WO2006082705A1 - 芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子 - Google Patents

芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子 Download PDF

Info

Publication number
WO2006082705A1
WO2006082705A1 PCT/JP2006/300499 JP2006300499W WO2006082705A1 WO 2006082705 A1 WO2006082705 A1 WO 2006082705A1 JP 2006300499 W JP2006300499 W JP 2006300499W WO 2006082705 A1 WO2006082705 A1 WO 2006082705A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
substituted
unsubstituted
carbon atoms
aromatic amine
Prior art date
Application number
PCT/JP2006/300499
Other languages
English (en)
French (fr)
Inventor
Masakazu Funahashi
Original Assignee
Idemitsu Kosan Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Idemitsu Kosan Co., Ltd. filed Critical Idemitsu Kosan Co., Ltd.
Priority to EP06711779A priority Critical patent/EP1847525B1/en
Priority to DE602006018864T priority patent/DE602006018864D1/de
Priority to CN200680004165XA priority patent/CN101115708B/zh
Priority to JP2007501523A priority patent/JP4308294B2/ja
Publication of WO2006082705A1 publication Critical patent/WO2006082705A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/43Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
    • C07C211/57Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings being part of condensed ring systems of the carbon skeleton
    • C07C211/61Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having amino groups bound to carbon atoms of six-membered aromatic rings being part of condensed ring systems of the carbon skeleton with at least one of the condensed ring systems formed by three or more rings
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/68Preparation of compounds containing amino groups bound to a carbon skeleton from amines, by reactions not involving amino groups, e.g. reduction of unsaturated amines, aromatisation, or substitution of the carbon skeleton
    • C07C209/70Preparation of compounds containing amino groups bound to a carbon skeleton from amines, by reactions not involving amino groups, e.g. reduction of unsaturated amines, aromatisation, or substitution of the carbon skeleton by reduction of unsaturated amines
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/01Compounds containing amino groups bound to a carbon skeleton having amino groups bound to acyclic carbon atoms
    • C07C211/02Compounds containing amino groups bound to a carbon skeleton having amino groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton
    • C07C211/03Monoamines
    • C07C211/06Monoamines containing only n- or iso-propyl groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C309/00Sulfonic acids; Halides, esters, or anhydrides thereof
    • C07C309/01Sulfonic acids
    • C07C309/28Sulfonic acids having sulfo groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton
    • C07C309/29Sulfonic acids having sulfo groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton of non-condensed six-membered aromatic rings
    • C07C309/30Sulfonic acids having sulfo groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton of non-condensed six-membered aromatic rings of six-membered aromatic rings substituted by alkyl groups
    • C07C309/31Sulfonic acids having sulfo groups bound to carbon atoms of six-membered aromatic rings of a carbon skeleton of non-condensed six-membered aromatic rings of six-membered aromatic rings substituted by alkyl groups by alkyl groups containing at least three carbon atoms
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/125Active-matrix OLED [AMOLED] displays including organic TFTs [OTFT]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/114Poly-phenylenevinylene; Derivatives thereof
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • H10K85/622Polycyclic condensed aromatic hydrocarbons, e.g. anthracene containing four rings, e.g. pyrene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • H10K85/633Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine comprising polycyclic condensed aromatic hydrocarbons as substituents on the nitrogen atom
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/12Systems containing only non-condensed rings with a six-membered ring
    • C07C2601/14The ring being saturated
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/02Ortho- or ortho- and peri-condensed systems
    • C07C2603/40Ortho- or ortho- and peri-condensed systems containing four condensed rings
    • C07C2603/42Ortho- or ortho- and peri-condensed systems containing four condensed rings containing only six-membered rings
    • C07C2603/48Chrysenes; Hydrogenated chrysenes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S428/00Stock material or miscellaneous articles
    • Y10S428/917Electroluminescent

