WO2006080062A1 - スイッチ回路 - Google Patents

スイッチ回路 Download PDF

Info

Publication number
WO2006080062A1
WO2006080062A1 PCT/JP2005/001081 JP2005001081W WO2006080062A1 WO 2006080062 A1 WO2006080062 A1 WO 2006080062A1 JP 2005001081 W JP2005001081 W JP 2005001081W WO 2006080062 A1 WO2006080062 A1 WO 2006080062A1
Authority
WO
WIPO (PCT)
Prior art keywords
inductor
capacitor
switch
input
output terminal
Prior art date
Application number
PCT/JP2005/001081
Other languages
English (en)
French (fr)
Inventor
Masatake Hangai
Tamotsu Nishino
Shinnosuke Soda
Kenichi Miyaguchi
Kenji Kawakami
Masaomi Tsuru
Satoshi Hamano
Moriyasu Miyazaki
Tadashi Takagi
Original Assignee
Mitsubishi Denki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Denki Kabushiki Kaisha filed Critical Mitsubishi Denki Kabushiki Kaisha
Priority to US11/795,335 priority Critical patent/US7675383B2/en
Priority to JP2007500375A priority patent/JP4348390B2/ja
Priority to EP05704187A priority patent/EP1843368A4/en
Priority to PCT/JP2005/001081 priority patent/WO2006080062A1/ja
Publication of WO2006080062A1 publication Critical patent/WO2006080062A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H59/00Electrostatic relays; Electro-adhesion relays
    • H01H59/0009Electrostatic relays; Electro-adhesion relays making use of micromechanics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/10Auxiliary devices for switching or interrupting
    • H01P1/12Auxiliary devices for switching or interrupting by mechanical chopper
    • H01P1/127Strip line switches
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/10Auxiliary devices for switching or interrupting
    • H01P1/15Auxiliary devices for switching or interrupting by semiconductor devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • H01H9/54Circuit arrangements not adapted to a particular application of the switching device and for which no provision exists elsewhere

