WO2006082819A1 - 液晶表示装置 - Google Patents

液晶表示装置 Download PDF

Info

Publication number
WO2006082819A1
WO2006082819A1 PCT/JP2006/301612 JP2006301612W WO2006082819A1 WO 2006082819 A1 WO2006082819 A1 WO 2006082819A1 JP 2006301612 W JP2006301612 W JP 2006301612W WO 2006082819 A1 WO2006082819 A1 WO 2006082819A1
Authority
WO
WIPO (PCT)
Prior art keywords
refractive index
liquid crystal
crystal display
display device
layer
Prior art date
Application number
PCT/JP2006/301612
Other languages
English (en)
French (fr)
Inventor
Katsuyuki Igarashi
Hitoshi Kamamori
Original Assignee
Seiko Instruments Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc. filed Critical Seiko Instruments Inc.
Publication of WO2006082819A1 publication Critical patent/WO2006082819A1/ja

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133553Reflecting elements
    • G02F1/133555Transflectors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • G02B5/0816Multilayer mirrors, i.e. having two or more reflecting layers
    • G02B5/085Multilayer mirrors, i.e. having two or more reflecting layers at least one of the reflecting layers comprising metal
    • G02B5/0858Multilayer mirrors, i.e. having two or more reflecting layers at least one of the reflecting layers comprising metal the reflecting layers comprising a single metallic layer with one or more dielectric layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/42Materials having a particular dielectric constant

