einem polaren, transversalen Wechselfeld gasbeladene Nanopartikel mit angelagerten links- und rechtsdrehenden Molekülen aus dem im Transversal Resonator erzeugten Aerosolgemisch in Richtung der Substratoberflächen beschleunigt. Hierzu wird eine Potentialdifferenz von Δφ0 = 3000 V und eine überlagerte Wechselspannung von 4000V zwischen den beiden Elektroden (Wellenleiter) des Transversal Resonators angelegt. Im Wechselfeld werden die Energieniveaus der Nanopartikel-Phasengrenzschichten periodisch angehoben und abgesenkt. Dadurch wird der Injektionsvorgang beschleunigt. Die Kanalwände der durch das Eindringen der gasbeladenen Nanopartikel erzeugten Mikrokanäle werden mit links- und rechtsdrehenden Molekülen belegt. Dieser Vorgang wird durch eine Tandem-Reaktion vollzogen. Dies ist eine Reaktionsfolge, in der zwei verschiedene Reaktionen unmittelbar aufeinander folgen, wobei die erste Reaktion, die Injektion, die zweite, die Belegung der Kanalwände, praktisch erzwingt. Die so erzeugten Kapillaren bleiben ca. 30 bis 60 Sekunden stabil. [0024] Phase 2: (Figur 6) Durch die Veränderung der elektrischen Doppelschicht auf den Nanopartikeln M2 erfolgt ein Injektionsvorgang in Richtung Substrat, bzw. der auf dem Substrat anhaftenden organischen Schicht. Am Phasenübergang der (Aerosol/Flüssigkeit ) <→ (Schicht) entsteht ein Potentialabfall und damit eine Veränderung der Resonanzfrequenz an den Partikelgrenzflächen M2. Damit das Potential der Partikel-Doppeischicht im Injektionskanal an die links und rechtsdrehenden Molekülen angeglichen wird, wird zuerst ein auf das elektrische Strömungspotential angepasstes polares Feld aufgebaut, das in den Mikrokapillaren ein stationäres Geschwindigkeitsfeld mit einer assimetrischen Potentialverteilung erzeugt. Dazu wird im Transversal-Resonator zwischen den beiden Elektroden (Wellenleiter) eine Potentialdifferenz von Δφo= 500 V angelegt. Das dimensionslose Potential an dem Substrat beträgt dann Φ-n = 1 und an den Wänden Φ21 = 0 . Durch die asymptotische Anpassung der elektrischen Randbedingung und dem Drehfeld, das durch die Rotation der beiden Elektroden (Wellenleiter) aufgebaut wird, strömen die Partikel M2 durch die in der Phase 1 gebildeten Mikrokapillaren in Richtung Substratoberfläche. Dort angekommen, übertragen sie einen Teil der kinetischen Energie an die Phasengrenzfläche „Substrat <→ Schicht", wo sie durch die örtliche Veränderung des Zeta-Potentials eine molekulare Trennschicht bilden.