Definitions

  • the present invention relates to an aromatic amine derivative and an organic electoluminescence device using the same, and in particular, an organic electoluminescence device having a long lifetime and high luminous efficiency and high color purity blue emission can be obtained. It relates to an aromatic amine derivative to be realized.
  • an EL element is composed of a light emitting layer and a pair of counter electrodes sandwiching the layer.
  • light emission when an electric field is applied between both electrodes, electrons are injected from the cathode side and holes are injected from the anode side.
  • this is a phenomenon in which these electrons recombine with holes in the light emitting layer to generate an excited state, and energy is emitted as light when the excited state returns to the ground state.
  • Patent Document 1 For example, a technique using a single monoanthracene compound as an organic light-emitting material is disclosed (Patent Document 1). However, in this technology, for example, at a current density of 165 mA / cm 2 , only a luminance of 1650 cdZm 2 is obtained, and the efficiency is very low with LED / A, which is not practical.
  • Patent Document 2 a technique using a single bisanthracene compound as an organic light emitting material is disclosed (Patent Document 2). However, even with this technology, even though the efficiency is about: 3 to 3 cd / A, improvement for practical use has been demanded.
  • Patent Document 3 a long-life organic EL device using a distyryl compound as an organic light-emitting material and containing styrylamine added thereto has been proposed (Patent Document 3).
  • this device has been required to be further improved so that its lifetime is not sufficient.
  • Patent Document 4 a technique using a mono- or bisanthracene compound and a distilil compound as an organic light-emitting medium layer is disclosed (Patent Document 4).
  • Patent Document 4 a technique using a mono- or bisanthracene compound and a distilil compound as an organic light-emitting medium layer is disclosed.
  • the emission spectrum has become longer due to the conjugated structure of the styryl compound, which deteriorates the color purity.
  • Patent Document 5 discloses a blue light emitting device using a diaminotalicene derivative. However, although this device has excellent luminous efficiency, there has been a demand for further improvement with a sufficient lifetime.
  • Patent Document 1 Japanese Patent Laid-Open No. 11-3782
  • Patent Document 2 JP-A-8-12600
  • Patent Document 3 International Publication WO94Z006157
  • Patent Document 4 Japanese Patent Laid-Open No. 2001-284050
  • Patent Document 5 International Publication WO04Z044088
  • the present invention has been made to solve the above-mentioned problems, and is an organic EL device that has a long lifetime, a high light emission efficiency, a high color purity, and a blue light emission, and an aromatic that realizes the organic EL device.
  • the object is to provide an amine derivative.
  • the present invention provides an aromatic amine derivative represented by the following general formula (1) or (2).
  • a to A are each independently a hydrogen atom, a substituted or unsubstituted carbon,
  • a to d are each independently an integer of 0 to 5.
  • a to A may be the same or different, and may be connected to each other to be saturated or saturated.
  • At least one of a to d is an integer greater than or equal to 1, and A to A in that case is a small number
  • At least one is a substituted or unsubstituted cycloalkyl group having 3 to 50 nuclear carbon atoms.
  • a to A each independently represent a hydrogen atom, a substituted or unsubstituted carbon
  • e to h are each independently an integer of 0 to 5, and when each of e to h is 2 or more, A to A may be the same or different and may be connected to each other to be saturated or unsaturated.
  • X and X are each independently a substituted or unsubstituted aryl group having 5 to 50 nuclear carbon atoms.
  • At least one of e to h is an integer greater than or equal to 1, and in that case A to A is small
  • At least one is a substituted or unsubstituted cycloalkyl group having 3 to 50 nuclear carbon atoms.
  • the present invention provides an organic EL device in which an organic thin film layer composed of one or more layers including at least a light emitting layer is sandwiched between a cathode and an anode, wherein at least one of the organic thin film layers is the fragrance.
  • the present invention provides an organic EL device containing a group amine derivative alone or as a component of a mixture. The invention's effect
  • the organic EL device using the aromatic amine derivative of the present invention has a sufficiently high luminance for practical use at a low applied voltage, has a high luminous efficiency, is difficult to deteriorate for a long time, and has a long life. Les.
  • Fig. 1 is a diagram showing 1 H-NMR vectors of the aromatic amine derivative of the present invention obtained in Synthesis Example 1.
  • FIG. 2 A diagram showing 1 H-NMR vectors of the aromatic amine derivative of the present invention obtained in Synthesis Example 2.
  • FIG. 3 A diagram showing a 1 H-NMR spectrum of an aromatic amine derivative of the present invention obtained in Synthesis Example 3.
  • the aromatic amine derivative of the present invention is a compound represented by the following general formula (1) or (2).
  • the aromatic amine derivative represented by the general formula (1) will be described.
  • a to A are each independently a hydrogen atom, substituted or unsubstituted
  • Substituted alkyl group having 1 to 50 carbon atoms (preferably 1 to 20 carbon atoms), substituted or unsubstituted Aryl group having 5 to 50 nuclear carbon atoms (preferably 5 to 20 carbon atoms), substituted or unsubstituted aralkyl group having 6 to 50 nuclear carbon atoms (preferably 6 to 20 carbon atoms), substituted or unsubstituted Unsubstituted cycloalkyl group having 3 to 50 (preferably, 5 to 12 core carbon atoms) cycloalkyl group, substituted or unsubstituted alkoxyl having 1 to 50 (preferably 1 to 6 carbon atoms) alkoxyl group Group, substituted or unsubstituted aryloxy group having 5 to 50 nuclear carbon atoms (preferably 5 to 18 carbon atoms), substituted or unsubstituted nuclear carbon atom 5 to 50 (preferably having 5 carbon atoms) To 18) arylamino group, substituted or unsubstituted alkylamino
  • alkyl groups A to A include, for example, a methinore group, an ethyl group, a propyl group, and an isopropyl group.
  • Examples of the aryl group of A to A include a phenyl group, a 2-methylphenyl group, and a 3-methyl group.
  • Tylphenyl group 4-methylphenyl group, 4-ethylphenyl group, biphenyl group, 4-methylbiphenyl group, 4-ethylbiphenyl group, 4-cyclohexylbiphenyl group, terphenyl group, 3, 5-dichlorophenyl group, naphthyl group, 5- A methyl naphthyl group, an anthryl group, a pyrenyl group, etc. are mentioned.
  • Examples of the aralkyl groups A to A include, for example, benzyl group, 1 phenylethyl group, 2
  • Examples of the cycloalkyl groups A to A include a cyclopropyl group, a cyclobutyl group,
  • Examples include cyclopentyl group, cyclohexyl group, cycloheptyl group, cyclooctyl group, cyclononyl group, bicycloheptyl group, bicyclooctinole group, tricycloheptyl group, adamantyl group, etc., cyclopentyl group, cyclohexyl group, etc. Group, cycloheptyl group, bicycloheptyl group, bicyclooctyl group and adamantyl group are preferred.
  • alkoxyl group of A to A for example, methoxy group, ethoxy group, propoxy group
  • Isopropoxy group butoxy group, isobutoxy group, sec-butoxy group, tert-butoxy group, various pentyloxy groups, various hexyloxy groups, and the like.
  • Examples of the aryloxy group of A to A include a phenoxy group, a triloxy group, and a naphthyl group.
  • Examples of the arylamino group of A to A include, for example, a diphenylamino group, a ditolylamino group,
  • Examples thereof include a dinaphthylamino group and a naphthylphenylamino group.
  • alkylamino group of A to A examples include, for example, a dimethylamino group, a jetylamino group,
  • heterocyclic groups A to A examples include imidazole, benzimidazole, and pyrrole.
  • halogen atoms A to A examples include a fluorine atom, a chlorine atom, and a bromine atom.
  • a to d each independently represents an integer of 0 to 5, and 0 to 3 It is more preferable that it is 0-2.
  • a to A may be the same or different.
  • a and A, A and A may be linked together to form a saturated or unsaturated ring.
  • a and A, A and A may be linked together to form a saturated or unsaturated ring.
  • 1 2 3 may be connected to form a saturated or unsaturated ring.
  • this ring examples include cycloalkanes having 4 to 12 carbon atoms such as cyclobutane, cyclopentane, cyclohexane, adamantane and norbornane, and cycloalkanes having 4 to 12 carbon atoms such as cyclobutene, cyclopentene, cyclohexene, cycloheptene and cyclootaten.
  • C6-C12 cycloalkadiene such as cycloalkene, cyclohexadiene, cyclohexadiene, cyclooctadiene, etc.
  • C6-C50 such as benzene, naphthalene, phenanthrene, anthracene, pyrene, chrysene, and isanaphthylene Examples thereof include aromatic rings, heterocyclic rings having 5 to 50 carbon atoms such as imidazole, pyrrole, furan, thiophene and pyridine.
  • the substituents A to A are substituted or unsubstituted aryl having 5 to 50 nuclear carbon atoms.
  • substituted or unsubstituted alkyl group having 1 to 50 carbon atoms substituted or unsubstituted alkoxy group having 1 to 50 carbon atoms, substituted or unsubstituted aralkyl group having 6 to 50 nuclear carbon atoms, substituted or unsubstituted Aryloxy group having 5 to 50 nuclear carbon atoms, substituted or unsubstituted nucleus Arylthio group having 5 to 50 carbon atoms, substituted or unsubstituted alkoxy group having 1 to 50 carbon atoms, amino group, halogen atom, cyano group, nitro Group, hydroxyl group, carboxynole group and the like.
  • At least one of a to d is an integer of 1 or more, and in this case, at least one of A to A is a substituted or unsubstituted nuclear carbon number of 3 to 50
  • a cycloalkyl group having a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a bicycloheptyl group, a bicyclooctyl group, and an adamantyl group.
  • a to A are the same as A to A in the general formula (1).
  • e to h each independently represents an integer of 0 to 5, preferably 0 to 3, more preferably 0 to 2.
  • a to A may be the same or different.
  • a and A, A and A may be linked together to form a saturated or unsaturated ring.
  • a and A, A and A may be linked together to form a saturated or unsaturated ring.
  • 5 6 7 may be linked to form a saturated or unsaturated ring.
  • this ring As this ring,
  • X and X are each independently a substituted or unsubstituted nuclear coal.
  • Examples of X and X arylene groups include phenylene, naphthylene, and biphenyl.
  • Examples include a lenylene group, an anthranylene group, a peryleneylene group, and a pyrenylene group, and a phenylene group, a naphthylene group, and a biphenylene group are preferable.
  • At least one of e to h is an integer of 1 or more, and in this case, at least one of A to A is a substituted or unsubstituted cycloalkyl having 3 to 50 nuclear carbon atoms.
  • a cycloalkyl group having a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, a bicycloheptyl group, a bicyclooctyl group, and an adamantyl group.
  • the method for producing the aromatic amine derivative represented by the general formula (1) of the present invention is not particularly limited and may be produced by a known method, for example, Rev. Roum. Chim., 34 1907 (1989) ( ⁇ .
  • Aromatic amines are produced by amination of 6,12-dibu-mouthed mochrysene obtained by the method described in D. Bancia et al.
  • the method for producing the aromatic amine derivative represented by the general formula (2) is not particularly limited, and may be produced by a known method, for example, 6, 12-dibu mouth moclicene and triarylaminoboronic acid.
  • Aromatic amines are produced by coupling reactions with
  • the aromatic amine derivative represented by the general formula (1) or (2) of the present invention is obtained by connecting a benzene ring having a substituent to a diaminochrysene structure, which is a luminescent center, to form a compound. Since the mutual meeting is prevented, the life is extended. In addition, when the cycloalkyl group is bonded to the terminal benzene ring bonded to the nitrogen atom, the association between the compounds is further prevented, and the lifetime is further improved. In addition, it has strong fluorescence in the solid state, excellent electroluminescence, and fluorescence quantum efficiency of 0.3 or more.
  • Light emitting materials for devices especially dough It can be used effectively as a bing material, and other hole transporting materials, electron transporting materials or doping materials can be used.
  • the organic EL device of the present invention is a device in which one or more organic thin film layers are formed between an anode and a cathode.
  • a light emitting layer is provided between the anode and the cathode.
  • the light emitting layer contains a light emitting material, and may further contain a hole injecting material or an electron injecting material to transport holes injected from the anode or electrons injected from the cathode to the light emitting material.
  • Aromatic amine derivatives of general formula (1) or (2) have high light emission properties and excellent hole injection properties, hole transport properties, electron injection properties, and electron transport properties. It can be used for a light emitting layer as a material or a doping material.
  • the preferred content when the light emitting layer contains the aromatic amine derivative of the present invention is usually from 0.:! To 20% by weight, and from :! to 10% by weight. This is even better.
  • the aromatic amine derivative of the present invention has extremely high fluorescence quantum efficiency, high hole transport ability and electron transport ability, and can form a uniform thin film. Therefore, the light emitting layer can be formed using only this aromatic amine derivative. It is also possible to form
  • the organic EL device of the present invention is an organic EL device in which two or more organic thin film layers including at least a light emitting layer are sandwiched between a cathode and an anode, and the fragrance of the present invention is interposed between the anode and the light emitting layer. It is also preferable to have an organic layer mainly composed of a group amine derivative. Examples of the organic layer include a hole injection layer and a hole transport layer.