Definitions

  • the present invention relates to a liquid crystal display device used in an electronic device such as a portable information device. Specifically, the present invention relates to a liquid crystal display device capable of displaying both a reflective display that uses external light, which is light in a use environment, and a transmissive display that uses illumination light such as a backlight.
  • the liquid crystal display elements used in liquid crystal display devices are not self-luminous! /, Display elements that are thin and have low power consumption. Therefore, it is widely used in office equipment such as watches, word processors and personal computers, portable devices such as electronic notebooks and mobile phones, and electronic devices such as AV equipment.
  • the illumination light from the backlight passes through the colored layer only once, a relatively bright display can be obtained.
  • a reflective display is observed with such a configuration, external light reflected by the reflective film portion (reflective region) reaches the observer. In this case, light that has once passed through the colored layer bounces off the reflecting film and passes through the colored layer again. That is, the display is darkened because it passes through the colored layer having a low transmittance twice.
  • Patent Document 2 Japanese Patent Laid-Open No. 2003-090997.
  • Patent Document 3 a configuration is also disclosed in which the thickness of the colored layer film is changed between the transmission region and the reflection region (see, for example, Japanese Patent Laid-Open No. 2000-298271, hereinafter This is referred to as Patent Document 3).
  • Patent Document 3 since the density of the colored layer in the reflection region is low, an effect of brightening the display during reflection can be obtained.
  • Patent Document 4 a transflective liquid crystal display device using a transflective film in order to provide both functions of a reflective type and a transmissive type.
  • Patent Document 5 a semi-permeable film is a metal thin film such as aluminum or chromium, or a laminated film of a transparent conductive film such as ITO and a metal film.
  • Such a semi-transmissive film has a function as a reflective film when used as a reflective type, and a function as a transmissive film when used as a transmissive type.
  • a conventional color liquid crystal display device for both transmission and reflection uses a method of changing the color layer density between the transmission region and the reflection region as in Patent Documents 1 to 3.
  • the photolithography process for patterning is doubled. As a result, the manufacturing tact time became longer, causing a cost increase.
  • the thickness of the colored layer is changed between the transmission region and the reflection region as described above.
  • the reflective film is provided on a pedestal made of resin or the like, and the opening is a transmission region. Therefore, the surface originally has irregularities, and it is difficult to completely flatten even after the subsequent flat film coating step.
  • the color filter substrate surface is uneven as described above, there is a gap difference between the counter substrate and the location. If the gap is different, the orientation of the liquid crystal molecules injected into the gap will be different, and this will cause a deterioration in display quality such as poor contrast. This unevenness is a factor that degrades the display quality, particularly in a display device using STN liquid crystal.
  • the conventional liquid crystal display device does not have such a characteristic that it can sufficiently satisfy both the light transmitting property and the light reflecting property.
  • an object of the present invention is to provide a liquid crystal display device capable of performing bright reflective display, having no display unevenness, and having high display quality.
  • the liquid crystal display device of the present invention comprises a substrate on which a colored layer and a transparent electrode are formed, a counter substrate on which a counter transparent electrode is formed, and a liquid crystal disposed between the transparent electrode and the counter transparent electrode,
  • a liquid crystal display device that displays using a pixel portion formed by intersecting a transparent electrode and a counter transparent electrode, wherein a reflective functional layer that reflects a part of incident light is defined between the colored layer and the transparent electrode. It is provided over the entire surface of the element.
  • a high refractive index transparent layer having a refractive index larger than that of the transparent electrode can be used as the reflective functional layer.
  • a low refractive index transparent layer having a refractive index smaller than that of the high refractive index transparent layer is provided between the transparent electrode and the high refractive index transparent layer.
  • the low refractive index transparent layer contains Si02 as a main component.
  • a flat film is provided between the colored layer and the high refractive index transparent layer, and the refractive index of the high refractive index transparent layer is set to be larger than the refractive index of the flat film.
  • a semi-transmissive film is used as the reflective functional layer.
  • the semi-transmissive film include a multilayer film in which high refractive index layers and low refractive index layers are alternately stacked. Or many dielectric layers A layer film can be exemplified.
  • the multilayer film of the dielectric layer preferably has a thickness of 50-: LOOOA.
  • the color filter may be a liquid crystal display device in which the reflective functional layer is the first semi-transmissive film, the color filter is used as the colored layer, and the backlight is provided on the outside of the substrate, that is, on the counter-observer side. And a second semipermeable membrane between the backlight and the backlight. Alternatively, a second semipermeable membrane may be provided between the substrate and the color filter.
  • the specific power of the reflectance of the first semi-transmissive film and the reflectance of the second semi-transmissive film is set to be in the range of 0.5 to 1.5 times the square of the transmittance of the color filter. did.
  • the first color filter is used as the colored layer, and the second color filter is provided on the viewer side of the semipermeable membrane. That is, the second color filter may be provided between the semi-transmissive film and the liquid crystal or may be provided on the counter substrate.
  • a dielectric multilayer film can be exemplified as the semi-transmissive film. Only the second color filter may include a light shielding film.
  • the reflective functional layer is formed between the colored layer and the transparent electrode, a bright reflective display can be realized.
  • no opening is formed in the reflective functional layer, it is possible to obtain high surface flatness and prevent deterioration in display quality.
  • FIG. 1 is a cross-sectional view schematically showing a configuration of a liquid crystal display element used in the present invention.
  • FIG. 2 is a cross-sectional view schematically showing a schematic configuration of a liquid crystal display element used in the present invention.
  • FIG. 3 is a cross-sectional view schematically showing a schematic configuration of a liquid crystal display element used in the present invention.
  • FIG. 4 is a cross-sectional view schematically showing a schematic configuration of a liquid crystal display element used in the present invention.
  • FIG. 5 is a cross-sectional view showing a configuration of a semipermeable membrane that can be applied to the present invention.
  • FIG. 6 is a cross-sectional view showing a schematic configuration of a liquid crystal display device including two transflective films according to the present invention.
  • FIG. 7 is a cross-sectional view showing a schematic configuration of a liquid crystal display device including two transflective films according to the present invention.
  • FIG. 8 is a cross-sectional view showing a schematic configuration of a liquid crystal display device in which a transflective film according to the present invention is sandwiched between two color filters.
  • FIG. 9 Schematic structure of a liquid crystal display device in which a transflective membrane according to the present invention is sandwiched between two color filters. It is sectional drawing which shows composition.
  • the liquid crystal display device of the present invention has a liquid crystal display panel having a structure in which a reflective functional layer for reflecting a part of incident light is provided between a colored layer for color display and a transparent electrode.
  • FIG. 1 schematically shows a cross-sectional configuration of a liquid crystal display panel used in the liquid crystal display device of the present invention.
  • a colored layer 3 is formed on the substrate 1, and a transparent electrode 6 is provided thereon via a reflective functional layer 5. It is
  • the substrate 1 and the counter substrate 2 are fixed by a sealant 10, and a liquid crystal 11 is provided in a gap between the counter transparent electrode 7 and the transparent electrode 6 formed on the counter substrate 2.
  • the transparent electrode and the counter transparent electrode form display pixels (dots).
  • a part of the light passing through the liquid crystal layer and the transparent electrode is reflected by the reflective functional layer 5, and the remaining light is transmitted through the reflective functional layer 5. That is, in the reflection mode, the observer observes the light reflected at the interface of the reflection function layer, so that it is possible to obtain a bright / dark white display with low transmittance and not passing through the color filter.
  • the liquid crystal display device of the present invention it is possible to obtain a color display for observing light that has passed through the color filter at the time of transmissive display. Since the light reflected by the transparent refractive index layer is observed, it is possible to obtain a bright and monochrome display that does not pass through a color filter having a low transmittance.
  • the reflective functional layer has translucency without providing an opening as in the prior art, high surface flatness can be obtained, and deterioration of display quality can be prevented.
  • the colored layer 3 it is common to use a color filter in which a plurality of colored layers corresponding to the color to be displayed are formed corresponding to the dots.
  • a light shielding film black matrix
  • Examples of the reflective functional layer include a high refractive index transparent film and a semi-transmissive film.
  • a semi-transmissive film a multilayer film in which high refractive index layers and low refractive index layers are alternately stacked, or a dielectric multilayer film can be used.
  • the liquid crystal display device of this example has a liquid crystal display panel having a structure in which a high refractive index transparent film having a refractive index larger than that of the transparent electrode is provided as a reflective functional layer.
  • Fig. 2 schematically shows the cross-sectional structure of this liquid crystal display panel.
  • a color filter coloring layer is formed on the substrate 1, and a transparent electrode 6 is provided thereon via a high refractive index transparent layer 15.
  • the color filter 9 is formed of colored portions having a desired pattern (in FIG. 2, red * green * blue (9R, 9G, 9B) which are the three primary colors of light).
  • the colored part is provided with a thickness of about 1 ⁇ m.
  • a membrane (black matrix) 12 is provided.
  • a transparent counter substrate 2 is formed with a counter transparent electrode 7, and the substrate 1 and the counter substrate 2 are fixed with a sealant 10 so that the transparent electrode 6 and the counter transparent electrode 7 face each other.
  • a liquid crystal 11 is provided in the gap.
  • the observer observes the light reflected at the interface of the high refractive index transparent layer (that is, the light having a low transmittance and the light passing through the color filter).
  • a black and white display can be obtained.
  • the refractive index of the high refractive index transparent layer is larger than the refractive index of the colored portion, a part of the light that has passed through the high refractive index transparent layer is at the interface between the high refractive index transparent layer and the colored portion. Reflected and reaches the observer.
  • the observer observes the light reflected at the upper and lower interfaces of the high refractive index transparent layer in the reflection mode.
  • the color purity of the transmissive display can be adjusted without changing the brightness of the reflection display by adjusting the density of the colored portions (9R, 9G, 9B) constituting the power color filter.
  • the high refractive index transparent layer is provided in order to obtain reflection characteristics caused by a difference in refractive index between the layer in contact with the high refractive index transparent layer.
  • the material, refractive index, The reflection characteristics obtained vary depending on the thickness. That is, a desired reflectance can be obtained by comprehensively judging and setting the material, refractive index, thickness, and the like of each layer. Therefore, the present invention can be applied to a transflective display device.
  • the refractive index at 550 nm of the high refractive index transparent layer is set. 2. Must be greater than 0.
  • the reflectivity obtained by the present invention is determined by the combined action of the material, refractive index, thickness, etc. of each surrounding layer, which is not only the high refractive index transparent layer, so the material, refractive index, thickness, etc. of each layer are determined. Can be set in combination.
  • the refractive index of the high refractive index transparent layer is 2.0 to 2.5
  • the refractive index of the transparent electrode is 1.5 to 2.0
  • the refractive index of the colored layer is 1. 4 ⁇ 1.8 is suitable. In these ranges By combining them, an arbitrary reflectance can be set to some extent.
  • the difference in refractive index of each layer the difference in refractive index between the high refractive index transparent layer and the transparent electrode is 0.1 to 1.0, and the difference in refractive index between the high refractive index transparent layer and the colored layer is 0. If it is about 2 to 1.1, it can be applied to the reflection mode display of a transflective display device.
  • titanium dioxide (Ti02), niobium oxide (Nb205), Sn02, or the like can be used as the high refractive index transparent layer 15.
  • the reflection characteristic at the interface can be obtained even with a force of 50 A: LOOOA having a thickness of 500 A.
  • LOOOA having a thickness of 500 A.
  • a low refractive index transparent layer having a refractive index smaller than that of the high refractive index transparent layer may be provided between the high refractive index transparent layer 15 and the transparent electrode 6.
  • the refractive index of the low refractive index transparent layer is preferably about the same as or smaller than that of the transparent electrode 6 and is about 1.5.
  • a suitable material is Si02.
  • the flattening film 4 needs to be flat because the high refractive index transparent layer 15 is formed on the surface thereof.
  • the planarizing film 4 is formed with a thickness of about 2 m.
  • a high refractive index transparent layer 15 is formed on the surface of the flat film 4.
  • a transparent electrode 6 for applying a voltage to the liquid crystal layer is provided thereon.
  • the reflectance obtained by the above-described configuration is not limited to the high refractive index transparent layer. Since the material, refractive index, thickness, etc. of a layer are determined in a complex manner, the reflectance can be set by combining the material, refractive index, thickness, etc. of each layer.
  • the refractive index of the high refractive index transparent layer is 2.0 to 2.5
  • the refractive index of the transparent electrode is 1.5 to 2.0
  • flattened The refractive index of the film was set to 1.3 to 1.7. By combining within these ranges, an arbitrary reflectivity can be set to some extent.
  • the difference in refractive index between the high refractive index transparent layer and the transparent electrode is 0.1 to 1.0, and the difference in refractive index between the high refractive index transparent layer and the planarizing film is About 0.3 to 1.2 is suitable for reflection mode display of a transflective display device.
  • the high refractive index transparent layer 5 titanium dioxide (Ti02), niobium oxide (Nb205), SnO 2 or the like can be used.
  • the high refractive index transparent layer 5 is provided with a thickness of 500 A, but the reflection characteristics at the interface can be obtained even with a thickness of 50 to L000 A. By changing the film thickness, the ratio between transmission and reflection can be adjusted.
  • a colored layer constituting a color filter is formed on a glass substrate. Specifically, a red colored portion (9R), a green colored portion (9G), and a blue colored portion (9B) are formed on the surface of the substrate in a desired pattern with a thickness of about 1 m. If necessary, the light shielding film 12 may be provided in a desired pattern. These can be formed by a manufacturing method called a pigment dispersion method using a photolithography method. Thereafter, in order to flatten the surface of the substrate on which the colored layer is formed, the flat film 4 is applied with a thickness of about 2 m.
  • a high refractive index transparent layer 15 is provided on the planarizing film 4.
  • titanium dioxide (Ti02), acid niobium (Nb205), Sn02, or the like can be used. These are all formed by a technique such as sputtering.
  • a transparent electrode 6 for applying a voltage to the liquid crystal 11 is provided on the high refractive index transparent layer 15.
  • the transparent electrode 6 is formed in a desired pattern by a photolithography method.
  • the transparent electrode 6 is a transparent conductive film called ITO in which indium (In) containing tin (Sn) as an impurity is oxidized, and can be formed to have a desired resistance value.
  • ITO is a low-resistance semiconductor material, the most common resistance value is a sheet resistance of 10 Q from Z port to 100 Q / U.
  • ITO is usually a vacuum called sputtering or vapor deposition. It forms by the film-forming method.
  • a transparent electrode is formed on the opposite glass substrate in the same manner.
  • a spacer for setting the cell gap to the target value is dispersed, and then an alignment film (not shown) for aligning the liquid crystal 11 is formed on the surfaces of the substrate 1 and the counter substrate 2.
  • the sealant 10 is applied to either the substrate 1 or the counter substrate 2, and the two substrates are bonded to form a cell structure.
  • thermosetting resin is used for the sealant 10 and bonding is performed by a thermocompression bonding method.
  • liquid crystal is injected into the gap between the substrates to form a cell, and a pair of polarizing plates are arranged so as to sandwich the cell, thereby obtaining a liquid crystal display element.
  • the liquid crystal display device of this example has a liquid crystal display panel having a configuration using a semi-transmissive film as a reflective functional layer.
  • the liquid crystal display panel includes a substrate on which a color filter, a transparent electrode, and an alignment film are sequentially provided, a transparent counter substrate on which a counter transparent electrode and an alignment film are provided, and a liquid crystal held between these substrates.
  • a semi-transmissive film is provided between the color filter and the transparent electrode.
  • a backlight is provided outside the substrate. According to such a configuration, when used as a reflection type, the reflected light from the semi-transmissive film on the color filter can be used, so that a high reflectance can be obtained.
  • Figure 4 schematically shows the cross-sectional configuration of the liquid crystal display panel used in the liquid crystal display device of this example.