[0025] Phase 3a: (Figur 7) In der Phase 3a werden an der Aussenseite der organischen Schicht nichtiogene Moleküle angelagert. Nach einer molekularen Belegung der äusseren Grenzschicht wird in dieser die Oberflächenspannung erhöht. Die Grenzschicht wölbt sich dadurch konkav nach aussen. Gleichzeitig diffundieren amphotere Moleküle in die noch offenen Kapillaren. Nach Verlust ihrer Bewegungsenergie bleiben sie im Schichtsystem stecken. Eine Verteilung im Schichtsystem ergibt sich durch die unterschiedlich grossen Bewegungsenergien der einzelnen amphoteren Moleküle. Phase 3b: (Figur 8) In einem hochfrequenten Energiefeld kommen die energiearmen, amphoteren Moleküle in Resonanz und mutieren zu Anionen. Gleichzeitig bilden sie ein Netzwerk kleiner Bezirke, wodurch in der organischen Schicht spaltförmige Kapillaren entstehen, in welchen die in der Phase 4 aktiven Stoffe zu den Anionen transportiert werden.
[0026] Phase 4: (Figuren 9 und 10) In der Phase 4 kommt die Methode „Phasen- Transfer-Katalyse" zum Einsatz. Diese ermöglicht Reaktionen zwischen Substanzen, die sich in verschiedenen, nicht mischbaren Phasen befinden. Beim Kontakt der anionischen Phase Mx mit der mit Nanopartikeln beladenen Enzymphase My geschieht noch nichts. Die Reaktion kommt erst in Gang, wenn ein Ion aus der Phase Mx durch die Grenzfläche Mx,y in die Phase My extrahiert. Durch die katalytische Wirkung der Enzyme entsteht dann im Phasenraum Mx,y eine heftige Reaktion, die in den Doppelschichten, an den Grenzflächen der Nanopartikel, einen Potentialsprung verursacht. Dieser Potentialsprung führt zu einer Instabilität des Phasenraumes M x,y, was zur Folge hat, dass die Phasenraumzelien innerhalb weniger Mikrosekunden in ihre Bestandteile zerfallen. Durch die dabei freigesetzte Bindungsenergie entstehen in der organischen Schicht punktuell grosse, energetische Zentren, die im Makrobereich dazu führen, dass in der organischen Schicht grosse Bezirke (zum Beispiel Farbagglomorationen) abgestossen werden.
[0027] Mit dem beschriebenen Reinigungsverfahren werden grundsätzlich keine Stoffe gelöst. Je nach Verfahrensstufe entstehen Mischungen, die sich zum Teil selbst oder unter dem Einfluss des Verfahrens zurückbilden. All diesen Verfahren ist gemeinsam, dass zur Erzielung des gewünschten Effektes Wechselwirkungskräfte zwischen den gleichen und ungleichen Partnern bestehen müssen. Die Bandbreite der Einsatzmöglichkeiten des Verfahrens ist sehr gross. Es kann mit einer geeigneten Mikroemulsion nicht nur für EntSchichtungen sondern auch für Beschichtungen benutzt werden. Diese Möglichkeit ist gegeben durch die gezielte Erzeugung gewünschter Doppelschichten mit einer geeigneten Matrix. In erster Linie werden im Verfahren die möglichen Veränderungen von physikalischen Eigenschaften und die Selbstorganisation der Nanopartikel sowie die Eigenschaften von Doppelschichten genutzt. Es können somit Systeme aufgebaut werden, welche bei kleinstmöglichem Energieaufwand eine grosse Wirkung erzielen. Neben den physikalischen Veränderungen in Doppelschichten können mit dem Verfahren auch gezielt chemische Veränderungen ausgelöst werden. Das Verfahren kann im Nanobereich ebenso für die Bildung molekularer Schichten mit neuen Festkörpereigenschaften eingesetzt werden.

