WO2006077782A1 - Procede pour produire une ebauche en verre poreux et bruleur de depot - Google Patents

Procede pour produire une ebauche en verre poreux et bruleur de depot Download PDF

Info

Publication number
WO2006077782A1
WO2006077782A1 PCT/JP2006/300390 JP2006300390W WO2006077782A1 WO 2006077782 A1 WO2006077782 A1 WO 2006077782A1 JP 2006300390 W JP2006300390 W JP 2006300390W WO 2006077782 A1 WO2006077782 A1 WO 2006077782A1
Authority
WO
WIPO (PCT)
Prior art keywords
cover
burner
deposition
porous glass
base material
Prior art date
Application number
PCT/JP2006/300390
Other languages
English (en)
Japanese (ja)
Inventor
Makoto Yoshida
Tetsuya Otosaka
Original Assignee
Shin-Etsu Chemical Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin-Etsu Chemical Co., Ltd. filed Critical Shin-Etsu Chemical Co., Ltd.
Publication of WO2006077782A1 publication Critical patent/WO2006077782A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01413Reactant delivery systems
    • C03B37/0142Reactant deposition burners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/04Multi-nested ports
    • C03B2207/06Concentric circular ports
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/04Multi-nested ports
    • C03B2207/08Recessed or protruding ports
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/40Mechanical flame shields
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/42Assembly details; Material or dimensions of burner; Manifolds or supports
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/60Relationship between burner and deposit, e.g. position
    • C03B2207/62Distance