  • a color filter 9, a flat film 4, a semi-transmissive film 8, a transparent electrode 6 and an alignment film (not shown) are sequentially formed on the substrate 1.
  • a counter transparent electrode 7 and an alignment film (not shown) with a polyimide resin rubbed in a certain direction are formed on the counter substrate 2 facing the substrate 1.
  • a liquid crystal cell is formed by inserting the liquid crystal 11 between the counter substrate 2 and the substrate 1.
  • a first optical film 21 such as a polarizing plate and a second optical film 22 are provided so as to sandwich the liquid crystal cell.
  • a backlight 23 is provided behind the liquid crystal cell.
  • the semi-transmissive film 8 has both light-transmitting properties and light-reflecting properties, and prevents a phase difference from occurring when sandwiched between two polarizing plates. Further, the semi-transmissive film 8 may be specular or scattering.
  • the semi-transmissive film 8 is a multilayer film in which high refractive index layers and low refractive index layers are alternately stacked. You may make it. At this time, the number of high refractive index layers is configured to be one greater than the number of low refractive index layers.
  • FIG. 5 shows an example in which a film having a laminated structure in which a high refractive index layer 18 and a low refractive index layer 28 are sequentially laminated is used as a semi-transmissive film. In such a configuration, part of the light incident on the semi-transmissive film is reflected by the high refractive index layer 18, and the transmitted light is reflected by the low refractive index layer 28.
  • the high refractive index layer 18 and the low refractive index layer 28 may be made of any material as long as there is a difference in refractive index.
  • the refractive index range of the high refractive index layer 18 is 2.0 to 2.5.
  • the range of the refractive index of the low refractive index layer 28 is preferably 1.3 to 1.6, and may be composed of a material containing at least one of Si02, A1F3, CaF2, and the like.
  • the color filter 9 is formed by a pigment dispersion method using a photosensitive resist in which a pigment is dispersed, but may be a printing method or a photolithographic method using a separate photoresist. As shown in the drawing, the color filter 9 is configured so that regions 9R, 9G, and 9B colored in red, green, and blue correspond to display pixels.
  • the flat film 4 on the color filter 9 is used as a top coat layer for flattening the unevenness of the surface of the color filter. However, when used in a display mode where flatness is not required, May not be provided.
  • the first optical film or the second optical film is a combination of a polarizing plate and a phase difference plate, and the angle of the optical axis and the phase difference are set so that contrast can be obtained in both the transmission type and the reflection type. ing. Since this setting varies depending on the display mode, liquid crystal material, etc., it must be set each time to obtain the optimum contrast.
  • the flat resin film 4 can be an organic resin film.
  • a single material layer including at least one of Ti02, Zr02, Sn02, or a mixed material layer including at least two layers is combined to be stacked.
  • the dielectric multilayer film is made up of. In other words, different single material layers were laminated, different mixed material layers were laminated, or single material layer and a mixture layer were laminated.
  • the multilayer film of the dielectric layer preferably has a thickness of 50 to: L000 A. In this case as well, the effect of increasing reflection was obtained, so high reflectivity was obtained, and clear color display was achieved with the transmission type, and bright V ⁇ monochrome display was achieved with the reflection type.
  • the liquid crystal display device of this example since the semi-transmissive film having high light utilization efficiency is formed on the upper layer of the color filter, it is possible to obtain sufficient reflected light when used as a reflective type, High-purity color display when light is transmitted with the backlight lit, and high-reflection monochrome display when the knocklight is not lit, a liquid crystal that has sufficient characteristics to satisfy both transparency and light reflectivity A display device can be provided.
  • the liquid crystal display device of this example has a liquid crystal display panel having a configuration using two semi-transmissive films as a reflective functional layer. That is, the liquid crystal display panel includes a substrate provided with a color filter, a transparent electrode and an alignment film, a transparent counter substrate provided with a counter transparent electrode and an alignment film, and a liquid crystal held between these substrates. A first semi-transmissive film is provided between the color filter and the liquid crystal, and a second semi-transmissive film is provided between the color filter and the backlight. Further, a backlight is provided outside the substrate.
  • the second semi-transmissive film is provided between the substrate and the color filter.
  • the specific power of the reflectance of the first semi-transmissive film and the reflectance of the second semi-transmissive film was set in the range of 0.5 to 1.5 times the square of the transmittance of the color filter.
  • the reflected light that has passed through the color filter (reflected light from the second semi-transmissive film below the color filter) and the reflected light that has not passed through the color filter (first color filter upper layer).
  • the reflected light from one semi-transmissive film) has almost the same intensity, so that it is possible to obtain a display device in which the reflectance and display color are balanced. It becomes possible.
  • at least one of the first and second semi-transmissive films is formed of a multilayer film in which high refractive index layers and low refractive index layers are alternately stacked. At this time, the number of high refractive index layers is configured to be one greater than the number of low refractive index layers.
  • FIG. 6 schematically shows a cross-sectional configuration of a liquid crystal display panel used in the liquid crystal display device of this example.
  • a color filter 9, a flat film 4, a first semi-transmissive film 8, a transparent electrode 6, and an alignment film (not shown) are sequentially formed on the substrate 1.
  • a counter transparent electrode 7 and an alignment film (not shown) having a polyimide resin equivalent force rubbed in a certain direction are formed on the counter substrate 2 facing the substrate 1.
  • a second semipermeable membrane 14 is provided on the back side of the substrate 1.
  • a liquid crystal cell is formed by inserting a liquid crystal 11 between the substrate 1 and the counter substrate 2.
  • a first optical film 21 such as a polarizing plate and a second optical film 22 are provided so as to sandwich the liquid crystal cell in accordance with the display mode. Further, as shown in the figure, a backlight 23 is provided behind the liquid crystal cell.
  • the first semi-transmissive film 8 and the second semi-transmissive film 14 have both light-transmitting and light-reflecting characteristics, so that no phase difference occurs when sandwiched between two polarizing plates. To do. Further, these semi-permeable membranes may be specular or scattering. One semipermeable membrane may be specular and the other may be scattering.
  • a film having a laminated structure in which a high refractive index layer 18 and a low refractive index layer 28 are sequentially laminated as a semi-transmissive film is as shown in FIG.
  • part of the light incident on the semi-transmissive film is reflected by the high refractive index layer 18, and the transmitted light is reflected by the low refractive index layer 28.
  • These reflected lights interfere with each other, so that the reflection performance is remarkably improved, and a so-called increased reflection effect is produced.
  • the high refractive index layer 18 and the low refractive index layer 28 may be made of any material as long as there is a difference in refractive index.
  • the refractive index of the high refractive index layer 18 is in the range of 2.0 to 2.5. It can be made of a material containing at least one of TiO2, Zr02, Sn02, etc.
  • the refractive index of the low refractive index layer 28 is preferably in the range of 1.3 to 1.6, and can be made of a material containing at least one of Si02, A1F3, CaF2, and the like.
  • the color filter 9 is formed by a pigment dispersion method using a photosensitive resist in which a pigment is dispersed, but may be a printing method or a photolithographic method using a separate photoresist. As shown in the drawing, the color filter 9 is configured so that regions 9R, 9G, and 9B colored in red, green, and blue correspond to display pixels. In addition, the flat film 4 on the color filter 9 is used as a top coat layer for flattening the unevenness of the color filter surface, but when used in a display mode that does not require flatness, It does not have to be provided.
  • the first and second optical films are a combination of a polarizing plate and a phase difference plate, and the angle of the optical axis and the phase difference are set so that contrast can be obtained in both the transmission type and the reflection type. . Since this setting varies depending on the display mode and the liquid crystal material used, it must be set each time to obtain the optimum contrast.
  • the color filter 9 has an NTSC ratio of 50%, the reflectance of the first semi-transmissive film 8 is 2.5%, and the reflectance of the second semi-transmissive film 14 is 30%. Designed to produce a display device. As a result, the reflectivity (measured from the normal direction of the light beam from 15 degrees) was 17%, and the NTSC ratio of the reflection display was 15%. When the backlight was turned on, the same clear display as before was obtained. When a display device was manufactured without forming the first semi-transmissive film 8, the reflectance was 8%, and the display visibility during reflection was significantly reduced.
  • the color filter 9 has an NTSC ratio of 70%
  • the reflectance of the first semi-transmissive film 8 is 2.5%
  • the reflectance of the second semi-transmissive film 14 is A display device was manufactured by designing it to be 30%.
  • a reflectance of 14% (measured from the normal direction when the light beam is incident at 15 degrees) and an NTSC ratio of 14% for the reflective display are obtained, which is sufficient for reflective display using the display device configured as shown in FIG.
  • the display could be done.
  • the reflectance slightly decreased, a display with sufficient visibility was obtained.
  • the backlight was turned on, the same clear display as before was obtained.
  • the reflectivity was only 5%, and the visibility during reflection was extremely bad. From this result, this example is It was confirmed that the NTSC ratio was particularly effective in combination with the color filter layer.
  • the first and second translucent films is formed of a multilayer film of dielectric layers.
  • the multilayer film of the dielectric layer is preferably 50 to L000 A.
  • the multilayer film of the dielectric layer is a dielectric multilayer film in which a single material layer including at least one of Ti02, Zr02, and Sn02 or a mixed material layer including at least two layers is combined and laminated.
  • liquid crystal display device of this example two layers of the semi-transmissive film having high light utilization efficiency are provided so as to sandwich the color filter. With such a configuration, it is possible to provide a liquid crystal display device that can obtain sufficient reflected light when used as a reflection type and has characteristics that can sufficiently satisfy both light transmission and light reflection. Is possible.
  • Example 4 A liquid crystal display device of this example has a liquid crystal display panel having a configuration in which a semi-transmissive film is used as a reflective functional layer and the semi-transmissive film is sandwiched between two colored layers.
  • this liquid crystal display panel is a liquid crystal display panel in which a substrate on which a color filter is formed and a counter substrate face each other through liquid crystal, and a semi-transmissive film is provided between a colored layer and a liquid crystal layer constituting the color filter.
  • the second color filter is provided above the permeable membrane (on the observer side). Further, a backlight is provided outside the substrate.
  • a dielectric multilayer film can be employed as the semi-transmissive film.
  • the dielectric multilayer film has a laminated structural force of a low refractive index transparent film and a high refractive index transparent film.
  • the low refractive index transparent film silicon dioxide (Si02) can be used, and as the high refractive index transparent film, titanium dioxide (Ti02), oxide film, or the like can be used.
  • a dielectric multilayer film is provided directly on the colored layer, and a second layer is formed on the dielectric multilayer film. It can be manufactured by forming a colored layer. Alternatively, a colored layer is formed using a general color filter manufacturing method, a flat film is formed on the colored layer, and then a dielectric multilayer film is provided on the surface of the planarization film. Further, it can be manufactured by forming a second colored layer. Alternatively, it can also be manufactured by providing a second colored layer on the counter substrate facing the dielectric multilayer film via the liquid crystal.
  • FIG. 8 schematically shows a cross-sectional configuration of a liquid crystal display panel used in the liquid crystal display device of this example.
  • the substrate 1 and the counter substrate 2 face each other with the liquid crystal 11 interposed therebetween.
  • a transparent electrode 6 having a desired pattern is provided on one surface of the substrate 1
  • a counter transparent electrode 7 having a desired pattern is provided on one surface of the counter substrate 2.
  • the substrate 1 has a configuration in which a color filter 9 having a colored portion is provided on a glass substrate.
  • colored portions (9R, 9G, 9B) of three primary colors of light having a desired pattern on the surface of the glass substrate (9R, 9G, 9B) are provided in the front and rear thicknesses.
  • a flattened film 4 is provided on the colored portion in order to flatten the surface irregularities. Since the dielectric multilayer film 38 is formed on the surface of the planarizing film 4, flatness is required. In this embodiment, the planarizing film 4 is formed with a thickness of about 2 / zm. Then, a dielectric multilayer film 38 is formed on the surface of the flattening film 4, and then a second color filter is formed.
  • a light shielding film (black matrix) 12 having a desired pattern and colored portions of red (19R), green (19G), and blue (19B) are formed.
  • a flat film 4 is formed to flatten the surface of the second color filter, and a transparent electrode 6 for applying a voltage to the liquid crystal layer is provided thereon. Since the transparent electrode 6 is formed on the flat film 4 provided on the surface of the second color filter, flatness and insulation are required.
  • the flat film 4 is also formed with a thickness of about 2 / zm.
  • an alignment film provided so as to cover the electrodes is omitted.
  • the light-shielding film (black matrix) provided for the purpose of improving the visibility on the display screen may be formed only on the second color filter on the viewing side. It may also be formed on a filter.
  • the dielectric multilayer film 38 used here also has a laminated structural force of a low refractive index transparent film and a high refractive index transparent film.
  • a low refractive index transparent film silicon dioxide and silicon dioxide can be used
  • the high refractive index transparent film titanium dioxide and niobium acid can be used.
  • the dielectric multilayer film 38 is composed of three or more and seven or less layers of the low refractive index film layer and the high refractive index film. By changing the number of stacked layers or the respective film thicknesses, the ratio of transmission and reflection can be suitably adjusted.
  • a colored layer for forming a power filter is formed on a glass substrate. Specifically, red (9R), green (9G), and blue (9B) colored portions having a desired pattern are provided on the surface of the substrate with a thickness of about 1 m. If necessary, a light shielding film having a desired pattern may be provided. These can be formed by a manufacturing method called a pigment dispersion method by a photolithography method. Thereafter, a flat film 4 for flattening the surface of the substrate on which the colored portion is formed is applied to a thickness of about 2 ⁇ m. Further, a dielectric multilayer film 38 is provided on the planarizing film 4. Both the low refractive index transparent film and the high refractive index transparent film constituting the dielectric multilayer film 38 are sequentially laminated by a technique such as sputtering.
  • the second color filter 19 is formed on the dielectric multilayer film 38.
  • the second color filter has a light shielding film 12 having a desired pattern and colored portions (19R, 19G, 19B) of three primary colors of red, green and blue. Like the first color filter 9, these are formed by a manufacturing method called a pigment dispersion method using a photolithography method.
  • a transparent electrode 6 for applying a voltage to the liquid crystal layer is provided on the substrate.
  • the transparent electrode 6 is formed in a desired pattern by a photolithography method.
  • the transparent electrode 6 is a transparent conductive film called ITO in which indium (In) containing tin (Sn) as an impurity is oxidized, and a desired resistance value can be set. Since ITO is a low-resistance semiconductor material, its sheet resistance is 10 ⁇ to 100 ⁇ and is most commonly used. ITO is usually formed by a vacuum deposition method called sputtering or vapor deposition. Further, the counter transparent electrode 7 is formed on the counter substrate 2 by the same method.
  • a spacer for setting the cell gap to a target value is dispersed, and then an alignment film for aligning the liquid crystal 11 is provided on the surfaces of the substrate 1 and the counter substrate 2.
  • a sealant 10 is applied to either the substrate 1 or the counter substrate 2, and the two substrates are bonded to form a cell structure.
  • the sealing agent 10 is performed by a thermocompression bonding method using a thermosetting resin.
  • a liquid crystal display element is obtained by injecting liquid crystal into the cell gap and disposing polarizing plates on both glass substrates.
  • the substrate 1 is formed with a color filter 9 having colored portions (9R, 9G, 9B) on a glass substrate.
  • the color filter is provided with a thickness of about 1 ⁇ m.
  • a flat film 4 is provided on the color filter, and a dielectric multilayer film 38 is formed on the flat film 4. Further, the transparent electrode 6 is provided on the dielectric multilayer film 38.
  • a second color filter 19 is formed on the surface of the counter substrate 2.
  • the second color filter 19 includes a light-shielding film 12 having a desired pattern and three primary color portions (19R, 19G, 19B). After the flattening film 4 for flattening the unevenness of the surface of the second color filter 19 is applied, the transparent electrode 6 is provided. for that reason, Similar to the configuration shown in FIG. 8, at the time of transmissive display, light passing through the first color filter (9R, 9G, 9B) and the second color filter (19R, 19G, 19B) is observed. Therefore, a display with high color purity can be obtained.
  • the light shielding film provided to improve the visibility of the display screen may be formed only on the second color filter on the observation side, but may be formed on the first color filter if necessary.
  • incident light passes through only the second color filter whose color density is adjusted to be thin during reflection display, and thus a bright reflection display is obtained. Can be obtained.
  • the dielectric multilayer film employed as the transflective film does not need to be provided with an opening, it is possible to obtain high surface flatness and prevent deterioration in display quality.