  • the host material is at least selected from an anthracene derivative of the following general formula (3), an anthracene derivative of (4) and a pyrene derivative of (5) It is preferable to contain one kind.
  • Ar and Ar are each independently a substituted or unsubstituted aryl group having 5 to 50 nuclear carbon atoms.
  • At least one of them is a substituted or unsubstituted aryl group containing 10 to 50 nuclear carbon atoms.
  • n is an integer between :! When m is 2 or more, the groups in [] may be the same or different. )
  • X to X are each independently a hydrogen atom, a substituted or unsubstituted carbon
  • X 1 and x 2 may be the same or different.
  • Ar is a substituted or unsubstituted aryl group having 10 to 50 condensed carbon atoms and containing A
  • r is a substituted or unsubstituted aryl group having 5 to 50 nuclear carbon atoms.
  • n is an integer from:! When n is 2 or more, the groups in [] may be the same or different. )
  • anthracene derivatives of the general formulas (3) and (4) are shown below, but are not limited to these exemplified compounds.
  • L and L are each independently a substituted or unsubstituted phenylene group, substituted or unsubstituted
  • s is an integer from 0 to 2
  • p is an integer from 1 to 4
  • q is an integer from 0 to 2
  • r is an integer from 0 to 4.
  • L or Ar is bonded to any of the 1-5 positions of pyrene, and L or Ar is pyrene.
  • L and L or pyrene are different bonding positions on Ar and Ar, respectively.
  • the organic EL device having a multi-layered organic thin film layer includes (anode / hole injection layer / light emitting layer / cathode), (anode / light emitting layer / electron injection layer / cathode), (anode / positive electrode).
  • a hole injection layer / a light emitting layer / an electron injection layer / a cathode For example, a hole injection layer / a light emitting layer / an electron injection layer / a cathode).
  • the organic thin film layer has a multi-layered structure, so that it is possible to prevent a decrease in luminance and life due to quenching.
  • a light emitting material, a doping material, a hole injection material, and an electron injection material can be used in combination.
  • the driving material can improve luminous brightness and luminous efficiency, and red and blue light emission can be obtained.
  • the hole injection layer, the light emitting layer, and the electron injection layer may each be formed by a layer configuration of two or more layers.
  • the layer that injects holes from the electrode is the hole injection layer
  • the layer that receives holes from the hole injection layer and transports the holes to the light emitting layer is the hole transport layer.
  • a layer that injects electrons from an electrode is referred to as an electron injection layer
  • a layer that receives electrons from the electron injection layer and transports electrons to a light emitting layer is referred to as an electron transport layer.
  • Each of these layers is selected and used depending on factors such as the energy level of the material, heat resistance, and adhesion to the organic layer or metal electrode.
  • Host materials or doping materials other than the above general formulas (3) to (5) that can be used in the light emitting layer together with the aromatic amine derivative of the present invention include, for example, naphthalene, phenanthrene, norebrene, anthracene, tetracene, Pyrene, Perylene, Talycene, Decacyclene, Coronene, Tetraphenylcyclopentagen, Pentaphenylcyclopentagen, Fluorene, Spirofluorene, 9, 10-Diphenylanthracene, 9, 10-Bis (phenylethynyl) anthracene 1, 4 Condensed polyaromatic compounds such as bis (9'ethynylanthracenyl) benzene and their derivatives, tris (8 quinolinolato) aluminum, bis (2-methinole 8-quinolinolato) 4- (phenyl) Phenolate) Organometallic complexes such as aluminum,
  • the hole injecting material has the ability to transport holes, has a hole injecting effect from the anode, and has an excellent hole injecting effect with respect to the light emitting layer or the light emitting material.
  • a compound that prevents the exciton from moving to the electron injection layer or the electron injection material and has an excellent thin film forming ability is preferable.
  • phthalocyanine derivatives naphthalocyanine derivatives, Lufirin derivatives, oxazole, oxaziazole, triazole, imidazole, imidazolone, imidazolethione, pyrazoline, pyrazolone, tetrahydroimidazole, oxazole, oxadiazole, hydrazone, acylhydrazone, polyarylalkane, stinolevene, butadiene, benzidine type triphenyl Examples thereof include, but are not limited to, min, styrylamine triphenylamine, diamine type triphenylamine, and derivatives thereof, and polymer materials such as polybutylcarbazole, polysilane, and conductive polymer. is not.
  • aromatic tertiary amine derivatives include triphenylamine, tritolylamine, tolyldiphenylamine, N, N, 1-diphenyl-1-N, N ′-(3-methylphenyl) -1,1,1,1-biphenyl-1 4 , 4, 1 diamin, N, N, N,, N, 1 (4-methylphenyl) 1 1, 1, 1 phenol 2, 4, 1 diamin, N, N, ⁇ ', ⁇ , 1 ( 4-methylphenyl) 1, 1 '-biphenyl 4, 4'-diamin, ⁇ , N' -diphenyl 2- '-(Methylphenyl) ⁇ , N'-(4— ⁇ -Butylphenyl) —Phenanthrene 9,10-Diamine, ⁇ , ⁇ ⁇ Bis (4-Di-4-tolylaminophenyl) 4 Phenylol cyclohexane, etc. Or an oligomer or polymer
  • Examples of phthalocyanine (p c ) derivatives include HPc, CuPc, CoPc, NiPc, and ZnPc.
  • the organic EL device of the present invention is a layer containing these aromatic tertiary amine derivatives and / or phthalocyanine derivatives, for example, the hole transport layer or the hole injection layer, between the light emitting layer and the anode. Is preferably formed.
  • the electron injecting material has the ability to transport electrons, has an electron injecting effect from the cathode, and an excellent electron injecting effect for the light emitting layer or the light emitting material, and corrects the excitons generated in the light emitting layer.
  • Compounds that prevent migration to the hole injection layer and have excellent thin film forming ability are preferred. . Specific examples include fluorenone, anthraquinodimethane, diphenoquinone, thiopyrandioxide, oxazole, oxadiazole, triazolene, imidazole, perylenetetra force rubonic acid, fluorenylidenemethane, anthraquinodimethane, anthrone and their derivatives. However, it is not limited to these. Further, it can be sensitized by adding an electron accepting substance to the hole injecting material and an electron donating substance to the electron injecting material.
  • more effective electron injection materials are metal complex compounds and nitrogen-containing five-membered ring derivatives.
  • Examples of the metal complex compound include 8-hydroxyquinolinatotrithium, bis (8-hydroxyquinolinato) zinc, bis (8-hydroxyquinolinato) copper, bis (8-hydroxyquinolinato) manganese, tris ( 8-hydroxyquinolinato) aluminum, tris (2-methyl _ 8-hydroxyquinolinato) aluminum, tris (8-hydroxyquinolinato) gallium, bis (10-hydroxybenzo [h] quinolinato) beryllium Bis (10-hydroxybenzo [h] quinolinate) zinc, bis (2-methyl-8 quinolinate) black gallium, bis (2-methyl-8 quinolinato) (o cresolate) gallium, bis (2-methyl-8 quinolinate) ) (1-Naphthato) aluminum, bis (2-methyl-8 quinolinate) (2 Naphthra) G) is not limited to these forces gallium, and the like.
  • nitrogen-containing five-membered derivative for example, oxazole, thiazole, oxadiazole, thiadiazole, and triazole derivatives are preferable.
  • 2,5 bis (1-phenol) -1,3,4-oxazole, dimethyl POPOP 2,5 bis (1-phenol) 1,3,4-thiazole, 2,5 —Bis (1-phenyl) -1,3,4-oxadiazol, 2_ (4, _tert_butylphenyl) _ 5 _ (4 "-biphenyl) 1,3,4-oxadiazol, 2, 5_ Bis (1-naphthyl) _ 1, 3, 4_ oxadiazole, 1, 4_ bis [2_ (5 _phenyloxadiazolyl)] benzene, 1, 4_ bis [2— (5-phenyl) _4_tert_butylbenzene], 2- (4 '_tert_butylphenyl) _ 5_ (4 "—bi
  • the organic EL device of the present invention in the light emitting layer, in addition to at least one aromatic amine derivative selected from the general formula (1) or (2), a light emitting material, a doping material, a hole injection material In addition, at least one kind of electron injection material may be contained in the same layer.
  • a protective layer is provided on the surface of the device, or the entire device is protected by silicon oil, resin, etc. Is also possible.
  • a material having a work function larger than 4 eV is suitable, and carbon, aluminum, vanadium, iron, cobalt, nickel, tungsten, silver, gold Platinum, palladium, etc. and their alloys, metal oxides such as tin oxide and indium oxide used for ITO substrates and NES A substrates, and organic conductive resins such as polythiophene and polypyrrole are used.
  • the conductive material used for the cathode those having a work function smaller than 4 eV are suitable, such as magnesium, calcium, tin, lead, titanium, yttrium, lithium, ruthenium, manganese, ano-reminium, lithium fluoride, etc. And the force with which these alloys are used.
  • magnesium / silver, magnesium / indium, lithium / aluminum, and the like, which are representative examples, are not limited to these.
  • the ratio of the alloy is controlled by the temperature of the deposition source, the atmosphere, the degree of vacuum, etc., and is selected to an appropriate ratio. If necessary, the anode and the cathode may be formed of two or more layers.
  • the organic EL device of the present invention it is desirable that at least one surface be sufficiently transparent in the emission wavelength region of the element in order to emit light efficiently. It is also desirable that the substrate be transparent.
  • the transparent electrode is set using the conductive material described above so as to ensure a predetermined translucency by a method such as vapor deposition or sputtering.
  • the electrode on the light emitting surface preferably has a light transmittance of 10% or more.
  • the substrate is not limited as long as it has mechanical and thermal strength and has transparency, but includes a glass substrate and a transparent resin film.
  • transparent resin films examples include polyethylene, ethylene-butyl acetate copolymer, ethylene-butyl alcohol copolymer, polypropylene, polystyrene, polymethyl methacrylate.
  • each layer of the organic EL device of the present invention may be performed by any of dry deposition methods such as vacuum deposition, sputtering, plasma, ion plating, and wet deposition methods such as spin coating, dating, and flow coating.
  • the method can be applied.
  • the film thickness is not particularly limited, but should be set to an appropriate film thickness. If the film thickness is too thick, a large applied voltage is required to obtain a constant light output, resulting in poor efficiency. If the film thickness is too thin, pinholes and the like are generated, and sufficient light emission luminance cannot be obtained even when an electric field is applied.
  • the normal film thickness is in the range of 5nm to 10 / im, but the range of 10nm to 0.2 / im is more preferred.
  • the material for forming each layer is dissolved or dispersed in an appropriate solvent such as ethanol, chloroform, tetrahydrofuran, dioxane or the like to form a thin film, but any solvent may be used.
  • an appropriate resin or additive may be used for improving the film forming property and preventing pinholes in the film.
  • resins that can be used include insulating resins such as polystyrene, polycarbonate, polyarylate, polyester, polyamide, polyurethane, polysulfone, polymethylmetatalylate, polymethylatarylate, and cellulose, and copolymers thereof.
  • photoconductive resins such as poly_N_bulucarbazole and polysilane, and conductive resins such as polythiophene and polypyrrole.
  • the additive include an antioxidant, an ultraviolet absorber, and a plasticizer.
  • the organic EL device of the present invention can be used for a flat light emitter such as a flat panel display of a wall-mounted television, a light source such as a copying machine, a printer, a backlight of a liquid crystal display or instruments, a display board, a marker lamp, and the like.
  • the material of the present invention is an electron that can be achieved by using only organic EL elements. It can also be used in the fields of photographic photoreceptors, photoelectric conversion elements, solar cells, image sensors and the like.
  • a transparent electrode made of indium tin oxide with a thickness of 120 nm was provided on a 1 mm size glass substrate. After cleaning this glass substrate by irradiating it with ultraviolet rays and ozone, this substrate was placed in a vacuum deposition apparatus.
  • N ′, N ”-bis [4- (diphenylamino) phenyl] —N ′, N” —diphenylbiphenyl _4,4'-diamine was deposited to a thickness of 60 nm.
  • N, N, ⁇ ', ⁇ '-tetrakis (4-biphenyl) -1,4'-benzidine was deposited to a thickness of 20 nm as a hole transport layer.
  • tris (8-hydroxyquinolinato) aluminum was deposited to a thickness of 20 nm as an electron injection layer.
  • lithium fluoride was deposited to a thickness of lnm, and then aluminum was deposited to a thickness of 150 ⁇ m. This aluminum / lithium fluoride functions as the cathode. In this way, an organic EL device was fabricated.
  • blue light emission (light emission maximum wavelength: 464 nm) with a light emission efficiency of 6.3 cdZA and a light emission luminance of 630 cdZm 2 was obtained at a voltage of 6.5 V and a current density of 10 mA / cm 2 .
  • a DC continuous energization test was performed at an initial luminance of 500 cdZm 2 , the half-life was 10,000 hours.
  • An organic EL device was prepared in the same manner as in Example 1, except that the compound (D-22) was used instead of the compound (D-26).
  • a current test was conducted on the resulting device. As a result, blue light was emitted at a voltage of 6.5 V, a current density of 10 mA / cm 2 , an emission efficiency of 6.7 cd / A, and an emission luminance of 672 cd / m 2 (maximum emission wavelength: 466 nm). was gotten. When a continuous direct current test was conducted at an initial luminance of 500 cd / m 2 , the half-life was 11500 hours.
  • An organic EL device was produced in the same manner as in Example 1, except that the compound (D-24) was used instead of the compound (D-26).
  • An organic EL device was produced in the same manner as in Example 1, except that 6,12-bis (4-isopropylphenyl_p-tolylamino) talicene was used instead of the compound (D-26).
  • the organic EL device using the aromatic amine derivative of the present invention can provide a practically sufficient emission luminance at a low applied voltage, and deteriorates even when used for a long time with high luminous efficiency. Long life. Therefore, it is useful as a light source such as a flat light emitter of a wall-mounted television and a backlight of a display.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electroluminescent Light Sources (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

