WO2006078036A1 - 生化学検査装置および生化学検査方法 - Google Patents

生化学検査装置および生化学検査方法 Download PDF

Info

Publication number
WO2006078036A1
WO2006078036A1 PCT/JP2006/301050 JP2006301050W WO2006078036A1 WO 2006078036 A1 WO2006078036 A1 WO 2006078036A1 JP 2006301050 W JP2006301050 W JP 2006301050W WO 2006078036 A1 WO2006078036 A1 WO 2006078036A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
biochemical
intensity
parameter
recording
Prior art date
Application number
PCT/JP2006/301050
Other languages
English (en)
French (fr)
Inventor
Yuichiro Matsuo
Takami Shibazaki
Yuko Saida
Original Assignee
Olympus Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corporation filed Critical Olympus Corporation
Priority to EP06712266A priority Critical patent/EP1843146A1/en
Priority to JP2006554001A priority patent/JP4724126B2/ja
Publication of WO2006078036A1 publication Critical patent/WO2006078036A1/ja
Priority to US11/880,657 priority patent/US7920733B2/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/6456Spatial resolved fluorescence measurements; Imaging
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/6452Individual samples arranged in a regular 2D-array, e.g. multiwell plates

Definitions

  • the present invention relates to an apparatus and method for analyzing a biochemical reaction.
  • Japanese Patent Laid-Open No. 2002-350446 discloses a biochemical test that can simultaneously detect the light intensity corresponding to each probe array element with a practically large dynamic range using an area sensor or line sensor having a normal dynamic range.
  • a method is disclosed in which the desired ND filter is arranged on the observation optical path by switching the SND filter by the examiner.
  • many ND filters must be repeatedly inserted and removed in order for the inspector to switch ND filters and cause the array detector to capture fluorescent images of all probe array elements. For this reason, it takes a long time to obtain a fluorescence image of the array for biochemical examination, and the working efficiency is remarkably poor.
  • Japanese Laid-Open Patent Publication No. 2002-35446 relates to a method for determining the maximum accumulation time of a CCD, and the amount of received light corresponding to the minimum emission intensity of the array element region in the array for biochemical examination is linear with the output characteristics of the array detector.
  • a method is disclosed in which the maximum value of the accumulation time is determined based on the condition that it exists in the region.
  • the above conditions must be met. It takes a lot of storage time (for example, 300 seconds), and even if the inspector is forced to bear the burden, even after waiting for 300 seconds, the desired fluorescent image cannot be obtained. .
  • the present invention has been made in consideration of such actual situations, and an object of the present invention is to provide an apparatus and method for efficiently acquiring an image having an optimum intensity for image analysis of a biochemical test array. It is to provide.
  • the present invention is directed to a biochemical test apparatus for analyzing a biochemical reaction by measuring fluorescence emitted from a biochemical test array.
  • the biochemical examination apparatus of the present invention includes an illumination means for irradiating the biochemical examination array with excitation light, an imaging means for taking a light image emitted from the biochemical examination array, and the photographed light. Recording means for storing the image, and the photographing means repeatedly shoots the light image while gradually increasing the initial value of the exposure time specified by the first meter, and captures the photographed light image.
  • the present invention is directed to a biochemical test method for analyzing a biochemical reaction by measuring fluorescence emitted from a biochemical test array.
  • the array for biochemical examination is irradiated with excitation light, the light image emitted from the array for biochemical examination in response to the excitation light irradiation, and the exposure time as the first parameter. If the maximum intensity in all pixels of the captured light image exceeds the intensity specified by the second parameter during repeated shooting, the initial value specified in the above The optical image recording is started, and the optical image recording is ended when the minimum intensity in the pixels in the area smaller than the entire area of the photographed optical image is larger than the intensity specified by the third parameter.
  • FIG. 1 shows a configuration of a biochemical test apparatus according to an embodiment of the present invention.
  • FIG. 2 is a plan view of a biochemical test array to be inspected by the biochemical test apparatus shown in FIG.
  • FIG. 3 is a cross-sectional view of the array elements of the biochemical test array shown in FIG.
  • FIG. 4 shows a part of an initial data file read into a control program operating on the computer shown in FIG.
  • FIG. 5A shows an image taken immediately after the start of photographing.
  • FIG. 5B shows the image immediately after the maximum intensity value of all pixels of the image is equal to or higher than TransStart.
  • FIG. 5C shows an image taken with a longer exposure time after the image shown in FIG. 5B.
  • FIG. 5D shows an image taken with a longer exposure time after the image shown in FIG. 5C.
  • FIG. 5E shows an image taken with a longer exposure time after the image shown in FIG. 5D.
  • FIG. 5F shows an area where the minimum intensity value compared with TransEnd is smaller than the entire area of the fluorescence image to be examined.
  • FIG. 6 shows a state in which uneven illumination intensity occurs from the center to the outer periphery.
  • FIG. 7 shows a flowchart of the operation of the biochemical test apparatus shown in FIG.
  • FIG. 8A shows a fluorescence image of the array 100 for biochemical examination taken with an exposure time of 400 ms.
  • FIG. 8B shows a fluorescence image of the array 100 for biochemical examination taken with an exposure time of 800 ms.
  • FIG. 8C shows a fluorescence image of the biochemical test array 100 taken with an exposure time of 1600 ms.
  • FIG. 8D shows a hybrid image formed based on the images of FIG. 8A, FIG. 8B, and FIG. 8C.
  • FIG. 1 shows a configuration of a biochemical test apparatus according to an embodiment of the present invention.
  • the excitation light source 204 is various lamps such as a mercury light source and LEDs, and is connected to the power supply unit 206.
  • a shutter unit 208 incorporating a shirt plate 208a, a lens 210, a filter unit 212 incorporating two excitation filters 212a, and a dichroic mirror 214 Is placed.
  • a stage 202 on which an objective lens 216 and a biochemical test array 100 are placed is disposed.
  • an imaging lens 218 and a CCD camera 220 as an image sensor are disposed on the transmission optical path of the dichroic mirror 214.
  • the CCD camera 220 includes a buffer memory (not shown) that can temporarily store at least one shot image and a signal processor (not shown) that can perform image operations such as signal intensity detection on the image in the buffer memory.
  • the shutter unit 208 and the filter unit 212 can be controlled by a computer 224 via a universal control box 222.
  • the stage 202 can be electrically positioned in the X and Y directions and can be controlled by the computer 224 via the stage controller 232.
  • a keyboard 226, a monitor 228, and a mouse 230 are connected to the computer 224.
  • the biochemical test apparatus 200 is directed to a stage 202 on which the biochemical test array 100 is mounted, an excitation light source 204 that emits excitation light, and the excitation light directed to the biochemical test array 100.
  • Dichroic mirror 214 that reflects and transmits fluorescence from biochemical test array 100
  • a CCD camera for taking fluorescent images of biochemical test array 100 And 220.
  • the fluorescent image is a kind of optical image.
  • An optical image is an image using various lights such as fluorescence, phosphorescence, chemiluminescence, bioluminescence, scattered light, and reflected light as signals.
  • the biochemical examination apparatus 200 further includes a shutter unit 208 for appropriately blocking excitation light, a lens 210, and a filter unit 212 for selecting the wavelength of excitation light.
  • the shutter unit 208, the lens 210, and the filter unit 212 are arranged in order on the optical path up to the dichroic mirror 214 with the excitation light source 204 force.
  • the biochemical inspection apparatus 200 includes an objective lens 216 positioned between the dichroic mirror 214 and the stage 202, and an imaging lens 218 positioned between the dichroic mirror 214 and the CCD camera 220. Yes.
  • the excitation light source 204, the shutter unit 208, the lens 210, the filter unit 212, the dichroic mirror 214, and the objective lens 216 are excited to the biochemical examination array 100.
  • the illumination means for irradiating light is comprised.
  • the object lens 216, the imaging lens 218, and the CCD camera 220 constitute an imaging unit for taking an optical image emitted from the biochemical examination array 100.
  • the biochemical examination apparatus 200 includes a power supply unit 206 for driving the excitation light source 204, a stage controller 232 for driving the stage 202, a universal for driving the shutter unit 208 and the filter unit 212. Control box 222 and
  • the biochemical examination apparatus 200 includes a computer 224 that controls a CCD camera 220, a stage controller 232, and a universal control box 222.
  • a keyboard 226, a monitor 228, and a mouse 230 are connected to the computer 224 as a user interface.
  • the computer 224 has a built-in hard disk and constitutes a recording means for storing the captured optical image.
  • FIG. 2 and FIG. 3 show a biochemical test array to be tested by the biochemical test apparatus shown in FIG.
  • the biochemical test array 100 is a three-dimensional array, and as shown in FIG. 2, a porous three-dimensional substrate 102 and a number of probe array elements (probe spots) 106 formed on the three-dimensional substrate 102. And have.
  • Probe array element 106 is a three-dimensional It is arranged two-dimensionally on the material 102, and position detection array elements (position detection spots) 104 are formed at the four corners of the array region of the probe array elements 106.
  • the three-dimensional substrate 102 has a large number of through-holes. As shown in FIG.
  • a probe 110 that reacts with a specific substance is immobilized on the inner wall of the through-hole 108 located in the probe array element 106. It has been converted.
  • the probe array element (probe spot) 106 is formed, for example, by dispensing a required amount of a solution containing a probe onto the three-dimensional substrate 102.
  • the plurality of probe array elements 106 on the three-dimensional substrate 102 include a plurality of types.
  • Each probe array element 106 includes the same type of probe 110, and when the probe 110 reacts with a specific substance, it emits specific fluorescence in response to irradiation with specific excitation light.
  • the biochemical examination apparatus 200 is controlled by a control program that operates on the computer 224.
  • the computer 224 includes a control program for controlling the entire biochemical test apparatus 200.
  • This control program controls the entire biochemical test apparatus 200 by reading the operation of the initial data file force control program itself as shown in FIG. 4 and the operation parameters of each unit.
  • FIG. 4 shows a part of the initial data file.
  • the inspector or device administrator can easily modify and change the initial data file using a general editor. That is, the inspector or device administrator can easily modify and change the initial data file by operating the keyboard 226 and operating the mouse 230 if necessary while viewing the monitor 228.
  • the initial data file includes various parameters, and the monitor 228, keyboard 226, and mouse 230 constitute input means for enabling arbitrary setting of parameters in the initial data file.
  • the parameter one shown in FIG. 4 is a photographing parameter when photographing a fluorescent image of the biochemical test array 100 with the CCD camera 220.
  • ExpStart is an initial value of an exposure time (CCD charge accumulation time) when the CCD camera 220 takes a fluorescent image of the biochemical test array 100.
  • the CCD camera 220 is shown here when the inspector instructs the biochemical test array 100 to start taking fluorescent images.
  • the array for biochemical inspection while changing the exposure time so that it gradually becomes longer from the initial value.
  • TransStart is a reference value of the pixel intensity value for the CCD camera 220 to determine the start (recording) of the fluorescent image. That is, the CCD camera 220 transfers the image data to the computer 224 when the intensity value of the brightest pixel among all the pixels of the captured fluorescent image of the biochemical test array 100 exceeds the Trans Start value. In response to this, the storage device (hard disk in the computer 224) starts recording (storing) image data.
  • TransEnd is a reference value of the pixel intensity value for the CCD camera 220 to determine the end of recording (saving) of the fluorescent image.
  • the CCD camera 220 detects that the intensity value of the darkest pixel among the pixels in the region near the center that is smaller than the entire region of the fluorescent image of the captured biochemical test array 100 is larger than the TransEnd value.
  • the storage device the hard disk in the computer 224) finishes recording (storing) the image data.
  • TtansPicts is a reference value of the number of recorded (stored) sheets for the CCD camera 220 to determine the end of recording (saving) of the fluorescent image.
  • the CCD camera 220 finishes transferring the image data to the computer 224 when the number of fluorescent images of the array for biochemical examination transferred to the computer 224 becomes larger than the value of TtansPicts, and stores it accordingly.
  • the device hard disk in the computer 224) finishes recording (saving) the image data.
  • MaxExpTime is a reference value of the exposure time for the CCD camera 220 to determine the end of recording (saving) of the fluorescent image. That is, the CCD camera 220 finishes transferring the image data to the computer 224 when the exposure time for capturing the fluorescent image of the biochemical test array 100 becomes longer than the MaxExpTime value, and in response to this, the storage device (The hard disk in the computer 224) finishes recording (saving) the image data.
