WO2006078011A1 - 新規ポリエステル系プラスチック分解菌、ポリエステル系プラスチック分解酵素およびその酵素をコードするポリヌクレオチド。 - Google Patents

新規ポリエステル系プラスチック分解菌、ポリエステル系プラスチック分解酵素およびその酵素をコードするポリヌクレオチド。 Download PDF

Info

Publication number
WO2006078011A1
WO2006078011A1 PCT/JP2006/300942 JP2006300942W WO2006078011A1 WO 2006078011 A1 WO2006078011 A1 WO 2006078011A1 JP 2006300942 W JP2006300942 W JP 2006300942W WO 2006078011 A1 WO2006078011 A1 WO 2006078011A1
Authority
WO
WIPO (PCT)
Prior art keywords
plastic
enzyme
amino acid
microorganism
degrading
Prior art date
Application number
PCT/JP2006/300942
Other languages
English (en)
French (fr)
Inventor
Toshiaki Nakajima
Yukie Shigeno
Original Assignee
Japan Science And Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2005014761A external-priority patent/JP3984616B2/ja
Priority claimed from JP2005014744A external-priority patent/JP3984615B2/ja
Application filed by Japan Science And Technology Agency filed Critical Japan Science And Technology Agency
Priority to EP20060712158 priority Critical patent/EP1849859B1/en
Priority to CA 2595803 priority patent/CA2595803A1/en
Priority to US11/795,578 priority patent/US7960154B1/en
Publication of WO2006078011A1 publication Critical patent/WO2006078011A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/18Carboxylic ester hydrolases (3.1.1)
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J11/00Recovery or working-up of waste materials
    • C08J11/04Recovery or working-up of waste materials of polymers
    • C08J11/10Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation
    • C08J11/14Recovery or working-up of waste materials of polymers by chemically breaking down the molecular chains of polymers or breaking of crosslinks, e.g. devulcanisation by treatment with steam or water
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • C12N1/205Bacterial isolates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Definitions