Definitions

  • the present invention relates to a switch circuit such as a single-pole single-throw switch, a single-pole double-throw switch, and a multi-pole multi-throw switch that is small in size and has low loss and high isolation.
  • the conventional single-pole double-throw (SPDT) switch is input to one input terminal by controlling two MEMS (microelectromechanical systems) switches independently.
  • the path of the high-frequency signal can be controlled by two output terminals (for example, see Non-Patent Document 1).
  • Non-Patent Document 1 Sergio P. Pacheco, Dimitrios Peroulis and Linda P. B. Katehi "MEMS Single-Pole Double-Throw (SPDT) X and K-Band Switching (circuits, IEEE MTT-S, 2001)
  • the conventional single-pole double-throw switch as described above requires two control signal lines and g / 4 lines to control two MEMS switches independently. There is a problem that it is disadvantageous to the reduction of the cost and loss.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to obtain a switch circuit that can achieve a small size, low loss, and high isolation at a high frequency. .
  • the switch circuit according to the present invention includes a first input / output terminal, a first inductor connected to the first input / output terminal, a capacitor connected to the first inductor, A second input / output terminal connected to the capacitor; a first MEMS switch connected to one end of the capacitor; a second MEMS switch connected to the other end of the capacitor; And a second inductor connected between the first MEMS switch and the second MEMS switch, wherein the inductance of the first inductor is L, and the second inductor
  • L is the inductance
  • C is the capacitance of the capacitor
  • f is the frequency used.
  • the switch circuit according to the present invention covers a substrate having a cavity, a second electrode formed on the cavity surface, a second inductor formed on the cavity surface, and the cavity space.
  • the support film formed on the substrate, the first electrode formed on the support film, the first input / output terminal formed on the support film, and the support film are formed on the support film.
  • the support film is displaced by the electrostatic force acting between the second and first electrodes in accordance with the connected second input / output terminal and a control signal applied to the second electrode,
  • the inductance of inductor 1 is L
  • the capacitance of the capacitor is C
  • the switch circuit according to the present invention is advantageous in that a small size, low loss and high isolation can be realized at high frequencies.
  • FIG. 1 is a circuit diagram showing a configuration of a single-pole single-throw switch according to Embodiment 1 of the present invention.
  • FIG. 2 is an equivalent circuit diagram of the single-pole single-throw switch of FIG.
  • FIG. 3 is an equivalent circuit diagram of the single-pole single-throw switch in FIG.
  • FIG. 4 is a circuit diagram showing a configuration of a single-pole single-throw switch according to Embodiment 2 of the present invention.
  • FIG. 5 is an equivalent circuit diagram of the single pole single throw switch of FIG.
  • FIG. 6 is an equivalent circuit diagram of the single-pole single-throw switch in FIG.
  • FIG. 7 is a plan view showing the structure of a single-pole single-throw switch according to Embodiment 3 of the present invention.
  • FIG. 8 is a plan view showing the structure of a single-pole single-throw switch according to Embodiment 3 of the present invention.
  • FIG. 9 is a cross-sectional view showing an AA ′ cross section of the single-pole single-throw switch of FIG.
  • FIG. 10 is a cross-sectional view showing the AA ′ cross section of the single-pole single-throw switch of FIG.
  • FIG. 11 is a plan view showing the structure of a single-pole single-throw switch according to Embodiment 4 of the present invention.
  • FIG. 12 is a plan view showing the structure of a single-pole single-throw switch according to Embodiment 4 of the present invention.
  • FIG. 13 is a cross-sectional view showing the AA ′ cross section of the single-pole single-throw switch of FIG.
  • FIG. 14 is a cross-sectional view showing the AA ′ cross section of the single-pole single-throw switch of FIG.
  • FIG. 15 is a circuit diagram showing a configuration of a single-pole double-throw switch according to Embodiment 5 of the present invention.
  • FIG. 16 is an equivalent circuit diagram of the single-pole double-throw switch of FIG.
  • FIG. 17 is an equivalent circuit diagram of the single-pole double-throw switch of FIG.
  • FIG. 18 is a plan view showing the structure of a single-pole double-throw switch according to Embodiment 6 of the present invention.
  • FIG. 19 is a plan view showing the structure of a single-pole double-throw switch according to Embodiment 6 of the present invention.
  • FIG. 20 is a cross-sectional view showing an AA ′ cross section of the single-pole double-throw switch in FIG.
  • FIG. 21 is a cross-sectional view showing an AA ′ cross section of the single-pole double-throw switch in FIG.
  • Examples 1 to 16 will be described.
  • Examples 3 and 4 correspond to Examples 1 and 2, respectively, and relate to specific structures.
  • Example 6 corresponds to Example 5 and relates to a specific structure.
  • FIG. 1 is a circuit diagram showing a configuration of a single-pole single-throw switch according to Embodiment 1 of the present invention.
  • symbol shows the same or equivalent part.
  • the single-pole single-throw switch according to Example 1 includes a first input / output terminal 1, a second input / output terminal 2, and a first input connected to the first input / output terminal 1.
  • Inductor 3 capacitor 4 connected between first inductor 3 and second input / output terminal 2, first MEMS switch 5 connected to one end of capacitor 4, and the other end of capacitor 4
  • a second MEMS switch 6 connected to the first MEMS switch 5 and a second inductor 7 connected between the first MEMS switch 5 and the second MEMS switch 6.
  • FIG. 2 shows an equivalent circuit diagram when the first and second MEMS switches 5 and 6 are in an OFF state.
  • the signal is output to the second input / output terminal 2.
  • the single-pole single-throw switch is turned on (O N).
  • FIG. 3 shows an equivalent circuit diagram when the first and second MEMS switches 5 and 6 are in the ON ( ⁇ N) state. At this time, the single-pole single-throw switch is turned off.
  • FIG. 4 is a circuit diagram showing a configuration of a single-pole single-throw switch according to Embodiment 2 of the present invention.
  • the single-pole single-throw switch according to Example 2 includes a first input / output terminal 1, a second input / output terminal 2, and an inductor 3 connected to the first input / output terminal 1.
  • a first capacitor 4 connected between the inductor 3 and the second input / output terminal 2, a first MEMS switch 5 connected to one end of the first capacitor 4, and a first capacitor 4
  • a second MEMS switch 6 connected to the other end, and a second capacitor 8 connected between the first MEMS switch 5 and the second MEMS switch 6 are provided.
  • FIG. 5 shows an equivalent circuit diagram when the first and second MEMS switches 5 and 6 are in an OFF state.
  • FIG. 6 shows an equivalent circuit diagram when the first and second MEMS switches 5 and 6 are in the ON state. At this time, the single-pole single-throw switch is turned off.
  • FIGS. 7 and 8 are plan views showing the structure of the single-pole single-throw switch according to Embodiment 3 of the present invention.
  • FIG. 7 is a diagram showing the structure of a single-pole single-throw switch that does not include a support film.
  • FIG. 8 is a diagram showing the structure of a single-pole single-throw switch that includes a support film.
  • the single-pole single-throw switch according to Example 3 includes a substrate 10 having a square recess (cavity) at the center, such as a square ashtray, and a second electrode formed in the recess.
  • a first input / output terminal 15, a first inductor 16, a capacitor 17, and a second input / output terminal 18 are provided. Note that one end of the first inductor 16 on the capacitor 17 side penetrates the support film 13 to form a leg portion as shown in FIGS. 9 and 10 described later. Similarly, one end of the second input / output terminal 18 on the capacitor 17 side penetrates the support film 13 and constitutes a leg as shown in FIGS. 9 and 10 described later.