  • the examiner In preparation for biochemical examination, the examiner creates a solution containing two kinds of biochemical substances labeled with, for example, two-color fluorescent molecules (or chemiluminescent molecules). In this case, the inspector Make solutions of the two biochemicals you want to compare at the same concentration, label one with FITC and the other with rhodamine. These labeling substances may be other substances as long as they are a combination of substances having different fluorescence wavelengths. After that, the prepared two kinds of biochemical substance solutions are mixed at a volume ratio of 1: 1, and stirred to obtain a mixed solution of biochemical substances. The mixing ratio may be changed according to the properties of the two biochemical substances and the labeling substance.
  • two-color fluorescent molecules or chemiluminescent molecules
  • the inspector supplies the biochemical test array 100 with a mixed solution of biochemical substances and reacts specifically with the probe.
  • the inspector places the biochemical test array 100 on the stage 202 under the observation by the biochemical test apparatus 200 shown in FIG. 1, and a mixed solution of biochemical substances on the surface thereof. Supply.
  • This causes a specific binding reaction between the probe in the probe array element 106 on the biochemical test array 100 and the biochemical substance contained in the mixed solution.
  • a quantity of fluorescent molecules (or chemiluminescent molecules) corresponding to the intensity of reaction in each probe array element 106 is indirectly bound to the probe.
  • the inspector removes unreacted biochemical substances from the biochemical test array 100.
  • the examiner removes unbound biochemical substances from each probe array element 106 of the biochemical test array 100 after the above-described binding reaction.
  • a cleaning method using a cleaning solution is employed.
  • the solution may be removed by a pump or the like without using the cleaning solution.
  • it goes without saying that using a cleaning solution will definitely remove it!
  • the examiner operates the computer 224 through the monitor 228 in order to take a fluorescent image of the biochemical test array 100 for each labeling substance with the CCD camera 220.
  • the computer 224 sends a command to the universal control box 222, and the two excitations built into the filter unit 212.
  • the filter 212a By switching the filter 212a, an excitation filter corresponding to the desired fluorescent molecule color is arranged on the illumination optical path.
  • the computer 224 transmits a command for opening the shutter plate 208a incorporated in the shutter unit 208 in the universal control box 222.
  • the excitation light source 20 The excitation light from 4 passes through the lens 210 and the excitation filter 212a, is reflected by the dichroic mirror 214, and irradiates the entire upper surface of the biochemical test array 100 via the objective lens 216.
  • the fluorescence generated by the fluorescent molecules in each probe array element 106 passes through the objective lens 216, the dichroic mirror 214, and the imaging lens 218 and is applied to the CCD camera 220.
  • the CCD camera 220 repeatedly shoots while gradually increasing the initial value force indicated by ExpStart written in the initial data file for the exposure time (accumulation time).
  • ExpStart is 10 ms
  • the CCD camera 220 does not transfer image data to the computer 224 while the maximum intensity value of all pixels of the image is smaller than TransStart! /.
  • FIG. 5A shows an image taken immediately after the start of shooting. That is, it shows an image taken with an exposure time of 10 ms. In the image of Figure 5A, the maximum intensity value for all pixels is less than TransStart. Therefore, the CCD camera 220 does not transfer the image data in FIG. 5A to the computer 224.
  • the CCD 220 Mera 220 repeats the same operation until the maximum intensity value of all pixels in the image is greater than or equal to TransStart.
  • the CCD camera 220 starts transferring image data to the computer 224 when the maximum intensity value of all pixels of the image is equal to or higher than TransStart.
  • Figure 5B shows the image immediately after the maximum intensity value of all pixels in the image is greater than or equal to TransStart. In the image of Figure 5B, the maximum intensity value of all pixels in the image is greater than or equal to TransStart, and two probe array elements appear. Therefore, the CCD camera 220 transfers the image data in FIG. 5B to the computer 224. The transferred image data is recorded (saved) on the hard disk in the computer 224.
  • the CCD camera 220 continues to transfer image data to the computer 224 while the minimum intensity value in the region near the center that is smaller than the entire region of the fluorescent image is equal to or less than TransEnd. As the exposure time increases, the fluorescence image of the biochemical test array 100 is shown in sequence in Figure 5. As shown in C, Fig. 5D, and Fig. 5E, more and more probe array elements appear.
  • the CCD camera 220 ends the transfer of the image data to the computer 224 when the minimum intensity value in the area smaller than the entire area of the fluorescent image becomes larger than Trans End. Thereby, the recording (storing) of the image data to the hard disk in the computer 224 is completed.
  • the CCD camera does not need a signal processor for image calculation.
  • the computer 224 calculates a correction coefficient for the illumination intensity unevenness distribution power of the biochemical test array 100, and the fluorescence of all the probe array elements is recorded for each exposure time for the already recorded (stored) image. Correct the emission intensity using the calculated correction factor. In other words, the computer 224 performs exposure on stored images during exposure.
  • a correction means is configured to correct the fluorescence emission intensity of all the probe array elements at intervals with the correction coefficient calculated for the uneven distribution of illumination intensity.
  • the fluorescence image of the biochemical test array 100 obtained at this time is, for example, an image as shown in FIG. 5E. However, since the probe array element emits fluorescence! / As it is, the image is filtered. The probe array elements are deleted by pixel interpolation, and a correction coefficient calculation image as shown in Fig. 6 is created. A correction coefficient is calculated from this correction coefficient calculation image.
  • the fluorescent image of the biochemical test array 100 is taken without any problem by the series of operations described above. However, if the inspector has mistakenly mixed the biochemical substance solution, or if the probe array element has not been created correctly, the correct binding reaction will not occur in the biochemical test array 100. As a result, the probe array element may not emit fluorescence as expected. In that case, a considerably long time is required until the maximum intensity in the biochemical test array 100 becomes larger than the pixel intensity indicated by TransStart. In that case, the experiment itself is unsuccessful, and it is meaninglessly waited until the exposure time becomes considerably long.
  • a message indicating that a desired image could not be shot at that time is displayed on the monitor 228. Display and finish shooting.
  • FIG. 7 shows a flowchart of the series of operations described above. As shown in Fig. 7, the above series of operations can be summarized as follows. First, a fluorescent image of the biochemical test array 100 is taken at the ExpStart exposure time. If the maximum intensity value of all pixels of the fluorescent image is smaller than Trans Start, the exposure time is increased and the fluorescent image of the biochemical test array 100 is taken again.
  • the exposure time is increased and the fluorescent image of the biochemical test array 100 is repeatedly captured until the maximum intensity value of all the pixels of the captured fluorescent image is equal to or greater than TransStart.
  • the image data is transferred to the computer 224 and recorded (stored) on a hard disk in the computer 224, and the number of recorded images is counted. Thereafter, the increase in exposure time, shooting, image data transfer and recording, and counting of the number of recorded images are repeated.
  • the imaging is terminated.
  • the fluorescence image of the biochemical test array 100 acquired by imaging, transfer, and image processing as described above is divided for each probe array element by the computer 224 and stored as a divided image. At that time, the maximum intensity value of the probe array element region and the exposure time are added as data to each divided image. This is done for all exposure times, and finally a hybrid image is created. The hybrid image will be described with reference to FIG. 8A V and FIG. 8D.
  • FIG. 8A, FIG. 8B, and FIG. 8C show fluorescence images of the biochemical test array 100 taken at exposure times of 400 ms, 800 ms, and 1600 ms, respectively.
  • the fluorescence image of Fig. 8A no light can be seen on the screen where the intensity values of probe array elements A1 and A9 are as low as 200.
  • the range of the intensity value from 00 to 3000 is set as the most linear and reliable range because of the relationship between the CCD and its peripheral circuits.
  • the computer 224 finds the intensity value closest to 3000 below 3000 and its exposure time among a plurality of recorded (stored) images for each of the probe array elements. Specifically, in the images of FIGS. 8A, 8B, and 8C, intensity values are detected for each of the probe array elements, and multiple intensity values (for example, A1 and B1) of the same probe are detected. And CI intensity values), the data of the intensity value closest to 3000 and the exposure time data are extracted. When this operation is completed for all probe array elements, the intensity value is converted into an exposure time of, for example, 1 second (normalized) for all the probe array elements, and all the probe array elements after conversion are converted. The image shown in Fig. 8D is formed by combining the two images and displayed on the monitor 228 as a pseudo graphic image.
  • the inspector inspects the degree of reaction of each probe array element based on the pseudo graphic image and the converted data of the intensity value.
  • the fluorescent image of the biochemical examination array to be recorded (stored) is in the desired intensity range. This prevents useless images from being recorded (saved). Furthermore, by specifying the maximum exposure time and by specifying the number of fluorescent images to be acquired, useless time wasted is prevented. Therefore, an image of the biochemical test array having the optimum intensity for image analysis can be acquired efficiently.
  • a fluorescent dye is used for labeling a biochemical substance and the array for biochemical examination is illuminated with a light source to obtain fluorescence as an optical image.
  • Many fluorescent materials have various characteristics, and are preferred because they have a wide selection range depending on the application.
  • various detection methods and labels can be applied to the present invention.
  • chemiluminescence or bioluminescence no light source is needed to illuminate the biochemical test array.
  • an enzyme is used for labeling a biochemical substance and detection is performed by the chemiluminescence method, light is emitted by the reaction between the enzyme and the substrate, so that a light source for illuminating the biochemical test array is not necessary.
  • the universal control box 222, the filter unit 212, the lens 210, the shutter unit 208, the excitation light source 204, and the power supply unit 206 are not necessarily required.
  • Various fluorescent substances can also be used as labels when detecting by fluorescence.
  • fluorescent glass particles, fluorescent ceramics, and fluorescent proteins such as GFP can also be used.
  • metal particles or dielectric particles are used as labels.
  • fine particles of gold, silver, platinum, silicon, etc. Tas particles can be used.
  • fine particles such as gold, silver and platinum having a particle size of 0.1 to 1 m are particularly preferable because the speed of particles in a moving state is optimized similarly.
  • the optimum particle size is determined by the specific gravity of the particles and the speed of Brownian motion.
  • examples of the moving state of the particles include Brownian motion and vibration.
  • the present invention can be applied to the case where a biochemical substance is labeled and detected, in addition to the use of other labels in addition to the fluorescent dye.
  • the process of ending the shooting may be omitted. Similarly, the process of ending the shooting may be omitted if the number of shots exceeds the number indicated by TransPicts during repeated shooting.
  • the method of increasing the exposure time is not limited to this.
  • the exposure time may be increased by a certain ratio (in a geometric progression) or by a certain increment (in an arithmetic progression).
  • it may be increased according to a predetermined increase pattern without regularity between two consecutive exposure times.
  • the preferred ratios to increase the exposure time are the camera characteristics (dynamic range (range where output linearity is good with respect to input), photoelectric conversion efficiency, saturation charge per pixel) Depends on signal minimum and maximum difference. In other words, it depends on the camera used and the object to be detected. For this reason, you can repeat the experiment several times and decide on the basis of the results.
  • the rate of increase in exposure time is smaller! /, The amount of information to be acquired increases, but the time required for processing becomes longer. Therefore, the rate of increase in exposure time should be determined in consideration of the trade-off between the amount of information to be acquired and the time required for processing.
  • the inspection conditions may be fed back to inspect while optimizing the rate of increase in exposure time. This is effective in reducing the processing time.
  • an apparatus and a method for efficiently acquiring an image having an optimum intensity for image analysis of a biochemical test array are provided.