Definitions

  • the present invention relates to a method for producing a porous glass preform and a deposition pan. More specifically, the present invention relates to a deposition pan for depositing glass particles and a method for producing a porous glass base material using the same.
  • a method for producing a porous glass base material used as a material for an optical fiber there is known a method in which a glass raw material is flame-hydrolyzed in an oxyhydrogen flame sprayed from a pan and the generated glass fine particles are deposited. ing.
  • a concentric multi-tube spanner is used as the deposition spanner, and raw material gas, combustion gas, auxiliary combustion gas, and the like are supplied through this.
  • the burner cover is formed on the outer periphery of the burner so that the flame flow generated in front of the burner is not disturbed by the surrounding air flow or the direction of the flame flow does not change.
  • the burner cover provided in the deposition burner preferably has a large burner tip force and a distance to the burner cover tip. On the other hand, if this distance is increased, the burner cover may be damaged by heat due to the PANA flame.
  • glass fine particles (silica) produced by flame hydrolysis may adhere to and grow on the tip of the burner cover, and then reattach to the exfoliated silica particle cartridge deposit. When such silica particles adhere, there is a problem that bubbles are generated when the porous glass base material is sintered and made into transparent glass.
  • Patent Document 2 shows the force to the end of the burner cover necessary to prevent the burner cover from being thermally damaged by the burner flame. But even higher quality In order to manufacture this optical fiber preform, it is necessary to further reduce the irregularity of the refractive index distribution, and to further reduce the flickering of the flame that causes it.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 57-7834
  • Patent Document 2 Japanese Patent Laid-Open No. 2000-72448
  • an object of the present invention is to provide a deposition burner in which a stable flame flow is obtained and the burner cover is not damaged by heat. It is another object of the present invention to provide a method for producing a porous glass preform that can produce an optical fiber preform with small irregularity of the refractive index distribution and stable characteristics in the longitudinal direction using the deposition panner.
  • a glass raw material is hydrolyzed in an oxyhydrogen flame to produce glass fine particles, and the produced glass fine particles are deposited to produce a porous glass base material.
  • a method for producing a porous glass base material characterized in that a double burner cover is installed on the deposition spanner.
  • the method for producing a porous glass base material of the present invention includes an inner cover and a distance between the tip of the PANANER and the cover so that the cover is not damaged by heat while maintaining the effect of reducing the flame and stabilizing the flame flow.
  • the double inner structure with the outer cover that stabilizes the flame flow by reducing the influence of the turbulence of the air flow in the chamber by increasing the distance between the tip of the pan and the cover tip while increasing the inner diameter to prevent thermal damage.
  • the flame flow can be stabilized without causing problems such as thermal damage of the cover.
  • the obtained porous glass preform is dehydrated and sintered to form a transparent glass, thereby obtaining an optical fiber preform with a small non-circularity of the core and a small refractive index distribution.
  • the double burner cover has an outer diameter of the deposition burner D,
  • the inner diameter of the inner burner cover is L, the axial distance between the tip of the burner and the inner cover is L, the inner diameter of the outer burner cover is D, and the inner cover tip and the outer cover tip
  • the outer cover has a cylindrical shape. As a result, a symmetric flame can be generated and glass particles can be deposited uniformly.
  • the outer cover has a shape obtained by obliquely cutting a cylinder.
  • the soot shape, tip position, etc. can be observed or measured while maintaining the performance of the PANA.
  • gas is allowed to flow between the outer cover and the inner cover. This allows the burner cover to be cooled with gas, further reducing damage from heat.
  • the gas flowing between the outer cover and the inner cover can be any one of an inert gas, air, and oxygen. As a result, the influence on the adhesion of glass particles can be reduced.
  • a deposition pan that hydrolyzes a glass raw material in an oxyhydrogen flame and deposits the generated glass fine particles to produce a porous glass base material.
  • a deposition burner is provided that has a heavy burner cover.
  • the double burner cover reduces the outer diameter of the deposition span D.
  • the inner diameter of the inner burner cover is D
  • the axial distance between the end of the burner and the inner cover is L
  • the inner diameter of the outer burner cover is D
  • the inner and outer cover tips are
  • the outer cover has a cylindrical shape. As a result, a symmetric flame can be generated and glass particles can be deposited uniformly.
  • the outer cover has a shape obtained by cutting a cylinder obliquely. As a result, the soot shape, tip position, etc. can be observed or measured while maintaining the performance of the PANA.
  • the gas force that flows between the outer cover and the inner cover is any of inert gas, air, and oxygen.
  • the burner cover can be cooled and the raw material gas can be supplied simultaneously.
