WO2006077782A1 - Process for producing porous glass preform and deposition burner - Google Patents

Process for producing porous glass preform and deposition burner Download PDF

Info

Publication number
WO2006077782A1
WO2006077782A1 PCT/JP2006/300390 JP2006300390W WO2006077782A1 WO 2006077782 A1 WO2006077782 A1 WO 2006077782A1 JP 2006300390 W JP2006300390 W JP 2006300390W WO 2006077782 A1 WO2006077782 A1 WO 2006077782A1
Authority
WO
WIPO (PCT)
Prior art keywords
cover
burner
deposition
porous glass
base material
Prior art date
Application number
PCT/JP2006/300390
Other languages
French (fr)
Japanese (ja)
Inventor
Makoto Yoshida
Tetsuya Otosaka
Original Assignee
Shin-Etsu Chemical Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin-Etsu Chemical Co., Ltd. filed Critical Shin-Etsu Chemical Co., Ltd.
Publication of WO2006077782A1 publication Critical patent/WO2006077782A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01413Reactant delivery systems
    • C03B37/0142Reactant deposition burners
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/04Multi-nested ports
    • C03B2207/06Concentric circular ports
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/04Multi-nested ports
    • C03B2207/08Recessed or protruding ports
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/40Mechanical flame shields
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/42Assembly details; Material or dimensions of burner; Manifolds or supports
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2207/00Glass deposition burners
    • C03B2207/60Relationship between burner and deposit, e.g. position
    • C03B2207/62Distance

Definitions

  • the present invention relates to a method for producing a porous glass preform and a deposition pan. More specifically, the present invention relates to a deposition pan for depositing glass particles and a method for producing a porous glass base material using the same.
  • a method for producing a porous glass base material used as a material for an optical fiber there is known a method in which a glass raw material is flame-hydrolyzed in an oxyhydrogen flame sprayed from a pan and the generated glass fine particles are deposited. ing.
  • a concentric multi-tube spanner is used as the deposition spanner, and raw material gas, combustion gas, auxiliary combustion gas, and the like are supplied through this.
  • the burner cover is formed on the outer periphery of the burner so that the flame flow generated in front of the burner is not disturbed by the surrounding air flow or the direction of the flame flow does not change.
  • the burner cover provided in the deposition burner preferably has a large burner tip force and a distance to the burner cover tip. On the other hand, if this distance is increased, the burner cover may be damaged by heat due to the PANA flame.
  • glass fine particles (silica) produced by flame hydrolysis may adhere to and grow on the tip of the burner cover, and then reattach to the exfoliated silica particle cartridge deposit. When such silica particles adhere, there is a problem that bubbles are generated when the porous glass base material is sintered and made into transparent glass.
  • Patent Document 2 shows the force to the end of the burner cover necessary to prevent the burner cover from being thermally damaged by the burner flame. But even higher quality In order to manufacture this optical fiber preform, it is necessary to further reduce the irregularity of the refractive index distribution, and to further reduce the flickering of the flame that causes it.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 57-7834
  • Patent Document 2 Japanese Patent Laid-Open No. 2000-72448
  • an object of the present invention is to provide a deposition burner in which a stable flame flow is obtained and the burner cover is not damaged by heat. It is another object of the present invention to provide a method for producing a porous glass preform that can produce an optical fiber preform with small irregularity of the refractive index distribution and stable characteristics in the longitudinal direction using the deposition panner.
  • a glass raw material is hydrolyzed in an oxyhydrogen flame to produce glass fine particles, and the produced glass fine particles are deposited to produce a porous glass base material.
  • a method for producing a porous glass base material characterized in that a double burner cover is installed on the deposition spanner.
  • the method for producing a porous glass base material of the present invention includes an inner cover and a distance between the tip of the PANANER and the cover so that the cover is not damaged by heat while maintaining the effect of reducing the flame and stabilizing the flame flow.
  • the double inner structure with the outer cover that stabilizes the flame flow by reducing the influence of the turbulence of the air flow in the chamber by increasing the distance between the tip of the pan and the cover tip while increasing the inner diameter to prevent thermal damage.
  • the flame flow can be stabilized without causing problems such as thermal damage of the cover.
  • the obtained porous glass preform is dehydrated and sintered to form a transparent glass, thereby obtaining an optical fiber preform with a small non-circularity of the core and a small refractive index distribution.
  • the double burner cover has an outer diameter of the deposition burner D,
  • the inner diameter of the inner burner cover is L, the axial distance between the tip of the burner and the inner cover is L, the inner diameter of the outer burner cover is D, and the inner cover tip and the outer cover tip
  • the outer cover has a cylindrical shape. As a result, a symmetric flame can be generated and glass particles can be deposited uniformly.
  • the outer cover has a shape obtained by obliquely cutting a cylinder.
  • the soot shape, tip position, etc. can be observed or measured while maintaining the performance of the PANA.
  • gas is allowed to flow between the outer cover and the inner cover. This allows the burner cover to be cooled with gas, further reducing damage from heat.
  • the gas flowing between the outer cover and the inner cover can be any one of an inert gas, air, and oxygen. As a result, the influence on the adhesion of glass particles can be reduced.
  • a deposition pan that hydrolyzes a glass raw material in an oxyhydrogen flame and deposits the generated glass fine particles to produce a porous glass base material.
  • a deposition burner is provided that has a heavy burner cover.
  • the double burner cover reduces the outer diameter of the deposition span D.
  • the inner diameter of the inner burner cover is D
  • the axial distance between the end of the burner and the inner cover is L
  • the inner diameter of the outer burner cover is D
  • the inner and outer cover tips are
  • the outer cover has a cylindrical shape. As a result, a symmetric flame can be generated and glass particles can be deposited uniformly.
  • the outer cover has a shape obtained by cutting a cylinder obliquely. As a result, the soot shape, tip position, etc. can be observed or measured while maintaining the performance of the PANA.
  • the gas force that flows between the outer cover and the inner cover is any of inert gas, air, and oxygen.
  • the burner cover can be cooled and the raw material gas can be supplied simultaneously.
  • the present invention thermal damage to the burner cover can be prevented, and a stable flame flow can be obtained. Therefore, it is possible to manufacture a porous glass base material with small non-circularity and stable characteristics in the longitudinal direction. Furthermore, the obtained porous glass preform is dehydrated and sintered to form a transparent glass, thereby obtaining an optical fiber preform with a small non-circularity of the core and a small refractive index distribution.
  • FIG. 1 is a schematic cross-sectional view showing an example of a conventional optical fiber preform manufacturing apparatus.
  • FIG. 2 is a schematic sectional view showing an example of a production apparatus used in the present invention.
  • FIG. 3 is a schematic cross-sectional view showing an outer cover having a cylindrical shape.
  • FIG. 4 is a schematic cross-sectional view showing an outer cover having a shape obtained by obliquely cutting a cylinder at an end.
  • FIG. 1 schematically shows an example of an apparatus for producing a porous glass base material by the VAD method.
  • a quartz substrate 2 as an upper force deposition target is suspended, and a deposition pan 4 having a burner cover 3 is disposed obliquely upward in a downward force.
  • the deposition panner 4 includes the core raw material, tetra-salt silicon (SiCl), and the dopepan that adjusts the refractive index.
  • a raw material line such as tetrasalt ⁇ germanium (GeCl) as a catalyst, and hydrogen for oxyhydrogen flame
  • a gas line such as gas or oxygen gas is connected, and the glass fine particles generated by the flame hydrolysis are deposited on the quartz substrate to form the soot deposit 5.
  • Exhaust gas is discharged from the exhaust port 6 to the outside of the system.
  • the deposition burner 4 is provided with a burner cover 3 in order to stabilize the flame flow.
  • FIG. 2 is a schematic cross-sectional view showing an example of an apparatus for producing a porous glass base material provided with a deposition pan according to the present invention.
  • a deposition pan 4 having an inner force bar 31 and an outer cover 32 facing downward and obliquely upward.
  • the deposition pan 4 includes silicon tetrachloride (SiCl) as a core material and a dopant that controls the refractive index.
  • Raw material lines such as tetra-salt ⁇ germanium (GeCl) as a coolant, and H gas for oxyhydrogen flame
  • a gas line such as O gas is connected. From the deposition pan 4 toward the target
  • soot deposit body 5 containing is formed, dehydrated in an electric furnace, and sintered to form a transparent glass, whereby an optical fiber preform is obtained.
  • the outer diameter of the deposition spanner 4 is D and the inner cover 31
  • the diameter is D
  • the axial distance between the end of the PANANER and the inner cover 31 is L
  • the inner diameter of the outer cover 32 is D
  • the axial distance between the inner cover 31 and the outer cover 32 is L.
  • the ratio of the inner diameter D of the inner cover to the outer diameter D of the PANA is 1.3 or more.
  • the flame can be squeezed and the flame flow can be stabilized.
  • the above equation (2) is the distance in the axial direction between the tip of the PANA and the tip of the inner cover with respect to the PANANER outer diameter D.
  • the ratio of the separation L is set to 1.2 to 2.5. By keeping the ratio within this range, thermal damage to the inner cover can be prevented.
  • the ratio of the inner diameter D of the outer cover to the outer diameter D of the PANA is 1.6 to 3.2.
  • the above equation (4) is obtained by setting the ratio of the axial distance L between the front end of the inner cover and the front end of the outer cover to the axial distance between the front end of the panner and the front end of the inner cover to 1.2 or more.
  • the influence of the turbulence of the airflow in the bar can be reduced, and the flame flow can be stabilized.
  • FIG. 3 is a diagram illustrating the shape of the outer cover 32. As shown in the figure, the outer cover 32
  • FIG. 4 is a diagram illustrating another shape of the outer cover 32. As shown in the figure, the tip of the outer force bar 32 is cut obliquely so as to be inclined with respect to the axis.
  • the deposition pan 4 can be placed in an inclined state. As a result, the height of the entire manufacturing apparatus can be suppressed, and the degree of freedom in layout increases.
  • the porous glass base material 5 was manufactured using the apparatus shown in FIG.
  • the outer diameter D of the deposition burner 4 used is 20 mm.
  • Example 1-7 24 hours deposition was carried out (Examples 1-7). The results are shown in Table 1.
  • the comparative example is an example using a conventional single cover panner without the outer cover 32.
  • the outer diameter D of the deposition panner was set to 20 mm, and the dimensions of the outer cover were changed.
  • a porous glass base material was manufactured under the same conditions as in Examples 1 to 7 above.
  • the results are shown in Table 2.
  • the comparative example is an example using a conventional single cover panner without an outer cover.
  • Example 9 if the inner diameter of the outer cover is small, the cover is damaged (Example 9). The inner diameter of the outer cover is too large (Example 12). When the directional distance L is short, the flame stability is deteriorated (Example 13). Example 14 is
  • the axial distance between the inner cover tip and the outer cover tip was increased to the extent that the soot deposit tip position was covered, but no problem occurred.
  • an optical fiber preform with stable characteristics in the longitudinal direction can be obtained.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)
  • Glass Melting And Manufacturing (AREA)

