WO2006077741A1 - 高分子電解質型燃料電池発電システム - Google Patents

高分子電解質型燃料電池発電システム Download PDF

Info

Publication number
WO2006077741A1
WO2006077741A1 PCT/JP2005/024135 JP2005024135W WO2006077741A1 WO 2006077741 A1 WO2006077741 A1 WO 2006077741A1 JP 2005024135 W JP2005024135 W JP 2005024135W WO 2006077741 A1 WO2006077741 A1 WO 2006077741A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
cooling fluid
oxidant gas
fuel cell
fuel
Prior art date
Application number
PCT/JP2005/024135
Other languages
English (en)
French (fr)
Inventor
Kazuhito Hatoh
Hiroki Kusakabe
Shinsuke Takeguchi
Yasuhiro Seki
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to EP05844882A priority Critical patent/EP1843420B1/en
Priority to DE602005024180T priority patent/DE602005024180D1/de
Priority to CN200580041530XA priority patent/CN101080838B/zh
Priority to KR1020077017278A priority patent/KR101246524B1/ko
Publication of WO2006077741A1 publication Critical patent/WO2006077741A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • H01M8/026Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant characterised by grooves, e.g. their pitch or depth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • H01M8/0263Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant having meandering or serpentine paths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0267Collectors; Separators, e.g. bipolar separators; Interconnectors having heating or cooling means, e.g. heaters or coolant flow channels
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04067Heat exchange or temperature measuring elements, thermal insulation, e.g. heat pipes, heat pumps, fins
    • H01M8/04074Heat exchange unit structures specially adapted for fuel cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0432Temperature; Ambient temperature
    • H01M8/04358Temperature; Ambient temperature of the coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0432Temperature; Ambient temperature
    • H01M8/04365Temperature; Ambient temperature of other components of a fuel cell or fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04701Temperature
    • H01M8/04723Temperature of the coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04753Pressure; Flow of fuel cell reactants
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2457Grouping of fuel cells, e.g. stacking of fuel cells with both reactants being gaseous or vaporised
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/2483Details of groupings of fuel cells characterised by internal manifolds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04052Storage of heat in the fuel cell system
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • H01M8/04126Humidifying
    • H01M8/04141Humidifying by water containing exhaust gases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • H01M8/04126Humidifying
    • H01M8/04149Humidifying by diffusion, e.g. making use of membranes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04701Temperature
    • H01M8/04731Temperature of other components of a fuel cell or fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04783Pressure differences, e.g. between anode and cathode
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a fuel cell power generation system used for a portable power source, an electric vehicle power source, a cordier energy system, and the like, and more particularly to a fuel cell power generation system using a polymer electrolyte membrane.
  • polymer electrolyte fuel cell As a typical fuel cell.
  • an anode and a force sword are formed with a polymer electrolyte membrane sandwiched between them, and a fuel gas containing hydrogen and an oxygen-containing acid such as air, respectively.
  • An additive gas (hereinafter, fuel gas and oxidant gas may be collectively referred to as reaction gas) is supplied.
  • reaction gas fuel gas and oxidant gas may be collectively referred to as reaction gas
  • reaction gas fuel gas and oxidant gas may be collectively referred to as reaction gas
  • reaction gas an additive gas
  • hydrogen nuclear electrons in the fuel gas are released by the electrode reaction to generate hydrogen ions, and these electrons reach the cathode through an external circuit (load).
  • hydrogen ions pass through the polymer electrolyte membrane and reach the force sword.
  • hydrogen ions, electrons, and oxygen in the oxidant gas are combined to generate water. In this reaction, electric power and heat are generated simultaneously.
  • perfluorocarbon sulfonic acid-based materials are used for polymer electrolyte membranes. Since this polymer electrolyte membrane exhibits ionic conductivity in a state containing moisture, the reaction gas is usually humidified and supplied to the fuel cell.
  • each cell has a different gas flow path structure and Z or electrode structure, and the reaction gas with the same amount of humidification is distributed to each cell, thereby preventing deterioration of the polymer electrolyte membrane and preventing flooding.
  • a fuel cell system for preventing the above for example, see Patent Document 1.
  • Non-Patent Document 1 Proceedings of the 8th Fuel Cell Symposium, pages 61 to 64 (especially refer to the operating conditions described in the captions in Fig. 3 and Fig. 4)
  • Patent Document 1 Japanese Patent No. 3596332
  • Non-Patent Document 1 has not been able to sufficiently suppress the deterioration of the polymer electrolyte membrane, and has not been able to sufficiently improve the life of the fuel cell.
  • an object of the present invention is to provide a polymer electrolyte fuel cell power generation system capable of sufficiently improving the life of the fuel cell.
  • the inventors of the present invention diligently studied to achieve the above object. That is, recently, in order to suppress the deterioration of the electrolyte, it has been attempted to operate by supplying a gas having a dew point that is the same temperature as the battery temperature, particularly in tests using a single battery.
  • a gas having a dew point that is the same temperature as the battery temperature, particularly in tests using a single battery.
  • the battery temperature is often maintained at a constant temperature using a planar heater, so the force that makes it difficult to discuss the temperature distribution in the battery surface.
  • a gas with a dew point of 80 ° C is supplied to the battery temperature maintained at a constant temperature of 80 ° C, and the test is performed with the gas temperature kept at about 85 to 90 ° C, which is slightly higher than the dew point.
  • cooling flow In a stack that uses the body to control the battery temperature, for example, the inlet temperature of the cooling fluid
  • the gas supplied to the stack is generally supplied to the hold and distributed uniformly from the hold to each cell.
  • the gas is supplied to the manifold and passes through the manifold, heat is exchanged with the battery inside the manifold, and when the gas is actually introduced into each cell, the temperature has already increased by about 1 to 2 ° C.
  • a polymer electrolyte fuel cell power generation system includes a plurality of cells each having a polymer electrolyte membrane, an anode and a force sword formed so as to sandwich the polymer electrolyte membrane, and a fuel gas as the fuel gas.
  • the inlet force of each cell is also led to the anode of each cell, and the force is also discharged to the outside, and the oxidant gas is led from the inlet of the oxidant gas to the power sword of each cell.
  • An oxidant gas path formed so as to be discharged to a region, and a region facing a power generation region composed of the anode and the force sword of the plurality of cells through a cooling fluid supply manifold from a cooling fluid inlet through the cooling fluid supply manifold And a cooling fluid path formed so as to be discharged from the cooling fluid to the outside through the outlet of the cooling fluid, and the fuel gas and the oxidant gas react with each other in the power generation region to generate gas.
  • a fuel cell configured to generate power, a fuel gas supply device that supplies the fuel gas to the fuel gas inlet of the fuel cell, and the oxidation gas to the oxidant gas inlet of the fuel cell.
  • Oxidant gas supply device for supplying an agent gas, and the cooling fluid of the fuel cell
  • a cooling fluid supply device that cools the fuel cell by flowing a cooling fluid so as to pass through the path, and a control device, and the control device performs the fuel gas and the oxidant when the power generation is performed.
  • the temperature obtained by converting the total water content at the inlet of at least one of the gases into the dew point (hereinafter referred to as the inlet dew point converted temperature) is represented by T1
  • the temperature of the cooling fluid at the inlet hereinafter referred to as the cooling fluid inlet temperature
  • the cooling fluid inlet temperature is controlled via the cooling fluid supply device so as to satisfy the condition of T1 ⁇ T2 + 1 ° C.
  • At least one of the inlet dew point converted temperatures of the fuel gas and the oxidant gas is expected to increase the temperature of the fuel cell due to the temperature increase of the cooling fluid due to the cooling fluid supply manifold. Therefore, it is possible to suppress drying due to a rise in the temperature of the cooling fluid due to the cooling fluid supply manifold of the gas supplied to the fuel cell.
  • the polymer electrolyte fuel cell power generation system may include a dew point adjusting device for adjusting the inlet dew point conversion temperature of at least one of the fuel gas and the oxidant gas. .
  • the cell includes a MEA having the polymer electrolyte membrane and the anode and a force sword, and a region in which a front surface is in contact with the anode on one side of the MEA and in contact with the anode on the front surface.
  • a conductive and thermally conductive plate-like anode separator having a groove-like fuel gas flow path formed on the other side of the MEA so that the front face is in contact with the force sword.
  • Gas discharge A fuel fluid flow path of each cell, the fuel gas flow path of each cell, and the fuel gas discharge liner.
  • the oxidant gas flow path of each cell is formed so as to connect the oxidant gas supply manifold and the oxidant gas discharge marhold, and a predetermined number of
  • a cooling fluid flow path is provided with the anode separator.
  • An upstream end of the fuel gas supply manifold communicates with the inlet of the fuel gas, and a downstream end of the fuel gas discharge manifold communicates with the outside,
  • An upstream end of the oxidant gas supply manifold communicates with the inlet of the oxidant gas, and a downstream end of the oxidant gas discharge manifold communicates with the outside.
  • the upstream end of the hold communicates with the inlet of the cooling fluid and the downstream end of the cooling fluid discharge manifold communicates with the outlet of the cooling fluid;
  • the fuel gas supply manifold, front Fuel gas flow And the fuel gas discharge mold constitutes the fuel gas path, and the oxidant gas supply manifold, the oxidant gas flow path, and the oxidant gas discharge manifold are the oxidant.
  • a gas path is configured, and the cooling fluid supply manifold, the cooling fluid flow path, and the cooling fluid discharge manifold configure the cooling fluid path.
  • the cooling fluid flow path is formed on the back surface of at least one of the anode separator and the force sword separator, and the temperature of the cooling fluid at the outlet is represented by T3.
  • T3—T2 is represented by ⁇
  • N the number of the stacked cells in the cell stack
  • the control device when the power generation is performed, T1 ⁇ T2 + (X ° C + Y
  • ° CX N— 1
  • X is a numerical value in the range of 1 to 2.5
  • is a numerical value in the range of 0.02 to 0.027.
  • the cooling fluid inlet temperature may be controlled.
  • At least one of the inlet dew point converted temperatures of the fuel gas and the oxidant gas is a temperature difference between both ends of the cell stack caused by a temperature difference between both ends of the cooling fluid supply manifold. Therefore, the gas at the inlet of each cell can be kept in a fully humidified or overhumidified state. The meaning of excessive humidification will be described in the embodiment.
  • the fuel gas supply manifold, the oxidant gas supply manifold, and the cooling fluid are also formed on the peripheral edge of one half of the cell stack in view of the stacking direction force of the cells.
  • a supply manifold is formed, and the fuel gas discharge manifold, the oxidant gas discharge manifold, and the cooling fluid discharge manifold are formed at the peripheral edge of the other half of the cell stack.
  • the fuel gas and oxidant gas preference! / ⁇ inlet dew point conversion temperature is determined by the positional relationship between the fuel gas supply holder and the oxidant gas supply holder and the cooling fluid supply holder. With such a configuration, the gas at each cell inlet can be more suitably kept in a fully humidified state or an excessively humidified state.
  • the cooling fluid flow path is formed on the back surface of at least one of the anode separator and the force sword separator, and the temperature of the cooling fluid at the outlet is denoted by T3.
  • T2 is represented by ⁇
  • N the number of the stacked cells in the cell stack
  • the control device when the power generation is performed, T1 ⁇ T2 + (X ° C + Y ° CX ( N— 1)
  • X is a numerical value in the range of 2.8 to 4.2
  • is a numerical value in the range of 0.013 to 0.033.
  • the cooling fluid inlet temperature may be controlled.
  • the fuel gas supply manifold, the oxidant gas supply manifold, and the cooling fluid supply manifold are formed on the peripheral edge of one half of the cell stack in view of the stacking force of the cells.
  • the fuel gas discharge manifold, the oxidant gas discharge manifold, and the cooling fluid discharge manifold are formed at the peripheral edge of the other half of the cell stack, and the fuel gas supply
  • X is 2.8 to 3.3.
  • is a value in the range of 0.013 to 0.033, and the fuel gas supply mall
  • X is a numerical value in the range of 3.7 to 4.2.
  • Y may be a numerical value in the range of 0.013 to 0.030.
  • the fuel gas and oxidant gas preference! / ⁇ inlet dew point conversion temperature is determined by the positional relationship between the fuel gas supply holder and the oxidant gas supply holder and the cooling fluid supply holder. With such a configuration, the gas at each cell inlet can be more suitably kept in a fully humidified state or an excessively humidified state.
  • the control device When the temperature at the outlet of the cooling fluid (hereinafter referred to as the cooling fluid outlet temperature) is represented by T3 when the power generation is performed, the control device satisfies the condition of T3-T2 ⁇ 15 ° C. In addition, the cooling fluid outlet temperature may be further controlled.
  • the most upstream part of each of the fuel gas channel and the oxidant gas channel and the most upstream part of the cooling fluid channel are located at substantially the same position when viewed from the stacking direction of the cells, and The most downstream part of each of the fuel gas channel and the oxidant gas channel and the most downstream part of the cooling fluid channel are formed so as to be located at substantially the same position when viewed from the stacking direction of the cells. Also good.
  • the power generation region can be maintained in a fully humidified state or an excessively humidified state over the entire region.
  • a dew point adjusting device that adjusts the inlet dew point converted temperature of the gas that has undergone the total heat exchange.
  • the inlet dew point converted temperature of at least one of the supplied fuel gas and the supplied oxidant changes in conjunction with the outlet temperature of the cooling fluid, the inlet dew point converted temperature can be controlled. It becomes easy.
  • the inlet dew point converted temperature, the cooling fluid inlet temperature, and the cooling fluid outlet temperature of at least one of! / ⁇ ⁇ of the fuel gas and the oxidant gas are In addition, the condition of T2 ⁇ T1 ⁇ T3 may be satisfied.
  • the dew point adjusting device may be configured such that a condition of ⁇ 3-Tl ⁇ 1 ° C is satisfied when the power generation is performed.
  • the dew point adjusting device may be configured such that a condition of T3-T1 ⁇ 2 ° C is satisfied when the power generation is performed.
  • the dew point adjusting device performs at least one of total heat exchange between the supply fuel gas and the exhaust fuel gas and total heat exchange between the supply oxidant gas and the exhaust oxidant gas.
  • the gas that has been subjected to the total heat exchange of the parenthesis and the cooling fluid discharged from the fuel cell camera is subjected to a total heat exchange, and the gas that has been subjected to the total heat exchange with the cooling fluid is supplied to the fuel cell. Also good.
  • the dew point adjusting device may be configured such that a condition of T3-T1 ⁇ 4 ° C is satisfied when the power generation is performed.
  • the dew point adjusting device performs at least one of total heat exchange between the supply fuel gas and the exhaust fuel gas and total heat exchange between the supply oxidant gas and the exhaust oxidant gas. Even if it is configured to simply exchange heat between the gas that has undergone total heat exchange of the brackets and the cooling fluid discharged from the fuel cell camera, and supply the gas that has exchanged heat with this cooling fluid to the fuel cell. Good.
  • the dew point adjusting device includes a total heat exchange between the supplied fuel gas and a cooling fluid discharged from the fuel cell, and a total heat exchange between the supplied oxidant gas and a cooling fluid discharged from the fuel cell. At least one of them may be performed and the gas subjected to the total heat exchange may be supplied to the fuel cell.
  • the cooling fluid supply device is provided in the cooling fluid circulation channel, the cooling fluid circulation channel connected so as to form closed channels at both ends of the cooling fluid channel of the fuel cell, and the cooling fluid circulation channel.
  • a cooling fluid circulator that circulates the cooling fluid through the closed flow path, and a cooling fluid circulation path that is disposed between the cooling fluid circulator and the cooling fluid outlet of the fuel cell.
  • a heat radiator that releases the heat retained by the cooling fluid.
  • the control device when the power generation is performed, the fuel gas and the oxidant gas
  • the cooling fluid outlet temperature is controlled to satisfy the condition of T4 ⁇ T3, where T4 is the temperature converted to the dew point of the total water content at the outlet of at least one of the fuel cell forces May be.
  • the fuel gas flow path, the oxidant gas flow path, and the cooling fluid flow path may be formed such that the fluid flows without opposing gravity.
  • the control device may control the cooling fluid inlet temperature so as to satisfy a condition of 50 ° C ⁇ T2 ⁇ 70 ° C.
  • the inlet dew point conversion temperature T2 is 70 ° C
  • the outlet dew point conversion temperature of the cooling fluid is 80 ° C (+ 10 ° C with respect to the inlet dew point conversion temperature T2) unless the oxidant gas utilization rate is 65% or more. This is because the operating conditions in which the oxidant gas utilization rate is 65% or more are not realistic.
  • the control device may control the cooling fluid outlet temperature so as to satisfy a condition of 5 ° C ⁇ T3-T2.
  • the fuel gas or oxidant gas supplied to the fuel cell can be totally exchanged with the fuel gas, oxidant gas, or cooling water discharged from the fuel cell.
  • the temperature of the hot water can be kept above 60 ° C.
  • the control device may control the flow of the cooling fluid via the cooling fluid supply device so that over-humidification or full-humidification occurs over the entire power generation region when the power generation is performed.
  • the control device controls the fuel agent gas supply device so that the flow rate of the fuel gas at the outlet of the fuel gas flow path is 1.8 mZs or more and 4. lmZs or less.
  • the fuel gas may be supplied so that
  • the control device may control the supply of the fuel gas so that the pressure loss in the fuel gas path is 2 kPa or more and lOkPa or less when the power generation is performed.
  • the fuel gas channel may be composed of a plurality of channel grooves, and the equivalent diameter of the channel grooves may be 0.78 mm or more and 1.30 mm or less.
  • the control device controls the oxidant gas supply device when the power generation is performed.
  • the oxidant gas may be supplied so that the flow rate of the oxidant gas at the outlet of the oxidant gas flow path is 2.8 mZs or more and 7.7 mZs or less.
  • the controller may control the supply of the oxidant gas so that the pressure loss in the oxidant gas path is 2 kPa or more and lOkPa or less when the power generation is performed.
  • Each of the oxidant gas channels may be composed of a plurality of channel grooves, and the equivalent diameter of the channel grooves may be 0.78 mm or more and 1.30 mm or less.
  • the present invention is configured as described above, and in the polymer electrolyte fuel cell power generation system, the polymer electrolyte of the fuel cell in which the structure of the gas flow path or the electrode is different for each unit cell.
  • FIG. 1 is a block diagram schematically showing a configuration of a polymer electrolyte fuel cell power generation system according to Embodiment 1 of the present invention.
  • FIG. 2 is a perspective view showing a schematic configuration of the fuel cell of FIG.
  • FIG. 3 is a cross-sectional view taken along the III-III plane of FIG.
  • FIG. 4 is a front view of a force sword side separator.
  • FIG. 5 is a rear view of the force sword side separator.
  • FIG. 6 is a front view of the anode separator.
  • FIG. 7 is a rear view of the anode side separator.
  • FIG. 8 is a perspective view showing a configuration of a total heat exchange cell stack constituting the anode side total heat exchange of FIG. 1.
  • FIG. 9 is a cross-sectional view taken along the plane IX-IX in FIG.
  • Figure 10 shows the structure of the separator used to measure the temperature distribution of the cell stack. It is a schematic diagram which shows.
  • FIG. 11 is a graph showing the temperature distribution of the cell stack when cooling is performed for each cell.
  • FIG. 12 is a graph showing the temperature distribution of the cell stack when cooling is performed every two cells.
  • FIG. 13 is a graph showing the results of a life test of the fuel cell according to Embodiment 1 of the present invention.
  • FIG. 14 is a block diagram schematically showing a configuration of the polymer electrolyte fuel cell power generation system according to Embodiment 2 of the present invention.
  • FIG. 15 is a block diagram schematically showing the configuration of the polymer electrolyte fuel cell power generation system according to Embodiment 3 of the present invention.
  • FIG. 16 is a block diagram schematically showing the configuration of the polymer electrolyte fuel cell power generation system according to Embodiment 4 of the present invention.
  • FIG. 17 is a block diagram schematically showing a configuration of a fuel cell power generation system according to Embodiment 5 of the present invention.
  • FIG. 18 is a side view schematically showing a configuration of a fuel cell with a humidifier used in the fuel cell power generation system of FIG.
  • FIG. 19 is a view showing a separator constituting the humidifier fuel cell of FIG. 18, wherein (a) is a front view of the first separator, and (b) is a front view of the second separator. It is.
  • FIG. 20 is a graph showing another measurement example of the temperature distribution of the cell stack when cooling is performed for each cell.
  • FIG. 21 is a graph showing another measurement example of the temperature distribution of the cell stack when cooling is performed every two cells.
  • FIG. 22 is a graph showing another measurement example of the temperature distribution of the cell stack when cooling is performed every two cells.
  • FIG. 23 is a graph showing another measurement example of the temperature distribution of the cell stack when cooling is performed every two cells.
  • Figure 24 shows another measurement of the temperature distribution of the cell stack when cooling is performed every two cells. It is a graph which shows an example.
  • FIG. 25 is a graph showing another measurement example of the temperature distribution of the cell stack when cooling is performed every two cells.
  • FIG. 26 is a graph showing another measurement example of the temperature distribution of the cell stack when cooling is performed every two cells.
  • Figure 27 is a table showing the numerical values of constant X and coefficient Y in the conditional expression that dew-point conversion temperature T1 should satisfy when each cell is cooled, together with the current density.
  • FIG. 28 is a table showing the numerical values of constant X and coefficient Y of the conditional expression to be satisfied by dew point converted temperature T1 when cooling is performed every two cells, together with the current density.
  • FIG. 29 is a graph showing an example of the relationship between gas flow rate and pressure loss.
  • FIG. 30 is a block diagram schematically showing the configuration of the polymer electrolyte fuel cell power generation system according to Embodiment 6 of the present invention.
  • FIG. 31 is a graph showing the relationship between the outlet flow velocity and pressure loss in fuel gas and the presence or absence of flooding.
  • FIG. 32 is a graph showing the relationship between the outlet flow velocity and pressure loss in oxidant gas and the occurrence of flooding.
  • Cooling water flow path 22 Fuel gas inlet hold hole, 24 Fuel gas outlet hold hole, 25 Cooling water inlet hold hole, 26 Cooling water outlet hold hole, 29 Cooling water flow path
  • FIG. 1 shows the configuration of a polymer electrolyte fuel cell power generation system according to Embodiment 1 of the present invention. It is a block diagram which shows typically.
  • a polymer electrolyte fuel cell power generation system (hereinafter simply referred to as a fuel cell power generation system) of the present embodiment includes a polymer electrolyte fuel cell (hereinafter simply referred to as a fuel cell) 101.
  • a fuel gas supply device 102 is connected to a fuel gas inlet 403 for supplying fuel gas to the anode of the fuel cell 101 via a fuel gas supply channel 109.
  • the fuel gas supply device 102 supplies fuel gas to the anode of the fuel cell 101.
  • As the fuel gas hydrogen gas, reformed gas obtained by reforming hydrocarbon gas, or the like is used.
  • fuel gas supply apparatus 102 is configured with a hydrogen generation apparatus that generates a reformed gas as a fuel gas from a raw material gas.
  • natural gas is used as the source gas.
  • An oxidant gas supply device 103 is connected to an oxidant gas inlet 404 for supplying an oxidant gas to the power sword of the fuel cell 101 via an oxidant gas supply channel 107.
  • the oxidant gas supply device 103 supplies oxidant gas to the power sword of the fuel cell 101.
  • air is used as the oxidizing agent gas.
  • the oxidant gas supply device 103 is composed of an air blower.
  • the fuel gas and oxidant gas supplied to the anode and power sword of the fuel cell 101 chemically react there, and electric power and heat (hereinafter referred to as exhaust heat) are generated by this chemical reaction.
  • a fuel gas discharge channel 110 is connected to a fuel gas outlet (not shown in FIG.
  • the fuel cell power generation system 100 has a cooling flow so as to pass through the fuel cell 101.
  • a cooling water circulation passage 112 is formed as a body circulation path. Water (hereinafter referred to as cooling water) is circulated through the cooling water circulation passage 112 as a cooling fluid.
  • cooling water Water
  • an antifreeze liquid may be used as the cooling fluid.
  • a radiator 105 and a circulation pump 106 are disposed in the cooling water circulation passage 112.
  • the cooling water circulation channel 112, the radiator 105, and the circulation pump 106 constitute a cooling system 104.
  • the heat dissipating device 105 releases the heat transferred from the fuel cell 101 to the cooling water from the cooling water.
  • a heat exhaust system that receives the cooling heat exhaust heat and uses the exhaust heat or a fin is formed.
  • each of the heat radiating device 105 and the cooling water circulation pump 106 can determine the heat radiation amount of the cooling water, and each of these functions as a temperature adjusting means for the cooling water.
  • the fuel cell power generation system 100 has an anode-side total heat exchange 117 and a force-sword-side total heat exchange 118.
  • the anode-side total heat exchanger 117 has a supply-side fuel gas channel 117a, a discharge-side fuel gas channel 117b, and a cooling water channel 117c formed therein.
  • the gas flowing through the supply-side fuel gas flow path 117a and the gas flowing through the discharge-side fuel gas flow path 117b are formed so as to be capable of total heat exchange.
  • a part of the supply-side fuel gas channel 117a and a part of the discharge-side fuel gas channel 117b are formed adjacent to each other across the total heat exchange membrane.
  • the total heat exchange membrane for example, a solid polymer electrolyte membrane used in the fuel cell 101 is used.
  • the gas after the total heat exchange flowing through the supply-side fuel gas channel 117a is formed so as to be capable of total heat exchange with the cooling water flowing through the cooling water channel 117c.
  • the supply-side fuel gas passage 117a is inserted into the fuel gas supply passage 109 so as to be connected to the fuel gas supply passage 109, and the discharge-side fuel gas passage 117b is connected to the fuel gas discharge passage 109.
  • the fuel gas discharge passage 110 is connected so as to be inserted in the middle of 110.
  • the cooling water circulation channel 112 Is composed of two diversion channels 112a and 112b (in this case, a diversion ratio of 1: 1), and the cooling water channel 117c is inserted in the middle of one of the diversion channels 112a of the cooling water circulation channel 112. And connected to the branch channel 112a.
  • the fuel gas flowing out from the fuel gas supply device 102 is humidified and heated by the fuel gas discharged from the fuel cell 101 in the anode-side total heat exchanger 117, and further discharged from the fuel cell 101. It is humidified and heated by the cooling water that has received the heat and raised in temperature, thereby becoming a fuel gas having a predetermined dew point conversion temperature described later. Then, the fuel gas having the predetermined dew point conversion temperature is supplied to the anode through the fuel gas inlet 403 of the fuel cell 101.
  • the power sword side total heat exchanger 118 is formed therein with a supply side oxidant gas flow path 118a, a discharge side oxidant gas flow path 118b, and a cooling water flow path 118c.
  • the gas flowing in the supply-side oxidant gas flow path 118a and the gas flowing in the discharge-side oxidant gas flow path 118b are formed so as to be capable of total heat exchange.
  • a part of the supply-side oxidant gas flow path 118a and a part of the discharge-side oxidant gas flow path 118b are formed adjacent to each other across the total heat exchange membrane.
  • the total heat exchange membrane for example, a solid polymer electrolyte membrane used in the fuel cell 101 is used.
  • the gas after the total heat exchange flowing through the supply-side oxidant gas flow path 118a is formed so as to be capable of total heat exchange with the cooling water flowing through the cooling water flow path 118c.
  • the supply side oxidant gas flow path 118a is connected to the oxidant gas supply flow path 107 so as to be inserted in the middle of the oxidant gas supply flow path 107, and the discharge side oxidant gas flow path 118b is Connected to the oxidant gas discharge channel 111 so as to be inserted in the middle of the oxidizing gas discharge channel 111, and the cooling water channel 118c is inserted in the middle of the other branch channel 112b of the cooling water circulation channel 112 In this manner, it is connected to the branch channel 112b.
  • the oxidant gas flowing out from the oxidant gas supply device 103 is humidified and heated by the oxidant gas discharged from the fuel cell 101 in the power sword side total heat exchanger 118, and further, the fuel cell 101
  • the exhaust gas is heated with the cooling water that has been heated to receive the exhaust heat, and thereby becomes an oxidant gas having a predetermined dew point conversion temperature described later.
  • the oxidant gas having the predetermined dew point conversion temperature is supplied to the power sword through the oxidant gas inlet 404 of the fuel cell 101.
  • the flow directions of the respective gases and the cooling fluid in the fuel cell 101 and the total heat exchangers 117 and 118 are merely schematically shown, and the respective gases and the cooling fluid are shown. It does not indicate the relationship between the flow directions (eg, so-called parallel flow, counter flow, etc.). The same applies to FIGS. 14 to 17 hereinafter.
  • the fuel cell power generation system 100 includes an inlet temperature sensor TS1, an outlet temperature sensor TS2, and a control device 108.
  • the inlet temperature sensor TS1 and the outlet temperature sensor TS2 are each composed of a thermistor, and the temperature of the cooling water at the inlet 401 and the outlet 402 of the fuel cell 101 (more precisely, cell stack 1 described later) in the cooling water circulation passage 112. , And the detected values are input to the control device 108, respectively.
  • the control device 108 is configured by an arithmetic device such as a microcomputer, and controls required components of the fuel cell power generation system 100 to control the operation of the fuel cell power generation device 100.
  • control device also means a control device group in which a plurality of control devices that are connected by a single control device cooperate to execute control. Therefore, the control device 108 is configured such that a plurality of control devices that do not necessarily need to be configured by a single control device are dispersedly arranged, and they cooperate to control the operation of the fuel cell power generation device 101. It may be.
  • control device 108 controls at least the fuel gas supply device 102, the oxidant gas supply device 103, the heat radiating device 105, and the cooling water circulation pump 109, and in particular, the inlet temperature sensor TS1 and the outlet temperature. Based on the detection value of the sensor TS2, at least one of the heat dissipation device 105 and the cooling water circulation pump 109 is controlled to adjust the temperature of the cooling water to a predetermined temperature.
  • FIG. 2 is a perspective view showing a schematic configuration of the fuel cell of FIG. 1
  • FIG. 3 is a sectional view taken along the III-III plane of FIG.
  • FIG. 2 the vertical direction in the fuel cell is represented as the vertical direction in the figure. This also applies to FIGS. 4 to 7 described later.
  • the fuel cell 101 has a cell stack 1.
  • the cell stack 1 includes a cell laminate 201 in which cells 2 having a plate-like overall shape are laminated in the thickness direction, and first and second end plates 3A and 3B disposed at both ends of the cell laminate 201. And cell stack 20 1 and a first and second end plate 3A, 3B having a fastener (not shown) for fastening the cell 2 in the stacking direction. Further, the first and second end plates 3A and 3B are provided with current collecting terminals, respectively, but are not shown.
  • the plate-like cell 2 extends parallel to the vertical plane, and therefore the stacking direction of the cells 2 is the horizontal direction.
  • An oxidant gas supply manifold 4 is formed on an upper portion of one side portion (hereinafter referred to as a first side portion) of the cell stack 201 so as to penetrate the cell stack 201 in the stacking direction. Have been.
  • One end of the oxidant gas supply manifold 4 communicates with a through hole formed in the first end plate 3A, and the oxidant gas supply path 107 in FIG. Is connected to an oxidant gas supply pipe 51 constituting the.
  • the other end of the oxidant gas supply manifold 4 is closed by a second end plate 3B.