Abstract

 まずExpStartの露光時間で撮影する。画像の全ピクセルの最大強度値がTransStartより小さければ露光時間を増加して再び撮影する。以降、撮影された光画像の全ピクセルの最大強度値がTransStart以上になるまで、露光時間の増加と撮影を繰り返し行なう。最大強度値がTransStart以上になったら、画像データをコンピューターに転送してハードディスクに記録するとともに、記録枚数をカウントする。これ以降、露光時間の増加、撮影、画像データの転送と記録、記録枚数のカウントを繰り返し行なう。その間、光画像の全体領域より小さい領域内の最小強度値がTransEndより大きくなるか、記録枚数がTransPictsより大きくなるか、露光時間がMaxExpTimeより大きくなるかしたら、撮影を終了する。

Description

明 細 書
生化学検査装置および生化学検査方法
技術分野
[0001] 本発明は、生化学反応を解析するための装置と方法に関する。
背景技術
[0002] 近年、ヒトを含む多くの生物やイネをはじめとする多くの植物の遺伝子解析が進め られている。最近では、半導体などに DNAを規則正しく配列した DNAチップあるい は DNAマイクロアレイを用いた検査方法が開発されている。この検査方法では、同 時に複数の遺伝子を検査することができる。同検査方法は、例えば三次元アレイとそ れを検出する先行技術例として、特開 2002— 350446号公報に紹介されている。同 文献では、通常のダイナミックレンジを有するエリアセンサーまたはラインセンサーを 用いて、実用上大きなダイナミックレンジで各プローブアレイ要素に対応する光強度 を同時に検出し得る生化学的検査方法を開示している。
発明の開示
[0003] 特開 2002— 350446号公報は、通常のダイナミックレンジを有するエリアセンサー またはラインセンサーを用いて、実用上大きなダイナミックレンジで各プローブアレイ 要素に対応する光強度を同時に検出し得る生化学検査方法の一つとして、検査者 力 SNDフィルターを切り替えて所望の NDフィルターを観察光路上に配置する方法を 開示している。しかし、検査者が NDフィルターを切り替えてアレイ型検出器にすべて のプローブアレイ要素の蛍光画像を取り込ませるには多くの NDフィルターを繰り返し 抜き差ししなくてはならない。このため、生化学検査用アレイの蛍光画像を得るのに 多大な時間がかかり作業効率が著しく悪い。
[0004] さらに特開 2002— 350446号公報は、別の生化学検査方法として、 CCDカメラに おける CCDの蓄積時間を変えることにより蛍光の受光量を変化させる方法を開示し ている。例えば、蓄積時間を (tO、 2t0、 4t0、 · ··、 2n_1t0 (n= l, 2, · · ·) )と一定の比 率で順次増力 tlさせ、生化学検査用アレイの蛍光画像を取り込み、 CCDが飽和状態 になる直前での各蛍光画像を対象画像として画像処理部に送る。しかし、これではプ ローブアレイの蛍光発光量が少なぐかつ、 CCDの蓄積時間が少ない取り込み条件 の場合には、真っ暗な何も写っていない画像を画像処理部に送り続けることになる。 さらに、それだけ画像を記憶する領域を無駄に消費してしまう。また特開 2002— 35 0446号公報は、 CCDの最大蓄積時間の決定方法に関して、生化学検査用アレイ におけるアレイ要素の領域の最小発光強度に対応する受光量がアレイ型検出器の 出力特性の線形領域内に存在するという条件によって蓄積時間の最大値を決める 方法を開示している。しかし、この方法では、例えば、検査者が生化学的物質の溶液 を作成ミスしたために生化学検査用アレイにおける各アレイ要素の発光強度が著しく 小さくなつてしまった場合、前述の条件を満たすまでに多大な蓄積時間 (例えば 300 秒)を要し、検査者が負担を強いられるだけでなぐ 300秒待っても結局所望の蛍光 画像が得られな ヽと ヽぅ検査効率の低下を招くことになる。
[0005] 本発明は、このような実状を考慮して成されたものであり、その目的は、生化学検査 用アレイの画像解析に最適な強度を持つ画像を効率良く取得する装置と方法を提 供することである。
[0006] 本発明は、ひとつの見地によると、生化学検査用アレイから発せられる蛍光を測定 して生化学反応を解析するための生化学的検査装置に向けられて 、る。本発明の 生化学的検査装置は、生化学検査用アレイに励起光を照射するための照明手段と、 生化学検査用アレイから発せられる光画像を撮影するための撮影手段と、撮影され た光画像を保存するための記録手段とを備えており、撮影手段は、露光時間を第一 ノ メーターで規定された初期値力 徐々に長くしながら光画像を繰り返し撮影し、 撮影された光画像の全ピクセル中の最大強度が第二パラメーターで規定された強度 以上になったら記録手段による光画像の記録が開始され、また、撮影された光画像 の全体領域より小さい領域内のピクセル中の最小強度が第三パラメーターで規定さ れた強度より大きくなつたら記録手段による光画像の記録が終了される。
[0007] 本発明は、別のひとつの見地によると、生化学検査用アレイから発せられる蛍光を 測定して生化学反応を解析するための生化学的検査方法に向けられている。本発 明の生化学的検査方法は、生化学検査用アレイに励起光を照射し、励起光の照射 に応じて生化学検査用アレイから発せられる光画像を、露光時間を第一パラメーター で規定された初期値カゝら徐々に長くしながら繰り返し撮影し、繰り返し撮影の間、撮 影された光画像の全ピクセル中の最大強度が第二パラメーターで規定された強度以 上になったら光画像の記録を開始し、また、撮影された光画像の全体領域より小さい 領域内のピクセル中の最小強度が第三パラメーターで規定された強度より大きくなつ たら光画像の記録を終了する。
図面の簡単な説明
[図 1]図 1は、本発明の実施形態による生化学検査装置の構成を示している。
[図 2]図 2は、図 1に示された生化学検査装置で検査される生化学検査用アレイの平 面図である。
[図 3]図 3は、図 2に示された生化学検査用アレイのアレイ要素の断面図である。
[図 4]図 4は、図 1に示されたコンピューター上で動作する制御プラグラムに読み込ま れるイニシャルデータファイルの一部を示して 、る。
[図 5A]図 5Aは、撮影開始直後に撮影された画像を示している。
[図 5B]図 5Bは、画像の全ピクセルの最大強度値が TransStart以上になった直後の 画像を示している。
[図 5C]図 5Cは、図 5Bに示された画像の撮影後に露光時間を長くして撮影された画 像を示している。
[図 5D]図 5Dは、図 5Cに示された画像の撮影後に露光時間を長くして撮影された画 像を示している。
[図 5E]図 5Eは、図 5Dに示された画像の撮影後に露光時間を長くして撮影された画 像を示している。
[図 5F]図 5Fは、 TransEndと比較される最小強度値が調べられる蛍光画像の全体 領域より小さ 、領域を示して 、る。
[図 6]図 6は、中心部から外周部に向かって照明の強度むらが発生している様子を示 している。
[図 7]図 7は、図 1に示された生化学検査装置の動作のフローチャートを示している。
[図 8A]図 8Aは、 400msの露光時間で撮影された生化学検査用アレイ 100の蛍光画 像を示している。 [図 8B]図 8Bは、 800msの露光時間で撮影された生化学検査用アレイ 100の蛍光画 像を示している。
[図 8C]図 8Cは、 1600msの露光時間で撮影された生化学検査用アレイ 100の蛍光 画像を示している。
[図 8D]図 8Dは、図 8Aと図 8Bと図 8Cの画像に基づいて形成されたハイブリッド画像 を示している。
発明を実施するための最良の形態
[0009] 以下、図面を参照しながら本発明の実施形態について説明する。
[0010] 図 1は、本発明の実施形態による生化学検査装置の構成を示している。図 1におい て、励起光源 204は水銀光源などの種々のランプや LEDなどであり、電源ユニット 2 06に接続されている。励起光源 204から射出される励起光の光路上には、シャツタ 一板 208aを内蔵しているシャッターユニット 208、レンズ 210、二枚の励起フィルター 212aを内蔵しているフィルターユニット 212、ダイクロイツクミラー 214が配置されてい る。ダイクロイツクミラー 214の反射光路上には、対物レンズ 216と生化学検査用ァレ ィ 100が載せられるステージ 202が配置されている。また、ダイクロイツクミラー 214の 透過光路上には、結像レンズ 218と撮像素子である CCDカメラ 220が配置されてい る。 CCDカメラ 220は、少なくとも一枚分の撮影画像を一時的に記憶できる不図示の バッファメモリーと、ノ ッファメモリー上の画像に対して信号強度検出などの画像演算 が行なえる不図示のシグナルプロセッサとを内蔵している。シャッターユニット 208と フィルターユニット 212はユニバーサルコントロールボックス 222を介してコンピュータ 一 224によって制御可能となっている。ステージ 202は XY方向に電動で位置決め可 能であり、ステージコントローラー 232を介してコンピューター 224により制御可能とな つて 、る。コンピューター 224にはキーボード 226とモニター 228とマウス 230が接続 されている。