Abstract

[PROBLEMS] To obtain a stable flame stream without damaging of burner cover by heat and produce an optical fiber preform being reduced in irregularity of refractive index distribution and having properties stabilized in the longitudinal direction thereof. [MEANS FOR SOLVING PROBLEMS] There is provided a process for producing a porous glass preform, comprising hydrolyzing a glass raw material in oxyhydrogen flame to thereby form glass microparticles and depositing the formed glass microparticles, wherein use is made of deposition burner (4) fitted with a double burner cover having inside cover (31) and outside cover (32). Arrangement is made so that providing that D0 is the outside diameter of deposition burner (4), D1 the inside diameter of inside cover (31), L1 the axial distance between the forefront of deposition burner (4) and the forefront of inside cover (31), D2 the inside diameter of outside cover (32), and L2 the axial distance between the forefront of inside cover (31) and the forefront of outside cover (32), there are satisfied the relationships (1) (D1/D0)≤1.3, (2) 1.2≤(L1/D0)≤2.5, (3) 1.6≤(D2/D0)≤3.2 and (4) 1.2≤(L2/L1).

Description

明 細 書  Specification
多孔質ガラス母材の製造方法及び堆積用パーナ  Porous glass base material manufacturing method and deposition pan
技術分野  Technical field
[0001] 本発明は、多孔質ガラス母材の製造方法及び堆積用パーナに関する。より詳細に は、ガラス微粒子を堆積させる堆積用パーナと、それを用いた多孔質ガラス母材の製 造方法に関する。  The present invention relates to a method for producing a porous glass preform and a deposition pan. More specifically, the present invention relates to a deposition pan for depositing glass particles and a method for producing a porous glass base material using the same.
[0002] なお、文献の参照による組み込みが認められる指定国については、下記特許出願 の明細書に記載された内容を参照により本出願に組み込み、本件明細書の記載の 一部とする。  [0002] For designated countries where incorporation by reference of documents is permitted, the contents described in the specification of the following patent application are incorporated into the present application by reference and made a part of the description of the present specification.
特願 2005— 011740号 出願曰 2005年 1月 19曰  Japanese Patent Application No. 2005—No. 011740 Filing Date January 2005 19th
背景技術  Background art
[0003] 光ファイバの材料となる多孔質ガラス母材の製造方法として、パーナから噴射され る酸水素火炎中でガラス原料を火炎加水分解し、生成されたガラス微粒子を堆積さ せる方法が知られている。  [0003] As a method for producing a porous glass base material used as a material for an optical fiber, there is known a method in which a glass raw material is flame-hydrolyzed in an oxyhydrogen flame sprayed from a pan and the generated glass fine particles are deposited. ing.
[0004] 一般に、堆積用パーナには同心多重管パーナが用いられ、これを介して原料ガス 、燃焼ガス及び助燃ガス等が供給される。また、特許文献 1に記載されているように、 パーナの前方に生成される火炎流が周囲の気流で乱され、あるいは、火炎流の方向 が変化しな 、ように、パーナの外周にバーナカバーが設けることも実施されて!、る。  [0004] In general, a concentric multi-tube spanner is used as the deposition spanner, and raw material gas, combustion gas, auxiliary combustion gas, and the like are supplied through this. Further, as described in Patent Document 1, the burner cover is formed on the outer periphery of the burner so that the flame flow generated in front of the burner is not disturbed by the surrounding air flow or the direction of the flame flow does not change. Has also been implemented! RU
[0005] 堆積用パーナに設けられたバーナカバーは、火炎流を安定化させるために、バー ナ先端力もバーナカバー先端までの距離を大きくとることが好ましい。一方、この距 離を大きくとると、パーナ火炎によりバーナカバーが熱で損傷する場合がある。また、 火炎加水分解で生成したガラス微粒子 (シリカ)がバーナカバー先端に付着成長し、 更に、その後剥離したシリカ粒カ^ート堆積体に再付着する場合がある。このようなシ リカ粒が付着すると、多孔質ガラス母材を焼結'透明ガラス化するときに、気泡発生の 原因となるという問題もある。  [0005] In order to stabilize the flame flow, the burner cover provided in the deposition burner preferably has a large burner tip force and a distance to the burner cover tip. On the other hand, if this distance is increased, the burner cover may be damaged by heat due to the PANA flame. In addition, glass fine particles (silica) produced by flame hydrolysis may adhere to and grow on the tip of the burner cover, and then reattach to the exfoliated silica particle cartridge deposit. When such silica particles adhere, there is a problem that bubbles are generated when the porous glass base material is sintered and made into transparent glass.
[0006] 特許文献 2には、パーナ火炎によるバーナカバーの熱損傷を防ぐために必要な、 パーナ先端力 バーナカバー先端までの距離が示されている。しかし、さらに高品質 の光ファイバ用プリフォームを製造するためには、屈折率分布の不整をよりいっそう 低減する必要があり、その原因となる火炎のバタツキをさらに低減させる必要がある。 [0006] Patent Document 2 shows the force to the end of the burner cover necessary to prevent the burner cover from being thermally damaged by the burner flame. But even higher quality In order to manufacture this optical fiber preform, it is necessary to further reduce the irregularity of the refractive index distribution, and to further reduce the flickering of the flame that causes it.
[0007] 特許文献 1 :特開昭 57— 7834号公報  Patent Document 1: Japanese Patent Application Laid-Open No. 57-7834
特許文献 2:特開 2000— 72448号公報  Patent Document 2: Japanese Patent Laid-Open No. 2000-72448
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0008] 上記したように、火炎流を安定化させる目的でパーナ先端とバーナカバー先端の 距離を大きくすると、カバー自体が熱損傷を受ける場合がある。他方、パーナ先端と バーナカバー先端の距離を小さくすると、火炎流を安定化させる効果が得られな!/、。  [0008] As described above, if the distance between the end of the burner and the end of the burner cover is increased for the purpose of stabilizing the flame flow, the cover itself may be thermally damaged. On the other hand, if the distance between the end of the burner and the end of the burner cover is reduced, the effect of stabilizing the flame flow cannot be obtained! /.