Abstract

 液晶表示装置の反射表示時の画面を明るくするとともに、カラーフィルタ基板表面の平坦性を高くし、表示品質を向上させる。基板に形成された着色層と透明電極の間に、入射する一部の光を反射する反射機能層を設ける構成とした。このような構成により、反射表示時に入射光は着色層を通過せずに観測者側に反射するので、明るい反射表示を得ることが可能となる。また、反射機能層には開口を設ける必要が無いため、高い表面平坦性を得ることが可能となり、表示品質の低下を防止できる。反射機能層として、高屈折率透明層や半透過膜等が例示できる。                                                                                 

Description

明 細 書
液晶表示装置
技術分野
[0001] 本発明は、携帯情報機器等の電子機器に用いられる液晶表示装置に関する。詳し くは、使用環境の光である外光を利用する反射型表示と、バックライト等の照明光を 利用する透過型表示の両方の表示が可能な液晶表示装置に関するものである。液 晶表示装置に用いられる液晶表示素子は自発光型ではな!/、表示素子であり、薄型 で低消費電力である。そのため、時計、ワードプロセッサやパーソナルコンピューター などの OA機器、電子手帳や携帯電話などの携帯機器、 AV機器などの電子機器に 広く用いられている。
背景技術
[0002] 近年、明所でも暗所でも表示が観察できるように、自然光や室内光等の外光を利 用する反射型表示と、バックライトからの照明光を利用する透過型表示との両方の表 示モードで観察が可能な液晶表示装置が望まれている。従来から、このような透過反 射両用型のカラー液晶表示装置として、開口が形成された反射膜上に着色層を設け る構成が知られている (例えば、特開平 11— 052366号公報を参照、以降特許文献 1と称す)。このような構成で透過表示を観察する場合には、反射膜の無い開口部( 透過領域)を通過する照明光が観察者に届くことになる。このときは、バックライトから の照明光が着色層を一度だけ通過するために比較的明るい表示が得られる。一方、 このような構成で反射表示を観察する場合には、反射膜の部分 (反射領域)で反射さ れた外光が観察者に届くことになる。このときは、一度着色層を通過した光が反射膜 で跳ね返って、再度着色層を通過することになる。すなわち、透過率の低い着色層を 2回通過するため、表示が暗くなる。
[0003] そこで、反射時の暗い表示画面を明るく改善するために、反射領域の着色層濃度 を透過領域のそれよりも低くする構成が知られている(例えば、特開 2003— 090997 号公報参照、以降特許文献 2と称す)。あるいは、透過領域と反射領域で、着色層膜 厚を変える構成も開示されている(例えば、特開 2000— 298271号公報参照、以降 特許文献 3と称す)。このような構成の場合、反射領域での着色層の濃度が低いため 、反射時の表示を明るくする効果が得られる。
[0004] あるいは、反射型と透過型の双方の機能をもたせるために、半透過膜を使用した半 透過型の液晶表示装置が提示されている(例えば、特開平 8— 292413号公報参照 、以降特許文献 4と称す)。通常、このような半透過膜はアルミニウムやクロムなどの金 属薄膜、 ITO等の透明導電膜と金属膜との積層膜 (例えば、特開平 7— 318929号 公報参照、以降特許文献 5と称す)で構成されている。もしくは、高屈折率層と低屈 折率層の多層膜 (例えば、特開 2000— 284276号公報参照、以降特許文献 6と称 す)で構成されている。このような半透過膜は、反射型として使用する場合は反射膜 としての機能が、透過型として使用する場合は透過膜としての機能が利用される。
[0005] 従来の透過反射両用のカラー液晶表示装置では、特許文献 1〜3のように、透過 領域と反射領域で着色層濃度を変える手法を用いている。この構成の場合、透過領 域と反射領域で着色層材料を共通のものにできな 、ため、パターユングを行う際のフ オトリソ工程が倍増してしまうことになる。結果的に製造タクトが長くなり、コストアップを 引き起こす要因となっていた。
[0006] また、フォトリソ工程を増やさない手法として考案されたものに、上述のような透過領 域と反射領域で着色層膜厚を変える構成がある。この構成の場合、反射膜は榭脂等 で形成された台座の上に設けられており、その開口部分が透過領域となる構成であ る。したがって、元々表面には凹凸が存在しており、その後の平坦ィ匕膜塗布工程の 後であっても完全に平坦ィ匕を行うことは困難である。このようにカラーフィルタ基板表 面に凹凸がある場合、場所によって対向基板との間にギャップの違いが生じる。ギヤ ップが違うと、間隙に注入されている液晶分子の配向が異なってしまい、コントラスト が悪くなる等の表示品質低下を引き起こすことになる。この凹凸は、特に STN液晶を 用いた表示装置において、表示品質を低下させる要因となっている。
[0007] 特許文献 4および 5に記載されたような、金属膜を半透過膜として用いた構成では、 金属膜による光の吸収や透過率の波長依存が存在するため光の損失が生じ、十分 な光透過性と光反射性が得られない。さらに、特許文献 4に記載された構成では、力 ラーフィルタ層が半透過膜の上に構成されているため、反射型として使用する場合は 光がカラーフィルタ層で 2回吸収され、光反射性が急激に低下する。また、特許文献 6のような、高屈折率層と低屈折率層の多層膜を用いた場合には、光の損失が少なく 理想的な半透過膜だが、半透過膜の上にカラーフィルタ層が構成されているため、 反射型として使用する場合は光がカラーフィルタ層で 2回吸収され、光反射性が急激 に低下し、実用に供する明るさが得られない。特に近年、表示装置として高色純度の 表示が求められており、その実現のため高色純度のカラーフィルタが使われるように なってきた。高色純度のカラーフィルタは必然的に透過率が低下するため、反射型 で用いた場合の光反射性は更に低下する。このように、従来の液晶表示装置は光透 過性と光反射性の双方を十分に満足しうる特性を持っていな力つた。
[0008] そこで、本発明は、明るい反射表示が可能で、表示ムラの無い、表示品質の高い 液晶表示装置を提供することを目的とする。
発明の開示
[0009] 本発明の液晶表示装置は、着色層と透明電極が形成された基板と、対向透明電極 が形成された対向基板と、透明電極と対向透明電極の間に配された液晶を備え、透 明電極と対向透明電極が交差して形成する画素部を用いて表示する液晶表示装置 であって、着色層と透明電極の間に、入射する一部の光を反射する反射機能層が画 素部の全面にわたって設けられている。このような構成により透過表示時には着色層 を通過した光を観察するためカラー表示を得ることが可能となり、反射表示時には反 射機能層で反射された光 (すなわち、透過率の低!ヽ着色層を通過して!/ヽな 、光)を 観察するため、明るい表示を得ることが可能となる。
[0010] ここで、反射機能層として、透明電極よりも屈折率の大きい高屈折率透明層を用い ることができる。さらに、透明電極と高屈折率透明層の間に、高屈折率透明層よりも 屈折率の小さい低屈折率透明層を備えることとした。低屈折率透明層には Si02が 主成分として含まれて ヽる。
[0011] さらに、着色層と高屈折率透明層の間に平坦ィ匕膜を備えることとし、高屈折率透明 層の屈折率が平坦ィ匕膜の屈折率よりも大きくなるように設定した。
[0012] あるいは、反射機能層として、半透過膜を用いることとした。半透過膜には、高屈折 率層と低屈折率層を交互に積層した多層膜が例示できる。あるいは、誘電体層の多 層膜が例示できる。誘電体層の多層膜は 50〜: LOOOAの膜厚が好ましい。
[0013] あるいは、反射機能層が第一の半透過膜であるとともに、着色層としてカラーフィル タを用い、基板の外側、すなわち反観測者側にバックライトを備える液晶表示装置と し、カラーフィルタとバックライトとの間に第二の半透過膜を設けることとした。または、 第二の半透過膜を基板とカラーフィルタの間に設けてもよい。ここで、第一の半透過 膜の反射率と第二の半透過膜の反射率の比力 カラーフィルタの透過率の 2乗の 0. 5倍から 1. 5倍の範囲にあるように設定した。
[0014] あるいは、着色層として第一のカラーフィルタを用い、半透過膜の観測者側に第二 のカラーフィルタを備える構成とした。すなわち、第二のカラーフィルタを半透過膜と 液晶との間に設けても、対向基板に設けてもよい。ここで、半透過膜として誘電体多 層膜が例示できる。また、第二のカラーフィルタのみが遮光膜を備えていてもよい。
[0015] 本発明の液晶表示装置によれば、着色層と透明電極の間に反射機能層が形成さ れているため、明るい反射表示が実現できる。また、反射機能層には開口が形成さ れて 、な 、ので高 、表面平坦性を得ることが可能となり、表示品質の低下を防止で きる。
図面の簡単な説明
[0016] [図 1]本発明に用いた液晶表示素子の構成を模式的に示す断面図である。
[図 2]本発明に用いた液晶表示素子の概略構成を模式的に示す断面図である。
[図 3]本発明に用いた液晶表示素子の概略構成を模式的に示す断面図である。
[図 4]本発明に用いた液晶表示素子の概略構成を模式的に示す断面図である。
[図 5]本発明に適用することができる半透過膜の構成を示す断面図である。
[図 6]本発明による二つの半透過膜を備える液晶表示素子の概略構成を示す断面 図である。
[図 7]本発明による二つの半透過膜を備える液晶表示素子の概略構成を示す断面 図である。
[図 8]本発明による半透過膜を 2つのカラーフィルタで挟んだ液晶表示素子の概略構 成を示す断面図である。
[図 9]本発明による半透過膜を 2つのカラーフィルタで挟んだ液晶表示素子の概略構 成を示す断面図である。
符号の説明
1 基板
2 対向基板
3 着色層
4 平坦化膜
5 反射機能層
6 透明電極
7 対向透明電極
8 半透過膜
9 カラーフィノレタ
10 シール剤
11 揿晶
12 遮光膜
14 第二の半透過膜
15 高屈折率透明層
18 高屈折率層
19 第二のカラーフィルタ
20 配向膜
21 第一の光学フィルム
22 第二の光学フィルム
23 ノ ックライ卜
28 低屈折率層
発明を実施するための最良の形態
本発明の液晶表示装置は、入射する一部の光を反射する反射機能層をカラー表 示のための着色層と透明電極の間に設けた構成の液晶表示パネルを有している。図 1に本発明の液晶表示装置に用いられる液晶表示パネルの断面構成を模式的に示 す。基板 1には着色層 3が形成され、その上に反射機能層 5を介して透明電極 6が設 けられている。この基板 1と対向基板 2がシール剤 10により固定され、対向基板 2に 形成された対向透明電極 7と透明電極 6との間隙に液晶 11が設けられている。この 透明電極と対向透明電極が表示画素(ドット)を形成している。このような構成によれ ば、液晶層、透明電極を通った光の一部は反射機能層 5で反射し、残りの光は反射 機能層 5を透過する。すなわち、反射モードでは、観測者はこの反射機能層の界面 で反射された光を観察するため、透過率の低 、カラーフィルタを通過しない明る!/ヽ白 黒表示を得ることが可能となる。