  • the present invention thermal damage to the burner cover can be prevented, and a stable flame flow can be obtained. Therefore, it is possible to manufacture a porous glass base material with small non-circularity and stable characteristics in the longitudinal direction. Furthermore, the obtained porous glass preform is dehydrated and sintered to form a transparent glass, thereby obtaining an optical fiber preform with a small non-circularity of the core and a small refractive index distribution.
  • FIG. 1 is a schematic cross-sectional view showing an example of a conventional optical fiber preform manufacturing apparatus.
  • FIG. 2 is a schematic sectional view showing an example of a production apparatus used in the present invention.
  • FIG. 3 is a schematic cross-sectional view showing an outer cover having a cylindrical shape.
  • FIG. 4 is a schematic cross-sectional view showing an outer cover having a shape obtained by obliquely cutting a cylinder at an end.
  • FIG. 1 schematically shows an example of an apparatus for producing a porous glass base material by the VAD method.
  • a quartz substrate 2 as an upper force deposition target is suspended, and a deposition pan 4 having a burner cover 3 is disposed obliquely upward in a downward force.
  • the deposition panner 4 includes the core raw material, tetra-salt silicon (SiCl), and the dopepan that adjusts the refractive index.
  • a raw material line such as tetrasalt ⁇ germanium (GeCl) as a catalyst, and hydrogen for oxyhydrogen flame
  • a gas line such as gas or oxygen gas is connected, and the glass fine particles generated by the flame hydrolysis are deposited on the quartz substrate to form the soot deposit 5.
  • Exhaust gas is discharged from the exhaust port 6 to the outside of the system.
  • the deposition burner 4 is provided with a burner cover 3 in order to stabilize the flame flow.
  • FIG. 2 is a schematic cross-sectional view showing an example of an apparatus for producing a porous glass base material provided with a deposition pan according to the present invention.
  • a deposition pan 4 having an inner force bar 31 and an outer cover 32 facing downward and obliquely upward.
  • the deposition pan 4 includes silicon tetrachloride (SiCl) as a core material and a dopant that controls the refractive index.
  • Raw material lines such as tetra-salt ⁇ germanium (GeCl) as a coolant, and H gas for oxyhydrogen flame
  • a gas line such as O gas is connected. From the deposition pan 4 toward the target
  • soot deposit body 5 containing is formed, dehydrated in an electric furnace, and sintered to form a transparent glass, whereby an optical fiber preform is obtained.
  • the outer diameter of the deposition spanner 4 is D and the inner cover 31
  • the diameter is D
  • the axial distance between the end of the PANANER and the inner cover 31 is L
  • the inner diameter of the outer cover 32 is D
  • the axial distance between the inner cover 31 and the outer cover 32 is L.
  • the ratio of the inner diameter D of the inner cover to the outer diameter D of the PANA is 1.3 or more.
  • the flame can be squeezed and the flame flow can be stabilized.
  • the above equation (2) is the distance in the axial direction between the tip of the PANA and the tip of the inner cover with respect to the PANANER outer diameter D.
  • the ratio of the separation L is set to 1.2 to 2.5. By keeping the ratio within this range, thermal damage to the inner cover can be prevented.
  • the ratio of the inner diameter D of the outer cover to the outer diameter D of the PANA is 1.6 to 3.2.
  • the above equation (4) is obtained by setting the ratio of the axial distance L between the front end of the inner cover and the front end of the outer cover to the axial distance between the front end of the panner and the front end of the inner cover to 1.2 or more.
  • the influence of the turbulence of the airflow in the bar can be reduced, and the flame flow can be stabilized.
  • FIG. 3 is a diagram illustrating the shape of the outer cover 32. As shown in the figure, the outer cover 32
  • FIG. 4 is a diagram illustrating another shape of the outer cover 32. As shown in the figure, the tip of the outer force bar 32 is cut obliquely so as to be inclined with respect to the axis.
  • the deposition pan 4 can be placed in an inclined state. As a result, the height of the entire manufacturing apparatus can be suppressed, and the degree of freedom in layout increases.
  • the porous glass base material 5 was manufactured using the apparatus shown in FIG.
  • the outer diameter D of the deposition burner 4 used is 20 mm.
  • Example 1-7 24 hours deposition was carried out (Examples 1-7). The results are shown in Table 1.
  • the comparative example is an example using a conventional single cover panner without the outer cover 32.
  • the outer diameter D of the deposition panner was set to 20 mm, and the dimensions of the outer cover were changed.
  • a porous glass base material was manufactured under the same conditions as in Examples 1 to 7 above.
  • the results are shown in Table 2.
  • the comparative example is an example using a conventional single cover panner without an outer cover.
  • Example 9 if the inner diameter of the outer cover is small, the cover is damaged (Example 9). The inner diameter of the outer cover is too large (Example 12). When the directional distance L is short, the flame stability is deteriorated (Example 13). Example 14 is
  • the axial distance between the inner cover tip and the outer cover tip was increased to the extent that the soot deposit tip position was covered, but no problem occurred.
  • an optical fiber preform with stable characteristics in the longitudinal direction can be obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)
  • Glass Melting And Manufacturing (AREA)