[0009] そこで本発明は、安定した火炎流が得られ、且つ、バーナカバーが熱で損傷するこ とのない堆積用パーナを提供することを目的としている。また、その堆積用パーナを 用いて、屈折率分布の不整が小さく長手方向に特性の安定した光ファイバ母材を製 造できる多孔質ガラス母材の製造方法を提供することも目的とする。  [0009] Accordingly, an object of the present invention is to provide a deposition burner in which a stable flame flow is obtained and the burner cover is not damaged by heat. It is another object of the present invention to provide a method for producing a porous glass preform that can produce an optical fiber preform with small irregularity of the refractive index distribution and stable characteristics in the longitudinal direction using the deposition panner.
課題を解決するための手段  Means for solving the problem
[0010] 本発明の第 1の形態として、ガラス原料を酸水素火炎中で加水分解してガラス微粒 子を生成し、生成したガラス微粒子を堆積して多孔質ガラス母材を製造する方法で あって、堆積用パーナに二重のバーナカバーを設置することを特徴とする多孔質ガ ラス母材の製造方法が提供される。本発明の多孔質ガラス母材の製造方法は、火炎 を絞り、火炎流を安定化させる効果を維持しながら、パーナ先端とカバー先端の距離 をカバーが熱損傷を受けない程度とする内側カバーと、内径を大きくして熱損傷を防 ぎながら、パーナ先端とカバー先端の距離を大きくとることによりチャンバ内の気流の 乱れの影響を小さくし、火炎流を安定化させる外側カバーとの二重構造とすることで 、カバーの熱損傷等の問題が発生することなぐ火炎流を安定させることができる。こ れにより、カバーを熱で損傷させることなく火炎流を安定化させ、非円度が小さく長手 方向に特性の安定した多孔質ガラス母材を製造できる。更に、得られた多孔質ガラス 母材を脱水、焼結し、透明ガラス化することで、コアの非円度が小さぐ屈折率分布の 不整の小さな光ファイバ母材が得られる。 [0010] As a first embodiment of the present invention, a glass raw material is hydrolyzed in an oxyhydrogen flame to produce glass fine particles, and the produced glass fine particles are deposited to produce a porous glass base material. Thus, there is provided a method for producing a porous glass base material, characterized in that a double burner cover is installed on the deposition spanner. The method for producing a porous glass base material of the present invention includes an inner cover and a distance between the tip of the PANANER and the cover so that the cover is not damaged by heat while maintaining the effect of reducing the flame and stabilizing the flame flow. The double inner structure with the outer cover that stabilizes the flame flow by reducing the influence of the turbulence of the air flow in the chamber by increasing the distance between the tip of the pan and the cover tip while increasing the inner diameter to prevent thermal damage. By doing so, the flame flow can be stabilized without causing problems such as thermal damage of the cover. As a result, it is possible to stabilize the flame flow without damaging the cover with heat, and to produce a porous glass base material with small non-circularity and stable characteristics in the longitudinal direction. Further, the obtained porous glass preform is dehydrated and sintered to form a transparent glass, thereby obtaining an optical fiber preform with a small non-circularity of the core and a small refractive index distribution.
[0011] また、上記製造方法にお!、て、二重のバーナカバーが堆積用パーナの外径を D、 内側のバーナカバーの内径を 、パーナ先端と内側カバー先端との軸方向距離を L、外側のバーナカバーの内径を D、さらに内側カバー先端と外側カバー先端との[0011] Further, in the above manufacturing method, the double burner cover has an outer diameter of the deposition burner D, The inner diameter of the inner burner cover is L, the axial distance between the tip of the burner and the inner cover is L, the inner diameter of the outer burner cover is D, and the inner cover tip and the outer cover tip
1 2 1 2
軸方向距離を Lとするとき、  When the axial distance is L,
2  2
(1) (D ZD )≤1. 3、  (1) (D ZD) ≤1.3
1 0  Ten
(2) 1. 2≤(L /Ό )≤2. 5、  (2) 1. 2≤ (L / Ό) ≤2.5,
1 0  Ten
(3) 1. 6≤(D /D )≤3. 2、  (3) 1. 6≤ (D / D) ≤3.2
2 0  2 0
(4) 1. 2≤(L ZL )、  (4) 1. 2≤ (L ZL),
2 1  twenty one
の各式を満たすように設けられている。これにより、火炎の安定と、バーナカバーの損 傷防止を高 、レベルで両立させることができる。  It is provided so that each of these formulas may be satisfied. As a result, both flame stability and burner cover damage prevention can be achieved at a high level.
[0012] また、上記製造方法において、外側カバーが円筒形を有する。これにより、対称形 の火炎を生成させ、ガラス微粒子を均一に堆積させることができる。 [0012] In the above manufacturing method, the outer cover has a cylindrical shape. As a result, a symmetric flame can be generated and glass particles can be deposited uniformly.
[0013] また、上記製造方法において、外側カバーが円筒を斜めにカットした形状を有する[0013] In the above manufacturing method, the outer cover has a shape obtained by obliquely cutting a cylinder.
。これにより、パーナの性能を維持しながら、スート形状、先端位置等を観察または測 定できる。 . As a result, the soot shape, tip position, etc. can be observed or measured while maintaining the performance of the PANA.
[0014] また、上記製造方法において、外側カバーと内側カバーとの間にガスを流す。これ により、バーナカバーをガスで冷却させて、熱による損傷を一段と軽減できる。  [0014] In the manufacturing method, gas is allowed to flow between the outer cover and the inner cover. This allows the burner cover to be cooled with gas, further reducing damage from heat.
[0015] 更に、上記製造方法において、外側カバーと内側カバーとの間に流すガスは、不 活性ガス、空気又は酸素のいずれかとすることができる。これにより、ガラス微粒子の 付着に与える影響を小さくできる。  [0015] Further, in the above manufacturing method, the gas flowing between the outer cover and the inner cover can be any one of an inert gas, air, and oxygen. As a result, the influence on the adhesion of glass particles can be reduced.
[0016] また、本発明の第 2の形態として、ガラス原料を酸水素火炎中で加水分解し、生成 したガラス微粒子を堆積して多孔質ガラス母材を製造する堆積用パーナであって、 二重のバーナカバーを有することを特徴とする堆積用パーナが提供される。この堆 積用パーナを用いることにより、従来の製造設備を用いて前記した効果が得られる。  [0016] Further, as a second aspect of the present invention, there is provided a deposition pan that hydrolyzes a glass raw material in an oxyhydrogen flame and deposits the generated glass fine particles to produce a porous glass base material. A deposition burner is provided that has a heavy burner cover. By using this stacking panner, the effects described above can be obtained using conventional manufacturing equipment.
[0017] 上記、堆積用パーナにおいて、二重のバーナカバーが堆積用パーナの外径を D [0017] In the above-described deposition panner, the double burner cover reduces the outer diameter of the deposition span D.
0 0
、内側のバーナカバーの内径を D、パーナ先端と内側カバー先端との軸方向距離 を L、外側のバーナカバーの内径を D、及び内側カバー先端と外側カバー先端と, The inner diameter of the inner burner cover is D, the axial distance between the end of the burner and the inner cover is L, the inner diameter of the outer burner cover is D, and the inner and outer cover tips are
1 2 1 2
の軸方向距離を Lとするとき、  Let L be the axial distance of
2  2