明 細 書
芳香族ァミン誘導体及びそれを用いた有機エレクト口ルミネッセンス素子 技術分野
[0001] 本発明は芳香族ァミン誘導体及びそれを用いた有機エレクト口ルミネッセンス素子 に関し、特に、寿命が長ぐ高発光効率で、色純度の高い青色発光が得られる有機 エレクト口ルミネッセンス素子及びそれを実現する芳香族ァミン誘導体に関するもの である。
背景技術
[0002] 有機物質を使用した有機 EL素子は、固体発光型の安価な大面積フルカラー表示 素子としての用途が有望視され、多くの開発が行われている。一般に EL素子は、発 光層及び該層をはさんだ一対の対向電極から構成されている。発光は、両電極間に 電界が印加されると、陰極側から電子が注入され、陽極側から正孔が注入される。さ らに、この電子が発光層において正孔と再結合し、励起状態を生成し、励起状態が 基底状態に戻る際にエネルギーを光として放出する現象である。
従来の有機 EL素子は、無機発光ダイオードに比べて駆動電圧が高ぐ発光輝度 や発光効率も低かった。また、特性劣化も著しく実用化には至っていなかった。最近 の有機 EL素子は徐々に改良されているものの、さらなる高発光効率、長寿命が要求 されている。
例えば、単一のモノアントラセンィ匕合物を有機発光材料として用いる技術が開示さ れている(特許文献 1)。し力 ながら、この技術においては、例えば電流密度 165m A/cm2において、 1650cdZm2の輝度しか得られておらず、効率は led/ Aであ つて極めて低く、実用的ではない。また、単一のビスアントラセン化合物を有機発光 材料として用いる技術が開示されている(特許文献 2)。し力、しながら、この技術にお レ、ても、効率は:!〜 3cd/A程度で低ぐ実用化のための改良が求められていた。一 方、有機発光材料として、ジスチリル化合物を用い、これにスチリルァミンなどを添カロ したものを用いた長寿命の有機 EL素子が提案されている(特許文献 3)。しかしなが ら、この素子は、寿命が十分ではなぐさらなる改良が求められていた。 また、モノもしくはビスアントラセンィ匕合物とジスチリルイ匕合物を有機発光媒体層とし て用いた技術が開示されている(特許文献 4)。し力しながら、これらの技術において は、スチリル化合物の共役構造により発光スペクトルが長波長化して色純度を悪化さ せていた。
さらに、特許文献 5には、ジァミノタリセン誘導体を用いた青色発光素子が開示され ている。し力 ながら、この素子は、発光効率に優れるものの、寿命が十分でなぐさ らなる改良が求められていた。
[0003] 特許文献 1 :特開平 11一 3782号公報
特許文献 2:特開平 8— 12600号公報
特許文献 3 :国際公開 WO94Z006157号公報
特許文献 4:特開 2001— 284050号公報
特許文献 5:国際公開 WO04Z044088号公報
発明の開示
発明が解決しょうとする課題
[0004] 本発明は、前記の課題を解決するためになされたもので、寿命が長ぐ高発光効率 で、色純度の高レ、青色発光が得られる有機 EL素子及びそれを実現する芳香族アミ ン誘導体を提供することを目的とするものである。
課題を解決するための手段
[0005] 本発明者は、前記の好ましい性質を有する芳香族ァミン誘導体及びそれを用いた 有機 EL素子を開発すべく鋭意研究を重ねた結果、ジフエニルァミノ基を有し、その ベンゼン環にシクロアルキル基が結合した下記一般式(1)又は(2)で表される芳香 族ァミン誘導体を利用することによりその目的を達成し得ることを見出した。本発明は
、力、かる知見に基づいて完成したものである。
[0006] すなわち、本発明は、下記一般式(1)又は(2)で表される芳香族ァミン誘導体を提 供するものである。
[化 1]
Figure imgf000005_0001
( 1 )
[0007] (一般式(1)中、 A〜A は、それぞれ独立に、水素原子、置換もしくは無置換の炭
1 4
素数 1〜50のアルキル基、置換もしくは無置換の核炭素数 5〜50のァリール基、置 換もしくは無置換の核炭素数 6〜50のァラルキル基、置換もしくは無置換の核炭素 数 3〜50のシクロアルキル基、置換もしくは無置換の炭素数 1〜50のアルコキシル 基、置換もしくは無置換の核炭素数 5〜50のァリールォキシ基、置換もしくは無置換 の核炭素数 5〜50のァリールアミノ基、置換もしくは無置換の炭素数 1〜20のアルキ ルァミノ基、置換もしくは無置換の核炭素数 5〜50の複素環基又はハロゲン原子で ある。
a〜dは、それぞれ独立に、 0〜5の整数であり、 a〜dのそれぞれが 2以上の場合、 A〜Aは、それぞれ同一でも異なっていてもよぐ互いに連結して飽和もしくは不飽
1 4
和の環を形成してもよレ、。また、 Aと A、 Aと A は、それぞれ、連結して飽和もしく
1 2 3 4
は不飽和の環を形成してもよレ、。
ただし、 a〜dの少なくとも 1つは 1以上の整数であって、その場合の A〜Aの少な
1 4 くとも 1つは、置換もしくは無置換の核炭素数 3〜50のシクロアルキル基である。 ) [0008] [化 2]
Figure imgf000006_0001
[0009] (一般式(2)中、 A〜A は、それぞれ独立に、水素原子、置換もしくは無置換の炭
5 8
素数 1〜50のアルキル基、置換もしくは無置換の核炭素数 5〜50のァリール基、置 換もしくは無置換の核炭素数 6〜50のァラルキル基、置換もしくは無置換の核炭素 数 3〜50のシクロアルキル基、置換もしくは無置換の炭素数 1〜50のアルコキシル 基、置換もしくは無置換の核炭素数 5〜50のァリールォキシ基、置換もしくは無置換 の核炭素数 5〜50のァリールアミノ基、置換もしくは無置換の炭素数 1〜20のアルキ ルァミノ基、置換もしくは無置換の核炭素数 5〜50の複素環基又はハロゲン原子で ある。
e〜hは、それぞれ独立に、 0〜5の整数であり、 e〜hのそれぞれが 2以上の場合、 A〜Aは、それぞれ同一でも異なっていてもよぐ互いに連結して飽和もしくは不飽
5 8
和の環を形成してもよレ、。また、 Aと A、 Aと A は、それぞれ、連結して飽和もしく
5 6 7 8
は不飽和の環を形成してもよレ、。
X及び X は、それぞれ独立に、置換もしくは無置換の核炭素数 5〜50のァリーレ
1 2
ン基である。
ただし、 e〜hの少なくとも 1つは 1以上の整数であって、その場合の A〜Aの少な
5 8 くとも 1つは、置換もしくは無置換の核炭素数 3〜50のシクロアルキル基である。 )
[0010] また、本発明は、陰極と陽極間に少なくとも発光層を含む一層又は複数層からなる 有機薄膜層が挟持されている有機 EL素子において、該有機薄膜層の少なくとも一 層が、前記芳香族ァミン誘導体を単独又は混合物の成分として含有する有機 EL素 子を提供するものである。 発明の効果
[0011] 本発明の芳香族ァミン誘導体を用いた有機 EL素子は、低い印加電圧で実用上十 分な発光輝度が得られ、発光効率が高ぐ長時間使用しても劣化しづらく寿命が長 レ、。
図面の簡単な説明
[0012] 園 1]合成実施例 1において得られた本発明の芳香族ァミン誘導体の1 H— NMRス ベクトルを示す図である。
園 2]合成実施例 2において得られた本発明の芳香族ァミン誘導体の1 H— NMRス ベクトルを示す図である。
園 3]合成実施例 3において得られた本発明の芳香族ァミン誘導体の1 H— NMRス ぺクトルを示す図である。
園 4]合成実施例 4において得られた本発明の芳香族ァミン誘導体の1 H— NMRス ぺクトルを示す図である。
発明を実施するための最良の形態
[0013] 本発明の芳香族ァミン誘導体は、下記一般式(1)又は(2)で表される化合物である 以下、一般式(1)で表される芳香族ァミン誘導体について説明する。
[化 3]
Figure imgf000007_0001
( 1 )
[0014] 一般式(1)において、 A〜A は、それぞれ独立に、水素原子、置換もしくは無置
1 4
換の炭素数 1〜50 (好ましくは、炭素数 1〜20)のアルキル基、置換もしくは無置換 の核炭素数 5〜50のァリール基 (好ましくは、核炭素数 5〜20)、置換もしくは無置換 の核炭素数 6〜50のァラルキル基 (好ましくは、核炭素数 6〜20)、置換もしくは無置 換の核炭素数 3〜50 (好ましくは、核炭素数 5〜12)のシクロアルキル基、置換もしく は無置換の炭素数 1〜50 (好ましくは、炭素数 1〜6)のアルコキシル基、置換もしく は無置換の核炭素数 5〜50 (好ましくは、核炭素数 5〜18)のァリールォキシ基、置 換もしくは無置換の核炭素数 5〜50 (好ましくは、核炭素数 5〜18)のァリールァミノ 基、置換もしくは無置換の炭素数 1〜20 (好ましくは、炭素数 1〜6)のアルキルアミノ 基、置換もしくは無置換の核炭素数 5〜50の複素環基 (好ましくは、核炭素数 5〜20 )又はハロゲン原子である。
[0015] A 〜A のアルキル基としては、例えば、メチノレ基、ェチル基、プロピル基、イソプロ
1 4
ピノレ基、ブチル基、 see ブチル基、 tert _ブチル基、ペンチル基、へキシル基、へ プチル基、ォクチル基、ステアリル基、 2—フエ二ルイソプロピル基、トリクロロメチル基 、トリフルォロメチル基、ベンジル基、 α—フエノキシベンジル基、 α , α—ジメチルべ ンジル基、 α , α メチルフエニルベンジル基、 α , α—ジトリフルォロメチルベンジ ル基、トリフエニノレメチノレ基、 a一べンジルォキシベンジル基等が挙げられる。
A 〜A のァリール基としては、例えば、フエニル基、 2 メチルフエニル基、 3 メ
1 4
チルフヱニル基、 4 メチルフエニル基、 4 ェチルフエニル基、ビフヱニル基、 4ーメ チルビフエニル基、 4ーェチルビフエニル基、 4ーシクロへキシルビフエニル基、ター フエニル基、 3, 5—ジクロロフェニル基、ナフチル基、 5—メチルナフチル基、アントリ ル基、ピレニル基等が挙げられる。
[0016] A 〜A のァラルキル基としては、例えば、ベンジル基、 1 フエニルェチル基、 2
1 4
—フエニルェチル基、 1 _フエ二ルイソプロピル基、 2 _フエ二ルイソプロピル基、フエ ニル一 t _ブチル基、 ひ一ナフチルメチル基、 1 _ ひ一ナフチルェチル基、 2 - α - ナフチルェチル基、 1 - α—ナフチルイソプロピル基、 2 _ a—ナフチルイソプロピノレ 基、 β—ナフチルメチル基、 1 _ β—ナフチルェチル基、 2 - β—ナフチルェチル基 、 1 _ β—ナフチルイソプロピル基、 2— β—ナフチルイソプロピル基、 1 _ピロリルメ チル基、 2— ( 1 _ピロリル)ェチル基、 ρ _メチルベンジル基、 m _メチルベンジル基 、 o—メチノレべンジノレ基、 p—クロ口べンジノレ基、 m—クロ口べンジノレ基、 o _クロ口ベン ジノレ基、 p—ブロモベンジル基、 m—ブロモベンジル基、 o—ブロモベンジル基、 p— ョードベンジル基、 m—ョードベンジル基、 o—ョードベンジノレ基、 p—ヒドロキシベン ジノレ基、 m—ヒドロキシベンジル基、 o—ヒドロキシベンジル基、 p—ァミノべンジル基、 m—ァミノべンジル基、 o—ァミノべンジル基、 p—ニトロべンジル基、 m—ニトロべンジ ル基、 o _ニトロべンジル基、 p_シァノベンジル基、 m_シァノベンジル基、 o—シァ ノベンジル基、 1—ヒドロキシ一 2 _フエニルイソプロピル基、 1 _クロ口一 2 _フエ二ノレ イソプロピル基等が挙げられる。
[0017] A〜Aのシクロアルキル基としては、例えば、シクロプロピル基、シクロブチル基、
1 4
シクロペンチル基、シクロへキシル基、シクロへプチル基、シクロォクチル基、シクロノ ニル基、ビシクロへプチル基、ビシクロォクチノレ基、トリシクロへプチル基、ァダマンチ ル基等が挙げられ、シクロペンチル基、シクロへキシル基、シクロへプチル基、ビシク 口へプチル基、ビシクロォクチル基、ァダマンチル基が好ましい。
A〜Aのアルコキシル基としては、例えば、メトキシ基、エトキシ基、プロポキシ基
1 4
、イソプロポキシ基、ブトキシ基、イソブトキシ基、 sec—ブトキシ基、 tert—ブトキシ基 、各種ペンチルォキシ基、各種へキシルォキシ基等が挙げられる。
A〜Aのァリールォキシ基としては、例えば、フエノキシ基、トリルォキシ基、ナフ
1 4
チルォキシ基等が挙げられる。
[0018] A〜A のァリールアミノ基としては、例えば、ジフエニルァミノ基、ジトリルアミノ基、
1 4
ジナフチルァミノ基、ナフチルフヱニルァミノ基等が挙げられる。
A〜Aのアルキルアミノ基としては、例えば、ジメチルァミノ基、ジェチルァミノ基、
1 4
ジへキシルァミノ基等が挙げられる。
A〜Aの複素環基としては、例えば、イミダゾール、ベンゾイミダゾール、ピロール
1 4
、フラン、チォフェン、ベンゾチォフェン、ォキサジァゾリン、インドリン、力ルバゾール 、ピリジン、キノリン、イソキノリン、ベンゾキノン、ピラロジン、イミダゾリジン、ピぺリジン 等の残基が挙げられる。
A〜Aのハロゲン原子としては、例えば、フッ素原子、塩素原子、臭素原子等が
1 4
挙げられる。
[0019] 一般式(1)において、 a〜dは、それぞれ独立に、 0〜5の整数を表わし、 0〜3であ ると好ましぐ 0〜2であるとさらに好ましい。
a〜dのそれぞれが 2以上の場合、 A〜A は、それぞれ同一でも異なっていてもよ
1 4
く、互いに連結して飽和もしくは不飽和の環を形成してもよレ、。また、 Aと A 、 Aと A
1 2 3 は、それぞれ、連結して飽和もしくは不飽和の環を形成してもよい。
4
この環としては、例えば、シクロブタン、シクロペンタン、シクロへキサン、ァダマンタ ン、ノルボルナン等の炭素数 4〜 12のシクロアルカン、シクロブテン、シクロペンテン、 シクロへキセン、シクロヘプテン、シクロオタテン等の炭素数 4〜 12のシクロアルケン、 シクロへキサジェン、シクロへブタジエン、シクロォクタジェン等の炭素数 6〜 12のシ クロアルカジエン、ベンゼン、ナフタレン、フエナントレン、アントラセン、ピレン、クリセ ン、ァセナフチレン等の炭素数 6〜50の芳香族環、イミダゾール、ピロール、フラン、 チォフェン、ピリジン等の炭素数 5〜50の複素環などが挙げられる。
[0020] 前記 A〜Aの置換基としては、置換もしくは無置換の核炭素数 5〜50のァリール
1 4
基、置換もしくは無置換の炭素数 1〜50のアルキル基、置換もしくは無置換の炭素 数 1〜50のアルコキシ基、置換もしくは無置換の核炭素数 6〜50のァラルキル基、 置換もしくは無置換の核炭素数 5〜50のァリールォキシ基、置換もしくは無置換の核 炭素数 5〜50のァリールチオ基、置換もしくは無置換の炭素数 1〜50のアルコキシ カルボニル基、アミノ基、ハロゲン原子、シァノ基、ニトロ基、ヒドロキシル基、カルボキ シノレ基等が挙げられる。
[0021] 一般式(1)においては、 a〜dの少なくとも 1つは 1以上の整数であって、その場合 の A〜Aの少なくとも 1つは、置換もしくは無置換の核炭素数 3〜50のシクロアルキ
1 4
ノレ基であり、このシクロアルキル基力 シクロペンチル基、シクロへキシル基、シクロへ プチル基、ビシクロへプチル基、ビシクロォクチル基、ァダマンチル基であると好まし レ、。
[0022] 次に、一般式 (2)で表される芳香族ァミン誘導体について説明する。
[化 4]
Figure imgf000011_0001
(2)
[0023] 一般式(2)において、 A〜A は、一般式(1)の A〜Aと同じであり、各基の具体
5 8 1 4
例や好ましレ、基も同様の例が挙げられる。
一般式(2)において、 e〜hは、それぞれ独立に、 0〜5の整数を表わし、 0〜3であ ると好ましぐ 0〜2であるとさらに好ましい。
e〜hのそれぞれが 2以上の場合、 A〜Aは、それぞれ同一でも異なっていてもよ
5 8
く、互いに連結して飽和もしくは不飽和の環を形成してもよレ、。また、 Aと A 、 Aと A
5 6 7 は、それぞれ、連結して飽和もしくは不飽和の環を形成してもよレ、。この環としては、
8
一般式(1)の A〜Aと同様の例が挙げられる。
1 4
[0024] 一般式(2)において、 X及び X は、それぞれ独立に、置換もしくは無置換の核炭
1 2