  • an oxidant gas discharge holder 7 is formed below the other side portion (hereinafter referred to as the second side portion) of the cell stack 201 so as to penetrate the cell stack 201 in the stacking direction.
  • One end of the oxidant gas supply manifold 7 is closed by the first end plate 3A.
  • the other end of the oxidant gas discharge manifold 7 communicates with a through hole formed in the second end plate 3B, and the oxidant gas discharge path of FIG. 1 is connected to the outer opening (oxidant gas outlet) of this through hole.
  • An oxidant gas discharge pipe 52 constituting 111 is connected.
  • a fuel gas supply manifold 5 is formed above the second side portion of the cell stack 201 so as to penetrate the cell stack 201 in the stacking direction.
  • One end of the fuel gas supply manifold 5 communicates with a through hole formed in the first end plate 3A, and the fuel gas supply path 109 shown in FIG.
  • the fuel gas supply pipe 53 to be connected is connected.
  • the other end of the fuel gas supply manifold 5 is closed by a second end plate 3B.
  • a fuel gas discharge manifold 6 is formed below the first side portion of the cell stack 201 so as to penetrate the cell stack 201 in the stacking direction.
  • One end of the fuel gas discharge mold 6 is closed by the first end plate 3A.
  • the other end of the fuel gas supply manifold 5 communicates with a through hole formed in the second end plate 3B, and the fuel gas discharge passage 110 of FIG. 1 is configured at the outer opening (fuel gas outlet) of the through hole.
  • Fuel gas discharge pipe 54 is connected. Inside the upper portion of the oxidant gas supply holder 4, a cooling water supply holder 8 is formed so as to penetrate the cell stack 201 in the stacking direction.
  • One end of the cooling water supply manifold 8 communicates with a through hole formed in the first end plate 3A, and an outside opening (cooling water inlet 401) of the through hole is connected to the cooling water supply pipe 30.
  • the cooling water supply pipe 30 constitutes a portion of the cooling water circulation passage 112 in FIG. 1 between the discharge port (not shown) of the circulation pump 106 and the fuel cell 101.
  • the other end of the cooling water supply manifold 8 is closed by a second end plate 3B.
  • a coolant discharge hold 9 is formed so as to penetrate the cell stack 201 in the stacking direction.
  • One end of the cooling water discharge manifold 9 is closed by the first end plate 3A.
  • the other end of the cooling water discharge manifold 9 communicates with a through hole formed in the second end plate 3B, and a cooling water discharge pipe 31 is connected to the outer opening (cooling water outlet 402) of this through hole.
  • the cooling water supply pipe 31 constitutes a portion of the cooling water circulation passage 112 in FIG. 1 between the suction port of the circulation pump 106 and the fuel cell 101.
  • the cell 2 is composed of a plate-like MEA 43 and a force sword side separator 10 and an anode side separator 20 arranged so as to be in contact with both main surfaces of the MA 43. Then, in the cells 2 and 2 adjacent to each other, the cell 2 is laminated so that the back surface of the force sword side separator 10 of one cell 2 and the back surface of the anode side separator 20 of the other cell 2 are in contact with each other. ing.
  • the MEA 43, the force sword side separator 10, and the anode side separator 20 are formed in the same shape and the same shape (here, rectangular).
  • the MEA 43, the force sword-side separator 10, and the anode-side separator 20 are passed through predetermined thicknesses corresponding to each other in the thickness direction through the oxidant inlet mall hole and the oxidant outlet.
  • MEA43 in all cells 2 are formed, including a merge hole, a fuel inlet merge hole, a fuel outlet manifold hole, a cooling water inlet manifold hole, and a cooling water outlet manifold hole.
  • Power sword side separator 10 and anode side separator 20 oxidant inlet merge hole, oxidant outlet merge hole, fuel inlet merge hole, fuel outlet merge hole, cooling water
  • the inlet manifold hole of the coolant and the outlet manifold hole of the cooling water are connected to each other, and the oxidizer supply manifold 4, acid
  • a coolant discharge holder 7, a fuel supply holder 5, a fuel discharge holder 6, a cooling water supply hold 8, and a cooling water discharge holder 9 are formed.
  • An oxidant gas flow path 17 and a cooling water flow path 19 are formed on the front surface and the back surface of the force sword side separator 10, respectively.
  • the oxidant gas flow path 17 is formed so as to connect the oxidant gas inlet manifold hole and the oxidant gas outlet hold hole, and the cooling water flow path 19 is described later.
  • the cooling water inlet manifold hole and the cooling water outlet manifold hole are connected to each other.
  • the force sword side separator 10 is disposed so that the front surface is in contact with the MEA 43.
  • a fuel gas flow path 28 and a cooling water flow path 29 are formed on the front surface and the back surface of the anode separator 20, respectively.
  • the fuel gas passage 19 is formed so as to connect the fuel gas inlet manifold hole and the fuel gas outlet manifold hole, and the cooling water passage 29 is provided as described later.
  • the inlet mall hole is connected to the cooling water outlet hole.
  • the anode-side separator 20 is disposed so that the front surface is in contact with the MEA 43.
  • Each flow path 17, 19, 28, 29 is configured by a groove formed on the main surface of the force sword side separator 10 or the anode side separator 20. Further, in FIG. 3, each of the flow paths 17, 19, 28, 29 may be composed of a large number of flow paths each composed of two flow paths.
  • the cooling water flow path 19 of the adjacent force sword side separator 10 and the cooling water flow path 29 of the anode side separator 20 are formed to be joined (joined) to each other when the cells 2 are stacked. One cooling water flow path is formed.
  • cooling water inlet and outlet marble holes there are provided cooling water inlet and outlet marble holes, a cooling water flow path, an oxidant inlet marble hole, An O-ring receiving groove is formed so as to surround the oxidant outlet hole, the fuel inlet hole, and the fuel outlet hole, and an O-ring 47 is formed in the groove.
  • Each is arranged. As a result, the above-mentioned merge holes and the like are sealed together.
  • the MEA 43 includes a polymer electrolyte membrane 41, a force sword 42A, an anode 42B, and a pair of gaskets 46. Then, apply it on both sides of the polymer electrolyte membrane 41 except the edge. A cathode 42A and an anode 42B are formed, and gaskets 46 are disposed on both sides of the edge of the polymer electrolyte membrane 41 so as to surround the force sword 42A and the anode 42B, respectively. The pair of gaskets 46, the force sword 42A, the anode 42B, and the polymer electrolyte membrane 41 are integrated with each other.
  • the polymer electrolyte membrane 41 is made of a material capable of selectively transporting hydrogen ions, and here, made of a perfluorocarbon sulfonic acid material.
  • the force sword 42A and the anode 42B are composed of a catalyst layer (not shown) formed on opposite main surfaces of the polymer electrolyte 41 and a gas diffusion layer (not shown) formed on the catalyst layer. It is configured.
  • the catalyst layer is mainly composed of carbon powder carrying a platinum-based metal catalyst.
  • the gas diffusion layer is made of non-woven fabric, paper or the like having air permeability and conductivity.
  • the force sword 42A, the anode 42B, the region in which the oxidant gas flow path 17 is formed in the force sword side separator 10 and the region in which the cooling water flow path 19 is formed, and the fuel gas flow path in the anode side separator 20 The region where 28 is formed and the region where the cooling water flow path 29 is formed are arranged so as to substantially overlap each other as viewed from the stacking direction of the cell 2.
  • FIG. 4 is a front view of the force sword side separator
  • FIG. 5 is a rear view thereof
  • FIG. 6 is a front view of the anode side separator
  • FIG. 7 is a rear view thereof.
  • the force sword side separator 10 includes an oxidant gas inlet hold hole 11 and an outlet mark hold hole 13, a fuel gas inlet hold hole 12, and an exit mark holder. And a cooling water inlet hole 15 and outlet hole 16.
  • the separator 10 further has a gas flow path 17 that connects the hold holes 11 and 13 on the surface facing the force sword, and the cooling water hold holes 15 and 16 are connected to the rear surface.
  • the flow path 19 is provided.
  • the oxidant gas inlet manifold hole 11 is on one side of the separator 10.
  • the left side of the drawing: hereinafter referred to as the first side), and the outlet manifold hole 13 is the other side of the separator 10 (the right side of the drawing: hereinafter referred to as the second side). It is provided at the bottom of The fuel gas inlet hole 12 is connected to the second side of the separator 10
  • the outlet hold hole 14 is provided in the lower part of the first side part of the separator 10.
  • the cooling water inlet hole 15 is provided inside the upper part of the oxidant gas inlet hole 11, and the outlet hole 16 is provided inside the lower part of the oxidant gas outlet hole 13. Is provided.
  • the oxidant gas inlet hole 11 and the outlet hole 13, and the fuel gas inlet hole 12 and the outlet hole 14 are formed in the shape of a long hole in the vertical direction. Yes.
  • the cooling water mold holes 15 and 16 are formed in a long hole shape that is long in the horizontal direction.
  • the oxidant gas channel 17 is composed of two channels (channel grooves).
  • Each flow path is substantially composed of a horizontal portion 17a extending in the horizontal direction and a vertical portion 17b extending in the vertical direction.
  • each channel of the oxidant gas channel 17 extends horizontally from the upper side of the inlet hole 11 of the oxidant gas to the second side of the separator 10 and the distance below it.
  • the force also extends horizontally to the first side of the separator 10 and extends a distance below it. From there, the above-mentioned extending pattern is repeated twice, and it extends horizontally from the reaching point to the lower part of the outlet hole 13 for the oxidizing agent gas.
  • the part extended horizontally of each flow path forms the horizontal part 17a, and the part extended below forms the vertical part 17b.
  • each flow path is formed so as to have a horizontal or downward gradient (including vertical) by force in the flow direction of the force gas composed of the horizontal portion 17a and the vertical portion 17b. Please do it.
  • each channel is composed of the horizontal portion 17a and the vertical portion 17b, the oxidant gas channel 17 can be formed with high density.
  • the cooling water channel 19 is composed of two channels (channel grooves). Each flow path is substantially composed of a horizontal portion 19a extending in the horizontal direction and a vertical portion 19b extending in the vertical direction. Specifically, each flow path of the cooling water flow path 19 extends downward by a distance that also has an end force of the cooling water inlet manifold hole 15 closer to the oxidant gas inlet hole 11. Extending horizontally to the second side of the separator 10 (the left side of the drawing) From there, it extends a distance below, and the force also extends horizontally to the first side (the right side of the drawing).
  • the above extended pattern is repeated twice and a half so that the end point of the cooling water outlet hole 16 closer to the oxidant gas outlet hole 13 is reached from that point. It extends downward. And the part extended horizontally of each flow path forms the horizontal part 19a, and the part extended below forms the vertical part 19b. Thereby, in the cooling water channel 19, the cooling water flows without countering gravity while meandering so as to alternately pass through the horizontal portions 19a and the vertical portions 19b.
  • the cooling water inlet hold hole 15 and the oxidant gas inlet hold hole 11 are provided close to each other, and the cooling water outlet hold hole 16 and the oxidant gas outlet hold hole 13 are provided.
  • the cooling water flow path 18 is formed so as to substantially overlap the oxidant gas flow path 17 when viewed from the thickness direction of the separator 10, and as a result, the cooling water and the oxidant gas are formed. Is that they flow in substantially the same direction across the separator 10.
  • This configuration eliminates the dryness of the polymer electrolyte membrane because the oxidant gas inlet part where the relative humidity is the lowest and the inlet part of the cooling water almost coincide with each other in view of the thickness direction force of the separator 10. As a result, the durability of the polymer electrolyte membrane can be improved.
  • Each flow path is substantially composed of a horizontal portion 19a and a vertical portion 19b here, but is formed so as to have a horizontal or downward gradient in the direction of flow of the cooling water. Please! / ⁇ ! However, if each flow path is composed of a horizontal part 19a and a vertical part 19b, the cooling water flow path 19 can be formed with high density.
  • the anode-side separator 20 includes an oxidant gas inlet manifold hole 21 and an outlet marker hole 23, a fuel gas inlet marker hole 22 and an outlet marker hole 1. And a cooling water inlet hole 25 and an outlet hole 26.
  • the separator 20 further has a gas flow path 28 connecting the manifold hold holes 22 and 24 on the surface facing the anode, and the cooling water merge holes 25 and 26 are connected to the rear surface. It has a channel 29.
  • the inlet gas hold hole 21 for the oxidant gas is on one side of the separator 20.
  • the fuel gas inlet hole 22 is provided in the upper part of the second side of the separator 20, and the outlet hole 24 is provided in the lower part of the first side of the separator 20.
  • the cooling water inlet hole 25 is provided inside the upper part of the oxidant gas inlet hole 21 and the outlet hole 26 is located inside the lower part of the oxidant gas outlet hole 23.
  • the oxidant gas inlet hole 21 and the outlet hole 23, and the fuel gas inlet hole 22 and the outlet hole 24 are formed in the shape of a long hole in the vertical direction. Yes.
  • the cooling water mold holes 25 and 26 are formed in a long hole shape that is long in the horizontal direction.
  • the fuel gas channel 28 includes two channels (channel grooves). Each flow path is substantially composed of a horizontal portion 28a extending in the horizontal direction and a vertical portion 28b extending in the vertical direction. Specifically, each flow path of the fuel gas flow path 28 extends horizontally to the first side of the upper force separator 20 of the fuel gas inlet manifold hole 22, and extends downwardly therefrom. The force also extends horizontally to the second side of the separator 20, which also extends a distance below. From there, the above-mentioned extending pattern is repeated twice, and the reaching point force extends horizontally so as to reach the lower part of the fuel gas outlet hole 24.
  • each flow path forms a horizontal portion 28a
  • the downward extending portion forms a vertical portion 28b.
  • each flow path is substantially composed of a horizontal portion 28a and a vertical portion 28b here, it becomes horizontal or downward gradient (including vertical) depending on the direction of gas flow. It is sufficient if it is formed as follows. However, if each channel is composed of the horizontal portion 28a and the vertical portion 28b, the fuel gas channel 28 can be formed with high density.
  • each flow path is substantially composed of a horizontal portion 29a extending in the horizontal direction and a vertical portion 29b extending in the vertical direction.
  • each of the cooling water passages 29 is connected to the cooling water inlet manifold. It extends downward from the end of the holding hole 25 closer to the oxidizer gas containing roma-holding hole 21 by a distance, and then extends horizontally to the second side of the separator 20 (the right side of the drawing). And extends horizontally from there to the first side (the left side of the drawing).
  • each flow path forms a horizontal portion 29a
  • the downward extending portion forms a vertical portion 29b.
  • both the cooling water inlet hold hole 25 and the fuel gas inlet hold hole 22 are provided in the upper part of the separator 20, and the cooling water outlet hold hole 26 and the fuel gas outlet hold hole 24 is provided below the separator 20 and the thickness direction force of the separator 20 is also seen, so that the cooling water passage 29 is substantially overlapped with the fuel gas passage 28.
  • Water and fuel gas flow in opposite directions with the separator 20 in the horizontal direction, but in the vertical direction, both flow in the same direction from top to bottom as a whole. Is a point.
  • the upstream portion of the fuel gas flow path 28 where the relative humidity is the lowest is located in the vertical direction of the separator 20 at the upper part where the cooling water inlet portion is provided and the temperature is lowest. This contributes to the elimination of dryness of the polymer electrolyte membrane, and in turn contributes to the improvement of the durability of the polymer electrolyte membrane.
  • Each flow path is substantially composed of a horizontal portion 29a and a vertical portion 29b here, but is formed to have a horizontal or downward gradient in the direction of cooling water flow. Please! / ⁇ ! However, if each flow path is composed of the horizontal portion 29a and the vertical portion 29b, the cooling water flow passage 29 can be formed with high density.
  • a cell is configured by sandwiching MEA between the force sword side separator 10 and the anode side separator 20 described above. Therefore, between the adjacent cells, the force sword side separator 10 and the anode side separator 20 are arranged with their cooling water flow paths 19 and 29 facing each other to constitute a cooling section.
  • a single separator in which one surface functions as a force sword side separator and the other surface functions as an anode side separator is appropriately used.
  • fuel gas, oxidant gas, and cooling water flow as follows.
  • the fuel gas is supplied to the fuel gas supply manifold 5 of the cell stack 1 through the fuel gas supply pipe 43.
  • the supplied fuel gas flows from the fuel gas supply manifold 5 into the inlet manifold hole 22 of each cell 2 and flows through the fuel gas flow path 28.
  • the fuel gas that is consumed by reacting with the oxidant gas via the anode 42B, the polymer electrolyte membrane 41, and the force sword 42A is discharged from the outlet mold hole 24. It flows into the fuel gas discharge manifold 6 and is discharged from the cell stack 1 through the fuel gas discharge pipe 44.
  • the oxidant gas is supplied to the oxidant gas supply manifold 8 of the cell stack 1 through the oxidant gas supply pipe 41.
  • the supplied oxidant gas flows from the oxidant gas supply manifold 4 into the inlet manifold hole 11 of each cell 2 and flows through the oxidant gas flow path 17.
  • the oxidant gas that has been consumed by reacting with the fuel gas through the force sword, the polymer electrolyte membrane, and the anode is consumed, and the oxidant gas that has not been consumed is discharged from the outlet manifold hole 13. It flows into the hold 7 and is discharged from the cell stack 1 through the oxidant gas discharge pipe 42.
  • the cooling water is supplied to the cooling water supply mall 8 of the cell stack 1 through the cooling water supply pipe 30.
  • the supplied cooling water flows from the cooling water supply manifold 8 into the inlet manifold holes 15 and 25 of each cell 2 and flows through the cooling water channels 19 and 29.
  • the power sword and the anode are cooled through the force sword separator 10 and the anode separator 20, and these forces also receive heat and flow out from the outlet hold holes 16, 26 to the cooling water discharge holder 9. Then, it is discharged from the cell stack 1 through the cooling water discharge pipe 31.
  • the fuel gas and the oxidant gas flow through the fuel gas channel 28 and the oxidant gas channel 17 so as not to oppose gravity, respectively. Is prevented.
  • the upstream portion of the fuel gas channel 28 or the oxidant gas channel 17 where the relative humidity is lowest is located in the vicinity of the inlet of the cooling water. Drying of the polymer electrolyte membrane is prevented.
  • FIG. 8 is a perspective view showing the configuration of the total heat exchange cell stack constituting the anode-side total heat exchanger 117 in FIG. 1, and FIG. 9 is a cross-sectional view along the IX-IX plane in FIG.
  • the anode side total heat exchange 117 is basically a total heat exchange cell stack 301 having the same configuration as the cell stack 1 of the fuel cell 101. Since it is a major part, its structure will be explained in comparison with cell stack 1.
  • a total heat exchange cell stack 301 includes a cell laminate 302 in which cells 202 having a plate-like overall shape are laminated in the thickness direction, and first and second end plates disposed at both ends of the cell laminate 302. 203, 203, and the fastener stack 302 and the first and second end plates 203, 203 ⁇ in the stacking direction of the cells 202 are fastened together.
  • the cell stack 302 includes an oxidant gas supply holder 4, an oxidant gas discharge holder 5, a fuel gas supply holder 7 and a fuel gas discharge holder 6 of the cell stack 1, respectively.
  • a corresponding first fluid supply mall 204, first fluid discharge mold 207, second fluid supply mall 205, and second fluid discharge mall 206 are formed.
  • the first fluid supply manifold 204 and the second fluid supply mall 205 are respectively connected to the first fluid supply pipe 251 and the second fluid via the through holes provided in the end plate 203 ⁇ .
  • the first fluid discharge holder 207 and the second fluid discharge holder 206 are respectively connected to the first fluid discharge pipe 252 and the second fluid via the through holes provided in the end plate 203 ⁇ .
  • the cell stack 302 is provided with a cooling water supply holder and a cooling water discharge holder.
  • the total heat exchange cell 202 has a pseudo ridge 243 and a first separator 210 and a second separator 220 that sandwich the pseudo ridge 243.
  • Pseudo ⁇ 243 is ⁇ 4 of cell stack 201 except that anode 42 ⁇ and force sword 42 ⁇ are omitted in ⁇ 43 of cell stack 201.
  • the configuration is the same as 3. Therefore, the pseudo MEA 243 has a solid polymer film like the MEA 43 of the cell stack 201. However, in the pseudo MEA243, the solid polymer membrane functions as a total heat exchange membrane.
  • the first and second separators 210 and 220 are configured in the same manner as the power sword side separator 10 and the anode side separator 20 of the cell stack 201 except that the cooling water flow path is not formed on the back surface (outer surface). Yes. Accordingly, the peripheral edges of the first separator 210 and the second separator 220 are respectively provided with first fluid inlet hole holes 211 and 221, first fluid outlet hole holes (not shown), A second fluid inlet hole 212, 222 and a second fluid outlet hole (not shown) are formed. The first fluid inlet hole 211, 221 and the second fluid inlet hole 212, 222 are opposite to each other on the upper side of the first separator 210 and the second separator 220. Each part is formed.
  • first fluid outlet hole and the second fluid outlet hole are provided on the opposite sides of the lower portions of the first separator 210 and the second separator 220, respectively.
  • the second fluid outlet moulder hole is located below the second fluid inlet moulder holes 212, 222 and the second fluid outlet moulder hole is the first fluid inlet moulder hole 211. , 221 are formed so as to be located below the 221 respectively.
  • a first fluid channel (hereinafter referred to as a first fluid channel) 217 is an inlet of the first fluid.
  • a second fluid flow path (hereinafter referred to as a second fluid flow path) 228 is connected to the second fluid inlet manifold.
  • the second hold hole 221 is formed to connect the outlet fluid hold hole of the second fluid.
  • the second fluid inlet manifold holes 212 and 222, and the second fluid outlet manifold holes (not shown) respectively.
  • first fluid outlet hold hole (not shown), second fluid inlet hold hole (not shown), A second fluid outlet hole (not shown) is formed.
  • the first separator 210, and the second separator 220 in all the total heat exchange cells 202 the first fluid inlet mall hole, the first fluid outlet mall hole, The second fluid inlet hole and the second fluid outlet hole are connected to each other so that the first fluid supply holder 204, the first fluid discharge holder 207, and the second fluid outlet hole 207 are connected to each other.
  • the fluid supply manifold 205 and the second fluid discharge manifold 206 are formed with force S, respectively.
  • the first separator 210 and the second separator 220 may be composed of a single separator.
  • the anode-side total heat exchanger 117 includes a first total heat exchange cell stack 301A and a second total heat exchange cell stack 301B configured by the total heat exchange cell stack 301.
  • the first fluid supply manifold 204, the first fluid flow path 217, and the first fluid discharge manifold 207 are supplied to the anode-side total heat exchanger 117.
  • the second fluid supply manifold 206, the second fluid passage 228, and the second fluid discharge manifold 205 constitute the upstream side portion of the side fuel gas passage 117a, and the anode side total heat exchange
  • the discharge side fuel gas flow path 117b of the vessel 117 is configured.
  • the first fluid supply pipe 251 constitutes a portion 109a of the fuel gas supply passage 109 on the fuel gas supply device 102 side, and the first fluid discharge pipe 252 is a second total heat exchange described below.
  • the second fluid supply pipe 254 constitutes a portion 110a on the fuel cell 101 side of the fuel gas discharge passage 110, and the second fluid discharge pipe 253 constitutes an atmosphere side portion 110b of the fuel gas discharge passage 110. Is configured.
  • the first fluid supply manifold 204, the first fluid flow path 217, and the first fluid discharge manifold 207 are anode-side total heat exchangers.
  • the second fluid supply manifold 206, the second fluid passage 228, and the second fluid discharge manifold 205 constitute the downstream portion of the 117 supply-side fuel gas passage 117 a.
  • the cooling water flow path 117c of the side total heat exchanger 117 is configured.
  • the first fluid supply pipe 251 constitutes the first fluid discharge pipe 252 of the first total heat exchange cell stack, and the first fluid discharge pipe 252 is the fuel cell of the fuel gas supply passage 109. 101 side part 109b It is composed.
  • the second fluid supply pipe 254 constitutes the fuel cell 101 side portion of the branch path 112a of the cooling water circulation path 112, and the second fluid discharge pipe 253 of the branch path 112a of the cooling water circulation path 1 12 This constitutes the part on the heat dissipation device 105 side.
  • the fuel gas (hereinafter referred to as the fuel gas 101) supplied to the fuel cell 101 to the first fluid manifold 204 is obtained. Supplied fuel gas), and the fuel gas discharged from the fuel cell 101 (hereinafter referred to as discharged fuel gas) is supplied to the second fluid manifold 206.
  • the supply fuel gas flowing through the first fluid flow path 217 and the exhaust fuel gas flowing through the second fluid flow path 228 are totally exchanged via the polymer electrolyte membrane 41 ( Both the heat and water are exchanged), whereby the supplied fuel gas is humidified and heated by the exhaust fuel gas.
  • the supplied fuel gas that has undergone total heat exchange in the first total heat exchange stack is supplied to the first fluid holder 204, and the second fluid manifold 206 Is supplied with cooling water discharged from the fuel cell 101 (hereinafter referred to as discharged cooling water).
  • discharged cooling water cooling water discharged from the fuel cell 101
  • the supply fuel gas flowing through the first fluid flow path 217 and the exhaust cooling water flowing through the second fluid flow path 228 are totally heated via the polymer electrolyte membrane 41.
  • the supplied fuel gas that has undergone total heat exchange in the first total heat exchange stack 301 ⁇ passes through the fuel cell 101 and is further humidified and heated by the exhaust cooling water that has been heated.
  • the supplied fuel gas thus humidified and heated is supplied to the fuel cell 101.
  • the force sword side total heat exchange 118 has basically the same configuration as the anode side total heat exchange 117. That is, the power sword side total heat exchange 118 includes the third total heat exchange cell stack 301C and the fourth total heat exchange cell stack 301D configured by the total heat exchange cell stack 301 shown in FIGS. have.
  • the first fluid supply pipe 251 constitutes the portion 107a on the oxidant gas supply channel 103 side of the oxidant gas supply channel 107, and the first fluid supply The hold 204, the first fluid flow path 217, and the first fluid discharge manifold 207 constitute the upstream side of the supply side oxidant gas flow path 118a of the power sword side total heat exchanger 118, and The fluid discharge line 252 is connected to the first flow of the fourth total heat exchange cell stack 301D. It is connected to the entrance of the body supply mall 204.
  • the second fluid supply pipe 254 constitutes a portion 11 la on the fuel cell 101 side of the oxidant gas discharge channel 111, and the second fluid supply manifold 206, the second fluid channel 228, and The second fluid discharge manifold 205 constitutes the discharge side oxidant gas flow path 118b of the force sword side total heat exchange 118, and the second fluid discharge pipe 254 is the atmosphere side of the oxidant gas discharge flow path 111. Part of 11 lbs. Further, in the fourth total heat exchange cell stack 301D, the first fluid supply holder 204, the first fluid flow path 217, and the first fluid discharge manifold 207 are force sword side total heat exchange.
  • a cooling water flow path 118c of the side total heat exchange 118 is configured.
  • the first fluid supply pipe 251 constitutes the first fluid discharge pipe 252 of the third total heat exchange cell stack 301C, and the first fluid discharge pipe 252 is the fuel in the oxidant gas supply passage 107.
  • a portion 107b on the battery 101 side is formed.
  • the second fluid supply pipe 254 constitutes the fuel cell 101 side portion of the branch path 112b of the cooling water circulation path 112, and the second fluid discharge pipe 253 radiates heat of the branch path 112a of the cooling water circulation path 112. It constitutes the part on the device 105 side.
  • the oxidant gas (hereinafter referred to as supply oxidant gas) supplied to the fuel cell 101 to the first fluid mall 204.
  • the oxidant gas discharged from the fuel cell 101 (hereinafter referred to as exhaust oxidant gas) is supplied to the second fluid manifold 206.
  • the supply oxidant gas flowing through the first fluid flow path 217 and the exhaust oxidant gas flowing through the second fluid flow path 228 are all passed through the polymer electrolyte membrane 41. Heat exchange is performed, whereby the supplied oxidant gas is humidified and heated by the exhaust oxidant gas.
  • the supplied oxidant gas that has undergone total heat exchange in the third total heat exchange stack is supplied to the first fluid holder 204, and the second fluid matrix. -Holding water supplied from the fuel cell 101 is supplied to the hold 206.
  • the supply oxidant gas flowing through the first fluid flow path 217 and the exhaust cooling water flowing through the second fluid flow path 228 are exchanged through the polymer electrolyte membrane 41. So that the supplied oxidant gas that has been totally heat exchanged in the third total heat exchange stack is fueled. It is further humidified and heated by the discharged cooling water whose temperature has passed through the battery 101. The supplied oxidant gas thus humidified and heated is supplied to the fuel cell 101.
  • the supply fuel gas and the supply oxidant gas may be collectively referred to as supply reaction gas
  • the exhaust fuel gas and the discharge oxidant gas may be collectively referred to as exhaust reaction gas.
  • the points of the present invention are as described below. That is, the reaction gas is humidified and supplied to the fuel cell 101 so that the relative humidity becomes 100% (more precisely, the dew point conversion temperature described below) with respect to the temperature of the fuel cell 101.
  • the temperature obtained by converting the total moisture content of the reaction gas into the dew point is referred to as “dew point conversion temperature” in this specification.
  • This concept was introduced to define the total amount of moisture present with the reaction gas, including the state where the relative humidity of the reaction gas exceeds 100% and the moisture exists in the reaction gas in a mist state. It is to do.
  • the state in which liquid water can exist thermodynamically in the reaction gas is called “over-humidification”, and the relative humidity of the reaction gas is 100% and the reaction gas is thermodynamically contained therein. If liquid water does not exist, the state is called “full humidification”.
  • the region in the fuel cell 101 where an electrochemical reaction for power generation (hereinafter referred to as power generation reaction) occurs is 100% relative humidity over the entire region.
  • OLE INK2 that maintains a humidified atmosphere (full or over-humidified).
  • the present inventors basically have a configuration shown in FIGS. 1 to 7 and manufacture and operate a fuel cell using a separator specially processed for temperature measurement, and an actual power generation reaction occurs.
  • the temperature distribution in the area was measured.
  • fuel gas and oxidant gas are used in total heat exchangers. Then it was humidified using a bubbler.
  • the “region where the power generation reaction occurs” (hereinafter sometimes referred to as “power generation region”) refers to the anode 42b and the force sword 42A.
  • FIG. 10 is a schematic diagram showing the structure of the separator used for measuring the temperature distribution of the cell stack.
  • the force sword-side separator 10 and the anode-side separator 20 are illustrated in a perspective manner as viewed from the thickness direction of the cell.
  • each of the flow paths 17, 19, 28, 29 of the separators 10, 20 is shown so that a plurality of flow paths are represented by a single line.
  • pores 200 are formed in the force sword side separator 10 and the anode side separator 20 in parallel to the main surface.
  • the pore 200 is formed so that the end surface force of each separator 10, 20 extends toward the center, or one end surface force penetrates the separators 10, 20 diagonally through the center on the opposite end surface. Has been.
  • a thermocouple By inserting a thermocouple into the pore 200 at an appropriate depth, the temperatures at five positions A to D of the separators 10 and 20 were measured.
  • Measurement position C is the center of each separator 10, 20 in plan view.