[0019] このように、本発明の液晶表示装置では、透過表示時にはカラーフィルタを通過し た光を観察するためカラー表示を得ることが可能となるが、反射表示時では、観測者 はこの高屈折率透明層で反射された光を観察するため、透過率の低いカラーフィル タを通過しない明る 、白黒表示を得ることが可能となる。
[0020] また、反射機能層は、従来のように開口を設けることなく半透過性を備えているため 、高い表面平坦性が得られ、表示品質の低下を防止することができる。
[0021] 着色層 3としては、表示したい色に応じた複数色の着色層をドットに対応して形成し たカラーフィルタを用いることが一般的である。また、各色の着色層間に遮光膜 (ブラ ックマトリックス)を設けてもょ 、。
[0022] 反射機能層としては、高屈折率透明膜や半透過膜が例示できる。また、半透過膜 には、高屈折率層と低屈折率層とを交互に積層した多層膜、あるいは、誘電体多層 膜を用いることができる。
[0023] 以下、本発明の液晶表示装置の実施例を図面に基づいて詳細に説明する。
(実施例 1)
本実施例の液晶表示装置は、反射機能層として透明電極よりも屈折率の大きい高 屈折率透明膜を設けた構成の液晶表示パネルを有して 、る。この液晶表示パネル の断面構成を図 2に模式的に示す。ここでは、ノッシブ型のカラー液晶表示装置の 場合を説明する。基板 1にはカラーフィルタ着色層が形成され、その上に高屈折率透 明層 15を介して透明電極 6が設けられている。カラーフィルタ 9は、所望のパターンを 持つ着色部(図 2では、光の 3原色である赤 *緑*青(9R、 9G、 9B) )で形成されてい る。着色部は 1 μ m前後の厚さで設けられている。また、所望のパターンを持つ遮光 膜 (ブラックマトリックス) 12が設けられている。一方、透明な対向基板 2には対向透明 電極 7が形成され、透明電極 6と対向透明電極 7が向かい合うように基板 1と対向基 板 2がシール剤 10により固定され、基板 1と対向基板 2の間隙に液晶 11が設けられ ている。このような構成により、高屈折率透明層 15とこれに接する透明電極 6との屈 折率差により反射特性を生じさせることが可能となる。すなわち、高屈折率透明層 15 それ自体は透明であるが、屈折率の異なる透明電極 6との界面で反射機能を生じる ことになる。したがって、液晶層、透明電極を通った光の一部は透明電極 6と高屈折 率透明層 15との界面で反射し、残りの光は高屈折率透明層を透過する。すなわち、 反射モードでは、観測者はこの高屈折率透明層の界面で反射された光 (すなわち、 透過率の低 、カラーフィルタを通過して ヽな 、光)を観察することとなるため、明るい 白黒表示を得ることが可能となる。また、高屈折率透明層の屈折率が着色部の屈折 率より大きい場合には、前述の高屈折率透明層を通過した光は高屈折率透明層と着 色部との界面で一部が反射して観測者に届く。したがって、観測者は、高屈折率透 明層の上下の界面で反射した光を反射モード時に観察することになる。このとき、力 ラーフィルタを構成する着色部(9R、 9G、 9B)の濃度を調整することにより、反射表 示の明るさを変化させることなく透過表示の色純度を調整できる。
[0024] このように、高屈折率透明層を設けるのは、高屈折率透明層と接する層との間で屈 折率差により生じる反射特性を得るためであり、各層の材質、屈折率、厚さ等により 得られる反射特性が変わってくる。すなわち、各層の材質、屈折率、厚さ等を総合的 に判断して設定することにより、所望の反射率を得ることができる。したがって、半透 過型の表示装置に適用することができる。
[0025] ここで、高屈折率透明層の屈折率がある程度大きくなると反射率も大きくなるので、 反射表示に必要な反射率を得るためには、高屈折率透明層の 550nmでの屈折率 を 2. 0以上にする必要がある。本発明で得られる反射率は、高屈折率透明層だけで なぐ周囲の各層の材質、屈折率、厚みなどが複合的に作用して決まるものなので、 各層の材質、屈折率、厚さ等を組み合わせて設定することができる。半透過型の表 示装置として用いるためには、高屈折率透明層の屈折率が 2. 0〜2. 5、透明電極の 屈折率が 1. 5〜2. 0、着色層の屈折率が 1. 4〜1. 8が適している。これらの範囲で 組み合わせることで、ある程度に、任意の反射率に設定できる。各層の屈折率の差と いう面で考えると、高屈折率透明層と透明電極の屈折率の差が 0. 1〜1. 0、高屈折 率透明層と着色層の屈折率の差が 0. 2〜1. 1程度あると、半透過表示装置の反射 モードの表示に適用できる。
[0026] 高屈折率透明層 15としては、二酸化チタン (Ti02)、酸化ニオブ (Nb205)や Sn 02等を用いることができる。本実施例では、 500 Aの膜厚とした力 50〜: LOOOAの 膜厚でも界面での反射特性を得ることができる。膜厚を変更することにより、透過と反 射の比率が調整できる。
[0027] また、高屈折率透明層 15と透明電極 6の間に、高屈折率透明層より屈折率の小さ い低屈折率透明層を設けてもよい。低屈折率透明層の屈折率としては透明電極 6と ほぼ同じまたは小さい程度でよぐ 1. 5位が好ましい。適した材質として Si02が例示 できる。
[0028] 次に、カラーフィルタと透明電極の間に平坦ィ匕層を設けた構成を図 3に基づいて説 明する。ただし、図 2の構成と重複する部分についての説明は適宜省略する。光の 3 原色である赤 ·緑'青の着色部(3R、 3G、 3B)で構成されたカラーフィルタと遮光膜 1 2の上には表面の凹凸を平坦にするため、平坦ィ匕膜 4が設けられている。平坦化膜 4 は、その表面に高屈折率透明層 15を形成するため、平坦性が必要である。ここでは 、 2 m程度の厚さで平坦化膜 4が形成されている。そして、この平坦ィ匕膜 4の表面に 高屈折率透明層 15が形成される。さらに、その上に液晶層に電圧を印加するための 透明電極 6が設けられて 、る。
[0029] このように、高屈折率透明層 15の上下に、屈折率が相対的に小さい透明電極 6と 平坦ィ匕膜 4を設けることにより、高屈折率透明層 15との界面に反射性能を持たせるこ とが可能となる。したがって、反射表示時には入射光がカラーフィルタを通過すること なく観察側に反射されるため、明るい白黒反射表示を得ることが可能となる。また、透 過表示の色純度を向上させた場合 (例えば、カラーフィルタ着色部を厚くしたり顔料 の特性を変えたりした場合)でも、従来のように反射表示時の明るさを低下させること がない。
[0030] 上述した構成によって得られる反射率は、高屈折率透明層だけでなぐ周囲の各 層の材質、屈折率、厚みなどが複合的に作用して決まるものなので、各層の材質、 屈折率、厚さ等を組み合わせて反射率を設定することができる。半透過型表示装置 の反射モードでの表示に適用するために、高屈折率透明層の屈折率を 2. 0〜2. 5 、透明電極の屈折率を 1. 5〜2. 0、平坦化膜の屈折率を 1. 3〜1. 7とした。これら の範囲で組み合わせることで、ある程度に、任意の反射率に設定できる。各層の屈 折率の差という面で考えると、高屈折率透明層と透明電極の屈折率の差が 0. 1〜1 . 0、高屈折率透明層と平坦化膜の屈折率の差が 0. 3〜1. 2程度が、半透過表示装 置の反射モード表示に適して 、る。
[0031] 高屈折率透明層 5としては、二酸化チタン (Ti02)、酸化ニオブ (Nb205)や SnO 2等を用いることができる。本実施例では、 500Aの膜厚で高屈折率透明層 5を設け たが、 50〜: L000 Aの膜厚でも界面での反射特性を得ることができる。膜厚を変更す ることにより、透過と反射の比率を調整することが可能である。
[0032] 次に、図 3で示した構成の液晶表示パネルの製造方法を説明する。まず、ガラス基 板上にカラーフィルタを構成する着色層が形成される。具体的には、基板の表面に は所望のパターンで赤の着色部(9R)、緑の着色部(9G)、青の着色部(9B)が 1 m前後の厚さで形成される。必要であれば、所望のパターンで遮光膜 12を設けても 良 、。これらは 、ずれもフォトリソグラフィ一法による顔料分散法と呼ばれる製造方法 で形成できる。その後、着色層が形成された基板の表面を平坦にするため、平坦ィ匕 膜 4を 2 m程度の厚さで塗布する。さら〖こ、平坦化膜 4上に高屈折率透明層 15を設 ける。高屈折率透明層 15としては、二酸ィ匕チタン (Ti02)、酸ィ匕ニオブ (Nb205)や Sn02等を用いることができる。これは、いずれもスパッタリング等の手法により形成さ れる。
[0033] 次に、高屈折率透明層 15上に液晶 11に電圧を印加するための透明電極 6を設け る。透明電極 6は、フォトリソグラフィ一法により所望のパターンで形成されている。透 明電極 6はスズ(Sn)を不純物に含有したインジウム(In)を酸化させた ITOと呼ばれ る透明導電膜であり、所望の抵抗値を持つように形成できる。とはいえ、 ITOは低抵 抗の半導体物質であるので、その抵抗値はシート抵抗で 10 Ω Z口から 100 Q /U のものが最も一般的である。通常、 ITOはスパッタリング法や蒸着法と呼ばれる真空 成膜法で形成する。また、対向ガラス基板上にも同様の方法で透明電極を形成する
[0034] その後、セルギャップを目的値にするためのスぺーサを散布し、次に基板 1および 対向基板 2の表面上に液晶 11を配向させるための配向膜(図示していない)を形成 する。続いて基板 1と対向基板 2のどちらか一方にシール剤 10を塗布し、両基板を貼 り合わせてセル構造を形成する。一般に、シール剤 10には熱硬化性の榭脂を用い、 熱圧着法により貼り合わせを行う。この後、基板間隙に液晶を注入してセルを構成し 、セルを挟むように一対の偏光板を配置することにより、液晶表示素子が得られる。 (実施例 2)
本実施例の液晶表示装置は、反射機能層として半透過膜を用いた構成の液晶表 示パネルを有している。また、この液晶表示パネルは、カラーフィルタと透明電極と配 向膜が順に設けられた基板、対向透明電極と配向膜が設けられた透明な対向基板、 これらの基板間に保持された液晶を備えており、カラーフィルタと透明電極の間に半 透過膜が設けられている。さらに、基板の外側にはバックライトが設けられている。こ のような構成によれば、反射型として用いた場合に、カラーフィルタ上の半透過膜に よる反射光を利用することができるので、高い反射率を得ることができる。図 4に本実 施例の液晶表示装置に用いられる液晶表示パネルの断面構成を模式的に示す。