  • Polyester encoding a new polyester-based plastic-degrading bacterium, polyester-based plastic-degrading enzyme.
  • the present invention relates to a novel microorganism, a method for decomposing plastic by a biological treatment method using the microorganism, and a method for recovering monomers. Furthermore, the present invention relates to a novel polyester-based plastic degrading enzyme, a polynucleotide encoding the enzyme, a method for decomposing plastic or a method for recovering monomers using the enzyme or a microorganism expressing the enzyme.
  • Plastic waste recycling technology can be broadly divided into two methods: physical methods (thermal recycling, material recycling) and chemical methods (chemical recycling).
  • thermal recycling, material recycling thermal recycling
  • chemical methods chemical recycling
  • waste is a mixture of multiple types. Although the collection of separated waste is also screamed, in practice, it will be difficult to fully implement it, considering the consciousness of the discharger and the time and effort involved.
  • plastic products usually use a combination of several different plastics, and it can be said that it is impossible to sort all plastic waste by type using current technology. Therefore, at present, recycling is limited to those that can be easily separated and collected regardless of the method.
  • bioprocesses are expensive, and it is wrong to be disadvantageous in this respect, but the merit of extracting high-purity monomer without fractionation is great.
  • biodegradable plastics are clearly degraded by enzymes secreted by microorganisms in nature, and therefore process development using enzymes derived from these degrading bacteria can be expected.
  • Polyester-based solid plastic degrading enzymes known so far include an enzyme that degrades polyhydroxyalkanoate (PHA), PHA depolymerase.
  • PHA is a natural polyester produced by microorganisms and has long been used as a biodegradable plastic. Since PHA is inherently a bacterial energy storage substance, there is naturally a metabolic system that decomposes it to produce energy. For this reason, it is known that many bacterial powers including the genus Pseudomonas can be decomposed. However, the enzyme has almost no reactivity with other polyester plastics than PHA.
  • An ester polyurethane degrading enzyme is known as a non-natural type plastic-degrading bacterium-derived one. This enzyme is derived from Comamonas acidovorans and cleaves the ester bond of ester-based solid polyurethanes to produce water-soluble monomers (Akutsu, Y., Nakajima-Kambe, ⁇ ., Nomura, ⁇ , and Nakahara, T.: Purincation and properties or a polyest er polyurethane-degrading enzyme from Comamonas acidovorans TB-35.Appl.Environ. Microbiol., 64, 62-67 (1998), JP 09-224664 A method for purifying polyurethane esterase and ester polyurethane (Applicant: Suzuki Motor, inventor Toshiaki Nakajima et al.).
  • polyester plastics include polylactic acid polybutylene succinate (PBS), polybutylene succinate adipate (PB SA), and poly-strength prolatatone (PCL), which are biodegradable plastics. Although many biodegradable bacteria have been reported for these biodegradable plastics, most of them have been reported for emulsions, powders, or micron-order thin films (Kim, DY, and Rhee , Y. ⁇ ⁇ : Biodegradation of microbial and synthetic polyesters by fungi. Appl. Microbiol. Biotechnol., 61,300-308 (2003)). Uchida et al.
  • polylactic acid degrading enzyme derived from Peanibacillu s amvlolvticus TB-13 (Akutsu- Shigeno. Y., Teeraphatpor nchai, T., Teamtisong, ⁇ ., Nomura, N., Uchiyama, H., Nakanara , T., and Nakajima -Kambe, T .: Cloning and sequencing of a poly (DL-lactic acid) depolymerase gene fro m Peambacillus amylolyticus strain TB-13 and its functional expression in Escherich ia coli. Appl.
  • PBSA polybutylene succinate co-adipate
  • An object of the present invention is to provide a novel microorganism capable of decomposing a plastic, a method for decomposing the plastic using the microorganism, and a method for recovering a monomer.
  • an object is to provide a microorganism capable of decomposing a solid plastic with high activity and capable of degrading in a nutrient-rich state.
  • the present invention also provides a method for decomposing plastic using a novel polyester plastic degrading enzyme capable of degrading solid plastics, a polynucleotide encoding the enzyme, the enzyme or a microorganism expressing the enzyme, or It aims at providing the recovery method of a monomer.
  • the present invention provides a microorganism belonging to the genus Levitus, which has the ability to decompose plastics, particularly solid plastics having an ester bond in the molecular structure, and also belongs to the genus Leptothrix.
  • the present invention provides a method for decomposing plastics or recovering monomers using microorganisms.
  • the present invention has the capability of decomposing plastics, in particular plastics having an ester bond in the molecular structure, and has the capability of decomposing on January 20, 2005.
  • An enzyme having plastic resolution, a polynucleotide encoding the enzyme, and a polynucleotide that is produced by the Leptothrix genus TB-71 strain (reception number FERM ABP-10204) received at the Deposit Center In this method, an enzyme having plastic decomposability is expressed in an incorporated host, and the enzyme is purified and obtained.
  • the present invention relates to a plastic degradation method or a monomer recovery method using the enzyme or a host that expresses the enzyme.
  • the enzyme of the present invention has the ability to degrade plastics, particularly plastics which are solid and have ester bonds in the molecular structure. More specifically, the enzyme of the present invention is a novel plastic degrading enzyme derived from, for example, the genus Levtothrix.
  • FIG. 1 shows an evolutionary tree of the TB-71 strain and its related bacteria.
  • FIG. 2 shows the time course of PBSA disk degradation by TB-71 strain.
  • FIG. 3 shows a flowchart for preparing a crude enzyme solution.
  • FIG. 4 shows the results of examining the optimum pH of PBSA-degrading enzyme derived from TB-71 strain.
  • FIG. 5 shows the results of examining the optimum temperature of PBSA-degrading enzyme derived from TB-71 strain.
  • FIG. 6 shows the results of examining the temperature stability (30 minutes) of PBSA-degrading enzyme derived from TB-71.
  • FIG. 7 shows a method for extracting the total DNA of the TB-71 strain chromosome.
  • FIG. 8 shows a restriction map of pBSLl.
  • FIG. 9 shows PBS degradation activity and putative ORF region of the subcloning fragment.
  • FIG. 10 shows the entire amino acid sequence of PBSA-degrading enzyme gene product (PbsLA). Bold indicates signal sequence.
  • FIG. 11 shows the entire base sequence of PBSA degrading enzyme gene (pbsLA).
  • Fine cow The microorganism belonging to the genus Leptothrix and having a solid plastic resolution may be a known microorganism or a newly screened microorganism.
  • the microorganism of the present invention may be any bacterium belonging to the genus Levtothrix that has the ability to degrade plastics, particularly plastics that have an ester bond in the molecular structure. Specifically, as a representative example, it was received by the National Institute of Advanced Industrial Science and Technology, Patent Biological Deposit Center on January 20, 2005 (Tsukuba Center Ibaraki Prefecture 1-1-1 Tsukuba Center Central No. 6). And Leptothrix genus TB-71 strain (reception number FERM ABP-10204). The bacteriological properties of the genus Leptothrix include, for example, BERGEY'S MANUAL of Systematic Bacteriology (1st 1984, 2nd 1986, 3rd 1989) 4 1989).
  • the microorganism of the present invention may be either a wild strain or a mutant strain as long as it is a genus Levtothrix spp. That is capable of degrading plastic, particularly a solid plastic having an ester bond in its molecular structure.
  • Mutant strains include mutation treatment with ethylmethanesulfonic acid, a commonly used mutation agent, treatment with other chemicals such as nitrosoguanidine and methylmethanesulfonic acid, ultraviolet irradiation, or mutation agents. It can also be obtained by so-called spontaneous mutation obtained without treatment.
  • any medium used for culturing microorganisms belonging to the genus Leptothrix any medium can be used as long as it can grow microorganisms belonging to the genus Leptothrix.
  • LB medium 1% tryptone, 0.5%) can be used.
  • the medium used for the growth of the microorganism of the present invention is, It contains a carbon source that can be assimilated by the microorganism of the present invention, such as glucose, and a nitrogen source that can be assimilated by the microorganism of the present invention, and examples of the nitrogen source include organic nitrogen sources such as peptone, meat extract, yeast extract, and corn. It can contain inorganic nitrogen sources such as steam liquor, such as ammonium sulfate, ammonium chloride and the like.
  • a salt composed of a cation such as sodium ion, potassium ion, calcium ion and magnesium ion and an anion such as sulfate ion, chloride ion and phosphate ion may be contained.
  • trace elements such as vitamins and nucleic acids can be contained.
  • the concentration of the carbon source is, for example, 0.1 to 10:
  • the concentration of the nitrogen source varies depending on the type, but is, for example, about 0.01 to 5%.
  • the concentration of inorganic salts is, for example, about 0.001 to 1%.
  • the solid plastic that can be decomposed in the present invention is a force having an ester bond in the molecular structure of the plastic, preferably a polybutylene succinate mono-co-acrylate, a polyethylene succinate, or a poly strength prolatathone. Is mentioned. Although this enzyme can decompose solid plastic, it can also be used to decompose even if the plastic is liquid or gel.
  • the “solid state” means a solid form such as a film and a pellet.
  • the polybutylene succinate co-adipate is a polymer prepared by adding adipic acid as a raw material in the synthesis of polybutylene succinate.
  • the melting point drops to around 90 ° C, but flexibility is improved.
  • Packaging materials are used for seedling pots and garbage bags.
  • the number average molecular weight of the polybutylene succinate-co-adsorbate that can be applied to the decomposition method of the present invention is not particularly limited.
  • the polyethylene succinate refers to a polybutylene succinate in which butanediol is replaced with ethylene glycol. Its mechanical properties are equivalent to polyethylene and polypropylene, and its melting point is low at 100 ° C. It is expected to be applied to food films because it is difficult to pass oxygen.
  • the number average molecular weight of polyethylene succinate applicable in the decomposition method of the present invention is not particularly limited.
  • Poly-strength prolatatone is a thermoplastic polyester that is synthesized by ring-opening polymerization of ⁇ -strength prolatatone and is soft even at a considerably low temperature.
  • the number average molecular weight of the polyforce prolataton that can be applied in the decomposition method of the present invention is not particularly limited.
  • the present invention provides a method for decomposing a plastic, particularly a plastic having an ester bond in a molecular structure by the action of microorganisms.
  • This method uses the fact that plastic is decomposed and consumed as a nutrient source during the growth of microorganisms, or uses the action of decomposing plastics by the action of enzymes of microorganisms, that is, after growth.
  • Microbial cells such as resting cells are utilized.
  • the recovery of the monomer derived from the plastic can be carried out by recovering the monomer generated by the decomposition after the above-described decomposition process.
  • powders obtained by freeze-drying bacterial cells by a conventional method tablets and tablets that are tableted after blended with various vitamins, mineralol, and necessary nutrient sources such as yeast extract, casamino acid, peptone, etc. It may be provided in the processing of solid plastics as a preparation in the form of a shape.
  • the strain can also be used as an activated sludge and compost component.
  • the solid plastic used for the decomposition may be added, for example, as an emulsion or in the form of a powder in a liquid medium, or may be added as a lump such as a finolem or a pellet.
  • the amount of plastic to be added to the culture medium is preferably 0.01 to 10% by weight.
  • the amount of microorganisms to be added may be very small, but considering the decomposition efficiency, 0.1% by weight or more (wet weight) with respect to the plastic is preferable.
  • the plastic used for decomposition may be one kind or plural kinds.
  • the plastic can be provided as a single carbon source or with other carbon sources.
  • the microorganism belonging to the genus Levtothrix of the present invention has a feature that it can decompose solid plastics even in a nutrient-rich state.
  • As a medium that can be used as a carbon source, plastic or gnolecose, etc. It contains a nitrogen source that can be assimilated by the microorganism of the present invention.
  • the nitrogen source examples include organic nitrogen sources such as peptone, meat extract, yeast extract, corn steep liquor, and inorganic nitrogen sources such as ammonium sulfate and ammonium chloride. Monium and the like can be contained. Furthermore, if desired, it may contain a unique species composed of a cation such as sodium ion, potassium ion, calcium ion and magnesium ion and an anion such as sulfate ion, chlorine ion and phosphate ion. Furthermore, trace elements such as vitamins and nucleic acids can be contained.
  • the concentration of the carbon source is, for example, about 0.1 to 10%. Thus, the concentration of the nitrogen source varies depending on the type, but is, for example, about 0.01 to 5%.
  • the concentration of inorganic salts is, for example, about 0.001 to 1%.
  • the microorganism In the embodiment using the action of decomposing the plastic of the enzyme of the microorganism, that is, in the embodiment using the microbial cell after growth, for example, the resting cell, the microorganism is not accompanied by the growth of the microorganism when the plastic is decomposed. Therefore, it may be a medium in which a solid plastic is added to a buffer solution, or a nitrogen source, an inorganic salt, a vitamin, or the like may be added.
  • the buffer solution include a phosphate buffer solution.
  • the time required for the decomposition of the solid plastic may vary depending on the type, composition, shape and amount of the plastic to be decomposed, the type of microorganism used and the relative amount to the resin, and other various culture conditions.
  • the microorganism when the microorganism is subjected to static culture, shaking culture, or aeration culture under aerobic conditions, plastic degradation is observed.
  • Rotating and shaking culture is preferable.
  • the number of rotations is in the range of 30 to 250 rotations / minute.
  • the culture temperature is preferably 10 to 50 ° C, particularly around 30 ° C.
  • the pH of the medium is in the range of 4 to: 10, preferably around 7.
  • Confirmation of the degradation of the plastic in the culture medium can be performed, for example, by measuring a decrease in the weight of the plastic subjected to the degradation, or by forming a clear zone due to the degradation of the plastic when used as an emulsion.
  • the enzyme of the present invention is composed of 283 amino acids, is a polypeptide having a molecular weight of 29812.58, and is specified by the amino acid sequence represented by amino acid number 1283 of SEQ ID NO: 4.
  • This amino acid sequence IJ is the amino acid sequence of the polypeptide encoded by the open reading frame (reading frame) portion of the base sequence set forth in SEQ ID NO: 3.
  • the open reading frame of SEQ ID NO: 5 has a signal peptide portion, and the cleavage point is between the 24th and 25th amino acids of the N-terminal of SEQ ID NO: 4.
  • the amino acid sequence of the present invention includes the amino acid sequence IJ shown in SEQ ID NO: 4, and analogs and derivatives thereof.
  • corresponding amino acid homologues from other microorganisms Rows are also encompassed by the present invention.
  • any polypeptide encoded by the nucleotide sequence of SEQ ID NO: 5 is included in the scope of the present invention.
  • polypeptide and amino acid conjugate 1J shown in SEQ ID NO: 4 have 70% or more, preferably 80% or more, more preferably 90% or more homology (calculation of homology is For example, it can be done by using BLAST (Basic Local Alignment Search Tool) search.)
  • BLAST Basic Local Alignment Search Tool
  • Such a polypeptide is also included in the scope of the present invention as long as it has a feature of catalyzing a solid plastic degradation reaction.
  • the solid plastic that can be decomposed by the enzyme has an ester bond in the molecular structure of the plastic.
  • Non-limiting examples include polybutylene succinate mono-CO-adipate, polyethylene succinate, and poly force prolatatone.
  • the enzyme is able to degrade solid plastics can be force s plastic decomposes be filed in such liquid and gel-like.
  • the “solid state” means a solid shape such as a film or a pellet.
  • the polybutylene succinate co-adipate is a polymer prepared by adding adipic acid as a raw material in the synthesis of polybutylene succinate.
  • the melting point drops to around 90 ° C, but flexibility is improved.
  • Packaging materials are used for seedling pots and garbage bags.
  • the number average molecular weight of polybutylene succinate co-adipate degraded by the enzyme of the present invention is not particularly limited.
  • the polyethylene succinate refers to a polybutylene succinate in which butanediol is replaced with ethylene glycol. Its mechanical properties are equivalent to polyethylene and polypropylene, and its melting point is low at 100 ° C. It is expected to be applied to food films because it is difficult to pass oxygen.
  • the number average molecular weight of polyethylene succinate applicable in the decomposition method of the present invention is not particularly limited.
  • Poly force prolatatone is synthesized by ring-opening polymerization of ⁇ -force prolatatone, and has a considerably low temperature. It is a thermoplastic polyester that is soft even at a low temperature.
  • the number average molecular weight of the polyforce prolataton that can be applied in the decomposition method of the present invention is not particularly limited.
  • the gene encoding the enzyme of the present invention is a polynucleotide encoding a polypeptide consisting of the amino acid sequence encoded by the open reading frame of SEQ ID NO: 5.
  • it is a polynucleotide comprising the base sequence represented by base numbers 1-849 shown in SEQ ID NO: 5 in the sequence listing.
  • the polynucleotide of the present invention can include the degeneracy thereof.
  • Degeneracy is a phenomenon in which one amino acid can be encoded by different nucleotide codons.
  • nucleotide sequence of the nucleic acid molecule encoding the plastic degrading enzyme of the present invention can be changed by degeneracy.
  • the present invention includes a nucleotide sequence represented by SEQ ID NO: 5 and a sequence complementary to the nucleotide sequence represented by SEQ ID NO: 5 under conditions highly stringent [for example, 0.5M NaHPO,
  • the encoded protein may exhibit the same enzymatic activity. Therefore, as long as they have the same enzyme activity, their nucleotide sequences are also included in the scope of the present invention.
  • the genetic recombination technology it is possible to artificially mutate a specific site of the basic DNA so as not to change or improve the basic characteristics of the DNA. it can.
  • a polynucleotide having a natural base sequence provided by the present invention or a polynucleotide having a base sequence different from the natural one Similarly, artificial insertions, deletions, substitutions and additions can be made to have the same or improved characteristics as natural polynucleotides, and the present invention provides such mutant polynucleotides. Is included.
  • a polynucleotide in which a part of the polynucleotide shown in SEQ ID NO: 5 in the sequence listing is inserted, deleted, substituted or added is 20 or less, preferably 10 in the base sequence shown in SEQ ID NO: 5.
  • a polynucleotide in which 5 or less bases are substituted is more preferred.
  • polynucleotide and the nucleotide sequence shown in SEQ ID NO: 4 have a homology of 70% or more, preferably 80% or more, and more preferably 90% or more (homology calculation is performed by, for example, BLAST ( Basic Local Alignment Search Tool) search can be used.)
  • BLAST Basic Local Alignment Search Tool
  • Such a polynucleotide is also included in the scope of the present invention as long as it encodes a polypeptide having the feature of being capable of degrading solid plastics.
  • the enzyme of the present invention belongs to the genus Levitus and cultivates a microorganism having a solid plastic resolution, and isolates and purifies the enzyme in the microorganism, or a host in which the polynucleotide sequence of the present invention is incorporated. Can be produced by culturing and separating and purifying the enzyme from the host.
  • the microorganism belonging to the genus Leptothrix and having plastic decomposability may be a known microorganism or a newly screened microorganism.
  • the Leptothrix spp. TB-71 strain received at the Patent Organism Depositary, National Institute of Advanced Industrial Science and Technology as of January 20, 2005 ).
  • One example of screening for microorganisms is that soil collected from various locations is appropriately diluted with physiological saline, applied to an NB plate medium overlaid with emulsified PBSA, cultured at 30 ° C, and around the colony. Can be obtained by obtaining bacteria that form a clear zone.
  • PBSA pellets to a test tube containing NB liquid medium, inoculate the candidate strain obtained in the above screening, and a sample with a weight difference between PBSA before and after culture.
  • a candidate strain the strain obtained from
  • any medium used for culturing microorganisms belonging to the genus Leptothrix Any medium can be used as long as it can grow microorganisms belonging to the above, and examples thereof include LB medium (1% tryptone, 0.5% yeast extract, 1% NaCl), and NB medium, but are not limited thereto.
  • the medium used for the growth of the microorganism of the present invention specifically contains a carbon source that can be assimilated by the microorganism of the present invention, such as glucose, and a nitrogen source that can be assimilated by the microorganism of the present invention.
  • an organic nitrogen source such as peptone, meat extract, yeast extract, corn steep liquor and the like
  • an inorganic nitrogen source such as ammonium sulfate and salt ammonium.
  • a salt composed of a cation such as sodium ion, potassium ion, calcium ion or magnesium ion and an anion such as sulfate ion, chlorine ion or phosphate ion may be contained.