Abstract

Le problème à résoudre dans le cadre de cette invention est d'obtenir un jet de flamme stable sans endommagement du couvercle de brûleur entraîné par la chaleur et de produire d'une ébauche de fibre optique dont l'irrégularité de distribution de l'indice de réfraction est réduite et dont les propriétés sont stabilisées dans la direction longitudinale. La solution proposée consiste en un procédé de production d'une ébauche en verre poreux, comprenant les étapes consistant à hydrolyser une matière première de verre dans une flamme oxhydrique pour ainsi former des microparticules de verre et à déposer lesdites microparticules de verre formées en utilisant un brûleur de dépôt (4) équipé d'un double couvercle formé d'un couvercle intérieur (31) et d'un couvercle extérieur (32). Des dispositions sont prises pour que, si D0 est le diamètre extérieur du brûleur de dépôt (4), D1 est le diamètre intérieur du couvercle intérieur (31), L1 est la distance axiale entre la partie antérieure du brûleur de dépôt (4) et la partie antérieure du couvercle intérieur (31), D2 est le diamètre intérieur du couvercle extérieur (32) et L2 est la distance axiale entre la partie antérieure du couvercle intérieur (31) et la partie antérieure du couvercle extérieur (32), les relations (1) (D1/D0)≤1,3, (2) 1,2≤(L1/D0)≤2,5, (3) 1,6≤(D2/D0)≤3,2 et (4) 1,2≤(L2/L1) sont satisfaites.
PCT/JP2006/300390 2005-01-19 2006-01-13 Procede pour produire une ebauche en verre poreux et bruleur de depot WO2006077782A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-011740 2005-01-19
JP2005011740A JP4900762B2 (ja) 2005-01-19 2005-01-19 多孔質ガラス母材の製造方法及び堆積用バーナ

Publications (1)

Publication Number Publication Date
WO2006077782A1 true WO2006077782A1 (fr) 2006-07-27

Family

ID=36692172

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/300390 WO2006077782A1 (fr) 2005-01-19 2006-01-13 Procede pour produire une ebauche en verre poreux et bruleur de depot

Country Status (3)

Country Link
JP (1) JP4900762B2 (fr)
TW (1) TW200628424A (fr)
WO (1) WO2006077782A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104649577A (zh) * 2015-02-12 2015-05-27 江苏通鼎光棒有限公司 一种对vad和ovd火焰温度进行在线调整的装置和方法
CN113165933A (zh) * 2018-12-04 2021-07-23 住友电气工业株式会社 玻璃微粒沉积体制造用燃烧器、玻璃微粒沉积体的制造装置以及制造方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9221704B2 (en) 2009-06-08 2015-12-29 Air Products And Chemicals, Inc. Through-port oxy-fuel burner
TWI416051B (zh) * 2010-07-08 2013-11-21 Air Prod & Chem 穿埠氧-燃料燃燒器
JP6979915B2 (ja) * 2018-03-29 2021-12-15 古河電気工業株式会社 光ファイバ多孔質母材の製造装置及び光ファイバ多孔質母材の製造方法
JP7083791B2 (ja) 2019-09-03 2022-06-13 信越化学工業株式会社 ガラス微粒子堆積体の製造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5341362U (fr) * 1976-09-13 1978-04-10
JPS60137839A (ja) * 1983-12-23 1985-07-22 Furukawa Electric Co Ltd:The 光学系ガラス微粉末生成用バ−ナ
JPS6369137U (fr) * 1986-10-27 1988-05-10
JPS63110535U (fr) * 1987-01-09 1988-07-15
JPH01142425U (fr) * 1988-03-22 1989-09-29
JPH0290631U (fr) * 1988-12-27 1990-07-18
JPH0721741U (ja) * 1993-09-24 1995-04-21 古河電気工業株式会社 光ファイバ母材製造用バーナ