[0011] 言い方を変えれば、生化学検査装置 200は、生化学検査用アレイ 100が載せられ るステージ 202と、励起光を発する励起光源 204と、励起光を生化学検査用アレイ 1 00に向けて反射するとともに生化学検査用アレイ 100から生じる蛍光を透過するダイ クロイツクミラー 214と、生化学検査用アレイ 100の蛍光画像を撮るための CCDカメラ 220とを備えている。ここで蛍光画像は光画像の一種である。光画像とは、蛍光、燐 光、化学発光、生物発光、散乱光、反射光などの種々の光を信号とした画像のことで ある。
[0012] さらに生化学検査装置 200は、励起光を適宜遮断するためのシャッターユニット 20 8と、レンズ 210と、励起光の波長を選択するためのフィルターユニット 212とを備えて いる。シャッターユニット 208とレンズ 210とフィルターユニット 212は、励起光源 204 力もダイクロイツクミラー 214までの光路上に順に配置されている。
[0013] また生化学検査装置 200は、ダイクロイツクミラー 214とステージ 202の間に位置す る対物レンズ 216と、ダイクロイツクミラー 214と CCDカメラ 220の間に位置する結像 レンズ 218とを備えている。
[0014] このように構成される光学系にお 、て、励起光源 204とシャッターユニット 208とレン ズ 210とフィルターユニット 212とダイクロイツクミラー 214と対物レンズ 216は、生化 学検査用アレイ 100に励起光を照射するための照明手段を構成している。また、対 物レンズ 216と結像レンズ 218と CCDカメラ 220は、生化学検査用アレイ 100から発 せられる光画像を撮影するための撮影手段を構成している。
[0015] さらに生化学検査装置 200は、励起光源 204を駆動するための電源ユニット 206と 、ステージ 202を駆動するためのステージコントローラー 232と、シャッターユニット 20 8とフィルターユニット 212を駆動するためのユニバーサルコントロールボックス 222と を備えている。
[0016] また生化学検査装置 200は、 CCDカメラ 220とステージコントローラー 232とュ-バ ーサルコントロールボックス 222とを制御するコンピューター 224を備えている。コンビ ユーター 224にはユーザーインターフェイスとしてキーボード 226とモニター 228とマ ウス 230が接続されている。コンピューター 224はハードディスクを内蔵しており、撮 影された光画像を保存するための記録手段を構成している。
[0017] 図 2と図 3は、図 1に示された生化学検査装置によって検査される生化学検査用ァ レイを示している。生化学検査用アレイ 100は三次元アレイであり、図 2に示されるよ うに、多孔質の三次元基材 102と、三次元基材 102に形成された多数のプローブァ レイ要素(プローブスポット) 106とを有している。プローブアレイ要素 106は三次元基 材 102上に二次元的に配列されており、プローブアレイ要素 106の配列領域の四隅 には位置検出用アレイ要素 (位置検出用スポット) 104が形成されている。三次元基 材 102は多数の貫通孔を有しており、図 3に示されるように、プローブアレイ要素 106 内に位置する貫通孔 108の内壁には特定の物質と反応するプローブ 110が固相化 されている。プローブアレイ要素(プローブスポット) 106は例えばプローブを含む溶 液を三次元基材 102上に必要量を分注することにより形成される。
[0018] 三次元基材 102上の複数のプローブアレイ要素 106は複数の種類を含んでいる。
各プローブアレイ要素 106は同じ種類のプローブ 110を含んでおり、そのプローブ 1 10が特定の物質と反応すると、特定の励起光の照射に対して特定の蛍光を発光す るよつになる。
[0019] 生化学検査装置 200は、コンピューター 224上で動作する制御プログラムによって 制御される。言い換えれば、コンピューター 224は、生化学検査装置 200全体を制 御するための制御プログラムを含んでいる。この制御プログラムは、図 4に示されるよ うなイニシャルデータファイル力 制御プログラム自身の動作や各ユニットの動作パラ メーターを読み出して生化学検査装置 200全体を制御する。
[0020] 図 4は、イニシャルデータファイルの一部を抜き出して示している。検査者または装 置の管理者はこのイニシャルデータファイルを一般的なエディターなどにより簡単に 修正変更することができる。つまり、検査者や装置管理者は、モニター 228を見なが ら、キーボード 226を操作して、必要であればマウス 230も操作して、イニシャルデー タファイルを容易に修正変更できる。イニシャルデータファイルは種々のパラメーター を含んでおり、モニター 228とキーボード 226、さらにマウス 230は、イニシャルデータ ファイル中のパラメーターを任意に設定することを可能にするための入力手段を構成 している。
[0021] 図 4に示されているパラメータ一は、 CCDカメラ 220によって生化学検査用アレイ 1 00の蛍光画像を撮影する際の撮影パラメーターである。
[0022] ExpStartは、 CCDカメラ 220が生化学検査用アレイ 100の蛍光画像を撮影する 際の露光時間 (CCDの電荷蓄積時間)の初期値である。検査者が生化学検査用ァ レイ 100の蛍光画像の撮影開始を指示すると、 CCDカメラ 220は、ここに示されてい る初期値から徐々に長くなるように露光時間を変化させながら、生化学検査用アレイ
100を繰り返し撮影する。露光時間は、これに限らないが、例えば 10 X 2n_ 1 (n= l, 2, の割合で変化される。
[0023] TransStartは、 CCDカメラ 220が蛍光画像の記録 (保存)開始を判断するための ピクセル強度値の基準値である。すなわち、 CCDカメラ 220は、撮影された生化学検 查用アレイ 100の蛍光画像の全ピクセル中で最も明るいピクセルの強度値が Trans Startの値以上になったらコンピューター 224に画像データを転送するのを開始し、 これに応じて記憶装置(コンピューター 224内のハードディスク)は画像データの記録 (保存)を開始する。
[0024] TransEndは、 CCDカメラ 220が蛍光画像の記録 (保存)終了を判断するためのピ クセル強度値の基準値である。すなわち、 CCDカメラ 220は、撮影された生化学検 查用アレイ 100の蛍光画像の全体領域より小さい中心付近の領域内のピクセル中で 最も暗いピクセルの強度値が TransEndの値より大きくなつたらコンピューター 224に 画像データを転送するのを終了し、これに応じて記憶装置 (コンピューター 224内の ハードディスク)は画像データの記録 (保存)を終了する。
[0025] TtansPictsは、 CCDカメラ 220が蛍光画像の記録(保存)終了を判断するための 記録 (保存)枚数の基準値である。すなわち、 CCDカメラ 220は、コンピューター 224 に転送した生化学検査用アレイの蛍光画像の枚数が TtansPictsの値よりも大きくな つたらコンピューター 224に画像データを転送するのを終了し、これに応じて記憶装 置 (コンピューター 224内のハードディスク)は画像データの記録 (保存)を終了する。
[0026] MaxExpTimeは、 CCDカメラ 220が蛍光画像の記録(保存)終了を判断するため の露光時間の基準値である。すなわち、 CCDカメラ 220は、生化学検査用アレイ 10 0の蛍光画像を撮影する露光時間が MaxExpTime値よりも大きくなつたらコンビユー ター 224に画像データを転送するのを終了し、これに応じて記憶装置 (コンピュータ 一 224内のハードディスク)は画像データの記録 (保存)を終了する。
[0027] 次に、生化学検査装置 200の動作について述べる。