  • trace elements such as vitamins and nucleic acids can also be contained.
  • the concentration of the carbon source is, for example, about 0.1 to 10%
  • the concentration of the nitrogen source is, for example, about 0.01 to 5%, although it varies depending on the type.
  • the concentration of organic salts is, for example, about 0.001 to 1%.
  • a method for producing the enzyme of the present invention using a recombinant cell is as follows. First, the polynucleotide molecule is inserted into any vector that can be introduced into a host cell to form a recombinant.
  • the vector can be either RNA or DNA, either prokaryotic or eukaryotic, typically a virus or a plasmid.
  • Vectors can be expressed as extrachromosomal elements (eg, plasmids) or can be integrated into the chromosome.
  • the integrated polynucleotide molecule can be under the control of a chromosomal promoter, under the control of a natural or plasmid promoter, or under a combination of several promoter controls.
  • Single or multiple copies of the polynucleotide molecule can be integrated into the chromosome.
  • the vector is then transfected into a host cell to form a recombinant cell.
  • Suitable host cells for transfecting include any bacterial, fungal (eg, yeast), insect, plant or animal cell that can be transfected.
  • Preferred host cells for use in the present invention include, but are not limited to, any suitable for the expression of the enzyme of the present invention, including, for example, Escherichia coli, Levtothrix spp., Bacillus subtilis, yeast, etc. Microbial cells.
  • genetically modified cells containing the enzyme of the present invention can be obtained by culturing the host under culture conditions suitable for the host.
  • Separation / purification of the enzyme of the present invention from a microorganism belonging to the genus Leptothrix and having a solid plastic resolving capacity or a host cell incorporating the polynucleotide sequence of the present invention is usually performed by separation / purification of a protein from the cell. This can be done by using the method used in the above. Specifically, it can be carried out by using a separation / purification means usually used after the cells are destroyed. Non-limiting examples of cell destruction include sonication, high-pressure homogenizer treatment, and osmotic shock.
  • Separation and purification means may be used by appropriately combining methods such as salting out, gel filtration, and ion exchange chromatography. Furthermore, in the production of enzymes by genetic recombination, the recombinant enzyme is produced so that it has a His-tag at the C-terminus, the cultured cells are collected by centrifugation, and the periplasmic fraction is extracted by the osmotic shock method. However, since the recombinant enzyme has a His-tag at the C-terminus, it can be easily purified with a column chelating Nikkenore.
  • the present invention provides a method for decomposing a plastic using the enzyme or a microorganism that expresses the enzyme, particularly a plastic that is solid and has an ester bond in the molecular structure, and a method for recovering the monomer.
  • the method for decomposing a plastic of the present invention utilizes an action of degrading plastic of an enzyme, utilizes that plastic is decomposed and consumed as a nutrient source in the growth process of microorganisms expressing the enzyme, or A microbial cell that expresses the enzyme, such as a resting cell, is used.
  • Recovery of the monomer derived from the plastic can be carried out by recovering the monomer generated by the decomposition after the above-described decomposition process.
  • a powder obtained by freeze-drying the microbial cells expressing the enzyme of the present invention by a conventional method the powder and various vitamins and minerals, and necessary nutrient sources such as yeast extract, casamino acid, peptone, etc. It may be provided for the processing of plastics as a preparation in solid form such as tablets that were later compressed.
  • a microbial strain expressing the enzyme can be used as a component of activated sludge and compost.
  • the enzyme of the present invention can also be used as a tablet or the like containing the enzyme.
  • the enzyme crude enzyme solution, crude enzyme powder, or purified enzyme other ingredients that are usually used in enzyme tablets, such as stabilizers, excipients, pH adjusters, extenders, binders, etc., are added as appropriate. Shi May be.
  • the dosage form is not particularly limited, and a dosage form such as a powdered product, a granule, or a tablet may be selected according to the use.
  • the enzyme used in the method of the present invention is Leptotrix sp. TB-71 strain (reception number FERM
  • Microorganisms created by recombinant DNA technology are not limited to the enzyme to be prepared, for example, a host into which a polynucleotide encoding the enzyme connected to an expression vector is introduced, for example, E. coli, It is also possible to use an enzyme produced by a genus Levtothrix, Bacillus subtilis, yeast or the like.
  • the enzyme used in the method of the present invention does not necessarily need to be sufficiently purified, but when purification of the enzyme is desired, a method usually used for protein purification such as salting out, gel filtration, Methods such as ion exchange chromatography may be used in appropriate combination.
  • a method usually used for protein purification such as salting out, gel filtration, Methods such as ion exchange chromatography may be used in appropriate combination.
  • the recombinant enzyme is produced so that it has a His-tag at the C-terminus, the cultured cells are collected by centrifugation, and the periplasmic fraction is extracted by the osmotic shock method. Since the recombinant enzyme has a His-tag at the C-terminus, it can be easily purified with a nickel-chelated column.
  • the plastic that can be decomposed by the method for decomposing a plastic of the present invention has an ester bond in the molecular structure of the plastic.
  • Non-limiting examples include polybutylene succinate co-adipate, polyethylene succinate, and poly force prolatatone.
  • the plastic used for the decomposition may be added, for example, as an emulsion or in the form of a powder in a liquid medium, or may be added as a lump such as a Finolem or a pellet.
  • the amount of plastic to be added to the medium is preferably 0.01 to 10% by weight.
  • the amount of enzyme or microorganism added may be very small, but considering the degradation efficiency, the wet weight for the plastic is 0.001% by weight or more for enzymes, and 0.1% by weight or more for microorganisms. preferable. In addition, even if there is only one type of plastic used for decomposition, Also good.
  • a medium in which the plastic is added to the buffer solution may be used for decomposing the plastic. Salt, vitamins, etc. may be added.
  • the buffer solution include a phosphate buffer solution.
  • Cultivation in an embodiment utilizing the fact that plastic is decomposed and consumed as a nutrient source in the growth process of the recombinant microorganism expressing the enzyme of the present invention can be performed under culture conditions suitable for the host to be used, Those conditions are well known to those skilled in the art.
  • Plastic can be provided as a single carbon source or with other carbon sources.
  • the medium that can be used is not particularly limited as long as it is a medium that is suitable for the microorganism to be used.
  • the carbon source includes darose and the like, and a nitrogen source that can be assimilated by the microorganism, and the nitrogen source is organic.
  • Nitrogen sources such as peptone, meat extract, yeast extract, corn 'stip' liquor and the like, and inorganic nitrogen sources such as ammonium sulfate and salty ammonium can be contained.
  • an inorganic salt composed of a cation such as sodium ion, potassium ion, calcium ion and magnesium ion and an anion such as sulfate ion, chlorine ion and phosphate ion may be included.
  • trace elements such as vitamins and nucleic acids can also be contained.
  • the concentration of the carbon source is, for example, about 0.1 to 10%, and the concentration of the nitrogen source varies depending on the type, for example, about 0.01 to 5%.
  • the concentration of inorganic salts is, for example, about 0.001 to 1%.
  • an enzyme of a recombinant microorganism that is, in an embodiment using a microbial cell after growth, for example, a resting cell, when the plastic is decomposed, since it does not accompany growth, it may be a medium in which plastic is added to a buffer solution, but in addition, a nitrogen source, an inorganic salt, a vitamin, or the like may be added.
  • the buffer solution include a phosphate buffer solution.
  • the degradation of the plastic can be observed by performing stationary culture, shaking culture or aeration culture under aerobic conditions. It is done.
  • the rotation speed is preferably 30-250 rotations / minute.
  • the culture temperature is 10-50 ° C, especially 30 ° C. The vicinity is preferable.
  • the pH of the medium should be in the range of 4 to 10 and preferably around 7.
  • the time required for the plastic decomposition can vary depending on the type, composition, shape and amount of plastic to be decomposed, the type of microorganism used and the relative amount to the resin, and other various culture conditions.
  • Confirmation of the decomposition of the plastic in the medium can be performed, for example, by measuring the decrease in the weight of the plastic subjected to the decomposition, or by forming a clear zone due to the decomposition of the plastic when used as an emulsion.
  • PBSA was used as the solid polyester plastic.
  • Pioneer 3020 (average molecular weight 140,000) manufactured by Showa High Molecular Co., Ltd. was used.
  • PBSA 2 g PBSA was dissolved in 40 ml dichloromethane. This was added to 250 ml of distilled water containing 40 mg of Plysurf A210G (surfactant, manufactured by Daiichi Pharmaceutical Co., Ltd.), and stirred with a blender to emulsify. This was heated and stirred at 80 ° C. in a draft, and the solvent was removed to obtain emulsified PBSA. The agar medium containing this emulsified PBSA was layered on a Nutrient broth (NB) plate medium.
  • NB Nutrient broth
  • activated sludge from the soil, rivers, and water treatment plants in the Kanto area as a screening source, they were appropriately diluted with physiological saline and applied to an NB plate medium overlaid with emulsified PBSA. Culturing was performed at 30 ° C., and bacteria that formed a clear zone around the colony were obtained.
  • NB liquid medium 10 ml was added to a large test tube (22 mm in diameter), and a PBSA pellet degradation test was performed.
  • a PBSA pellet degradation test cylindrical pellets with a diameter of 2.5 mm and a length of 4 mm were used. After sterilization by immersion in 70% ethanol, the sample was placed in a clean bench. Aseptically dried one was used.
  • PBSA was taken out, washed with distilled water, dried, and then weighed. The difference in weight of PBSA before and after culture was taken as the amount of degradation.
  • Bacteria were extracted from 350 samples collected from the environment such as soil, rivers, activated sludge, etc., and applied to a test plate to decompose the emulsified PBSA around the colony and form a clear zone 40 The seed was isolated. As a result of the degradation test of PBSA pellets, TB-71 strain, in which pellet disappearance was observed in one week of culture, was isolated and used for further studies.
  • 16SrDNA was prepared by direct colony PCR using primers specific for 16SrDNA (27F: 5 '-AGAGTTTGATCCTGGCTCAG-3, and 1494R: 5, -TG ACTG ACTG AGGY TACCTTGTTAC-3).
  • PCR conditions are as shown in Table 1.
  • the PCR product was ligated into the pGEM-T vector, and the host E. coli strain XLlOgold was transformed. Plasmids were extracted from colonies that appeared after sputum culture in a flat plate medium containing ampicillin, and the base sequence of the insert DNA was determined. The obtained base sequence was then subjected to homology search using the BLAST program, and a phylogenetic tree was created using Clastal X software.
  • a 300 ml Erlenmeyer flask containing 50 ml of NB medium was added with Pioneer 3020 (average molecular weight 140,000) (300 mg) molded into a disk shape of 25 mm diameter and 0.5 mm thickness.
  • the disc was immersed in 70% ethanol for 12 hours and then dried in a clean bench.
  • Example 4 Decomposition of various polyester solid plastics by TB-71 strain
  • PSA Polylactic acid
  • PES polyethylene succinate
  • PBSA Showon Polymer Co., Ltd. Pionole 3001: molecular weight 260,000
  • the experimental method was the same as above. A 300 mg disk was prepared, and the amount of degradation, cell growth, and esterase activity after 72 hours of culture were measured.
  • the results are shown in Table 2.
  • the strain had the ability to completely degrade the disk against PBSA, the higher molecular weight 300 of PBSA. It also had a strong degradation activity against polyethylene succinate (Lunale SE). However, against polylactic acid No degrading activity was observed. Interestingly, no degradation activity was observed for PBSA, whose chemical structure is very similar to PBSA. The reason for this is currently unknown. Thus, the polyester-based solid plastic degradation activity of this strain has a clear substrate specificity and is suitable for application to selective monomerization.
  • PBSA pellet-degrading bacteria include the already reported Acidovolax delafieldii BS-3 strain (see Patent Document 2 and Non-Patent Document 3). However, although this strain degraded about 150 mg of PBSA disk in 7 days, it was shown to have a 6-fold stronger degradability than that.
  • BS-3 has the ability to decompose PBSA as the sole carbon source, and its degradability in the presence of other organic nutrient sources has not been investigated. Furthermore, there are no reports of Leotothrix-degrading bacteria, including those that decompose emulsions and films.
  • Example 5-1 Extraction of ffi. Enzyme solution from bacterial cells TB-71 strain was cultured on NB plate at 30 ° C for 2 days. 50 ml of NB medium was added to a 300-milliliter Erlenmeyer flask, and 1 platinum ear was inoculated with TB-71 strain. To this, 300 mg of a PBSA disk having a diameter of 25 mm and a thickness of 0.5 mm was added, and the culture was shaken at 30 ° C and 200 rpm for 1 day for pre-culture.
  • the culture was centrifuged at 8, OOOrpm for 5 minutes to obtain bacterial cells.
  • the cells were washed with 0.1 M phosphate buffer, centrifuged again, and then suspended with 10 ml of 0.1 M phosphate buffer.
  • An equal amount of 0.4% deoxy_BIGCHAP (nonionic surfactant) solution was added thereto, and the mixture was vigorously stirred on ice for 30 minutes to extract proteins adhering to the cell surface. Thereafter, the suspension was centrifuged at 15, OOOrpm for 10 minutes to obtain a supernatant.
  • the crude enzyme solution was purified using a Pharmacia FPLC system.
  • the crude enzyme solution was desalted with a desalting column (Pharmacia HiTrap Desalting) and then applied to an anion exchange column (Pharmacia RESOURCE Q: column volume 1 ml) to collect the flow-through fraction.
  • the mobile phase was 20 mM phosphate buffer (pH 7.0), and the flow rate was 2 ml / min.
  • ammonium sulfate was calorie-free so that it became 80% saturated, carried on water for 30 minutes, and centrifuged at 22, OOOrpm for 30 minutes.
  • the obtained precipitate was dissolved in 2 ml of 0.1 M phosphate buffer and applied to a gel filtration column (Superose 12 HR16 / 50 manufactured by Pharmacia). A 20 mM phosphate buffer (PH 7.0) was used as the mobile phase, and the flow rate was 0.6 ml / min. The fraction having esterase activity is collected, ammonium sulfate is added to a concentration of 80%, the precipitate obtained by centrifugation is dissolved in 1 ml of 0.1 M phosphate buffer, and the purified enzyme preparation is prepared. Obtained.
  • Example 5 3 g ffi ⁇ beef foam I constant
  • PBSA degradation activity was measured by placing a 10 mm diameter paper disk on a PBSA emulsion agar plate and dropping 50 ⁇ of each solution to observe the degradation of the emulsion. Also, this is Separately, esterase activity was measured by using twelve trophenyl acetate as a substrate and measuring twelve trophenol generated by cleavage of the ester bond with an increase in absorbance at 405 nm. The amount of enzyme required to generate 1 micromole of twelve trophenol per minute was defined as l mit.
  • a purification step table is shown below.
  • the specific activity of this enzyme was about 4-fold, and the yield was 56.2%.
  • the purified sample showed a single band on SDS-polyacrylamide gel electrophoresis.
  • the enzyme was considered to be a monomer with a molecular weight of about 28,000.
  • Optimal ⁇ conditions include 0.1M citrate buffer ( ⁇ 4 ⁇ 0-6.0), 0.1M phosphate buffer ( ⁇ 6 ⁇ 0—8.0), 0.1M Tris—HCl buffer
  • the liquid ⁇ 8 ⁇ 0—10.0 was used.
  • the reaction was conducted at 30 ° C, and the esterase activity was measured at various pH values. However, since the atomic absorption coefficient of nitrite phenol varies with pH, the measurement wavelength of 348 nm was used instead of 405 nm instead of 405 nm.
  • the optimum temperature was examined at pH 7. The temperature stability was examined at PH7, and the enzyme was incubated at each temperature for 30 minutes, and then the activity was measured at 30 ° C.
  • FIG. 5 shows the results of an examination of the optimum reaction temperature for this enzyme. This enzyme had high activity in a wide range from 25 ° C to 55 ° C.
  • FIG. 5 shows the results of studies on the stable temperature of this enzyme. The enzyme was stable against heating at 45 ° C for 30 minutes, but was inactivated at higher temperatures. The enzyme showed almost no decrease in activity at least for several days at 40 ° C or lower.
  • Example 6-2 Degradation activities for various polyester-based cattle degradable plastics
  • PBSA and PBS Pioneer 3020 and 1020 were used, respectively.
  • PES Polyhydroxybutyrate _co_valerate (PHBV) and poly force prolatatone (PCU was a special product manufactured by Wako Pure Chemicals.
  • PHBV polyhydroxybutyrate _co_valerate
  • PCU poly force prolatatone
  • 0.2 g of each plastic was dissolved in 5 ml of dichloromethane and spread on a Petri dish to create a film.
  • 0.3 mg of each Finolem was added to 1 ml of 1.7 Unit / ml enzyme solution, 30. After incubation at C for 1 hour, the total carbon content (TOC) in the solution was measured.
  • TOC total carbon content
  • PBSA degradation products by this enzyme were examined.
  • the buffer solution after completion of decomposition was subjected to HPLC, and the decomposition products were analyzed.
  • BIO-RAD HPX-87H was used for the column, and 0.01N sulfuric acid was used for the mobile phase at a flow rate of 0.5 ml / min.
  • the suggested refractometer (YRD-880, Shimamura Keiki) was used as the detector.
  • TBA-71 derived PBSA-degrading enzyme was blotted onto PVDF membrane, and the Toray Research Center was requested to analyze the N-terminal amino acid sequence.
  • amino acid sequence from the N-terminus of this enzyme to 10 residues was determined as follows.
  • the obtained TB-71 chromosomal total DNA is limitedly digested with Sau3AI, and a DNA fragment of about 2 to 5 kb is excised by agarose gel electrophoresis, and DNA is extracted using GENECLE AN gel extraction kit manufactured by BIO101. did.
  • the obtained fragment and PUC118 digested with BamHI and treated with dephosphorylation were ligated at 14 ° C., and the E. coli DH10B strain was transformed with the electoral position. This was applied to an ampicillin-containing LB agar medium layered with emulsified PBSA and cultured at 37 ° C. When the PBSA emulsion in the medium was degraded, the colony became transparent, and clones having the degradation gene were selected using that as an index.
  • a plasmid was extracted from the transformant obtained by obtaining 1 strain from which about 35,000 strains of Emulsion PBSA was degraded and a clear zone was formed around the colony, and named pBSL1. .
  • pBSLl a 2.4 kb gene fragment derived from the TB-71 strain was inserted.
  • a restriction enzyme map as shown in Fig. 8 was created.
  • pBSLl was cut with Sacl, Sphl, and Pstl, subcloned, and Escherichia coli DH10B was transformed.
  • the base sequence was determined using a DNA sequencer by a conventional method.
  • the molecular weight of the mature protein was 27190 ⁇ 61, which was almost the same as the estimated molecular weight of the purified enzyme preparation obtained from SDS-polyacrylamide electrophoresis. This suggests that this ORF is a gene encoding PBSA-degrading enzyme of TB-71 strain.
  • the isoelectric point was 8.42.
  • the amino acid sequence and DNA sequence are shown in FIGS. 10 and 11, respectively.
  • Primers were designed to complement the site of about 150 bp before and after the PBSA degrading enzyme gene (pbsLA) sequence including the gnnal sequence. At that time, Ndel was added to the forward end and Xhol site was added to the reverse end.
  • pbsLA PBSA degrading enzyme gene
  • E. coli expression vector pET 21a (+) Connected.
  • a 6 X His-Tag is added downstream of the ligated gene to facilitate subsequent purification.
  • E. coli BL21 (DE3) was transformed and cultured overnight at 30 ° C. The obtained transformant was cultured in large quantities and used for enzyme purification.
  • the expression level of the E. coli expression vector (pET 21a (+)) used in this experiment is increased by adding IPTG.
  • the enzyme activity decreased conversely by adding IPTG. It was considered that the protein whose expression level was increased by the addition of IPTG formed an inclusion body and was inactivated. In addition, this enzyme activity was hardly secreted outside the cells or periplasm, and was accumulated in the cells.
  • the microorganism of the present invention has the resolution of a solid plastic, and has an extremely strong force and decomposition force. In addition, it has plastic resolution even under nutrient-rich conditions and has a clear substrate specificity, and is expected to be applied to chemical recycling using enzymes.
  • the enzyme of the present invention maintains high activity in a wide pH range and is hardly inactivated in several days at 40 ° C or less, and is therefore suitable for use as an enzyme for monomer recycling.
  • the fact that the substrate specificity is strict and the plastic that reacts and the plastic that does not react are clear is also suitable for selective monomerization from a plastic mixture.
  • the gene encoding this enzyme is a completely new gene that has no significant homology with any known gene. By elucidating its structure and function, it is possible to It is expected to be used in further application fields.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Medicinal Chemistry (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Sustainable Development (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Molecular Biology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)