  • the measurement positions A, B, D, and E are the fuel gas swords 42A and anodes 42B of the separators 10 and 20, respectively, in the plan view, at positions close to the oxidant gas inlet manifold hole 11 and the fuel.
  • the measurement positions A to E are located in this order from the upstream side to the downstream side along the cooling water flow paths 19 and 29 in the plan view of the separators 10 and 20.
  • FIG. 11 is a graph showing an example of measurement of the temperature distribution of the cell stack when cooling is performed for each cell.
  • the horizontal axis indicates the cell number
  • the vertical axis indicates the temperature of the cell stack.
  • the black circle plot shows the temperature at measurement position A of separators 10 and 20 shown in FIG. 10
  • the black rhombus plot shows the temperature at measurement position B of separators 10 and 20 shown in FIG.
  • the square mark plot in Fig. 10 shows the temperature at measurement position C of separators 10 and 20 shown in Fig. 10
  • the black triangle mark shows the temperature at measurement position D in separators 10 and 20 shown in Fig. 10 with white diamond marks.
  • the plot shows the temperature at the measurement position E of separators 10 and 20 shown in FIG.
  • the cell number is the cooling water inlet to cell stack 1 (the end of Figure 2).
  • the outer opening of the through hole of the plate 3A) is given in order from the cell 2 close to 401.
  • the number of cells in cell stack 1 is 40.
  • the temperature is distributed so as to increase in the downstream direction along cooling water flow paths 19, 29. This is natural.
  • the cooling water is supplied to the cell stack 1 by controlling the temperature at the inlet 401 of the cooling water to the cell stack 1 at a temperature of 60 ° C. Therefore, the cooling hydropower S, the inlet 401 force, flows into the cell stack 1 and the inlet 401 ⁇ is the nearest !, the region where the power generation reaction of the cell 2 (cell number 1) occurs (the anode 42B and the power sword 42A) (exactly Indicates that the temperature has already risen by about 1 ° C. before reaching the area facing the separators 10 and 20 in that area.
  • the temperature of the cell 2 increases as the cell number increases. That is, the temperature of the cell 2 increases as the distance from the cooling water inlet 401 to the cell stack 1 increases.
  • the closest to the cooling water inlet 401 to the cell stack 1 !, the temperature difference between the cell 2 (cell number 1) and the second most distant cell 2 (cell number 39) (hereinafter referred to as the temperature difference between both ends of the cell stack) ) was about 1 ° C.
  • the cooling water is first supplied by the cooling water supply manifold 8 for each predetermined number of cells (here, for each cell). ) Is distributed to the cooling water passages 19, 29, and flows through the cooling water passages 19, 29, and then gathers in the cooling water discharge manifold 9 from the cooling water discharge manifold 9 to the outside of the cell stack 1. To be discharged.
  • the cooling water that has entered the cell stack 1 flows into the cooling water supply mall 8 and exchanges heat with the fuel cell 101 (cell stack 1) while flowing through the cooling water supply mall 8. Therefore, it is considered that the temperature is higher than the temperature at the inlet 401 to the stack 1 when the cooling water reaches each cell 2.
  • the cooling water supply manifold 8 has an upstream side and a downstream side in the stacking direction of the cell stack 1, and the cooling water is provided in the cooling water supply manifold 8.
  • the heat exchange with the cell stack 1 is performed while flowing from the upstream side to the downstream side.
  • the cell stack 1 is cooled against the portion of the cell stack 1 near the upstream end of the cooling water supply mall 8. It is considered that the part near the downstream end of the water supply hold 8 is hotter. Note that in FIG. The temperature at both ends of Tack 1 is lower than the other parts due to the heat dissipation of the end plate. The same applies to FIG. 12 described later.
  • the above phenomenon occurs when the temperature at the inlet to the cooling water cell stack 1 (hereinafter referred to as the cooling water inlet temperature) and the dew point conversion temperature of the reaction gas supplied to the cell stack 1 are the same.
  • the temperature of the cell stack 1 is about 1 ° C or more higher than the cooling water inlet temperature, which means that the reaction gas becomes dry at about 1 ° C in terms of dew point. Yes. Therefore, in practice, if the reaction gas is not supplied with the dew point conversion temperature of the reaction gas at least 1 ° C higher than the cooling water inlet temperature, the entire region where the power generation reaction occurs in the cell stack 1 It cannot be kept in a humid or over-humid atmosphere.
  • the reaction gas dew-point conversion temperature at least 2 ° C higher than the cooling water inlet temperature. It is not possible to keep all the areas where the power generation reaction occurs in a fully humidified or excessively humidified atmosphere.
  • the inlet dew point conversion temperature the dew point conversion temperature at the inlet of the reaction gas to the cell stack 1 (hereinafter referred to as the inlet dew point conversion temperature)
  • T1 is higher than the cooling water inlet temperature (hereinafter referred to as T2) by (C + O. 02 ° CX (N-1)) or more. This will be described in detail later.
  • the ratio of the moisture amount to the total amount of the fuel gas decreases toward the upstream of the fuel gas passage 28.
  • the water content ratio of the fuel gas increases as it goes downstream. That is, the dew point conversion temperature of the fuel gas increases from the upstream to the downstream in the fuel gas channel 28.
  • the ratio of the moisture content to the total amount of oxidant gas increases upstream of the oxidant gas flow path 17.
  • each cell 2 the ratio of the amount of water to the total amount of the reaction gas (fuel gas and oxidant gas) (hereinafter referred to as the water content ratio of the reaction gas).
  • the most upstream part of the reaction gas channel 17, 28 with the lowest temperature and the most downstream part of the cooling water channel 19, 29 with the lowest temperature of the cooling water are positioned at approximately the same position when viewed in the thickness direction force, and
  • the reaction gas passages 17 and 28 with the highest reaction gas water content ratio and the most downstream portions of the cooling water passages 19 and 29 with the highest cooling water temperature are positioned approximately at the same position when viewed in the thickness direction.
  • the most upstream part and the most downstream part in the cooling water flow paths 19, 29 are the lowest dew point conversion temperature and the dew point conversion in the reaction gas flow paths 17, 28, respectively, as viewed from the thickness direction of the cell 2. It becomes the highest temperature part.
  • the temperature gradient increases so that the temperature generally increases from the most upstream end of the cooling water passages 19, 29 toward the downstream end of the cooling water passages 19, 29.
  • the reaction gas flows macroscopically (as a whole) from the most upstream part of the cooling water flow paths 19, 29 toward the most downstream part. Therefore, in the reaction gas channels 17 and 28, the dew point conversion temperature of the reaction gas is distributed so that the uppermost flow force increases with the temperature, and the relative humidity of the reaction gas is increased.
  • the roads 17 and 28 are generally kept constant.
  • the reaction gas is fully humidified or excessively humidified (dew point converted temperature is the cell stack 1 at the inlet (inlet marrow holes 11 and 12) to the cell 2 (more precisely, each separator 10 and 20). If the temperature of the cell stack 1 is satisfied, the entire humidification or over-humidification condition is satisfied over the entire length of the flow path 17, 28. It becomes possible to keep the atmosphere of excessive humidification.
  • the above-mentioned “most upstream part of the reaction gas channels 17 and 28 and the most upstream part of the cooling water channels 19 and 29 are positioned at substantially the same position when viewed from the thickness direction of the cell 2 and
  • the configuration in which the most downstream portion of the passages 17 and 28 and the most downstream portion of the cooling water passages 19, 2 and 9 are positioned substantially at the same Cf in view of the force in the thickness direction of the cell 2 It is called “gradient arrangement”.
  • the dew points of the supplied fuel gas and the supplied oxidant gas are converted. Humidification and heating so that the temperature is higher than the temperature at the outlet from the cell stack 1 of the cooling water (outside opening of the through hole of the end plate 3B in FIG. 2) 402 (hereinafter referred to as the cooling water outlet temperature! To do In principle, this is impossible, but with the configuration described above, the dew point conversion temperature of the reaction gas to be supplied to the fuel cell 101 may be lower than the cooling water outlet temperature. In principle, it is possible to humidify and heat the supplied fuel gas and supplied oxidant gas.
  • the cooling water inlet temperature is set to 60 ° C, and the temperature rise due to the heat exchange in the fuel gas supply manifold 5 and the oxidizing gas supply manifold 4 is estimated, so that the fuel gas and When both oxidant gases are supplied at a dew point conversion temperature of 64 ° C and a gas temperature of 64 ° C (relative humidity 100%), the dew point conversion temperature at the outlet of the cell stack 1 for fuel gas and oxidant gas (hereinafter referred to as The force at which the outlet dew point conversion temperature) was measured was measured.
  • the cooling water inlet temperature is set to 66 ° C, and both the fuel gas and the oxidant gas are supplied at a dew point conversion temperature of 70 ° C (vs. humidity of 100%).
  • the gas is fuel
  • the current density is 0.7 AZcm 2
  • the fuel utilization rate Uf is 75%
  • the oxidant gas utilization rate Uo is 50%
  • the outlet dew point conversion temperature for the total water content was about 79 ° C, assuming that both were equal. Therefore, it has been found that even in this case, if the ⁇ is not lower than 13 ° C, the entire electrode surface cannot be fully humidified or overhumidified.
  • the outlet dew point conversion temperature can be increased by increasing the oxidant gas utilization rate Uo.
  • the oxidant gas utilization rate Uo is 60% under the same conditions as described above, the outlet dew point conversion temperature can be increased.
  • the outlet dew point conversion temperature is about 81 ° C. In this case, ⁇ must be 15 ° C or less. There was found.
  • the dew point conversion temperature is higher than the cooling water outlet temperature. Since it is impossible in principle to humidify and heat the reaction gas, it is based on the above knowledge! /, And is 2 ° C higher than the cooling water inlet temperature! In order to supply the reactive gas, it is advantageous to increase ⁇ as much as possible from the viewpoint of humidification and heating of the reaction gas.
  • ⁇ ⁇ ⁇ ⁇ there is a limit in ⁇ ⁇ ⁇ ⁇ in order to achieve full humidification or excessive humidification over the entire surface of the electrode as described above, and the temperature fluctuation range of temperature control in the actual fuel cell power generation system 100 (for example, , Plus or minus 2 ° C), etc., in order to achieve full or excessive humidification over the entire electrode surface, in reality, ⁇ should be kept below about 10 ° C. It turned out to be desirable.
  • the reaction gas flow path is set to the “reaction” described above. If the cooling water outlet temperature is T3 by satisfying certain conditions (reaction gas temperature before humidification and heating, heat exchange efficiency, etc.), and T2 ⁇ T1 ⁇ T3 I found something.
  • outlet dew point converted temperature if the dew point converted temperature at the outlet of the reaction gas from the cell stack 1 (hereinafter referred to as outlet dew point converted temperature) is ⁇ 4, the temperature of the reactant gas at the outlet of the cell stack 1 is almost equal to the cooling water outlet temperature ⁇ 3. Therefore, water equivalent to ⁇ 4 ⁇ 3 is discharged as condensed water. Therefore, when the supplied reaction gas is humidified and heated only by the total heat exchange between the supplied reaction gas and the exhausted reaction gas, the condensed water is evaporated in order to efficiently humidify and heat the supplied reaction gas. Therefore, extra heat equivalent to the latent heat for humidification is required. In this case, the present inventors have conceived that the total heat exchange can be performed more efficiently if the heat retained by the cooling water (discharge cooling water) discharged from the cell stack 1 is used as a heat source corresponding to the latent heat. It was.
  • reaction gas When the reaction gas is humidified and heated using the exhaust heat of the fuel cell 101, it is necessary to select an optimum method depending on the fuel cell power generation system. For example, when high-quality heat as much as possible is used in a hot water supply system, such as a cordage energy generation system, the method of humidifying and heating the supplied reaction gas by mere total heat exchange between the supplied reaction gas and the exhaust cooling water is not possible. Since the quality of the heat of the cooling water deteriorates, select a method for total heat exchange between the supplied reaction gas and the exhaust reaction gas and to further exchange the total amount of the supplied reaction gas after the total heat exchange with the exhaust cooling water. It is desirable.
  • cooling medium is other than water (for example, antifreeze)
  • the supply fuel gas is basically discharged if it is included in a certain amount of water, such as when the supply fuel gas is steam reforming gas. Although only the total heat exchange with the fuel gas is sufficient, in some cases, the supplied fuel gas after the total heat exchange is simply heat-exchanged with the exhaust cooling water, and only the heat of the exhaust cooling water is effectively used as the latent heat component. To supply fuel gas with a higher dew point conversion temperature I saw that it would be possible.
  • the cooling water outlet temperature T3 is 90 ° C considering the durability and creep resistance of the polymer electrolyte membrane 41. It is desirable that the following is satisfied, and the durability test result force
  • the cooling water outlet temperature T3 is more preferably 80 ° C or lower.
  • the hot water storage temperature is preferably 60 ° C or higher from the viewpoint of preventing the growth of Legionella bacteria in the hot water storage tank.
  • the cooling water in order to obtain a hot water storage temperature of 60 ° C by exchanging heat from the hot water with cooling water, the cooling water must have a temperature of approximately 63 ° C.
  • the temperature of the cooling water outlet T3 needs to be higher by about 3 ° C because the temperature is lowered by exchange or heat exchange, which means that the cooling water outlet temperature T3 must be 66 ° C or higher. desirable.
  • the dew point conversion temperature T1 of the fuel gas is preferably 50 ° C or higher from the viewpoint of the CO poisoning resistance of the anode catalyst.
  • Fig. 12 is a graph showing an example of measurement of the temperature distribution of the cell stack when cooling is performed every two cells.
  • the horizontal axis indicates the cell number
  • the vertical axis indicates the temperature of the cell stack. Indicates.
  • the cell stack temperature was measured in the same manner as in the case of cooling each cell described above. The results of this study, in the case of cooling in every two cells, the current density is 0. lAZcm 2 ⁇ 0. 3A cell stack across a temperature difference in the ZCM 2 about the force 0. 3AZcm 2 or more was about 2 ° C At current density, the temperature distribution becomes even larger, with 0.5 AZcm 2 as shown in Fig.
  • the dew point conversion temperature T1 of the reaction gas is calculated from the cooling water inlet temperature (3 ° C + 0.02 ° CX (N-1)) It is preferable to make it higher. This will be described in detail below.
  • the dew point converted temperature T1 is preferably the cooling water inlet temperature T2 + (l ° C + 0.02 ° CX (N-1)) or higher. This will be examined in detail by supplementing the data.
  • FIG. 20 is a graph showing another measurement example of the temperature distribution of the cell stack when cooling is performed for each cell.
  • the measurement example in FIG. 20 is the same as the measurement example in FIG. 11 except that the number of cells in the cell stack 1 is 66. Note that the temperature of the middle cell of cell stack 1 is not shown, but this is omitted because the temperature of the cell shows the same tendency as the temperature of the cells at both ends of cell stack 1. It is.
  • Measurement conditions inperimental conditions are as follows.
  • the cooling water inlet temperature T2 is 60 ° C
  • the cooling water outlet temperature T3 is 68 ° C
  • the difference ⁇ between the cooling water inlet temperature T2 and the cooling water outlet temperature T3 is 8 ° C.
  • the fuel gas utilization rate Uf is 75%, and the oxidant gas utilization rate Uo is 40%.
  • each channel (channel groove) of the oxidant gas channel 17 is 0.99 mm
  • the equivalent diameter of each channel (channel groove) of the channel 28 is 0.99 mm.
  • the flow velocity at the outlet of the fuel gas channel is 4.4 mZs, and the flow velocity at the outlet of the oxidizing gas channel is 4.5 m / s.
  • the pressure loss in the oxidant gas channel 17 is 4 kPa, and the pressure loss in the fuel gas channel 28 is 6 kPa.
  • the temperature at measurement position A and measurement position B (in units) T is based on the cooling water inlet temperature T2 (60 ° C in these measurement examples).
  • T X ° C + Y ° CX (N-1).
  • T X ° C + Y ° C X (N—1)
  • X ATZ8 ° C can be approximated by a straight line.
  • This linear approximation formula can be obtained by statistically processing the measurement data.
  • Examples of the statistical method include a regression method and a least square method. Here, processing was performed by the method of least squares.
  • Fig. 27 is a table showing the constant X and the coefficient ⁇ ⁇ of the conditional expression that the dew point conversion temperature T1 should satisfy when the cell is cooled together with the current density.
  • Measurement position A is a position corresponding to the entrance of the oxidant gas flow path
  • measurement position B is a position corresponding to the entrance of the fuel gas flow path.
  • the oxidant gas supply manifold is disposed on the peripheral portion of the upper half (one half) of the cell stack 1 as viewed from the stacking direction of the cells 2.
  • a fuel gas supply manifold 5, and a cooling fluid supply manifold 8 are formed, and an oxidant gas discharge manifold is formed on the periphery of the lower half (the other half) of the cell stack 1. 7, a fuel gas discharge manifold 6 and a cooling fluid discharge merge 9 are formed.
  • the oxidant gas supply manifold 4 is closer to the cooling gas supply manifold 8 than the fuel gas supply manifold 5 and the oxidant gas supply manifold 4, and the fuel gas supply manifold 4 is closer. Hold 5 is farther away (see Figure 2). For this reason, the temperature force at the measurement position A corresponding to the inlet portion of the oxidizing gas channel is higher than the temperature at the measurement position B corresponding to the inlet portion of the fuel gas channel.
  • X is a numerical value in the range of 1.0 to 1.5
  • Y is a numerical value in the range of 0.02 to 0.027.
  • X is 2.0 to 2.5 and Y is 0.02 to 0.023. Therefore, for the reaction gas (oxidant gas or fuel gas), X is a numerical value in the range of 1.0 to 2.5, and Y is a numerical value in the range of 0.02 to 0.027.
  • the current densities in the two measurement examples are both 0.160 AZcm 2 (rated), so the dependence of the constant X and coefficient Y on the current density should be confirmed. I could't do it. It should be noted that the dependence of the constant X and coefficient Y on the number of cells N does not exist in theory or in the measurement data. This is considered to be the same even when cooling every two cells described later.
  • the dew point conversion temperature T1 is preferably the cooling water inlet temperature T2 + (3 ° C + 0.02 ° CX (N-1)) or higher. This will be examined in detail by supplementing the data.
  • FIGS. 21 to 26 are graphs showing other measurement examples of the temperature distribution of the cell stack when cooling is performed every two cells.
  • Each of these measurement examples is the same as the measurement example in FIG. 12 except that the number of cells in the cell stack 1 is 54. Note that the temperature of the middle cell of the cell stack 1 is not shown, but this is omitted because the temperature of the cell shows the same tendency as the temperature of the cells at both ends of the cell stack 1. Is.
  • the cell numbers are assigned in order from the cell 2 near the outlet of the cooling water to the cell stack 1 (outside opening of the through hole of the end plate 3B in FIG. 2) 402 (see FIG. This is the opposite of the 12 measurement examples).
  • the notation of each plot in FIGS. 21 to 26 is different from the notation of each plot in FIG. That is, in FIGS. 21 to 26, the black diamonds indicate the temperature at the measurement position A of the separators 10 and 20 shown in FIG. 10, and the black squares indicate the separators 10 and 20 shown in FIG.
  • the temperature at measurement position B is indicated by the black triangle mark at the measurement position C of separators 10 and 20 shown in FIG. 10, and the black circle plot at temperature at the measurement position D of separators 10 and 20 shown in FIG.
  • the white diamond plot shows the temperature at measurement position E of separators 10 and 20 shown in FIG.
  • the cooling water inlet temperature T2 is 60 ° C and the cooling water outlet temperature T3 is 68.
  • the fuel gas utilization rate Uf is 72.5%, and the oxidant gas utilization rate Uo is 52.5%.
  • the fuel gas utilization rate Uf is 72.5%, and the oxidizing agent gas utilization rate Uo is 47.5%.
  • the fuel gas utilization rate Uf is 67.5%, and the oxidant gas utilization rate Uo is 42.5%.
  • the fuel gas utilization factor Uf is 67.5%, and the oxidant gas utilization factor Uo is 42.5%.
  • the equivalent diameter of each channel (channel groove) of the oxidant gas channel 17 is 0.
  • each channel (channel groove) of the fuel gas channel 28 is 0.99 mm.
  • the flow velocity of the fuel gas at the channel inlet is 4.4 mZs
  • fuel gas The flow velocity at the outlet of the gas is 2.2mZs
  • the flow velocity at the inlet of the oxidant gas is 4.26m.
  • the flow velocity at the channel outlet of Zs and oxidant gas is 4.15mZs.
  • the flow velocity at the outlet of the fuel gas channel is 4. lmZs
  • the flow velocity at the outlet of the oxidant gas is 7.7 mZs.
  • the flow velocity at the channel inlet, the flow velocity at the fuel gas flow channel outlet, the flow velocity at the oxidant gas flow channel inlet, and the flow velocity at the oxidant gas flow channel outlet are the fuel gas utilization rate Uf and oxidant gas utilization in each measurement example. Since the rate Uo, current density, and each gas flow velocity and force in the measurement example of FIG. 23 can be calculated, description is omitted here.
  • the current density in the measurement examples of FIGS. 21 to 26 is as shown in FIG.
  • the pressure loss of the fuel gas and the pressure loss of the oxidant gas in the cell stack 1 are 13.8 kPa and 11.4 kPa, respectively.
  • the pressure loss of the fuel gas and the pressure loss of the oxidant gas in the cell stack 1 are 11.9 kPa and 9.7 kPa, respectively.
  • the pressure loss of the fuel gas and the pressure loss of the oxidant gas in the cell stack 1 are 9.6 kPa and 6. OkPa, respectively.
  • the pressure loss of fuel gas and the pressure loss of oxidant gas in cell stack 1 are 5.9 kPa and 4.9 kPa, respectively.
  • the pressure loss of the fuel gas and the pressure loss of the oxidant gas in the cell stack 1 are 4.6 kPa and 3.7 kPa, respectively.
  • the pressure loss of the fuel gas and the pressure loss of the oxidant gas in the cell stack 1 are 3.6 kPa and 2.7 kPa, respectively.
  • the measurement data was statistically processed by the method of least squares in the same way as the measurement example for cooling each cell.
  • Figure 28 shows the conditional expression that the dew point conversion temperature T1 must satisfy when cooling every two cells. It is a table
  • surface which shows the numerical value of the constant X and the coefficient Y with a current density.
  • experiment numbers 1 to 6 indicate measurement examples of FIGS. 21 to 26, respectively.
  • the meanings of “force sword” and “anode” are the same as in FIG.
  • X is a value in the range of 2.8 to 3.3
  • is a value in the range of 0.013-0.033
  • fuel gas (anode ) Is a numerical value in the range of 3.7 to 4.2
  • FIG. 29 is a graph showing an example of the relationship between the gas flow rate and the pressure loss.
  • the cell stack used in this measurement example is the same as described above except that the number of cells is 54.
  • the current density is 0.05 AZcm 2
  • the fuel gas utilization rate Uf is 62.5%
  • the oxidant gas utilization rate Uo is 37.5%.
  • the current density is 0.078AZcm 2
  • the fuel gas utilization rate Uf is 67.5%
  • the oxidizing agent gas utilization rate Uo is 42.5%.
  • the current density is 0.116 A / cm 2
  • the fuel gas utilization rate Uf is 72.5%
  • the oxidant gas utilization rate Uo is 47. 5%.
  • the current density is 0.16 A / cm 2
  • the fuel gas utilization rate Uf is 72.5%
  • the oxidant gas utilization rate Uo is 52.5%.
  • the pressure loss of the reaction gas is proportional to the flow rate of the reaction gas. Since the flow rate of the reaction gas is proportional to the flow rate of the reaction gas, the pressure loss of the reaction gas is proportional to the flow rate of the reaction gas. In addition, as the current density increases, the flow rate of the reaction gas increases and the pressure loss of the reaction gas increases.
  • the present invention is characterized in that the power generation regions 42A and 42B are maintained in an atmosphere of full humidification or over humidification over the entire area. Therefore, if the flow velocity of the reaction gas flowing through the flow paths 17 and 28 located in the power generation regions 42A and 42B is lower than a certain value, flooding occurs and the power generation is hindered.
  • reaction gas the pressure required to supply the reaction gas (hereinafter referred to as “reaction gas”) is reduced.
  • Called supply pressure becomes excessive. Therefore, in the present embodiment, the flow velocity at the outlet of the fuel gas flow path 28 (the connection portion of the fuel gas to the outlet manifold hole 24) (hereinafter sometimes referred to as the outlet gas flow velocity) is 1.8 mZs or more. 4.
  • the flow velocity at the outlet of the oxidant gas flow path 17 (the connection portion of the oxidant gas to the outlet manifold hole 13) (hereinafter referred to as the outlet gas flow velocity) is 2 and is controlled to lmZs or less. Controlled to 8mZs or more and 7.7mZs or less.
  • the upper limit value among these lower limit values and upper limit values was determined based on empirical rules from the viewpoint of performance related to the reaction gas supply pressure of the auxiliary equipment (here, the pump for supplying fuel and the blower for supplying oxidant gas). .
  • the lower limit value among these lower limit values and upper limit values was obtained by experiments.
  • five types of cell stacks having the same overall configuration as the cell stack used in the above-described measurement and having different structures of the fuel gas channel 28 and the oxidant gas channel 17 were prepared.
  • the fuel gas utilization rate Uf, the oxidant gas utilization rate Uo, and the current density were changed.
  • the outlet gas flow rate and pressure loss are varied, and in each case, stable power generation can be achieved.
  • Whether or not flooding occurred was determined by whether or not it occurred.
  • FIG. 31 is a graph showing the relationship between the outlet flow velocity and pressure loss in fuel gas and the presence or absence of flooding.
  • FIG. 32 is a graph showing the relationship between the outlet flow velocity and pressure loss in oxidant gas and the presence or absence of flooding.
  • the circled plots indicate that stable power generation is possible, that is, no flooding has occurred.
  • the triangle plot shows that power generation is unstable due to flooding.
  • the plot with X indicates that power generation is not possible due to flooding.
  • the outlet gas flow velocity in the fuel gas is preferably 1.8 mZs or more. Further, from FIG. 32, it is clear that the outlet gas flow velocity in the oxidant gas is preferably 2.8 m / s or more.
  • the fuel cell 101 has a fuel gas utilization rate of 60% or more, an oxidant gas utilization rate of 40% or more and 80% or less, and a current density of 0.15 AZcm 2 or more. It is assumed that it will be operated at 0. 30 AZcm 2 as follows. That is, these gas flow velocity ranges are valid under these operating conditions.
  • the gas flow rate is controlled to increase as the current density increases.
  • the flow rates of the fuel gas and the oxidant gas are controlled as follows.
  • Qa is the unused oxidant gas flow rate at the outlet of the fuel gas passage 28, the gas flow rate when the total water content supplied is calculated as water vapor, and the total water content generated by the power generation reaction as water vapor. It is a total gas flow rate with the gas flow rate in the case of.
  • the unused fuel gas flow rate is calculated by multiplying the supplied fuel gas flow rate by the utilization rate of the fuel gas.
  • Sa is a cross-sectional area of the fuel gas flow path 28 in the vicinity of the outlet, and is a sum of cross-sectional areas of the respective flow paths (flow channel grooves). Each channel (channel groove) is formed so that the equivalent diameter (the diameter of the circle equivalent to its cross-sectional area) is 0.78 mm or more and 1.30 mm or less!
  • the flow rate of the oxidant gas is represented by Qc
  • the cross-sectional area of the oxidant gas flow path 17 is represented by Sc
  • the flow rate Vc of oxidant gas is
  • Vc Qc / Sc.
  • Qc is the unused oxidant gas flow rate at the outlet of the oxidant gas flow path 17, the gas flow rate when the total water content supplied is calculated as water vapor, and the total water content generated by the power generation reaction as water vapor.
  • the total gas flow rate with the gas flow rate when calculated as The unused oxidant gas flow rate is calculated by multiplying the supplied oxidant gas flow rate by the utilization rate of the oxidant gas.
  • Sc is the cross-sectional area of the oxidant gas channel 17 near the outlet, and is the sum of the cross-sectional areas of the respective channels (channel grooves). Each channel (channel groove) is formed to have an equivalent diameter of 0.78 mm or more and 1.30 mm or less.
  • the fuel gas flow rate Va and the oxidant gas flow rate Vc are controlled by the control device 108 by the fuel gas supply flow rate, the fuel gas utilization rate, the oxidant gas supply flow rate, the oxidant gas utilization rate, and the fuel gas and It is controlled by controlling the dew point conversion temperature T1 of the oxidant gas.
  • the pressure loss of the reaction gas will be described.
  • the pressure loss in the reaction gas channels 17 and 28 is large. However, when the pressure loss becomes excessive, the reaction gas supply pressure becomes excessive.
  • the pressure loss of the reaction gas in the cell stack 1 is controlled to be 2 kPa or more and lOkPa or less.
  • the upper limit value among the upper limit value and the lower limit value was determined based on an empirical rule from the viewpoint of performance related to the reaction gas supply pressure of the auxiliary equipment.
  • the lower limit value of the upper limit value and the lower limit value was determined together with the outlet gas flow velocity by the above-described experiment. That is, from FIG. 31, it is clear that the pressure loss of the fuel gas in the cell stack is preferably 3.6 kPa or more. From FIG. 32, it is clear that the pressure loss of the oxidant gas in the cell stack is preferably 2. OkPa or more. Therefore, if the fuel gas and oxidant gas are grasped by the superordinate concept of the reaction gas, it is preferable that this pressure loss is 2. OkPa or more.
  • the pressure loss force of the reaction gas is a force that is out of this preferable range. This is a special error in order to collect the temperature distribution data of the cell stack. This is because of the load operation, and in the cogeneration system, such overload operation is usually not performed.
  • the generation regions 42A and 42B can be fully humidified or over-humidified over the entire region while preventing the occurrence of flooding. Can be kept in.
  • the present embodiment satisfies (Operating Condition 1) to (Operating Condition 9).
  • the fuel cell power generation system 100 is configured.
  • the reaction gas passages 17, 28 and the cooling water passages 19, 29 are formed in the “reaction gas temperature rising gradient arrangement”.
  • the supply reaction gas and the exhaust reaction gas are humidified and heated by total heat exchange, and the humidification and heating of the supplied reaction gas and the exhaust cooling water are all subjected to total heat exchange.
  • the heat exchangeable temperature difference ⁇ 3-T1 is about 1 ° C.
  • Ability is set.
  • the temperature of the cooling water is adjusted so that the cooling water outlet temperature T3 satisfies the condition of 80 ° C ⁇ T3 ⁇ 66 ° C.
  • the specific cooling water outlet temperature T3 is determined in consideration of a predetermined output current density of the fuel cell 101.
  • the temperature adjustment of the cooling water is performed by the control device 108 controlling at least one of the heat radiation amount of the heat radiating device 105 of the cooling system 104 and the flow rate of the cooling water circulation pump 109.
  • control of the cooling water temperature is performed by the control device 108 based on the detected values of the temperature sensor TS1 and the temperature sensor TS2 that detect the cooling water inlet temperature T2 and the cooling water outlet temperature T3, respectively. And it is performed by feedback-controlling the cooling water outlet temperature T3.
  • each flow path (flow path groove) in the oxidant gas flow path 17 and the fuel gas flow path 28 is formed so that the equivalent diameter is 0.78 mm to l.30 mm or less.