[0028] 検査者は、生化学検査の準備として例えば二色の蛍光分子 (または化学発光分子 )で標識された二種の生化学的物質を含有した溶液を作成する。この場合、検査者 は、比較したい二種の生化学的物質の溶液を同一濃度で作成し、一方を FITCで、 他方をローダミンで標識する。これらの標識物質は、蛍光波長の異なる物質の組み 合わせであれば他の物質でも構わない。その後、作成した二種の生化学的物質の 溶液を体積比で 1 : 1の割合で混合して撹拌し、生化学的物質の混合溶液とする。混 合比率につ!、ては、二種の生化学的物質の溶液および標識物質の特性に応じて変 更してちよい。
[0029] 検査者は、生化学検査用アレイ 100に生化学的物質の混合溶液を供給してプロ一 ブと特異的に反応させる。この場合、検査者は、図 1に示した生化学検査装置 200に よる観察下で、ステージ 202上に生化学検査用アレイ 100を配置し、その表面に一 様に生化学的物質の混合溶液を供給する。これにより、生化学検査用アレイ 100上 のプローブアレイ要素 106内のプローブと混合溶液に含まれる生化学的物質との間 に特異的な結合反応が生じる。この結果、各プローブアレイ要素 106内で反応の強 さに応じた数量の蛍光分子 (または化学発光分子)が間接的にプローブに結合する ことになる。
[0030] 検査者は、生化学検査用アレイ 100から未反応の生化学的物質を除去する。この 場合、検査者は、前述した結合反応後に、生化学検査用アレイ 100の各プローブァ レイ要素 106から未結合の生化学的物質を除去する。一般的には洗浄液を用いて 洗浄する方法が採用されるが、反応担体が立体構造である場合には洗浄液を用 、 ずにポンプなどで溶液ごと除去してもよい。ただし、洗浄液を用いる方が確実に除去 されることは言うまでちな!、。
[0031] 検査者は、生化学検査用アレイ 100の蛍光画像を標識物質ごとに CCDカメラ 220 で撮り込むために、モニター 228を通してコンピューター 224を操作する。検査者が モニター 228上に表示されて 、る「撮影」ボタンをマウス 230によりクリックすると、コン ピューター 224はユニバーサルコントロールボックス 222にコマンドを送信し、フィルタ 一ユニット 212に内蔵されている二枚の励起フィルター 212aを切り替えて所望の蛍 光分子の色に対応する励起フィルターを照明光路上に配置する。そして、同じくコン ピューター 224はユニバーサルコントロールボックス 222にシャッターユニット 208に 内蔵されて 、るシャッター板 208aを開くコマンドを送信する。これにより励起光源 20 4からの励起光は、レンズ 210と励起フィルター 212aを通過し、ダイクロイツクミラー 2 14によって反射され、対物レンズ 216を介して生化学検査用アレイ 100の上面全体 に照射される。その結果、各プローブアレイ要素 106内の蛍光分子が発生する蛍光 は対物レンズ 216とダイクロイツクミラー 214と結像レンズ 218を通過して CCDカメラ 2 20に 力れる。
[0032] CCDカメラ 220は、露光時間(蓄積時間)をイニシャルデータファイルに書かれた E xpStartで示される初期値力 徐々に長くしながら繰り返し撮影する。本実施形態で は、 ExpStartは 10msであり、露光時間(蓄積時間)は 10 X 2n_ 1 (n= l, 2"') msの 割合で増加される。撮影が終了するたびに、撮影された蛍光画像の全ピクセルの強 度の最大値がイニシャルデータファイルに書かれた TransStartで示されるピクセル 強度以上になっているかがスキャンして判断される。
[0033] CCDカメラ 220は、画像の全ピクセルの最大強度値が TransStartより小さ!/、間は コンピューター 224に画像データを転送しない。図 5Aは、撮影開始直後に撮影され た画像を示している。すなわち、 10msの露光時間で撮影された画像を示している。 図 5Aの画像では、全ピクセルの強度値の最大値は TransStartより小さい。このため CCDカメラ 220は、図 5Aの画像データはコンピューター 224に転送しない。 CCD力 メラ 220は、画像の全ピクセルの最大強度値が TransStart以上になるまで同じ動作 を繰り返す。
[0034] CCDカメラ 220は、画像の全ピクセルの最大強度値が TransStart以上になったら 、コンピューター 224への画像データの転送を開始する。図 5Bは、画像の全ピクセ ルの最大強度値が TransStart以上になった直後の画像を示して 、る。図 5Bの画像 では、画像の全ピクセルの最大強度値が TransStart以上になっており、二つのプロ ーブアレイ要素が現われている。このため CCDカメラ 220は、図 5Bの画像データを コンピューター 224に転送する。転送された画像データは、コンピューター 224内の ハードディスクに記録 (保存)される。
[0035] CCDカメラ 220は、蛍光画像の全体領域より小さい中心付近の領域内の最小強度 値が TransEnd以下である間はコンピューター 224に画像データの転送を続ける。 露光時間が長くなるにつれて、生化学検査用アレイ 100の蛍光画像には、順に、図 5 C、図 5D、図 5Eに示されるように、だんだん多くのプローブアレイ要素が現われてく る。
[0036] CCDカメラ 220は、蛍光画像の全体領域より小さい領域内の最小強度値が Trans Endより大きくなつたら、コンピューター 224への画像データの転送を終了する。これ により、コンピューター 224内のハードディスクへの画像データの記録(保存)が終了 される。
[0037] このとき、画像データをいつたんコンピューターに送り、保存するか否かを判断する ようにしてもよい。この場合は、 CCDカメラに画像演算用のシグナルプロセッサが不 要になる。
[0038] より好ましくは、画像データをコンピューター 224に転送している間、生化学検査用 アレイ 100の蛍光画像の撮影をする際に、それぞれの露光時間に対して照明光を当 てない状態、つまりシャッターユニット 208を閉じた状態でも撮影し、その画像データ をコンピューター 224へ転送する。そして、同じ露光時間において照明光が当たった 状態での生化学検査用アレイ 100の蛍光画像力もシャッターユニット 208を閉じた状 態で撮影した画像をコンピューター 224により引き算演算を行ない、 CCDカメラ 220 自体によって発生する暗ノイズを除去する処理をする。また、このノイズ除去処理は C CDカメラ 220内で行ない、処理後の画像をコンピューター 224に転送してもよい。そ のようにすれば、転送処理が一度で済むのでさらに処理速度の向上が図れる。
[0039] 通常、生化学検査用アレイ 100の蛍光画像を露光時間を長くしながら撮影してゆく と、照明光学系の収差や観察光学系(本実施形態では CCDカメラの撮影光学系)の 収差の影響により、図 5Dから図 5Eへの変化力 分力るように、また図 6に示されるよ うに、中心部力も外周部に向力つて強度むらが発生する。これにより、中心部と周辺 部では発光蛍光量が同じプローブアレイ要素でも CCDカメラ 220で撮影されたとき に異なる強度値で撮影されてしまうことになり、正し 、正確な生化学検査を行なうこと ができない。このため、コンピューター 224は、生化学検査用アレイ 100の照明強度 むら分布力も補正係数を算出し、既に記録 (保存)されている画像に対して、露光時 間ごとにすべてのプローブアレイ要素の蛍光発光強度を算出した補正係数により補 正する。言い換えれば、コンピューター 224は、保存されている画像に対して露光時 間ごとにすべてのプローブアレイ要素の蛍光発光強度を照明強度むら分布力 算出 した補正係数により補正する補正手段を構成して 、る。
[0040] 本実施形態では、この補正係数を算出するための画像として、蛍光画像の全体領 域より小さい領域内のピクセル強度の最小値が TransEndより大きくなる直前にコン ピューター 224に転送された画像を用いる。これは、 CCDカメラ 220のダイナミックレ ンジを有効に利用して、より正確な補正係数を算出するためである。このとき得られる 生化学検査用アレイ 100の蛍光画像は例えば図 5Eで示されるような画像であるが、 このままではプローブアレイ要素が蛍光発光して!/、るので、画像にフィルター処理を 施して画素補間によりプローブアレイ要素を消去して図 6で示されるような補正係数 計算用画像をつくり出す。この補正係数計算用画像から補正係数が算出される。
[0041] 通常、上述した一連の動作によって、生化学検査用アレイ 100の蛍光画像は問題 なく撮影される。しかし、検査者が生化学物質の混合溶液を間違えていた場合や、プ ローブアレイ要素が正しく作成されていなかったなどの場合、生化学検査用アレイ 10 0内で正しい結合反応が行なわれず、その結果、プローブアレイ要素が蛍光を期待 通り発しないこともある。その場合には、生化学検査用アレイ 100中の最大強度が Tr ansStartで示されるピクセル強度より大きくなるまでに相当に長い時間が必要になる 。その場合、実験そのものが失敗である上に露光時間が相当に長くなるまで無意味 に待つことになるので検査に無駄な時間を費やすことになる。