素数 5〜50のァリーレン基である。
X及び Xのァリーレン基としては、例えば、フエ二レン基、ナフチレン基、ビフエ二
1 2
レン基、アントラニレン基、ペリレニレン基、ピレニレン基等が挙げられ、フエ二レン基 、ナフチレン基、ビフエ二レン基が好ましい。
一般式(2)においては、 e〜hの少なくとも 1つは 1以上の整数であって、その場合 の A〜Aの少なくとも 1つは、置換もしくは無置換の核炭素数 3〜50のシクロアルキ
5 8
ノレ基であり、このシクロアルキル基力 シクロペンチル基、シクロへキシル基、シクロへ プチル基、ビシクロへプチル基、ビシクロォクチル基、ァダマンチル基であると好まし レ、。
本発明の一般式(1)又は(2)で表される芳香族ァミン誘導体の具体例を以下に示 すが、これら例示化合物に限定されるものではない。なお、 Meはメチル基を示す。
[0025] [化 5]
Figure imgf000012_0001
] //:さ 0ε900ί1£/ O/-S090SAV
Figure imgf000013_0001
so [8200]
Figure imgf000014_0001
Zdf/X3d 21- S0.Z80/900Z OAV
Figure imgf000015_0001
] O (AI>A J3~ J0~ j3~(A4>d =\ Me
D-61 /=\ Me b-o o
D-62 r= Me bo
D-63 =\ Me o
D - 64 o o
D-65
Me Me
D - 66
Me Me
D-67
Me Me
D-68
Me Me
D-69
D-70 /=\ Me l== Me οΛο
/= Me =\ Me
D-71
D-72
D-73 o o -ο-Ο
D-74
Me Me
D-75 0]
Figure imgf000017_0001
1]
Figure imgf000018_0001
12]
[ετ^>] [εεοο]
Figure imgf000019_0001
66l700C/900Zdf/X3d LY S0.Z80/900Z OAV
Figure imgf000020_0001
[0034] 次に、本発明の芳香族ァミン誘導体の製造方法について説明する。
本発明の一般式(1)で表される芳香族ァミン誘導体の製造方法は、特に限定され ず公知の方法で製造すればよぐ例えば Rev. Roum. Chim. , 34 1907 (1989) (Μ. D. Banciaら)に記載された方法で得られる 6, 12—ジブ口モクリセンを、ジァリ ールァミンによりアミノ化して芳香族ァミンを製造する。
また、一般式(2)で表される芳香族ァミン誘導体の製造方法は、特に限定されず公 知の方法で製造すればよぐ例えば 6, 12—ジブ口モクリセンと、トリアリールアミノボ ロン酸によるカップリング反応により芳香族ァミンを製造する。
[0035] 本発明の一般式(1)又は(2)で表される芳香族ァミン誘導体は、発光中心であるジ アミノクリセン構造に、置換基を有するベンゼン環を連結していることにより、化合物 同士の会合が防止されるため、寿命が長くなる。また、窒素原子に結合する末端ベン ゼン環にシクロアルキル基が結合すると、化合物同士の会合がより防止されるため、 さらに寿命が向上する。また、固体状態で強い蛍光性を持ち、電場発光性にも優れ、 蛍光量子効率が 0. 3以上である。さらに、金属電極又は有機薄膜層からの優れた正 孔注入性及び正孔輸送性、金属電極又は有機薄膜層からの優れた電子注入性及 び電子輸送性を併せて持ち合わせているので、有機 EL素子用発光材料、特にドー ビング材料として有効に用いられ、さらに、他の正孔輸送性材料、電子輸送性材料 又はドーピング材料を使用してもさしつかえない。
[0036] 本発明の有機 EL素子は、陽極と陰極間に一層又は複数層の有機薄膜層を形成し た素子である。一層型の場合、陽極と陰極との間に発光層を設けている。発光層は、 発光材料を含有し、それに加えて陽極から注入した正孔、又は陰極から注入した電 子を発光材料まで輸送させるために、正孔注入材料又は電子注入材料を含有しても 良い。一般式(1)又は(2)の芳香族ァミン誘導体は、高い発光特性を持ち、優れた 正孔注入性、正孔輸送特性及び電子注入性、電子輸送特性を有しているので、発 光材料又はドーピング材料として発光層に使用することができる。
本発明の有機 EL素子においては、発光層が、本発明の芳香族ァミン誘導体を含 有すると好ましぐ含有量としては通常 0.:!〜 20重量%であり、:!〜 10重量%含有す るとさらに好ましレ、。また、本発明の芳香族ァミン誘導体は、極めて高い蛍光量子効 率、高い正孔輸送能力及び電子輸送能力を併せ持ち、均一な薄膜を形成すること ができるので、この芳香族ァミン誘導体のみで発光層を形成することも可能である。 また、本発明の有機 EL素子は、陰極と陽極間に少なくとも発光層を含む二層以上 力 なる有機薄膜層が挟持されている有機 EL素子において、陽極と発光層との間に 本発明の芳香族ァミン誘導体を主成分とする有機層を有しても好ましレ、。この有機層 としては、正孔注入層、正孔輸送層等が挙げられる。
[0037] さらに、本発明の芳香族ァミン誘導体をドーピング材料として含有する場合、ホスト 材料として下記一般式(3)のアントラセン誘導体、(4)のアントラセン誘導体及び(5) のピレン誘導体から選ばれる少なくとも一種を含有すると好ましい。
[化 14]
Figure imgf000021_0001
(3) [0038] (一般式(3)中、 X及び X は、それぞれ独立に、水素原子、置換もしくは無置換の
1 2
炭素数 1〜50のアルキル基、置換もしくは無置換の核炭素数 5〜50のァリール基、 置換もしくは無置換の核炭素数 6〜50のァラルキル基、置換もしくは無置換の核炭 素数 3〜50のシクロアルキル基、置換もしくは無置換の炭素数 1〜50のアルコキシ ル基、置換もしくは無置換の核炭素数 5〜50のァリールォキシ基、置換もしくは無置 換の核炭素数 5〜50のァリールアミノ基、置換もしくは無置換の炭素数 1〜20のアル キルアミノ基、置換もしくは無置換の核炭素数 5〜50の複素環基、又はハロゲン原子 であり、 e、 fは、それぞれ独立に 0〜4の整数である。 e、 fが 2以上の場合、 X、 X は
1 2
、それぞれ同一でも異なっていてもよい。
Ar及び Ar は、それぞれ独立に、置換もしくは無置換の核炭素数 5〜50のァリー
1 2
ル基、置換もしくは無置換の核炭素数 5〜50の複素環基であり、 Ar及び Arの少な
1 2 くとも一方は、置換もしくは無置換の核炭素数 10〜50の縮合環含有ァリール基であ る。
mは:!〜 3の整数である。 mが 2以上の場合は、 [ ]内の基は、同じでも異なってい てあよレヽ。 )
前記 X及び X並びに Ar及び Arの各基の具体例や置換基は、前記一般式(1)
1 2 1 2
で説明したものと同様の例が挙げられる。
[0039] [化 15]
Figure imgf000022_0001
(一般式 (4)中、 X〜X は、それぞれ独立に、水素原子、置換もしくは無置換の炭
1 3
素数 1〜50のアルキル基、置換もしくは無置換の核炭素数 5〜50のァリール基、置 換もしくは無置換の核炭素数 6〜50のァラルキル基、置換もしくは無置換の核炭素 数 3〜50のシクロアルキル基、置換もしくは無置換の炭素数 1〜50のアルコキシル 基、置換もしくは無置換の核炭素数 5〜50のァリールォキシ基、置換もしくは無置換 の核炭素数 5〜50のァリールアミノ基、置換もしくは無置換の炭素数 1〜20のアルキ ルァミノ基、置換もしくは無置換の核炭素数 5〜50の複素環基、又はハロゲン原子で あり、 e、 f及び gは、それぞれ独立に 0〜4の整数である。 e、 f、 gが 2以上の場合、 X
1
、x 、x は、それぞれ同一でも異なっていてもよい。
2 3
Ar は、置換もしくは無置換の核炭素数 10〜50の縮合環含有ァリール基であり、 A
1
r は、置換もしくは無置換の核炭素数 5〜50のァリール基である。
3
nは:!〜 3の整数である。 nが 2以上の場合は、 [ ]内の基は、同じでも異なっていて あよレヽ。)
前記 X〜X並びに Ar及び Arの各基の具体例や置換基は、前記一般式(1 )で
1 3 1 3
説明したものと同様の例が挙げられる。
一般式(3)及び (4)のアントラセン誘導体の具体例を以下に示すが、これら例示化 合物に限定されるものではない。
[化 16]
[Ll^ [Z OO]
Figure imgf000024_0001
P00 /900Zd£/LDd zz S0Z.J80/900Z OAV
Figure imgf000025_0001
[0043] [化 18]
[6I^]>] [ 00]
Figure imgf000026_0001
l700C/900Zdf/X3d S0 .Z80/900Z OAV
Figure imgf000027_0001
[0045] [化 20] (9)
Figure imgf000028_0001
P00 00Zd£/lDd 92 S0Z.J80/900Z OAV [0047] (一般式(5)中、 Ar及び Ar は、それぞれ独立に、置換もしくは無置換の核炭素数
5 6
6〜50のァリール基である。
L及び L は、それぞれ独立に、置換もしくは無置換のフエ二レン基、置換もしくは
1 2
無置換のナフタレニレン基、置換もしくは無置換のフルォレニレン基又は置換もしく は無置換のジベンゾシロリレン基である。
sは 0〜2の整数、 pは 1〜4の整数、 qは 0〜2の整数、 rは 0〜4の整数である。 また、 L又は Ar は、ピレンの 1〜5位のいずれかに結合し、 L又は Ar は、ピレン
1 5 2 6 の 6〜10位のいずれかに結合する。
ただし、 p + rが偶数の時、 Ar, Ar, L, L は下記 (1)又は (2)を満たす。
5 6 1 2
(1) Ar≠Ar及び Z又は L≠L (ここで≠は、異なる構造の基であることを示す。 )
5 6 1 2
(2) Ar =Arかっし =Lの時
5 6 1 2
(2-1) s≠q及び/又は p≠r、又は
(2-2) s = qかつ p = rの時、
(2-2-1) L及び L 、又はピレンが、それぞれ Ar及び Ar上の異なる結合位置
1 2 5 6 に結合しているか、(2-2-2) L及び L 、又はピレンが、 Ar及び Ar上の同じ結合位
1 2 5 6
置で結合している場合、 L及び L又は Ar及び Ar のピレンにおける置換位置が 1
1 2 5 6
位と 6位、又は 2位と 7位である場合はなレ、。 )
前記 Ar及び Ar並びに L及び L の各基の具体例や置換基は、前記一般式(1)
5 6 1 2
で説明したものと同様の例が挙げられる。
[0048] 一般式(5)のピレン誘導体の具体例を以下に示すが、これら例示化合物に限定さ れるものではない。
[化 22] £Z^ [6 00]
Figure imgf000030_0001
Figure imgf000031_0001
本発明において、有機薄膜層が複数層型の有機 EL素子としては、(陽極/正孔注 入層/発光層/陰極)、(陽極/発光層/電子注入層/陰極)、(陽極/正孔注入 層/発光層/電子注入層/陰極)等の構成で積層したものが挙げられる。
前記複数層には、必要に応じて、本発明の芳香族ァミン誘導体に加えてさらなる公 知の発光材料、ドーピング材料、正孔注入材料や電子注入材料を使用することもで きる。有機 EL素子は、前記有機薄膜層を複数層構造にすることにより、クェンチング による輝度や寿命の低下を防ぐことができる。必要があれば、発光材料、ドーピング 材料、正孔注入材料や電子注入材料を組み合わせて使用することができる。また、ド 一ビング材料により、発光輝度や発光効率の向上、赤色や青色の発光を得ることも できる。また、正孔注入層、発光層、電子注入層は、それぞれ二層以上の層構成に より形成されても良い。その際には、正孔注入層の場合、電極から正孔を注入する層 を正孔注入層、正孔注入層から正孔を受け取り発光層まで正孔を輸送する層を正孔 輸送層と呼ぶ。同様に、電子注入層の場合、電極から電子を注入する層を電子注入 層、電子注入層から電子を受け取り発光層まで電子を輸送する層を電子輸送層と呼 ぶ。これらの各層は、材料のエネルギー準位、耐熱性、有機層又は金属電極との密 着性等の各要因により選択されて使用される。
[0051] 本発明の芳香族ァミン誘導体と共に発光層に使用できる上記一般式(3)〜(5)以 外のホスト材料又はドーピング材料としては、例えば、ナフタレン、フエナントレン、ノレ ブレン、アントラセン、テトラセン、ピレン、ペリレン、タリセン、デカシクレン、コロネン、 テトラフエニルシクロペンタジェン、ペンタフェニルシクロペンタジェン、フルオレン、ス ピロフルオレン、 9, 10—ジフエ二ルアントラセン、 9, 10—ビス(フエ二ルェチニル)ァ ントラセン、 1, 4 ビス(9 ' ェチニルアントラセニル)ベンゼン等の縮合多量芳香族 化合物及びそれらの誘導体、トリス(8 キノリノラート)アルミニウム、ビス一(2—メチ ノレ 8—キノリノラート) 4— (フエニルフエノリナート)アルミニウム等の有機金属錯 体、トリアリールァミン誘導体、スチリルァミン誘導体、スチルベン誘導体、クマリン誘 導体、ピラン誘導体、ォキサゾン誘導体、ベンゾチアゾール誘導体、ベンゾォキサゾ ール誘導体、ベンゾイミダゾール誘導体、ピラジン誘導体、ケィ皮酸エステル誘導体 、ジケトピロロピロール誘導体、アタリドン誘導体、キナクリドン誘導体等が挙げられる が、これらに限定されるものではない。
[0052] 正孔注入材料としては、正孔を輸送する能力を持ち、陽極からの正孔注入効果、 発光層又は発光材料に対して優れた正孔注入効果を有し、発光層で生成した励起 子の電子注入層又は電子注入材料への移動を防止し、かつ薄膜形成能力の優れた 化合物が好ましい。具体的には、フタロシアニン誘導体、ナフタロシアニン誘導体、ポ ルフィリン誘導体、ォキサゾール、ォキサジァゾール、トリァゾール、イミダゾール、イミ ダゾロン、イミダゾールチオン、ピラゾリン、ピラゾロン、テトラヒドロイミダゾール、ォキ サゾール、ォキサジァゾール、ヒドラゾン、ァシルヒドラゾン、ポリアリールアルカン、ス チノレベン、ブタジエン、ベンジジン型トリフエニルァミン、スチリルァミン型トリフエニル ァミン、ジァミン型トリフエニルァミン等と、それらの誘導体、及びポリビュルカルバゾ ール、ポリシラン、導電性高分子等の高分子材料が挙げられるが、これらに限定され るものではない。
[0053] 本発明の有機 EL素子において使用できる正孔注入材料の中で、さらに効果的な 正孔注入材料は、芳香族三級アミン誘導体及びフタロシアニン誘導体である。
芳香族三級アミン誘導体としては、例えば、トリフエニルァミン、トリトリルァミン、トリル ジフエニルァミン、 N, N,一ジフエニル一 N, N ' - (3—メチルフエ二ル)一 1, 1,一ビ フエニル一 4, 4,一ジァミン、 N, N, N,, N,一(4—メチルフエ二ル)一 1 , 1,一フエ二 ノレ 4, 4, 一ジァミン、 N, N, Ν' , Ν,一(4—メチルフエ二ル)一 1 , 1 '—ビフエ二ル 4, 4'ージァミン、 Ν, N '—ジフエ二ルー Ν, Ν,ージナフチルー 1 , 1,ービフエニル —4, 4,一ジァミン、 Ν, N ' - (メチルフエニル) Ν, N' - (4— η—ブチルフエニル) —フエナントレン一 9, 10—ジァミン、 Ν, Ν ビス(4—ジ一 4—トリルァミノフエニル) 4 フエニノレーシクロへキサン等、又はこれらの芳香族三級アミン骨格を有したオリ ゴマーもしくはポリマーである力 これらに限定されるものではない。
[0054] フタロシアニン(pc)誘導体としては、例えば、 H Pc、 CuPc、 CoPc、 NiPc、 ZnPc
、 PdPc、 FePc、 MnPc、 ClAlPc、 ClGaPc、 ClInPc、 ClSnPc、 CI SiPc、 (HO) Al
Pc、(H〇)GaPc、 VOPc、 Ti〇Pc、 Mo〇Pc、 GaPc— O— GaPc等のフタロシア二 ン誘導体及びナフタロシアニン誘導体がある力 S、これらに限定されるものではない。 また、本発明の有機 EL素子は、発光層と陽極との間に、これらの芳香族三級アミン 誘導体及び/又はフタロシアニン誘導体を含有する層、例えば、前記正孔輸送層又 は正孔注入層を形成してなると好ましい。