Claims

Patentansprüche
1. Verfahren zum Erzeugen, Anwenden und Rezyklieren von Nanoemulsionen sowie zur Oberflächenbehandlung von Teilen mittels denselben, bei welchem eine Nanoemulsion erzeugt wird, indem eine Emulsion durch eine Aktivierungseinrichtung (10) fliesst, in welcher von einer Hochspannungselektrode (23) und elektromagnetischen Hochfrequenzspule (27) mittels Generatoren erzeugte elektrische und elektromagnetische Felder einander überlagert werden und mittels wählbarer Spannungen, Frequenzen und Phasenverschiebungen Resonanzen erzeugt werden, sodass infolge der Veränderung der Partikel-Doppelschichten das Zeta-Potentials so verändert wird, dass aus einer Mikroemulsion eine Nanoemulsion wird, mit dieser hernach die Oberfläche von Teilen in einer Vakuumkammer (1) behandelt werden, und die anschliessend in dem Rezyklierungssystem (5) rezykliert und dann wieder verwendet wird.
2. Verfahren zum Erzeugen, Anwenden und Rezyklieren von Nanoemulsionen sowie zur Oberflächenbehandlung von Teilen mittels denselben nach Anspruch 1 , dadurch gekennzeichnet, dass mit den Generatoren Hochspannungsfelder von 1 bis 10'0OO Volt erzeugt werden, mit überlagerten Frequenzen von 10 Hz bis 1 GHz.
3. Vorrichtung zum Erzeugen, Anwenden und Rezyklieren von Nanoemulsionen sowie zur Oberflächenbehandlung von Teilen mittels denselben, bestehend aus einem Rohrkreislauf mit mindestens einer Pumpe (9) zur Förderung einer Emulsion in einem Kreislauf, dieser Rohrkreislauf enthaltend eine Vakuumkammer (1 ) zur Oberflächenbehandlung von darin befindlichen Teilen, wobei der Rohrkreislauf eine Aktivierungseinrichtung (10) durchläuft, sowie eine Hochspannungselektrode (23) und eine Hochfrequenzspule (27) mit je separatem Generator mit Frequenzwandler zur Erzeugung eines elektrischen Feldes, wobei von ihnen separate Felder zur Umwandlung einer Mikroemulsion in eine Nanoemulsion erzeugbar sind, und die Vorrichtung weiter einen Transversal-Resonator (20) zur Erzeugung eines Aerosol-/Emulsionsgemisch einschliesst, sowie Injektordüsen (34) zum Einsprühen des Aerosols in die Vakuumkammer (1 ).
4. Vorrichtung zum Erzeugen, Anwenden und Rezyklieren von Nanoemulsionen sowie zur Oberflächenbehandlung von Teilen mittels denselben nach Anspruch 3, dadurch gekennzeichnet, dass sie Generatoren zum Betrieb der Elektrode und der Spulen aufweist, sowie die Phasendiskriminatoren, wobei mittels dieser Generatoren Hochspannungsfelder von 1 bis 101OOO Volt erzeugbar sind, mit überlagerten Frequenzen von 10 Hz bis 1 GHz.
5. Vorrichtung zum Erzeugen, Anwenden und Rezyklieren von Nanoemulsionen sowie zur Oberflächenbehandlung von Teilen mittels denselben nach Anspruch 3, dadurch gekennzeichnet, dass die Vakuumkammer (1) mit einem Vakuumventil (18) ausgerüstet ist, zum unter Vakuum Setzen der Vakuumkammer (1 ) und zum Abführen der Abluft über die Öffnung (6) im Gehäuse der Vorrichtung, sowie weiter dass sie ein 3/2-Wegeventil (19) zur Be- und Entlüftung des Rezyklierungssystems (5) sowie der Belüftung der Vakuumkammer (1 ) aufweist.
6. Vorrichtung zum Erzeugen, Anwenden und Rezyklieren von Nanoemulsionen sowie zur Oberflächenbehandlung von Teilen mittels denselben nach einem der
. Ansprüche 3 bis 5, dadurch gekennzeichnet, dass sie ein oder mehrere Umlaufpumpen (9) aufweist, an deren Ausgängen je eine Aktivierungseinrichtung (10) angeschlossen ist, und die über eine Verschraubung mit einem zwischengeschalteten Transversal-Resonator (20) mit der Vakuumkammer (1) als Reinigungswanne verbunden ist/sind, an deren Boden sich ein Ablauf befindet, der über ein T-Stück (11 ) und je eine Verschraubung mit den Pumpeneingängen verbunden ist.
7. Vorrichtung zum Erzeugen, Anwenden und Rezyklieren von Nanoemulsionen sowie zur Oberflächenbehandlung von Teilen mittels denselben nach einem der Ansprüche 3 bis 6, dadurch gekennzeichnet, dass sie einen Kreislauf zur Rezyklierung enthält und die beiden Aktivierungseinrichtungen (10) über ein Verbindungsrohr (12) miteinander verbunden sind, wobei in dessen Mitte sich ein Ventil (13) befindet, über welches nach Einschaltung über den Schlauch (14) dem Rezyklierungssystem (5) ein Teil der Emulsion zur Rezyklierung zuführbar ist, sowie eine Leitung (15) und ein Ventil (16) zum Wiederzuführen der gereinigten Mikroemuision in die Vakuumkammer (1 ).