[0042] このような事態を避けるため、本実施形態では、繰り返し撮影の間に、露光時間が MaxExpTimeより大きくなつたら、その時点で、所望の画像を撮影できなかった旨の メッセージをモニター 228に表示し、撮影を終了する。
[0043] また、これまでの経験から、露光時間の増加の割合を考慮して、生化学検査用ァレ ィ 100の蛍光画像の必要な枚数の見当がつくことも少なくない。その場合、蛍光画像 の全体領域より小さい領域内のピクセル強度の最小値が TransEndより大きくなるま で待つことは、検査に無駄な時間を費やすことになる。
[0044] このため、本実施形態では、繰り返し撮影の間に、 TransPictsで示される枚数より 大きくなつたら、その時点で、 TransPictsで示される枚数に達した旨のメッセージを モニター 228に表示し、撮影を終了する。 [0045] 上述した一連の動作のフローチャートを図 7に示す。図 7から分力るように、上述し た一連の動作を要約すると次のようになる。まず ExpStartの露光時間で生化学検査 用アレイ 100の蛍光画像を撮影する。蛍光画像の全ピクセルの最大強度値が Trans Startより小さければ露光時間を増加して生化学検査用アレイ 100の蛍光画像を再 び撮影する。以降、撮影された蛍光画像の全ピクセルの最大強度値が TransStart 以上になるまで、露光時間の増加と生化学検査用アレイ 100の蛍光画像の撮影とを 繰り返し行なう。撮影された蛍光画像の全ピクセルの最大強度値が TransStart以上 になったら、画像データをコンピューター 224に転送してコンピューター 224内のハ ードディスクに記録 (保存)するとともに、記録枚数をカウントする。これ以降、露光時 間の増加、撮影、画像データの転送と記録、記録枚数のカウントを繰り返し行なう。そ の間、蛍光画像の全体領域より小さ 、領域内の最小強度値が TransEndより大きく なるか、記録枚数が TransPictsより大きくなる力、露光時間が MaxExpTimeより大 きくなる力したら、撮影を終了する。
[0046] 上述のようにして撮影 ·転送 ·画像処理によって取得された生化学検査用アレイ 10 0の蛍光画像は、コンピューター 224によってプローブアレイ要素ごとに分割され、分 割画像として保存される。そのとき、各分割画像には、プローブアレイ要素領域の最 大強度値と露光時間がデータとして加えられる。これをすベての露光時間に対して 行ない、最終的にハイブリッド画像を作成する。ハイブリッド画像について、図 8Aな V、し図 8Dを用いて説明する。
[0047] 図 8Aと図 8Bと図 8Cは、それぞれ、 400msと 800msと 1600msの露光時間で撮景 された生化学検査用アレイ 100の蛍光画像を示している。図 8Aの蛍光画像では、プ ローブアレイ要素 A1と A9の強度値は 200と低ぐ画面上では光が確認できない。ま た、本実施形態で使用されている CCDカメラ 220では、 CCDおよびその周辺回路の 関係上、強度値力 00〜3000の範囲を最もリニアで信頼できる範囲として 、る。
[0048] コンピューター 224は、プローブアレイ要素のそれぞれにつ!/、て、記録(保存)され た複数の画像の中から 3000以下で 3000に最も近い強度値とその露光時間を探し 出す。具体的には、図 8Aと図 8Bと図 8Cの画像において、プローブアレイ要素のそ れぞれについて強度値を検出し、同一のプローブの複数の強度値 (例えば A1と B1 と CIの強度値)の中から、 3000に最も近い強度値のデータとその露光時間のデー タとを取り出す。すべてのプローブアレイ要素に対してこの作業が終了すると、すべ てのプローブアレイ要素に対して強度値を例えば一秒の露光時間に換算して (規格 化して)、換算後のすべてのプローブアレイ要素の画像を合成して図 8Dに示される ノ、イブリツド画像を形成し、これを擬似グラフィック画像としてモニター 228に表示する
[0049] 検査者は、この擬似グラフィック画像と強度値の換算データに基づいて各プローブ アレイ要素の反応度合!ヽを検査する。
[0050] これまでの説明から分かるように、本実施形態の生化学検査装置によれば、記録( 保存)される生化学検査用アレイの蛍光画像は所望の強度範囲にあるものであるた め、無駄な画像が記録 (保存)されることが防止される。さらに、最大露光時間を規定 することにより、また蛍光画像の取得枚数を規定することにより、無意味な時間の浪費 が防止される。従って、画像解析に最適な強度を持つ生化学検査用アレイの画像が 効率良く取得できる。
[0051] 本実施形態では、生化学的物質の標識に蛍光色素を用い、生化学検査用アレイ を光源により照明して蛍光を光画像として取得する場合について説明した。蛍光物 質は種々の特性を有するものが数多くあり、用途により選択の範囲が広いので好まし い。しかし、これ以外にも、種々の検出方法や標識を本発明に適用することが可能で ある。化学発光や生物発光を用いる場合は、生化学検査用アレイを照明する光源は 不要である。例えば、酵素を生化学的物質の標識に用い化学発光法により検出を行 う場合は、酵素と基質の反応により発光するので、生化学検査用アレイを照明する光 源は不要である。この場合は、図 1において、ユニバーサルコントロールボックス 222 、フィルターユニット 212、レンズ 210、シャッターユニット 208、励起光源 204、電源 ユニット 206は必ずしも必要ではなくなる。
[0052] また蛍光で検出する場合も種々の蛍光物質を標識として用いることが可能である。
蛍光色素のほかに、蛍光ガラス粒子、蛍光セラミックス、 GFPなどの蛍光タンパク質 なども用いることができる。散乱光や反射光で検出を行う場合は、金属粒子や誘電体 粒子を標識として用いる。例えば金微粒子、銀、白金、シリコンなどの微粒子ゃラテツ タス粒子を用いることができる。特に、金、銀、白金などの微粒子は、粒径が 0. 1〜1 mのものが、同様に、運動状態にある粒子の速さが最適となるため特に好ましい。 最適な粒径は、粒子の比重とブラウン運動の速さにより決定される。ここで、粒子の運 動状態は、例えばブラウン運動や振動などがあげられる。
[0053] 以上のように、生化学的物質を標識して検出する場合に、蛍光色素だけでなく他の 標識を用いた場合にも本発明は適用が可能である。
[0054] これまで、図面を参照しながら本発明の実施形態を述べた力 本発明は、これらの 実施形態に限定されるものではなぐその要旨を逸脱しない範囲において様々な変 形や変更が施されてもよい。
[0055] 例えば、図 7に示されたフローチャートにおいて、繰り返し撮影の間に露光時間が
MaxExpTimeより大きくなつたら撮影を終了する処理は省略されてもよい。同様に、 繰り返し撮影の間に TransPictsで示される枚数より大きくなつたら撮影を終了する処 理も省略されてもよい。
[0056] また実施形態では、露光時間を 10 X 2n_1 [ms]に従って増加させている力 これは 本発明者らが経験的に特に有効であることを確認したものでる。しかし、露光時間の 増加の仕方はこれに限定されるものではない。例えば、露光時間は一定の比率によ り(等比数列的に)増加されてもよぐまた一定の増分により(等差数列的に)増加され てもよい。さらには、連続する二つの露光時間の間に規則性のない所定の増加バタ ーンに従って増加されてもょ 、。
[0057] 露光時間を増加させる好適な割合は、カメラの特性 (ダイナミックレンジ (入力に対し て出力の直線性がよい範囲)、光電変換効率、 1ピクセル当たりの飽和電荷量)と、取 得したい信号の最小と最大の差とに依存する。つまり、使用するカメラと検出の対象 物によって異なる。このため、何回か実験を繰り返し、その結果に基づいて決められ るとよ 、。
[0058] 露光時間の増加の割合は小さ!/、ほど、取得する情報量は多くなる反面、処理に要 する時間は長くなる。従って、露光時間の増加の割合は、取得する情報量と処理に 要する時間のトレードオフを考慮した上で決められるとよい。
[0059] また、似たようなサンプルと反応済みの多数の生化学検査用アレイを検査する場合 、生化学検査用アレイの検査の都度、検査条件をフィードバックして、露光時間の増 加の割合の最適化を図りながら検査してもよい。これは、処理に要する時間を短縮す る上で有効である。
産業上の利用可能性
本発明によれば、生化学検査用アレイの画像解析に最適な強度を持つ画像を効 率良く取得する装置と方法が提供される。