(1) (D ZD )≤1. 3、 (2) 1. 2≤ (L /Ό )≤2. 5、 (1) (D ZD) ≤1.3 (2) 1. 2≤ (L / Ό) ≤2.5,
1 0  Ten
(3) 1. 6≤(D ZD )≤3. 2、  (3) 1. 6≤ (D ZD) ≤3.
2 0  2 0
(4) 1. 2≤(L ZL )、  (4) 1. 2≤ (L ZL),
2 1  twenty one
の各式を満たす。これにより、火炎の安定と、バーナカバーの損傷防止を高いレベル で両立させることができる。  Satisfy each expression. As a result, it is possible to achieve both high stability of flame stability and prevention of burner cover damage.
[0018] また、上記堆積用パーナにおいて、外側カバーが円筒形を有する。これにより、対 称形の火炎を生成させ、ガラス微粒子を均一に堆積させることができる。 [0018] Further, in the deposition pan, the outer cover has a cylindrical shape. As a result, a symmetric flame can be generated and glass particles can be deposited uniformly.
[0019] また、上記堆積用パーナにおいて、外側カバーが円筒を斜めにカットした形状を有 する。これにより、パーナの性能を維持しながら、スート形状、先端位置等を観察また は測定できる。 [0019] In the above-mentioned deposition panner, the outer cover has a shape obtained by cutting a cylinder obliquely. As a result, the soot shape, tip position, etc. can be observed or measured while maintaining the performance of the PANA.
[0020] また、上記堆積用パーナにおいて、外側カバーと内側カバーとの間にガスを流す。  [0020] Further, in the above-described deposition panner, gas is allowed to flow between the outer cover and the inner cover.
これにより、これにより、ガラス微粒子の付着に与える影響を小さくできる。  Thereby, this can reduce the influence on the adhesion of the glass fine particles.
[0021] また、上記堆積用パーナにおいて、外側カバーと内側カバーとの間に流すガス力 不活性ガス、空気又は酸素のいずれかである。これにより、バーナカバーの冷却と原 料ガスの供給を同時に行うことができる。 [0021] Further, in the above-described deposition panner, the gas force that flows between the outer cover and the inner cover is any of inert gas, air, and oxygen. As a result, the burner cover can be cooled and the raw material gas can be supplied simultaneously.
[0022] ただし、上記の発明の概要は、本発明の必要な特徴の全てを列挙したものではな[0022] However, the above summary of the invention does not enumerate all the necessary features of the present invention.
V、。これらの特徴群のサブコンビネーションもまた発明となり得る。 V ,. Sub-combinations of these feature groups can also be an invention.
発明の効果  The invention's effect
[0023] 本発明によれば、バーナカバーの熱損傷を防止することができ、かつ安定した火炎 流が得られる。従って、非円度が小さく長手方向に特性の安定した多孔質ガラス母 材を製造できる。更に、得られた多孔質ガラス母材を脱水、焼結し、透明ガラス化す ることで、コアの非円度が小さぐ屈折率分布の不整の小さな光ファイバ母材が得ら れる。  [0023] According to the present invention, thermal damage to the burner cover can be prevented, and a stable flame flow can be obtained. Therefore, it is possible to manufacture a porous glass base material with small non-circularity and stable characteristics in the longitudinal direction. Furthermore, the obtained porous glass preform is dehydrated and sintered to form a transparent glass, thereby obtaining an optical fiber preform with a small non-circularity of the core and a small refractive index distribution.
図面の簡単な説明  Brief Description of Drawings
[0024] [図 1]従来の光ファイバ母材の製造装置の一例を示す概略断面図である。 FIG. 1 is a schematic cross-sectional view showing an example of a conventional optical fiber preform manufacturing apparatus.
[図 2]本発明で使用した製造装置の一例を示す概略断面図である。  FIG. 2 is a schematic sectional view showing an example of a production apparatus used in the present invention.
[図 3]円筒形状を有する外側カバーを示す概略断面図である。  FIG. 3 is a schematic cross-sectional view showing an outer cover having a cylindrical shape.
[図 4]端部が円筒を斜めに切断した形状を有する外側カバーを示す概略断面図であ る。 FIG. 4 is a schematic cross-sectional view showing an outer cover having a shape obtained by obliquely cutting a cylinder at an end. The
符号の説明  Explanation of symbols
[0025] 1 石英製チャンバ、 2 石英基材、 3 バーナカバー、 31 内側カバー、 32 外側力 バー、 4 堆積用パーナ、 5 スート堆積体、 6 排気口  [0025] 1 quartz chamber, 2 quartz substrate, 3 burner cover, 31 inner cover, 32 outer force bar, 4 deposition panner, 5 soot deposit, 6 exhaust port
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0026] 以下、発明の実施の形態を通じて本発明を説明する。ただし、以下の実施形態は 請求の範隨こかかる発明を限定するものではない。また、実施形態の中で説明され て 、る特徴の組み合わせの全てが発明の解決手段に必須であるとは限らな 、。  [0026] Hereinafter, the present invention will be described through embodiments of the present invention. However, the following embodiments do not limit the claimed invention. In addition, all the combinations of features described in the embodiments are not necessarily essential for the solution of the invention.
[0027] 図 1に VAD法による多孔質ガラス母材を製造する装置の一例を模式的に示した。  FIG. 1 schematically shows an example of an apparatus for producing a porous glass base material by the VAD method.
石英製チャンバ 1内に、上方力 堆積ターゲットである石英基材 2が吊り下げられ、下 方力 斜め上方に向けてバーナカバー 3を有する堆積用パーナ 4が配設されている 。堆積用パーナ 4には、コア原料の四塩ィ匕珪素(SiCl )、屈折率を調整するドーパン  In the quartz chamber 1, a quartz substrate 2 as an upper force deposition target is suspended, and a deposition pan 4 having a burner cover 3 is disposed obliquely upward in a downward force. The deposition panner 4 includes the core raw material, tetra-salt silicon (SiCl), and the dopepan that adjusts the refractive index.
4  Four
トとしての四塩ィ匕ゲルマニウム (GeCl )等の原料ライン、さらに、酸水素火炎用水素  A raw material line such as tetrasalt 匕 germanium (GeCl) as a catalyst, and hydrogen for oxyhydrogen flame
4  Four
ガス、酸素ガス等のガスラインが接続され、火炎加水分解で生成したガラス微粒子は 、石英基材上に堆積され、スート堆積体 5が形成される。排気ガスは、排気口 6から系 外に排出される。  A gas line such as gas or oxygen gas is connected, and the glass fine particles generated by the flame hydrolysis are deposited on the quartz substrate to form the soot deposit 5. Exhaust gas is discharged from the exhaust port 6 to the outside of the system.
[0028] 堆積用パーナ 4には、火炎流を安定ィ匕させるためにバーナカバー 3が設けられる。  [0028] The deposition burner 4 is provided with a burner cover 3 in order to stabilize the flame flow.
また、火炎流を安定化させるには、パーナ先端力 バーナカバー先端までの距離を 大きくとることが好ましい。  Further, in order to stabilize the flame flow, it is preferable to take a large distance to the tip of the burner cover.