  • the control device 108 controls the oxidant gas supply device 103 so that the flow rate of the oxidant gas in the oxidant gas flow path 17 is in the range of 2.8 mZs to 7.7 mZs, and the pressure loss in the cell stack 1 is reduced. Oxidant gas is supplied so that it becomes 2kPa ⁇ lOkPa.
  • the control device 108 controls the fuel gas supply device 102 so that the flow rate of the fuel gas in the fuel gas passage 28 is in the range of 1.8 mZs to 4. lm Zs, and the pressure loss in the cell stack 1 is 2 kPa to Supply fuel gas to 10 kPa.
  • the fuel cell power generation system 100 operates under the control of the control device 108, and has a start mode, an operation mode, and a stop mode.
  • startup mode predetermined startup operations are performed sequentially.
  • the fuel cell power generation system 100 is started smoothly.
  • operation mode (during power generation)
  • normal power generation is performed.
  • stop mode the fuel cell power generation system 100 is smoothly stopped by sequentially performing a predetermined stop operation.
  • description thereof will be omitted, and only the operation mode will be described below.
  • fuel gas supplied fuel gas
  • an oxidant gas supplied from the oxidant gas supply device 103 to the power sword 42 A of the fuel cell 101.
  • a power generation reaction occurs in the anode 42B and the power sword 42A, and electric power and heat (exhaust heat) are generated.
  • Unreacted fuel gas (exhaust fuel gas) and oxidant gas (exhaust oxidant gas) not consumed by the power generation reaction are discharged from the fuel cell 101.
  • the fuel cell 101 is cooled by the cooling water circulating through the cooling water circulation passage 112 of the cooling system 104.
  • the supplied fuel gas undergoes total heat exchange with the exhaust fuel gas in the anode-side total heat exchanger 17, and then undergoes total heat exchange with the cooling water after passing through the fuel cell 101 (exhaust cooling water). Then, the dew point converted temperature (inlet dew point converted temperature) T1 at the inlet of the fuel cell 101 is humidified and heated to a predetermined value.
  • the supplied oxidant gas undergoes total heat exchange with the exhaust oxidant gas in the total heat exchange 118 on the power sword side, and then undergoes total heat exchange with the exhaust cooling water. Humidified and heated to be
  • control device 108 controls the heat radiation amount of the heat radiating device 105 of the cooling system 104 and the flow rate of the cooling water circulation pump 106 based on the detected values of the inlet temperature sensor TS1 and the outlet temperature sensor TS2. Adjust temperature ⁇ 2 and cooling water outlet temperature ⁇ 3.
  • the cooling water inlet temperature ⁇ 2 is determined according to the cooling capacity (heat radiation amount) of the cooling system with respect to the heat generation amount of the fuel cell 101, and the cooling water inlet temperature ⁇ 2 and the cooling water outlet temperature are determined according to the cooling water flow rate.
  • the temperature difference ⁇ from ⁇ 3 is determined.
  • the heat exchangeable temperature difference between the anode-side total heat exchanger 117 and the power sword-side total heat exchanger 118 ⁇ 3-T1 substantially depends on the supply fuel gas and the supply oxidant gas.
  • Inlet dew point conversion temperature T1 is determined The In other words, by controlling the heat dissipation amount of the heat dissipation device 105 of the cooling system 104 and the flow rate of the cooling water circulation pump 106, conversion to the cooling water outlet temperature T3, the cooling water inlet temperature ⁇ 2, and the inlet dew point of the fuel gas and oxidant gas The temperature T1 can be controlled.
  • the control device 108 Since the amount of exhaust heat of the fuel cell 101 changes in accordance with the change in the output of the fuel cell 101, the control device 108 changes the cooling capacity of the cooling system 104 in accordance with the change in the amount of exhaust heat while Temperature control. As described above, the control of the control device 108 causes the fuel cell power generation system 100 to operate in the operation mode so as to satisfy the above-described (operation condition 1) to (operation condition 9). As a result, the region where power generation of the fuel cell 101 occurs is maintained in a fully humidified or overhumidified atmosphere over the entire region. As a result, the deterioration of the polymer electrolyte membrane 41 of ⁇ 43 is suppressed, and the life of the fuel cell 101 is improved.
  • FIG. 13 is a graph showing the results of a fuel cell life test.
  • the horizontal axis indicates the operation time
  • the vertical axis indicates the cell voltage.
  • the hardware was operated on the fuel cell power generation system 100 created according to the present embodiment except for the total heat exchange 117, 118.
  • the operation was performed by switching between the first operating condition and the second operating condition.
  • a bubbler is used in place of the total heat exchange ⁇ 117, 118, and with this bubbler, the fuel gas and the oxidant are adjusted so as to achieve a predetermined inlet dew point conversion temperature T1.
  • the gas was humidified and warmed. Therefore, the inlet dew point converted temperature T1 of the fuel gas and the oxidant gas was appropriately controlled as in the case of operating the fuel cell system 100 of the present embodiment (FIG. 1).
  • the flow rate of the fuel gas in the fuel gas channel 28 is controlled to be in the range of 1.8 mZs to 4. lmZs, and the flow rate of the oxidant gas in the oxidant gas channel 17 is 2.8 mZs to 7.7 mZs.
  • the pressure loss of the oxidant gas and fuel gas in the cell stack 1 was controlled to be 2 kPa to: LOkPa.
  • the first operating condition is an operating condition as a comparative example that does not satisfy T1 ⁇ T2 + 1 ° C (operating condition 1).
  • the cooling water inlet temperature T2 is 64 ° C.
  • Cooling water outlet temperature T3 force S69 ° C, fuel gas and oxidant gas inlet dew point conversion temperature T1 is 64 ° C.
  • the fuel cell power generation system 100 was operated under the first operating condition that did not satisfy (Operating Condition 1) in the period P1 until the operation starting force also passed about 4400 hours. Then, the cell voltage gradually decreased. After that, in a period P2 of about 400 hours, the system was operated under the second operating condition satisfying (Operating condition 2 (and operating condition 1)). Then, the cell voltage increased (recovered). After that, in the period P3 of about 400 hours, it was operated again under the first operating condition that did not satisfy (Operating condition 1). Then, the cell voltage gradually decreased again. After that, during the period P4 until the operation starting force passed about 9400 hours, the engine was operated again under the second operating condition that satisfies (Operating Condition 2 (and Operating Condition 1)). Then, the cell voltage recovered again, and the cell voltage was maintained even after about 9400 hours of operation starting power.
  • FIG. 14 is a block diagram schematically showing the configuration of the polymer electrolyte fuel cell power generation system according to Embodiment 2 of the present invention.
  • the same reference numerals as those in FIG. 1 denote the same or corresponding parts.
  • the anode side total heat exchange 117 and the force sword side total heat exchange 118 totally exchange the supplied reaction gas with the exhaust reaction gas, and after this total heat exchange, The reaction gas supplied is simply exchanged with the exhaust cooling water.
  • the cell stack 1 in FIGS. 2 and 3 is cooled every two cells. Others are the same as in the first embodiment.
  • the anode-side total heat exchanger 117 of the present embodiment replaces the second total heat exchange cell stack 301B in the configuration shown in FIG. It has a converter 303A.
  • the first fluid supply mall 204, the first fluid flow path 217, and the first fluid discharge The hold 207 constitutes the fuel gas flow path 117a of the anode-side total heat exchanger 117, the second fluid supply hold 205, the second fluid flow path 228, and the second fluid discharge hold 206. Constitutes the fuel gas passage 117b of the anode-side total heat exchange 117.
  • the first fluid supply pipe 251 constitutes a portion 109a on the fuel gas supply device 102 side of the fuel gas supply flow path 109, and the first fluid discharge pipe 252 is the anode-side cooling water heat exchanger 303A. Is connected to the inlet of the secondary side flow path.
  • the second fluid supply pipe 253 constitutes a portion 110a on the fuel cell 101 side of the fuel gas discharge passage 110, and the second fluid discharge pipe 254 constitutes the portion 110b on the atmosphere side of the fuel gas discharge passage 110.
  • the anode-side cooling water heat exchanger 303A has a well-known configuration in which heat can be exchanged between the fluid flowing through the primary flow path and the fluid flowing through the secondary flow path.
  • a cooling water passage 117c of the anode side total heat exchanger 117 is configured. Then, both ends of the primary channel are connected to the branch channel 112a of the cooling water circulation channel 112.
  • the inlet of the secondary channel is connected to the other end of the first fluid discharge pipe 252 having one end connected to the first fluid discharge holder 207 of the total heat exchange cell stack 301 as described above.
  • the outlet of the secondary channel is connected to the portion 109b of the fuel gas supply channel 109 on the fuel cell 101 side. Therefore, this secondary side flow path constitutes a part of the fuel gas flow path 117a of the anode side total heat exchanger 17.
  • the fuel gas supplied to the fuel cell 101 is supplied to the first fluid holder 204, and the second fluid The fuel 205 discharged from the fuel cell 101 is supplied to the hold 205.
  • the supply fuel gas flowing through the first fluid flow path 217 and the exhaust fuel gas flowing through the second fluid flow path 228 exchange total heat via the polymer electrolyte membrane 41. Thereby, the supplied fuel gas is humidified and heated by the discharged fuel gas.
  • the cooling water flowing in the primary side flow path and the supplied fuel gas flowing in the secondary side flow path exchange heat, and thereby the total heat exchange
  • the later supplied fuel gas is further heated by the cooling water heated through the fuel cell 101.
  • the supplied fuel gas thus humidified and heated is supplied to the fuel cell 101.
  • the power sword side total heat exchanger 118 of the present embodiment has a force sword side cooling water heat exchanger 303 ⁇ instead of the fourth total heat exchange cell stack 301D in the configuration shown in FIG. ing.
  • the first fluid supply pipe 251 constitutes the portion 107a on the oxidant gas supply channel 103 side of the oxidant gas supply flow path 107
  • the first fluid supply pipe -Hold 204, first fluid flow path 217, and first fluid discharge manifold 207 constitute oxidant gas flow path 118a of force heat side total heat exchange 118
  • first fluid discharge pipe 252 It is connected to the inlet of the secondary channel of the cathode side cooling water heat exchanger 303B.
  • the second fluid supply pipe 253 constitutes a portion 11 la of the oxidant gas discharge channel 111 on the fuel cell 101 side, and includes the second fluid supply manifold 205, the second fluid channel 228, and the second fluid channel 228.
  • the second fluid discharge holder 206 constitutes the oxidant gas flow path 118b of the force sword side total heat exchange 118
  • the second fluid discharge pipe 254 is the air side portion of the oxidant gas discharge flow path 111. It constitutes lb.
  • the force sword side-to-cooling water heat exchanger 303B has a well-known configuration in which the fluid flowing in the primary side flow path and the fluid flowing in the secondary side flow path are formed to be able to exchange heat, and the primary A cooling water flow path 118c of the side flow path cathode side total heat exchanger 118 is configured. Then, both ends of the primary channel are connected to the branch channel 112b of the cooling water circulation channel 112. In addition, the inlet of the secondary channel is connected to the other end of the first fluid discharge pipe 252 having one end connected to the first fluid discharge holder 207 of the total heat exchange cell stack 301 as described above.
  • the outlet of the secondary channel is connected to the portion 107b of the oxidant gas supply channel 107 on the fuel cell 101 side. Therefore, this secondary side flow path constitutes a part of the oxidant gas flow path 118 a of the cathode side total heat exchange 118.
  • the oxidant gas (hereinafter referred to as the oxidant gas) supplied to the fuel cell 101 to the first fluid mold 204 is obtained.
  • Supplied oxidant gas and supplied to the second fluid manifold 205
  • Oxidant gas discharged from the battery 101 (hereinafter referred to as exhausted oxidant gas) is supplied.
  • exhausted oxidant gas oxygen gas discharged from the battery 101
  • Heat exchange is performed, whereby the supplied oxidant gas is humidified and heated by the exhaust oxidant gas. Then, in the power sword side cooling water heat exchanger 303B, the cooling water flowing in the primary side flow path and the oxidant fuel gas flowing in the secondary side flow path exchange heat, and thereby supply oxidation after the total heat exchange The agent gas is further heated with the cooling water heated through the fuel cell 101. The supplied oxidant gas thus humidified and heated is supplied to the fuel cell 101.
  • the cell stack 1 shown in FIG. 3 has a cooling water flow path formed in the force sword separator 10 and the anode separator 20 with a cooling water flow path of 19, 29 force S, and a cooling water flow through the force sword separator 10 and the anode separator 20.
  • the cells 2 and 29 in which the paths 19 and 29 are not formed are alternately stacked.
  • control device 108 sets the reaction gas inlet dew point conversion temperature T1 and the cooling water inlet temperature T2.
  • the life of the fuel cell 101 is improved. Further, the configuration of the anode side cooling water heat exchanger 303A and the force sword side cooling water heat exchanger 303B is simplified.
  • the fuel cell power generation system 100 is provided with both the anode side total heat exchange ⁇ 117 and the cathode side total heat exchange 118. It may be omitted.
  • FIG. 15 is a block diagram schematically showing the configuration of the fuel cell power generation system according to Embodiment 3 of the present invention. 15, the same reference numerals as those in FIG. 1 denote the same or corresponding parts.
  • the total heat exchange between the reaction gas and the cooling water is performed in addition to the total heat exchange between the reaction gases, and the total heat exchange on the anode side in FIG. And all the power sword side Instead of the heat exchange ⁇ 118, an anode-side total heat exchange ⁇ 121 and a power sword-side total heat exchange 122 that perform total heat exchange only between the reaction gas and the cooling water are provided.
  • the other points are the same as in the first embodiment.
  • the anode-side total heat exchanger 121 has exactly the same configuration as the second total heat-exchange cell stack 301B of the anode-side total heat exchanger 117 of Embodiment 1. Detailed description thereof will be omitted.
  • this anode-side total heat exchanger 121 the supply fuel gas flowing through the supply-side fuel gas flow passage 121a is totally heat-exchanged with the exhaust cooling water flowing through the cooling water flow passage 121b to be humidified and heated.
  • the force sword side total heat exchange 122 has exactly the same configuration as the fourth total heat exchange cell stack 301D of the force sword side total heat exchange 118 of the first embodiment. The detailed explanation is omitted.
  • this force sword side total heat exchange 122 the supply oxidant gas flowing through the supply side oxidant gas flow path 122a is totally heat-exchanged with the exhaust cooling water flowing through the cooling water flow path 122b to be humidified and heated.
  • the heat exchangeable temperature difference between the anode side total heat exchange 121 and the force sword side total heat exchange 122 is about T3-T1 ⁇ 2 ° C.
  • FIG. 16 is a block diagram schematically showing the configuration of the fuel cell power generation system according to Embodiment 4 of the present invention.
  • the same reference numerals as those in FIG. 1 denote the same or corresponding parts.
  • the total heat exchange between the reaction gas and the cooling water is performed in addition to the total heat exchange between the reaction gases, and the total heat exchange on the anode side in FIG.
  • the anode side total heat exchange 119 and the power sword side total heat exchange 120 that perform total heat exchange only between the supply gas and the discharge side gas of the same reaction gas 120 It is equipped with.
  • the other points are the same as in the first embodiment.
  • the anode-side total heat exchanger 119 has exactly the same configuration as the first total heat-exchange cell stack 301A of the anode-side total heat exchanger 117 of the first embodiment. Detailed description thereof will be omitted.
  • the supply fuel gas flowing through the supply-side fuel gas flow channel 119a is totally heat-exchanged with the exhaust fuel gas flowing through the discharge-side fuel gas flow channel 119b to be humidified and heated.
  • the force sword side total heat exchange 120 has exactly the same configuration as the third total heat exchange cell stack 301C of the force sword side total heat exchange 118 of the first embodiment. The detailed explanation is omitted.
  • this power sword-side total heat exchange 122 the supply oxidant gas flowing through the supply-side oxidant gas flow path 122a undergoes total heat exchange with the exhaust oxidant gas flowing through the discharge-side oxidant gas flow path 122b, and is humidified and heated.
  • the heat exchangeable temperature difference between the anode side total heat exchanger 119 and the power sword side total heat exchanger 120 is about T3-T1 ⁇ 4 ° C.
  • FIG. 17 is a block diagram schematically showing the configuration of the fuel cell power generation system according to Embodiment 5 of the present invention
  • FIG. 18 schematically shows the configuration of the fuel cell with a humidifier used in the fuel cell power generation system of FIG.
  • FIG. 19 is a diagram showing a separator constituting the humidifier fuel cell of FIG. 18, wherein (a) is a front view of the first separator, and (b) is a second separator.
  • FIG. 17 the same reference numerals as those in FIG. 1 denote the same or corresponding parts.
  • FIGS. 2 and 8 denote the same or corresponding parts.
  • the fuel cell power generation system 100 includes a fuel cell 500 with a humidifier instead of the fuel cell 101 of FIG.
  • the other points are the same as in the first embodiment.
  • the fuel cell with humidifier 500 performs a total heat exchange between the supplied fuel gas and the discharged fuel gas, and at the same time, simply exchanges heat between the gas and the discharged cooling water, and supplies the supplied oxidant gas and the discharged oxidant. At the same time as the total heat exchange with the gas, the gas and the exhaust cooling water are simply exchanged with each other.
  • the battery unit 502 having the same configuration as the cell stack 201 of the fuel cell 101 of FIG. 1 and the humidifying unit 503 are included.
  • the humidifying unit 503 has the same configuration as the total heat exchange cell stack 302 of FIG.
  • the cell 2 is laminated in the battery unit 502 and the total heat exchange cell 202 is laminated in the humidifying unit 503, respectively, and a pair of end plates 504A and 504B are arranged at both ends of the laminate composed of the parent cell 2 and the total heat exchange cell 202.
  • the battery and humidifier integrated cell stack 501 is formed!
  • total heat exchange cell 202 is replaced with first separator shown in FIG. 19 (a) in place of first separator 210 and second separator 220 in the configuration shown in FIG. A separator 510 and a second separator 520 shown in FIG. 19B are provided.
  • a supply oxidant gas passage 511 and a supply fuel gas passage 512 are formed in front of the first separator 510.
  • the supply oxidant gas flow path 511 and the supply fuel gas flow path 512 are indicated by regions (regions surrounded by a one-dot chain line). When viewed from the thickness direction (stack direction) of the total heat exchange cell 202, these regions are exposed so that the polymer electrolyte membrane 4 of the pseudo MEA243 (see FIG. 9) is exposed and overlapped with the region. It is formed to line up!
  • a cooling water channel (not shown) is formed in the same manner as the cooling water channel 19 of the force sword side separator 10 in FIG.
  • an inlet mold hole and an outlet mall hole (not shown) connected to the upstream end and the downstream end of the supply oxidant gas flow path 511, respectively, and a supply
  • An inlet manifold hole and an outlet manifold hole (not shown) connected to the upstream end and the downstream end of the fuel gas flow path 512, respectively, and an inlet manifold hold connected to the upstream end and the downstream end of the cooling water flow path, respectively.
  • a hole and an outlet merge hole (not shown) are formed.
  • an exhaust oxidant gas passage 521 and an exhaust fuel gas passage 522 are formed in front of the second separator 520.
  • the exhaust oxidant gas flow path 521 and the exhaust fuel gas flow path 522 are indicated by regions where the respective regions are formed (regions surrounded by a one-dot chain line). These areas are from the thickness direction of the total heat exchange cell 202.
  • the polymer electrolyte membrane 4 of the pseudo MEA 243 is formed so as to overlap with the exposed region and to be arranged with a space left and right.
  • the exhaust oxidant gas flow path 521 and the exhaust fuel gas flow path 522 are the supply oxidant gas flow path 511 and the supply fuel gas flow path 512 of the first separator 510 when viewed from the thickness direction of the total heat exchange cell 202. It is formed so as to substantially overlap.
  • a cooling water channel (not shown) is formed in the same manner as the cooling water channel 29 of the anode-side separator 20 in FIG.
  • An inlet manifold hole and an outlet manifold hole (not shown) connected to the upstream end and the downstream end of the fuel gas passage 522, respectively, and an inlet manifold connected to the upstream end and the downstream end of the cooling water passage, respectively.
  • -A hold hole and an outlet hold hole (not shown) are formed.
  • Second hold (not shown), supply fuel gas exhaust manifold (not shown) for discharging the supplied fuel gas, exhaust fuel gas supply manifold (not shown) for supplying the exhaust fuel gas, exhaust fuel gas Exhaust fuel gas discharge manifold to be discharged (not shown), supply oxidant gas supply manifold to supply supply oxidant gas (not shown), supply oxidant gas discharge marker to discharge supply oxidant gas -Hold (not shown), exhaust oxidant gas supply manifold (not shown), exhaust oxidant gas supply manifold (not shown), exhaust oxidant gas supply manifold (not shown), exhaust oxidant gas supply manifold (not shown), exhaust oxidant gas discharge manifold hold (not shown) ), Cooling water supply manifold for supplying cooling water (illustrated) And a cooling water discharge manifold (not shown) for discharging the cooling water is formed.
  • Each of these moulds includes the first separator 210, the pseudo MEA 243, and the second separator of the mould hole hole humidifier section 503 corresponding to each mould including the above described mould holes. 220 and the force sword side separator 10, MEA 43, and anode side separator 20 of the battery unit 502, which are connected to each other.
  • the total heat exchange capacity of the humidifier section 503 is reduced.
  • Tack 202 the supply fuel gas flowing through the supply fuel gas flow path 512 of the first separator 510 and the exhaust fuel gas flowing through the discharge fuel gas flow path 522 of the second separator 520 and the polymer electrolyte membrane 4 (see FIG. 9) ) Through the heat exchange.
  • the supply oxidant gas flowing through the supply oxidant gas flow path 511 of the first separator 510 and the discharged oxidant gas flowing through the discharge oxidant gas flow path 521 of the second separator 520 and the polymer electrolyte membrane 4 The total heat is exchanged via (see Fig. 9).
  • the supply fuel is supplied by the discharged cooling water flowing through the cooling water flow path of the first separator 510 and the cooling water flow path of the second separator 520 (not shown, both form one cooling water flow path).
  • the gas and feed oxidant gas are heated along with the exhaust fuel gas and exhaust oxidant gas.
  • the heating efficiency of the supply fuel gas and the supply oxidant gas by the discharge cooling water is increased by the amount that the discharge fuel gas and the discharge oxidant gas are also heated by the discharge cooling water.
  • the supplied fuel gas and supplied oxidant gas can be humidified and heated by effectively using the water and exhaust heat discharged from the battery unit 502.
  • the humidifier unit 503 is integrated with the battery unit 502, the size of the fuel cell power generation system can be reduced.
  • FIG. 30 is a block diagram schematically showing the configuration of the polymer electrolyte fuel cell power generation system according to Embodiment 6 of the present invention.
  • the same reference numerals as those in FIG. 1 denote the same or corresponding parts.
  • the anode-side total heat exchange 17 replaces the second total heat exchange cell stack 301B in the configuration shown in FIG. Has a vessel 303A. Others are the same as in the second embodiment.
  • the supplied fuel gas is totally exchanged with the exhaust fuel gas, and the supplied fuel gas after this total heat exchange is simply heat exchanged with the exhaust cooling water. Is done.
  • power sword side total heat exchange 118 as in Embodiment 1, the supplied oxidant gas is totally exchanged with the exhaust oxidant gas, and the supply oxidant gas after this total heat exchange is discharged and cooled. Total heat exchange with water.
  • the anode side total heat exchange 117 and the force sword side total heat exchange 117 If the supply reaction gas is configured to exchange heat with the exhaust reaction gas and then simply exchange heat with the exhaust cooling water, the supply reaction gas heated by the exhaust reaction gas is heated. Since the reaction gas is further heated with sensible heat of the discharged cooling water, if the water content in the supplied reaction gas (the amount of liquid water) is small, the discharged reaction water is removed by total heat exchange with the discharged cooling water. Compared to heating with both sensible heat and latent heat, the amount of heat transferred from the exhaust cooling water to the supplied reaction gas, that is, the heating capacity, is reduced.
  • the exhausted fuel gas contains a large amount of dew condensation water, and the supplied fuel gas that has undergone total heat exchange with the exhausted fuel gas also contains a lot of water. Therefore, even if the supplied fuel gas is simply subjected to heat exchange with the exhaust cooling water, the heating capacity of the exhaust cooling water does not decrease.
  • the utilization rate of the oxidant gas is low, the exhausted oxidant gas has less moisture, and the supplied oxidant gas that has undergone total heat exchange with this exhausted oxidant gas has less moisture.
  • the supplied oxidant gas is totally heat-exchanged with the exhaust cooling water, it is sufficiently heated by the exhaust cooling water.
  • An acetylene black powder was used as a catalyst in which platinum particles having an average particle size of about 30 A were supported by 25% by weight.
  • a catalyst paste was prepared by mixing a catalyst dispersion of perfluorocarbon sulfonic acid in ethyl alcohol with a solution of the catalyst powder dispersed in isopropanol.
  • a water-repellent treatment was carried out on a high-fibre carbon cloth (TGP-H-090 manufactured by T ORAY) having an outer size of 12 cm, a length of 12 cm, and a thickness of 220 cm constituting the gas diffusion layer.
  • the side of the carbon cloth on which the catalyst layer is formed Apply a mixture of carbon black powder (DENKA BLACKFX-35 manufactured by Denki Kagaku Kogyo Co., Ltd.) and aqueous PTFE dispersion (Daikin D-1) on the surface of the surface and baked at 400 ° C for 30 minutes for water repellent properties. A layer was applied.
  • a catalyst layer was formed on the surface of the carbon cloth with the water repellent layer by applying a catalyst paste using a screen printing method.
  • a force bon cloth on which this catalyst layer was formed was used as an electrode.
  • the amount of platinum contained in the electrode on which this catalyst layer was formed was 0.3 mg / cm 2 , and the amount of perfluorocarbon sulfonic acid was 1. OmgZcm 2 .
  • a perfluorocarbon sulfonic acid membrane (Nafionll2 (registered trademark) manufactured by DUPONT) having an outer size of 20 cm and 20 cm was used.
  • a pair of electrodes was joined to both sides of the polymer electrolyte membrane 41 by hot pressing so that the catalyst layer was in contact with the polymer electrolyte membrane 41, thereby producing MEA43.
  • a polymer electrolyte membrane made of perfluorocarbon sulfonic acid with a thickness of 30 ⁇ high thickness was used.
  • a compound was prepared by mixing 80 wt% of artificial graphite powder having an average particle size of 100 ⁇ m, 5 wt% of carbon black, and 15 wt% of phenol resin before thermosetting. This compound is put into a mold having the shape of the separator transferred, and hot-pressed at 180 ° C to cure the phenolic resin, thereby forming the conductive molding shown in Figs. Separator 10 and 20 were produced. 4 and 6 show the shape of the gas distribution groove formed on the front surface (inner surface) of the separators 10 and 20.
  • FIG. Separators 10 and 20 are 20cm wide and 20cm wide and 3mm thick. Reactant gas channels 17 and 28 are formed in a groove shape with a width of 1.2mm and a depth of 0.7mm.
  • FIGS. 5 and 7 show the shapes of the cooling water channels 19 and 29, which are formed on the back surface (outer surface) of the separator 19 shown in FIGS.
  • the cooling water channels 19, 29 are formed in a groove shape having a depth of 0.7 mm.
  • a hole for circulation of cooling water, fuel gas, and oxidant gas is formed, and the periphery of the center electrode portion of the MEA 43 and each marker are formed.
  • a Viton O-ring-shaped fluid seal member is bonded around the hole holes 11 to 16 It was a sket.
  • ME A43 was sandwiched between the anode-side separator 20 and the force-sword-side separator 10 thus prepared, and a cell 2 was produced.
  • a cell laminate 201 was prepared by laminating 40 cells 2. At both ends of the cell laminate 201, a current collector plate plated with gold on the copper surface, an insulating plate made of PPS, and end plates 3A and 3B created by cutting SUS are disposed. Fixed with a clamping rod. The fastening pressure at this time was lOkgfZcm 2 per electrode area.
  • anode side total heat exchange 117 and the force sword side total heat exchange 118 were prepared by the same manufacturing method as that of the fuel cell 101 described above.
  • the reaction gas has a predetermined inlet dew point converted temperature by total heat exchange with at least one of the reaction gas and cooling water discharged from the fuel cell 101.
  • this may be performed using a general humidifier such as a bubbler.
  • the anode-side total heat exchanger 117, 119, 121 and the cathode-side total heat exchanger 118, 120, 122 are separated from each other. You may do it. These may be integrated with the cell stack 1. In this case, the anode side total heat exchange 117, 119, 121, force sword ⁇ J total heat exchange ⁇ 118, 120, 122 and Senore stack 1 have the same basic configuration, so they can be easily It can be integrated.
  • the power node in which the anode-side total heat exchange 117, 121 and the power sword-side total heat exchanger 118, 22 are connected in parallel to the cooling circulation passage 112 of the cooling system 104.
  • the side total heat exchange 117, 121 and the force sword side total heat exchange 118, 22 may be connected in series to the cooling circulation passage 112 of the cooling system 104.
  • Embodiments 1 to 3 the cooling water channels 19, 29 are provided for every one or two cells. This may be provided for every three or more cells.