[0035] 図示するように、基板 1上には、カラーフィルタ 9、平坦ィ匕膜 4、半透過膜 8、透明電 極 6,図示しない配向膜が順次形成されている。一方、基板 1と対向する対向基板 2 上には、対向透明電極 7と、一定方向にラビングされたポリイミド榭脂等力 なる配向 膜 (図示して 、な 、)が形成されて 、る。対向基板 2と基板 1の間に液晶 11を挿入し て液晶セルが形成されて 、る。表示モードにあわせて偏光板等の第一の光学フィル ム 21と第二の光学フィルム 22が液晶セルを挟むように設けられている。また、図示す るように、液晶セルの背後にはバックライト 23が設けられている。
[0036] 半透過膜 8は光透過性と光反射性の双方の特性を備えるとともに、 2枚の偏光板の 間に挟んだときに位相差が生じないようにする。また、半透過膜 8は鏡面性であって も散乱性であっても良い。
[0037] また、この半透過膜 8を高屈折率層と低屈折率層とを交互に積層した多層膜で構 成してもよい。このとき、高屈折率層の層数が低屈折率層の層数より一つ多くなるよう に構成する。図 5に、半透過膜として高屈折率層 18と低屈折率層 28とを順次に積層 した積層構造の膜を用いた例を示す。このような構成では、半透過膜に入射した光 の一部は高屈折率層 18で反射され、透過した光は低屈折率層 28で反射される。そ して、これらの反射光が干渉し、反射性能が著しく高められ、いわゆる増反射効果が 生じる。このとき、図示するように積層構造の両外側が高屈折率層になるように構成 することが望ましい。高屈折率層 18と低屈折率層 28には屈折率差があればどのよう な材料で構成しても良いが、例えば高屈折率層 18の屈折率の範囲は 2. 0〜2. 5が よぐ Ti02、 Zr02、 Sn02の少なくともひとつを含む材料で構成するとよい。一方、 低屈折率層 28の屈折率の範囲は 1. 3〜1. 6がよく Si02、 A1F3、 CaF2などの少な くともひとつを含む材料で構成するとよい。
[0038] カラーフィルタ 9は、顔料が分散された感光性レジストを用いた顔料分散方式で形 成しているが、印刷方式、別途フォトレジストを使ったフォトリソグライ一方式でも良い。 図示するように、カラーフィルタ 9は赤、緑、青に着色した領域 9R, 9G, 9Bが表示画 素に対応するように構成されている。また、カラーフィルタ 9上の平坦ィ匕膜 4は、カラー フィルタ表面の凹凸を平坦化するためのトップコ一ト層として使われて 、るが、平坦性 が要求されない表示モードで使う場合は、それを設けなくてもよい。第一の光学フィ ルムまたは第二の光学フィルムは偏光板と位相差板の組合せであり、透過型、反射 型のいずれの場合もコントラストが得られるよう、光軸の角度、位相差が設定されてい る。この設定は表示モードや液晶材料等によって異なるため、最適なコントラストを得 るには、都度設定する必要がある。また、平坦ィ匕膜 4には有機榭脂膜を用いることが できる。
[0039] このような構成によれば、反射型として用いた場合に、外部から入射した光は半透 過膜 8によって反射される。従ってカラーフィルタ 9で吸収されることなぐ高い反射率 が得られるという効果がある。また、ノ ックライト 23の照射光がカラーフィルタ 9と半透 過膜 8を透過するため、そのままの条件で透過型としても使用することができる。この ように、本実施例の表示装置によれば、反射型では明るいモノクロ表示力 透過型で は鮮明なカラー表示が実現できる。 [0040] また、図 5で示した構成の半透過膜 8として、 Ti02、 Zr02、 Sn02などの少なくとも 一つを含んだ単一材層もしくは少なくとも二つを含んだ混合材層を組み合わせて積 層した誘電体多層膜で構成した。すなわち、異なる単一材層の積層、あるいは異な る混合材層の積層、あるいは単一材層と混合剤層の積層とした。ここで、誘電体層の 多層膜は 50〜: L000 Aの膜厚であることが好ましい。この場合にも増反射効果が生 じるため、高い反射率が得られ、透過型では鮮明なカラー表示が、反射型では明る Vヽモノクロ表示が実現できた。
[0041] 本実施例の液晶表示装置によれば、光利用効率が高い半透過膜がカラーフィルタ 上層に形成されているので、反射型として使用する場合に十分な反射光を得ること ができ、バックライトを点灯させた光透過時は高色純度のカラー表示、ノ ックライト非 点灯時は高反射のモノクロ表示になり、透過性と光反射性の双方を十分に満足しうる 特性を持った液晶表示装置を提供することが可能になる。
(実施例 3)
本実施例の液晶表示装置は、反射機能層として二つの半透過膜を用いた構成の 液晶表示パネルを有している。すなわち、この液晶表示パネルは、カラーフィルタと 透明電極と配向膜が設けられた基板、対向透明電極と配向膜が設けられた透明な 対向基板、これらの基板間に保持された液晶を備えており、カラーフィルタと液晶の 間に第一の半透過膜が、カラーフィルタとバックライトとの間に第二の半透過膜が設 けられている。さらに、基板の外側にはバックライトが設けられている。
[0042] このとき、第二の半透過膜を基板とカラーフィルタの間に設けることとした。この構成 によれば、反射型として用いた場合に、カラーフィルタ下層の第二の半透過膜による 反射光と、カラーフィルタ上層の第一の半透過膜による反射光の両方を利用すること ができるので、高い反射率を得ることができる。さらに、第一の半透過膜の反射率と第 二の半透過膜の反射率の比力 カラーフィルタの透過率の 2乗の 0. 5倍から 1. 5倍 の範囲なるように設定した。この場合には、反射型として用いたときに、カラーフィルタ を通過した反射光 (カラーフィルタ下層の第二の半透過膜による反射光)と、カラーフ ィルタを通過しない反射光 (カラーフィルタ上層の第一の半透過膜による反射光)が ほぼ同強度になるため、反射率と表示色のバランスが取れた表示装置を得ることが 可能になる。また、第一と第二の半透過膜の少なくとも一方を高屈折率層と低屈折率 層とを交互に積層した多層膜で構成した。このとき、高屈折率層の層数は低屈折率 層の層数より一つ多くなるように構成されて 、る。
[0043] 図 6に、本実施例の液晶表示装置に用いられる液晶表示パネルの断面構成を模 式的に示す。図示するように、基板 1上には、カラーフィルタ 9、平坦ィ匕膜 4、第一の 半透過膜 8、透明電極 6、図示しない配向膜が順次形成されている。一方、基板 1と 対向する対向基板 2の上には、対向透明電極 7と、一定方向にラビングしたポリイミド 榭脂等力もなる配向膜 (図示しない)が形成されている。基板 1の裏側には第二の半 透過膜 14が設けられている。基板 1と対向基板 2の間に液晶 11を挿入して液晶セル が形成されている。表示モードにあわせて偏光板等の第一の光学フィルム 21と第二 の光学フィルム 22が液晶セルを挟むように設けられている。また、図示するように、液 晶セルの背後にはバックライト 23が設けられている。第一の半透過膜 8および第二の 半透過膜 14は光透過性と光反射性の双方の特性を備えるとともに、 2枚の偏光板の 間に挟んだときに位相差が生じないようにする。また、これらの半透過膜は鏡面性で あっても、散乱性であっても良い。一方の半透過膜が鏡面性、他方が散乱性であつ ても良い。
[0044] 半透過膜として高屈折率層 18と低屈折率層 28とを順次に積層した積層構造の膜 は図 5に示したとおりである。このような構成では、半透過膜に入射した光の一部は 高屈折率層 18で反射され、透過した光は低屈折率層 28で反射される。そして、これ らの反射光が干渉し、反射性能が著しく高められ、いわゆる増反射効果が生じる。こ のとき、図示するように積層構造の両外側が高屈折率層になるように構成することが 望ましい。高屈折率層 18と低屈折率層 28には屈折率差があればどのような材料で 構成しても良いが、例えば高屈折率層 18の屈折率は 2. 0〜2. 5の範囲がよぐ TiO 2、 Zr02、 Sn02などの少なくともひとつを含む材料で構成できる。一方、低屈折率 層 28の屈折率は 1. 3〜1. 6の範囲がよく Si02、 A1F3、 CaF2などの少なくともひと つを含む材料で構成できる。
[0045] カラーフィルタ 9は、顔料が分散された感光性レジストを用いた顔料分散方式で形 成しているが、印刷方式、別途フォトレジストを使ったフォトリソグライ一方式でも良い。 図示するように、カラーフィルタ 9は赤、緑、青に着色した領域 9R, 9G, 9Bが表示画 素に対応するように構成されている。また、カラーフィルタ 9上の平坦ィ匕膜 4は、カラー フィルタ表面の凹凸を平坦化するためのトップコ一ト層として使われて 、るが、平坦性 を必要としない表示モードで使う場合は、設けなくてもよい。第一及び第二の光学フ イルムは偏光板と位相差板の組合せであり、透過型、反射型のいずれの場合もコント ラストが得られるよう、光軸の角度、位相差が設定されている。この設定は表示モード や使用する液晶材料等によって異なるため、最適なコントラストが得られるように、都 度設定する必要がある。
[0046] 上述した構成で、カラーフィルタ 9を NTSC比 50%、第一の半透過膜 8の反射率を 2. 5%、第二の半透過膜 14の反射率を 30%になるように設計して表示装置を作製 した。その結果、反射率 (ビーム光を 15度から入射し、法線方向から測定) 17%、反 射表示の NTSC比 15%が得られ、反射型でも十分な色表示を行うことができた。ま たバックライトを点灯した場合は、従来と同様な鮮明な表示が得られた。なお、第一の 半透過膜 8を形成せずに表示装置を作製したところ、反射率は 8%になり、反射時の 表示視認性は著しく低下した。
[0047] 次に第二の半透過膜 14を基板 1の内面に形成した構成を図 7に基づいて説明する 。その他の構成は図 6と同じなので、重複する説明は省略する。図 7に示す構成では 、反射型で使用する場合に、第二の半透過膜 14で反射される光は、基板 1を通過す ることなく第二の半透過膜 12で反射されることになるため、基板 1の厚みに起因して 表示が二重に見えるという現象がなくなった。
[0048] 図 6または図 7で示した構成で、カラーフィルタ 9を NTSC比 70%、第一の半透過 膜 8の反射率を 2. 5%、第二の半透過膜 14の反射率を 30%になるよう設計して表示 装置を作製した。その結果、反射率 (ビーム光を 15度から入射し、法線方向から測定 ) 14%、反射表示の NTSC比 14%が得られ、図 7の構成の表示装置による反射型 表示でも十分な色表示を行うことができた。多少反射率は低下したが、十分な視認性 を有する表示が得られた。またバックライトを点灯した場合は、従来と同様の鮮明な表 示が得られた。なお、第一の半透過膜 8を形成せずに表示装置を作製したところ反 射率は 5%しかなぐ反射時の視認性は極めて悪力つた。この結果から、本具体例は 、 NTSC比の高 、カラーフィルタ層との組合せに特に有効であることが確認できた。