  • the first input / output terminal 15, the second input / output terminal 18, the first inductor 16, the capacitor 17, and the second inductor 12 of the third embodiment are the same as those of the first embodiment. These correspond to the first input / output terminal 1, the second input / output terminal 2, the first inductor 3, the capacitor 4, and the second inductor 7, respectively.
  • FIG. 10 is a cross-sectional view taken along the line AA ′ when a control signal is applied to the second electrode 11 in FIG.
  • the support layer 13 is displaced by an electrostatic force acting between the second electrode 11 and the first electrode 14, and one end of the capacitor 17 (that is, the first inductor) 16 legs) and one end of the second inductor 12, and the other end of the capacitor 17 (ie, the leg of the second input / output terminal 18) and the other end of the second inductor 12 Both are in contact with two or more contacts (the first and second MEMS switches are on).
  • the high frequency signal is output to the second input / output terminal 18. At this time, the single-pole single-throw switch is turned off.
  • FIG. 9 is a cross-sectional view taken along the line AA ′ when no control signal is applied to the second electrode 11 in FIG. At this time, the single-pole single-throw switch is turned on (ON).
  • FIGS. 11 and 12 are plan views showing the structure of the single-pole single-throw switch according to Embodiment 4 of the present invention.
  • FIG. 11 is a diagram showing the structure of a single-pole single-throw switch that does not include a support film.
  • FIG. 12 is a view showing the structure of a single-pole single-throw switch including a support film.
  • the single-pole single-throw switch according to Example 4 includes a substrate 10 having a square recess (cavity) at the center, such as a square ashtray, and a second electrode formed in the recess.
  • a first input / output terminal 15, an inductor 20, a first capacitor 17, and a second input / output terminal 21 are provided. It should be noted that both ends of the inductor 20 pass through the support film 13 to form legs as shown in FIGS. 13 and 14 described later.
  • the first input / output terminal 15, the second input / output terminal 21, the inductor 20, the first capacitor 17, and the second capacitor 19 in the fourth embodiment are the same as those in the second embodiment. This corresponds to the first input / output terminal 1, the second input / output terminal 2, the inductor 3, the first capacitor 4, and the second capacitor 8, respectively.
  • FIG. 14 is a cross-sectional view taken along line AA when a control signal is applied to the second electrode 11 in FIG.
  • the support layer 13 is displaced by the electrostatic force acting between the second electrode 11 and the first electrode 14 in accordance with a control signal applied to the second electrode 11, and one end of the second capacitor 19 is
  • the leg of one end of the inductor 20 and the other end of the second capacitor 19 and the leg of the other end of the inductor 20 are in contact with each other with at least two contacts (the first and second MEMS switches are turned on ( ON) state).
  • the frequency signal is output to the second input / output terminal 21. At this time, this single-pole single-throw switch is turned off.
  • FIG. 13 is a cross-sectional view taken along the line AA ′ when no control signal is applied to the second electrode 11 in FIG. At this time, the single-pole single-throw switch is turned on.
  • FIG. 15 is a circuit diagram showing a configuration of a single-pole double-throw switch according to Embodiment 5 of the present invention.
  • the single-pole double-throw switch according to Example 5 is the first terminal connected to the input terminal 30, the third MEM S switch 31, the second output terminal 32, and the input terminal 30.
  • FIG. 16 shows an equivalent circuit diagram when the first, second, and third MEMS switches 5, 6, and 31 are in the on (ON) state.
  • the capacitance L of the capacitor L and the capacitance C of the capacitor 4 is ⁇ / 2 ⁇ at the operating frequency f
  • CL 1/2 ⁇ CL
  • the signal is output to the second output terminal 32.
  • FIG. 17 shows an equivalent circuit diagram when the first, second, and third MEMS switches 5, 6, and 31 are in the OFF (OFF) state. At this time, the high frequency signal input from the input terminal 30 is output to the first output terminal 2.
  • FIG. 15 is an example of a single-pole double-throw switch configured by combining the single-pole single-throw switch according to the first embodiment and one MEMS switch 31.
  • a single-pole double-throw feature characterized by switching the signal path with one control signal by combining the single-pole single-throw switch shown in Example 1 or Example 2 and one MEMS switch.
  • the power to construct a switch is S.
  • FIGS. 18 and 19 are plan views showing the structure of the single-pole double-throw switch according to Embodiment 6 of the present invention.
  • FIG. 18 is a diagram showing a structure of a single-pole double-throw switch that does not include a support film.
  • FIG. 19 is a diagram showing the structure of a single-pole double-throw switch including a support film.
  • the single-pole double-throw switch according to Example 6 includes a substrate 10 having a square recess (cavity) at the center, such as a square ashtray, and a second formed in the recess. Electrode 11, second inductor 12 formed in the recess, second output terminal 22 formed in the recess, support film 13 formed on substrate 10 so as to cover the recess, and support film First electrode 14 formed on 13, input terminal 15 formed on support film 13, first inductor 16 formed on support film 13, and formed on support film 13 A capacitor 17, a first output terminal 18 formed on the support film 13, and a conductive metal pattern 24 formed on the support film 13 are provided.
  • the shapes of the first inductor 16 and the first output terminal 18 are the same as those of the first inductor 16 and the second input / output terminal 18 of the third embodiment. Further, as shown in FIGS. 20 and 21, which will be described later, the right end of the conductive metal pattern 24 forms a leg portion through the support film 13.
  • FIG. 20 is a cross-sectional view taken along line AA when a control signal is applied to the second electrode 11 in FIG.
  • the support film 13 is displaced by the electrostatic force acting between the second electrode 11 and the first electrode 14, and one end of the capacitor 17 (that is, The first inductor 16 leg) and one end of the second inductor 12, and the other end of the capacitor 17 (ie, the leg of the first output terminal 18) and the other end of the second inductor 12
  • Both are in contact with two or more contacts (the first and second MEMS switches are in the ON state), and at least one of the legs of the conductive metal pattern 24 and the second output terminal 22 are in contact with each other.
  • the contact point is set to the contact state (the third MEMS switch is on ( ⁇ N) state).
  • the signal is output to the second output terminal 22.
  • FIG. 21 is a cross-sectional view taken along the line AA ′ in FIG. 19 when the control signal is not applied to the second electrode 11. At this time, the high frequency signal input from the input terminal 15 is output to the first output terminal 18.
  • FIG. 19 is an example of a single-pole double-throw switch configured by combining the single-pole single-throw switch according to the third embodiment and one MEMS switch.
  • a single-pole double-throw switch that switches the signal path with one control signal by combining the single-pole single-throw switch shown in Example 3 or Example 4 with one MEMS switch. Can be configured
  • a single-pole double-throw switch can be configured by combining two single-pole single-throw switches in any one of Embodiments 1 and 2.
  • a multi-pole multi-throw switch can be configured by combining at least two single-pole single-throw switches in any one of Embodiments 1 and 2.
  • a single-pole double-throw switch can be configured by combining two single-pole single-throw switches of any of Embodiments 3 to 4.