  • the polymer electrolyte fuel cell power generation system of the present invention is useful as a fuel cell power generation system used for portable power supplies, electric vehicle power supplies, cordage energy systems, and the like.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Description

明 細 書
高分子電解質型燃料電池発電システム
技術分野
[0001] 本発明は、ポータブル電源、電気自動車用電源、コージエネシステム等に使用する 燃料電池発電システム、特に高分子電解質膜を用いた燃料電池発電システムに関 する。
背景技術
[0002] 典型的な燃料電池として高分子電解質型燃料電池がある。この高分子電解質型燃 料電池では、高分子電解質膜を挟んでアノードと力ソードとが形成されており、ァノー ド及び力ソードにそれぞれ、水素を含有する燃料ガスと空気など酸素を含有する酸 ィ匕剤ガス (以下、燃料ガスと酸化剤ガスとを反応ガスと総称する場合がある)とが供給 される。そして、アノードにおいて、電極反応により燃料ガス中の水素原子力 電子が 解放されて水素イオンが生成されるとともにこの電子が外部回路 (負荷)を通じてカソ ードに到達する。一方、水素イオンは高分子電解質膜を通過して力ソードに到達する 。そして、力ソードにおいて、水素イオンと電子と酸化剤ガス中の酸素とが結合して水 が生成される。そして、この反応の際に、電力と熱とが同時に発生する。
[0003] ところで、高分子電解質膜には、パーフルォロカーボンスルホン酸系の材料が使わ れて ヽる。この高分子電解質膜は水分を含んだ状態でイオン伝導性を発現するため 、通常、反応ガスは加湿して燃料電池に供給される。
[0004] し力しながら、力ソードでは水が生成されるため、反応ガスを過剰に加湿するとフラ ッデイングが発生する恐れがある。一方、電池の高性能化のためには高分子電解質 膜のイオン伝導度を向上させる必要があり、そのためには反応ガスを 100%の相対 湿度を有するように加湿して供給することが好ましい。また、燃料電池の動作温度以 下の露点を有する反応ガスを供給すると、パーフルォロカーボンスルホン酸系の電 解質が分解してフッ化物イオンが高分子電解質膜から溶出し、それにより、高分子電 解質膜が劣化することが判明した。
そこで、高分子電解質膜の劣化を抑制して燃料電池の寿命を向上させるために、フ ラッデイングを防止しつつ、電池温度と同じ温度の露点を有する反応ガスを燃料電池 に供給して運転する( 、わゆるフル加湿運転)ことが試みられてきた (例えば、非特許 文献 1参照)。
また、各単電池毎に異なるガス流路構造及び Z又は電極構造を備え、加湿量等の 等しい反応ガスを各単電池に分配することにより、高分子電界質膜の劣化の防止と フラッディングデッの防止とを図った燃料電池システムが知られている(例えば、特許 文献 1参照)。
非特許文献 1 :第 8回 燃料電池シンポジウム講演予稿集、第 61頁乃至第 64頁 (特 に Fig. 3及び Fig. 4のキャプションに記載の運転条件参照)
特許文献 1:特許第 3596332号公報
発明の開示
発明が解決しょうとする課題
[0005] しかしながら、非特許文献 1の技術では、高分子電解質膜の劣化を十分抑制するに は至っておらず、燃料電池の寿命を十分向上させることができな力つた。
また、特許文献 1の燃料電池システムでは、単電池毎に異なるガス流路構造及び Z 又は電極構造を備える必要があり、構造が複雑になってしまう。
本発明はこのような課題を解決するためになされたもので、単電池毎にガス流路又は 電極の構造を異ならしめることなぐ高分子電解質型燃料電池の高分子電解質膜の 劣化を十分抑制することにより、燃料電池の寿命を十分向上することが可能な高分 子電解質型燃料電池発電システムを提供することを目的として!ヽる。
課題を解決するための手段
[0006] 本件発明者らは、上記目的を達成するために、鋭意検討した。すなわち、最近では 電解質の劣化を抑制するため、電池温度と同じ温度の露点のガスを供給し運転する ことが、特に電池単体での試験においては試みられてきた。電池単体が単セルの場 合には、電池温度を、面状ヒーターを用いて一定温度に保つことが多いため、電池 面内での温度分布を議論しにくい状態にある力 そのような場合には、例えば 80°C の一定温度に保った電池温度に対して 80°Cの露点のガスを供給し、ガス温は露点 より若干高い 85〜90°C程度に保って試験することが行なわれてきた。また、冷却流 体を用いて電池温度を制御するスタックにお 、ては、例えば冷却流体の入口温度が
80°C、冷却流体の出口温度が 85°Cに対して、 80°Cの露点のガスを供給する試みが 行なわれてきた。この場合、冷却流体のフローパターンと供給ガスのフローパターン とにおける流体の流れ方向が巨視的に同じであれば、冷却流体の出口に向かって 温度が上昇するように温度が分布していたとしても、力ソード側では発電により水が生 成し、アノード側では反応により水素が消費されてアノードを流通するガスの全量は その出口に向かって減少することから、電池内の露点は下流側に向かって上昇する よう分布するため、その入口でフル加湿を保っていれば、冷却流体の出口温度を極 端に高くしない限り、電池内のガスの流路の全域でフル加湿を保つことが可能と思わ れていた。し力しながら、セルスタック内部の温度分布を詳細に検討した結果、スタツ クへの供給ガスは、一般にー且マ-ホールドに供給され、マ-ホールドから均一に各 セルに分配されるため、一且マニホールドに供給され、マ二ホールドを通過する間に 、マ-ホールド内部で電池と熱交換し、実際に各セルにガスが導入された時点では、 既に 1〜2°C程度温度上昇が起こり、そのためガス流路の電極にガスが導入される直 近部分ではフル加湿になって 、な 、ことを見 、だした。なお、フル加湿の意味につ!ヽ ては、実施の形態で説明する。
そこで、本発明の高分子電解質型燃料電池発電システムは、高分子電解質膜と該 高分子電解質膜を挟むように形成されたアノード及び力ソードとを有する複数のセル と、燃料ガスを該燃料ガスの入口力も各セルの前記アノードに導き、そこ力も外部に 排出するよう形成された燃料ガス経路と、酸化剤ガスを該酸化剤ガスの入口から各セ ルの前記力ソードに導き、そこ力も外部に排出するよう形成された酸化剤ガス経路と、 冷却流体を、該冷却流体の入口から冷却流体供給マ二ホールドを通って前記複数 のセルの前記アノード及び力ソードからなる発電領域に対向する領域に導き、そこか ら該冷却流体の出口を経て外部に排出するよう形成された冷却流体経路と、を備え 、前記発電領域にお!ヽて前記燃料ガスと酸化剤ガスとが反応して発熱を伴う発電が 行われるよう構成された燃料電池と、前記燃料電池の前記燃料ガスの入口に前記燃 料ガスを供給する燃料ガス供給装置と、前記燃料電池の前記酸化剤ガスの入口に 前記酸化剤ガスを供給する酸化剤ガス供給装置と、前記燃料電池の前記冷却流体 経路を通るように冷却流体を流すことにより該燃料電池を冷却する冷却流体供給装 置と、制御装置と、を備え、前記制御装置は、前記発電が行われる時に、前記燃料 ガス及び前記酸化剤ガスの少なくとも ヽずれかの前記入口における全水分量を露点 に換算した温度 (以下、入口露点換算温度)を T1で表し、前記冷却流体の前記入口 における温度(以下、冷却流体入口温度)を T2で表した場合に、 T1≥T2+ 1°Cの 条件を満たすように、前記冷却流体供給装置を介して前記冷却流体入口温度を制 御する。
[0008] このような構成とすると、燃料ガス及び酸化剤ガスの少なくとも ヽずれかの入口露点 換算温度が、冷却流体供給マ二ホールドによる冷却流体の温度上昇による燃料電 池の温度上昇を見込んだものとなるので、燃料電池に供給される当該ガスの冷却流 体供給マ-ホールドによる冷却流体の温度上昇による乾燥を抑制することができる。
[0009] 前記高分子電解質型燃料電池発電システムは、前記燃料ガス及び前記酸化剤ガ スの少なくとも!/、ずれかの前記入口露点換算温度を調整するための露点調整装置を 備えていてもよい。
[0010] 前記セルは、前記高分子電解質膜並びに前記アノード及び力ソードを有する MEA と、前記 MEAの一方の側に正面が前記アノードに接触するように配置され該正面の 該アノードに接触する領域に溝状の燃料ガス流路が形成された導電性及び熱伝導 性の板状のアノード側セパレータと、前記 MEAの他方の側に正面が前記力ソードに 接触するように配置され該正面該カソードに接触する領域に溝状の酸化剤ガス流路 が形成された導電性及び熱伝導性の板状の力ソード側セパレータと、を有し、前記 燃料電池は複数の前記セルが積層されてなるセルスタックと、前記セルスタックの内 部に、前記セルの積層方向に延びるようにそれぞれ形成された燃料ガス供給マ-ホ ルド、燃料ガス排出マ-ホールド、酸化剤ガス供給マ-ホールド、酸化剤ガス排出 マ-ホールド、前記冷却流体供給マ-ホールド、及び冷却流体排出マ-ホールドと、 を有し、前記各セルの前記燃料ガス流路が前記燃料ガス供給マ-ホールドと前記燃 料ガス排出マ-ホールドとを接続するように形成され、前記各セルの前記酸化剤ガス 流路が前記酸化剤ガス供給マ-ホールドと前記酸化剤ガス排出マ-ホールドとを接 続するように形成され、所定数のセル毎に、冷却流体流路が、前記アノードセパレー タ及び前記力ソードセパレータのうちの少なくともいずれかの背面の、前記セルの積 層方向から見て前記発電領域と重なる領域に前記冷却流体供給マ二ホールドと前 記冷却流体主排出マ-ホールドとを接続するように形成され、前記燃料ガス供給マ 二ホールドの上流側の端が前記燃料ガスの前記入口に連通しかつ前記燃料ガス排 出マ-ホールドの下流側の端が外部に連通し、前記酸化剤ガス供給マ-ホールドの 上流側の端が前記酸化剤ガスの前記入口に連通しかつ前記酸化剤ガス排出マ-ホ ルドの下流側の端が外部に連通し、前記冷却流体供給マ-ホールドの上流側の 端が前記冷却流体の前記入口に連通しかつ前記冷却流体排出マ二ホールドの下流 側の端が前記冷却流体の前記出口に連通し、前記燃料ガス供給マ二ホールド、前 記燃料ガス流路、及び前記燃料ガス排出マ-ホ—ルドが前記燃料ガス経路を構成し 、前記酸化剤ガス供給マ二ホールド、前記酸化剤ガス流路、及び前記酸化剤ガス排 出マ-ホールドが前記酸化剤ガス経路を構成し、前記冷却流体供給マ-ホールド、 前記冷却流体流路、及び前記冷却流体排出マ二ホールドが前記冷却流体経路を構 成している。
[0011] 1セル毎に、前記冷却流体流路が、前記アノードセパレータ及び前記力ソードセパ レータのうちの少なくともいずれかの背面に形成されており、前記冷却流体の前記出 口における温度を T3で表し、 T3— T2を ΔΤで表し、前記セルスタックにおいて積層 された前記セルの数を Nで表した場合に、前記制御装置は、前記発電が行われる時 に、 T1≥T2+ (X°C+Y°C X (N— 1) X ΔΤΖ8° であり、 Xが 1〜2. 5の範囲の数 値であり、 Υが 0. 02〜0. 027の範囲の数値であるという条件を満たすように、前記 冷却流体入口温度を制御してもよ ヽ。
[0012] このような構成とすると、燃料ガス及び酸化剤ガスの少なくとも ヽずれかの入口露点 換算温度が、冷却流体供給マ-ホールドの両端における温度差により生じるセルス タックの両端間における温度差を見込んだものとなるので、各セル入口における当該 ガスをフル加湿又は過加湿の状態に保つことができる。過加湿の意味につ 、ては、 実施の形態で説明する。
前記セルの積層方向力も見て、前記セルスタックの一方の半分の周縁部に、前記 燃料ガス供給マ二ホールド、前記酸化剤ガス供給マ二ホールド、及び前記冷却流体 供給マ二ホールドが形成され、かつ前記セルスタックの他方の半分の周縁部に、前 記燃料ガス排出マ二ホールド、前記酸化剤ガス排出マ二ホールド、及び前記冷却流 体排出マ二ホールドが形成されており、前記燃料ガス供給マ二ホールド及び前記酸 ィ匕剤ガス供給マ-ホールドのうち前記冷却流体供給マ-ホールドに近い方のマ-ホ 一ルドを流れるガスについての前記条件において、 Xが 1. 0〜1. 5の範囲の数値で あり、 Yが 0. 02〜0. 027の範囲の数値であり、かつ前記燃料ガス供給マ-ホールド 及び前記酸化剤ガス供給マ-ホールドのうち前記冷却流体供給マ-ホールドに遠い 方のマ-ホールドを流れるガスについての前記条件において、 Xが 2. 5であり、 Yが 0. 023であってもよい。
燃料ガス及び前記酸化剤ガスの好まし!/ヽ入口露点換算温度は、燃料ガス供給マ- ホールド及び酸化剤ガス供給マ-ホールドと冷却流体供給マ-ホールドとの位置関 係により定まるので、このような構成とすると、各セル入口における当該ガスをより好 適にフル加湿又は過加湿の状態に保つことができる。
2セル毎に、前記冷却流体流路が、前記アノードセパレータ及び前記力ソードセパ レータのうちの少なくともいずれかの背面に形成されており、前記冷却流体の前記出 口における温度を T3で表し、 T3— T2を ΔΤで表し、前記セルスタックにおいて積層 された前記セルの数を Nで表した場合に、前記制御装置は、前記発電が行われる時 に、 T1≥T2+ (X°C+Y°C X (N— 1) X ΔΤ/8° であり、 Xが 2. 8〜4. 2の範囲 の数値であり、 Υが 0. 013〜0. 033の範囲の数値であるという条件を満たすように、 前記冷却流体入口温度を制御してもよ ヽ。
前記セルの積層方向力も見て、前記セルスタックの一方の半分の周縁部に、前記 燃料ガス供給マ二ホールド、前記酸化剤ガス供給マ二ホールド、及び前記冷却流体 供給マ二ホールドが形成され、かつ前記セルスタックの他方の半分の周縁部に、前 記燃料ガス排出マ二ホールド、前記酸化剤ガス排出マ二ホールド、及び前記冷却流 体排出マ二ホールドが形成されており、前記燃料ガス供給マ二ホールド及び前記酸 ィ匕剤ガス供給マ-ホールドのうち前記冷却流体供給マ-ホールドに近い方のマ-ホ 一ルドを流れるガスについての前記条件において、 Xが 2. 8〜3. 3の範囲の数値で あり、 Υが 0. 013〜0. 033の範囲の数値であり、かつ前記燃料ガス供給マ-ホール ド及び前記酸化剤ガス供給マ二ホールドのうち前記冷却流体供給マ二ホールドに遠 い方のマ-ホールドを流れるガスについての前記条件において、 Xが 3. 7〜4. 2の 範囲の数値であり、 Yが 0. 013〜0. 030の範囲の数値であってもよい。
燃料ガス及び前記酸化剤ガスの好まし!/ヽ入口露点換算温度は、燃料ガス供給マ- ホールド及び酸化剤ガス供給マ-ホールドと冷却流体供給マ-ホールドとの位置関 係により定まるので、このような構成とすると、各セル入口における当該ガスをより好 適にフル加湿又は過加湿の状態に保つことができる。
[0014] 前記制御装置は、前記発電が行われる時に、前記冷却流体の前記出口における 温度(以下、冷却流体出口温度)を T3で表した場合に、 T3— T2≤15°Cの条件を満 たすように、さらに前記冷却流体出口温度を制御してもよい。
[0015] 前記燃料ガス流路及び前記酸化剤ガス流路の各々の最上流部と前記冷却流体流 路の最上流部とが前記セルの積層方向から見て概ね同じ位置に位置し、かつ、前記 燃料ガス流路及び前記酸化剤ガス流路の各々の最下流部と前記冷却流体流路の 最下流部とが前記セルの積層方向から見て概ね同じ位置に位置するように形成され ていてもよい。
[0016] このような構成とすると、発電領域を全域に渡ってフル加湿又は過加湿の状態に保 つことができる。
[0017] 前記燃料電池に供給される前記燃料ガス (以下、供給燃料ガス)と前記燃料電池か ら排出される前記燃料ガス (以下、排出燃料ガス)との全熱交換及び前記燃料電池 に供給される前記酸化剤ガス (以下、供給酸化剤ガス)と前記燃料電池から排出され る前記酸化剤ガス (以下、排出酸化剤ガス)との全熱交換のうちの少なくともいずれか を行 ヽ、それにより前記全熱交換を行ったガスの前記入口露点換算温度を調整する 露点調整装置を備えて 、てもよ 、。
[0018] このような構成とすると、供給燃料ガス及び供給酸化剤の少なくともいずれかの入 口露点換算温度が冷却流体の出口温度に連動して変化するので、当該入口露点換 算温度の制御が容易になる。
[0019] 前記燃料ガス及び前記酸化剤ガスの少なくとも!/ヽずれかの前記入口露点換算温度 、前記冷却流体入口温度、及び前記冷却流体出口温度が、前記発電が行われる時 に、 T2≤T1≤T3の条件を満たしてもよい。
[0020] 前記露点調整装置が、前記発電が行われる時に Τ3— Tl≥ 1°Cの条件が満たされ るように構成されて 、てもよ 、。
[0021] 前記露点調整装置が、前記発電が行われる時に T3— T1≥2°Cの条件が満たされ るように構成されて 、てもよ 、。
[0022] 前記露点調整装置は、前記供給燃料ガスと前記排出燃料ガスとの全熱交換及び 前記供給酸化剤ガスと前記排出酸化剤ガスとの全熱交換のうちの少なくともいずれ かを行 ヽ、かっこの全熱交換を行ったガスと前記燃料電池カゝら排出される冷却流体 とを全熱交換し、この冷却流体と全熱交換したガスを前記燃料電池に供給するよう構 成されていてもよい。
[0023] 前記露点調整装置が、前記発電が行われる時に T3— T1≥4°Cの条件が満たされ るように構成されて 、てもよ 、。
[0024] 前記露点調整装置は、前記供給燃料ガスと前記排出燃料ガスとの全熱交換及び 前記供給酸化剤ガスと前記排出酸化剤ガスとの全熱交換のうちの少なくともいずれ かを行 ヽ、かっこの全熱交換を行ったガスと前記燃料電池カゝら排出される冷却流体 とを単に熱交換し、この冷却流体と熱交換したガスを前記燃料電池に供給するよう構 成されていてもよい。
[0025] 前記露点調整装置は、前記供給燃料ガスと前記燃料電池から排出される冷却流 体との全熱交換及び前記供給酸化剤ガスと前記燃料電池から排出される冷却流体 との全熱交換のうちの少なくとも 、ずれかを行 ヽ、この全熱交換したガスを前記燃料 電池に供給するよう構成されて ヽてもよ ヽ。
[0026] 前記冷却流体供給装置は、前記燃料電池の前記冷却流体経路の両端に閉流路 を形成するように接続された冷却流体循環流路と、前記冷却流体循環流路中に設け られ前記冷却流体を、前記閉流路を通って循環させる冷却流体循環器と、前記冷却 流体循環流路に前記冷却流体循環器と前記燃料電池の前記冷却流体の出口との 間に位置するように設けられ前記冷却流体の保持する熱を放出させる放熱器とを有 していてもよい。
[0027] 前記制御装置は、前記発電が行われる時に、前記燃料ガス及び前記酸化剤ガス の少なくともいずれかの前記燃料電池力ゝらの出口における全水分量を露点に換算し た温度を T4で表した場合に、 T4≤T3の条件を満たすように、前記冷却流体出口温 度を制御してもよい。
[0028] 前記燃料ガス流路、前記酸化剤ガス流路、及び前記冷却流体流路は、各々を流 体が重力に逆らわずに流れるように形成されて!ヽてもよ!/ヽ。
[0029] 前記制御装置は、前記発電が行われる時に、 50°C≥T2≥70°Cの条件を満たすよ うに、前記冷却流体入口温度を制御してもよい。入口露点換算温度 T2が 70°Cのとき 、酸化剤ガスの利用率が 65%以上にならなければ冷却流体の出口露点換算温度が 80°C (入口露点換算温度 T2に対して + 10°C)にならず、かつ酸化剤ガスの利用率 が 65%以上の運転条件は現実的ではないからである。
[0030] 前記制御装置は、前記発電が行われる時に、 5°C≤T3— T2の条件を満たすように 、前記冷却流体出口温度を制御してもよい。このように構成してこそ、燃料電池に供 給する燃料ガス又は酸化剤ガスを、燃料電池から排出される燃料ガス、酸化剤ガス、 又は冷却水と全熱交換することができる。また、冷却流体が受け取った熱を給湯に利 用する場合に、給湯水の温度を 60°C以上に保つことができる。
前記制御装置は、前記発電が行われる時に、前記発電領域の全域に渡って過加 湿又はフル加湿となるよう、前記冷却流体供給装置を介して前記冷却流体の流通を 制御してちょい。
[0031] 前記制御装置は、前記発電が行われる時に、前記燃料剤ガス供給装置を制御して 、前記燃料ガス流路の出口における前記燃料ガスの流速が 1. 8mZs以上でかつ 4 . lmZs以下となるように前記燃料ガスを供給してもよ ヽ。
このような構成とすると、発電領域を過加湿に保つことによるフラッデイングの発生を 防止することができる。
前記制御装置は、前記発電が行われる時に、前記燃料ガス経路の圧力損失が 2k Pa以上でかつ lOkPa以下となるように燃料ガスの供給を制御してもよい。
[0032] 前記燃料ガス流路は、複数の流路溝で構成されており、該流路溝の相当直径が 0 . 78mm以上でかつ 1. 30mm以下であってもよい。
前記制御装置は、前記発電が行われる時に、前記酸化剤ガス供給装置を制御して 、前記酸化剤ガス流路の出口における前記酸化剤ガスの流速が 2. 8mZs以上でか つ 7. 7mZs以下となるように前記酸化剤ガスを供給してもよ ヽ。
このような構成とすると、発電領域を過加湿に保つことによるフラッデイングの発生を 防止することができる。
前記制御装置は、前記発電が行われる時に、前記酸化剤ガス経路の圧力損失が 2 kPa以上でかつ lOkPa以下となるように前記酸化剤ガスの供給を制御してもよい。
[0033] 前記酸化剤ガス流路は、それぞれ、複数の流路溝で構成されており、該流路溝の 相当直径が 0. 78mm以上でかつ 1. 30mm以下であってもよい。
本発明の上記目的、他の目的、特徴、及び利点は、添付図面参照の下、以下の好 適な実施態様の詳細な説明から明らかにされる。
発明の効果
[0034] 本発明は上記のように構成され、高分子電解質型燃料電池発電システムにお ヽて 、単電池毎にガス流路又は電極の構造を異ならしめることなぐ燃料電池の高分子電 解質膜の劣化を十分抑制することにより、燃料電池の寿命を十分向上することができ るという効果を奏する。
図面の簡単な説明
[0035] [図 1]図 1は本発明の実施の形態 1に係る高分子電解質型燃料電池発電システムの 構成を模式的に示すブロック図である。
[図 2]図 2は図 1の燃料電池の概略の構成を示す斜視図である。
[図 3]図 3は図 2の III III平面に沿った断面図である。
[図 4]図 4は力ソード側セパレータの正面図である。
[図 5]図 5は力ソード側セパレータの背面図である。
[図 6]図 6はアノード側セパレータの正面図である。
[図 7]図 7はアノード側セパレータの背面図である。
[図 8]図 8は、図 1のアノード側全熱交 を構成する全熱交換セルスタックの構成を 示す斜視図である。
[図 9]図 9は、図 8の IX— IX平面に沿った断面図である。
[図 10]図 10は、セルスタックの温度分布を測定するために用いたセパレータの構造 を示す模式図である。
[図 11]図 11は、 1セル毎に冷却した場合におけるセルスタックの温度分布を示すダラ フである。
[図 12]図 12は、 2セル毎に冷却した場合におけるセルスタックの温度分布を示すダラ フである。
[図 13]図 13は本発明の実施の形態 1による燃料電池の寿命試験の結果を示すダラ フである。
圆 14]図 14は本発明の実施の形態 2に係る高分子電解質型燃料電池発電システム の構成を模式的に示すブロック図である。
圆 15]図 15は本発明の実施の形態 3に係る高分子電解質型燃料電池発電システム の構成を模式的に示すブロック図である。
圆 16]図 16は本発明の実施の形態 4に係る高分子電解質型燃料電池発電システム の構成を模式的に示すブロック図である。
[図 17]図 17は本発明の実施の形態 5に係る燃料電池発電システムの構成を模式的 に示すブロック図である。
[図 18]図 18は、図 17の燃料電池発電システムに用 ヽられる加湿器付燃料電池の構 成を模式的に示す側面図である。
[図 19]図 19は、図 18の加湿器付燃料電池を構成するセパレータを示す図であって 、(a)は第 1のセパレータの正面図、(b)は第 2のセパレータの正面図である。
[図 20]図 20は 1セル毎に冷却した場合におけるセルスタックの温度分布の他の測定 例を示すグラフである。
[図 21]図 21は 2セル毎に冷却した場合におけるセルスタックの温度分布の他の測定 例を示すグラフである。
[図 22]図 22は 2セル毎に冷却した場合におけるセルスタックの温度分布の他の測定 例を示すグラフである。
[図 23]図 23は 2セル毎に冷却した場合におけるセルスタックの温度分布の他の測定 例を示すグラフである。
[図 24]図 24は 2セル毎に冷却した場合におけるセルスタックの温度分布の他の測定 例を示すグラフである。
[図 25]図 25は 2セル毎に冷却した場合におけるセルスタックの温度分布の他の測定 例を示すグラフである。
[図 26]図 26は 2セル毎に冷却した場合におけるセルスタックの温度分布の他の測定 例を示すグラフである。
圆 27]図 27は 1セル毎に冷却した場合における露点換算温度 T1が満たすべき条件 式の定数 X及び係数 Yの数値を電流密度とともに示す表である。
[図 28]図 28は 2セル毎に冷却した場合における露点換算温度 T1が満たすべき条件 式の定数 X及び係数 Yの数値を電流密度とともに示す表である。
[図 29]図 29はガス流量と圧力損失との関係の一例を示すグラフである。
圆 30]図 30は本発明の実施の形態 6に係る高分子電解質型燃料電池発電システム の構成を模式的に示すブロック図である。
[図 31]図 31は燃料ガスにおける出口流速及び圧力損失とフラッデイング発生の有無 との関係を示すグラフである。
[図 32]図 32は酸化剤ガスにおける出口流速及び圧力損失とフラッデイング発生の有 無との関係を示すグラフである。
符号の説明
1 セノレスタック
2 セル
3A, 3B 端板
4 酸化剤ガス供給マ二ホールド
5 燃料ガス供給マ二ホールド
6 燃料ガス排出マ-ホールド
7 酸化剤ガス排出マ-ホールド
8 冷却水供給マ二ホールド
9 冷却水排出マ二ホールド
10 力ソード側セパレータ
11, 21 酸化剤ガスの入口マ-ホールド孔 、 23 酸化剤ガスの出口マ-ホールド孔 酸化剤ガス流路
アノード側セパレータ
、 22 燃料ガスの入口マ-ホールド孔 、 24 燃料ガスの出口マ-ホールド孔 、 25 冷却水の入口マ-ホールド孔 、 26 冷却水の出口マ-ホールド孔 、 29 冷却水流路
燃料ガス流路
冷却水供給配管
高分子電解質膜
A 力ソード
B アノード
MEA
ガスケット
Oリング
酸化剤ガス供給配管
酸化剤ガス排出配管
燃料ガス供給配管
燃料ガス排出配管
冷却水排出配管
0 燃料電池発電システム
1 燃料電池
2 燃料ガス供給装置
3 酸化剤ガス供給装置
4 冷却システム
5 放熱装置
6 冷却水循環ポンプ 107 酸化剤ガス排出流路
108 制御装置
109 燃料ガス供給流路
110 燃料ガス排出流路
111 酸化剤ガス排出流路
112 冷却水循環流路
117 アノード側全熱交
118 力ソード側全熱交
202 全熱交換セル
203A, 203B 端板
204 第 1の流体供給マ-ホールド
205 第 2の流体供給マ-ホールド
206 第 2の流体排出マ-ホールド
207 第 1の流体排出マ-ホールド
210 第 1のセパレータ
211, 221 第 1の流体の入口マ-ホールド孔
213, 223 第 1の流体の出口マ-ホールド孔 217 第 1の流体流路
220 第 2のセパレータ
212, 222 第 2の流体の入口マ二ホールド孔
214, 224 第 2の流体の出口マ二ホールド孔 228 第 2の流体流路
243 疑似 MEA
251 第 1の流体供給配管
252 第 1の流体排出配管
253 第 2の流体供給配管
254 第 2の流体排出配管
301 全熱交換セルスタック 301 A 第 1の全熱交換セルスタック
301B 第 2の全熱交換セルスタック
301C 第 3の全熱交換セルスタック
301D 第 4の全熱交換セルスタック
302 全熱交換セル積層体
303A アノード側対冷却水熱交換器
303B 力ソード側対冷却水熱交換器
401 冷却水循環流路の燃料電池への入口
402 冷却水循環流路の燃料電池からの出口
403 燃料ガス入口
404 酸化剤ガス入口
500 加湿器付燃料電池
501 加湿器及び燃料電池一体化スタック
502 電池部
503 加湿器部
504A, 504B 端板
510 第 1のセパレータ
511 供給酸化剤ガス流路
512 供給燃料ガス流路
520 第 2のセパレータ
521 排出酸化剤ガス流路
522 排出燃料ガス流路
TS1 入口温度センサ
TS2 出口温度センサ
発明を実施するための最良の形態
以下、本発明の好ましい実施の形態を、図面を参照しながら説明する。
(実施の形態 1)
図 1は本発明の実施の形態 1に係る高分子電解質型燃料電池発電システムの構成 を模式的に示すブロック図である。
[0038] 本実施の形態の高分子電界質型燃料電池発電システム (以下、単に燃料電池発 電システムという)は高分子電解質型燃料電池 (以下、単に燃料電池という) 101を備 えている。燃料電池 101の、アノードへ燃料ガスを供給するための燃料ガス入口 403 には、燃料ガス供給流路 109を介して燃料ガス供給装置 102が接続されている。燃 料ガス供給装置 102は、燃料電池 101のアノードに燃料ガスを供給する。燃料ガス には、水素ガス、炭化水素系のガスを改質した改質ガス等が用いられる。燃料ガス供 給装置 102は、本実施の形態では、原料ガスから燃料ガスとして改質ガスを生成す る水素生成装置で構成されている。原料ガスとしては、ここでは天然ガスが用いられ る。
[0039] 燃料電池 101の、力ソードへ酸化剤ガスを供給するための酸化剤ガス入口 404に は、酸化剤ガス供給流路 107を介して酸化剤ガス供給装置 103が接続されて 、る。 酸化剤ガス供給装置 103は、燃料電池 101の力ソードに酸化剤ガスを供給する。酸 ィ匕剤ガスとして、ここでは空気が用いられる。酸化剤ガス供給装置 103は、本実施の 形態では、空気ブロワで構成されている。燃料電池 101のアノード及び力ソードに供 給された燃料ガス及び酸化剤ガスはそこで化学反応し、この化学反応により電力及 び熱(以下、排熱という)が発生する。燃料電池 101の、アノードから燃料ガスを排出 するための燃料ガス出口(図 1に示さず)には、燃料ガス排出流路 110が接続されて おり、上述の化学反応に寄与しなカゝつた余剰の燃料ガスはアノードから燃料ガス排 出流路 110に排出されて適宜処理される。例えば、燃料ガス排出流路 110に排出さ れた余剰の燃料ガスは、燃料ガス供給装置 102を構成する水素生成装置の改質部 加熱用の燃料として用いられたり、専用のパーナで燃焼処理されたり、あるいは適宜 希釈して大気中に放出されたりする。