[0029] ただし、この距離を大きくとると、パーナ火炎の前方に生成される火炎により、バー ナカバーが熱で損傷し、あるいは、バーナカバー先端に火炎加水分解で生成したガ ラス微粒子 (シリカ)が付着成長し、その後剥離したシリカ粒カ^ート堆積体に再付着 して、焼結 ·透明ガラス化時に生じる気泡発生の原因となるなどの問題があった。  [0029] However, if this distance is increased, the burner cover is damaged by heat due to the flame generated in front of the PANA flame, or glass fine particles (silica) generated by flame hydrolysis at the tip of the burner cover. There were problems such as adhesion and growth, and then reattaching to the exfoliated silica particle deposits, causing bubbles to occur during sintering and transparent vitrification.
[0030] このため、火炎を絞り、チャンバ内の気流の乱れの影響を防ぐと同時に、カバーの 熱損傷を防ぎ、更に、カバーに付着したシリカの成長を防止するためには、それぞれ の問題点発生が小さくなる条件でバランスさせるしかない。  [0030] For this reason, in order to prevent the influence of the turbulence of the air flow in the chamber by restricting the flame, at the same time, preventing the thermal damage of the cover, and further preventing the growth of silica adhering to the cover, each problem There is no choice but to balance under conditions that reduce the occurrence.
[0031] し力しながら、火炎を絞ることを目的とするカバーと、気流の乱れの影響を抑えるこ とを目的とするカバーとにその役割を分担させることにより、気流の制御とカバーの損 傷回避を両立し得ることが判った。 [0031] By controlling the air flow and the cover loss, the role is divided between a cover intended to squeeze the flame and a cover intended to suppress the influence of the turbulence of the air flow. It was found that both wound avoidance can be achieved.
[0032] 図 2は、本発明の堆積用パーナを備えた多孔質ガラス母材の製造装置の一例を示 す概略断面図である。石英製チャンバ 1内には、下方力 斜め上方に向けて内側力 バー 31と外側カバー 32を有する堆積用パーナ 4が配設されている。  FIG. 2 is a schematic cross-sectional view showing an example of an apparatus for producing a porous glass base material provided with a deposition pan according to the present invention. In the quartz chamber 1, there is disposed a deposition pan 4 having an inner force bar 31 and an outer cover 32 facing downward and obliquely upward.
[0033] 堆積用パーナ 4には、コア原料の四塩化珪素(SiCl )や、屈折率を制御するドーパ  [0033] The deposition pan 4 includes silicon tetrachloride (SiCl) as a core material and a dopant that controls the refractive index.
4  Four
ントとしての四塩ィ匕ゲルマニウム(GeCl )等の原料ライン、及び酸水素火炎用 Hガス  Raw material lines such as tetra-salt 匕 germanium (GeCl) as a coolant, and H gas for oxyhydrogen flame
4 2 4 2
、 Oガス等のガスラインが接続されている。ターゲット部に向けて堆積用パーナ 4からA gas line such as O gas is connected. From the deposition pan 4 toward the target
2 2
原料と燃料ガスを噴きつけて、火炎加水分解で生成したガラス微粒子を軸方向に堆 積させていくとともに、石英基材 2を回転させながら引き上げ、屈折率の高いコアと屈 折率の低いクラッドを含むスート堆積体 5を形成し、これを電気炉内で脱水し、焼結' 透明ガラス化して、光ファイバ母材が得られる。  By spraying raw materials and fuel gas, glass particles generated by flame hydrolysis are accumulated in the axial direction, and the quartz substrate 2 is pulled up while rotating to core with a high refractive index and cladding with a low refractive index. The soot deposit body 5 containing is formed, dehydrated in an electric furnace, and sintered to form a transparent glass, whereby an optical fiber preform is obtained.
[0034] 上記の堆積用パーナにおいて、堆積用パーナ 4の外径を D、内側カバー 31の内 [0034] In the above-described deposition panner, the outer diameter of the deposition spanner 4 is D and the inner cover 31
0  0
径を D、パーナ先端と内側カバー 31先端との軸方向距離を L、外側カバー 32の内 径を D、及び内側カバー 31先端および外側カバー 32先端の軸方向距離を Lとす The diameter is D, the axial distance between the end of the PANANER and the inner cover 31 is L, the inner diameter of the outer cover 32 is D, and the axial distance between the inner cover 31 and the outer cover 32 is L.
2 2 るとさ、 2 2
(1) (D ZD )≤1. 3、  (1) (D ZD) ≤1.3
1 0  Ten
(2) 1. 2≤(L /D )≤2. 5、  (2) 1. 2≤ (L / D) ≤2.5,
1 0  Ten
(3) 1. 6≤(D /D )≤3. 2、  (3) 1. 6≤ (D / D) ≤3.2
2 0  2 0
(4) 1. 2≤(L ZL )、  (4) 1. 2≤ (L ZL),
2 1  twenty one
の各式を満たすように設けられて 、る。  It is provided to satisfy each of the following formulas.
[0035] なお、上記(1)式は、パーナ外径 Dに対する内側カバーの内径 Dの比を 1. 3以 [0035] In the above equation (1), the ratio of the inner diameter D of the inner cover to the outer diameter D of the PANA is 1.3 or more.
0 1  0 1
下とすることにより、火炎を絞り、火炎流を安定化させることができる。  By setting it below, the flame can be squeezed and the flame flow can be stabilized.
[0036] 上記(2)式は、パーナ外径 Dに対するパーナ先端と内側カバー先端との軸方向距  [0036] The above equation (2) is the distance in the axial direction between the tip of the PANA and the tip of the inner cover with respect to the PANANER outer diameter D.
0  0
離 Lの比を 1. 2〜2. 5とするものであり、この範囲内に収めることにより、内側カバー の熱損傷を防止することができる。  The ratio of the separation L is set to 1.2 to 2.5. By keeping the ratio within this range, thermal damage to the inner cover can be prevented.
[0037] 上記(3)式は、パーナ外径 Dに対する外側カバーの内径 Dの比を 1. 6〜3. 2と [0037] In the above equation (3), the ratio of the inner diameter D of the outer cover to the outer diameter D of the PANA is 1.6 to 3.2.
0 2  0 2
するものであり、この範囲内に収めることにより、外側カバーの熱損傷を防止すること ができる。 [0038] 上記 (4)式は、パーナ先端と内側カバー先端との軸方向距離 に対する内側カバ 一先端と外側カバー先端との軸方向距離 Lの比を 1. 2以上とすることにより、チャン By keeping within this range, thermal damage to the outer cover can be prevented. [0038] The above equation (4) is obtained by setting the ratio of the axial distance L between the front end of the inner cover and the front end of the outer cover to the axial distance between the front end of the panner and the front end of the inner cover to 1.2 or more.
2  2
バ内の気流の乱れの影響を小さくし、火炎流を安定化させることができる。  The influence of the turbulence of the airflow in the bar can be reduced, and the flame flow can be stabilized.
[0039] 図 3は、外側カバー 32の形状を例示する図である。同図に示すように、外側カバーFIG. 3 is a diagram illustrating the shape of the outer cover 32. As shown in the figure, the outer cover
32は、パーナ 4と同軸の円筒とすることができる。これにより、対称形の火炎が形成さ れるので、ガラス微粒子を均一に堆積させやすくなる。 32 can be a cylinder coaxial with Parner 4. As a result, a symmetrical flame is formed, which facilitates uniform deposition of glass particles.
[0040] 図 4は、外側カバー 32の他の形状を例示する図である。同図に示すように、外側力 バー 32の先端を、軸芯に対して傾斜するように斜めに切断した形状とすることによりFIG. 4 is a diagram illustrating another shape of the outer cover 32. As shown in the figure, the tip of the outer force bar 32 is cut obliquely so as to be inclined with respect to the axis.