Landscapes

  • Semiconductor Integrated Circuits (AREA)
  • Electronic Switches (AREA)
  • Keying Circuit Devices (AREA)

Abstract

 この発明に係るスイッチ回路は、第1の入出力端子と、前記第1の入出力端子に接続された第1のインダクタと、前記第1のインダクタに接続されたキャパシタと、前記キャパシタに接続された第2の入出力端子と、前記キャパシタの一端に接続された第1のMEMSスイッチと、前記キャパシタの他端に接続された第2のMEMSスイッチと、前記第1のMEMSスイッチ及び前記第2のMEMSスイッチの間に接続された第2のインダクタとを設け、前記第1のインダクタのインダクタンスをL1、前記第2のインダクタのインダクタンスをL2、前記キャパシタのキャパシタンスをC、使用周波数をfとすると、f=1/(2π√CL1)=1/(2π√CL2)の関係を満たす。

Description

明 細 書
スィッチ回路
技術分野
[0001] この発明は、高周波において小型で低損失かつ高アイソレーションな、単極単投ス イッチ、単極双投スィッチ、多極多投スィッチなどのスィッチ回路に関するものである 背景技術
[0002] 従来の単極双投(SPDT:Single_Pole Double-Throw)スィッチは、 2つの MEMS ( microelectromechanical systems:マイクロ電気機械システム)スィッチをそれぞれ独立 に制御することにより、 1つの入力端子に入力された高周波信号の経路を、 2つの出 力端子に制御することができる(例えば、非特許文献 1参照)。
[0003] 非特許文献 1: Sergio P. Pacheco, Dimitrios Peroulis and Linda P. B. Katehi "MEMS Single-Pole Double-Throw (SPDT) X and K-Band Switching (circuits , IEEE MTT-S, 2001
発明の開示
発明が解決しょうとする課題
[0004] 上述したような従来の単極双投スィッチでは、 2つの MEMSスィッチを独立に制御 するための 2系統の制御信号線およびえ g/4線路が必要であることから、回路の小 型化、低損失化に不利であるという問題点があった。
[0005] この発明は、上述のような課題を解決するためになされたもので、その目的は、高 周波において小型で低損失かつ高アイソレーションを実現することができるスィッチ 回路を得るものである。
課題を解決するための手段
[0006] この発明に係るスィッチ回路は、第 1の入出力端子と、前記第 1の入出力端子に接 続された第 1のインダクタと、前記第 1のインダクタに接続されたキャパシタと、前記キ ャパシタに接続された第 2の入出力端子と、前記キャパシタの一端に接続された第 1 の MEMSスィッチと、前記キャパシタの他端に接続された第 2の MEMSスィッチと、 前記第 1の MEMSスィッチ及び前記第 2の MEMSスィッチの間に接続された第 2の インダクタとを設け、前記第 1のインダクタのインダクタンスを L、前記第 2のインダクタ
1
のインダクタンスを L、前記キャパシタのキャパシタンスを C、使用周波数を fとすると、
2
f = 1/ (2 π L ) = ΐ/ (2 π ^TCL )の関係を満たすものである。
1 2
[0007] また、この発明に係るスィッチ回路は、キヤビティを有する基板と、前記キヤビティ面 に形成された第 2の電極と、前記キヤビティ面に形成された第 2のインダクタと、前記 キヤビティ空間を覆うように前記基板上に形成された支持膜と、前記支持膜上に形成 された第 1の電極と、前記支持膜上に形成された第 1の入出力端子と、前記支持膜 上に形成され、前期第 1の入出力端子に接続された第 1のインダクタと、前記支持膜 上に形成され、前記第 1のインダクタに接続されたキャパシタと、前記支持膜上に形 成され、前記キャパシタに接続された第 2の入出力端子と、前記第 2の電極に与えら れた制御信号に応じて、前記第 2及び第 1の電極間に働く静電力により前記支持膜 を変位し、前記第 1のインダクタと前記第 2のインダクタの一端、及び前記第 2の入出 力端子と前記第 2のインダクタの他端とを接触状態又は非接触状態にする第 1及び 第 2の MEMSスィッチとを設け、前記第 1のインダクタのインダクタンスを L、前記第 2
1 のインダクタのインダクタンスを L、前記キャパシタのキャパシタンスを C、使用周波数
2
を fとすると、 f = 1/ (2 π fCL ) = 1/ (2 π ^CL )の関係を満たすものである。
1 2
発明の効果
[0008] この発明に係るスィッチ回路は、高周波において小型で低損失かつ高アイソレーシ ヨンを実現することができるとレ、う効果を奏する。
図面の簡単な説明
[0009] [図 1]この発明の実施例 1に係る単極単投スィッチの構成を示す回路図である。
[図 2]図 1の単極単投スィッチの等価回路図である。
[図 3]図 1の単極単投スィッチの等価回路図である。
[図 4]この発明の実施例 2に係る単極単投スィッチの構成を示す回路図である。
[図 5]図 4の単極単投スィッチの等価回路図である。
[図 6]図 4の単極単投スィッチの等価回路図である。
[図 7]この発明の実施例 3に係る単極単投スィッチの構造を示す平面図である。 [図 8]この発明の実施例 3に係る単極単投スィッチの構造を示す平面図である。
[図 9]図 8の単極単投スィッチの A— A'断面を示す断面図である。
[図 10]図 8の単極単投スィッチの A— A'断面を示す断面図である。
[図 11]この発明の実施例 4に係る単極単投スィッチの構造を示す平面図である。
[図 12]この発明の実施例 4に係る単極単投スィッチの構造を示す平面図である。
[図 13]図 12の単極単投スィッチの A— A'断面を示す断面図である。
[図 14]図 12の単極単投スィッチの A— A'断面を示す断面図である。
[図 15]この発明の実施例 5に係る単極双投スィッチの構成を示す回路図である。
[図 16]図 15の単極双投スィッチの等価回路図である。
[図 17]図 15の単極双投スィッチの等価回路図である。
[図 18]この発明の実施例 6に係る単極双投スィッチの構造を示す平面図である。
[図 19]この発明の実施例 6に係る単極双投スィッチの構造を示す平面図である。
[図 20]図 19の単極双投スィッチの A— A'断面を示す断面図である。
[図 21]図 19の単極双投スィッチの A— A'断面を示す断面図である。
発明を実施するための最良の形態
[0010] 以下、実施例 1一 6について説明する。実施例 3及び 4は、実施例 1及び 2にそれぞ れ対応し具体的な構造に関する。また、実施例 6は、実施例 5に対応し具体的な構 造に関する。
実施例 1
[0011] この発明の実施例 1に係るスィッチ回路について図 1から図 3までを参照しながら説 明する。図 1は、この発明の実施例 1に係る単極単投スィッチの構成を示す回路図で ある。なお、各図中、同一符号は同一又は相当部分を示す。