[0055] 電子注入材料としては、電子を輸送する能力を持ち、陰極からの電子注入効果、 発光層又は発光材料に対して優れた電子注入効果を有し、発光層で生成した励起 子の正孔注入層への移動を防止し、かつ薄膜形成能力の優れた化合物が好ましい 。具体的には、フルォレノン、アントラキノジメタン、ジフエノキノン、チォピランジオキ シド、ォキサゾール、ォキサジァゾール、トリァゾーノレ、イミダゾール、ペリレンテトラ力 ルボン酸、フレオレニリデンメタン、アントラキノジメタン、アントロン等とそれらの誘導 体が挙げられるが、これらに限定されるものではない。また、正孔注入材料に電子受 容物質を、電子注入材料に電子供与性物質を添加することにより増感させることもで きる。
本発明の有機 EL素子において、さらに効果的な電子注入材料は、金属錯体化合 物及び含窒素五員環誘導体である。
前記金属錯体化合物としては、例えば、 8—ヒドロキシキノリナ一トリチウム、ビス(8 —ヒドロキシキノリナート)亜鉛、ビス(8—ヒドロキシキノリナート)銅、ビス(8—ヒドロキ シキノリナート)マンガン、トリス(8—ヒドロキシキノリナート)アルミニウム、トリス(2—メ チル _ 8—ヒドロキシキノリナート)アルミニウム、トリス(8—ヒドロキシキノリナート)ガリ ゥム、ビス(10—ヒドロキシベンゾ [h]キノリナート)ベリリウム、ビス(10—ヒドロキシべ ンゾ [h]キノリナート)亜鉛、ビス(2—メチルー 8 キノリナート)クロ口ガリウム、ビス(2 ーメチルー 8 キノリナート)(o クレゾラート)ガリウム、ビス(2—メチルー 8 キノリナ ート)(1—ナフトラート)アルミニウム、ビス(2—メチル 8 キノリナート)(2 ナフトラ ート)ガリウム等が挙げられる力 これらに限定されるものではない。
前記含窒素五員誘導体としては、例えば、ォキサゾール、チアゾール、ォキサジァ ゾール、チアジアゾール、トリァゾール誘導体が好ましい。具体的には、 2, 5 ビス( 1—フエ二ル)一 1 , 3, 4—ォキサゾール、ジメチル POPOP、 2, 5 ビス(1—フエ二 ノレ) 1 , 3, 4—チアゾール、 2, 5—ビス(1—フエ二ル)一 1 , 3, 4—ォキサジァゾ一 ル、 2_ (4, _tert_ブチルフエニル) _ 5 _ (4 "—ビフエニル) 1 , 3, 4—ォキサジァ ゾール、 2, 5_ビス(1—ナフチル) _ 1, 3, 4_ォキサジァゾール、 1 , 4_ビス [2_ ( 5 _フエニルォキサジァゾリル) ]ベンゼン、 1 , 4_ビス [2— (5—フエ二ルォキサジァ ゾリノレ) _4_tert_ブチルベンゼン]、 2- (4' _tert_ブチルフエニル) _ 5_ (4" —ビフエ二ノレ) - 1, 3, 4—チアジアゾーノレ、 2, 5 _ビス(1—ナフチル)_ 1, 3, 4- チアジアゾール、 1 , 4 _ビス [2— (5—フエ二ルチアジァゾリル) ]ベンゼン、 2_ (4, — tert—ブチルフエ二ル)一 5— (4"—ビフエニル)一1 , 3, 4_トリァゾーノレ、 2, 5— ビス(1—ナフチル) 1, 3, 4—トリァゾール、 1, 4—ビス [2— (5—フエニルトリアゾリ ノレ) ]ベンゼン等が挙げられる力 これらに限定されるものではない。
[0057] 本発明の有機 EL素子においては、発光層中に、一般式(1)又は(2)から選ばれる 少なくとも一種の芳香族ァミン誘導体の他に、発光材料、ドーピング材料、正孔注入 材料及び電子注入材料の少なくとも 1種が同一層に含有されてもよい。また、本発明 により得られた有機 EL素子の、温度、湿度、雰囲気等に対する安定性の向上のため に、素子の表面に保護層を設けたり、シリコンオイル、樹脂等により素子全体を保護 することも可能である。
本発明の有機 EL素子の陽極に使用される導電性材料としては、 4eVより大きな仕 事関数を持つものが適しており、炭素、アルミニウム、バナジウム、鉄、コバルト、ニッ ケル、タングステン、銀、金、白金、パラジウム等及びそれらの合金、 ITO基板、 NES A基板に使用される酸化スズ、酸化インジウム等の酸化金属、さらにはポリチォフェン やポリピロール等の有機導電性樹脂が用いられる。陰極に使用される導電性物質と しては、 4eVより小さな仕事関数を持つものが適しており、マグネシウム、カルシウム、 錫、鉛、チタニウム、イットリウム、リチウム、ルテニウム、マンガン、ァノレミニゥム、フッ化 リチウム等及びそれらの合金が用いられる力 これらに限定されるものではなレ、。合 金としては、マグネシウム/銀、マグネシウム/インジウム、リチウム/アルミニウム等 が代表例として挙げられる力 これらに限定されるものではない。合金の比率は、蒸 着源の温度、雰囲気、真空度等により制御され、適切な比率に選択される。陽極及 び陰極は、必要があれば二層以上の層構成により形成されていても良い。
[0058] 本発明の有機 EL素子では、効率良く発光させるために、少なくとも一方の面は素 子の発光波長領域において充分透明にすることが望ましい。また、基板も透明である ことが望ましい。透明電極は、上記の導電性材料を使用して、蒸着やスパッタリング 等の方法で所定の透光性が確保するように設定する。発光面の電極は、光透過率を 10%以上にすることが望ましい。基板は、機械的、熱的強度を有し、透明性を有する ものであれば限定されるものではなレ、が、ガラス基板及び透明性樹脂フィルムがある 。透明性樹脂フィルムとしては、ポリエチレン、エチレン—酢酸ビュル共重合体、ェチ レン一ビュルアルコール共重合体、ポリプロピレン、ポリスチレン、ポリメチルメタアタリ レート、ポリ塩ィ匕ビニル、ポリビニルアルコール、ポリビュルブチラール、ナイロン、ポリ エーテルエーテルケトン、ポリサルホン、ポリエーテルサルフォン、テトラフルォロェチ レン パーフルォロアルキルビニルエーテル共重合体、ポリビニルフルオライド、テト ラフルォロエチレン一エチレン共重合体、テトラフルォロエチレン一へキサフルォロプ ロピレン共重合体、ポリクロ口トリフルォロエチレン、ポリビニリデンフルオライド、ポリエ ステル、ポリカーボネート、ポリウレタン、ポリイミド、ポリエーテルイミド、ポリイミド、ポリ プロピレン等が挙げられる。
[0059] 本発明の有機 EL素子の各層の形成は、真空蒸着、スパッタリング、プラズマ、ィォ ンプレーティング等の乾式成膜法やスピンコーティング、デイツビング、フローコーティ ング等の湿式成膜法のいずれの方法を適用することができる。膜厚は特に限定され るものではないが、適切な膜厚に設定する必要がある。膜厚が厚すぎると、一定の光 出力を得るために大きな印加電圧が必要になり効率が悪くなる。膜厚が薄すぎるとピ ンホール等が発生して、電界を印加しても充分な発光輝度が得られない。通常の膜 厚は 5nm〜10 /i mの範囲が適しているが、 10nm〜0. 2 /i mの範囲がさらに好まし レ、。
湿式成膜法の場合、各層を形成する材料を、エタノール、クロ口ホルム、テトラヒドロ フラン、ジォキサン等の適切な溶媒に溶解又は分散させて薄膜を形成するが、その 溶媒はいずれであっても良い。また、いずれの有機薄膜層においても、成膜性向上 、膜のピンホール防止等のため適切な樹脂や添加剤を使用しても良い。使用の可能 な樹脂としては、ポリスチレン、ポリカーボネート、ポリアリレート、ポリエステル、ポリア ミド、ポリウレタン、ポリスルフォン、ポリメチルメタタリレート、ポリメチルアタリレート、セ ルロース等の絶縁性樹脂及びそれらの共重合体、ポリ _N_ビュルカルバゾール、 ポリシラン等の光導電性樹脂、ポリチォフェン、ポリピロール等の導電性樹脂を挙げ られる。また、添加剤としては、酸化防止剤、紫外線吸収剤、可塑剤等を挙げられる
[0060] 本発明の有機 EL素子は、壁掛けテレビのフラットパネルディスプレイ等の平面発光 体、複写機、プリンター、液晶ディスプレイのバックライト又は計器類等の光源、表示 板、標識灯等に利用できる。また、本発明の材料は、有機 EL素子だけでなぐ電子 写真感光体、光電変換素子、太陽電池、イメージセンサー等の分野においても使用 できる。
実施例
[0061] 次に、実施例を用いて本発明をさらに詳しく説明する。
合成実施例 1 (化合物(D— 24)の合成)
アルゴン気流下冷却管付き 300mL三口フラスコ中に、 6, 12—ジブ口モクリセン 3. 8g (10mmol)、 (4' シクロへキシルフェニル) 3, 5 ジメチルフエニルァミン 7· 0 g (25mmol)、酢酸パラジウム 0· 03g (l . 5mol%)、トリ一 t ブチルホスフィン 0· 06 g (3mol%)、 t ブトキシナトリウム 2· 4g (25mmol)、乾燥トルエン lOOmLを加えた 後、 100°Cにて一晩加熱攪拌した。反応終了後、析出した結晶を濾取し、トルエン 5 OmL、メタノール lOOmLにて洗浄し、淡黄色粉末 6. 6gを得た。このものは、 N MRスペクトル(図 1)及び FD— MS (フィールドデイソブーシヨンマススペクトル)の測 定により、化合物(D— 24)と同定した(収率 85%)。なお、 NMRスペクトルは、 Brucker社製 DRX— 500 (重塩化メチレン溶媒)を使用した測定した。また、得られ た化合物についてトルエン溶液中で測定した最大吸収波長は 407nm、最大蛍光波 長は 453nmであった。
[0062] 合成実施例 2 (化合物(D— 26)の合成)
アルゴン気流下冷却管付き 300mL三口フラスコ中に、 6, 12—ジブ口モクリセン 3. 8g (10mmol)、 (4'—シクロへキシルフェニル)一4—イソプロピルフエニルァミン 7. 3g (25mmol)、酢酸パラジウム 0. 03g (l . 5mol%)、トリ一 t—ブチルホスフィン 0. 0 6g (3mol%)、 t—ブトキシナトリウム 2. 4g (25mmol)、乾燥トルエン lOOmLを加え た後、 100°Cにて一晩加熱攪拌した。反応終了後、析出した結晶を濾取し、トルエン 50mL、メタノール lOOmLにて洗浄し、淡黄色粉末 7. 7gを得た。このものは、合成 実施例 1と同様にして1 H— NMRスペクトル(図 2)及び FD— MSの測定により、化合 物(D— 26)と同定した (収率 95%)。また、得られた化合物についてトルエン溶液中 で測定した最大吸収波長は 407nm、最大蛍光波長は 455nmであった。
[0063] 合成実施例 3 (化合物(D— 36)の合成)
アルゴン気流下冷却管付き 300mL三口フラスコ中に、 6, 12 ジブ口モクリセン 3. 8g (10mmol)、ビス(4ーシクロへキシルフヱニル)ァミン 8 · 3g (25mmol)、酢酸パラ ジゥム 0· 03g (l . 5mol%)、トリー t—ブチルホスフィン 0· 06g (3mol%)、 tーブトキ シナトリウム 2· 4g (25mmol)、乾燥トルエン lOOmLを加えた後、 100°Cにて一 B免カロ 熱攪拌した。反応終了後、析出した結晶を濾取し、トルエン 50mL、メタノール 100m Lにて洗浄し、淡黄色粉末 6. 7gを得た。このものは、合成実施例 1と同様にして1 H — NMRスペクトル(図 3)及び FD— MSの測定により、化合物(D_ 36)と同定した( 収率 78%)。また、得られた化合物についてトルエン溶液中で測定した最大吸収波 長は 409nm、最大蛍光波長は 457nmであった。
[0064] 合成実施例 4 (化合物(D— 79)の合成)
アルゴン気流下冷却管付き 300mL三口フラスコ中に、 6, 12—ジブ口モクリセン 3. 8g (10mmol)、 N_ (4—イソプロピルフエニル) _4_ (4—プロビルシクロへキシル) フエニルァミン 8. 4g (25mmol)、酢酸パラジウム 0. 03g (l . 5mol%)、トリ _t—ブ チルホスフィン 0· 06g (3mol%)、 t—ブトキシナトリウム 2· 4g (25mmol)、乾燥トノレ ェン lOOmLをカ卩えた後、 100°Cにて一晩加熱攪拌した。反応終了後、析出した結晶 を濾取し、トルエン 50mL、メタノーノレ lOOmLにて洗浄し、淡黄色粉末 8· 5gを得た 。このものは、合成実施例 1と同様にして1 H— NMRスペクトル(図 4)及び FD— MS の測定により、化合物(D— 79)と同定した (収率 95%)。また、得られた化合物につ いてトルエン溶液中で測定した最大吸収波長 408nm、最大蛍光波長 456nmであつ た。
[0065] 実施例 1
25 X 75 X 1. 1mmサイズのガラス基板上に、膜厚 120nmのインジウムスズ酸化物 力 なる透明電極を設けた。このガラス基板に紫外線及びオゾンを照射して洗浄した 後、真空蒸着装置にこの基板を設置した。
まず、正孔注入層として、 N', N"—ビス [4—(ジフヱニルァミノ)フヱニル]— N',N" —ジフエ二ルビフエ二ノレ _4, 4'—ジァミンを 60nmの厚さに蒸着したのち、その上に 正孔輸送層として、 N, N, Ν',Ν'—テトラキス(4—ビフエニル)一4, 4'—ベンジジン を 20nmの厚さに蒸着した。次いで、 10, 10 '—ビス [1 , 1',4',1"]テルフエニル一 2 —ィル—9, 9' _ビアントラセニルと上記化合物(D— 26)とを、重量比 40 : 2で同時 蒸着し、厚さ 40nmの発光層を形成した。
次に、電子注入層として、トリス(8—ヒドロキシキノリナト)アルミニウムを 20nmの厚さ に蒸着した。次に、弗化リチウムを lnmの厚さに蒸着し、次いでアルミニウムを 150η mの厚さに蒸着した。このアルミニウム/弗化リチウムは陰極として機能する。このよう にして有機 EL素子を作製した。
得られた素子に通電試験を行ったところ、電圧 6. 5V、電流密度 10mA/cm2にて 、発光効率 6. 3cdZA、発光輝度 630cdZm2の青色発光(発光極大波長: 464nm )が得られた。初期輝度 500cdZm2で直流の連続通電試験を行ったところ、半減寿 命は 10000時間であった。
[0066] 実施例 2
実施例 1におレ、て、化合物(D— 26)の代わりに化合物(D - 22)を用いたこと以外 は同様にして有機 EL素子を作製した。
得られた素子に通電試験を行ったところ、電圧 6. 5V、電流密度 10mA/cm2にて 、発光効率 6. 7cd/A、発光輝度 672cd/m2の青色発光(発光極大波長: 466nm )が得られた。初期輝度 500cd/m2で直流の連続通電試験を行ったところ、半減寿 命は 11500時間であった。
[0067] 実施例 3
実施例 1におレ、て、化合物(D— 26)の代わりに化合物(D - 24)を用いたこと以外 は同様にして有機 EL素子を作製した。
得られた素子に通電試験を行ったところ、電圧 6. 5V、電流密度 10mA/cm2にて 、発光効率 6. lcd/A、発光輝度 610cd/m2の青色発光(発光極大波長: 462nm )が得られた。初期輝度 500cdZm2で直流の連続通電試験を行ったところ、半減寿 命は 8000時間であった。
[0068] 比較例 1
実施例 1において、化合物(D— 26)の代わりに 6, 12—ビス(4—イソプロピルフエ ニル _p—トリルァミノ)タリセンを用いたこと以外は同様にして有機 EL素子を作製し た。
得られた素子に通電試験を行ったところ、電圧 6. 3V、電流密度 10mA/cm2にて 、発光効率 5. 9cd/A、発光輝度 594cd/m2の青色発光(発光極大波長: 462nm )が得られた。初期輝度 500cd/m2で直流の連続通電試験を行ったところ、半減寿 命は 4590時間であった。
以上の結果から、実施例:!〜 3の有機 EL素子に比べ、末端ベンゼン環にシクロア ルキル基が結合していない比較例 1の有機 EL素子は、化合物同士の会合のため、 半減寿命が短くなることが分かる。
産業上の利用可能性
以上詳細に説明したように、本発明の芳香族ァミン誘導体を用いた有機 EL素子は 、低い印加電圧で実用上十分な発光輝度が得られ、発光効率が高ぐ長時間使用し ても劣化しづらく寿命が長い。このため、壁掛テレビの平面発光体やディスプレイの バックライト等の光源として有用である。