、堆積用パーナ 4を傾斜した状態で配置できる。これにより、製造装置全体の高さを 抑制でき、レイアウトの自由度が増す。 The deposition pan 4 can be placed in an inclined state. As a result, the height of the entire manufacturing apparatus can be suppressed, and the degree of freedom in layout increases.
[0041] 二重に設けられた外側カバーと内側カバーとの間に、不活性ガス又は空気や酸素 などのガスを流すことにより、さらにバーナカバーの熱損傷を防止することができる。 [0041] By causing an inert gas or a gas such as air or oxygen to flow between the outer cover and the inner cover provided in a double manner, thermal damage to the burner cover can be further prevented.
[0042] 以下、実施例、比較例を挙げて本発明をさらに詳細に説明するが、本発明はこれら に限定されず様々な態様が可能である。 [0042] Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited to these and various modes are possible.
実施例  Example
[0043] (実施例 1〜7、比較例) [0043] (Examples 1 to 7, comparative example)
図 2に示す装置を用いて多孔質ガラス母材 5の製造を行った。使用した堆積用バ ーナ 4の外径 Dは 20mmであり、内側カバー 31の寸法を変えることでパーナ条件を  The porous glass base material 5 was manufactured using the apparatus shown in FIG. The outer diameter D of the deposition burner 4 used is 20 mm.
0  0
変え、 24時間の堆積を行った (実施例 1〜7)。その結果を表 1に示した。なお、比較 例は、従来の外側カバー 32の無い一重カバーのパーナを使用した例である。  24 hours deposition was carried out (Examples 1-7). The results are shown in Table 1. The comparative example is an example using a conventional single cover panner without the outer cover 32.
[0044] [表 1] [0044] [Table 1]
Di/Do L1/D0 D2/D0 L2/Li カバ一の様子 火炎安定性 比較例 1.05 1.5 — — 問題なし バタツキ有り 実施例 1 1.05 1.5 2.0 2.3 問題なし 問題なし 実施例 2 1.20 1.5 2.0 2.3 問題なし 問題なし 実施例 3 1.35 1.5 2.0 2.3 問題なし バタツキ有り 実施例 4 1.05 1.0 2.0 3.5 問題なし バタツキ有り 実施例 5 1.05 1.2 2.0 2.9 問題なし 問題なし 実施例 6 1.05 2.5 2.0 1.4 問題なし 問題なし 実施例 7 1.05 2.7 2.0 1.3 損傷有り 問題なし Di / Do L1 / D0 D2 / D0 L 2 / Li Covering Flame stability Comparative example 1.05 1.5 — — No problem Flickering Example 1 1.05 1.5 2.0 2.3 No problem No problem Example 2 1.20 1.5 2.0 2.3 No problem No problem Example 3 1.35 1.5 2.0 2.3 No problem Flicker Example 4 1.05 1.0 2.0 3.5 No problem Flicker Example 5 1.05 1.2 2.0 2.9 No problem No problem Example 6 1.05 2.5 2.0 1.4 No problem No problem Example 7 1.05 2.7 2.0 1.3 Damaged No problem
[0045] 表 1から、内側カバー 31に加えて外側カバー 32を使用することで、火炎安定性が 向上していることが認められる。なお、内側カバーの内径が大きすぎたり(実施例 3)、 パーナ先端と内側カバー先端との軸方向距離 Lが短いと火炎安定性は悪くなり(実 施例 4)、 Lを長くすると、カバーに熱損傷が認められる(実施例 7)。 [0045] From Table 1, it is recognized that flame stability is improved by using the outer cover 32 in addition to the inner cover 31. Note that if the inner diameter of the inner cover is too large (Example 3), or if the axial distance L between the tip of the PANANER and the inner cover tip is short, flame stability will deteriorate (Example 4). (Example 7).
[0046] また、上記表 1に示す結果から、堆積用パーナ 4、内側カバー 31および外側カバ 一 32の関係において、下記の式を満たす範囲とすることが好ましいことが判る。  [0046] From the results shown in Table 1 above, it can be seen that it is preferable to set the range satisfying the following formula in the relationship between the deposition burner 4, the inner cover 31, and the outer cover 32.
(1) (D ZD )≤1. 3  (1) (D ZD) ≤1.3
1 0 、  Ten ,
(2) 1. 2≤(L /Ό )≤2. 5  (2) 1. 2≤ (L / Ό) ≤2.5
1 0 、  Ten ,
[0047] (実施例 8〜16、比較例)  [0047] (Examples 8 to 16, comparative example)
次に、堆積用パーナの外径 Dは 20mmとし、外側カバーの寸法条件を変更した以  Next, the outer diameter D of the deposition panner was set to 20 mm, and the dimensions of the outer cover were changed.
0  0
外は、上記実施例 1〜7と同じ条件で多孔質ガラス母材の製造を行った。その結果を 表 2に示した。なお、比較例は、外側カバーの無い従来の一重カバーのパーナを使 用した例である。  A porous glass base material was manufactured under the same conditions as in Examples 1 to 7 above. The results are shown in Table 2. The comparative example is an example using a conventional single cover panner without an outer cover.
[0048] [表 2] Di/Do L1/D0 D2/D0 L2/Li カバーの様子 火炎安定性 比較例 1.05 1.5 — — 問題なし バタツキ有り 実施例 8 1.05 1,5 2.0 1.2 問題なし 問題なし 実施例 9 1.05 1.5 1.5 1.2 損傷有り 問題なし 実施例 10 1.05 1.5 1.6 1.2 問題なし 。コ Isなし 実施例 11 1.05 1.5 3.1 1.2 問題なし 問題なし 実施例 12 1.05 1.5 3.3 1.2 問題なし バタツキ有り 実施例 13 1.05 1.5 2.0 1.1 問題なし バタツキ有り 実施例 14 1.05 1.5 2.0 1.7 問題なし 問題なし [0048] [Table 2] Di / Do L1 / D0 D2 / D0 L 2 / Li Cover Flame stability Comparative example 1.05 1.5 — — No problem Flicker Example 8 1.05 1,5 2.0 1.2 No problem No problem Example 9 1.05 1.5 1.5 1.2 Damage Yes No problem Example 10 1.05 1.5 1.6 1.2 No problem. No No Example 11 1.05 1.5 3.1 1.2 No problem No problem Example 12 1.05 1.5 3.3 1.2 No problem Flicker Example 13 1.05 1.5 2.0 1.1 No problem Flicker Example 14 1.05 1.5 2.0 1.7 No problem No problem
[0049] 表 2から、外側カバーの内径が小さいとカバーに損傷が認められ (実施例 9)、外側 カバーの内径が大きすぎたり(実施例 12)、内側カバー先端と外側カバー先端との軸 方向距離 Lが短いと火炎安定性は悪くなつている(実施例 13)。なお、実施例 14は [0049] From Table 2, if the inner diameter of the outer cover is small, the cover is damaged (Example 9). The inner diameter of the outer cover is too large (Example 12). When the directional distance L is short, the flame stability is deteriorated (Example 13). Example 14 is
2  2
、スート堆積体先端位置を覆う程度まで、内側カバー先端と外側カバー先端との軸 方向距離を Lを大きくしたが、問題は発生しなかった。  The axial distance between the inner cover tip and the outer cover tip was increased to the extent that the soot deposit tip position was covered, but no problem occurred.
2  2
[0050] また、上記表 1に示す結果から、堆積用パーナ 4、内側カバー 31および外側カバ 一 32の関係において、下記の式を満たす範囲とすることが好ましいことが判る。  [0050] From the results shown in Table 1 above, it can be seen that it is preferable to set the range satisfying the following formula in the relationship between the deposition burner 4, the inner cover 31, and the outer cover 32.
(3) 1.6≤ (D /Ό )≤3. 2  (3) 1.6≤ (D / Ό) ≤3.2
2 0 、  2 0,
(4) 1. 2≤(L ZL )、  (4) 1. 2≤ (L ZL),
2 1  twenty one
産業上の利用可能性  Industrial applicability
[0051] 本発明によれば、長手方向に特性の安定した光ファイバ母材が得られる。 [0051] According to the present invention, an optical fiber preform with stable characteristics in the longitudinal direction can be obtained.