[0012] 図 1において、実施例 1に係る単極単投スィッチは、第 1の入出力端子 1と、第 2の 入出力端子 2と、第 1の入出力端子 1に接続された第 1のインダクタ 3と、第 1のインダ クタ 3及び第 2の入出力端子 2の間に接続されたキャパシタ 4と、キャパシタ 4の一端 に接続された第 1の MEMSスィッチ 5と、キャパシタ 4の他端に接続された第 2の ME MSスィッチ 6と、第 1の MEMSスィッチ 5及び第 2の MEMSスィッチ 6の間に接続さ れた第 2のインダクタ 7とが設けられている。 [0013] つぎに、この実施例 1に係るスィッチ回路の動作について図面を参照しながら説明 する。
[0014] 図 2は、第 1、第 2の MEMSスィッチ 5、 6がオフ(OFF)状態の時の等価回路図を 示す。第 1のインダクタ 3のインダクタンス Lと、第 2のインダクタ 7のインダクタンス Lと
1 2
、キャパシタ 4のキャパシタンス Cとが使用周波数 fにおいて、 f= l/ (2 7i ^CL ) = 1
1
/ (2 TT CL )の関係となるようにすると、第 1の入出力端子 1から入力された高周波
2
信号は第 2の入出力端子 2に出力される。このとき、この単極単投スィッチはオン(〇 N)状態となる。
[0015] 図 3は、第 1、第 2の MEMSスィッチ 5、 6がオン(〇N)状態の時の等価回路図を示 す。このとき、この単極単投スィッチはオフ(OFF)状態となる。
実施例 2
[0016] この発明の実施例 2に係るスィッチ回路について図 4から図 6までを参照しながら説 明する。図 4は、この発明の実施例 2に係る単極単投スィッチの構成を示す回路図で ある。
[0017] 図 4において、実施例 2に係る単極単投スィッチは、第 1の入出力端子 1と、第 2の 入出力端子 2と、第 1の入出力端子 1に接続されたインダクタ 3と、インダクタ 3及び第 2の入出力端子 2の間に接続された第 1のキャパシタ 4と、第 1のキャパシタ 4の一端 に接続された第 1の MEMSスィッチ 5と、第 1のキャパシタ 4の他端に接続された第 2 の MEMSスィッチ 6と、第 1の MEMSスィッチ 5及び第 2の MEMSスィッチ 6の間に 接続された第 2のキャパシタ 8とが設けられている。
[0018] つぎに、この実施例 2に係るスィッチ回路の動作について図面を参照しながら説明 する。
[0019] 図 5は、第 1、第 2の MEMSスィッチ 5、 6がオフ(OFF)状態の時の等価回路図を 示す。インダクタ 3のインダクタンス Lと、第 1のキャパシタ 4のキャパシタンス Cと、第 2
1 のキャパシタ 8のキャパシタンス Cとが使用周波数 fにおいて、 ί= 1/ {2 π θ L) =
2 1
1/ (2 π C L)の関係となるようにすると、第 1の入出力端子 1から入力された高周
2
波信号は第 2の入出力端子 2に出力される。このとき、この単極単投スィッチはオン( ON)状態となる。 [0020] 図 6は、第 1、第 2の MEMSスィッチ 5、 6がオン(ON)状態の時の等価回路図を示 す。このとき、この単極単投スィッチはオフ(OFF)状態となる。
実施例 3
[0021] この発明の実施例 3に係るスィッチ回路について図 7から図 10までを参照しながら 説明する。図 7及び図 8は、この発明の実施例 3に係る単極単投スィッチの構造を示 す平面図である。
[0022] 図 7は、支持膜を含まない単極単投スィッチの構造を示す図である。また、図 8は、 支持膜を含む単極単投スィッチの構造を示す図である。
[0023] 図 7及び図 8において、実施例 3に係る単極単投スィッチは、四角形の灰皿のような 中央部に四角形の凹部(キヤビティ)がある基板 10と、凹部に形成された第 2の電極 11と、凹部に形成された第 2のインダクタ 12と、凹部を覆うように基板 10上に形成さ れた支持膜 13と、支持膜 13上に形成された第 1の電極 14と、第 1の入出力端子 15 と、第 1のインダクタ 16と、キャパシタ 17と、第 2の入出力端子 18とが設けられている 。なお、第 1のインダクタ 16のキャパシタ 17側の一端は、後で説明する図 9及び図 10 に示すように、支持膜 13を貫通して脚部を構成している。同様に、第 2の入出力端子 18のキャパシタ 17側の一端は、後で説明する図 9及び図 10に示すように、支持膜 1 3を貫通して脚部を構成してレ、る。
[0024] この実施例 3の第 1の入出力端子 15と、第 2の入出力端子 18と、第 1のインダクタ 1 6と、キャパシタ 17と、第 2のインダクタ 12とが、上記実施例 1の第 1の入出力端子 1と 、第 2の入出力端子 2と、第 1のインダクタ 3と、キャパシタ 4と、第 2のインダクタ 7とに それぞれ相当する。
[0025] つぎに、この実施例 3に係るスィッチ回路の動作について図面を参照しながら説明 する。
[0026] 図 10は、図 8において第 2の電極 11に制御信号を印加した場合の A— A'線の断面 図を示す。第 2の電極 11に与えられた制御信号に応じて、第 2の電極 11および第 1 の電極 14間に働く静電力により支持層 13を変位し、キャパシタ 17の一端 (すなわち 、第 1のインダクタ 16の脚部)と第 2のインダクタ 12の一端、およびキャパシタ 17の他 端 (すなわち、第 2の入出力端子 18の脚部)と第 2のインダクタ 12の他端とを、少なく とも 2つ以上の接点で接触状態(第 1及び第 2の MEMSスィッチがオン (ON)状態) とする。
[0027] このとき、第 1のインダクタ 16のインダクタンス Lと、第 2のインダクタ 12のインダクタ
1
ンス Lと、キャパシタ 17のキャパシタンス Cとが使用周波数 fにおいて、 f= l/2 7i
2
CL = 1Z2 TT ^CLの関係となるようにすると、第 1の入出力端子 15から入力された
1 2
高周波信号は第 2の入出力端子 18に出力される。このとき、この単極単投スィッチは オフ(OFF)状態となる。
[0028] 図 9は、図 8において第 2の電極 1 1に制御信号を印加しない場合の A— A'線の断 面図を示す。このとき、この単極単投スィッチはオン(〇N)状態となる。
実施例 4
[0029] この発明の実施例 4に係るスィッチ回路について図 11から図 14までを参照しなが ら説明する。図 11及び図 12は、この発明の実施例 4に係る単極単投スィッチの構造 を示す平面図である。
[0030] 図 1 1は、支持膜を含まない単極単投スィッチの構造を示す図である。また、図 12 は、支持膜を含む単極単投スィッチの構造を示す図である。
[0031] 図 11及び図 12において、実施例 4に係る単極単投スィッチは、四角形の灰皿のよ うな中央部に四角形の凹部(キヤビティ)がある基板 10と、凹部に形成された第 2の電 極 11と、凹部に形成された第 2のキャパシタ 19と、凹部を覆うように基板 10上に形成 された支持膜 13と、支持膜 13上に形成された第 1の電極 14と、第 1の入出力端子 1 5と、インダクタ 20と、第 1のキャパシタ 17と、第 2の入出力端子 21とが設けられてい る。なお、インダクタ 20の両端は、後で説明する図 13及び図 14に示すように、それ ぞれ支持膜 13を貫通して脚部を構成してレ、る。
[0032] この実施例 4の第 1の入出力端子 15と、第 2の入出力端子 21と、インダクタ 20と、 第 1のキャパシタ 17と、第 2のキャパシタ 19とが、上記実施例 2の第 1の入出力端子 1 と、第 2の入出力端子 2と、インダクタ 3と、第 1のキャパシタ 4と、第 2のキャパシタ 8と にそれぞれ相当する。