Abstract

 本発明は、新規な微生物、および該微生物を用いる生物学的処理法によるプラスチックの分解方法、モノマー回収方法に関する。また本発明は、新規ポリエステル系プラスチック分解酵素およびその酵素をコードするポリヌクレオチド、該酵素もしくは該酵素を発現している微生物を利用したプラスチックの分解方法またはモノマーの回収方法に関する。

Description

明 細 書
新規ポリエステル系プラスチック分解菌、ポリエステル系プラスチック分解 酵素おょぴその酵素をコードするポリヌクレオチド.
技術分野
[0001] 本発明は、新規な微生物、および該微生物を用いる生物学的処理法によるプラス チックの分解方法、モノマー回収方法に関する。さらに本発明は、新規ポリエステノレ 系プラスチック分解酵素およびその酵素をコードするポリヌクレオチド、該酵素もしく は該酵素を発現している微生物を利用したプラスチックの分解方法またはモノマーの 回収方法に関する。
背景技術
[0002] 近年地球環境保護の観点から、持続可能な循環型社会システムの構築が最重要 課題とされている。このような社会情勢の中、プラスチック廃棄物の再資源化技術の 開発にも大きな力が注がれている。プラスチック廃棄物の再資源化技術は、物理的 方法 (サーマルリサイクル、マテリアルリサイクル)と化学的方法 (ケミカルリサイクル) の 2つに大別される。このうち、前者の物理的処理法は、比較的簡便かつ低コストで あるため、 PET榭脂をはじめとして、すでに商業化ベースで実用化されている。しか し、この方法では繰り返し使用による品質の低下が避けられないため、再生品の用途 は限られてしまう。
[0003] 一方、ケミカルリサイクルで 、廃プラスチックを化学的にモノマーもしくはオリゴマ 一に分解して回収し、これを原料として新たにプラスチックを再合成する。この方法で は一次生産品と全く同等のプラスチック製品を作ることができ、品質の低下は起こら ない。このような観点から、近年ケミカルリサイクルを念頭においた製品が開発され、 その一部はすでに市販されて 、る。
[0004] さらに、ケミカルリサイクルは近年急速に普及しつつある生分解性プラスチックの処 理方法としても有効である。生分解性プラスチックは今後全プラスチック生産量の半 分近くを占めるともいわれており、その効率的なリサイクル法の開発も今後注目を浴 びることが予想される。現在流通している生分解性プラスチックは、そのほとんどがポ
差卺ぇ用弒 am リエステル系である。すなわち有機酸や多価アルコールなどのモノマー成分力 加水 分解をうけやすいエステル結合でつながつているため、モノマーリサイクルが極めて 容易である。
[0005] しかし、実際にリサイクルを考えた場合、大きな問題が一つある。それは、廃棄物は 複数種類の混合物であるという点である。廃棄物の分別回収も叫ばれているが、実 際には排出者の意識やそれにかかる手間を考えると、完全実施は困難であろう。特 にプラスチック製品は通常複数の異なるプラスチックを組み合わせて使用しており、 現在の技術ではすべてのプラスチック廃棄物を、その種類ごとに分別することは不可 能であるといえる。このため、リサイクルはその方法に関わらず、分別回収が容易なも のに限られているのが現状である。
[0006] 生分解性プラスチックのケミカルリサイクルを考えた場合でも、酸やアルカリなどの 一般的な化学分解ではモノマーも混合物で得られてしまい、これを精製するには多く のプロセスを必要とし、コストの面できわめて不利である。
[0007] この問題点を解決するため、プラスチックのケミカルリサイクルに酵素を用いた新プ 口セスが提案されている。酵素を用いることによるメリットとしては、反応が常温常圧で 行えるため、エネルギーコストがかからず、環境汚染の原因となる有機溶媒も必要と しない点も重要ではある力 酵素の持つ基質特異性が最も優れた点であると考えて いる。一般的に酵素は基質特異性を持っており、反応対象となる基質を明確に選択 している。そこで、ある特定のプラスチックにのみ反応性を持つ酵素を組み合わせる ことによって、混合物であるプラスチック廃棄物から、分別作業を行うこと無しに、高純 度のモノマーを効率よく取り出すことができる。一般的にバイオプロセスは高コストで あり、この点は不利であるのは間違いなレ、が、分別を行うこと無しに高純度モノマーを 取り出せるメリットは大きレ、。特に生分解性プラスチックは、 自然界において微生物の 分泌する酵素によって分解されることが明らかであることからも、これらの分解菌由来 の酵素を利用したプロセス開発が期待できる。
[0008] 酵素を用いたリサイクルを確立するためには、高い基質特異性を持った、強力なプ ラスチック分解酵素の存在が大前提となる。特にプラスチック廃棄物は実際にはチッ プゃブロックのような固体で排出されるため、特に固体を分解する菌が重要である。 [0009] これまでに知られているポリエステル系の固体プラスチック分解酵素としては、ポリヒ ドロキシアルカノエート(PHA)を分解する酵素、 PHAデポリメラーゼが挙げられる。
PHAは微生物の生産する天然ポリエステルであり、古くから生分解性プラスチックと して用いられている。 PHAは本来細菌のエネルギー貯蔵物質であるため、これを分 解してエネルギー生産を行う代謝系も当然存在する。このため、 Pseudomonas属菌を はじめとする多くの細菌力 これを分解可能であることが知られている。しかし、その 反面本酵素は PHA以外の他のポリエステル系プラスチックに対する反応性はほとん ど無い。
[0010] 非天然型のプラスチック分解菌由来のものとしては、エステル系ポリウレタンの分解 酵素が知られている。本酵素は Comamonas acidovorans由来で、エステル系固体ポリ ウレタンのエステル結合を切断し、水溶性モノマーを生成する(Akutsu, Y., Nakajima -Kambe, Ί ., Nomura, Ν·, and Nakahara, T. : Purincation and properties or a polyest er polyurethane-degrading enzyme from Comamonas acidovorans TB-35. Appl. Envi ron. Microbiol., 64, 62-67 (1998),特開平 09-224664 ポリウレタンエステラーゼの精 製方法及びエステル系ポリウレタンの分解方法 (出願人:スズキ自動車、発明者中島 敏明他)。
[0011] その他のポリエステル系プラスチックとしては、生分解性プラスチックであるポリ乳酸 ゃポリブチレンサクシネート(PBS)、ポリブチレンサクシネート アジペート(PB SA)、ポリ力プロラタトン (PCL)等がある。これらの生分解性プラスチックについては 、分解菌は数多く報告されているが、乳化されたものや粉末体、又はミクロンオーダ 一の薄いフィルムについての分解報告がほとんどであった (Kim, D. Y., and Rhee, Y. Η· : Biodegradation of microbial and synthetic polyesters by fungi. Appl. Microbiol. Biotechnol., 61,300-308 (2003))。 Uchidaらにより PBSAペレットを唯一炭素源とし資 化する Acidovolax delafieldii BS-3株が単離されているが(特開平 11-225755 生分解 性ポリマー分解酵素及びその製造方法(出願人:三菱化学、発明者沖島敏明他), Uchida, Η·, Nakajima - Kambe, 丄'リ ^higeno-Akutsu, Υ·, Nomura, Ν·, i,okiwa, Υ·, and Nakahara, Τ· : Properties of a bacterium which degrades solid poly(tetramethylene s uccinate)- co- adipate, a biodegradable plastic. FEMS Microbiology Letters, 189, 25 - 29,(2000))、固体ペレットを分解する菌の報告は他に無い。
[0012] ポリ乳酸では放線菌 AmvcolatoDsis sp. K104-1株由来の分解酵素が報告されてい る力 フィルムの分解には 48時間以上力かる上、 PBSAの分解は検討されていなレ、( Nakamura K, Tomita T, Abe N, and Kamio .: Purincation and characterization of a n extracellular poly(L-lactic acid) depolymerase from a soil isolate, Amycolatopsis s p. strain K104-1. Appl. Environ. Microbiol.. 67, 345—353 (2001》。また、 Peanibacillu s amvlolvticus TB-13株由来のポリ乳酸分解酵素 (Akutsu- Shigeno. Y., Teeraphatpor nchai, T., Teamtisong, Γ., Nomura, N., Uchiyama, H., Nakanara, T., and Nakajima -Kambe, T. : Cloning and sequencing of a poly(DL - lactic acid) depolymerase gene fro m Peambacillus amylolyticus strain TB-13 and its functional expression in Escherich ia coli. Appl. Envi鼠 Microbiol" 69, 2498-2504 (2003),特開 2004-166540新規な プラスチック分解酵素および該酵素をコードする遺伝子 (出願人:科学技術振興機構 、発明者:中島敏明他))はポリブチレンサクシネート— co アジペート (PBSA)を分解 可能である力 その分解もあまり高くなぐェマルジヨンの分解にとどまつている。
[0013] 一方、ポリブチレンサクシネート co—アジペート(PBSA)については、分解菌は 数多く報告されており、カビについては一部酵素が精製されているが、細菌では酵素 の精製例はなレ、。 PBSA分解酵素、および遺伝子のクローニングに関しては、 Acido volax delafieldii BS_3株で報告されている力 S (特開平 11-225755 生分解性ポリマー分 解酵素及びその製造方法(出願人:三菱化学、発明者:中島敏明他), Uchida, H., Y . Smgeno-Akutsu, N. Nomura, T. Nakahara, and Nakajima-Kambe, T. : Cloning and Sequence Analysis of Poly(tetramethylene succinate) Depolymerase from Acidovorax delafieldii Strain BS- 3. J. Biosci. Bioeng" 93, 245-247 (2002》、その分解性は弱く、
[0014] 以上のように、フィルム状またはペレット状のプラスチックを分解できる微生物に関 する報告は限られており、さらにその酵素についてはあまり知られていなレ、。酵素を 用いたリサイクルを確立するためには、固体状プラスチックを迅速に分解できる酵素 の提供が強く望まれている。
[0015] また、リサイクノレとは別に、生分解性プラスチックの適正な処理方法として分解菌の 生ごみ処理機への添加やコンポスト化が有望視されている力 この場合、栄養が豊 富な環境においてもプラスチックを良好に分解することが望まれる。しかし、これまで の多くの分解微生物が当該プラスチックを唯一の炭素源として利用しており、他の有 機物が高濃度に存在すると分解能が著しく低下するか、または消失してしまう。栄養 豊富な状態で分解可能な微生物を探索した例はまだ少ない。
発明の開示
[0016] 発明が解決しょうとする課穎
本発明は、プラスチックを分解することのできる新規微生物、および該微生物を用 レ、たプラスチックの分解方法、モノマー回収方法を提供することを目的とする。特に、 固体のプラスチックを高活性で分解することができ、さらには栄養豊富な状態で分解 可能な微生物を提供することを目的とする。また本発明は、固体状プラスチックを分 解することができる新規ポリエステル系プラスチック分解酵素およびその酵素をコード するポリヌクレオチド、該酵素もしくは該酵素を発現している微生物を利用したプラス チックの分解方法またはモノマーの回収方法を提供することを目的とする。
[0017] 課穎を解決するための手段
この問題を解決するため、 自然界より、有機物の存在下において、ポリエステル系 の固体プラスチックを分解する新規な菌を取得することを目的として探索を行った。
[0018] プラスチック、特に分子構造中にエステル結合を有するプラスチックを分解する微 生物のスクリーニングを、ポリブチレンサクシネート一 co—アジペート(PBSA)を試料 として用いて行い、レブトスリックス(L印 tothrix)属に属する微生物が前記プラスチック で固体形状のものを分解できることを見出した(尚、レブトスリックス属に属する微生 物が前記プラスチックの分解能を有することはこれまで知られていなかった。)。また、 本発明者らはレブトスリックス属に属する微生物を用いるプラスチックの分解方法、ま たはモノマー回収方法を見出した。
[0019] 即ち、本発明はプラスチック、特に分子構造中にエステル結合を有する固体プラス チックを分解する能力を有するレブトスリックス属に属する微生物を提供するものであ り、また、レプトスリックス属に属する微生物を用いたプラスチックの分解方法またはモ ノマー回収方法を提供するものである。 [0020] 本発明はプラスチック、特に固体状で分子構造中にエステル結合を有するプラスチ ックを分解する能力を有する、平成 17年 1月 20日付けで、独立行政法人産業技術 総合研究所特許生物寄託センターに受領されたレブトスリックス (Leptothrix)属菌 T B— 71株(受領番号 FERM ABP— 10204)が生産する、プラスチック分解能を有 する酵素、該酵素をコードするポリヌクレオチド、および該ポリヌクレオチドを組み込ん だ宿主にプラスチック分解能を有する酵素を発現させ、該酵素を精製取得する方法 である。
[0021] 更に本発明は、該酵素もしくは該酵素を発現する宿主を用いるプラスチックの分解 方法またはモノマーの回収方法である。
[0022] 本発明の酵素は、プラスチック、特に固体状で分子構造中にエステル結合を有す るプラスチックを分解する能力を有する。より具体的には、本発明の酵素は、例えば レブトスリックス属菌に由来する、新規なプラスチック分解酵素である。
図面の簡単な説明
[0023] [図 1]図 1は、 TB— 71株およびその類縁菌の進化系統樹を示す。
[図 2]図 2は、 TB— 71株による PBSAディスク分解の経時変化を示す。
[図 3]図 3は、粗酵素液調製フローチャートを示す。
[図 4]図 4は、 TB— 71株由来 PBSA分解酵素の至適 pHを調べた結果を示す。
[図 5]図 5は、 TB— 71株由来 PBSA分解酵素の至適温度を調べた結果を示す。
[図 6]図 6は、 TB— 71株由来 PBSA分解酵素の温度安定性(30分間)を調べた結果 を示す。
[図 7]図 7は、 TB— 71株染色体全 DNAの抽出方法を示す。
[図 8]図 8は、 pBSLlの制限酵素地図を示す。
[図 9]図 9は、サブクローニング断片の PBS分解活性と推定 ORF領域を示す。
[図 10]図 10は、 PBSA分解酵素遺伝子産物(PbsLA)の全アミノ酸配列を示す。太 字はシグナル配列を示す。
[図 11]図 11は、 PBSA分解酵素遺伝子 (pbsLA)の全塩基配列を示す。
発明を実施するための最良の形態
[0024] 微牛物 レプトスリックス属に属し、固体プラスチック分解能を有する微生物は、既に公知の 微生物であってもよぐ新たにスクリーニングされた微生物であってもよい。
[0025] 微生物のスクリーニングの一例を示せば、各地より採取した土壌を生理食塩水で適 宜希釈し、乳化した PBSAを重層した NB平板培地に塗布し、 30°Cにて培養を行い 、コロニー周辺にクリアゾーンを形成する菌を取得することにより行うことができる。必 要であれば二次スクリーニングとして、 NB液体培地入り試験管に PBSAペレットを添 加し、上記スクリーニングで得られた候補菌株を植菌し、培養前と培養後の PBSAの 重量差の生じたサンプルを候補菌株とする。