Claims

請求の範囲 [1] ガラス原料を酸水素火炎中で加水分解してガラス微粒子を生成し、生成したガラス 微粒子を堆積して多孔質ガラス母材を製造する方法において、堆積用パーナに二 重のバーナカバーを設置することを特徴とする多孔質ガラス母材の製造方法。 [2] 前記二重のバーナカバーが堆積用パーナの外径を D、内側のバーナカバーの内 0 径を D、パーナ先端と内側カバー先端との軸方向距離を L、外側のバーナカバー の内径を D、さらに内側カバー先端と外側カバー先端との軸方向距離を Lとすると 2 2 さ、 Claims [1] In a method for producing a porous glass base material by producing glass fine particles by hydrolyzing a glass raw material in an oxyhydrogen flame, and depositing the produced glass fine particles, A method for producing a porous glass base material, comprising installing a burner cover. [2] The double burner cover has D as the outer diameter of the deposition burner, D as the inner diameter of the inner burner cover, D as the axial distance between the end of the burner and the inner cover, and the inner diameter of the outer burner cover. D, and if the axial distance between the inner cover tip and the outer cover tip is L, 2 2
(1) (D ZD )≤1. 3、  (1) (D ZD) ≤1.3
1 0  Ten
(2) 1. 2≤(L /Ό )≤2. 5、  (2) 1. 2≤ (L / Ό) ≤2.5,
1 0  Ten
(3) 1. 6≤(D /D )≤3. 2、  (3) 1. 6≤ (D / D) ≤3.2
2 0  2 0
(4) 1. 2≤(L ZL  (4) 1. 2≤ (L ZL
2 1)、  twenty one),
の各式を満たすように設けられて 、る請求項 1に記載の多孔質ガラス母材の製造方 法。  The method for producing a porous glass base material according to claim 1, wherein the porous glass base material is provided so as to satisfy each of the following formulas.
[3] 外側カバーが円筒形を有する請求項 1又は 2に記載の多孔質ガラス母材の製造方 法。  [3] The method for producing a porous glass base material according to claim 1 or 2, wherein the outer cover has a cylindrical shape.
[4] 外側カバーが円筒を斜めにカットした形状を有する請求項 1乃至 3のいずれかに記 載の多孔質ガラス母材の製造方法。  [4] The method for producing a porous glass base material according to any one of claims 1 to 3, wherein the outer cover has a shape obtained by obliquely cutting a cylinder.
[5] 外側カバーと内側カバーとの間にガスを流す請求項 1乃至 4のいずれかに記載の 多孔質ガラス母材の製造方法。 [5] The method for producing a porous glass base material according to any one of claims 1 to 4, wherein gas is allowed to flow between the outer cover and the inner cover.
[6] 外側カバーと内側カバーとの間に流すガス力 不活性ガス、空気又は酸素のいず れかである請求項 1乃至 5のいずれかに記載の多孔質ガラス母材の製造方法。 [6] The method for producing a porous glass base material according to any one of [1] to [5], wherein the gas force flows between the outer cover and the inner cover, which is one of inert gas, air, and oxygen.
[7] ガラス原料を酸水素火炎中で加水分解し、生成したガラス微粒子を堆積して多孔 質ガラス母材を製造する堆積用パーナであって、二重のバーナカバーを有すること を特徴とする堆積用パーナ。 [7] A deposition pan that hydrolyzes a glass raw material in an oxyhydrogen flame and deposits the generated glass fine particles to produce a porous glass base material, characterized in that it has a double burner cover. Pana for deposition.
[8] 前記二重のバーナカバーが堆積用パーナの外径を D、内側のバーナカバーの内 [8] The double burner cover sets the outer diameter of the deposition burner to D and the inner burner cover.
0  0
径を D、パーナ先端と内側カバー先端との軸方向距離を L、外側のバーナカバー の内径を D、及び内側カバー先端と外側カバー先端との軸方向距離を Lとするとき (1) (D ZD )≤1. 3、 When D is the diameter, L is the axial distance between the end of the burner and the inner cover, D is the inner diameter of the outer burner cover, and L is the axial distance between the inner and outer cover tips. (1) (D ZD) ≤1.3
1 0  Ten
(2) 1. 2≤(L ZD )≤2. 5、  (2) 1. 2≤ (L ZD) ≤2.5,
1 0  Ten
(3) 1. 6≤(D /D )≤3. 2、  (3) 1. 6≤ (D / D) ≤3.2
2 0  2 0
(4) 1. 2≤(L ZL )、  (4) 1. 2≤ (L ZL),
2 1  twenty one
の各式を満たすように設けられてなる請求項 7に記載の堆積用パーナ。  The deposition pan according to claim 7, which is provided so as to satisfy the following formulas.
[9] 外側カバーが円筒形を有する請求項 7又は 8に記載の堆積用パーナ。 9. The deposition pan according to claim 7 or 8, wherein the outer cover has a cylindrical shape.
[10] 外側カバーが円筒を斜めにカットした形状を有する請求項 7乃至 9のいずれかに記 載の堆積用パーナ。 [10] The deposition spanner according to any one of claims 7 to 9, wherein the outer cover has a shape obtained by obliquely cutting a cylinder.
[11] 外側カバーと内側カバーとの間にガスを流す請求項 7乃至 10のいずれかに記載の 堆積用パーナ。  [11] The deposition spanner according to any one of claims 7 to 10, wherein gas flows between the outer cover and the inner cover.
[12] 外側カバーと内側カバーとの間に流すガス力 不活性ガス、空気又は酸素のいず れかである請求項 7乃至 11のいずれかに記載の堆積用パーナ。  [12] The deposition pan according to any one of [7] to [11], wherein the gas force flowing between the outer cover and the inner cover is one of an inert gas, air, and oxygen.
PCT/JP2006/300390 2005-01-19 2006-01-13 Process for producing porous glass preform and deposition burner WO2006077782A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005-011740 2005-01-19
JP2005011740A JP4900762B2 (en) 2005-01-19 2005-01-19 Method for producing porous glass base material and deposition burner