[0033] つぎに、この実施例 4に係るスィッチ回路の動作について図面を参照しながら説明 する。 [0034] 図 14は、図 12におレ、て第 2の電極 1 1に制御信号を印加した場合の A— A,線の断 面図を示す。第 2の電極 1 1に与えられた制御信号に応じて、第 2の電極 1 1および第 1の電極 14間に働く静電力により支持層 13を変位し、第 2のキャパシタ 19の一端とィ ンダクタ 20の一端の脚部、および第 2のキャパシタ 19の他端とインダクタ 20の他端の 脚部とを、少なくとも 2つ以上の接点で接触状態(第 1及び第 2の MEMSスィッチが オン (ON)状態)とする。
[0035] このとき、インダクタ 20のインダクタンス Lと、第 1のキャパシタ 17のキャパシタンス C
1 と、第 2キャパシタ 19のキャパシタンス Cとが使用周波数 fにおいて、 f= l/2 7i C
2 1
L = 1Z2 TT ^TC Lの関係となるようにすると、第 1の入出力端子 15から入力された高
2
周波信号は第 2の入出力端子 21に出力される。このとき、この単極単投スィッチはォ フ(OFF)状態となる。
[0036] 図 13は、図 12において第 2の電極 1 1に制御信号を印加しない場合の A— A'線の 断面図を示す。このとき、この単極単投スィッチはオン(ON)状態となる。
実施例 5
[0037] この発明の実施例 5に係るスィッチ回路について図 15から図 17までを参照しなが ら説明する。図 15は、この発明の実施例 5に係る単極双投スィッチの構成を示す回 路図である。
[0038] 図 15において、実施例 5に係る単極双投スィッチは、入力端子 30と、第 3の MEM Sスィッチ 31と、第 2の出力端子 32と、入力端子 30に接続された第 1のインダクタ 3と 、第 1のインダクタ 3に接続されたキャパシタ 4と、キャパシタ 4に接続された第 1の出 力端子 2と、キャパシタ 4の一端に接続された第 1の MEMSスィッチ 5と、キャパシタ 4 の他端に接続された第 2の MEMSスィッチ 6と、第 1の MEMSスィッチ 5及び第 2の MEMSスィッチ 6の間に接続された第 2のインダクタ 7とが設けられている。
[0039] つぎに、この実施例 5に係るスィッチ回路の動作について図面を参照しながら説明 する。
[0040] 図 16は、第 1、第 2、第 3の MEMSスィッチ 5、 6、 31がオン(ON)状態の時の等価 回路図を示す。第 1のインダクタ 3のインダクタンス Lと、第 2のインダクタ 7のインダク
1
タンス Lと、キャパシタ 4のキャパシタンス Cとが使用周波数 fにおいて、 ί /2 π CL = 1/2 π CLの関係となるようにすると、入力端子 30から入力された高周波
1 2
信号は第 2の出力端子 32に出力される。
[0041] 図 17は、第 1、第 2、第 3の MEMSスィッチ 5、 6、 31がオフ(OFF)状態の時の等 価回路図を示す。このとき、入力端子 30から入力された高周波信号は第 1の出力端 子 2に出力される。
[0042] 図 15は、上記実施例 1に係る単極単投スィッチと 1つの MEMSスィッチ 31を組み 合わせて構成した単極双投スィッチの例である。以上のように、実施例 1あるいは実 施例 2で示す単極単投スィッチと 1つの MEMSスィッチを組み合わせることで、 1つ の制御信号で信号の経路を切り替えることを特徴とする単極双投スィッチを構成する こと力 Sできる。
実施例 6
[0043] この発明の実施例 6に係るスィッチ回路について図 18から図 21までを参照しなが ら説明する。図 18及び図 19は、この発明の実施例 6に係る単極双投スィッチの構造 を示す平面図である。
[0044] 図 18は、支持膜を含まない単極双投スィッチの構造を示す図である。また、図 19 は、支持膜を含む単極双投スィッチの構造を示す図である。
[0045] 図 18及び図 19において、実施例 6に係る単極双投スィッチは、四角形の灰皿のよ うな中央部に四角形の凹部(キヤビティ)がある基板 10と、凹部に形成された第 2の電 極 11と、凹部に形成された第 2のインダクタ 12と、凹部に形成された第 2の出力端子 22と、凹部を覆うように基板 10上に形成された支持膜 13と、支持膜 13上に形成され た第 1の電極 14と、支持膜 13上に形成された入力端子 15と、支持膜 13上に形成さ れた第 1のインダクタ 16と、支持膜 13上に形成されたキャパシタ 17と、支持膜 13上 に形成された第 1の出力端子 18と、支持膜 13上に形成された導通メタルパターン 24 とが設けられている。なお、第 1のインダクタ 16及び第 1の出力端子 18の形状は、上 記実施例 3の第 1のインダクタ 16及び第 2の入出力端子 18と同じである。また、導通 メタルパターン 24の右側一端は、後で説明する図 20及び図 21に示すように、支持 膜 13を貫通して脚部を構成してレ、る。
[0046] つぎに、この実施例 6に係るスィッチ回路の動作について図面を参照しながら説明 する。
[0047] 図 20は、図 19におレ、て第 2の電極 1 1に制御信号を印加した場合の A— A,線の断 面図を示す。第 2の電極 1 1に与えられた制御信号に応じて、第 2の電極 1 1および第 1の電極 14間に働く静電力により支持膜 13を変位し、キャパシタ 17の一端 (すなわ ち、第 1のインダクタ 16の脚部)と第 2のインダクタ 12の一端、およびキャパシタ 17の 他端 (すなわち、第 1の出力端子 18の脚部)と第 2のインダクタ 12の他端とを、少なく とも 2つ以上の接点で接触状態(第 1及び第 2の MEMSスィッチがオン (〇N)状態) とし、かつ導通メタルパターン 24の脚部と第 2の出力端子 22とを、少なくとも 1つ以上 の接点で接触状態(第 3の MEMSスィッチがオン (〇N)状態)とする。
[0048] このとき、第 1のインダクタ 16のインダクタンス Lと、第 2のインダクタ 12のインダクタ
1
ンス Lと、キャパシタ 17のキャパシタンス Cとが使用周波数 fにおいて、 f = l/2 7i
2
CL = 1Z2 TT ^CLの関係となるようにすると、入力端子 15から入力された高周波
1 2
信号は第 2の出力端子 22に出力される。
[0049] 図 21は、図 19におレ、て第 2の電極 1 1に制御信号を印加しなレ、場合の A— A'線の 断面図を示す。このとき、入力端子 15から入力された高周波信号は第 1の出力端子 18に出力される。
[0050] 図 19は、実施例 3に係る単極単投スィッチと 1つの MEMSスィッチを組み合わせて 構成した単極双投スィッチの例である。以上のように、実施例 3あるいは実施例 4で示 す単極単投スィッチと 1つの MEMSスィッチを組み合わせることで、 1つの制御信号 で信号の経路を切り替えることを特徴とする単極双投スィッチを構成することができる
[0051] 上記実施例 1一 2のうちのいずれかの単極単投スィッチを 2つ組み合わせて単極双 投スィッチを構成することができる。
[0052] 上記実施例 1一 2のうちのいずれかの単極単投スィッチを少なくとも 2つ以上組み合 わせて多極多投スィッチを構成することができる。
[0053] 上記実施例 3— 4のうちのいずれかの単極単投スィッチを 2つ組み合わせて単極双 投スィッチを構成することができる。
[0054] 上記実施例 3— 4のうちのいずれかの単極単投スィッチを少なくとも 2つ以上組み合 わせて多極多投スィッチを構成することができる。