8. Vorrichtung zum Erzeugen, Anwenden und Rezyklieren von Nanoemulsionen sowie zur Oberflächenbehandlung von Teilen mittels denselben nach einem der Ansprüche 3 bis 7, dadurch gekennzeichnet, dass die Aktivierungseinrichtung (10) ein Abschirmgehäuse (21) einschliesst und aus einem Rohr besteht, das am Bodenabgang der Vakuumkammer (1) angeschlossen ist, wobei im Abschirmgehäuse (21 ) ein Isolator (22) eingebaut, und in der Mitte des Isolators (22), das heisst im Flüssigkeitseinlass, sich mindestens eine Hochspannungselektrode (23) und zwei Schleifkontakte (24) befinden, zur Verbindung mit den Wellenleitern (25), und dass ausserhalb des Abschirmgehäuses (21) eine elektromagnetische Hochfrequenzspule (27) aufgesetzt ist und im oberen Teil des Isolators (22), der in die Vakuumkammer hineinragt, sich ein Kugellager (28) und ein Befestigungsgewinde für den Transversal-Resonator (20) befinden, sowie am unteren Ende, unterhalb der Hochfrequenzspule (27), sich der Anschluss für die Hochspannungselektrode (23) befindet, und ein Einlass (30) vorhanden ist, über den dem System gasförmige, dampfförmige oder flüssige Wirkstoffe zuführbar sind.
9. Vorrichtung zum Erzeugen, Anwenden und Rezyklieren von Nanoemulsionen sowie zur Oberflächenbehandlung von Teilen mittels denselben nach einem der Ansprüche 3 bis 8, dadurch gekennzeichnet, dass der Transversal-Resonator (20) aus einem zylindrischen Drehteil (31 ) aus Kunststoff oder Keramik besteht, mit Innengewinde zur Befestigung auf der Aktivierungseinrichtung (10), und zwei seitlich angebrachte Gewinde für Hohl-Düsenstäbe (32) aus Kunststoff aufweist, wobei im oberen Teil ein oder mehrere Ring-Permanentmagnete (33) eingebaut sind und auf den Hohl-Düsenstäben (32) je eine oder mehrere Injektordüsen (34) eingeschraubt sind, sowie im unteren Drittel, in der Mitte der Hohl-Düsenstäbe (32) oder im Bereich dazwischen je ein Wellenleiter (25) aus Wolfram oder Edelstahl befestigt ist, die auf der äusseren Seite mit einem Permanentmagnet abgeschlossen sind und auf der inneren Seite mit je über einen Schleifkontakt (24) mit der Aktivierungseinrichtung (10) verbunden sind.
10. Vorrichtung zum Erzeugen, Anwenden und Rezyklieren von Nanoemulsionen sowie zur Oberflächenbehandlung von Teilen mittels denselben nach einem der Ansprüche 3 bis 9, dadurch gekennzeichnet, dass das Rezyklierungssystem (5) eine Trennplatte (49) enthält, die von einer T-förmigen Befestigungseinheit (54) auf einem Dichtungsring (55) auf dem Topfboden befestigt ist und aus einem Metalleinsatz (50) mit Ablassbohrungen besteht, an dem ein Edelstahlnasenblech (51) als Distanzhalter befestigt ist, und dass darauf eine Piezofolie (52) oder Elektrode bestehend aus einem Metallgewebe aufliegt, die von einem externen Generator mit Hochspannung versorgbar ist, und über der Elektrode ein feinmaschiges Edelstahlgitter (53) liegt, wobei diese eingelegten Teile am Rand mit einer hochohmigen Vergussmasse (56) gegenüber dem Metalleinsatz (50) isoliert befestigt sind.
PCT/CH2006/000089 2005-02-11 2006-02-10 Verfahren und vorrichtung zum erzeugen und rezyklieren von nanoemulsionen sowie zur oberflächenbehandlung von teilen mittels denselben WO2006084414A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
AT06701853T ATE463299T1 (de) 2005-02-11 2006-02-10 Verfahren und vorrichtung zum erzeugen und rezyklieren von nanoemulsionen sowie zur oberflächenbehandlung von teilen mittels denselben
DE502006006639T DE502006006639D1 (de) 2005-02-11 2006-02-10 Verfahren und vorrichtung zum erzeugen und rezyklieren von nanoemulsionen sowie zur oberflächenbehandlung von teilen mittels denselben
EP06701853A EP1855787B1 (de) 2005-02-11 2006-02-10 Verfahren und vorrichtung zum erzeugen und rezyklieren von nanoemulsionen sowie zur oberfl[chenbehandlung von teilen mittels denselben
US11/891,478 US8083918B2 (en) 2005-02-11 2007-08-11 Process and device for the producing and recycling of nanoemulsions as well as for the surface treatment of parts by means of the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH00262/05A CH697378B1 (de) 2005-02-11 2005-02-11 Vorrichtung zur Oberflächenbehandlung von Teilen mittels Nanoemulsionen sowie Verfahren zur Erzeugung und zur Anwendung von Nanoemulsionen.
CH262/05 2005-02-11