Publications (1)

Publication Number Publication Date
WO2006077782A1 true WO2006077782A1 (en) 2006-07-27

Family

ID=36692172

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/300390 WO2006077782A1 (en) 2005-01-19 2006-01-13 Process for producing porous glass preform and deposition burner

Country Status (3)

Country Link
JP (1) JP4900762B2 (en)
TW (1) TW200628424A (en)
WO (1) WO2006077782A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104649577A (en) * 2015-02-12 2015-05-27 江苏通鼎光棒有限公司 Device and method for adjusting flame temperature of VAD and OVD on line
CN113165933A (en) * 2018-12-04 2021-07-23 住友电气工业株式会社 Burner for producing glass soot body, apparatus and method for producing glass soot body

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9221704B2 (en) 2009-06-08 2015-12-29 Air Products And Chemicals, Inc. Through-port oxy-fuel burner
TWI416051B (en) * 2010-07-08 2013-11-21 Air Prod & Chem Through-port oxy-fuel burner
JP6979915B2 (en) * 2018-03-29 2021-12-15 古河電気工業株式会社 Optical fiber porous base material manufacturing equipment and optical fiber porous base material manufacturing method
JP7083791B2 (en) 2019-09-03 2022-06-13 信越化学工業株式会社 Method for manufacturing glass fine particle deposits

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5341362U (en) * 1976-09-13 1978-04-10
JPS60137839A (en) * 1983-12-23 1985-07-22 Furukawa Electric Co Ltd:The Burner for forming fine powder of optical glass
JPS6369137U (en) * 1986-10-27 1988-05-10
JPS63110535U (en) * 1987-01-09 1988-07-15
JPH01142425U (en) * 1988-03-22 1989-09-29
JPH0290631U (en) * 1988-12-27 1990-07-18
JPH0721741U (en) * 1993-09-24 1995-04-21 古河電気工業株式会社 Burner for manufacturing optical fiber preform

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5341362A (en) * 1976-09-22 1978-04-14 Sumitomo Electric Industries Method of extrusion molding tubular tetrafluoroethylene resin material
JPS6369137A (en) * 1986-09-09 1988-03-29 Shimadzu Corp Mass spectrometer
JPH0644459B2 (en) * 1986-10-27 1994-06-08 三菱電機株式会社 Protective glass laminated cathode ray tube
JPH01142425A (en) * 1987-10-28 1989-06-05 Jr 3 Inc Manufacture of force-moment sensor
JPH0290631A (en) * 1988-09-28 1990-03-30 Matsushita Electron Corp Manufacture of semiconductor device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5341362U (en) * 1976-09-13 1978-04-10
JPS60137839A (en) * 1983-12-23 1985-07-22 Furukawa Electric Co Ltd:The Burner for forming fine powder of optical glass
JPS6369137U (en) * 1986-10-27 1988-05-10
JPS63110535U (en) * 1987-01-09 1988-07-15
JPH01142425U (en) * 1988-03-22 1989-09-29
JPH0290631U (en) * 1988-12-27 1990-07-18
JPH0721741U (en) * 1993-09-24 1995-04-21 古河電気工業株式会社 Burner for manufacturing optical fiber preform

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104649577A (en) * 2015-02-12 2015-05-27 江苏通鼎光棒有限公司 Device and method for adjusting flame temperature of VAD and OVD on line
CN113165933A (en) * 2018-12-04 2021-07-23 住友电气工业株式会社 Burner for producing glass soot body, apparatus and method for producing glass soot body
CN113165933B (en) * 2018-12-04 2022-10-14 住友电气工业株式会社 Burner for producing glass soot body, apparatus and method for producing glass soot body

Also Published As

Publication number Publication date
JP2006199527A (en) 2006-08-03
TW200628424A (en) 2006-08-16
JP4900762B2 (en) 2012-03-21

Similar Documents

Publication Publication Date Title
WO2006077782A1 (en) Process for producing porous glass preform and deposition burner
RU2243944C2 (en) Method of production of optical fiber billet and design of torch to realize the method
JP2004035365A (en) Multiple pipe burner and method of manufacturing glass body using the same
JP3946645B2 (en) Optical glass and manufacturing method thereof
EP2221281B1 (en) Burner for manufacturing porous glass base material, and manufacturing method of porous glass base material
US9038423B2 (en) Porous glass preform production apparatus
KR102545709B1 (en) Method for manufacturing porous glass deposit for optical fiber
WO2006080294A1 (en) Quartz glass preform for optical fiber and process for producing the same
JP2006306652A (en) Method for manufacturing porous glass preform and burner for deposition used in the same
KR101035432B1 (en) Method for producing optical fiber preform
JP5012042B2 (en) Manufacturing method of glass base material
JP6581637B2 (en) Porous glass base material manufacturing apparatus and manufacturing method
JP4097982B2 (en) Method for producing porous preform for optical fiber
JP4530687B2 (en) Method for producing porous glass preform for optical fiber
WO2005066085A1 (en) Process for producing porous preform for optical fiber and glass preform
JP5485003B2 (en) Optical fiber preform manufacturing method
JP2005281025A (en) Apparatus for manufacturing porous glass preform
JP4857172B2 (en) Apparatus and method for manufacturing glass preform for optical fiber
JP4459481B2 (en) Manufacturing method and manufacturing apparatus of porous preform for optical fiber
JP4053305B2 (en) Method for producing porous preform for optical fiber
JPH05116980A (en) Production of performed base material for optical fiber
JP4458882B2 (en) Method for producing porous glass preform for optical fiber and preform
RU2410338C1 (en) Method of making optical fibre workpiece
JP2003073138A (en) Method and apparatus for producing optical fiber preform
JP2004231465A (en) Method and apparatus for manufacturing porous glass fine particle deposit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 06711675

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 6711675

Country of ref document: EP