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5341362A (en) * 1976-09-22 1978-04-14 Sumitomo Electric Industries Method of extrusion molding tubular tetrafluoroethylene resin material
JPS6369137A (ja) * 1986-09-09 1988-03-29 Shimadzu Corp 質量分析計
JPH0644459B2 (ja) * 1986-10-27 1994-06-08 三菱電機株式会社 保護ガラス積層ブラウン管
JPH01142425A (ja) * 1987-10-28 1989-06-05 Jr 3 Inc 力−モーメント・センサの製造方法
JPH0290631A (ja) * 1988-09-28 1990-03-30 Matsushita Electron Corp 半導体装置の製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5341362U (fr) * 1976-09-13 1978-04-10
JPS60137839A (ja) * 1983-12-23 1985-07-22 Furukawa Electric Co Ltd:The 光学系ガラス微粉末生成用バ−ナ
JPS6369137U (fr) * 1986-10-27 1988-05-10
JPS63110535U (fr) * 1987-01-09 1988-07-15
JPH01142425U (fr) * 1988-03-22 1989-09-29
JPH0290631U (fr) * 1988-12-27 1990-07-18
JPH0721741U (ja) * 1993-09-24 1995-04-21 古河電気工業株式会社 光ファイバ母材製造用バーナ

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104649577A (zh) * 2015-02-12 2015-05-27 江苏通鼎光棒有限公司 一种对vad和ovd火焰温度进行在线调整的装置和方法
CN113165933A (zh) * 2018-12-04 2021-07-23 住友电气工业株式会社 玻璃微粒沉积体制造用燃烧器、玻璃微粒沉积体的制造装置以及制造方法
CN113165933B (zh) * 2018-12-04 2022-10-14 住友电气工业株式会社 玻璃微粒沉积体制造用燃烧器、玻璃微粒沉积体的制造装置以及制造方法

Also Published As

Publication number Publication date
JP2006199527A (ja) 2006-08-03
TW200628424A (en) 2006-08-16
JP4900762B2 (ja) 2012-03-21

Similar Documents

Publication Publication Date Title
WO2006077782A1 (fr) Procede pour produire une ebauche en verre poreux et bruleur de depot
RU2243944C2 (ru) Способ изготовления заготовки оптического волокна и устройство горелки для осуществления этого способа
JP2004035365A (ja) 多重管バーナおよびこれを用いたガラス体の製造方法
JP3946645B2 (ja) 光学用ガラスおよびその製造方法
EP2221281B1 (fr) Brûleur pour la fabrication de matériau de base en verre poreux, et procédé de fabrication de matériau à base de verre poreux
US9038423B2 (en) Porous glass preform production apparatus
KR102545709B1 (ko) 광섬유용 다공질 유리 퇴적체의 제조 방법
WO2006080294A1 (fr) Preforme en verre de quartz pour fibre optique et procede pour la produire
JP2006306652A (ja) 多孔質ガラス母材の製造方法及びこれに用いる堆積用バーナ
KR101035432B1 (ko) 광섬유 모재의 제조 방법
JP5012042B2 (ja) ガラス母材の製造方法
JP6581637B2 (ja) 多孔質ガラス母材の製造装置および製造方法
JP4097982B2 (ja) 光ファイバ用多孔質母材の製造方法
JP4530687B2 (ja) 光ファイバ用多孔質ガラス母材の製造方法
WO2005066085A1 (fr) Procede de fabrication d'une preforme poreuse destinee aux preforme de verre et de fibre optique
JP5485003B2 (ja) 光ファイバ母材の製造方法
JP2005281025A (ja) 多孔質ガラス母材の製造装置
JP4857172B2 (ja) 光ファイバ用ガラス母材の製造装置及び製造方法
JP4459481B2 (ja) 光ファイバ用多孔質母材の製造方法および製造装置
JP4053305B2 (ja) 光ファイバ用多孔質母材の製造方法
JPH05116980A (ja) 光フアイバ用プリフオーム母材の製造方法
JP4458882B2 (ja) 光ファイバ用多孔質ガラス母材の製造方法及びプリフォーム
RU2410338C1 (ru) Способ изготовления заготовки оптического волокна
JP2003073138A (ja) 光ファイバ母材の製造方法及び装置
JP2004231465A (ja) 多孔質ガラス微粒子堆積体の製造法及び製造装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06711675

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 6711675

Country of ref document: EP