[0040] また、燃料電池 101の、力ソードから酸化剤ガスを排出するための酸化剤ガス出口
(図 1に示さず)には、酸化剤ガス排出流路 111が接続されており、上述の化学反応 に寄与しな力つた余剰の酸化剤ガスは力ソードから酸化剤ガス排出流路 111を通じ て大気中に放出される。
一方、この燃料電池発電システム 100には、燃料電池 101を通過するように、冷却流 体循環経路としての冷却水循環流路 112が形成されて ヽる。冷却水循環流路 112 には冷却流体として水(以下、冷却水という)が循環される。なお、冷却流体として例 えば不凍液を用いてもよい。冷却水循環流路 112には放熱器 105と循環ポンプ 106 とが配設されている。この冷却水循環流路 112、放熱器 105、及び循環ポンプ 106 が冷却システム 104を構成している。放熱装置 105は、燃料電池 101から冷却水に 伝達された熱を冷却水から放出させるもので、例えば、冷却水力 排熱を受け取って この排熱を利用する排熱利用システム、あるいは、フィンが形成された路壁を有する 冷却水流路と該フィンに送風する送風機とを有する風冷装置等で構成されて!ヽる。こ の冷却システム 104では、循環ポンプ 106により冷却水を、冷却水循環流路 112を 通って図 1の矢印方向に循環させることにより、冷却水が燃料電池 101から受け取つ た排熱を放熱装置 105で放出する。これにより、燃料電池 101が冷却される。この場 合、放熱装置 105において、冷却水の単位流量当たりの放熱量を調整することがで き、一方、冷却水循環ポンプ 106において冷却水の流量を調整することができる。従 つて、放熱装置 105及び冷却水循環ポンプ 106の各々が冷却水の放熱量を決定す ることができ、これらの各々が冷却水の温度調節手段として機能する。
[0041] さらに、燃料電池発電システム 100は、アノード側全熱交翻 117と力ソード側全 熱交^^ 118とを有している。
[0042] アノード側全熱交翻 117は、内部に、供給側燃料ガス流路 117a、排出側燃料ガ ス流路 117b、及び冷却水流路 117cが形成されている。そして、供給側燃料ガス流 路 117aを流れるガスと排出側燃料ガス流路 117bを流れるガスとが全熱交換可能に 形成されている。具体的には、供給側燃料ガス流路 117aの一部と排出側燃料ガス 流路 117bの一部とが全熱交換膜を隔てて隣接するように形成されて!ヽる。全熱交換 膜として、例えば、燃料電池 101に用いられる固体高分子電解質膜が用いられてい る。また、供給側燃料ガス流路 117aを流れる全熱交換後のガスが冷却水流路 117c を流れる冷却水と全熱交換可能に形成されている。そして、供給側燃料ガス流路 11 7aが燃料ガス供給流路 109の途中に挿入されるようにして該燃料ガス供給流路 109 に接続され、排出側燃料ガス流路 117bが燃料ガス排出流路 110の途中に挿入され るようにして該燃料ガス排出流路 110に接続されている。また、冷却水循環流路 112 は一部が 2つの分流路 112a, 112b (ここでは分流比 1 : 1)で構成されており、冷却 水流路 117cが冷却水循環流路 112の一方の分流路 112aの途中に挿入されるよう にして該分流路 112aに接続されて 、る。
[0043] これにより、燃料ガス供給装置 102から流出した燃料ガスが、アノード側全熱交換 器 117において、燃料電池 101から排出された燃料ガスにより加湿及び加熱され、さ らに燃料電池 101から排熱を受け取って昇温した冷却水で加湿及び加熱され、それ により、所定の後述する露点換算温度を有する燃料ガスとなる。そして、この所定の 露点換算温度を有する燃料ガスが燃料電池 101の燃料ガス入口 403を経てアノード に供給される。
[0044] 一方、力ソード側全熱交換器 118は、内部に、供給側酸化剤ガス流路 118a、排出 側酸化剤ガス流路 118b、及び冷却水流路 118cが形成されている。そして、供給側 酸化剤ガス流路 118aを流れるガスと排出側酸化剤ガス流路 118bを流れるガスとが 全熱交換可能に形成されている。具体的には、供給側酸化剤ガス流路 118aの一部 と排出側酸化剤ガス流路 118bの一部とが全熱交換膜を隔てて隣接するように形成 されている。全熱交換膜として、例えば、燃料電池 101に用いられる固体高分子電 解質膜が用いられている。また、供給側酸化剤ガス流路 118aを流れる全熱交換後 のガスが冷却水流路 118cを流れる冷却水と全熱交換可能に形成されている。そし て、供給側酸化剤ガス流路 118aが酸化剤ガス供給流路 107の途中に挿入されるよ うにして該酸化剤ガス供給流路 107に接続され、排出側酸化剤ガス流路 118bが酸 ィ匕剤ガス排出流路 111の途中に挿入されるようにして該酸化剤ガス排出流路 111に 接続され、冷却水流路 118cが冷却水循環流路 112の他方の分流路 112bの途中に 挿入されるようにして該分流路 112bに接続されて ヽる。
[0045] これにより、酸化剤ガス供給装置 103から流出した酸化剤ガスが、力ソード側全熱 交換器 118において、燃料電池 101から排出された酸化剤ガスにより加湿及び加熱 され、さらに燃料電池 101から排熱を受け取って昇温した冷却水で加熱され、それに より、所定の後述する露点換算温度を有する酸化剤ガスとなる。そして、この所定の 露点換算温度を有する酸化剤ガスが燃料電池 101の酸化剤ガス入口 404を経て力 ソードに供給される。 [0046] ここで、図 1において、燃料電池 101及び全熱交換器 117, 118における各ガス及 び冷却流体の流れ方向は単に模式的に表されているに過ぎず、各ガス及び冷却流 体の相互間の流れ方向の関係(例えば、いわゆる平行流、対向流等)を示すもので はない。これは、以降の図 14乃至図 17においても同様である。
[0047] また、燃料電池発電システム 100は入口温度センサ TS1と出口温度センサ TS2と 制御装置 108とを備えている。入口温度センサ TS1及び出口温度センサ TS2は、こ こではサーミスタでそれぞれ構成され、冷却水循環流路 112の燃料電池 101 (正確 には後述するセルスタック 1)の入口 401及び出口 402における冷却水の温度をそれ ぞれ検出して、その検出値を制御装置 108にそれぞれ入力する。制御装置 108は、 マイコン等の演算装置で構成され、燃料電池発電システム 100の所要の構成要素を 制御して該燃料電池発電装置 100の動作を制御する。ここで、本明細書においては 、制御装置とは、単独の制御装置だけでなぐ複数の制御装置が協働して制御を実 行する制御装置群をも意味する。よって、制御装置 108は、必ずしも単独の制御装 置で構成される必要はなぐ複数の制御装置が分散配置されていて、それらが協働 して燃料電池発電装置 101の動作を制御するよう構成されていてもよい。
[0048] 制御装置 108は、具体的には、少なくとも燃料ガス供給装置 102、酸化剤ガス供給 装置 103、放熱装置 105、及び冷却水循環ポンプ 109を制御し、特に、入口温度セ ンサ TS1及び出口温度センサ TS2の検出値に基づいて放熱装置 105及び冷却水 循環ポンプ 109の少なくともいずれかを制御して、冷却水の温度を所定の温度に調 整する。
[0049] 次に、燃料電池 101の構造を詳しく説明する。
[0050] 図 2は図 1の燃料電池の概略の構成を示す斜視図、図 3は図 2の III III平面に沿つ た断面図である。
[0051] 図 2においては、燃料電池における上下方向を、図における上下方向として表して いる。なお、これは、後述する図 4乃至図 7においても同様である。
図 2に示すように、燃料電池 101はセルスタック 1を有している。セルスタック 1は、板 状の全体形状を有するセル 2がその厚み方向に積層されてなるセル積層体 201と、 セル積層体 201の両端に配置された第 1及び第 2の端板 3A, 3Bと、セル積層体 20 1と第 1及び第 2の端板 3A, 3Bとをセル 2の積層方向において締結する図示されな い締結具とを有している。また、第 1及び第 2の端板 3A, 3Bには集電端子がそれぞ れ配設されているが図示を省略している。板状のセル 2は、鉛直面に平行に延在して おり、従って、セル 2の積層方向は水平方向となっている。
[0052] セル積層体 201の一方の側部(以下、第 1の側部という)の上部には、該セル積層 体 201を積層方向に貫通するように酸化剤ガス供給マ-ホールド 4が形成されて 、る 。酸化剤ガス供給マ-ホールド 4の一端は第 1の端板 3Aに形成された貫通孔に連通 し、この貫通孔の外側開口(酸化剤ガス入口 404)に図 1の酸化剤ガス供給路 107を 構成する酸化剤ガス供給配管 51が接続されている。酸化剤ガス供給マ-ホールド 4 の他端は第 2の端板 3Bによって閉鎖されている。また、セル積層体 201の他方の側 部(以下、第 2の側部)の下部には、該セル積層体 201を積層方向に貫通するように 酸化剤ガス排出マ-ホールド 7が形成されて 、る。酸化剤ガス供給マ-ホールド 7の 一端は第 1の端板 3Aによって閉鎖されている。酸化剤ガス排出マ-ホールド 7の他 端は第 2の端板 3Bに形成された貫通孔に連通し、この貫通孔の外側開口(酸化剤ガ ス出口)に図 1の酸化剤ガス排出路 111を構成する酸化剤ガス排出配管 52が接続さ れている。
[0053] セル積層体 201の第 2の側部の上部には、該セル積層体 201を積層方向に貫通 するように燃料ガス供給マ-ホールド 5が形成されて 、る。燃料ガス供給マ-ホール ド 5の一端は第 1の端板 3Aに形成された貫通孔に連通し、この貫通孔の外側開口( 燃料ガス入口) 403に図 1の燃料ガス供給路 109を構成する燃料ガス供給配管 53が 接続されている。燃料ガス供給マ-ホールド 5の他端は第 2の端板 3Bによって閉鎖さ れている。
また、セル積層体 201の第 1の側部の下部には、該セル積層体 201を積層方向に貫 通するように燃料ガス排出マ-ホールド 6が形成されて 、る。燃料ガス排出マ-ホー ルド 6の一端は第 1の端板 3Aによって閉鎖されている。燃料ガス供給マ-ホールド 5 の他端は第 2の端板 3Bに形成された貫通孔に連通し、この貫通孔の外側開口(燃料 ガス出口)に図 1の燃料ガス排出路 110を構成する燃料ガス排出配管 54が接続され ている。 酸化剤ガス供給マ-ホールド 4の上部の内側には、セル積層体 201を積層方向に貫 通するように冷却水供給マ-ホールド 8が形成されて 、る。冷却水供給マ-ホールド 8の一端は第 1の端板 3Aに形成された貫通孔に連通し、この貫通孔の外側開口(冷 却水入口 401)冷却水供給配管 30が接続されている。冷却水供給配管 30は、図 1 の冷却水循環流路 112の、循環ポンプ 106の吐出ポート(図示せず)と燃料電池 10 1との間の部分を構成している。冷却水供給マ-ホールド 8の他端は第 2の端板 3B によって閉鎖されている。
[0054] また、酸化剤ガス排出マ-ホールド 7の下部の内側には、セル積層体 201を積層方 向に貫通するように冷却水排出マ-ホールド 9が形成されて 、る。冷却水排出マ-ホ 一ルド 9の一端は第 1の端板 3Aによって閉鎖されている。冷却水排出マ-ホールド 9 の他端は第 2の端板 3Bに形成された貫通孔に連通し、この貫通孔の外側開口(冷却 水出口 402)に冷却水排出配管 31が接続されている。冷却水供給配管 31は、図 1 の冷却水循環流路 112の、循環ポンプ 106の吸入ポートと燃料電池 101との間の部 分を構成している。
[0055] 図 3に示すように、セル 2は、板状の MEA43と、 MA43の両主面に接触するように 配置された力ソード側セパレータ 10及びアノード側セパレータ 20とで構成されている 。そして、互いに隣接するセル 2、 2において、一方のセル 2の力ソード側セパレータ 1 0の背面と他方のセル 2のアノード側セパレータ 20の背面とが接触するようにして、セ ル 2が積層されている。 MEA43、力ソード側セパレータ 10、及びアノード側セパレー タ 20は、互いに同じ大きさの同じ形状 (ここでは矩形)に形成されている。そして、 M EA43、力ソード側セパレータ 10、及びアノード側セパレータ 20には、互いに対応す る所定の箇所に、これらを厚み方向に貫通する、酸化剤の入口マ-ホールド孔、酸 化剤の出口マ-ホールド孔、燃料の入口マ-ホールド孔、燃料の出口マ-ホールド 孔、冷却水の入口マ二ホールド孔、及び冷却水の出口マ二ホールド孔が形成され、 全てのセル 2における MEA43、力ソード側セパレータ 10、及びアノード側セパレー タ 20の、酸化剤の入口マ-ホールド孔、酸化剤の出口マ-ホールド孔、燃料の入口 マ-ホールド孔、燃料の出口マ-ホールド孔、冷却水の入口マ-ホールド孔、及び 冷却水の出口マ-ホールド孔カ それぞれ繋がって、酸化剤供給マ-ホールド 4、酸 ィ匕剤排出マ-ホールド 7、燃料供給マ-ホールド 5、燃料排出マ-ホールド 6、冷却 水供給-ホールド 8、及び冷却水排出マ-ホールド 9が、それぞれ形成されている。
[0056] 力ソード側セパレータ 10の正面及び背面には、それぞれ、酸化剤ガス流路 17及び 冷却水流路 19が形成されている。酸化剤ガス流路 17は後述するように、酸化剤ガス の入口マ-ホールド孔と酸化剤ガスの出口マ-ホールド孔とを接続するように形成さ れ、冷却水流路 19は後述するように、冷却水の入口マ二ホールド孔と冷却水の出口 マ-ホールド孔とを接続するように形成されている。そして、力ソード側セパレータ 10 は、正面が MEA43に接触するように配置されて 、る。
[0057] アノード側セパレータ 20の正面及び背面には、それぞれ、燃料ガス流路 28及び冷 却水流路 29が形成されている。燃料ガス流路 19は後述するように、燃料ガスの入口 マ-ホールド孔と燃料ガスの出口マ-ホールド孔とを接続するように形成され、冷却 水流路 29は後述するように、冷却水の入口マ-ホールド孔と冷却水の出口マ-ホー ルド孔とを接続するように形成されている。そして、アノード側セパレータ 20は、正面 が MEA43に接触するように配置されている。
[0058] 各流路 17、 19、 28、 29は力ソード側セパレータ 10又はアノード側セパレータ 20の 主面に形成された溝で構成されている。また、各流路 17、 19、 28、 29は、図 3では、 それぞれ、 2つの流路で構成されている力 多数の流路で構成されていてもよい。ま た、隣接する力ソード側セパレータ 10の冷却水流路 19とアノード側セパレータ 20の 冷却水流路 29とは、セル 2が積層されたとき互いに合わさる(接合する)ように形成さ れており、両者で 1つの冷却水流路が形成されている。
また、力ソード側セパレータ 10の背面及びアノード側セパレータ 20の背面には、冷 却水の入口マ-ホールド孔及び出口マ-ホールド孔並びに冷却水流路と、酸化剤 の入口マ-ホールド孔と、酸化剤の出口マ-ホールド孔と、燃料の入口マ-ホールド 孔と、燃料の出口マ-ホールド孔とを、それぞれ、囲むように Oリング収容溝が形成さ れ、その溝に Oリング 47がそれぞれ配置されている。これにより、前記のマ-ホールド 孔等が互 、にシールされて 、る。
MEA43は、高分子電解質膜 41と、力ソード 42Aと、アノード 42Bと、一対のガスケッ ト 46と、を有している。そして、高分子電解質膜 41の縁部以外の部分の両面にそれ ぞれカソード 42A及びアノード 42Bが形成され、高分子電解質膜 41の縁部の両面 に力ソード 42A及びアノード 42Bをそれぞれ囲むようにガスケット 46が配置されてい る。一対のガスケット 46、力ソード 42A、アノード 42B、及び高分子電解質膜 41は互 いに一体化されている。
[0059] 高分子電解質膜 41は、水素イオンを選択的に輸送可能な材料で構成され、ここで は、パーフルォロカーボンスルホン酸系の材料で構成されている。力ソード 42A及び アノード 42Bは、高分子電解質 41の互いに反対の主面にそれぞれ形成された触媒 層(図示せず)とこの触媒層の上に形成されたガス拡散層(図示せず)とで構成され ている。触媒層は白金系の金属触媒を担持したカーボン粉末で主に構成されている 。ガス拡散層は通気性と導電性とを有する不織布、紙などで構成されている。
また、力ソード 42Aと、アノード 42Bと、力ソード側セパレータ 10における酸化剤ガス 流路 17が形成された領域及び冷却水流路 19が形成された領域と、アノード側セパ レータ 20における燃料ガス流路 28が形成された領域及び冷却水流路 29が形成さ れた領域とは、セル 2の積層方向カゝら見て、互いに、実質的に全体的に重なり合うよ うに配設されている。
[0060] 次に、力ソード側セパレータ及びアノード側セパレータについて詳しく説明する。
[0061] 図 4は力ソード側セパレータの正面図、図 5はその背面図、図 6はアノード側セパレ ータの正面図、図 7はその背面図である。
[0062] 図 4に示すように、力ソード側セパレータ 10は、酸化剤ガスの入口マ-ホールド孔 1 1及び出口マ-ホールド孔 13、燃料ガスの入口マ-ホールド孔 12及び出口マ-ホ 一ルド孔 14並びに冷却水の入口マ-ホールド孔 15及び出口マ-ホールド孔 16を 有する。セパレータ 10は、さらに、力ソードと対向する面に、マ-ホールド孔 11と 13と を接続するガス流路 17を有し、背面には、冷却水のマ-ホールド孔 15と 16を接続す る流路 19を有する。
[0063] 図 4において、酸化剤ガスの入口マ-ホールド孔 11はセパレータ 10の一方の側部
(図面左側の側部:以下、第 1の側部という)の上部に設けられ、出口マ二ホールド孔 13はセパレータ 10の他方の側部(図面右側の側部:以下、第 2の側部と 、う)の下部 に設けられている。燃料ガスの入口マ-ホールド孔 12は、セパレータ 10の第 2の側 部の上部に設けられ、出口マ-ホールド孔 14はセパレータ 10の第 1の側部の下部 に設けられて 、る。冷却水の入口マ-ホールド孔 15は酸化剤ガスの入口マ-ホール ド孔 11の上部の内側に設けられ、出口マ-ホールド孔 16は酸化剤ガスの出口マ- ホールド孔 13の下部の内側に設けられている。酸化剤ガスの入口マ-ホールド孔 1 1及び出口マ-ホールド孔 13、燃料ガスの入口マ-ホールド孔 12及び出口マ-ホ 一ルド孔 14は、鉛直方向に長い長孔形状に形成されている。また、冷却水マ-ホー ルド孔 15、 16は、水平方向に長い長孔形状に形成されている。
[0064] 酸化剤ガス流路 17は、本実施の形態では 2つの流路 (流路溝)で構成されて 、る。
もちろん、任意の数の流路で構成することができる。各流路は、水平方向に延びる水 平部 17aと、鉛直方向に延びる鉛直部 17bとで実質的に構成されている。具体的に は、酸化剤ガス流路 17の各流路は、酸化剤ガスの入り口マ-ホールド孔 11の上部 カもセパレータ 10の第 2の側部まで水平に延び、そこから下方にある距離延び、そこ 力も水平にセパレータ 10の第 1の側部まで水平に延び、そこから下方にある距離延 びている。そして、そこから、上記の延在パターンを 2回繰り返し、その到達点から酸 ィ匕剤ガスの出口マ-ホールド孔 13の下部に至るように水平に延びている。そして、各 流路の水平に延びる部分が水平部 17aを形成し、下方に延びる部分が鉛直部 17b を形成している。これにより、酸化剤ガス流路 17では、酸化剤ガスが、水平部 17aと 鉛直部 17bとを交互に通過するようにして蛇行しながら重力に逆らわずに流れ、その 結果、フラッデイングが抑制される。
[0065] なお、各流路は、ここでは水平部 17aと鉛直部 17bとで構成されている力 ガスの通 流方向に向力つて水平又は下り勾配 (垂直を含む)となるように形成されて 、ればよ い。但し、各流路を水平部 17aと鉛直部 17bとで構成すると、酸化剤ガス流路 17を高 密度で形成することができる。
図 5において、冷却水流路 19は、 2つの流路 (流路溝)で構成されている。各流路は 、水平方向に延びる水平部 19aと、鉛直方向に延びる鉛直部 19bとで実質的に構成 されている。具体的には、冷却水流路 19の各流路は、冷却水の入り口マ二ホールド 孔 15の、酸化剤ガスの入り口マ-ホールド孔 11に近い方の端部力もある距離下方 に延び、そこから、セパレータ 10の第 2の側部(図面左側の側部)まで水平に延び、 そこから下方にある距離延び、そこ力も第 1の側部(図面右側の側部)まで水平に延 びている。そして、そこから、上記の延在パターンを 2回半繰り返し、その到達点から 冷却水の出口マ-ホールド孔 16の、酸化剤ガスの出口マ-ホールド孔 13に近い方 の端部に至るように下方に延びている。そして、各流路の水平に延びる部分が水平 部 19aを形成し、下方に延びる部分が鉛直部 19bを形成している。これにより、冷却 水流路 19では、冷却水が、水平部 19aと鉛直部 19bとを交互に通過するようにして 蛇行しながら重力に逆らわずに流れる。
そして、ここで重要なことは、以下の点である。すなわち、冷却水の入口マ-ホールド 孔 15と酸化剤ガスの入口マ-ホールド孔 11とが近接して設けられ、冷却水の出口マ 二ホールド孔 16と酸化剤ガスの出口マ-ホールド孔 13とが近接して設けられ、かつ セパレータ 10の厚み方向から見て、冷却水流路 18が酸化剤ガス流路 17と実質的に 重なるように形成されており、その結果、冷却水と酸化剤ガスとがセパレータ 10を挟 んで実質的に同じ方向に流れるという点である。このように構成することにより、セパ レータ 10の厚み方向力も見て、最も相対湿度が低くなる酸化剤ガス入口部分と冷却 水の入口部分とがほぼ一致するので、高分子電解質膜の乾きを解消することができ 、ひいては高分子電解質膜の耐久性を向上することができる。
[0066] なお、各流路は、ここでは水平部 19aと鉛直部 19bとで実質的に構成されているが 、冷却水の通流方向に向力つて水平又は下り勾配となるように形成されて!、ればよ!/ヽ 。但し、各流路を水平部 19aと鉛直部 19bとで構成すると、冷却水流路 19を高密度 で形成することができる。
[0067] 図 6に示すように、アノード側セパレータ 20は、酸化剤ガスの入口マ-ホールド孔 2 1及び出口マ-ホールド孔 23、燃料ガスの入口マ-ホールド孔 22及び出口マ-ホ 一ルド孔 24並びに冷却水の入口マ-ホールド孔 25及び出口マ-ホールド孔 26を 有する。セパレータ 20は、さらに、アノードと対向する面に、マ二ホールド孔 22と 24と を接続するガス流路 28を有し、背面には、冷却水のマ-ホールド孔 25と 26を接続す る流路 29を有する。
[0068] 図 6において、酸化剤ガスの入口マ-ホールド孔 21はセパレータ 20の一方の側部
(図面右側の側部:以下、第 1の側部という)の上部に設けられ、出口マ二ホールド孔 23はセパレータ 20の他方の側部(図面左側の側部:以下、第 2の側部と 、う)の下部 に設けられている。燃料ガスの入口マ-ホールド孔 22は、セパレータ 20の第 2の側 部の上部に設けられ、出口マ-ホールド孔 24はセパレータ 20の第 1の側部の下部 に設けられて 、る。冷却水の入口マ-ホールド孔 25は酸化剤ガスの入口マ-ホール ド孔 21の上部の内側に設けられ、出口マ-ホールド孔 26は酸化剤ガスの出口マ- ホールド孔 23の下部の内側に設けられて 、る。酸化剤ガスの入口マ-ホールド孔 2 1及び出口マ-ホールド孔 23、燃料ガスの入口マ-ホールド孔 22及び出口マ-ホ 一ルド孔 24は、鉛直方向に長い長孔形状に形成されている。また、冷却水マ-ホー ルド孔 25、 26は、水平方向に長い長孔形状に形成されている。
[0069] 燃料ガス流路 28は、本実施の形態では 2つの流路 (流路溝)で構成されて!、る。各 流路は、水平方向に延びる水平部 28aと、鉛直方向に延びる鉛直部 28bとで実質的 に構成されている。具体的には、燃料ガス流路 28の各流路は、燃料ガスの入り口マ 二ホールド孔 22の上部力 セパレータ 20の第 1の側部まで水平に延び、そこから下 方にある距離延び、そこ力も水平にセパレータ 20の第 2の側部まで水平に延び、そこ 力も下方にある距離延びている。そして、そこから、上記の延在パターンを 2回繰り返 し、その到達点力も燃料ガスの出口マ-ホールド孔 24の下部に至るように水平に延 びている。そして、各流路の水平に延びる部分が水平部 28aを形成し、下方に延び る部分が鉛直部 28bを形成している。これにより、燃料ガス流路 28では、燃料ガスが 、水平部 28aと鉛直部 28bとを交互に通過するようにして蛇行しながら重力に逆らわ ずに流れ、その結果、フラッデイングが抑制される。
[0070] なお、各流路は、ここでは水平部 28aと鉛直部 28bとで実質的に構成されているが 、ガスの通流方向に向力つて水平又は下り勾配 (垂直を含む)となるように形成されて いればよい。但し、各流路を水平部 28aと鉛直部 28bとで構成すると、燃料ガス流路 28を高密度で形成することができる。
[0071] 図 7において、冷却水流路 29は、図 5の力ソードセパレータ 10の背面に形成された 冷却水流路 19と図面における左右が反対になるように形成されている。すなわち、 各流路は、水平方向に延びる水平部 29aと、鉛直方向に延びる鉛直部 29bとで実質 的に構成されている。具体的には、冷却水流路 29の各流路は、冷却水の入り口マ二 ホールド孔 25の、酸化剤ガスの入りロマ-ホールド孔 21に近い方の端部からある距 離下方に延び、そこから、セパレータ 20の第 2の側部(図面右側の側部)まで水平に 延び、そこから下方にある距離延び、そこから第 1の側部(図面左側の側部)まで水 平に延びている。そして、そこから、上記の延在パターンを 2回半繰り返し、その到達 点から冷却水の出口マ-ホールド孔 26の、酸化剤ガスの出口マ-ホールド孔 23に 近い方の端部に至るように下方に延びている。そして、各流路の水平に延びる部分 が水平部 29aを形成し、下方に延びる部分が鉛直部 29bを形成している。これにより 、冷却水流路 29では、冷却水が、水平部 29aと鉛直部 29bとを交互に通過するよう にして蛇行しながら重力に逆らわずに流れる。
[0072] そして、ここで重要な点は、以下の点である。すなわち、冷却水の入口マ-ホールド 孔 25と燃料ガスの入口マ-ホールド孔 22とが共にセパレータ 20の上部に設けられ、 冷却水の出口マ-ホールド孔 26と燃料ガスの出口マ-ホールド孔 24とが共にセパ レータ 20の下部に設けられ、かつセパレータ 20の厚み方向力も見て、冷却水流路 2 9が燃料ガス流路 28と実質的に重なるように形成されており、その結果、冷却水と燃 料ガスとは水平方向にぉ ヽてはセパレータ 20を挟んで互いに反対方向に流れるも のの、鉛直方向においては、全体としては、共に、上から下へと同じ方向に流れると いう点である。このように構成することにより、最も相対湿度が低くなる燃料ガス流路 2 8の上流部分が、セパレータ 20の鉛直方向において、冷却水の入口部分が設けられ て最も温度が低い上部に位置するので、高分子電解質膜の乾きの解消に寄与し、ひ いては高分子電解質膜の耐久性の向上に寄与する。
[0073] なお、各流路は、ここでは水平部 29aと鉛直部 29bとで実質的に構成されているが 、冷却水の通流方向に向力つて水平又は下り勾配となるように形成されて!、ればよ!/ヽ 。但し、各流路を水平部 29aと鉛直部 29bとで構成すると、冷却水流路 29を高密度 で形成することができる。
[0074] 既述のように、上記の力ソード側セパレータ 10とアノード側セパレータ 20とにより M EAを挟むことによりセルが構成される。従って、隣接するセル間には、力ソード側セ パレータ 10とアノード側セパレータ 20とがそれらの冷却水の流路 19と 29を向き合わ せて配置され、冷却部が構成される。複数セル毎に冷却部を設ける場合は、前記の ような複合セパレータの代わりに、一方の面が力ソード側セパレータ、他方の面がァノ 一ド側セパレータとして働く単一のセパレータが適宜用いられる。
[0075] 以上のように構成された燃料電池 101では、燃料ガス、酸化剤ガス、及び冷却水が 以下のように通流する。
[0076] 図 1乃至図 7において、燃料ガスは、燃料ガス供給配管 43を通じてセルスタック 1の 燃料ガス供給マ二ホールド 5に供給される。この供給された燃料ガスは、燃料ガス供 給マ-ホールド 5から、各セル 2の入口マ-ホールド孔 22に流入し、燃料ガス流路 28 を通流する。そして、この間に、アノード 42B、高分子電解質膜 41、及び力ソード 42 Aを介して酸化剤ガスと反応して消費され、消費されなカゝつた燃料ガスが出口マ-ホ 一ルド孔 24から燃料ガス排出マ-ホールド 6に流出し、燃料ガス排出配管 44を通じ てセルスタック 1から排出される。
[0077] 一方、酸化剤ガスは、酸化剤ガス供給配管 41を通じてセルスタック 1の酸化剤ガス 供給マ二ホールド 8に供給される。この供給された酸化剤ガスは、酸化剤ガス供給マ 二ホールド 4から、各セル 2の入口マ-ホールド孔 11に流入し、酸化剤ガス流路 17を 通流する。そして、この間に、力ソード、高分子電解質膜、及びアノードを介して燃料 ガスと反応して消費され、消費されなカゝつた酸化剤ガスが出口マ-ホールド孔 13から 酸化剤ガス排出マ-ホールド 7に流出し、酸化剤ガス排出配管 42を通じてセルスタツ ク 1から排出される。
[0078] また、冷却水は、冷却水供給配管 30を通じてセルスタック 1の冷却水供給マ-ホー ルド 8に供給される。この供給された冷却水は、冷却水供給マ-ホールド 8から、各セ ル 2の入口マ-ホールド孔 15, 25に流入し、冷却水流路 19, 29を通流する。そして 、この間に、力ソードセパレータ 10及びアノードセパレータ 20を介して力ソード及びァ ノードを冷却するとともにこれら力も熱を受け取って、出口マ-ホールド孔 16, 26から 冷却水排出マ-ホールド 9に流出し、冷却水排出配管 31を通じてセルスタック 1から 排出される。
[0079] そして、この過程にぉ ヽて、燃料ガス及び酸化剤ガスは、それぞれ、燃料ガス流路 28及び酸化剤ガス流路 17を、重力に逆らわないように流れ、それにより、フラッディ ングが防止される。 [0080] また、各セパレータ 10, 20において、冷却水の入口近傍部に、相対湿度が最も低 くなる、燃料ガス流路 28又は酸化剤ガス流路 17の上流部が位置していることから、 高分子電解質膜の乾燥が防止される。
[0081] 次に、アノード側全熱交翻 117及び力ソード側全熱交翻 118の構成例を説明 する。
[0082] 図 8は図 1のアノード側全熱交 117を構成する全熱交換セルスタックの構成を 示す斜視図、図 9は図 8の IX— IX平面に沿った断面図である。