[0026] 本発明の微生物は、プラスチック、特に固体であり分子構造中にエステル結合を有 するプラスチックを分解する能力を有するレブトスリックス属菌であればよい。具体的 には、代表例として、平成 17年 1月 20日付けで、独立行政法人産業技術総合研究 所特許生物寄託センター(茨城県つくば巿東 1 - 1 - 1 つくばセンター中央第 6)に 受領されたレプトスリックス (Leptothrix)属菌 TB— 71株(受領番号 FERM ABP— 10204)が挙げられる。レプトスリックス属菌の菌学的性質は、例えばバージーズ 'マ ニュアル 'ォブ 'システマティック'バタテリォロジ一(BERGEY'S MANUAL of Systemat ic Bacteriology) (第 1卷 1984年、第 2卷 1986年、第 3卷 1989年、第 4卷 1989年) に記載されている。
[0027] 更に本発明の微生物は、プラスチック、特に固体であり分子構造中にエステル結合 を有するプラスチックを分解する能力を有するレブトスリックス属菌であれば、野生株 、変異株のいずれでも良い。
[0028] 変異株は、従来からよく用いられている変異剤であるェチルメタンスルホン酸による 変異処理、ニトロソグァ二ジン、メチルメタンスルホン酸などの他の化学物質処理、紫 外線照射、或いは変異剤処理なしで得られる、いわゆる自然突然変異によって取得 することも可能である。
[0029] レプトスリックス属に属する微生物の培養に用いる培地としては、レプトスリックス属 に属する微生物が生育できる培地であれば特に制限なく用いることができ、例えば、 LB培地(1%トリプトン、 0. 5%酵母エキス、 l %NaCl)および NB培地が挙げられる 力 Sこれらに限定されない。本発明の微生物の生育に使用する培地は、具体的には、 本発明の微生物が資化し得る炭素源、例えばグルコース等、及び本発明の微生物 が資化し得る窒素源を含有し、窒素源としては有機窒素源、例えばペプトン、肉ェキ ス、酵母エキス、コーン.スチープ.リカー等、無機窒素源、例えば硫酸アンモニゥム、 塩化アンモニゥム等を含有することができる。さらに所望により、ナトリウムイオン、カリ ゥムイオン、カルシウムイオン、マグネシウムイオン等の陽イオンと硫酸イオン、塩素ィ オン、リン酸イオン等の陰イオンとからなる塩類を含んでもよい。さらに、ビタミン類、 核酸類等の微量要素を含有することもできる。炭素源の濃度は、例えば 0. 1〜: 10。/o 程度であり、窒素源の濃度は、種類により異るが、例えば 0. 01〜5%程度である。ま た、無機塩類の濃度は、例えば 0. 001〜1 %程度である。
[0030] 本発明において分解できる固体状プラスチックは、プラスチックの分子構造中にェ ステル結合を有するものである力 好ましくはポリブチレンサクシネート一 co—アジべ ート、ポリエチレンサクシネート、またはポリ力プロラタトンが挙げられる。尚、本酵素は 固体状プラスチックを分解できるが、プラスチックが液状やゲル状などであっても分解 すること力 Sできる。ここで、「固体状」とは、フィルムおよびペレット状などの固体形状の ことをいう。
[0031] ポリブチレンサクシネート co アジペートとは、ポリブチレンサクシネート合成にお いて原料にアジピン酸をカ卩えることにより調製される高分子をいう。融点は 90°Cぐらい にまで下がるが、柔軟性が向上する。包装材ゃ苗のポット、ゴミ袋などに利用されて レ、る。本発明の分解方法にぉレ、て適用し得るポリブチレンサクシネート一 co -アジべ 一トの数平均分子量は、特に制限はない。
[0032] ポリエチレンサクシネートとは、ポリブチレンサクシネートのブタンジオールをェチレ ングリコールに代えたものをいう。機械物性はポリエチレンやポリプロピレンと同等、融 点は 100°Cと低めである力 酸素を通しにくいため食品フィルムへの応用が期待され ている。本発明の分解方法において適用し得るポリエチレンサクシネートの数平均分 子量は、特に制限はない。
[0033] ポリ力プロラタトンとは、 ε -力プロラタトンの開環重合により合成され、かなり低い温 度でも軟らかい熱可塑性ポリエステルである。本発明の分解方法において適用し得 るポリ力プロラタトンの数平均分子量は、特に制限はない。 [0034] 更に本発明は、プラスチック、特に固体であり分子構造中にエステル結合を有する プラスチックを微生物の作用により分解処理する方法を提供する。該方法は、微生物 の増殖過程でプラスチックが分解され栄養源として消費されることを利用する、あるい は微生物の有する酵素の作用によりプラスチックを分解する作用を利用するもの、す なわち増殖した後の微生物菌体、例えば休止菌体を利用するものである。
[0035] プラスチック由来のモノマーの回収は、上記分解プロセスの後に分解により生じた モノマーを回収することにより実施することができる。
[0036] あるいは、菌体を定法により凍結乾燥した粉末状、その粉末と各種ビタミンやミネラ ノレ、必要な栄養源、例えば酵母エキス、カザミノ酸、ペプトン等を配合した後に打錠し た錠剤等固形状の形態の調製物として固体プラスチックの処理に提供しても良い。ま た、菌株を活性汚泥およびコンポストの成分として利用することもできる。
[0037] 分解に共される固体プラスチックは、例えば液体の培地中にエマルジョンとして、あ るいは粉体の形で加えても良いし、フイノレム、ペレット等の塊として加えても良い。な お、培地に対するプラスチックの投入量は、 0.01〜10重量%が望ましい。添加する微 生物量は極少量であってもよいが、分解効率を考慮してプラスチックに対して 0.1重 量%以上 (湿重量)が好ましい。また、分解に供するプラスチックは、 1種類であっても 複数種類であっても良い。
[0038] 微生物の増殖過程でプラスチックが分解され栄養源として消費されることを利用す る態様では、プラスチックを単一の炭素源として与えることも、他の炭素源とともに与 えることもできる。本発明のレブトスリックス属に属する微生物は、栄養豊富な状態で あっても固体プラスチックを分解できるという特徴を有し、使用し得る培地としては、炭 素源としては、プラスチックあるいはグノレコース等、及び本発明の微生物が資化し得 る窒素源を含有し、窒素源としては有機窒素源、例えばペプトン、肉エキス、酵母ェ キス、コーン .スチープ ·リカー等、無機窒素源、例えば硫酸アンモニゥム、塩化アン モニゥム等を含有することができる。さらに所望により、ナトリウムイオン、カリウムィォ ン、カルシウムイオン、マグネシウムイオン等の陽イオンと硫酸イオン、塩素イオン、リ ン酸イオン等の陰イオンとからなる無類を含んでもよい。さらに、ビタミン類、核酸類等 の微量要素を含有することもできる。炭素源の濃度は、例えば 0. 1〜: 10%程度であ り、窒素源の濃度は、種類により異るが、例えば 0. 01〜5%程度である。また、無機 塩類の濃度は、例えば 0. 001〜1 %程度である。
[0039] 微生物の有する酵素のプラスチックを分解する作用を利用する態様、すなわち増 殖した後の微生物菌体、例えば休止菌体を利用する態様では、プラスチックの分解 に際し、該微生物の増殖を伴わないため、緩衝液に固体プラスチックを添加した培 地などであっても良いが、その他に窒素源、無機塩、ビタミンなどを添加しても良い。 緩衝液としては、例えばリン酸緩衝液が挙げられる。
[0040] 固体プラスチックの分解に要する時間は、分解に供するプラスチックの種類、組成、 形状及び量、使用した微生物の種類及び樹脂に対する相対量、その他種々の培養 条件等に応じて変化しうる。
[0041] 本発明において、上記微生物に対し、好気条件で、静置培養、振盪培養あるいは 通気培養を行えばプラスチックの分解がみられる。好ましくは回転振盪培養が良ぐ 回転数は 30〜250回転/分の範囲であるのが良い。培養条件としては、培養温度 は 10〜50°C、特に 30°C付近が好ましい。また、培地の pHは 4〜: 10の範囲、好ましく は 7付近であるのが良い。
[0042] 培地中のプラスチックの分解の確認は、例えば、分解に供したプラスチックの重量 減少の測定、ェマルジヨンとして供する場合はプラスチックの分解によるクリアーゾー ンの形成により測定することができる。
[0043] 藤
本発明の酵素は 283のアミノ酸から構成され、分子量 29812. 58のポリペプチドで あり、配列番号 4のアミノ酸番号 1 283で示されるアミノ酸配列により特定される。こ のアミノ酸配歹 IJは、配列番号 3に記載されている塩基配列の、オープンリーディングフ レーム(読み枠)部分によりコードされるポリペプチドのアミノ酸配列である。
[0044] 尚、配列番号 5のオープンリーディングフレームはシグナルペプチド部分を有して おり、その切断点は配列番号 4の N末端 24番目のアミノ酸と 25番目のアミノ酸の間で ある。
[0045] 本発明のアミノ酸配列には、配列番号 4に示したアミノ酸配歹 IJ、ならびにその類似 体および誘導体が含まれる。さらに、他の微生物に由来する対応するアミノ酸相同配 列も本発明に包含される。また、配列番号 5のヌクレオチド配列がコードするいかなる ポリペプチドも本発明の範囲に含まれる。
[0046] 配列番号 4に示すポリペプチドのアミノ酸の一部が欠失、置換、挿入若しくは付加さ れたポリペプチド、例えば配列番号 4に示すアミノ酸配列において、 20個以下、好ま しくは 10個以下、更に好ましくは 5個以下のアミノ酸が置換されたポリペプチドも、同 じ酵素活性を示すことがありうる。従って、同じ酵素活性を有する限り、それらのぺプ チドも、本発明の酵素に含まれる。また、その様なポリペプチドと配列番号 4に示すァ ミノ酸配歹 1Jとは、 70%以上、好ましくは 80%以上、更に好ましくは 90%以上の相同 性を有する(相同性の計算は、例えば BLAST (Basic Local Alignment Search Tool) 検索を用いることにより行うことができる。)。その様なポリペプチドも、固体状プラスチ ック分解反応を触媒するという特徴を有する限り、本発明の範囲に含まれる。
[0047] 本酵素が分解できる固体状プラスチックは、プラスチックの分子構造中にエステル 結合を有するものである。制限的でない例としては、ポリブチレンサクシネート一 CO— アジペート、ポリエチレンサクシネート、およびポリ力プロラタトンが挙げられる。尚、本 酵素は固体状プラスチックを分解できるが、プラスチックが液状やゲル状などであつ ても分解すること力 sできる。ここで、「固体状」とは、フィルムおよびペレット状などの固 体形状のことをいう。
[0048] ポリブチレンサクシネート co アジペートとは、ポリブチレンサクシネート合成にお いて原料にアジピン酸をカ卩えることにより調製される高分子をいう。融点は 90°Cぐらい にまで下がるが、柔軟性が向上する。包装材ゃ苗のポット、ゴミ袋などに利用されて いる。本発明の酵素により分解されるポリブチレンサクシネート co—アジペートの数 平均分子量は、特に制限はない。
[0049] ポリエチレンサクシネートとは、ポリブチレンサクシネートのブタンジオールをェチレ ングリコールに代えたものをいう。機械物性はポリエチレンやポリプロピレンと同等、融 点は 100°Cと低めである力 酸素を通しにくいため食品フィルムへの応用が期待され ている。本発明の分解方法において適用し得るポリエチレンサクシネートの数平均分 子量は、特に制限はない。
[0050] ポリ力プロラタトンとは、 ε -力プロラタトンの開環重合により合成され、かなり低い温 度でも軟らかい熱可塑性ポリエステルである。本発明の分解方法において適用し得 るポリ力プロラタトンの数平均分子量は、特に制限はない。
[0051] 遺伝子
次に本発明の酵素をコードする遺伝子は、配列番号 5のオープンリーディングフレ ームがコードするアミノ酸配列からなるポリペプチドをコードするポリヌクレオチドであ る。例えば配列表の配列番号 5に示す、塩基番号 1— 849で示される塩基配列を含 むポリヌクレオチドである。
[0052] 本発明のポリヌクレオチドは、その縮重を含むことができる。縮重とは、異なるヌクレ ォチドコドンによって 1つのアミノ酸がコードされ得る現象をいう。力べして、本発明の プラスチック分解酵素をコードする核酸分子のヌクレオチド配列は縮重により変化す ること力 Sできる。
[0053] 本発明には、配列番号 5に示したヌクレオチド配列、配列番号 5に示したヌクレオチ ド配列の相補配列に高度にストリンジェントな条件下で [たとえば 0. 5M NaHPO 、
4
7%ドデシル硫酸ナトリウム(SDS)、 ImM EDTA中、 65°Cでフィルター結合 DNA ίこノヽイブリタ、、ィゼーシヨン、そして 0. 1 X SSC/0. 1 % SDS中、 68°Cで洗净 (Ausu bel'F.M. et ai.ffi,1989,uurrent Protocols m Molecular Biology, Vol. I, ureen Publishin g Associates社,および John Wily & Sons社,ニューヨーク, ρ·2· 10.3) ]ハイブリダィズす るヌクレオチド配列により、コードされるタンパク質も同じ酵素活性を示すことがありうる 。従って、同じ酵素活性を有する限り、それらのヌクレオチド配列も、本発明の範囲に 含まれる。さらに、配列番号 5に示したヌクレオチド配列の相補配列に中程度にストリ ンジェントな条件下で [たとえば 0. 2 X SSC/0. 1% SDS中、 42°Cで洗浄(Ausub el,et al.,1989,前掲)]ハイブリダィズするヌクレオチド配列により、コードされるタンパク 質も同じ酵素活性を示すことがありうる。従って、同じ酵素活性を有する限り、それら のヌクレオチド配列も、本発明の範囲に含まれる。
[0054] 遺伝子組み換え技術によれば、基本となる DNAの特定の部位に、当該 DNAの基 本的な特性を変化させることなぐあるいはその特性を改善する様に、人為的に変異 を起こすことができる。本発明により提供される天然の塩基配列を有するポリヌクレオ チド、あるいは天然のものとは異なる塩基配列を有するポリヌクレオチドに関しても、 同様に人為的に挿入、欠失、置換、付加を行うことにより、天然のポリヌクレオチドと 同等のあるいは改善された特性を有するものとすることが可能であり、本発明はその ような変異ポリヌクレオチドを含むものである。即ち、配列表の配列番号 5に示すポリ ヌクレオチドの一部が揷入、欠失、置換若しくは付加されたポリヌクレオチドとは、配 列番号 5に示す塩基配列において、 20個以下、好ましくは 10個以下、更に好ましく は 5個以下の塩基が置換されたポリヌクレオチドである。また、その様なポリヌクレオチ ドと配列番号 4に示す塩基配列とは、 70%以上、好ましくは 80%以上、更に好ましく は 90%以上の相同性を有する(相同性の計算は、例えば BLAST (Basic Local Alig nment Search Tool)検索を用いることにより行うことができる。)。その様なポリヌクレオ チドも、固体状プラスチックを分解する能力を有するという特徴を有するポリペプチド をコードしている限り、本発明の範囲に含まれる。
[0055] 酵素の牛産方法
本発明の酵素は、レブトスリックス属に属し、固体状プラスチック分解能を有する微 生物を培養し、該微生物中の酵素を分離 ·精製することにより、あるいは、本発明の ポリヌクレオチド配列を組み込んだ宿主を培養し、該宿主から酵素を分離'精製する ことにより、生産することができる。
[0056] レプトスリックス属に属し、プラスチック分解能を有する微生物は、公知の微生物で あってもよく、新たにスクリーニングされた微生物であってもよい。具体的には、代表 例として、平成 17年 1月 20日付けで、独立行政法人産業技術総合研究所特許生物 寄託センターに受領されたレプトスリックス属菌 TB— 71株(受領番号 FERM ABP — 10204)が挙げられる。微生物のスクリーニングの一例を示せば、各地より採取し た土壌を生理食塩水で適宜希釈し、乳化した PBSAを重層した NB平板培地に塗布 し、 30°Cにて培養を行レ、、コロニー周辺にクリアゾーンを形成する菌を取得すること により行うことができる。必要であれば二次スクリーニングとして、 NB液体培地入り試 験管に PBSAペレットを添加し、上記スクリーニングで得られた候補菌株を植菌し、 培養前と培養後の PBSAの重量差の生じたサンプルから得られた菌株を候補菌株と する。