Claims

(1 )
(一般式(1)中、 A〜A は、それぞれ独立に、水素原子、置換もしくは無置換の炭
1 4
素数 1〜50のアルキル基、置換もしくは無置換の核炭素数 5〜50のァリール基、置 換もしくは無置換の核炭素数 6〜50のァラルキル基、置換もしくは無置換の核炭素 数 3〜50のシクロアルキル基、置換もしくは無置換の炭素数 1〜50のアルコキシル 基、置換もしくは無置換の核炭素数 5〜50のァリールォキシ基、置換もしくは無置換 の核炭素数 5〜50のァリールアミノ基、置換もしくは無置換の炭素数 1〜20のアルキ ルァミノ基、置換もしくは無置換の核炭素数 5〜50の複素環基又はハロゲン原子で ある。
a〜dは、それぞれ独立に、 0〜5の整数であり、 a〜dのそれぞれが 2以上の場合、 A〜Aは、それぞれ同一でも異なっていてもよぐ互いに連結して飽和もしくは不飽
1 4
和の環を形成してもよレ、。また、 Aと A、 Aと A は、それぞれ、連結して飽和もしく
1 2 3 4
は不飽和の環を形成してもよレ、。
ただし、 a〜dの少なくとも 1つは 1以上の整数であって、その場合の A〜Aの少な
1 4 くとも 1つは、置換もしくは無置換の核炭素数 3〜50のシクロアルキル基である。 ) 下記一般式(2)で表わされる芳香族ァミン誘導体。
[化 2]
Figure imgf000042_0001
(一般式(2)中、 A〜A は、それぞれ独立に、水素原子、置換もしくは無置換の炭
5 8
素数 1〜50のアルキル基、置換もしくは無置換の核炭素数 5〜50のァリール基、置 換もしくは無置換の核炭素数 6〜50のァラルキル基、置換もしくは無置換の核炭素 数 3〜50のシクロアルキル基、置換もしくは無置換の炭素数 1〜50のアルコキシル 基、置換もしくは無置換の核炭素数 5〜50のァリールォキシ基、置換もしくは無置換 の核炭素数 5〜50のァリールアミノ基、置換もしくは無置換の炭素数 1〜20のアルキ ルァミノ基、置換もしくは無置換の核炭素数 5〜50の複素環基又はハロゲン原子で ある。
e〜hは、それぞれ独立に、 0〜5の整数であり、 e〜hのそれぞれが 2以上の場合、 A〜Aは、それぞれ同一でも異なっていてもよぐ互いに連結して飽和もしくは不飽
5 8
和の環を形成してもよい。また、 Aと A、 Aと A は、それぞれ、連結して飽和もしく
5 6 7 8
は不飽和の環を形成してもよレ、。
X及び X は、それぞれ独立に、置換もしくは無置換の核炭素数 5〜50のァリーレ
1 2
ン基である。
ただし、 e〜hの少なくとも 1つは 1以上の整数であって、その場合の A〜Aの少な
5 8 くとも 1つは、置換もしくは無置換の核炭素数 3〜50のシクロアルキル基である。 )
[3] 前記一般式(1)において、 a〜dの少なくとも 1つは 1以上の整数であって、その場 合の A〜Aの少なくとも 1つは、置換もしくは無置換のシクロペンチル基、置換もしく
1 4
は無置換のシクロへキシノレ基又は置換もしくは無置換のシクロへプチル基である請 求項 1に記載の芳香族ァミン誘導体。
[4] 前記一般式(2)において、 e〜hの少なくとも 1つは 1以上の整数であって、その場 合の A〜Aの少なくとも 1つは、置換もしくは無置換のシクロペンチル基、置換もしく
5 8
は無置換のシクロへキシル基又は置換もしくは無置換のシクロへプチル基である請 求項 2に記載の芳香族ァミン誘導体。
[5] 前記一般式(1)において、 a〜dの少なくとも 1つは 1以上の整数であって、その場 合の A〜Aの少なくとも 1つは、置換もしくは無置換のビシクロへプチル基、置換も
1 4
しくは無置換のビシクロォクチル基又は置換もしくは無置換のァダマンチル基である 請求項 1に記載の芳香族ァミン誘導体。
[6] 前記一般式(2)において、 e〜hの少なくとも 1つは 1以上の整数であって、その場 合の A〜Aの少なくとも 1つは、置換もしくは無置換のビシクロへプチル基、置換も
5 8
しくは無置換のビシクロォクチル基又は置換もしくは無置換のァダマンチル基である 請求項 2に記載の芳香族ァミン誘導体。
[7] 有機エレクト口ルミネッセンス素子用のドーピング材料である請求項 1又は 2に記載 の芳香族ァミン誘導体。
[8] 陰極と陽極間に少なくとも発光層を含む一層又は複数層力 なる有機薄膜層が挟 持されている有機エレクト口ルミネッセンス素子において、該有機薄膜層の少なくとも 一層が、請求項 1又は 2に記載の芳香族ァミン誘導体を単独又は混合物の成分とし て含有する有機エレクト口ルミネッセンス素子。
[9] 前記発光層が、請求項 1又は 2に記載の芳香族ァミン誘導体を単独又は混合物の 成分として含有する請求項 8に記載の有機エレクト口ルミネッセンス素子。
[10] 前記発光層が、請求項 1又は 2に記載の芳香族ァミン誘導体を 0.:!〜 20重量%含 有する請求項 8に記載の有機エレクト口ルミネッセンス素子。
[11] 青色系発光する請求項 8に記載の有機エレクト口ルミネッセンス素子。
PCT/JP2006/300499 2005-02-07 2006-01-17 芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子 WO2006082705A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP06711779A EP1847525B1 (en) 2005-02-07 2006-01-17 Aromatic amine derivative and organic electroluminescent device using same
DE602006018864T DE602006018864D1 (de) 2005-02-07 2006-01-17 Aromatisches aminderivat und organisches elektrolumineszentes gerät, bei dem dieses verwendet wird
CN200680004165XA CN101115708B (zh) 2005-02-07 2006-01-17 芳香族胺衍生物以及使用其的有机电致发光元件
JP2007501523A JP4308294B2 (ja) 2005-02-07 2006-01-17 芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-030580 2005-02-07
JP2005030580 2005-02-07

Publications (1)

Publication Number Publication Date
WO2006082705A1 true WO2006082705A1 (ja) 2006-08-10

Family

ID=36777095

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/300499 WO2006082705A1 (ja) 2005-02-07 2006-01-17 芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子

Country Status (8)