図 2、図 3、図 8、及び図 9に示すように、アノード側全熱交翻117は、基本的に燃 料電池 101のセルスタック 1と同様の構成を有する全熱交換セルスタック 301が主要 部を構成しているので、セルスタック 1と比較しながらその構造を説明する。
全熱交換セルスタック 301は、板状の全体形状を有するセル 202がその厚み方向に 積層されてなるセル積層体 302と、セル積層体 302の両端に配置された第 1及び第 2の端板 203Α, 203Βと、セノレ積層体 302と第 1及び第 2の端板 203Α, 203Βとをセ ル 202の積層方向にぉ 、て締結する図示されな!、締結具とを有して 、る。
[0083] セル積層体 302には、セルスタック 1の酸化剤ガス供給マ-ホールド 4、酸化剤ガス 排出マ-ホールド 5、燃料ガス供給マ-ホールド 7、及び燃料ガス排出マ-ホールド 6 にそれぞれ相当する、第 1の流体供給マ-ホールド 204、第 1の流体排出マ-ホー ルド 207、第 2の流体供給マ-ホールド 205、及び第 2の流体排出マ-ホールド 206 が形成されて 、る。第 1の流体供給マ-ホールド 204及び第 2の流体供給マ-ホー ルド 205は、それぞれ、端板 203Αに設けられた貫通孔を介して、第 1の流体供給配 管 251及び第 2の流体供給配管 253に接続されている。また、第 1の流体排出マ- ホールド 207及び第 2の流体排出マ-ホールド 206は、それぞれ、端板 203Βに設け られた貫通孔を介して、第 1の流体排出配管 252及び第 2の流体排出配管 254に接 続されている。なお、セルスタック 1と異なり、セル積層体 302には、冷却水供給マ- ホールド及び冷却水排出マ-ホールドは設けられて ヽな 、。
全熱交換セル 202は、疑似 ΜΕΑ243とこれを挟む第 1のセパレータ 210及び第 2の セパレータ 220を有している。疑似 ΜΕΑ243は、セルスタック 201の ΜΕΑ43におい てアノード 42Β及び力ソード 42Αが省略されている以外はセルスタック 201の ΜΕΑ4 3と同様に構成されている。従って、疑似 MEA243は、セルスタック 201の MEA43 と同様に個体高分子膜を有している。但し、疑似 MEA243では、固体高分子膜は 全熱交換膜として機能する。
第 1,第 2のセパレータ 210, 220は、背面 (外面)に冷却水流路が形成されていな いこと以外はセルスタック 201の力ソード側セパレータ 10及びアノード側セパレータ 2 0と同様に構成されている。従って、第 1のセパレータ 210及び第 2のセパレータ 220 の周縁部に、それぞれ、第 1の流体の入口マ-ホールド孔 211, 221、第 1の流体の 出口マ-ホールド孔(図示せず)、第 2の流体の入口マ-ホールド孔 212, 222、第 2 の流体の出口マ-ホールド孔(図示せず)が形成されて!、る。第 1の流体の入口マ- ホールド孔 211, 221と第 2の流体の入口マ-ホールド孔 212, 222とは第 1のセパレ ータ 210及び第 2のセパレータ 220の上部の互いに反対側の側部にそれぞれ形成さ れている。また、第 1の流体の出口マ-ホールド孔と第 2の流体の出口マ-ホールド 孔とは、第 1のセパレータ 210及び第 2のセパレータ 220の下部の互いに反対側の 側部に、第 1の流体の出口マ-ホールド孔が第 2の流体の入口マ-ホールド孔 212, 222の下方に位置しかつ第 2の流体の出口マ-ホールド孔が第 1の流体の入口マ- ホールド孔 211, 221の下方に位置するように、それぞれ、形成されている。そして、 第 1のセパレータ 210の正面(内面)には、力ソード側セパレータ 10と同様に、第 1の 流体の流路(以下、第 1の流体流路という) 217が第 1の流体の入口マ二ホールド孔 2 11
と第 1の流体の出口マ-ホールド孔とを接続するように形成されている。第 2のセパレ ータ 220の正面(内面)には、アノード側セパレータ 20と同様に、第 2の流体の流路( 以下、第 2の流体流路という) 228が第 2の流体の入口マ二ホールド孔 221と第 2の流 体の出口マ-ホールド孔とを接続するように形成されている。また、疑似 MEA243の 周縁部に、第 1のセパレータ 210及び第 2のセパレータ 220の、第 1の流体の入口マ -ホールド孔 211, 221、第 1の流体の出口マ-ホールド孔(図示せず)、第 2の流体 の入口マ-ホールド孔 212, 222、第 2の流体の出口マ-ホールド孔(図示せず)に それぞれ対応するように、第 1の流体の入口マ二ホールド孔(図示せず)、第 1の流体 の出口マ-ホールド孔(図示せず)、第 2の流体の入口マ-ホールド孔(図示せず)、 第 2の流体の出口マ-ホールド孔(図示せず)が形成されている。
そして、全ての全熱交換セル 202における疑似 MEA243、第 1のセパレータ 210、 及び第 2のセパレータ 220の、第 1の流体の入口マ-ホールド孔、第 1の流体の出口 マ-ホールド孔、第 2の流体の入口マ-ホールド孔、第 2の流体の出口マ-ホールド 孔が、それぞれ繋がって、第 1の流体供給マ-ホールド 204、第 1の流体排出マ-ホ 一ルド 207、第 2の流体供給マ-ホールド 205、第 2の流体排出マ-ホールド 206力 S 、それぞれ形成されている。なお、第 1のセパレータ 210と第 2のセパレータ 220とを 1 つのセパレータで構成してもよ 、。
そして、アノード側全熱交 117は、この全熱交換セルスタック 301で構成される 第 1の全熱交換セルスタック 301Aと第 2の全熱交換セルスタック 301Bとを有してい る。
第 1の全熱交換セルスタック 301Aでは、第 1の流体供給マ-ホールド 204、第 1の流 体流路 217、及び第 1の流体排出マ-ホールド 207がアノード側全熱交換器 117の 供給側燃料ガス流路 117aの上流側部分を構成し、第 2の流体供給マ二ホールド 20 6、第 2の流体流路 228、及び第 2の流体排出マ-ホールド 205がアノード側全熱交 換器 117の排出側燃料ガス流路 117bを構成している。また、第 1の流体供給配管 2 51が燃料ガス供給流路 109の燃料ガス供給装置 102側の部分 109aを構成しており 、第 1の流体排出配管 252は以下に述べる第 2の全熱交換セルスタック 301Bの第 1 の流体供給マ-ホールド 204の入口に接続されている。また、第 2の流体供給配管 2 54が燃料ガス排出流路 110の燃料電池 101側の部分 110aを構成し、第 2の流体排 出配管 253が燃料ガス排出流路 110の大気側の部分 110bを構成している。
また、第 2の全熱交換セルスタック 301Bにおいては、第 1の流体供給マ-ホールド 2 04、第 1の流体流路 217、及び第 1の流体排出マ-ホールド 207がアノード側全熱 交換器 117の供給側燃料ガス流路 117aの下流側部分を構成し、第 2の流体供給マ 二ホールド 206、第 2の流体流路 228、及び第 2の流体排出マ-ホールド 205がァノ 一ド側全熱交換器 117の冷却水流路 117cを構成している。また、第 1の流体供給配 管 251が第 1の全熱交換セルスタックの第 1の流体排出配管 252を構成しており、第 1の流体排出配管 252は燃料ガス供給流路 109の燃料電池 101側の部分 109bを 構成している。また、第 2の流体供給配管 254が冷却水循環流路 112の分流路 112 aの燃料電池 101側の部分を構成し、第 2の流体排出配管 253が冷却水循環流路 1 12の分流路 112aの放熱装置 105側の部分を構成している。
[0086] このように構成されたアノード側全熱交 117では、第 1の全熱交換セルスタック 301Aにおいて、第 1の流体マ-ホールド 204に燃料電池 101に供給される燃料ガ ス(以下、供給燃料ガスという)が供給され、第 2の流体マ-ホールド 206に燃料電池 101から排出された燃料ガス (以下、排出燃料ガスという)が供給される。そして、各 全熱交換セル 202において、第 1の流体流路 217を流れる供給燃料ガスと第 2の流 体流路 228を流れる排出燃料ガスとが高分子電解質膜 41を介して全熱交換 (熱と水 分との双方の交換)をし、それにより、供給燃料ガスが排出燃料ガスによって加湿及 び加熱される。そして、第 2の全熱交換セルスタック 301Bにおいて、第 1の流体マ- ホールド 204に第 1の全熱交換スタックで全熱交換された供給燃料ガスが供給され、 第 2の流体マ-ホールド 206に燃料電池 101から排出された冷却水(以下、排出冷 却水という)が供給される。そして、各全熱交換セル 202において、第 1の流体流路 2 17を流れる供給燃料ガスと第 2の流体流路 228を流れる排出冷却水とが高分子電 解質膜 41を介して全熱交換をし、それにより、第 1の全熱交換スタック 301 Αで全熱 交換された供給燃料ガスが燃料電池 101を通過して昇温した排出冷却水によってさ らに加湿及び加熱される。そして、このように加湿及び加熱された供給燃料ガスが燃 料電池 101に供給される。
[0087] 次に、力ソード側全熱交翻118の構成を説明する。力ソード側全熱交翻118は アノード側全熱交翻117と基本的に同じ構成を有している。すなわち、力ソード側 全熱交 118は、図 8及び図 9に示された全熱交換セルスタック 301で構成される 第 3の全熱交換セルスタック 301Cと第 4の全熱交換セルスタック 301Dとを有してい る。そして、第 3の全熱交換セルスタック 301Cにおいて、第 1の流体供給配管 251が 酸化剤ガス供給流路 107の酸化剤ガス供給装置 103側の部分 107aを構成しており 、第 1の流体供給マ-ホールド 204、第 1の流体流路 217、及び第 1の流体排出マ- ホールド 207が力ソード側全熱交換器 118の供給側酸化剤ガス流路 118aの上流側 を構成し、第 1の流体排出配管 252は第 4の全熱交換セルスタック 301Dの第 1の流 体供給マ-ホールド 204の入口に接続されている。また、第 2の流体供給配管 254 が酸化剤ガス排出流路 111の燃料電池 101側の部分 11 laを構成し、第 2の流体供 給マ-ホールド 206、第 2の流体流路 228、及び第 2の流体排出マ-ホールド 205が 力ソード側全熱交翻118の排出側酸化剤ガス流路 118bを構成し、第 2の流体排 出配管 254が酸化剤ガス排出流路 111の大気側の部分 11 lbを構成して 、る。 また、第 4の全熱交換セルスタック 301Dにおいては、第 1の流体供給マ-ホールド 2 04、第 1の流体流路 217、及び第 1の流体排出マ-ホールド 207が力ソード側全熱 交換器 118の供給側酸化剤ガス流路 118aの下流側部分を構成し、第 2の流体供給 マ-ホールド 206、第 2の流体流路 228、及び第 2の流体排出マ-ホールド 205が力 ソード側全熱交 118の冷却水流路 118cを構成している。また、第 1の流体供給 配管 251が第 3の全熱交換セルスタック 301Cの第 1の流体排出配管 252を構成して おり、第 1の流体排出配管 252は酸化剤ガス供給流路 107の燃料電池 101側の部 分 107bを構成している。また、第 2の流体供給配管 254が冷却水循環流路 112の 分流路 112bの燃料電池 101側の部分を構成し、第 2の流体排出配管 253が冷却水 循環流路 112の分流路 112aの放熱装置 105側の部分を構成して 、る。
このように構成された力ソード側全熱交 118では、第 1の全熱交換セルスタック 301Cにおいて、第 1の流体マ-ホールド 204に燃料電池 101に供給される酸化剤 ガス (以下、供給酸化剤ガスという)が供給され、第 2の流体マ-ホールド 206に燃料 電池 101から排出された酸化剤ガス (以下、排出酸化剤ガスという)が供給される。そ して、各全熱交換セル 202において、第 1の流体流路 217を流れる供給酸化剤ガス と第 2の流体流路 228を流れる排出酸化剤ガスとが高分子電解質膜 41を介して全熱 交換をし、それにより、供給酸化剤ガスが排出酸化剤ガスによって加湿及び加熱され る。そして、第 4の全熱交換セルスタック 301Dにおいて、第 1の流体マ-ホールド 20 4に第 3の全熱交換スタックで全熱交換された供給酸化剤ガスが供給され、第 2の流 体マ-ホールド 206に燃料電池 101から排出された排出冷却水が供給される。そし て、各全熱交換セル 202において、第 1の流体流路 217を流れる供給酸化剤ガスと 第 2の流体流路 228を流れる排出冷却水とが高分子電解質膜 41を介して全熱交換 をし、それにより、第 3の全熱交換スタックで全熱交換された供給酸化剤ガスが燃料 電池 101を通過して昇温した排出冷却水によってさらに加湿及び加熱される。そして 、このように加湿及び加熱された供給酸化剤ガスが燃料電池 101に供給される。 なお、以下の説明では、供給燃料ガスと供給酸化剤ガスとを供給反応ガスと総称し、 排出燃料ガスと排出酸化剤ガスとを排出反応ガスと総称する場合がある。
[0089] 次に、本発明の特徴的構成について説明する。
[0090] 図 1乃至図 3において、本発明のポイントは以下に述べる通りである。すなわち、反 応ガスが、燃料電池 101の温度に対してその相対湿度が 100% (正確には次に述べ る露点換算温度)となるように加湿して燃料電池 101に供給される。 OLE丄 INK2ここ で、本明細書においては、反応ガスの全水分量を露点に換算した温度を「露点換算 温度」という。このような概念を導入したのは、反応ガスの相対湿度が 100%の状態を 超えて反応ガス中に水分がミストの状態で存在する状態をも含めて反応ガスと共に 存在する全水分量を定義するためである。また、本明細書においては、反応ガス中 に熱力学的に液状水が存在し得る状態を「過加湿」の状態といい、反応ガスの相対 湿度が 100%でかつその中に熱力学的に液状水が存在し得な 、状態を「フル加湿」 の状態という。前述のように反応ガスを加湿することにより、燃料電池 101の内部の、 発電のための電気化学反応 (以下、発電反応という)が起こる領域が、その全領域に 渡って、相対湿度が 100%以上に加湿された (フル加湿又は過加湿された)雰囲気 に保たれる OLE丄 INK2。これにより、高分子電解質膜 41並びにアノード 42B及び力 ソード 42A中に含まれる高分子電解質の化学的劣化が防止されて、燃料電池 101 の耐久性が向上する。また、燃料電高分子電解質膜には、パーフルォロカーボンス ルホン酸系の材料が使われて 、る。この高分子電解質膜は水分を含んだ状態でィォ ン伝導性を発現するため、燃料電池 101の内部の発電反応が起こる領域を、その全 域に渡って、フル加湿又は過加湿となるように加湿された雰囲気を保っための運転 方法を、燃料電池発電システム 100の効率を低下させな 、方法で実現する。
く本発明の契機となる知見〉
そこで、本発明者らは、基本的に図 1乃至図 7に示す構成を有し、温度測定用に特 別に加工したセパレータを用いた燃料電池を作製して動作させ、実際に発電反応が 起こる領域の温度分布を測定した。但し、燃料ガス及び酸化剤ガスは、全熱交換器 ではなぐバブラ一を用いて加湿した。ここで「発電反応が起こる領域」(以下、「発電 領域」と呼ぶ場合がある)とは、アノード 42b及び力ソード 42Aをいう。
[0091] 図 10はセルスタックの温度分布を測定するために用いたセパレータの構造を示す 模式図である。図 10において、力ソード側セパレータ 10及びアノード側セパレータ 2 0はセルの厚み方向から見て透視的に描かれている。また、セパレータ 10, 20の各 流路 17, 19, 28, 29は、複数の流路を一本の線で代表するようにして示されている
[0092] 図 10に示すように、この力ソード側セパレータ 10及びアノード側セパレータ 20には 主面に平行に細孔 200が形成されている。この細孔 200は、各セパレータ 10, 20の 端面力もその中心部に向力つて延びるように、あるいは一方の端面力も反対の端面 に中心を通って斜めにセパレータ 10, 20を貫通するように形成されている。この細孔 200に熱電対を適当な深さに挿入することにより、各セパレータ 10, 20の 5つの位置 A〜Dの温度が測定された。測定位置 Cは各セパレータ 10, 20の平面視における中 心である。測定位置 A, B, D, Eは、それぞれ、平面視において、各セパレータ 10, 20の力ソード 42A及びアノード 42Bに重なる領域の、酸化剤ガスの入口マ-ホール ド孔 11に近い位置、燃料ガスの入口マ-ホールド孔 12に近い位置、酸化剤ガスの 出口マ-ホールド孔 13に近い位置、燃料ガスの出口マ-ホールド孔 14に近い位置 である。また、測定位置 A〜Eは、セパレータ 10, 20の平面視において、冷却水流路 19, 29に沿って、その上流から下流に向けてこの順に位置している。
[0093] この温度分布測定の結果、本発明者らは、以下の事実を発見した。
[0094] 図 11は 1セル毎に冷却した場合におけるセルスタックの温度分布の一測定例を示 すグラフである。図 11において、横軸はセル番号を示し、縦軸はセルスタックの温度 を示す。また、黒丸印のプロットは図 10に示すセパレータ 10, 20の測定位置 Aにお ける温度を、黒の菱形印のプロットは図 10に示すセパレータ 10, 20の測定位置 Bに おける温度を、黒の四角印のプロットは図 10に示すセパレータ 10, 20の測定位置 C における温度を、黒の三角印のプロットは図 10に示すセパレータ 10, 20の測定位置 Dにおける温度を、白の菱形印のプロットは図 10に示すセパレータ 10, 20の測定位 置 Eにおける温度を示す。セル番号は、セルスタック 1への冷却水の入り口(図 2の端 板 3Aの貫通孔の外側開口) 401に近いセル 2から順に付与されている。図 11の測 定例(後述する図 27の実験番号 1)では、セルスタック 1のセル数は 40である。
[0095] 図 11を参照すると、セル 2においては、冷却水流路 19, 29に沿ってかつ下流に向 力つて高くなるように温度が分布している。これは当然のことである。一方、この温度 測定にぉ 、ては、セルスタック 1への冷却水の入口 401にお!/、て 60°Cとなるように温 度を制御して冷却水がセルスタック 1に供給されているので、冷却水力 Sその入口 401 力 セルスタック 1へ流入して入口 401〖こ一番近!、セル 2 (セル番号 1)の発電反応が 起こる領域 (アノード 42B及び力ソード 42A) (正確には当該領域のセパレータ 10, 2 0を挟んで対向する領域)に到達するまでに既に約 1°C温度上昇していることになる。 また、セル 2間においては、セル番号が大きくなるほどセル 2の温度が高くなつている 。すなわち、セルスタック 1への冷却水の入口 401から遠くなるに連れてセル 2の温度 が高くなつて 、る。セルスタック 1への冷却水の入口 401に一番近!、セル 2 (セル番号 1)と二番目に遠 、セル 2 (セル番号 39)との温度差 (以下、セルスタック両端間温度 差という)は約 1°Cであった。これらの現象は、本発明者らにとつて予想外の現象であ り、新しい知見であった。
[0096] 図 2、図 3、及び図 10を参照すると、冷却水は、セルスタック 1に供給された後、まず 冷却水供給マ-ホールド 8で、所定数のセル毎 (ここでは 1セル毎)に設けられた冷却 水流路 19, 29に分配され、冷却水流路 19, 29を流れた後、冷却水排出マ二ホール ド 9に集まり、冷却水排出マ-ホールド 9からセルスタック 1の外部に排出される。この 過程において、セルスタック 1に入った冷却水は、ー且、冷却水供給マ-ホールド 8 に流入し、冷却水供給マ-ホールド 8を流れる間に燃料電池 101 (セルスタック 1)と 熱交換するため、各セル 2に冷却水が到達した時点で、スタック 1への入口 401にお ける温度より温度が高くなつているものと考えられる。また、冷却水供給マ-ホールド 8の内部にぉ 、ても、セルスタック 1の積層方向にぉ 、て冷却水の上流側と下流側と が存在し、冷却水が冷却水供給マ-ホールド 8内を上流から下流に流れる間にセル スタック 1との熱交換が行なわれ、その結果、セルスタック 1の、冷却水供給マ-ホー ルド 8の上流端近傍部分に対し、セルスタック 1の、冷却水供給マ-ホールド 8の下流 端近傍部分の方が高温になっているものと考えられる。なお、図 11において、セルス タック 1の両端が他の部分より温度が低くなつているのは、端板の放熱によるものであ る。これは、後述する図 12においても同様である。
[0097] 以上の現象は、冷却水のセルスタック 1への入口における温度(以下、冷却水入口 温度という)と、セルスタック 1に供給される反応ガスの露点換算温度とが同じである 場合、発電反応が起こる領域ではセルスタック 1の温度が冷却水入口温度より 1°C程 度以上高くなるため、反応ガスは露点に換算して 1°C程度は乾燥状態になることを意 味している。従って、実際には、反応ガスの露点換算温度を冷却水入口温度より少 なくとも 1°C高くして反応ガスを供給しなければ、セルスタック 1内の発電反応が起こる 全ての領域を、フル加湿又は過加湿の雰囲気に保つことができない。また、セル 2間 の温度差を考慮すると、反応ガスの露点換算温度を冷却水入口温度より少なくとも 2 °C高くして該反応ガスを供給することがさらに好ましぐさもなければ、セルスタック 1 の発電反応が起こる全ての領域を、フル加湿又は過加湿の雰囲気に保つことができ ない。但し、このセルスタック両端間温度差は、セルスタック 1のセル数 Nによって変 化するので、これを考慮すると、反応ガスのセルスタック 1への入口における露点換 算温度 (以下、入口露点換算温度といい、 T1で表す) T1を冷却水入口温度 (以下、 T2で表す)より( C + O. 02°C X (N— 1) )以上高くすることが好ましい。これについ ては、後で詳しく説明する。
[0098] ところで、アノードでは発電反応によって燃料ガスが消費されるため、燃料ガス流路 28の上流ほど燃料ガスの全体量に対する水分量の割合 (以下、燃料ガスの水分含 有割合という)が少なぐ下流ほど燃料ガスの水分含有割合が多くなる。つまり、燃料 ガスの露点換算温度は燃料ガス流路 28において上流から下流に向けて高くなる。一 方、力ソードでも、発電反応によって水が生成するため、酸化剤ガス流路 17の上流 ほど酸化剤ガスの全体量に対する水分量の割合 (以下、酸化剤ガスの水分含有割 合という)が少なぐ下流ほど酸化剤ガスの水分含有割合が多くなる。つまり、酸化剤 ガスの露点換算温度は酸化剤ガス流路 18において上流から下流に向けて高くなる。 一方、冷却水は、冷却水入口力 冷却水出口に向かって流れるほどセルスタック 1と の熱交換量が多くなるため、各セル 2では、冷却水入口力も冷却水出口に向力つて 高温になるように温度分布が形成される。 [0099] そこで、各セル 2 (正確には各セパレータ 10, 20)において、反応ガス (燃料ガス及 び酸化剤ガス)の全体量に対する水分量の割合 (以下、反応ガスの水分含有割合と いう)が最も低い反応ガス流路 17, 28の最上流部と冷却水の温度が最も低い冷却水 流路 19, 29の最上流部とをその厚み方向力 見て概ね同じ位置に位置させ、かつ、 反応ガス水分含有割合が最も高い反応ガス流路 17, 28の最下流部と冷却水の温度 が最も高い冷却水流路 19, 29の最下流部とをその厚み方向力 見て概ね同じ位置 に位置させることにより、セル 2の厚み方向から見て、冷却水流路 19, 29における最 上流部及び最下流部が、それぞれ、反応ガス流路 17, 28における露点換算温度の 最も低い部分及び露点換算温度の最も高い部分になる。その結果、各セル 2におい て、その厚み方向から見て、概ね冷却水流路 19, 29の最上流端から冷却水流路 19 , 29の最下流端に向力つて温度が高くなるように温度勾配が形成される一方、反応 ガスが、巨視的に(全体として)、冷却水流路 19, 29の最上流部から最下流部に向 力つて流れる。従って、反応ガスの流路 17, 28において、反応ガスの露点換算温度 が温度と共に、概ね最上流力も最下流に向力つて高くなるように分布し、それにより、 反応ガスの相対湿度がその流路 17, 28において概ね一定に保たれる。従って、反 応ガスが、そのセル 2 (正確には各セパレータ 10, 20)への入口(入口マ-ホールド 孔 11, 12)において、フル加湿又は過加湿の条件(露点換算温度がセルスタック 1の 温度より高いこと)を満たせば、その流路 17, 28の全長に渡ってフル加湿又は過加 湿の条件を満たすこととなり、セルスタック 1の発電反応が起こる全ての領域を、フル 加湿又は過加湿の雰囲気に保つことが可能となる。なお、上述の「反応ガス流路 17 , 28の最上流部と冷却水流路 19, 29の最上流部とをセル 2の厚み方向から見て概 ね同じ位置に位置させ、かつ、反応ガス流路 17, 28の最下流部と冷却水流路 19, 2 9の最下流部とをセル 2の厚み方向力も見て概ね同 Cf立置に位置させる」構成を、本 発明では「反応ガス温度上り勾配配置」という。
[0100] また、本実施の形態のように、燃料電池 101の排熱を利用して供給燃料ガス及び 供給酸化剤ガスを加湿及び加熱する場合、供給燃料ガス及び供給酸化剤ガスの露 点換算温度が冷却水のセルスタック 1からの出口(図 2の端板 3Bの貫通孔の外側開 口) 402の温度(以下、冷却水出口温度と!/、う)よりも高くなるよう加湿及び加熱するこ とは原理的に不可能であるが、上述のように構成すると、燃料電池 101に供給すべき 反応ガスの露点換算温度は、冷却水出口温度より低くて済むので、燃料電池 101の 排熱を利用して供給燃料ガス及び供給酸化剤ガスを加湿及び加熱することが原理 的に可能となる。
[0101] ただし、反応により生成する水の量は電流密度により決まり、セルスタック 1の出口 におけるドライガスベースの燃料ガス及び酸化剤ガスの流量は、燃料ガス利用率 (U f)および酸化剤ガス利用率 (Uo)によって決まるため、(冷却水出口温度 T3)—(冷 却水入口温度 T2) = ΔΤとすると、電流密度、燃料ガス利用率、酸化剤ガス利用率 によって、 ΔΤを何度以下にすれば電極 (アノード 42B及び力ソード 42A)面の全域( すなわち、発電反応が起こる領域の全ての領域)でフル加湿又は過加湿を実現でき るかが算出される。実際には、アノード 42Bと力ソード 42Aとの間では、反応によるプ 口トンの移動に同伴してアノード 42B側力 力ソード 42A側に水が移動する現象と、 逆拡散と呼ばれる、生成水が力ソード 42A側からアノード 42B側に移動する現象が 同時に起こるため、電流密度と、燃料ガス利用率、酸化剤ガス利用率から算出された アノード 42Bおよび力ソード 42Aの全水分量の露点換算温度は、計算値力も若干乖 離する。
[0102] そこで、冷却水入口温度を 60°Cに設定し、燃料ガス供給マ-ホールド 5及び酸ィ匕 剤ガス供給マ-ホールド 4などにおける熱交換による温度上昇分を見込んで、燃料 ガス及び酸化剤ガスを、共に、露点換算温度 64°C、ガス温度 64°C (相対湿度 100% )で供給した場合に、燃料ガス及び酸化剤ガスのセルスタック 1の出口における露点 換算温度 (以下、出口露点換算温度という)が何度になる力を測定した。その結果、 水蒸気改質ガスを燃料ガスとし OLE丄 INK4、電流密度が 0. 2AZcm2であり、燃料ガ ス利用率 Ufが 75%であり、酸化剤ガス利用率 Uoが 50%である場合、燃料ガス及び 酸化剤ガスの出口露点換算温度は、計算上では、燃料ガスの出口露点換算温度が 75. 8°C、酸化剤ガスの出口露点換算温度が 73. 6°Cとなるのに対し、実測では、燃 料ガスの出口露点換算温度が 79°C、酸化剤ガスの出口露点換算温度が 72. 5°Cと なった。従って、 ΔΤを 12. 5°C以下にしなければ、電極面内で全面に渡ってフルカロ 湿又は過加湿とすることが出来なくなることが判明した。 OLE丄 INK4 また、上述の燃料電池 101において、電流密度が 0. 07AZcm2であり、燃料ガス 利用率 Ufが 70%であり、かつ酸化剤ガス利用率 Uoが 45%である場合、燃料ガス及 び酸化剤ガスの全水分量の出口露点換算温度は、計算では、燃料ガスが 75. 4°C、 酸化剤ガスが 73. 1°Cとなるのに対して、実測では、燃料ガスが 82°C、酸化剤ガスが 71°Cとなった。従って、この場合には、 ΔΤを 11°C以下にしなければ、電極面を全面 に渡ってフル加湿又は過加湿とすることが出来なくなる。傾向としては、電流密度が 大きくなるほど、燃料ガスの出口露点算温度と酸化剤ガスの出口露点算温度とが等 しくなる方向に向カゝい、燃料ガスの出口露点換算温度と酸化剤ガスの出口露点換算 温度との差が大きいほど、低い方の出口露点換算温度以下の温度に冷却水出口温 度を押さえる必要があるため、 ΔΤを大きくすることが出来なくなる。そのため、燃料ガ スの全水分量の出口露点換算温度と酸化剤ガスの全水分量の出口露点換算温度と が等しくなることが理想であることが判明した。
[0103] また、上述の燃料電池 101において、冷却水入口温度を 66°Cに設定し、燃料ガス および酸化剤ガスを共に露点換算温度 70°C湘対湿度 100%)で供給し、水蒸気改 質ガスを燃料とし、電流密度が 0. 7AZcm2であり、燃料利用率 Ufが 75%であり、か つ酸化剤ガス利用率 Uoが 50%である場合、計算上の燃料ガス及び酸化剤ガスの 全水分量の出口露点換算温度は、両者が等しくなるとした場合、約 79°Cとなった。 従って、この場合でも ΔΤを 13°C以下にしなければ、電極面内を全面的にフル加湿 又は過加湿とすることが出来なくなることが判明した。また、このとき酸化剤ガス利用 率 Uoを大きくすることによって出口露点換算温度を上昇させることが出来るが、上述 の条件と同じ条件において、酸化剤ガス利用率 Uoを 60%とした場合には出口露点 換算温度が約 80°Cとなり、酸化剤ガス利用率 Uoを 70%とした場合でも、出口露点 換算温度が約 81°Cとなり、この場合でも ΔΤを 15°C以下にする必要があることが判 明した。
[0104] 本実施の形態のように、燃料電池発電システム 100において燃料電池 101の排熱 を有効利用して反応ガスを加湿及び加熱して供給する場合、冷却水出口温度より高 い露点換算温度に反応ガスを加湿及び加熱することは原理的に不可能なことから、 上述の知見に基づ!/、て冷却水入口温度より 2°C以上高!、露点換算温度を有する反 応ガスを供給するためには、 ΔΤを出来るだけ大きくすることが反応ガスの加湿及び 加熱のし易さの観点からは有利である。し力しながら、上述のように電極面内を全面 に渡ってフル加湿又は過加湿とするためには ΔΤに限界が存在し、実際の燃料電池 発電システム 100における温度制御の温度変動幅 (例えば、プラスマイナス 2°C)など も考慮して、 V、かなる場合も電極面を全面に渡ってフル加湿又は過加湿にするため には、現実的には ΔΤを 10°C程度以下に抑えることが望ましいことが判明した。