Claims

請求の範囲
[1] 生化学検査用アレイ力 発せられる光を測定して生化学反応を解析するための生 化学的検査装置であり、
生化学検査用アレイに励起光を照射するための照明手段と、
生化学検査用アレイ力 発せられる光画像を撮影するための撮影手段と、 撮影された光画像を保存するための記録手段とを備えており、
撮影手段は、露光時間を第一パラメーターで規定された初期値から徐々に長くしな 力 Sら光画像を繰り返し撮影し、
撮影された光画像の全ピクセル中の最大強度が第二パラメーターで規定された強 度以上になったら記録手段による光画像の記録が開始され、また、撮影された光画 像の全体領域より小さい領域内のピクセル中の最小強度が第三パラメーターで規定 された強度より大きくなつたら記録手段による光画像の記録が終了される、生化学検 查装置。
[2] 請求項 1にお 、て、記録手段は、撮影された光画像の全体領域より小さ 、領域内 のピクセル中の最小強度が第三パラメーターで規定された強度より大きくなる前に、 露光時間が第四パラメーターで規定された値より大きくなつたら、その時点で光画像 の記録を終了する、生化学検査装置。
[3] 請求項 1にお 、て、記録手段は、撮影された光画像の全体領域より小さ 、領域内 のピクセル中の最小強度が第三パラメーターで規定された強度より大きくなる前に、 記録された光画像の枚数が第五パラメーターで規定された値より大きくなつたら、そ の時点で光画像の記録を終了する、生化学検査装置。
[4] 請求項 1にお 、て、記録手段は、撮影された光画像の全体領域より小さ 、領域内 のピクセル中の最小強度が第三パラメーターで規定された強度より大きくなる前に、 露光時間が第四パラメーターで規定された値より大きくなる力 記録された光画像の 枚数が第五パラメーターで規定された値より大きくなるかしたら、その時点で光画像 の記録を終了する、生化学検査装置。
[5] 請求項 1において、撮影手段は露光時間を規定の割合で長くする、生化学検査装 置。
[6] 請求項 1ないし請求項 4のいずれか一つにおいて、使用者が少なくとも第一パラメ 一ターな!/、し第五パラメーターの 、ずれか一つを任意に設定することを可能にする ための入力手段をさらに備えている、生化学検査装置。
[7] 請求項 1ないし請求項 4のいずれか一つにおいて、保存されている画像に対して露 光時間ごとにすべてのプローブアレイ要素の発光強度を照明強度むら分布力 算出 した補正係数により補正する補正手段をさらに備えている、生化学検査装置。
[8]
Figure imgf000019_0001
、て、記録手段に記録された複数の 光画像から一枚のハイブリッド画像を形成するための画像形成手段をさらに備えて おり、画像形成手段は、記録手段に保存された複数の光画像をプローブアレイ要素 ごとに分割し、プローブアレイ要素のそれぞれにつ!/、て好適な強度値の分割画像を 選択し、選択したすべての分割画像における強度値を同一の露光時間に換算し、換 算後のすべてのプローブアレイ要素の分割画像を合成して一枚のハイブリッド画像 を形成する、生化学検査装置。
[9] 請求項 1ないし請求項 4のいずれか一つにおいて、撮影手段は撮像素子を有し、 撮像素子は CCDカメラである、生化学検査装置。
[10] 生化学検査用アレイ力 発せられる光を測定して生化学反応を解析するための生 化学的検査方法であり、
生化学検査用アレイに励起光を照射し、
励起光の照射に応じて生化学検査用アレイ力 発せられる光画像を、露光時間を 第一パラメーターで規定された初期値力 徐々に長くしながら繰り返し撮影し、 繰り返し撮影の間、撮影された光画像の全ピクセル中の最大強度が第二パラメータ 一で規定された強度以上になったら光画像の記録を開始し、また、撮影された光画 像の全体領域より小さい領域内のピクセル中の最小強度が第三パラメーターで規定 された強度より大きくなつたら光画像の記録を終了する、生化学検査方法。
[11] 請求項 10において、撮影された光画像の全体領域より小さい領域内のピクセル中 の最小強度が第三パラメーターで規定された強度より大きくなる前に、露光時間が第 四パラメーターで規定された値より大きくなつたら、その時点で光画像の記録を終了 する、生化学検査方法。
[12] 請求項 10において、撮影された光画像の全体領域より小さい領域内のピクセル中 の最小強度が第三パラメーターで規定された強度より大きくなる前に、記録された光 画像の枚数が第五パラメーターで規定された値より大きくなつたら、その時点で光画 像の記録を終了する、生化学検査方法。
[13] 請求項 10において、撮影された光画像の全体領域より小さい領域内のピクセル中 の最小強度が第三パラメーターで規定された強度より大きくなる前に、露光時間が第 四パラメーターで規定された値より大きくなるか、記録された光画像の枚数が第五パ ラメ一ターで規定された値より大きくなる力したら、その時点で光画像の記録を終了 する、生化学検査方法。
[14] 請求項 10において、露光時間を規定の割合で長くする、生化学検査方法。
[15] 請求項 10ないし請求項 13のいずれか一つにおいて、保存されている画像に対し て露光時間ごとにすべてのプローブアレイ要素の発光強度を照明強度むら分布から 算出した補正係数により補正する、生化学検査方法。
[16] 請求項 10ないし請求項 13のいずれか一つにおいて、記録手段に保存された複数 の光画像をプローブアレイ要素ごとに分割し、プローブアレイ要素のそれぞれについ て好適な強度値の分割画像を選択し、選択したすべての分割画像における強度値 を同一の露光時間に換算し、換算後のすべてのプローブアレイ要素の分割画像を 合成して一枚のハイブリッド画像を形成する、生化学検査方法。
PCT/JP2006/301050 2005-01-24 2006-01-24 生化学検査装置および生化学検査方法 WO2006078036A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP06712266A EP1843146A1 (en) 2005-01-24 2006-01-24 Biochemical inspection device and biochemical inspection method
JP2006554001A JP4724126B2 (ja) 2005-01-24 2006-01-24 生化学検査装置および生化学検査方法
US11/880,657 US7920733B2 (en) 2005-01-24 2007-07-23 Biochemical examination apparatus and biochemical examination method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005015546 2005-01-24
JP2005-015546 2005-01-24