[0049] また、第一と第二の半透過膜の少なくとも一方を誘電体層の多層膜で構成した。誘 電体層の多層膜は 50〜: L000 Aの膜厚であることが好ましい。ここで、誘電体層の多 層膜は、 Ti02、 Zr02、 Sn02の少なくとも一つを含んだ単一材層、もしくは少なくと も二つを含んだ混合材層を組み合わせて積層した誘電体多層膜で構成できる。例え ば、異なる単一材層の積層、異なる混合材層の積層、あるいは単一材層と混合剤層 の積層とした。この場合にも増反射効果が生じるため、高い反射率が得られ、反射型 でも視認性の良好な表示装置が得られた。
[0050] このように、本実施例の液晶表示装置では、光利用効率が高い半透過膜がカラー フィルタを挟むように 2層設けられている。このような構成により、反射型として使用す る場合に十分な反射光を得ることができ、光透過性と光反射性の双方を十分に満足 しうる特性を持った液晶表示装置を提供することが可能になる。
[0051] (実施例 4) 本実施例の液晶表示装置は、反射機能層として半透過膜を用い、こ の半透過膜を 2つの着色層で挟んだ構成の液晶表示パネルを有して 、る。すなわち 、この液晶表示パネルは、カラーフィルタが形成された基板と対向基板が液晶を介し て対向する液晶表示パネルで、カラーフィルタを構成する着色層と液晶層の間に半 透過膜を設け、半透過膜の上方 (観測者側)に第二のカラーフィルタを設けた構成で ある。さらに、基板の外側にはバックライトが設けられている。
[0052] このような構成により、透過表示時には第一および第二のカラーフィルタを通過した 光を観察するため、色純度の高い表示を得ることが可能となる。一方、反射表示時は 第二のカラーフィルタのみを通過した光を観察するため、明るいカラー表示を得るこ とが可能となる。第一および第二のカラーフィルタを構成する着色層濃度をそれぞれ 調整することにより、好適な色純度および明るさを容易に得ることができる。
[0053] また、半透過膜として誘電体多層膜を採用することができる。ここで、誘電体多層膜 は低屈折率透明膜と高屈折率透明膜の積層構造力 なって 、る。低屈折率透明膜 として二酸ィ匕珪素(Si02)を、高屈折率透明膜として二酸化チタン (Ti02)や酸化- ォブ等を用いることができる。低屈折率膜と高屈折率膜の積層数およびそれぞれの 膜厚を変更することにより、好適な透過と反射の比率に調整することが可能である。ま た、誘電体多層膜は開口がなく均一な厚みを持つ層なので、基板表面の平坦性が 向上する。
[0054] 本実施例の液晶表示装置は、一般的なカラーフィルタの製造方法を用いて着色層 を形成した後、着色層上に直接誘電体多層膜を設け、誘電体多層膜上に第二の着 色層を形成することにより製造が可能である。あるいは、一般的なカラーフィルタの製 造方法を用いて着色層を形成し、この上に平坦ィ匕膜を形成した後、平坦化膜の表面 に誘電体多層膜を設け、誘電体多層膜上に第二の着色層を形成することにより製造 が可能である。あるいは、誘電体多層膜と液晶を介して対向する対向基板に第二の 着色層を設けることによつても製造が可能である。
[0055] さらに、図面を参照して、本発明の液晶表示装置の実施例について説明する。図 8 に、本実施例の液晶表示装置に用いられる液晶表示パネルの断面構成を模式的に 示す。ここでは、ノ^シブ型のカラー液晶表示装置の場合を説明する。図示するよう に、基板 1と対向基板 2は液晶 11を介して互いに対向している。基板 1の一方の表面 には所望のパターンを持つ透明電極 6が、対向基板 2の一方の表面には所望のパタ ーンを持つ対向透明電極 7が設けられている。基板 1は、ガラス基板上に着色部を有 するカラーフィルタ 9が設けられた構成である。具体的には、ガラス基板の表面に所 望のパターンを有した光の 3原色である赤、緑、青の着色部(9R、 9G、 9B)が 前後の厚さで設けられている。着色部の上には表面の凹凸を平坦にするために、平 坦化膜 4が設けられている。平坦化膜 4は、その表面に誘電体多層膜 38を形成する ため、平坦性が必要である。本実施例では、 2 /z m程度の厚さで平坦化膜 4が形成さ れている。そして、この平坦化膜 4の表面に誘電体多層膜 38が形成され、続いて第 二のカラーフィルタが形成される。すなわち、所望のパターンを有した遮光膜 (ブラッ クマトリックス) 12と赤(19R)、緑(19G)、青(19B)の着色部が形成される。その後、 第二のカラーフィルタ表面の平坦ィ匕を行うため平坦ィ匕膜 4が形成され、その上に液晶 層に電圧を印加するための透明電極 6が設けられて 、る。第二のカラーフィルタ表面 に設けられる平坦ィ匕膜 4は、その上に透明電極 6が形成されるため、平坦性と絶縁性 が必要となる。本実施例では、この平坦ィ匕膜 4も 2 /z m程度の厚さで形成されている。 また、図では電極を覆うように設けられる配向膜等は省略されている。 [0056] なお、表示画面での視認性向上を目的に設ける遮光膜 (ブラックマトリックス)は、観 察側である第二のカラーフィルタにのみ形成すれば良いが、必要ならば第一のカラ 一フィルタにも形成して良い。
[0057] このように、誘電体多層膜 38の上下にカラーフィルタが形成されて!、るので、透過 表示時は第一のカラーフィルタ 9および第二のカラーフィルタ 19を通過した光を観察 することになる。そのため、色純度の高い表示を得ることができる。一方、反射表示時 は第二のカラーフィルタ 19のみを通過した光を観察するため、第二のカラーフィルタ の着色部(19R、 19G、 19B)の濃度を低くすれば明るいカラー表示が得られる。
[0058] ここで用いられる誘電体多層膜 38は低屈折率透明膜と高屈折率透明膜の積層構 造力もなる。低屈折率透明膜として二酸ィ匕珪素を用いることができ、高屈折率透明膜 としては二酸ィ匕チタンや酸ィ匕ニオブ等を用いることができる。本実施例では、低屈折 率膜層と高屈折率膜の積層数を 3層以上、 7層以下で誘電体多層膜 38を構成する こととした。この積層数あるいはそれぞれの膜厚を変更することで、透過と反射の比 率を好適に調整できる。
[0059] 次に、本実施例の液晶表示装置の製造方法を説明する。まず、ガラス基板上に力 ラーフィルタを形成する着色層が形成される。具体的には、基板の表面には所望の パターンを有した赤(9R)、緑 (9G)、青(9B)の着色部が 1 m前後の厚さで設けら れる。必要であれば、所望のパターンを有した遮光膜を設けても良い。これらはフォト リソグラフィ一法による顔料分散法と呼ばれる製造方法で形成できる。その後、着色 部が形成された基板の表面を平坦にするための平坦ィ匕膜 4を 2 μ m程度の厚さで塗 布する。さらに、平坦化膜 4上に誘電体多層膜 38を設ける。誘電体多層膜 38を構成 する低屈折率透明膜および高屈折率透明膜はいずれもスパッタリング等の手法によ り、順次積層される。
[0060] 次に、誘電体多層膜 38上に第二のカラーフィルタ 19が形成される。第二のカラー フィルタは、所望のパターンを有した遮光膜 12と赤緑青の 3原色の着色部(19R、 19 G、 19B)を有している。これらは第一のカラーフィルタ 9と同様、フォトリソグラフィ一法 による顔料分散法と呼ばれる製造方法で形成される。
[0061] 続、て、第二のカラーフィルタ表面の平坦ィ匕を行うため平坦ィ匕膜 4が形成され、そ の上に液晶層に電圧を印加するための透明電極 6が設けられる。透明電極 6は、フォ トリソグラフィー法により所望のパターンで形成されている。透明電極 6はスズ (Sn)を 不純物に含有したインジウム (In)を酸化させた ITOと呼ばれる透明導電膜であり、所 望の抵抗値が設定できる。 ITOは低抵抗の半導体物質であるので、その抵抗値はシ 一ト抵抗で 10ΩΖ口から 100ΩΖ口のものが最も汎用レベルである。通常 ITOはス パッタリング法や蒸着法と呼ばれる真空成膜法で形成する。また、対向基板 2上にも 同様の方法で対向透明電極 7を形成する。
[0062] その後、セルギャップを目的値にするためのスぺーサを散布し、次に基板 1および 対向基板 2の表面上に液晶 11を配向させるための配向膜を設ける。続いて基板 1と 対向基板 2のどちらか一方にシール剤 10を塗布し、両基板を貼り合わせてセル構造 を形成する。一般的に、シール剤 10は熱硬化性の榭脂を用いて熱圧着法で行う。こ の後、セルギャップ中に液晶を注入し、両ガラス基板に偏光板を配置することにより、 液晶表示素子が得られる。
[0063] 次に第二のカラーフィルタを対向基板に形成した構成を図 9に基づいて説明する。
図 8で示した構成と重複する部分の説明は適宜省略する。図 9に示した構成では、透 過表示時には第一および第二のカラーフィルタを通過した光を観察するため、色純 度の高い表示が得られる。一方、反射表示時は第二のカラーフィルタのみを通過し た光を観察するため、明るいカラー表示が得られる。第一および第二のカラーフィル タを構成する着色層の濃度をそれぞれ調整することにより、好適な色純度と明るさが 得られる。
[0064] 図 9に示すように、基板 1には、ガラス基板上に着色部(9R、 9G、 9B)を有するカラ 一フィルタ 9が形成されている。通常、カラーフィルタは 1 μ m前後の厚さで設けられ ている。このカラーフィルタ上に平坦ィ匕膜 4が設けられ、この平坦化膜 4上に誘電体 多層膜 38が形成される。さらに、誘電体多層膜 38上に透明電極 6が設けられる。
[0065] 一方、対向基板 2の表面には第二のカラーフィルタ 19が形成される。第二のカラー フィルタ 19は、所望のパターンを持つ遮光膜 12、および 3原色の着色部(19R、 19 G、 19B)を有している。第二のカラーフィルタ 19の表面の凹凸を平坦にするための 平坦化膜 4が塗布された後、透明電極 6が設けられた構成となっている。そのため、 図 8で示した構成の場合と同様に、透過表示時には第一のカラーフィルタ(9R、 9G、 9B)および第二のカラーフィルタ(19R、 19G、 19B)を通過した光を観察することに なるため、色純度の高い表示が得られる。一方、反射表示時には、第二のカラーフィ ルタ(19R、 19G、 19B)のみを通過した光を観察するため、この着色層の濃度を低く 設定しておくことにより明るいカラー表示が得られる。なお、表示画面の視認性を向 上するために設ける遮光膜は、観察側である第二のカラーフィルタにのみ形成すれ ば良いが、必要ならば第一のカラーフィルタに形成しても良い。
[0066] 上述したように、本実施例の液晶表示装置によれば、反射表示時に入射光が色濃 度を薄く調整した第二のカラーフィルタのみ通過することになるため、明るい反射表 示を得ることが可能となる。また、半透過反射膜として採用した誘電体多層膜は、開 口を設ける必要が無いため、高い表面平坦性を得ることが可能となり、表示品質の低 下を防止できる。
産業上の利用可能性
[0067] 光透過性と光反射性の双方を十分に満足しうる特性を持った液晶表示装置を提供 することが可能になるので、屋内および屋外で使用する携帯情報機器の表示装置に 適応できる。