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/891,478 Continuation US8083918B2 (en) 2005-02-11 2007-08-11 Process and device for the producing and recycling of nanoemulsions as well as for the surface treatment of parts by means of the same

Publications (1)

Publication Number Publication Date
WO2006084414A1 true WO2006084414A1 (de) 2006-08-17

Family

ID=36386537

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CH2006/000089 WO2006084414A1 (de) 2005-02-11 2006-02-10 Verfahren und vorrichtung zum erzeugen und rezyklieren von nanoemulsionen sowie zur oberflächenbehandlung von teilen mittels denselben

Country Status (6)

Country Link
US (1) US8083918B2 (de)
EP (1) EP1855787B1 (de)
AT (1) ATE463299T1 (de)
CH (1) CH697378B1 (de)
DE (1) DE502006006639D1 (de)
WO (1) WO2006084414A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008042128A1 (de) * 2008-09-16 2010-12-02 Büsch, Werner, Dipl.-Volksw. Verfahren und Vorrichtung zum Ändern kolloider oder kolloid-disperser Flüssigkeitssysteme und Verwendung derselben

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5152923A (en) * 1989-06-26 1992-10-06 Hans Georg Weder Process for the production of a nanoemulsion of oil particles in an aqueous phase
EP1063283A1 (de) * 1999-06-21 2000-12-27 Atofina Kaltreiniger in Form einer Mikroemulsion
DE10307568A1 (de) * 2003-02-22 2004-09-09 ETH-Zürich, Institut für Lebensmittelwissenschaft, Laboratorium für Lebensmittelverfahrenstechnik Verfahren zum Herstellen einer Membran mit Membranlöchern und nach diesem Verfahren hergestellte Mikro-/Nanomembran

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2845619B1 (fr) * 2002-10-15 2005-01-21 Christophe Dominique No Arnaud Dispositif et procede de fabrication d'un melange, d'une dispersion ou emulsion d'au moins deux fluides reputes non miscibles
CA2521862C (en) * 2003-04-10 2012-10-16 President And Fellows Of Harvard College Formation and control of fluidic species
US20050208083A1 (en) * 2003-06-04 2005-09-22 Nanobio Corporation Compositions for inactivating pathogenic microorganisms, methods of making the compositons, and methods of use thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5152923A (en) * 1989-06-26 1992-10-06 Hans Georg Weder Process for the production of a nanoemulsion of oil particles in an aqueous phase
EP1063283A1 (de) * 1999-06-21 2000-12-27 Atofina Kaltreiniger in Form einer Mikroemulsion
DE10307568A1 (de) * 2003-02-22 2004-09-09 ETH-Zürich, Institut für Lebensmittelwissenschaft, Laboratorium für Lebensmittelverfahrenstechnik Verfahren zum Herstellen einer Membran mit Membranlöchern und nach diesem Verfahren hergestellte Mikro-/Nanomembran