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/880,657 Continuation US7920733B2 (en) 2005-01-24 2007-07-23 Biochemical examination apparatus and biochemical examination method

Publications (1)

Publication Number Publication Date
WO2006078036A1 true WO2006078036A1 (ja) 2006-07-27

Family

ID=36692407

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/301050 WO2006078036A1 (ja) 2005-01-24 2006-01-24 生化学検査装置および生化学検査方法

Country Status (6)

Country Link
US (1) US7920733B2 (ja)
EP (1) EP1843146A1 (ja)
JP (1) JP4724126B2 (ja)
KR (2) KR100877656B1 (ja)
CN (1) CN101111757A (ja)
WO (1) WO2006078036A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009008603A (ja) * 2007-06-29 2009-01-15 Canon Inc 蛍光検出装置および生化学反応分析装置と蛍光検出方法
JP6075572B2 (ja) * 2013-09-13 2017-02-08 三菱レイヨン株式会社 画像読取り方法
JP2019531463A (ja) * 2016-07-25 2019-10-31 シーメンス・ヘルスケア・ダイアグノスティックス・インコーポレーテッドSiemens Healthcare Diagnostics Inc. 試料容器キャップを識別するためのシステム、方法及び装置

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009150829A (ja) * 2007-12-21 2009-07-09 Olympus Corp 生体試料の観察方法
DE102008012903A1 (de) 2008-03-06 2009-09-17 Robert Bosch Gmbh Antrieb für ein Hybridfahrzeug sowie Kupplung mit einer Ausrückvorrichtung
JP5496976B2 (ja) * 2011-09-21 2014-05-21 富士フイルム株式会社 撮影装置、撮影プログラム、及び撮影方法
US9058648B2 (en) * 2012-03-15 2015-06-16 Bio-Rad Laboratories, Inc. Image acquisition for chemiluminescent samples
CN104303047B (zh) * 2012-03-15 2018-01-09 生物辐射实验室股份有限公司 用于化学发光样本的图像获取
US10361444B2 (en) * 2013-12-31 2019-07-23 General Electric Company Solid-oxide fuel cell systems
EP3644044B1 (en) * 2018-10-24 2020-12-23 Leica Biosystems Imaging, Inc. Camera exposure control when acquiring fluorescence in situ hybridization images

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000098259A (ja) * 1998-09-22 2000-04-07 Olympus Optical Co Ltd 共焦点顕微鏡用撮影装置
JP2000180361A (ja) * 1998-12-15 2000-06-30 Fuji Photo Film Co Ltd 撮影システム
JP2003524754A (ja) * 1998-05-16 2003-08-19 ピーイー コーポレイション (エヌワイ) Dnaのポリメラーゼ連鎖反応をモニタする装置
JP2004028775A (ja) * 2002-06-25 2004-01-29 Olympus Corp 遺伝子検査装置およびそれを用いた検出方法
JP2005214924A (ja) * 2004-02-02 2005-08-11 Olympus Corp 測定方法及び測定装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6388788B1 (en) * 1998-03-16 2002-05-14 Praelux, Inc. Method and apparatus for screening chemical compounds
JP3834519B2 (ja) * 2001-03-21 2006-10-18 オリンパス株式会社 生化学的検査方法
JP3822109B2 (ja) * 2002-02-04 2006-09-13 富士写真フイルム株式会社 生化学解析用データの生成方法および装置
US7499806B2 (en) * 2002-02-14 2009-03-03 Illumina, Inc. Image processing in microsphere arrays
JP3908135B2 (ja) * 2002-09-09 2007-04-25 オリンパス株式会社 生化学的検査用画像処理方法
US7372985B2 (en) * 2003-08-15 2008-05-13 Massachusetts Institute Of Technology Systems and methods for volumetric tissue scanning microscopy
US20100167413A1 (en) * 2007-05-10 2010-07-01 Paul Lundquist Methods and systems for analyzing fluorescent materials with reduced autofluorescence
US20080277595A1 (en) * 2007-05-10 2008-11-13 Pacific Biosciences Of California, Inc. Highly multiplexed confocal detection systems and methods of using same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003524754A (ja) * 1998-05-16 2003-08-19 ピーイー コーポレイション (エヌワイ) Dnaのポリメラーゼ連鎖反応をモニタする装置
JP2000098259A (ja) * 1998-09-22 2000-04-07 Olympus Optical Co Ltd 共焦点顕微鏡用撮影装置
JP2000180361A (ja) * 1998-12-15 2000-06-30 Fuji Photo Film Co Ltd 撮影システム
JP2004028775A (ja) * 2002-06-25 2004-01-29 Olympus Corp 遺伝子検査装置およびそれを用いた検出方法
JP2005214924A (ja) * 2004-02-02 2005-08-11 Olympus Corp 測定方法及び測定装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009008603A (ja) * 2007-06-29 2009-01-15 Canon Inc 蛍光検出装置および生化学反応分析装置と蛍光検出方法
JP6075572B2 (ja) * 2013-09-13 2017-02-08 三菱レイヨン株式会社 画像読取り方法
JP2019531463A (ja) * 2016-07-25 2019-10-31 シーメンス・ヘルスケア・ダイアグノスティックス・インコーポレーテッドSiemens Healthcare Diagnostics Inc. 試料容器キャップを識別するためのシステム、方法及び装置
US11035870B2 (en) 2016-07-25 2021-06-15 Siemens Healthcare Diagnostics Inc. Systems, methods and apparatus for identifying a specimen container cap

Also Published As

Publication number Publication date
KR20070086878A (ko) 2007-08-27
KR100877656B1 (ko) 2009-01-08
US7920733B2 (en) 2011-04-05
KR20080108145A (ko) 2008-12-11
EP1843146A1 (en) 2007-10-10
JPWO2006078036A1 (ja) 2008-06-19
JP4724126B2 (ja) 2011-07-13
US20080018778A1 (en) 2008-01-24
CN101111757A (zh) 2008-01-23

Similar Documents

Publication Publication Date Title
JP4724126B2 (ja) 生化学検査装置および生化学検査方法
US6496309B1 (en) Automated, CCD-based DNA micro-array imaging system
JP7343551B2 (ja) Ivdアッセイを読み取るためのデバイス
US20050118640A1 (en) Microarray detector and methods
JP2010517056A (ja) 時間分解蛍光イメージングシステム
JP2007003323A (ja) 撮影システム
JP4979516B2 (ja) 画像読み取り方法および装置
JP2006017706A (ja) バイオチップオンライン分析システム
US8760656B2 (en) Fluorescence detection apparatus
CN103123321A (zh) 图像获取装置、图像获取方法和图像获取程序
JP2006337245A (ja) 蛍光読み取り装置
US20210010925A1 (en) Flow cytometer and particle detection method
WO2004063731A1 (ja) 光検出装置
JP2000131236A (ja) 蛍光物質が混合された物質の濃度を決定するためのシステムならびにその使用方法
JP2005291821A (ja) 発光強度解析方法及び装置
JP3691837B2 (ja) バイオチップ分析装置
JP2004184379A (ja) マイクロアレイの読取方法
JP2004325174A (ja) 蛍光検出装置
JP2003298952A (ja) Ccd撮像装置
JP4967261B2 (ja) プローブ担体
KR102514095B1 (ko) 진단 스트립의 형광량을 측정하기 위한 스트립 삽입형 시간분해능을 가진 형광(trf) 리더기
JP2004279258A (ja) 光測定装置および方法
RU188251U1 (ru) Устройство для сканирования биочипов
JP2005030919A (ja) 光検出装置
JP4034288B2 (ja) 撮影制御装置およびプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006554001

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 200680001620.0

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 1020077015126

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 11880657

Country of ref document: US

Ref document number: 2006712266

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2006712266

Country of ref document: EP