Country Link
US (1) US7737628B2 (ja)
EP (1) EP1847525B1 (ja)
JP (1) JP4308294B2 (ja)
KR (1) KR101267124B1 (ja)
CN (1) CN101115708B (ja)
DE (1) DE602006018864D1 (ja)
TW (1) TW200635877A (ja)
WO (1) WO2006082705A1 (ja)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1792893A1 (en) * 2004-08-31 2007-06-06 Idemitsu Kosan Co., Ltd. Aromatic amine derivative and organic electroluminescent device using same
JP2009182322A (ja) * 2008-01-29 2009-08-13 Qinghua Univ 有機エレクトロルミネッセンス装置
WO2010013520A1 (ja) * 2008-07-30 2010-02-04 出光興産株式会社 インデノピレン化合物、並びにそれを用いた有機薄膜太陽電池用材料および有機薄膜太陽電池
JP2010056547A (ja) * 2008-07-31 2010-03-11 Mitsubishi Chemicals Corp 有機電界発光素子用組成物、有機薄膜、有機電界発光素子、有機el表示装置および有機el照明
JP2010238924A (ja) * 2009-03-31 2010-10-21 Idemitsu Kosan Co Ltd ベンゾフルオランテン化合物及びそれを用いた有機薄膜太陽電池
WO2011037828A2 (en) * 2009-09-22 2011-03-31 University Of Utah Research Foundation Device comprising deuterated organic interlayer
JP2011233602A (ja) * 2010-04-23 2011-11-17 Fujifilm Corp 有機電界発光素子用材料及び有機電界発光素子
CN102414294A (zh) * 2009-05-07 2012-04-11 E.I.内穆尔杜邦公司 用于发光应用的氘代化合物
JP2012509346A (ja) * 2008-11-19 2012-04-19 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 青色または緑色ルミネセンス用途のクリセン化合物
JP2012527470A (ja) * 2009-05-19 2012-11-08 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー ルミネセンス用途のクリセン化合物
JP2013502742A (ja) * 2009-08-24 2013-01-24 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 有機発光ダイオード照明器具
US8531100B2 (en) 2008-12-22 2013-09-10 E I Du Pont De Nemours And Company Deuterated compounds for luminescent applications
US8759818B2 (en) 2009-02-27 2014-06-24 E I Du Pont De Nemours And Company Deuterated compounds for electronic applications

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1978586A (zh) * 2002-11-12 2007-06-13 出光兴产株式会社 用于有机电致发光器件的材料和使用该材料的有机电致发光器件
US8709613B2 (en) * 2004-05-12 2014-04-29 Idemitsu Kosan Co., Ltd. Aromatic amine derivative, organic electroluminescent element employing the same, and process for producing aromatic amine derivative
EP1790631A4 (en) * 2004-09-17 2007-10-31 Idemitsu Kosan Co AROMATIC AMINE DERIVATIVE AND ORGANIC ELECTROLUMINESCENT DEVICE USING THE DERIVATIVE
JP4263700B2 (ja) * 2005-03-15 2009-05-13 出光興産株式会社 芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子
JP2007137837A (ja) 2005-11-21 2007-06-07 Idemitsu Kosan Co Ltd 芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子
US8115378B2 (en) * 2006-12-28 2012-02-14 E. I. Du Pont De Nemours And Company Tetra-substituted chrysenes for luminescent applications
US20080303428A1 (en) * 2007-06-01 2008-12-11 Vsevolod Rostovtsev Chrysenes for green luminescent applications
TW200907021A (en) * 2007-06-01 2009-02-16 Du Pont Blue luminescent materials
JP5466150B2 (ja) 2007-06-01 2014-04-09 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 緑色発光材料
CN101679207B (zh) * 2007-06-01 2014-05-28 E.I.内穆尔杜邦公司 用于深蓝色发光应用的*
US8263973B2 (en) 2008-12-19 2012-09-11 E I Du Pont De Nemours And Company Anthracene compounds for luminescent applications
US8932733B2 (en) * 2008-12-19 2015-01-13 E I Du Pont De Nemours And Company Chrysene derivative host materials
US20110057173A1 (en) * 2009-02-27 2011-03-10 E. I. Du Pont De Nemours And Company Deuterated compounds for electronic applications
KR101582707B1 (ko) * 2009-04-03 2016-01-05 이 아이 듀폰 디 네모아 앤드 캄파니 전기활성 재료
CN102428158B (zh) * 2009-05-19 2014-06-25 E.I.内穆尔杜邦公司 用于电子应用的氘代化合物
US9133095B2 (en) 2009-07-01 2015-09-15 E I Du Pont De Nemours And Company Chrysene compounds for luminescent applications
KR101545774B1 (ko) * 2009-08-13 2015-08-19 이 아이 듀폰 디 네모아 앤드 캄파니 크라이센 유도체 재료
EP2473580A4 (en) * 2009-09-03 2013-02-20 Du Pont DETERERATED COMPOUNDS FOR ELECTRONIC APPLICATIONS
KR20120091144A (ko) 2009-09-29 2012-08-17 이 아이 듀폰 디 네모아 앤드 캄파니 발광 응용을 위한 중수소화된 화합물
KR101761435B1 (ko) 2009-10-29 2017-07-25 이 아이 듀폰 디 네모아 앤드 캄파니 전자 응용을 위한 중수소화된 화합물
EP2495229B1 (en) * 2009-10-30 2016-06-01 Mitsubishi Chemical Corporation Low-molecular compound, polymer, material for electronic devices, composition for electronic devices, organic electroluminescent element, organic solar cell element, display and lighting equipment
KR101137388B1 (ko) * 2009-11-13 2012-04-20 삼성모바일디스플레이주식회사 유기 전계 발광 장치
US8617720B2 (en) 2009-12-21 2013-12-31 E I Du Pont De Nemours And Company Electroactive composition and electronic device made with the composition
WO2012087955A1 (en) 2010-12-20 2012-06-28 E. I. Du Pont De Nemours And Company Compositions for electronic applications
WO2015146957A1 (ja) * 2014-03-27 2015-10-01 日産化学工業株式会社 電荷輸送性ワニス

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09268283A (ja) * 1996-01-29 1997-10-14 Toyo Ink Mfg Co Ltd 有機エレクトロルミネッセンス素子用発光材料およびそれを使用した有機エレクトロルミネッセンス素子
JP2001131541A (ja) * 1998-12-28 2001-05-15 Idemitsu Kosan Co Ltd 有機エレクトロルミネッセンス素子用材料およびそれを使用した有機エレクトロルミネッセンス素子
WO2004044088A1 (ja) * 2002-11-12 2004-05-27 Idemitsu Kosan Co., Ltd. 有機エレクトロルミネッセンス素子用材料及びそれを用いた有機エレクトロルミネッセンス素子

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3951693A (en) 1974-01-17 1976-04-20 Motorola, Inc. Ion-implanted self-aligned transistor device including the fabrication method therefor
DE3236534A1 (de) 1982-10-02 1984-04-05 Robert Bosch Gmbh, 7000 Stuttgart Antiblockierregelsystem
US5219692A (en) * 1989-03-29 1993-06-15 Ricoh Company, Ltd. Electrophotographic photoconductors and tertiary amine compounds having condensed polycyclic group for use in the same
US5811834A (en) 1996-01-29 1998-09-22 Toyo Ink Manufacturing Co., Ltd. Light-emitting material for organo-electroluminescence device and organo-electroluminescence device for which the light-emitting material is adapted
JP2001052868A (ja) 1999-08-05 2001-02-23 Idemitsu Kosan Co Ltd 有機エレクトロルミネッセンス素子
KR100869615B1 (ko) 1998-12-28 2008-11-21 이데미쓰 고산 가부시키가이샤 유기 전기발광 소자용 재료 및 이를 포함하는 유기전기발광 소자
CN101068041B (zh) * 2002-07-19 2010-08-18 出光兴产株式会社 有机电致发光装置和有机发光介质
EP1612202B1 (en) * 2003-04-10 2013-07-31 Idemitsu Kosan Co., Ltd. Aromatic amine derivative and organic electroluminescent element employing the same
EP1792893A4 (en) * 2004-08-31 2007-11-21 Idemitsu Kosan Co AROMATIC AMINE DERIVATIVE AND ORGANIC ELECTROLUMINESCENT DEVICE USING THIS

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09268283A (ja) * 1996-01-29 1997-10-14 Toyo Ink Mfg Co Ltd 有機エレクトロルミネッセンス素子用発光材料およびそれを使用した有機エレクトロルミネッセンス素子
JP2001131541A (ja) * 1998-12-28 2001-05-15 Idemitsu Kosan Co Ltd 有機エレクトロルミネッセンス素子用材料およびそれを使用した有機エレクトロルミネッセンス素子
WO2004044088A1 (ja) * 2002-11-12 2004-05-27 Idemitsu Kosan Co., Ltd. 有機エレクトロルミネッセンス素子用材料及びそれを用いた有機エレクトロルミネッセンス素子

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1847525A4 *

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1792893A1 (en) * 2004-08-31 2007-06-06 Idemitsu Kosan Co., Ltd. Aromatic amine derivative and organic electroluminescent device using same
EP1792893A4 (en) * 2004-08-31 2007-11-21 Idemitsu Kosan Co AROMATIC AMINE DERIVATIVE AND ORGANIC ELECTROLUMINESCENT DEVICE USING THIS
JP2009182322A (ja) * 2008-01-29 2009-08-13 Qinghua Univ 有機エレクトロルミネッセンス装置
US10026904B2 (en) 2008-01-29 2018-07-17 Kunshan Visionox Technology Co., Ltd. Organic light emitting devices
US9196856B2 (en) 2008-01-29 2015-11-24 Kunshan Visionox Technology Co., Ltd. Organic light emitting devices
WO2010013520A1 (ja) * 2008-07-30 2010-02-04 出光興産株式会社 インデノピレン化合物、並びにそれを用いた有機薄膜太陽電池用材料および有機薄膜太陽電池
US8759590B2 (en) 2008-07-30 2014-06-24 Idemitsu Kosan Co., Ltd. Indenopyrene compound, organic thin film solar cell material using the same, and organic thin film solar cell
JP5513386B2 (ja) * 2008-07-30 2014-06-04 出光興産株式会社 インデノピレン化合物、並びにそれを用いた有機薄膜太陽電池用材料および有機薄膜太陽電池
JP2010056547A (ja) * 2008-07-31 2010-03-11 Mitsubishi Chemicals Corp 有機電界発光素子用組成物、有機薄膜、有機電界発光素子、有機el表示装置および有機el照明
JP2012509346A (ja) * 2008-11-19 2012-04-19 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 青色または緑色ルミネセンス用途のクリセン化合物
US8531100B2 (en) 2008-12-22 2013-09-10 E I Du Pont De Nemours And Company Deuterated compounds for luminescent applications
US8759818B2 (en) 2009-02-27 2014-06-24 E I Du Pont De Nemours And Company Deuterated compounds for electronic applications
US8890131B2 (en) 2009-02-27 2014-11-18 E I Du Pont De Nemours And Company Deuterated compounds for electronic applications
JP2010238924A (ja) * 2009-03-31 2010-10-21 Idemitsu Kosan Co Ltd ベンゾフルオランテン化合物及びそれを用いた有機薄膜太陽電池
CN102414294A (zh) * 2009-05-07 2012-04-11 E.I.内穆尔杜邦公司 用于发光应用的氘代化合物
JP2012527470A (ja) * 2009-05-19 2012-11-08 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー ルミネセンス用途のクリセン化合物
JP2013502742A (ja) * 2009-08-24 2013-01-24 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー 有機発光ダイオード照明器具
WO2011037828A3 (en) * 2009-09-22 2011-06-16 University Of Utah Research Foundation Device comprising deuterated organic interlayer
WO2011037828A2 (en) * 2009-09-22 2011-03-31 University Of Utah Research Foundation Device comprising deuterated organic interlayer
JP2011233602A (ja) * 2010-04-23 2011-11-17 Fujifilm Corp 有機電界発光素子用材料及び有機電界発光素子
US9368728B2 (en) 2010-04-23 2016-06-14 Udc Ireland Limited Material for organic electroluminescence device, and organic electroluminescence device

Also Published As

Publication number Publication date
JPWO2006082705A1 (ja) 2008-06-26
CN101115708B (zh) 2010-10-13
EP1847525A1 (en) 2007-10-24
TWI354658B (ja) 2011-12-21
US20060194074A1 (en) 2006-08-31
TW200635877A (en) 2006-10-16
JP4308294B2 (ja) 2009-08-05
KR101267124B1 (ko) 2013-05-23
DE602006018864D1 (de) 2011-01-27
EP1847525B1 (en) 2010-12-15
KR20070101306A (ko) 2007-10-16
US7737628B2 (en) 2010-06-15
EP1847525A4 (en) 2009-06-17
CN101115708A (zh) 2008-01-30

Similar Documents

Publication Publication Date Title
JP4308294B2 (ja) 芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子
JP4263700B2 (ja) 芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子
JP5090639B2 (ja) 芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子
JP4267623B2 (ja) 芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子
JP4832304B2 (ja) 芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子
KR101173714B1 (ko) 방향족 아민 유도체 및 이를 이용한 유기 전기 발광 소자
WO2007058035A1 (ja) 芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子
WO2008016018A1 (fr) Matériau de composant organique électroluminescent et composant organique électroluminescent utilisant celui-ci
JP2007230960A (ja) 芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子
WO2006117974A1 (ja) 芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子
JPWO2006030527A1 (ja) 芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子
JPWO2010018843A1 (ja) 芳香族アミン誘導体及びそれを用いた有機エレクトロルミネッセンス素子
KR20070053753A (ko) 방향족 아민 유도체 및 이를 이용한 유기 전기발광 소자

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007501523

Country of ref document: JP

Ref document number: 2006711779

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 200680004165.X

Country of ref document: CN

Ref document number: 1020077018026

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 3459/CHENP/2007

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 2006711779

Country of ref document: EP