[0057] レプトスリックス属に属する微生物の培養に用いる培地としては、レプトスリックス属 に属する微生物が生育できる培地であれば特に制限なく用いることができ、例えば、 LB培地(1%トリプトン、 0· 5%酵母エキス、 l %NaCl)、 NB培地が挙げられるがこれ らに限定されない。本発明の微生物の生育に使用する培地は、具体的には、本発明 の微生物が資化し得る炭素源、例えばグルコース等、及び本発明の微生物が資化し 得る窒素源を含有し、窒素源としては有機窒素源、例えばペプトン、肉エキス、酵母 エキス、コーン .スチープ ·リカー等、無機窒素源、例えば硫酸アンモニゥム、塩ィ匕ァ ンモニゥム等を含有することができる。さらに所望により、ナトリウムイオン、カリウムィ オン、カルシウムイオン、マグネシウムイオン等の陽イオンと硫酸イオン、塩素イオン、 リン酸イオン等の陰イオンとからなる塩類を含んでもよい。さらに、ビタミン類、核酸類 等の微量要素を含有することもできる。炭素源の濃度は、例えば 0. 1〜: 10%程度で あり、窒素源の濃度は、種類により異るが、例えば 0. 01〜5%程度である。また、無 機塩類の濃度は、例えば 0. 001〜1 %程度である。
本発明の酵素を、遺伝子組換え細胞により生産する方法は以下の通りである。まず 、ポリヌクレオチド分子を宿主細胞に導入して組換え体を形成することができる何れ かのベクターに挿入する。ベクターは RNAまたは DNA何れカ 原核生物または真 核生物何れかであり得る力 典型的にはウィルスまたはプラスミドである。ベクターは 染色体外エレメント(例えば、プラスミド)として発現させることができるカ あるいはそ れを染色体に組込むことができる。組込まれたポリヌクレオチド分子は、染色体プロモ 一ター制御した、天然もしくはプラスミドプロモーター制御下、または幾つかのプロモ 一ター制御の組合せ下とすることができる。ポリヌクレオチド分子の単一または複数コ ピーを染色体に組み込むことができる。次に、該ベクターを宿主細胞にトランスフエク トして組換え細胞を形成させる。トランスフエタトするための適当な宿主細胞はトランス フエタトできる何れかの細菌、菌類 (例えば酵母)、昆虫、植物または動物細胞を含む 。本発明で使用される好ましい宿主細胞は、限定されるものではなレ、が、例えば大腸 菌、レブトスリックス属菌、枯草菌、酵母等を含めた、本発明の酵素の発現に適した 何れの微生物細胞も含む。更に、該宿主を、該宿主に適した培養条件にて培養する ことにより、本発明の酵素を含有した遺伝子組換え細胞を得ることができる。該宿主 に適した培養条件は、当業者に周知である。 [0059] レプトスリックス属に属し固体状プラスチック分解能を有する微生物、あるいは本発 明のポリヌクレオチド配列を組み込んだ宿主細胞からの本発明の酵素の分離 ·精製 は、通常細胞からの蛋白質の分離 ·精製に用いられる方法を用いることにより行うこと ができる。具体的には、細胞を破壊後、通常用いられる分離精製手段を用いることに より行うことができる。細胞の破壊には、制限的でない例として、超音波処理、高圧ホ モジナイザー処理、浸透圧ショック法が挙げられる。分離精製手段は、例えば塩析、 ゲルろ過法、イオン交換クロマトグラフィーなどの方法を適宜組み合わせて用いれば よい。更に、遺伝子組換えによる酵素の生産では、組み換え型酵素の C末端に His— tagを有するように生産させ、培養菌体を遠心集菌し、ペリブラズム画分を浸透圧ショ ック法にて抽出し、組み換え型酵素は C末端に His— tagを有しているため、ニッケノレ をキレートしたカラムによって容易に精製できる。
[0060] プラスチック分解方法およびモノマーの回収方法
更に、本発明は、本酵素により、もしくは該酵素を発現する微生物を利用したプラス チック、特に固体状であり分子構造中にエステル結合を有するプラスチックを分解す る方法およびモノマーの回収方法を提供する。つまり、本発明のプラスチックを分解 する方法は、酵素のプラスチックを分解する作用を利用するもの、該酵素を発現する 微生物の増殖過程でプラスチックが分解され栄養源として消費されることを利用する 、あるいは該酵素を発現する微生物菌体、例えば休止菌体を利用するものである。
[0061] プラスチック由来のモノマーの回収は、上記分解プロセスの後に分解により生じた モノマーを回収することにより実施することができる。
[0062] あるいは、本発明の酵素を発現する微生物菌体を常法により凍結乾燥した粉末状 、その粉末と各種ビタミンやミネラル、必要な栄養源、例えば酵母エキス、カザミノ酸、 ペプトン等を配合した後に打錠した錠剤等固形状の形態の調製物としてプラスチック の処理に提供しても良い。また、該酵素を発現する微生物菌株を活性汚泥およびコ ンポストの成分として利用することもできる。
[0063] 本発明の酵素を、該酵素を含有する錠剤等として利用に供することもできる。酵素 の粗酵素液、粗酵素粉末、または精製酵素の他に、通常酵素錠剤等に用いられる 他の成分、例えば安定化剤、賦形剤、 pH調整剤、増量剤、結合剤等を適宜配合し てもよい。また、剤型も特に限定されず、用途に応じて散財、顆粒剤、錠剤等の剤型 を選択すればよい。
[0064] 本発明の方法に用いる酵素は、レプトスリックス属菌 TB— 71株(受領番号 FERM
ABP— 10204)力も調製される酵素に限定されるわけではなぐ組換え DNA技術 によって創製された微生物、例えば発現ベクターに接続された該酵素をコードするポ リヌクレオチドが導入された宿主、例えば大腸菌、レブトスリックス属菌、枯草菌、酵母 等により生産された酵素を使用することも可能である。
[0065] 組換え DNA技術による微生物の創製は、当該分野において通常用いられている 方法により行うことができる。例えば、プラスチック分解酵素遺伝子の高効率発現系 の構築は、現在最も効率的なポリペプチド発現用宿主—ベクター系の一つである pE T systemを用いて構築することができる。
[0066] 本発明の方法で使用する酵素は、必ずしも十分に精製する必要はないが、酵素の 精製が望まれるときは、通常蛋白質の精製に用いられる方法、例えば塩析、ゲルろ 過法、イオン交換クロマトグラフィーなどの方法を適宜組み合わせて用いればよい。 一例を示せば、組み換え型酵素の C末端に His— tagを有するように生産させ、培養 菌体を遠心集菌し、ペリブラズム画分を浸透圧ショック法にて抽出する。組み換え型 酵素は C末端に His— tagを有しているため、ニッケルをキレートしたカラムによって容 易に精製できる。
[0067] 本発明のプラスチックを分解する方法により分解できるプラスチックは、前記した通 り、プラスチックの分子構造中にエステル結合を有するものである。制限的でない例と しては、ポリブチレンサクシネート co—アジペート、ポリエチレンサクシネート、およ びポリ力プロラタトンが挙げられる。
[0068] 分解に共されるプラスチックは、例えば液体の培地中にエマルジョンとして、あるい は粉体の形で加えても良いし、フイノレム、ペレット等の塊として加えても良レ、。なお、 培地に対するプラスチックの投入量は、 0.01〜10重量%が望ましい。添加する酵素あ るいは微生物量は極少量であってもよいが、分解効率を考慮してプラスチックに対し て湿重量として、酵素の場合は 0.001重量%以上、微生物の場合は 0.1重量%以上 が好ましい。また、分解に供するプラスチックは、 1種類であっても複数種類であって も良い。
[0069] 精製酵素あるいは粗精製酵素のプラスチックを分解する作用を利用する態様では 、プラスチックの分解に際し、緩衝液にプラスチックを添加した培地などであっても良 レ、が、その他に窒素源、無機塩、ビタミンなどを添加しても良い。緩衝液としては、例 えばリン酸緩衝液が挙げられる。
[0070] 本発明の酵素を発現する組換え微生物の増殖過程でプラスチックが分解され栄養 源として消費されることを利用する態様における培養は、用いる宿主に適した培養条 件で行うことができ、それらの条件は当業者に周知である。プラスチックを単一の炭素 源として与えることも、他の炭素源とともに与えることもできる。使用し得る培地として は、用いる微生物に適した培地であれば特に制限はないが、炭素源としては、ダルコ ース等、及び該微生物が資化し得る窒素源を含有し、窒素源としては有機窒素源、 例えばペプトン、肉エキス、酵母エキス、コーン'スチープ'リカー等、無機窒素源、例 えば硫酸アンモニゥム、塩ィ匕アンモニゥム等を含有することができる。さらに所望によ り、ナトリウムイオン、カリウムイオン、カルシウムイオン、マグネシウムイオン等の陽ィ オンと硫酸イオン、塩素イオン、リン酸イオン等の陰イオンとからなる無機塩を含んで もよレ、。さらに、ビタミン類、核酸類等の微量要素を含有することもできる。炭素源の 濃度は、例えば 0. 1〜: 10%程度であり、窒素源の濃度は、種類により異るが、例え ば 0. 01〜5%程度である。また、無機塩類の濃度は、例えば 0. 001〜1%程度であ る。
[0071] 組換え微生物の有する酵素のプラスチックを分解する作用を利用する態様、すな わち増殖した後の微生物菌体、例えば休止菌体を利用する態様では、プラスチック の分解に際し、該微生物の増殖を伴わないため、緩衝液にプラスチックを添加した培 地などであっても良いが、その他に窒素源、無機塩、ビタミンなどを添加しても良い。 緩衝液としては、例えばリン酸緩衝液が挙げられる。
[0072] 本発明において、酵素を発現する増殖中の組換え微生物をプラスチックの分解に 利用する場合は、好気条件で、静置培養、振盪培養あるいは通気培養を行えばブラ スチックの分解がみられる。好ましくは回転振盪培養が良ぐ回転数は 30〜250回転 /分の範囲であるのが良レ、。培養条件としては、培養温度は 10〜50°C、特に 30°C 付近が好ましい。また、培地の pHは 4〜: 10の範囲、好ましくは 7付近であるのが良い
[0073] プラスチックの分解に要する時間は、分解に供するプラスチックの種類、組成、形状 及び量、使用した微生物の種類及び樹脂に対する相対量、その他種々の培養条件 等に応じて変化しうる。
[0074] 培地中のプラスチックの分解の確認は、例えば、分解に供したプラスチックの重量 減少の測定、ェマルジヨンとして供する場合はプラスチックの分解によるクリアーゾー ンの形成により測定することができる。
[0075] 実施例
本発明を実施例によってさらに詳しく説明するが、本発明の範囲はこれらのみに限 定されるものではない。
[0076] 実施例 1 微牛物のスクリーニング
供試ポリエステル
供試ポリエステル系の固体プラスチックとしては PBSAを用いた。 PBSAは昭和高 分子社製のピオノーレ 3020 (平均分子量 14万)を用いた。
[0077] 平板培地の作成方法
2gの PBSAを 40mlのジクロロメタンで溶解した。これを 40mgの Plysurf A210G (界 面活性剤、第一製薬工業社製)を含む 250mlの蒸留水に加え、プレンダ一で攪拌し 、乳化させた。これをドラフト中で 80°Cにて加熱攪拌し、溶媒を除去したものを乳化 P BSAとした。この乳化 PBSAを含む寒天培地を Nutrient broth (NB)平板培地に重 層した。
[0078] スクリーニング
関東周辺の土壌、河川、浄水処理場の活性汚泥をスクリーニング源として、生理食 塩水で適宜希釈し、乳化した PBSAを重層した NB平板培地に塗布した。 30°Cにて 培養を行い、コロニー周辺にクリアゾーンを形成する菌を取得した。
[0079] 二次スクリーニングとして、大型試験管(口径 22mm)に NB液体培地 10mlを添加し 、 PBSAペレットの分解試験を行った。なお、分解試験には、直径 2. 5mm、長さ 4m mの円筒状ペレットを用い、 70%エタノールに浸漬して滅菌後、クリーンベンチ内で 無菌的に乾燥させたものを用いた。
[0080] 培養終了後 PBSAを取り出し、蒸留水で洗浄、乾燥後、重量を測定した。培養前と 培養後の PBSAの重量差を分解量とした。
[0081] 土壌、河川、活性汚泥などの環境中より採取した 350サンプルから菌を抽出して、 検定用平板に塗布したところ、コロニー周辺の乳化 PBSAを分解してクリア一ゾーン を形成する菌株 40種を分離した。これらについて PBSAペレットの分解試験を行つ た結果、培養 1週間でペレットの消失が見られた TB— 71株を分離し、以降の研究に 用いた。
[0082] 実施例 2 微牛物の同定
TB— 71株のシングルコロニーから、 16SrDNAに特異的なプライマー(27F : 5 ' - AGAGTTTGATCCTGGCTCAG - 3,と 1494R: 5, - TG ACTG ACTG AGGY TACCTTGTTAC— 3,)を用いて、ダイレクトコロニー PCR法により 16SrDNAの全 長を増幅した。 PCRの条件は表 1に示した通りである。 PCR産物を pGEM— Tベクタ 一に連結し、宿主大腸菌 XLlOgold株の形質転換を行った。アンピシリンを含む平 板培地にてー晚培養して出現したコロニーよりプラスミドを抽出し、インサート DNAの 塩基配列を決定した。その後得られた塩基配列を BLASTプログラムで相同性検索 を行い、 Clastal Xソフトウェアにて系統樹を作成した。
[0083] [表 1]
反応サイクル
9 4 2分
9 8 V 1 5秒 ^
6 O 2 0秒 13 0回
7 A aC 1分 _f
表 1 P C R条件 シークェンス反応の結果、 TB— 71株の 16SrDNAの 5 '側より約 640bpの塩基配列 を決定した。これを DNA相同性検索(BLAST)に供したところ、 unculturedなもの以 外では、最も相同件が高レ、ものでも Leut othrix mobilisとの 95 %であった 系統樹を 作成したところ(図 1)、本菌株は L^ kk属と同じクラスターに属したが既知の種の 中では最も相同性の高いものでも 95%程度であり、新種である可能性が高い。
[0085] 実施例 3 TB— 71株による固体 PBSAの分解
NB培地 50mlを入れた 300ml容の三角フラスコに、 25mm径、厚さ 0. 5mmのディ スク状に成型したピオノーレ 3020 (平均分子量 14万) (300mg)を添加したものを用 いた。ディスクは 70%エタノールに 12時間浸漬後、クリーンベンチ内で乾燥したもの を用いた。
TB— 71株は NB平板培地にて 30°C、 24時間培養し、これを生理食塩水に懸濁して 初発菌濃度が〇D =0. 05となるように植菌した。一定時間経過後、 PBSAディスク
580
を取り出し、蒸留水で洗浄、乾燥後、重量を測定した。培養前と培養後の PBSAの重 量差を分解量とした。エステラーゼ活性の測定には、基質として £ -ニトロフエ二ルァセ テートをもちいて、エステル結合の切断によって生じる β -ニトロフエノールを、 405nm の吸光度の増加量で測定する方法を用いた。 1分間に 1マイクロモルの ニトロフエノ ールを生じさせるのに必要な酵素量を lunitとした。
結果を図 2に示した。本菌株の生育は 24時間で最高に達したが、 PBSAディスクの 分解はそれより少し遅れて、 48時間で完全に分解された。また、分解に伴い培養液 力 エステラーゼ活性が観察された。
実施例 4 TB— 71株による各種ポリエステル系固体プラスチックの分解
供試ポリエステル系固体プラスチックとして、生分解性プラスチックであるポリブチレン サクシネート(PBS) (昭和高分子社製ピオノーレ 1020 :分子量 14万および 1001: 分子量 26万)、ポリ乳酸 (PLA) (トヨタ社製ラタティ:分子量 13万)、およびポリエチレ ンサクシネート (PES) (日本触媒社製ルナーレ SE :分子量 6万)を用いて分解試験を 行った。また、分子量の異なる PBSA (昭和高分子社製ピオノーレ 3001 :分子量 26 万)も同時に用いた。実験方法は上と同様 300mgのディスクを作成し、 72時間培養 後の分解量、菌体生育量、エステラーゼ活性を測定した。
[0086] 結果を表 2に示した。菌株は PBSAに関してはより分子量の高いピオノーレ 3001 に対しても、ディスクを完全分解する活性を持っていた。また、ポリエチレンサクシネ ート (ルナーレ SE)に対しても強力な分解活性を持っていた。しかし、ポリ乳酸に対し ては分解活性は認められなかった。興味深いことに、 PBSAとその化学構造が極め て類似している PBSに対しての分解活性は認められなかった。この理由は現在のと ころ不明である。このように本菌株のポリエステル系固体プラスチック分解活性は明 瞭な基質特異性を有しており、選択的モノマー化への応用に適する。