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008042128A1 (de) * 2008-09-16 2010-12-02 Büsch, Werner, Dipl.-Volksw. Verfahren und Vorrichtung zum Ändern kolloider oder kolloid-disperser Flüssigkeitssysteme und Verwendung derselben
DE102008042128B4 (de) * 2008-09-16 2014-03-27 Werner Büsch Verfahren und Vorrichtung insbesondere zum Trocknen von Mauerwerk

Also Published As

Publication number Publication date
CH697378B1 (de) 2008-09-15
EP1855787B1 (de) 2010-04-07
US8083918B2 (en) 2011-12-27
DE502006006639D1 (de) 2010-05-20
US20080060934A1 (en) 2008-03-13
ATE463299T1 (de) 2010-04-15
EP1855787A1 (de) 2007-11-21

Similar Documents

Publication Publication Date Title
DE69932042T2 (de) Mittel zur elektrohyrodynamischen zerstäubung
DE69910781T2 (de) Behandlung zur beseitigung von gerüchen
EP0625218A1 (de) Verfahren und vorrichtung zur oberflächenmodifikation durch physikalisch-chemische reaktionen von gasen oder dämpfen an oberflächen mit unterstützung von hochgeladenen ionen.
EP1656161B1 (de) Verfahren zum verteilen von flüssigen duftstoffen und vorrichtung zur durchführung des verfahrens
EP2326402B1 (de) Verfahren zur herstellung eines elektretfilterelements
DE4136675C2 (de) Verfahren zum elektrostatischen Spritzbeschichten eines Werkstücks mit einer Farbe auf Wasserbasis sowie eine Vorrichtung zum Durchführen dieses Verfahrens
DE102009028493A1 (de) Mikrofluidische Zelle
EP3332620A1 (de) Vorrichtung und verfahren zum erzeugen eines plasmas, sowie verwendung einer solchen vorrichtung
EP1215447A2 (de) Verfahren und Vorrichtung zur Duftsteuerung
WO2013091927A1 (de) Vorrichtung zum erzeugen eines hohlkathodenbogenentladungsplasmas
EP0740585B1 (de) Verfahren und vorrichtung zur behandlung gasgetragener partikel
DE4308390C2 (de) Verfahren zum Aufladen, Koagulieren und Ausfiltern von in Fluiden vorkommenden Schwebstoffen, ein in diesem Verfahren verwendetes Filterelement und eine Fluidfiltervorrichtung
DE102009037715B4 (de) Führung von Sprühtröpfchen zur Einlasskapillare eines Massenspektrometers
EP1855787B1 (de) Verfahren und vorrichtung zum erzeugen und rezyklieren von nanoemulsionen sowie zur oberfl[chenbehandlung von teilen mittels denselben
DE10162457A1 (de) Oberflächenstrukturierte Einbauten für Mehrphasentrennapparate
DE3314168C2 (de) Verfahren und Vorrichtung zum Reinigen von Gasen von elektrisch leitfähigen Partikeln
DE1237541B (de) Verfahren und Vorrichtung zur Gewinnung der einzelnen Phasen aus dispersen Systemen
WO2019224227A1 (de) Analyseeinrichtung und verfahren zur analyse von substanzen durch ionenmobilitätsspektrometrie
EP1319435A2 (de) Method and apparatus for introducing a first medium in a second medium
DE102007052500A1 (de) Verfahren und Vorrichtung für den Nachweis von mindestens einer Zielsubstanz
DE1804060B2 (de) Verfahren und Vorrichtung zur Be schleumgung der Trennung der Phasengeiu sehe bei der Flussig Flussig Extraktion
DE102008028166A1 (de) Vorrichtung zur Erzeugung eines Plasma-Jets
EP0968258A1 (de) Verfahren und vorrichtung zum reinigen von verunreinigungen enthaltenden flüssigkeiten
DE3623877C2 (de) Verfahren und Beschichtungsanlage zum Verarbeiten eines Beschichtungsmaterials
DE3130879A1 (de) Elektrostatische, nach dem prinzip der triboelektrischen aufladung arbeitende farbspritzpistole

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006701853

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11891478

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 3120/KOLNP/2007

Country of ref document: IN

WWP Wipo information: published in national office

Ref document number: 2006701853

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11891478

Country of ref document: US