Claims

請求の範囲
[1] 着色層と透明電極が形成された基板と、対向透明電極が形成された対向基板と、前 記透明電極と前記対向透明電極の間に配された液晶を備え、前記透明電極と前記 対向透明電極が交差して形成する画素部を用いて表示を行なう液晶表示装置であ つて、
前記着色層と前記透明電極の間に、入射する一部の光を反射する反射機能層が 前記画素部の全面にわたって設けられたことを特徴とする液晶表示装置。
[2] 請求項 1に記載の液晶表示装置において、前記反射機能層が、前記透明電極よりも 屈折率の大き!、高屈折率透明層である液晶表示装置。
[3] 請求項 2に記載の液晶表示装置において、前記透明電極と前記高屈折率透明層の 間に、前記高屈折率透明層よりも屈折率の小さい低屈折率透明層を備える液晶表 示装置。
[4] 請求項 3に記載の液晶表示装置において、前記低屈折率透明層が Si02を主成分と して含む液晶表示装置。
[5] 請求項 2〜4のいずれか一項に記載の液晶表示装置において、前記着色層と前記 高屈折率透明層の間に平坦ィ匕膜を備えるとともに、前記高屈折率透明層の屈折率 は前記平坦化膜の屈折率よりも大きい液晶表示装置。
[6] 請求項 2〜4のいずれか一項に記載の液晶表示装置において、前記高屈折率透明 層の 550nmでの屈折率が 2. 0以上である液晶表示装置。
[7] 請求項 2〜4のいずれか一項に記載の液晶表示装置において、前記高屈折率透明 層の屈折率が 2. 0〜2. 5、前記透明電極の屈折率が 1. 5〜2. 0、前記着色層の屈 折率が 1. 4〜1. 8である液晶表示装置。
[8] 請求項 2〜4のいずれか一項に記載の液晶表示装置において、前記高屈折率透明 層の屈折率と前記透明電極の屈折率の差が 0. 1〜1. 0であり、前記高屈折率透明 層の屈折率と前記着色層の屈折率の差が 0. 2〜1. 1である液晶表示装置。
[9] 請求項 5に記載の液晶表示装置において、前記高屈折率透明層の屈折率が 2. 0〜
2. 5、前記透明電極の屈折率が 1. 5〜2. 0、前記平坦化膜の屈折率が 1. 3〜1. 7 である液晶表示装置。
[10] 請求項 5に記載の液晶表示装置において、前記高屈折率透明層の屈折率と前記透 明電極の屈折率の差が 0. 1〜1. 0であり、前記高屈折率透明層の屈折率と前記平 坦化膜の屈折率の差が 0. 3〜1. 2である液晶表示装置。
[11] 請求項 1に記載の液晶表示装置において、前記反射機能層が半透過膜である液晶 表示装置。
[12] 請求項 11に記載の液晶表示装置において、前記半透過膜が高屈折率層と低屈折 率層とを交互に積層した多層膜である液晶表示装置。
[13] 請求項 11に記載の液晶表示装置において、前記半透過膜が誘電体層の多層膜で ある液晶表示装置。
[14] 請求項 1に記載の液晶表示装置において、前記着色層はカラーフィルタであり、前 記基板の外側にバックライトを備えるとともに、前記反射機能層が第一の半透過膜で あり、前記カラーフィルタと前記バックライトとの間に第二の半透過膜が設けられた液 晶表示装置。
[15] 請求項 14に記載の液晶表示装置において、前記第二の半透過膜が前記基板と前 記カラーフィルタの間に設けられた液晶表示装置。
[16] 請求項 14に記載の液晶表示装置において、前記第一の半透過膜の反射率と前記 第二の半透過膜の反射率の比が、前記カラーフィルタの透過率の 2乗の 0. 5倍から
1. 5倍の範囲である液晶表示装置。
[17] 請求項 11に記載の液晶表示装置において、前記着色層が第一のカラーフィルタで あり、前記半透過膜の観測者側に第二のカラーフィルタを備える液晶表示装置。
[18] 請求項 17に記載の液晶表示装置において、前記第二のカラーフィルタが前記半透 過膜と前記液晶層との間に設けられた液晶表示装置。
[19] 請求項 17に記載の液晶表示装置において、前記第二のカラーフィルタが前記対向 基板に設けられた液晶表示装置。
[20] 請求項 17〜19のいずれか一項に記載の液晶表示装置において、前記第一のカラ 一フィルタと前記第二のカラーフィルタのうち、前記第二のカラーフィルタのみが遮光 膜を備える液晶表示装置。
PCT/JP2006/301612 2005-02-02 2006-02-01 液晶表示装置 WO2006082819A1 (ja)

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2005026035 2005-02-02
JP2005-026035 2005-02-02
JP2005031642 2005-02-08
JP2005-031642 2005-02-08
JP2005038179 2005-02-15
JP2005-038179 2005-02-15
JP2005-174941 2005-06-15
JP2005174941 2005-06-15

Publications (1)

Publication Number Publication Date
WO2006082819A1 true WO2006082819A1 (ja) 2006-08-10

Family

ID=36777203

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/301612 WO2006082819A1 (ja) 2005-02-02 2006-02-01 液晶表示装置

Country Status (2)

Country Link
TW (1) TW200639509A (ja)
WO (1) WO2006082819A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009104028A (ja) * 2007-10-25 2009-05-14 Sony Corp 液晶表示装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04338721A (ja) * 1991-05-16 1992-11-26 Seiko Epson Corp 反射型光変調パネル及び投射型表示装置
JPH10282492A (ja) * 1997-04-04 1998-10-23 Seiko Instr Inc 反射型液晶表示装置
JP2003021832A (ja) * 2001-07-09 2003-01-24 Seiko Epson Corp 液晶装置及び電子機器
JP2004341098A (ja) * 2003-05-14 2004-12-02 Sharp Corp カラー液晶パネル

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04338721A (ja) * 1991-05-16 1992-11-26 Seiko Epson Corp 反射型光変調パネル及び投射型表示装置
JPH10282492A (ja) * 1997-04-04 1998-10-23 Seiko Instr Inc 反射型液晶表示装置
JP2003021832A (ja) * 2001-07-09 2003-01-24 Seiko Epson Corp 液晶装置及び電子機器
JP2004341098A (ja) * 2003-05-14 2004-12-02 Sharp Corp カラー液晶パネル

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009104028A (ja) * 2007-10-25 2009-05-14 Sony Corp 液晶表示装置

Also Published As

Publication number Publication date
TW200639509A (en) 2006-11-16

Similar Documents

Publication Publication Date Title
WO2000048039A1 (fr) Afficheur a cristaux liquides
JP3474167B2 (ja) 液晶表示装置
JPH0728055A (ja) 液晶表示装置及びその製造方法
JP3187385B2 (ja) 液晶表示装置
WO2003048851A1 (fr) Dispositif a affichage a cristaux liquides
TWI326785B (ja)
WO2006082819A1 (ja) 液晶表示装置
JP2001305542A (ja) 液晶表示装置
JP4159668B2 (ja) 液晶表示パネル
JP3674537B2 (ja) 液晶装置および電子機器
JP2003177392A (ja) 液晶表示装置
JP4335067B2 (ja) 電気光学装置
JP4241315B2 (ja) カラーフィルタ基板及び電気光学装置、カラーフィルタ基板の製造方法及び電気光学装置の製造方法並びに電子機器
JP2003172927A (ja) 透過反射両用型表示装置用基板
JP3631719B2 (ja) 液晶表示装置
JP2004145067A (ja) 液晶表示素子
JP3981321B2 (ja) 液晶パネルおよび該液晶パネルを備える液晶表示装置
KR100310697B1 (ko) 반사형 칼라 액정 표시소자
JP3963808B2 (ja) 液晶装置、電子機器および液晶装置用基板
JP4174360B2 (ja) 液晶表示装置
JP2003186033A (ja) 液晶表示装置
JP4799474B2 (ja) 液晶表示装置
JP2008046222A (ja) 液晶表示装置
JP2003315785A (ja) 半透過型液晶表示装置
JP4633083B2 (ja) 液晶表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06712755

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 6712755

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: JP

WWW Wipo information: withdrawn in national office

Country of ref document: JP