Claims

請求の範囲
[1] 第 1の入出力端子と、
前記第 1の入出力端子に接続された第 1のインダクタと、
前記第 1のインダクタに接続されたキャパシタと、
前記キャパシタに接続された第 2の入出力端子と、
前記キャパシタの一端に接続された第 1の MEMSスィッチと、
前記キャパシタの他端に接続された第 2の MEMSスィッチと、
前記第 1の MEMSスィッチ及び前記第 2の MEMSスィッチの間に接続された第 2 のインダクタとを備えたスィッチ回路であって、 1 ' v
L、前記キャパシタのキャパシタンスを C、使用周波数を fとすると、 f= l/ (2 7i CL
2
) = 1/ (2 π CL )の関係を満たすスィッチ回路。
1 2
[2] 第 1の入出力端子と、
前記第 1の入出力端子に接続されたインダクタと、
前記インダクタに接続された第 1のキャパシタと、
前記第 1のキャパシタに接続された第 2の入出力端子と、
前記インダクタの一端に接続された第 1の MEMSスィッチと、
前記インダクタの他端に接続された第 2の MEMSスィッチと、
前記第 1の MEMSスィッチ及び前記第 2の MEMSスィッチの間に接続された第 2 のキャパシタとを備えたスィッチ回路であって、
前記インダクタのインダクタンスを L、前記第 1のキャパシタのキャパシタンスを C
1 前記第 2キャパシタのキャパシタンスを C、使用周波数を fとすると、 i= l/ {2 C
2 1
L) = ΐ/ (2 π fC L)の関係を満たすスィッチ回路。
2
[3] キヤビティを有する基板と、
前記キヤビティ面に形成された第 2の電極と、
前記キヤビティ面に形成された第 2のインダクタと、
前記キヤビティ空間を覆うように前記基板上に形成された支持膜と、
前記支持膜上に形成された第 1の電極と、 前記支持膜上に形成された第 1の入出力端子と、
前記支持膜上に形成され、前期第 1の入出力端子に接続された第 1のインダクタと 前記支持膜上に形成され、前記第 1のインダクタに接続されたキャパシタと、 前記支持膜上に形成され、前記キャパシタに接続された第 2の入出力端子と、 前記第 2の電極に与えられた制御信号に応じて、前記第 2及び第 1の電極間に働く 静電力により前記支持膜を変位し、前記第 1のインダクタと前記第 2のインダクタの一 端、及び前記第 2の入出力端子と前記第 2のインダクタの他端とを接触状態又は非 接触状態にする第 1及び第 2の MEMSスィッチとを備えたスィッチ回路であって、 、
L、前記キャパシタのキャパシタンスを C、使用周波数を fとすると、 f= l/ (2 7i ^TCL
2
) = ΐ/ (2 π fCL )の関係を満たすスィッチ回路。
1 2
キヤビティを有する基板と、
前記キヤビティ面に形成された第 2の電極と、
前記キヤビティ面に形成された第 2のキャパシタと、
前記キヤビティ空間を覆うように前記基板上に形成された支持膜と、
前記支持膜上に形成された第 1の電極と、
前記支持膜上に形成された第 1の入出力端子と、
前記支持膜上に形成され、前記第 1の入出力端子に接続されたインダクタと、 前記支持膜上に形成され、前記インダクタに接続された第 1のキャパシタと、 前記支持膜上に形成され、前記第 1のキャパシタに接続された第 2の入出力端子と 前記第 2の電極に与えられた制御信号に応じて、前記第 2及び第 1の電極間に働く 静電力により前記支持膜を変位し、前記インダクタの一端と前記第 2のキャパシタの 一端、及び前記インダクタの他端と前記第 2のキャパシタの他端とを接触状態又は非 接触状態にする第 1及び第 2の MEMSスィッチとを備えたスィッチ回路であって、 前記インダクタのインダクタンスを L、前記第 1のキャパシタのキャパシタンスを C、
1 前記第 2キャパシタのキャパシタンスを C、使用周波数を fとすると、 i= l/ {2 C L) = 1/ (2 π L)の関係を満たすスィッチ回路。
[5] 請求項 1又は 2記載のスィッチ回路と、
入力端子と第 2の出力端子の間に接続された第 3の MEMSスィッチとを備えたスィ ツチ回路であって、
前記第 1及び第 2の入出力端子の代わりに、前記入力端子及び第 1の出力端子を それぞれ接続し、
前記第 1、第 2及び第 3の MEMSスィッチをオンにすることによって、前記入力端子 力、ら前記第 2の出力端子までの高周波信号の経路を形成するとともに、前記第 1、第 2及び第 3の MEMSスィッチをオフにすることによって、前記入力端子から前記第 1 の出力端子までの高周波信号の経路を形成し、単極双投スィッチとして機能するス イッチ回路。
[6] 請求項 3又は 4記載のスィッチ回路と、
前記キヤビティ面に形成された第 2の出力端子と、
前記支持膜上に形成され、前記第 1のインダクタに接続された導通メタルパターン と、
前記第 2の電極に与えられた制御信号に応じて、前記第 2及び第 1の電極間に働く 静電力により前記支持膜を変位し、前記導通メタルパターンの一端と前記第 2の出力 端子とを接触状態又は非接触状態にする第 3の MEMSスィッチとを備えたスィッチ 回路であって、
前記第 1及び第 2の入出力端子が、入力端子及び第 1の出力端子としてそれぞれ 機能し、単極双投スィッチとして機能するスィッチ回路。
[7] 請求項 1又は 2記載のスィッチ回路を 2つ組み合わせ、
単極双投スィッチとして機能するスィッチ回路。
[8] 請求項 1又は 2記載のスィッチ回路を少なくとも 2つ以上組み合わせ、
多極多投スィッチとして機能するスィッチ回路。
[9] 請求項 3又は 4記載のスィッチ回路を 2つ組み合わせ、
単極双投スィッチとして機能するスィッチ回路。
[10] 請求項 3又は 4記載のスィッチ回路を少なくとも 2つ以上組み合わせ、 多極多投スィッチとして機能するスィッチ回路。
PCT/JP2005/001081 2005-01-27 2005-01-27 スイッチ回路 WO2006080062A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US11/795,335 US7675383B2 (en) 2005-01-27 2005-01-27 Switch circuit
JP2007500375A JP4348390B2 (ja) 2005-01-27 2005-01-27 スイッチ回路
EP05704187A EP1843368A4 (en) 2005-01-27 2005-01-27 SWITCHING CIRCUIT
PCT/JP2005/001081 WO2006080062A1 (ja) 2005-01-27 2005-01-27 スイッチ回路