[表 2] 表 2 T B - 7 1株による各種ポリエステル系プラスチックの分解
エステラーゼ活性 分解量 (rag) 生育 (OD580) (u/ffll)
PBSA (ピオノ一レ 3020) 300 0. 64 0. 135
PBSA (ピオノ一レ 3001) 300 0. 54 0. 135
PBS (ピオノーレ 1020) 3 0. 57 0. 059
PBS (ピオノ一レ 1001) 4 0. 67 0. 038
PLA (ラクティ) 0 0. 59 0. 047
PES (ル "一レ SE) 300 0. 67 0. 106
[0088] 本菌株は PBSAディスク約 300mgを 2日間で完全に分解した。これまでに知られ ている PBSA分解菌はェマルジヨンやフィルムの分解菌がほとんどであり、ペレットや ディスクのような固形物の分解の報告はほとんど無レ、。プラスチック廃棄物はェマル ジョンやフィルムで与えられることはあまり無ぐこれをモノマーリサイクルへ応用する にはペレットやチップ状のプラスチックを分解可能なことが必須である。 PBSAペレツ ト分解菌としては、既に報告されている Acidovolax delafieldii BS- 3株(特許文献 2、非 特許文献 3参照)がある。しかし、本菌株は PBSAディスクを 7日間で約 150mg分解 しているが、それに比べて 6倍以上強力な分解力を持つことを示した。また BS— 3株 は PBSAを唯一の炭素源として分解する力 S、他の有機栄養源の存在下での分解性 は調べられていない。さらにェマルジヨンやフィルムの分解菌を含めても Leotothrix属 の分解菌の報告は無い。
[0089] 実施例 4 PBSA分解酵素の精製
予備検討の結果、本菌株の PBSA分解酵素は培養液中に遊離するのではなく菌 体表面に付着していることが明らかになつたので、酵素精製にあたっては菌体表面 のタンパク質を界面活性剤で抽出することとした。
[0090] 実施例 5— 1 菌体からの ffi.酵素液の抽出 TB— 71株を NBプレートにて 30°C、 2日間培養した。 300m容の三角フラスコに 50 mlの NB培地を加え、 TB— 71株を 1白金耳植菌した。ここに 25mm径、厚さ 0. 5m mの PBSAディスク 300mgを添加し、 30°C、 200rpmで一日振盪培養を行い前培養 とした。その後 NB培地 500ml (3リットル容三角フラスコ)に 50mlの前培養液を植菌 し、 PBSAディスク 3gを添加し 30°C、 200rpmで 2日間振盪培養した。
[0091] 本培養終了後、培養液を 8, OOOrpmで 5分間遠心し、菌体を得た。 0. 1Mリン酸 緩衝液で菌体を洗い再度遠心した後、 0. 1Mリン酸緩衝液 10mlで菌体を懸濁した 。そこに等量の 0. 4%deoxy_BIGCHAP (非イオン性界面活性剤)溶液を加え、氷 上で 30分間激しく撹拌して菌体表面に付着したタンパク質を抽出した。その後懸濁 液を 15, OOOrpmで 10分間遠心し、上清を得た。等量の 0. 1Mリン酸緩衝液を上清 に加えた後、 40%飽和となるよう硫安を加え氷上で 30分間撹拌した。遠心して沈殿 を除いた後、 60%飽和となるよう硫安を加え同じく撹拌した後、遠心して得られた沈 殿を 0· 1Mリン酸緩衝液 2mlに溶解し、粗酵素液とした。フローチャートを図 3に示す
[0092] 実 例 5— 2 m m
Pharmacia製 FPLC systemを用いて粗酵素液の精製を行った。粗酵素液を脱塩 カラム(Pharmacia社製 HiTrap Desalting)にて脱塩した後、陰イオン交換カラム( Pharmacia社製 RESOURCE Q :カラム体積 lml)に供し、素通り画分を回収した。 なお、移動相には 20mMリン酸緩衝液(pH7. 0)を用い、流速 2ml/minにて行つ た。ここに 80%飽禾口となるよう硫安をカロ免、水上で 30分間携持し、 22, OOOrpm, 30 分間遠心した。得られた沈殿を 2mlの 0. 1Mリン酸緩衝液に溶解し、ゲル濾過カラム (Pharmacia社製 Superose 12 HR16/50)に供した。移動相として 20mMリン酸 緩衝液(PH7. 0)を用い、流速 0. 6ml/minにて行った。エステラーゼ活性を有す る画分を回収し、 80%飽和濃度となるよう硫安をカ卩え、遠心して得られた沈殿を lml の 0. 1Mリン酸緩衝液に溶解し、精製酵素標品を得た。
[0093] 例 5— 3 g ffi†牛の泡 I定
PBSA分解活性測定は PBSAェマルジヨン寒天プレートに 10mm径のペーパーデ イスクを置き、各溶液を 50 μ ΐ滴下してェマルジヨンの分解を観察した。また、これとは 別に、エステラーゼ活性の測定には基質として 一二トロフエニルアセテートをもちい て、エステル結合の切断によって生じる £一二トロフエノールを 405nmの吸光度の増 加量で測定する方法を用いた。 1分間に 1マイクロモルの £一二トロフエノールを生じさ せるのに必要な酵素量を l mitとした。
[0094] 精製ステップ表を以下に示した。精製によって本酵素の比活性は約 4倍となり、収 率は 56. 2%であった。精製標品は SDS—ポリアクリルアミドゲル電気泳動上で単一 バンドを示した。分子量マーカーを用いて、 SDS—ポリアクリルアミドゲル電気泳動 およびゲルろ過にて分子量の検定を行った結果、本酵素は分子量約 2万 8千の単量 体であると考えられた。
[0095] [表 3]
表 3 PRSA分解酵素精製ステップ表
Figure imgf000024_0001
[0096] 実施例 6 PBSA分解酵素の諸件晳
実施例 6— 1 至適反応条件の検討
至適 ρΗ条件の検討には、 0. 1Mクェン酸緩衝液(ρΗ4· 0- 6. 0)、 0. 1Mリン酸 緩衝液(ρΗ6· 0— 8. 0)、 0. 1M Tris— HCl緩衝液(ρΗ8· 0— 10. 0)を用いた。 反応は 30°Cにて行レ、、各種 pH下でのエステラーゼ活性を測定した。ただし、 ニト 口フエノールの原子吸光係数が pHによって変化するため、測定波長として 405nmに 代えて、変動の最も少ない 348nmを用いた。至適温度の検討は pH7で行った。温 度安定性の検討は PH7で行い、各温度にて 30分酵素をインキュベートした後に、 30 °Cにて活性を測定した。
[0097] 各 pHにおける活性の変化を図 4に示した。本酵素の至適 pHは 5. 5力ら 9. 0付近 までの広い範囲において、高い活性を保っていた。また、本酵素の至適反応温度の 検討結果を図 5に示した。本酵素は 25°Cから 55°Cまでの広い範囲で高い活性を有 していた。 [0098] さらに、本酵素の安定温度に関する検討を行った結果を図 6に示した。本酵素は 4 5°C、 30分間の加熱に対して安定であつたが、これ以上の温度では失活が見られた 。なお本酵素は 40°C以下であれば、最低でも数日間は活性の低下はほとんど認め られなかった。
[0099] 実施例 6— 2 各種ポリエステル系牛分解性プラスチックに対する分解活件
PBSAと PBSにはそれぞれピオノーレ 3020, 1020を用レヽた。また、 PESはルナ一 レ SE、 PLAはラタティをそれぞれ用いた。ポリヒドロキシブチレート _co_バレエート (PHBV)およびポリ力プロラタトン(PCUは和光純薬製の特級品を用いた。各プラス チック 0. 2gをジクロロメタン 5mlに溶解し、ペトリ皿に展開し、フィルムを作成した。各 フイノレム 0. 3mgを 1. 7Unit/mlの酵素液 lmlに加え 30。Cにて 1時間インキュベー トした後、溶液中の全炭素量 (TOC)を測定した。
[0100] 本酵素による各種ポリエステル系生分解性プラスチック分解活性を下表に示した。
PBSA, PEC, PCLに対して分解が認められ、このうち PCLに対する分解活性が最 も高かった。いずれの場合にも、分解は 10分以内にはほとんど終了しており、高い分 解活性が確認された。一方、 PBS, PHBV, PLAに対しての分解活性は認められな 力 た。この基質特異性は TB— 71株の培養菌体を用いた場合と一致した。
[0101] [表 4]
S 4 P B S A分解酵素の各種プラスチックに対する分解活性
フィルム重量 (mg〉 フィルムの TOC 完全分解 分解後の緩衝液中の T0C (g/l)
PBSA 3.0 1.700 + 2.020
PBS 3.0 1.674 ― 0.187
PES 2.7 1.350 + 1.645
PLA 4.4 2.200 ― 0.128
PHBV 2,8 1.561 一 0.124
PCL 3 1.895 2.587
Control 0.191
[0102] また、本酵素による PBSA分解産物についての検討を行った。分解終了後の緩衝 液を HPLCに供し、分解産物を分析した。カラムには BIO— RAD社製 HPX— 87H を用レ、、移動相には 0. 01N硫酸を 0. 5ml/minの流速で用いた。検出器には示唆 屈折率計(島村計器製 YRD— 880)を使用した。
[0103] 分析の結果、コハク酸と 1, 4 ブタンジオールが検出され、その濃度は PBSAがす ベて分解、モノマー化した場合の理論値と一致した。このことから、本酵素は PBSA をモノマーにまで完全分解することが明らかになった。
[0104] 実施例 6— 3 N末端アミノ酸配列の決定
精製した TB— 71株由来 PBSA分解酵素を PVDF膜にブロッテイングし、東レリサ ーチセンターに N末端アミノ酸配列の解析を依頼した。
[0105] 本酵素の N末端より 10残基までのアミノ酸配列を以下のように決定した。
[0106] [化 1]
G 1 y-As n-Phe -Th r-A l a - S e r-Ty r -S e r - A 1 a— G l y (G) - (N) - (F) _(T)一 (A) 一 (S) 一 (Y) - (S) - (A) - (G)
*カツコ内は一文字表記の場合
[0107] 実施例 7 ショットガンクローニング法による分解酵素遺伝子のクローニング
(DNAの抽出)
酵素精製の場合と同様の方法で大量培養した TB_ 71株より、総 DNAを図 7に示 すフローチャートに従って抽出した。
(ショットガンクローニング)
得られた TB— 71株染色体全 DNAを、 Sau3AIにより限定分解し、ァガロースゲル 電気泳動にて約 2〜 5kbの DNA断片画分を切り出し、 BIO101社製の GENECLE ANゲル抽出キットを用いて DNAを抽出した。得られた断片と BamHIで切断し脱リ ン酸ィ匕処理した PUC118とを 14°C、ー晚ライゲーシヨンし、エレクト口ポレーシヨンに て大腸菌 DH10B株を形質転換した。これをェマルジヨン化した PBSAを重層したァ ンピシリン含有 LB寒天培地に塗布して 37°Cにてー晚培養した。培地中の PBSAェ マルジヨンが分解されると、コロニーの周辺が透明になるため、それを指標として分解 遺伝子を有するクローンを選択した。
[0108] 約 35, 000株の形質転換体よりェマルジヨンの PBSAが分解されコロニーの周囲に クリアゾーンができている株を 1株取得したこの形質転換体からプラスミドを抽出し、 p BSL1と名付けた。 pBSLlには TB— 71株由来の 2.4kbの遺伝子断片が挿入され ていた。各種制限酵素を用いて解析を行った結果、図 8のような制限酵素地図が作 成された。 [0109] 次に、 pBSLlを Sacl、 Sphl、 Pstlでそれぞれ切断してサブクローユングし、大腸 菌 DH10Bを形質転換した。これを、上記と同様に PBSAを重層した検定培地に塗 布し、 PBSA分解活性を有する最小領域を決定した。サブクローニングした各断片の PBS分解活性は図 9のような結果となり、 PBSA分解酵素遺伝子の ORF領域が推定 された。
[oiio] ms DBSLI中の TB_ 7I株由丧 PBSA分解酵 貴ィ云子の全塩某 ffi列決定
上図の pBSL_ Sphから、常法によって DNAシークェンサ一による塩基配列を行 つた。
[0111] 相同性検索の結果、推定〇RF領域に 1つの ORFが確認された。これを pbs LAと した。本遺伝子 fま 849塩基力、らなり、 283のアミノ酸力、らなる分子量 29812. 58のタ ンパク質をコードしていた。また、〇RFの N末端の 24アミノ酸はシグナルペプチドに 特有の配列がみとめられ、シグナル切断位置から下流の 10アミノ酸の配列は上記の TB— 71株由来の PBSA分解酵素の精製標品由来の配列と完全に一致した。成熟 型のタンパク質の分子量は 27190· 61であり、これは SDS—ポリアクリルアミド電気 泳動から求めた精製酵素標品の推定分子量とほぼ一致した。このことから本 ORFが TB— 71株の PBSA分解酵素をコードしている遺伝子であると考えられた。また等電 点は 8. 42であった。アミノ酸配列および DNA配列をそれぞれ図 10および図 11に 示した。
[0112] 得られたアミノ酸配列を元に国立遺伝学研究所の DDBJ遺伝子データベースに対 して BLASTにて相同性検索を行った。その結果、本酵素(遺伝子)は既知のいか なる遺伝子ともアミノ酸レベルで相同性を示さない、新規な酵素遺伝子であることが わかった。
[0113] m 現,ベクタ一^■の PBSA分角 ¾ ?^貴ィ云子の紹入み の *量 腿
グナル配列部分を含む PBSA分解酵素遺伝子 (pbsLA)配列の前後 150bpほどの 箇所を相補するプライマーを設計した。その際フォワードの末端部分には Ndel、リバ ースの末端部分には Xholサイトを付加した。
Figure imgf000027_0001
増幅し、 Ndel、 Xholで切断した大腸菌発現ベクター、 pET 21a ( + ) に 連結した。なお、連結した本遺伝子の下流にはその後の精製を簡便にするために、 6 X His—Tagが付加されている。これを用いて、大腸菌 BL21 (DE3)を形質転換し 、 30°Cにて一晩培養した。得られた形質転換体を大量培養し、酵素精製に用いた。
[0114] 本実験に使用した大腸菌発現ベクター(pET 21a ( + ) )は IPTGを添加すること によって発現量が増大する。し力 本酵素の場合は IPTGを添加することによって逆 に酵素活性が低下した。これは IPTGの添カ卩により発現量が増大したタンパクが封入 体を形成し、失活したものと考えられた。また、本酵素活性は菌体外、ペリブラズムぃ ずれにもほとんど分泌されず、菌体内に蓄積していた。
[0115] 次に、菌体を大量調製して超音波で破砕後遺伝子産物 (組み換え型 PBSA分解 酵素)の精製を試みた。菌体破砕液を遠心して細胞片を除いた後、硫安を 30%飽和 となるように添加した。これを遠心して上清を回収し、ここにさらに硫安を 50%飽和と なるように加えて遠心、沈殿を 20mMリン酸バッファーに溶かした後に、フアルマシ ァ社製 Hi Trap Chelating column (Ni)を用いて精製した。
[0116] 精製した組み換え型酵素を用いて PBSAフィルムの分解実験を行った。試験方法 は前述の方法と同様に行った。その結果本酵素は PBSAフィルムを 10分以内に完 全分解し、その活性は TB— 71株から精製した PBSA分解酵素とほぼ等しかった。 産業上の利用可能性
[0117] 上述のように、本発明の微生物は、固体状プラスチックの分解能を有し、し力、も分解 力は極めて強力である。さらに、栄養豊富な条件下でもプラスチック分解能を有し、 明瞭な基質特異性をも有しており、酵素を用いたケミカルリサイクルへの応用が期待 される。
[0118] 本発明の酵素は広 pH範囲において高い活性を維持する上、 40°C以下では数日 間での失活はほとんど無いことから、モノマーリサイクルの酵素としての利用に向いて いる。また、基質特異性が厳密であり、反応するプラスチックと反応しないプラスチック がはっきりしている点もプラスチック混合物からの選択的モノマー化に適している。さ らに、本酵素をコードする遺伝子はこれまで知られているいかなる遺伝子も優位な相 同性を持たない全く新規な遺伝子であり、その構造と機能の解明を行うことにより、有 機合成等の更なる応用分野への利用が期待される。