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2005/001081 WO2006080062A1 (ja) 2005-01-27 2005-01-27 スイッチ回路

Publications (1)

Publication Number Publication Date
WO2006080062A1 true WO2006080062A1 (ja) 2006-08-03

Family

ID=36740097

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/001081 WO2006080062A1 (ja) 2005-01-27 2005-01-27 スイッチ回路

Country Status (4)

Country Link
US (1) US7675383B2 (ja)
EP (1) EP1843368A4 (ja)
JP (1) JP4348390B2 (ja)
WO (1) WO2006080062A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108574479A (zh) * 2017-03-08 2018-09-25 康希通信科技(上海)有限公司 单刀单掷射频开关及其构成的单刀多掷射频开关

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8188786B2 (en) 2009-09-24 2012-05-29 International Business Machines Corporation Modularized three-dimensional capacitor array
US8638093B2 (en) 2011-03-31 2014-01-28 General Electric Company Systems and methods for enhancing reliability of MEMS devices
US8922315B2 (en) * 2011-05-17 2014-12-30 Bae Systems Information And Electronic Systems Integration Inc. Flexible ultracapacitor cloth for feeding portable electronic device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5140700A (en) * 1990-12-07 1992-08-18 Ford Motor Company FM resonant filter having AM frequency bypass
JPH10107570A (ja) * 1996-09-30 1998-04-24 Toshiba Lighting & Technol Corp 共振型フィルター回路および回路装置
JP2004159322A (ja) * 1996-12-21 2004-06-03 Hughes Electronics Corp 超小型電子機械式スイッチを用いたチューナブルマイクロ波ネットワーク
JP2004321787A (ja) * 2003-04-25 2004-11-18 Robert Bosch Gmbh シリンジのための供給装置
JP2004328561A (ja) * 2003-04-28 2004-11-18 Hitachi Ltd マイクロスイッチ及び送受信装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4249150A (en) * 1979-04-30 1981-02-03 Motorola, Inc. High power RF relay switch
US4894720A (en) * 1987-07-31 1990-01-16 Sanyo Electric Co., Ltd. Circuit for selectively outputting high frequency signals
FI20002881A (fi) * 2000-12-29 2002-06-30 Nokia Corp Järjestely ja menetelmä radiolähettimen häviöiden vähentämiseksi
US6472962B1 (en) * 2001-05-17 2002-10-29 Institute Of Microelectronics Inductor-capacitor resonant RF switch
JP4300865B2 (ja) 2003-04-28 2009-07-22 株式会社日立製作所 可変容量コンデンサシステム
JP4150314B2 (ja) * 2003-09-09 2008-09-17 株式会社エヌ・ティ・ティ・ドコモ 90°ハイブリッド回路

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5140700A (en) * 1990-12-07 1992-08-18 Ford Motor Company FM resonant filter having AM frequency bypass
JPH10107570A (ja) * 1996-09-30 1998-04-24 Toshiba Lighting & Technol Corp 共振型フィルター回路および回路装置
JP2004159322A (ja) * 1996-12-21 2004-06-03 Hughes Electronics Corp 超小型電子機械式スイッチを用いたチューナブルマイクロ波ネットワーク
JP2004321787A (ja) * 2003-04-25 2004-11-18 Robert Bosch Gmbh シリンジのための供給装置
JP2004328561A (ja) * 2003-04-28 2004-11-18 Hitachi Ltd マイクロスイッチ及び送受信装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1843368A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108574479A (zh) * 2017-03-08 2018-09-25 康希通信科技(上海)有限公司 单刀单掷射频开关及其构成的单刀多掷射频开关
CN108574479B (zh) * 2017-03-08 2024-03-05 康希通信科技(上海)有限公司 单刀单掷射频开关及其构成的单刀多掷射频开关

Also Published As

Publication number Publication date
US20080136557A1 (en) 2008-06-12
US7675383B2 (en) 2010-03-09
JP4348390B2 (ja) 2009-10-21
JPWO2006080062A1 (ja) 2008-06-19
EP1843368A4 (en) 2009-06-03
EP1843368A1 (en) 2007-10-10

Similar Documents

Publication Publication Date Title
JP3890952B2 (ja) 容量可変型キャパシタ装置
US7122942B2 (en) Electrostatic RF MEMS switches
WO2006011239A1 (ja) 容量型mems素子とその製造方法、及び高周波装置
WO1999063562B1 (en) Low-voltage, electrostatic type microelectromechanical system switches for radio-frequency applications
KR20040038555A (ko) 미세전자기계적 시스템 기술을 이용한 고주파 소자
WO2006080062A1 (ja) スイッチ回路
US8803641B2 (en) Multiple droplet liquid MEMS component
JP5176148B2 (ja) スイッチング素子および通信機器
WO2006011198A1 (ja) 移相回路および多ビット移相器
CA2540334C (en) 1:n mem switch module
US7202763B2 (en) Micro-electromechanical switching device
US20170278646A1 (en) Switching apparatus and electronic apparatus
JP3910500B2 (ja) 高周波スイッチ、単極双投スイッチおよび多極多投スイッチ
Lee et al. An RFMEMS switched capacitor array for a tunable band pass filter
KR100378360B1 (ko) 수평 동작형 MEMs 스위치
JP2008160563A (ja) 高周波信号の処理装置及び減衰装置並びに共振装置
JP3892272B2 (ja) スイッチ装置
JP4541718B2 (ja) 高周波集積回路とその製造方法
JP5130291B2 (ja) 電気機械素子およびそれを用いた電気機器
JP4361539B2 (ja) 線路長切り替え型移相回路
Roy et al. Design optimization of RF MEMS SP4T and SP6T switch
JP2006286540A (ja) 高周波スイッチ及びこれを用いた高周波スイッチ回路
Blondy et al. High power applications of RF-MEMS
Kanthamani et al. Applications of micro electro mechanical systems in microwave circuits and systems
JP2011258853A (ja) 可変インダクタ装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007500375

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11795335

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2005704187

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2005704187

Country of ref document: EP