Claims

請求の範囲
[I] レブトスリックス属に属し、プラスチック分解能を有する微生物、またはプラスチック分 解能を有するその変異株。
[2] レプトスリックス属に属する微生物がレプトスリックス属 TB— 71株(受領番号 FERM
ABP— 10204)である、請求項 1記載の微生物。
[3] プラスチックが固体であり、分子構造中にエステル結合を有するものである、請求項 1 または 2のレ、ずれか一項に記載の微生物。
[4] プラスチック力 ポリブチレンサクシネート co アジペート、ポリエチレンサクシネー ト、またはポリ力プロラタトンである、請求項 1または 2に記載の微生物。
[5] レブトスリックス属に属し、プラスチック分解能を有する微生物またはその変異株をプ ラスチックと接触させる工程を含む、プラスチックの分解方法。
[6] レブトスリックス属に属する微生物がレブトスリックス属 TB— 71株である、請求項 5記 載の分解方法。
[7] プラスチックが固体であり、分子構造中にエステル結合を有するものである、請求項 5 または 6に記載の分解方法。
[8] プラスチック力 S、ポリブチレンサクシネート _co _アジペート、ポリエチレンサクシネー ト、またはポリ力プロラタトンである、請求項 5または 6に記載の分解方法。
[9] レブトスリックス属の微生物由来の固体状プラスチック分解酵素。
[10] (a)酵素が配列番号 4に示すアミノ酸配歹 IJ、または
(b)前記アミノ酸配列に 1ないし数個のアミノ酸の、欠失、置換、揷入または付加を有 するアミノ酸配列を含む、
固体状プラスチック分解酵素。
[II] 配列番号 4に示すアミノ酸配列の N末端の 24アミノ酸残基が欠失したアミノ酸配列、 または該アミノ酸配列に 1ないし数個のアミノ酸の、欠失、置換、揷入または付加を有 するアミノ酸配列を含む、固体状プラスチック分解酵素。
[12] プラスチックが分子構造中にエステル結合を有するものである、請求項 9乃至 11のい ずれか一項に記載の酵素。
[13] プラスチック力 ポリブチレンサクシネート co アジペート、ポリエチレンサクシネー ト、またはポリ力プロラタトンである、請求項 9乃至 11のいずれか一項に記載の酵素。
[14] (c)、 (d)、または(e)に示す塩基配列を含む、ポリヌクレオチド:
(c)配列番号 4に示すアミノ酸配歹 lj、または該アミノ酸配列の N末端の 24アミノ酸残 基が欠失したアミノ酸配列をコードするポリヌクレオチド、またはそれらの相補配列か らなるポリヌクレオチド;
(d)固体状プラスチック分解活性を有するポリペプチドをコードし (c)の塩基配列の一 部が欠失、置換、揷入若しくは付加された配列、またはその相補配列からなるポリヌ クレ才チド;
(e)ストリンジェントな条件下で(c)または(d)の塩基配列にハイブリダィズする、ポリヌ クレオチド。
[15] プラスチックが分子構造中にエステル結合を有するものである、請求項 14記載のポリ ヌクレオチド。
[16] プラスチック力 ポリブチレンサクシネート co アジペート、ポリエチレンサクシネー ト、またはポリ力プロラタトンである、請求項 14記載のポリヌクレオチド。
[17] 請求項 9乃至 11のいずれか一項に記載の酵素を生産する方法であって、
レブトスリックス属の微生物を培養する工程:
前記微生物からプラスチック分解酵素を分離 ·精製する工程:
を含む、前記酵素の生産方法。
[18] 請求項 9乃至 11のいずれか一項記載の酵素を固体状プラスチックと接触させる工程 を含む、固体状プラスチックの分解方法。
[19] プラスチックが分子構造中にエステル結合を有するものである、請求項 18記載の方 法。
[20] プラスチック力 S、ポリブチレンサクシネート _ co _アジペート、ポリエチレンサクシネー ト、またはポリ力プロラタトンである、請求項 18記載の方法。
[21] 請求項 9乃至 11のいずれか一項記載の酵素を発現する遺伝子組換え宿主を固体 状プラスチックと接触させる工程を含む、固体状プラスチックの分解方法。
[22] 前記宿主が大腸菌である、請求項 21記載のプラスチックの分解方法。
[23] プラスチックが分子構造中にエステル結合を有するものである、請求項 21または 22 記載の方法。
[24] プラスチック力 ポリブチレンサクシネート co アジペート、ポリエチレンサクシネー ト、またはポリ力プロラタトンである、請求項 21または 22記載の方法。
[25] 遺伝子組換え酵素の生産方法であって、
(i)請求項 9乃至 11のいずれか一項に記載の酵素をコードしているポリヌクレオチド 配列を含むベクターを含有する宿主を、該宿主の生育に適した条件下で培養するェ 程;
0)該酵素を該宿主から分離 ·精製する工程;
を含む、遺伝子組換え酵素の生産方法。
PCT/JP2006/300942 2005-01-21 2006-01-23 新規ポリエステル系プラスチック分解菌、ポリエステル系プラスチック分解酵素およびその酵素をコードするポリヌクレオチド。 WO2006078011A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP20060712158 EP1849859B1 (en) 2005-01-21 2006-01-23 Polyester plastic-degrading microorganism, polyester plastic-degrading enzyme and polynucleotide encoding the enzyme
CA 2595803 CA2595803A1 (en) 2005-01-21 2006-01-23 Novel polyester-based-plastic-degrading bacteria, polyester-based-plastic-degrading enzymes and polynucleotides encoding the enzymes
US11/795,578 US7960154B1 (en) 2005-01-21 2006-01-23 Polyester-based-plastic-degrading bacteria, polyester-based-plastic-degrading enzymes and polynucleotides encoding the enzymes

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2005014761A JP3984616B2 (ja) 2005-01-21 2005-01-21 新規ポリエステル系プラスチック分解酵素およびその酵素をコードするポリヌクレオチド
JP2005-014744 2005-01-21
JP2005-014761 2005-01-21
JP2005014744A JP3984615B2 (ja) 2005-01-21 2005-01-21 新規ポリエステル系プラスチック分解菌

Publications (1)

Publication Number Publication Date
WO2006078011A1 true WO2006078011A1 (ja) 2006-07-27

Family

ID=36692383

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/300942 WO2006078011A1 (ja) 2005-01-21 2006-01-23 新規ポリエステル系プラスチック分解菌、ポリエステル系プラスチック分解酵素およびその酵素をコードするポリヌクレオチド。

Country Status (3)

Country Link
EP (1) EP1849859B1 (ja)
CA (1) CA2595803A1 (ja)
WO (1) WO2006078011A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112553179A (zh) * 2020-12-04 2021-03-26 北京理工大学 一种耐热型聚酯塑料降解酶及其应用

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107381832A (zh) * 2017-07-31 2017-11-24 浦江县协盈动物饲料技术开发有限公司 生物水质净化剂的用途
US10973775B2 (en) * 2017-09-22 2021-04-13 University Of Manitoba Antibacterial nanofiber
CN112852675B (zh) * 2021-02-23 2023-01-03 毕节市尚昆塑料制品有限公司 枯草芽孢杆菌sk01及其在降解塑料中的应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09224664A (ja) 1996-02-23 1997-09-02 Suzuki Motor Corp ポリウレタンエステラーゼの精製方法及びエステル系ポリウレタンの分解方法
JPH11225755A (ja) 1998-02-19 1999-08-24 Mitsubishi Chemical Corp 生分解性ポリマー分解酵素及びその製造方法
US6066492A (en) 1996-10-02 2000-05-23 Director-General Of Agency Of Industrial Science And Technology Microorganism capable of degrading polylactic acid resin and method of degrading polylactic acid resin using said microorganism
JP2001261506A (ja) * 2000-03-16 2001-09-26 Hakuto Co Ltd 水系における微生物の抑制方法
JP2004166540A (ja) 2002-11-18 2004-06-17 Japan Science & Technology Agency 新規なプラスチック分解酵素および該酵素をコードする遺伝子。
JP2004166542A (ja) 2002-11-18 2004-06-17 Japan Science & Technology Agency 新規プラスチック分解菌
JP2004261102A (ja) * 2003-03-03 2004-09-24 Japan Science & Technology Agency エステル結合含有プラスチック分解微生物、プラスチック分解酵素および該酵素をコードするポリヌクレオチド。

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09224664A (ja) 1996-02-23 1997-09-02 Suzuki Motor Corp ポリウレタンエステラーゼの精製方法及びエステル系ポリウレタンの分解方法
US6066492A (en) 1996-10-02 2000-05-23 Director-General Of Agency Of Industrial Science And Technology Microorganism capable of degrading polylactic acid resin and method of degrading polylactic acid resin using said microorganism
JPH11225755A (ja) 1998-02-19 1999-08-24 Mitsubishi Chemical Corp 生分解性ポリマー分解酵素及びその製造方法
JP2001261506A (ja) * 2000-03-16 2001-09-26 Hakuto Co Ltd 水系における微生物の抑制方法
JP2004166540A (ja) 2002-11-18 2004-06-17 Japan Science & Technology Agency 新規なプラスチック分解酵素および該酵素をコードする遺伝子。
JP2004166542A (ja) 2002-11-18 2004-06-17 Japan Science & Technology Agency 新規プラスチック分解菌
JP2004261102A (ja) * 2003-03-03 2004-09-24 Japan Science & Technology Agency エステル結合含有プラスチック分解微生物、プラスチック分解酵素および該酵素をコードするポリヌクレオチド。

Non-Patent Citations (10)

* Cited by examiner, † Cited by third party
Title
"BERGEY'S MANUAL OF Systematic Bacteriology", vol. 4, 1984
AKUTSU, Y.; NAKAJIMA-KAMBE, T.; NOMURA, N.; NAKAHARA, T.: "Purification and properties of a polyester polyurethane- degrading enzyme from Comamonas acidovorans TB-35", APPL. ENVIRON. MICROBIOL., vol. 64, 1998, pages 62 - 67
AKUTSU-SHIGENO, Y.; TEERAPHATPORNCHAI, T.; TEAMTISONG, T.; NOMURA, N.; UCHIYAMA, H.; NAKAHARA, T.; NAKAJIMA-KAMBE, T.: "Cloning and sequencing of a poly(DL-lactic acid) depolymerase gene from Peanibacillus amylolyticus strain TB-13 and its functional expression in Escherichia coli", APPL. ENVIRON. MICROBIOL., vol. 69, 2003, pages 2498 - 2504, XP002616535, DOI: doi:10.1128/AEM.69.5.2498-2504.2003
KIM, D. Y.; RHEE, Y. H.: "Biodegradation of microbial and synthetic polyesters by fungi", APPL. MICROBIOL. BIOTECHNOL., vol. 61, 2003, pages 300 - 308, XP002500034, DOI: doi:10.1007/S00253-002-1205-3
NAKAMURA K; TOMITA T; ABE N; KAMIO Y.: "Purification and characterization of an extracellular poly(L-lactic acid) depolymerase from a soil isolate, Amycolatopsis sp. strain K104-1", APPL. ENVIRON. MICROBIOL., vol. 67, 2001, pages 345 - 353, XP055050827, DOI: doi:10.1128/AEM.67.1.345-353.2001
See also references of EP1849859A4 *
SHIGENO-AKUTSU Y. ET AL.: "Microbial degradation of polyurethanes, The peculiarity of solid-plastic-degrading enzyme", BIOSCIENCE & INDUSTRY, vol. 60, no. 3, 2002, pages 153 - 158, XP003000726 *
TAKAGUCHI H. ET AL.: "Leptothrix sp. 3A Kabu Yurai Plastic Bunkai Koso no Shoseishitsu", THE SOCIETY OF BIOTECHNOLOGY, JAPAN TAIKAI KOEN YOSHISHU, vol. 106, 2005, XP003000727 *
UCHIDA H. ET AL.: "Properties of a bacterium which degrades solid poly(tetramethylene succinate)-co-adipate, a biodegradable plastic", FEMS MICROBIOL. LETT., vol. 189, 2000, pages 25 - 29, XP003000728 *
UCHIDA, H.; NAKAJIMA-KAMBE, T.; SHIGENO-AKUTSU, Y.; NOMURA, N.; TOKIWA, Y.; NAKAHARA, T.: "Properties of a bacterium which degrades solid poly(tetramethylene succinate)-co-adipate, a biodegradable plastic", FEMS MICROBIOLOGY LETTERS, vol. 189, 2000, pages 25 - 29, XP003000728, DOI: doi:10.1111/j.1574-6968.2000.tb09201.x

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112553179A (zh) * 2020-12-04 2021-03-26 北京理工大学 一种耐热型聚酯塑料降解酶及其应用

Also Published As

Publication number Publication date
EP1849859B1 (en) 2014-03-12
EP1849859A4 (en) 2009-06-03
EP1849859A1 (en) 2007-10-31
CA2595803A1 (en) 2006-07-27

Similar Documents

Publication Publication Date Title
US7960154B1 (en) Polyester-based-plastic-degrading bacteria, polyester-based-plastic-degrading enzymes and polynucleotides encoding the enzymes
US10508269B2 (en) Polypeptide having a polyester degrading activity and uses thereof
JP6804440B2 (ja) ポリエステル分解活性を有するポリペプチド及びその使用
Sriyapai et al. Isolation and characterization of polyester-based plastics-degrading bacteria from compost soils
JP5685596B2 (ja) ポリ乳酸を分解可能な細菌株およびそのバリアント、ならびにそれらの使用
CN105658791A (zh) 用于生物降解塑料的组合物和方法
CN113166752B (zh) 产乳酸的嗜氢菌属细菌转化体
Chia et al. Identification of new rubber-degrading bacterial strains from aged latex
WO2006078011A1 (ja) 新規ポリエステル系プラスチック分解菌、ポリエステル系プラスチック分解酵素およびその酵素をコードするポリヌクレオチド。
Ariole et al. Bioplastic degradation potential of microorganisms isolated from the soil
JP4117646B2 (ja) エステル結合含有プラスチック分解微生物、プラスチック分解酵素および該酵素をコードするポリヌクレオチド。
Pantelic et al. A novel Bacillus subtilis BPM12 with high bis (2 hydroxyethyl) terephthalate hydrolytic activity efficiently interacts with virgin and mechanically recycled polyethylene terephthalate
CN110317762B (zh) 一株产蛋白酶的聚乳酸降解菌及其应用
Oliveira et al. Halotolerant bacteria in the São Paulo Zoo composting process and their hydrolases and bioproducts
Nakajima-Kambe et al. Rapid monomerization of poly (butylene succinate)-co-(butylene adipate) by Leptothrix sp.
JP3984616B2 (ja) 新規ポリエステル系プラスチック分解酵素およびその酵素をコードするポリヌクレオチド
JP4117644B2 (ja) 新規なプラスチック分解酵素および該酵素をコードする遺伝子。
Chemama et al. Feasibility study for D-lacti c acid production from thai rice by Leuconostoc pseudomesenteroides TC49 and D-lacti c acid purification
JP4062520B2 (ja) 新規ウレタン結合分解菌
JP3984615B2 (ja) 新規ポリエステル系プラスチック分解菌
JP2006238801A (ja) 新規ポリヒドロキシアルカン酸分解微生物及び分解酵素の製造方法
JP2006055005A (ja) 新規ウレタナーゼ遺伝子
JP4670048B2 (ja) 生分解性プラスチック分解酵素をコードする遺伝子の取得方法、それにより得られる新規遺伝子および酵素
Chauliac Development of a thermochemical process for hydrolysis of polylactic acid polymers to l-lactic acid and its purification using an engineered microbe
JP2009207424A (ja) ポリヒドロキシアルカン酸の分解方法、並びに微生物製剤及び酵素製剤

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2595803

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006712158

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2006712158

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11795578

Country of ref document: US