[0105] また、燃料電池発電システム 100において、燃料電池 101の排熱を有効に利用し て燃料電池 101に供給される反応ガスを加湿及び加熱する場合、反応ガスの流路を 上述の「反応ガス温度上り勾配配置」とし、さらに一定の条件 (加湿及び加熱前の反 応ガス温度、熱交換効率など)を満たすことにより、冷却水出口温度を T3とすると、 T 2≤T1≤T3となることが見いだされた。
ここで、反応ガスのセルスタック 1からの出口における露点換算温度(以下、出口露点 換算温度という)を Τ4とすると、反応ガスのセルスタック 1の出口における温度はほぼ 冷却水出口温度 Τ3と等しくなるため、 Τ4 Τ3に相当する水分は結露水として排出 されている。そのため、供給反応ガスと排出反応ガスとの全熱交換のみによって、供 給反応ガスを加湿及び加熱する場合、供給反応ガスの加湿及び加熱を効率的に行 なうためには、結露水を蒸発させて加湿に用いるための潜熱に相当する熱が余分に 必要となる。この場合、セルスタック 1から排出される冷却水 (排出冷却水)の保持す る熱を、潜熱相当分の熱源として用いれば、より効率的に全熱交換が行えることを本 発明者らは思いついた。
[0106] 一方、このように排出冷却水の保持する熱を利用することなぐ単に供給反応ガスと 排出反応ガスとの全熱交換のみによって、供給反応ガスを加湿及び加熱すると(後 述する実施の形態 4に相当)、全熱交換器を大きくすれば効率は上がるが、実用的 な範囲の全熱交換器の場合、熱交換可能な、冷却水の出口温度 Τ3と反応ガスの入 口露点換算温度 T1との温度差 (以下、熱交換可能温度差という)は、 T3-T1≥4°C 程度がほぼ限界であることが見 、だされた。
[0107] また、冷却流体が水の場合、供給反応ガスと排出冷却水とを直接全熱交換する (後 述する実施の形態 3に相当)ことも可能であるが、その場合でも、熱交換可能温度差 は、 T3—Tl≥ 2°C程度が限界であることが見 、だされた。
[0108] また、供給反応ガスと排出反応ガスとを全熱交換するとともに排出冷却水の保持す る熱を潜熱相当分の熱源として利用して、供給反応ガスを加湿及び加熱する場合 ( 本実施の形態 2に相当)も、熱交換可能温度差は、 T3— T1≥2°C程度が限界である ことが見いだされた。
[0109] また、供給反応ガスと排出反応ガスとを全熱交換によって加湿及び加熱し、さら〖こ この加湿及び加熱した供給反応ガスと排出冷却水とを全熱交換すれば (本実施の形 態に相当)、熱交換可能温度差は、 T3— T1≥1°C程度まで限界値を向上させること が可能であることが見 、だされた。
[0110] 従って、燃料電池 101の排熱を有効に利用して燃料電池 101に供給される反応ガ スを加湿及び加熱する場合には、 T2≤T1≤T3、 Τ3— T2≤10°C、 Tl— T2≥2°C 、 T3— T1≥1°Cの全ての運転条件を満足することが、好ましいことが判明した。
[0111] さらに、この知見を補足する。
[0112] 反応ガスを燃料電池 101の排熱を利用して加湿及び加熱する場合、燃料電池発 電システムによって最適な方式を選択する必要がある。例えば、コージエネレーショ ンシステムのようにできるだけ良質な熱を給湯システムなどに利用した 、場合には、 供給反応ガスと排出冷却水との単なる全熱交換により供給反応ガスを加湿及び加熱 する方式では、冷却水の熱の質が悪化するため、供給反応ガスと排出反応ガスとを 全熱交換するとともにこの全熱交換後の供給反応ガスを排出冷却水とさらに全熱交 換する方式を選択することが望ましい。また、冷却媒体が水以外 (例えば不凍液)で ある場合には、排出冷却媒体と供給反応ガスとを直接全熱交換することができな ヽた め、供給反応ガスと排出反応ガスとを全熱交換するとともにこの全熱交換後の供給反 応ガスを排出冷却水とさらに単なる熱交換をする方式を選択することが望ましい。
[0113] さらに、別途検討の結果、供給燃料ガスについては、供給燃料ガスが水蒸気改質 ガスである場合のようにあら力じめある程度の水分を含んでいる場合には、基本的に は排出燃料ガスとの全熱交換だけで充分ではあるが、場合によっては、全熱交換後 の供給燃料ガスをさらに排出冷却水と単に熱交換して、排出冷却水の熱のみを潜熱 分として有効利用することによって、より高い露点換算温度の燃料ガスを供給すること が可能となることが見 、だされた。
[0114] 次に、別の観点による知見について説明する。
[0115] 発電反応が起こる全域で、フル加湿又は過加湿の雰囲気を保つと、フラッデイング が発生する恐れが大きくなる。そこで、反応ガスが重力に逆らわずに流れるようにそ の流路を形成することにより、生成水や結露水の排出に重力を効果的に利用するこ とができ、その結果、フラッデイングを抑制することが可能であることが判明した。
[0116] また、高分子電解質膜 41のガラス転移温度が約 90°Cであることから、高分子電解 質膜 41の耐久性、耐クリープ性などを考慮すると冷却水出口温度 T3は 90°C以下で あることが望ましぐまた、耐久試験結果力 冷却水出口温度 T3は 80°C以下である ことがさらに望ましいことが判明した。
[0117] また、燃料電池発電システム 100を家庭用コージエネシステムとして用いる場合に は、
供給反応ガスを加熱する熱源は高温であるほど望ましいが、耐久性、特に高分子電 解質膜 41の耐久性劣化の観点からは 0°C以上でかつできる限り低温であることが望 ましい。また、コージェネレーションシステムを給湯システムとして熱利用する場合に は、貯湯タンク内におけるレジオネラ菌などの繁殖を防止する観点から、貯湯温度は 60°C以上であることが望ましい。また、給湯水を冷却水と熱交換することによって 60 °Cの貯湯温度を得るためには、冷却水が約 63°Cであることが必要である力 この冷 却水は反応ガスと全熱交換又は熱交換して降温しているので、冷却水出口温度 T3 にはさらに約 3°Cの高いことが必要であり、このこと力 冷却水出口温度 T3は 66°C以 上であることが望ましい。
[0118] さらに、燃料ガスとして水蒸気改質ガスを用いる場合には、アノードの触媒の耐 CO 被毒特性の観点から、燃料ガスの露点換算温度 T1は 50°C以上であることが望まし い。
[0119] 以上の知見は 1セル毎に冷却する場合についてのものである力 発明者らは 2セル 毎に冷却する場合につ ヽても別途検討した。
[0120] 図 12は 2セル毎に冷却した場合におけるセルスタックの温度分布の一測定例を示 すグラフである。図 12において、横軸はセル番号を示し、縦軸はセルスタックの温度 を示す。セルスタックの温度測定は上述の 1セル毎に冷却する場合と同様に行った。 この検討の結果、 2セル毎に冷却する場合には、電流密度が 0. lAZcm2〜0. 3A Zcm2程度ではセルスタック両端温度差は 2°C程度であった力 0. 3AZcm2以上の 電流密度では、さらに温度分布が大きくなり、 0. 5AZcm2で図 12に示すように、約 4 °C、 1. OAZcm2では約 6°Cの積層方向での温度分布が発生することが判明した。こ のため、 0. lAZcm2〜0. 3AZcm2程度の電流密度の範囲で燃料電池 101を使用 したとしても、 2セル毎冷却とすると、冷却流体入口温度に対して、約 4°C以上高い露 点換算温度の供給ガスを供給しなければ、発電反応が起こる領域の全域をフル加湿 又は過加湿の雰囲気に維持することができないことが判明した。なお、セルスタック 両端間温度差は、セルスタック 1のセル数 Nによって変化するので、これを考慮すると 、反応ガスの露点換算温度 T1を冷却水入口温度より(3°C + 0. 02°C X (N— 1) )以 上高くすることが好ましい。これについては、以下に詳しく説明する。
く反応ガスの好まし 、露点換算温度 T1に関する検討〉
まず、 1セル毎に冷却する場合について検討する。
上記では、 1セル毎に冷却する場合には、露点換算温度 T1は冷却水入口温度 T2 + (l°C + 0. 02°C X (N— 1) )以上であることが好ましいと述べた力 これについてデ ータを補充して詳しく検討する。
図 20は 1セル毎に冷却した場合におけるセルスタックの温度分布の他の測定例を 示すグラフである。
図 20の測定例は、セルスタック 1のセル数が 66である以外は図 11の測定例と同様で ある。なお、セルスタック 1の中ほどのセルの温度が示されていないが、これは、当該 セルの温度がセルスタック 1の両端部のセルの温度と同様の傾向を示すので、測定 を省略したものである。
これらの測定例における測定条件(実験条件)は、以下の通りである。
これらの測定例においては、冷却水入口温度 T2は 60°C、冷却水出口温度 T3は 68 °C、冷却水入口温度 T2と冷却水出口温度 T3との差 ΔΤは 8°Cである。
また、燃料ガスの利用率 Ufは 75%、酸化剤ガスの利用率 Uoは 40%である。
また、酸化剤ガス流路 17の各流路 (流路溝)の相当直径は 0. 99mmであり、燃料ガ ス流路 28の各流路 (流路溝)の相当直径は 0. 99mmである。
燃料ガスの流路出口における流速は 4. 4mZs、酸化剤ガスの流路出口における流 速は 4. 5m/sである。
酸化剤ガス流路 17における圧力損失は 4kPa、燃料ガス流路 28における圧力損失 は 6kPaである。
次に、露点換算温度 T1が満たすべき条件式について検討する。
図 11及び図 20にお 、て、測定位置 A及び測定位置 Bにおける温度(単位で) Tは、 冷却水入口温度 T2 (これらの測定例では 60°C)を基準とすると、セル数 Nに関して、 T=X°C+Y°C X (N— 1)という直線で近似することができる。
さらに、セルスタック両端間温度差は、冷却水出口温度 T3と冷却水入口温度 T2との 差 ΔΤに比例し、かつこれらの測定例では、 AT=8°Cであるので、これを考慮すると
T=X°C+Y°C X (N— 1) X ATZ8°Cという直線で近似することができる。
よって、露点換算温度 T1が満たすべき条件式は、
T1≥T2+ (X°C+Y°C X (N— 1) X ΔΤΖ8° となる。
[0122] この直線近似式は、測定データを統計的に処理することにより得ることができる。こ の統計的手法として、例えば、回帰法、最小自乗法等が挙げられる。ここでは、最小 自乗法により処理した。
[0123] そして、この条件式における定数 X及び係数 Υの数値を図 11及び図 20の測定例 から求めた。
図 27は 1セル毎に冷却した場合における露点換算温度 T1が満たすべき条件式の 定数 X及び係数 Υの数値を電流密度とともに示す表である。
図 27において、「力ソード」は、定数 X及び係数 Υが測定位置 Αにおける測定デー タについてのものであることを表し、「アノード」は、定数 X及び係数 Yが測定位置 Bに おける測定データにっ ヽてのものであることを表して ヽる。測定位置 Aは酸化剤ガス 流路の入り口部分に相当する位置であり、測定位置 Bは燃料ガス流路の入り口部分 に相当する位置である。そして、本実施の形態 (本測定例)では、セル 2の積層方向 から見て、セルスタック 1の上半分 (一方の半分)の周縁部に、酸化剤ガス供給マ-ホ ルド 4、燃料ガス供給マ-ホールド 5、及び冷却流体供給マ-ホールド 8が形成さ れ、かつセルスタック 1の下半分 (他方の半分)の周縁部に、酸化剤ガス排出マ-ホ 一ルド 7、燃料ガス排出マ-ホールド 6、及び冷却流体排出マ-ホールド 9が形成さ れている。そして、冷却流体供給マ-ホールド 8に対し、燃料ガス供給マ-ホ—ルド 5 及び酸化剤ガス供給マ-ホールド 4のうち酸化剤ガス供給マ-ホールド 4の方が近く 、燃料ガス供給マ-ホ—ルド 5の方が遠く配置されている(図 2参照)。このため、酸ィ匕 剤ガス流路の入り口部分に相当する測定位置 Aの温度力 燃料ガス流路の入り口部 分に相当する測定位置 Bの温度より高くなつている。従って、このように両者を区別し て、定数 X及び係数 Yの数値を求めることにより、酸化剤ガス及び燃料ガスの各々に ついて、露点換算温度 T1が満たすべき条件式を適切に設定することができる。
[0124] これらの測定例では、酸化剤ガス(力ソード)について、 Xが 1. 0〜1. 5の範囲の数 値であり、 Yが 0. 02〜0. 027の範囲の数値であり、燃料ガス(アノード)について、 X が 2. 0〜2. 5であり、 Yが 0. 02〜0. 023である。従って、反応ガス(酸化剤ガス又は 燃料ガス)については、 Xが 1. 0〜2. 5の範囲の数値であり、 Yが 0. 02〜0. 027の 範囲の数値である。
[0125] これらの測定例では、 2つの測定例における電流密度が共に 0. 160AZcm2 (定 格)であるので、定数 X及び係数 Yの電流密度への依存性にっ ヽては確認すること ができな力つた。なお、定数 X及び係数 Yのセル数 Nへの依存性は理論上も測定デ 一タ上も存在しな ヽと考えられる。これは後述する 2セル毎に冷却する場合にぉ ヽて も同様であると考えられる。
次に、 2セル毎に冷却する場合について検討する。
上記では、 2セル毎に冷却する場合には、露点換算温度 T1は冷却水入口温度 T2 + (3°C + 0. 02°C X (N— 1) )以上であることが好ましいと述べた力 これについてデ ータを補充して詳しく検討する。
図 21乃至図 26は 2セル毎に冷却した場合におけるセルスタックの温度分布の他の 測定例を示すグラフである。
図 21乃至図 26は、それぞれ、電流密度が 0. 300AZcm2である場合、電流密度が 0. 250AZcm2である場合、電流密度が 0. 160A/cm2 (定格)である場合、電流密 度が 0. 116AZcm2である場合、電流密度が 0. 078AZcm2である場合、及び電流 密度が 0. 050AZcm2である場合の測定例を示す。
これらの測定例は、いずれも、セルスタック 1のセル数が 54である以外は図 12の測定 例と同様である。なお、セルスタック 1の中ほどのセルの温度が示されていないが、こ れは、当該セルの温度がセルスタック 1の両端部のセルの温度と同様の傾向を示す ので、測定を省略したものである。
但し、これらの測定例では、セル番号は、セルスタック 1への冷却水の出口(図 2の 端板 3Bの貫通孔の外側開口) 402に近 、セル 2から順に付与されて 、る(図 12の測 定例と反対である)。また、図 21乃至図 26における各プロットの表記が図 12における 各プロットの表記と異なっている。すなわち、図 21乃至図 26においては、黒の菱形 印のプロットは図 10に示すセパレータ 10, 20の測定位置 Aにおける温度を、黒の四 角印のプロットは図 10に示すセパレータ 10, 20の測定位置 Bにおける温度を、黒の △印のプロットは図 10に示すセパレータ 10, 20の測定位置 Cにおける温度を、黒丸 印のプロットは図 10に示すセパレータ 10, 20の測定位置 Dにおける温度を、白の菱 形印のプロットは図 10に示すセパレータ 10, 20の測定位置 Eにおける温度を示す。 これらの測定例における測定条件(実験条件)は、以下の通りである。
いずれの測定例においても、冷却水入口温度 T2は 60°C、冷却水出口温度 T3は 68
°C、冷却水入口温度 T2と冷却水出口温度 T3との差 ΔΤは 8°Cである。
図 21乃至図 23の測定例では、燃料ガスの利用率 Ufは 72. 5%、酸化剤ガスの利用 率 Uoは 52. 5%である。図 24の測定例では、燃料ガスの利用率 Ufは 72. 5%、酸 ィ匕剤ガスの利用率 Uoは 47. 5%である。図 25の測定例では、燃料ガスの利用率 Uf は 67. 5%、酸化剤ガスの利用率 Uoは 42. 5%である。図 26の測定例では、燃料ガ スの利用率 Ufは 67. 5%、酸化剤ガスの利用率 Uoは 42. 5%である。
いずれの測定例においても、酸化剤ガス流路 17の各流路 (流路溝)の相当直径は 0
. 99mmであり、燃料ガス流路 28の各流路 (流路溝)の相当直径は 0. 99mmである 図 23の測定例では、燃料ガスの流路入口における流速は 4. 4mZs、燃料ガスの流 路出口における流速は 2. 2mZs、酸化剤ガスの流路入口における流速は 4. 26m Zs、酸化剤ガスの流路出口における流速は 4. 15mZsである。また、図 21の測定 例では、燃料ガスの流路出口における流速は 4. lmZs、酸化剤ガスの流路出口に おける流速は 7. 7mZsである。なお、図 21の測定例における燃料ガスの流路入口 における流速及び酸化剤ガスの流路入口における流速、並びに、図 22、図 24、図 2 5、及び図 26の測定例における燃料ガスの流路入口における流速、燃料ガスの流路 出口における流速、酸化剤ガスの流路入口における流速、及び酸化剤ガスの流路 出口における流速は、各測定例における燃料ガス利用率 Uf及び酸化剤ガス利用率 Uo並びに電流密度と、図 23の測定例における各ガス流速と力 計算可能であるの で、ここでは記載を省略する。なお、図 21乃至図 26の測定例における電流密度は図 28に示すとおりである。
図 21の測定例ではセルスタック 1における燃料ガスの圧力損失及び酸化剤ガスの圧 力損失は、それぞれ、 13. 8kPa及び 11. 4kPaである。図 22の測定例ではセルスタ ック 1における燃料ガスの圧力損失及び酸化剤ガスの圧力損失は、それぞれ、 11. 9 kPa及び 9. 7kPaである。図 23の測定例ではセルスタック 1における燃料ガスの圧力 損失及び酸化剤ガスの圧力損失は、それぞれ、 9. 6kPa及び 6. OkPaである。図 24 の測定例ではセルスタック 1における燃料ガスの圧力損失及び酸化剤ガスの圧力損 失は、それぞれ、 5. 9kPa及び 4. 9kPaである。図 25の測定例ではセルスタック 1に おける燃料ガスの圧力損失及び酸化剤ガスの圧力損失は、それぞれ、 4. 6kPa及び 3. 7kPaである。図 26の測定例ではセルスタック 1における燃料ガスの圧力損失及 び酸化剤ガスの圧力損失は、それぞれ、 3. 6kPa及び 2. 7kPaである。
これらの 2セル毎に冷却する場合の測定例においても、上述の 1セル毎に冷却する 場合の測定例と同様に、露点換算温度 T1が満たすべき条件式は、
T1≥T2+ (X°C+Y°C X (N— 1) X ΔΤΖ8° となる。
測定データは、 1セル毎に冷却する場合の測定例と同様に、最小自乗法により統 計的に処理した。
そして、この条件式における定数 X及び係数 Υの数値を図 12、図 21乃至図 26の測 定例から求めた。
図 28は 2セル毎に冷却した場合における露点換算温度 T1が満たすべき条件式の 定数 X及び係数 Yの数値を電流密度とともに示す表である。
図 28において、実験番号 1乃至 6は、それぞれ、図 21乃至図 26の測定例を示す。 「力ソード」及び「アノード」の意味は、図 27と同じである。
本測定例では、酸化剤ガス(力ソード)について、 Xが 2. 8〜3. 3の範囲の数値で あり、 Υが 0. 013-0. 033の範囲の数値であり、燃料ガス(アノード)について、 が 3. 7〜4. 2の範囲の数値であり、 Υ力 . 013〜0. 030の範囲の数値である。従って 、反応ガス(酸化剤ガス又は燃料ガス)については、 Xが 2. 8〜4. 2の範囲の数値で あり、 Y力^). 013〜0. 033の範囲の数値である。
これらの測定例では、電流密度が増大するに連れて、概ね、定数 Xが若干増大し かつ係数 Yが減少する。なお、これらの測定例では、実際の運転上想定される限度 まで電流密度を変化させたので、前述の数値範囲内において、電流密度を考慮して 定数 X及び係数 Yを適宜選択することにより、露点換算温度 T1が満たすべき条件式 を適切に設定することができる。
く反応ガスの好ま ヽ流速及び圧力損失〉
図 29はガス流量と圧力損失との関係の一例を示すグラフである。
この測定例において使用したセルスタックはセル数が 54である他は上述の場合と同 様である。
図 29において、「力ソード」はセルスタック 1における酸化剤ガスの圧力損失を表し、「 アノード」はセルスタック 1における燃料ガスの圧力損失を表す。「力ソード」及び「ァノ ード」にそれぞれ対応する圧力損失曲線 C及び圧力損失曲線 Aの各々において、各 プロットは、ガス流量の小さい方力も順に、定格出力の 30%出力の場合、定格出力 の 50%出力の場合、定格出力の 75%出力の場合、及び定格出力の 100%出力の 場合を示す。
定格出力の 30%出力の場合においては、電流密度が 0. 05AZcm2、燃料ガス利 用率 Ufが 62. 5%、酸化剤ガス利用率 Uoが 37. 5%である。定格出力の 50%出力 の場合においては、電流密度が 0. 078AZcm2、燃料ガス利用率 Ufが 67. 5%、酸 ィ匕剤ガス利用率 Uoが 42. 5%である。定格出力の 75%出力の場合においては、電 流密度が 0. 116A/cm2、燃料ガス利用率 Ufが 72. 5%、酸化剤ガス利用率 Uoが 47. 5%である。定格出力の 100%出力の場合においては、電流密度が 0. 16A/c m2、燃料ガス利用率 Ufが 72. 5%、酸化剤ガス利用率 Uoが 52. 5%である。
図 29から明らかなように、反応ガスの圧力損失は反応ガスの流量に比例する。反応 ガスの流量は、反応ガスの流速に比例するので、反応ガスの圧力損失は反応ガスの 流速に比例する。また、電流密度の増加に連れて、反応ガスの流速が大きくなつて おり、かつ反応ガスの圧力損失が大きくなつている。
ところで、本発明は、発電領域 42A, 42Bを、全域に渡って、フル加湿又は過加湿の 雰囲気に保つことを特徴としている。従って、発電領域 42A, 42Bに位置する流路 1 7, 28を流れる反応ガスの流速がある値より低いと、フラッデイングを発生して発電に 支障をきたす。
一方、図 29に示すように、反応ガスの流速が大きくなるに連れて、セルスタック 1にお ける反応ガスの圧力損失が大きくなり、それにより、反応ガスを供給するために必要 な圧力(以下、供給圧力という)が過大になる。そこで、本実施の形態では、燃料ガス の流路 28の出口(燃料ガスの出口マ-ホールド孔 24への接続部分)における流速( 以下、出口ガス流速という場合ある)が 1. 8mZs以上でかつ 4. lmZs以下に制御さ れ、かつ酸化剤ガスの流路 17の出口(酸化剤ガスの出口マ-ホールド孔 13への接 続部分)における流速 (以下、出口ガス流速という場合ある)が 2. 8mZs以上でかつ 7. 7mZs以下に制御される。
これらの下限値及び上限値のうちの上限値は、補機 (ここでは燃料供給用のポンプ 及び酸化剤ガス供給用のブロワ)の反応ガス供給圧力に関する性能の観点から経験 則に基づいて決定した。
一方、これらの下限値及び上限値のうちの下限値は、実験により求めた。この実験に おいては、上述の測定に使用したセルスタックと同様の全体構成を有し、燃料ガス流 路 28及び酸化剤ガス流路 17の構造が互いに異なる 5種類のセルスタックを作成した 。そして、これらのセルスタックについて、燃料ガス利用率 Uf、酸化剤ガス利用率 Uo 、及び電流密度を変化させることによって、出口ガス流速及び圧力損失を変化させ、 それぞれの場合について、安定して発電できるか否かにより、フラッデイングの発生 の有無を判定した。 図 31は燃料ガスにおける出口流速及び圧力損失とフラッデイング発生の有無との関 係を示すグラフである。また、図 32は酸化剤ガスにおける出口流速及び圧力損失と フラッデイング発生の有無との関係を示すグラフである。
図 31及び図 32において、丸印のプロットは、安定して発電が可能なこと、すなわち、 フラッデイングが発生していないことを示す。三角印のプロットは、フラッデイングの発 生により発電が不安定なことを示す。 X印のプロットは、フラッデイングの発生により発 電が不可能なことを示す。
図 31から、燃料ガスにおける出口ガス流速は 1. 8mZs以上であることが好ましいこ とが明らかである。また、図 32から、酸化剤ガスにおける出口ガス流速は 2. 8m/s 以上であることが好ま 、ことが明らかである。
この場合、燃料電池 101が、燃料ガスの利用率が 60%以上であり、酸化剤ガスの利 用率が 40%以上でかつ 80%以下であり、かつ電流密度が 0. 15AZcm2以上でか つ 0. 30AZcm2で以下であるように運転されることが前提である。つまり、これらのガ ス流速の範囲は、この運転条件の下で有効である。ガス流速は、電流密度が大きくな るに連れて大きくなるように制御される。
この燃料ガス及び酸化剤ガスの流速の制御は、具体的に、以下のようにして遂行さ れる。
燃料ガスの流量を Qaで表し、燃料ガス流路 28の断面積を Saで表すと、燃料ガスの 流速 Vaは、
Va = Qa/Saとなる。
ここで、 Qaは、燃料ガス流路 28の出口における未使用酸化剤ガス流量と、供給した 全水分量を水蒸気として算出した場合のガス流量と、発電反応により発生した全水 分量を水蒸気として算出した場合のガス流量との合計ガス流量である。未使用燃料 ガス流量は、供給した燃料ガス流量に燃料ガスの利用率を乗算して算出される。 Sa は、出口近傍の燃料ガス流路 28の断面積であり、各流路 (流路溝)の断面積の総和 である。各流路 (流路溝)は相当直径 (その断面積に等価な円の直径)が 0. 78mm 以上でかつ 1. 30mm以下となるように形成されて!、る。
また、酸化剤ガスの流量を Qcで表し、酸化剤ガス流路 17の断面積を Scで表すと、 酸化剤ガスの流速 Vcは、
Vc = Qc/Scとなる。
ここで、 Qcは、酸化剤ガス流路 17の出口における未使用酸化剤ガス流量と、供給し た全水分量を水蒸気として算出した場合のガス流量と、発電反応により発生した全水 分量を水蒸気として算出した場合のガス流量との合計ガス流量である。未使用酸ィ匕 剤ガス流量は、供給した酸化剤ガス流量に酸化剤ガスの利用率を乗算して算出され る。 Scは、出口近傍の酸化剤ガス流路 17の断面積であり、各流路 (流路溝)の断面 積の総和である。各流路 (流路溝)は相当直径が 0. 78mm以上でかつ 1. 30mm以 下となるように形成されて 、る。
従って、燃料ガスの流速 Va及び酸化剤ガスの流速 Vcは、制御装置 108が、燃料ガ ス供給流量、燃料ガスの利用率、酸化剤ガス供給流量、酸化剤ガスの利用率、及び 燃料ガス及び酸化剤ガスの露点換算温度 T1を制御することにより、制御される。 次に、反応ガスの圧力損失について説明する。
フラッデイングを防止するためには、反応ガス流路 17, 28における圧力損失が大き い方が好ましい。しかし、圧力損失が過大になると、反応ガスの供給圧力が過大にな る。
そこで、本実施の形態では、セルスタック 1における反応ガスの圧力損失が 2kPa以 上でかつ lOkPa以下となるように制御される。
この上限値及び下限値のうちの上限値は、補機の反応ガス供給圧力に関する性能 の観点から経験則に基づ 、て決定した。
一方、この上限値及び下限値のうちの下限値は、上述の実験により出口ガス流速とと もに求めた。すなわち、図 31から、セルスタックにおける燃料ガスの圧力損失は、 3. 6kPa以上であることが好ましいことが明らかである。また、図 32から、セルスタックに おける酸化剤ガスの圧力損失は、 2. OkPa以上であることが好ましいことが明らかで ある。従って、燃料ガス及び酸化剤ガスを反応ガスという上位概念で把握すると、この 圧力損失は、 2. OkPa以上であることが好ましいことになる。
なお、図 21及び図 22の測定例では、反応ガスの圧力損失力この好ましい範囲から 外れている力 これはセルスタックの温度分布のデータを採取するために特別な過 負荷運転をしたからであり、コージェネレーションシステムにはおいては、通常、この ような過負荷運転はされな 、。
以上のように、反応ガスの流速及び反応ガスの圧力損失を制御することにより、フラッ デイングの発生を防止しつつ、発電領域 42A, 42Bを、全域に渡って、フル加湿又 は過加湿の雰囲気に保つことができる。
く燃料電池の定格に関する有効範囲〉
上述の露点換算温度 T1が満たすべき条件式に関する検討は、定格出力が DC1. 2kWの燃料電池を用いて行った。しかし、この検討結果は、理論的に、異なる定格 出力の燃料電池にも適用できる(有効である)。具体的には、定格出力が DCO. 4k W〜2. 4kWの燃料電池にはほぼ確実に適用できる。さらに、例えば、セルスタック におけるセルの積層数を単純に増加することにより、定格出力が DC5kWの燃料電 池にまで適用することができる。
[0128] 以上の観点から、燃料電池発電システムの運転条件をまとめると、以下のようになる 燃料電池発電システム 101は、その運転において、
Tl≥T2+ 1°C (運転条件 1)を満たすことが好ま 、。
[0129] さらには、 T1≥T2+ (X°C+Y°C X (N— 1) X ΔΤ/8°0 但し、 X= l〜2. 5か つ Υ=0. 02〜0. 027 (運転条件 2)を満たすことが好ましい。
また、 Τ3— T2≤ 15°C (運転条件 3)、さらには T3— T2≤ 10°C (運転条件 4)を満た すことが好ましい。
また、 T2≤T1≤T3 (運転条件 5)を満たすことが好ま 、。
[0130] また、 Τ3— T1≥1°C (運転条件 6)を満たすことが好ましい。
[0131] また、 90°C≥T3≥66°C (運転条件 7)、 T1≥50°C (運転条件 8)、及び 80°C≥T3
≥ 66°C (運転条件 9)を満たすことが好ま 、。
さら〖こ、 2セル毎冷却方式を採用した場合には、 T1≥T2+ (X°C+Y°C X (N— 1) X ΔΤ/8°0 但し、 Χ= 2. 8〜4. 2力つ Υ=0. 013〜0. 033 (運転条件 10)を満た すことが好ましい。
[0132] 以上の知見に基づき、本実施の形態では、(運転条件 1)乃至 (運転条件 9)を満た すように燃料電池発電システム 100が構成されて 、る。
具体的には、図 1乃至図 9において、力ソード側セパレータ 10及びアノード側セパ レータ 20では、反応ガス流路 17, 28及び冷却水流路 19, 29が「反応ガス温度上り 勾配配置」に形成されている。また、反応ガスの加湿及び加熱に、供給反応ガスと排 出反応ガスとを全熱交換によって加湿及び加熱し、さらにこの加湿及び加熱した供 給反応ガスと排出冷却水とを全熱交換する全熱交 117, 118を用いることにより 、熱交換可能温度差 Τ3— T1が 1°C程度となっている。また、冷却水出口温度 T3と 冷却水入口温度 T2との温度差が T3 -T2≤ 10°Cの条件を満たすことが可能なよう に、セルスタック 1の最大発熱量に対する冷却システム 104の最大冷却能力が設定さ れている。そして、冷却水出口温度 T3が 80°C≥T3≥66°Cの条件を満たすように、 冷却水の温度が調整される。この際、具体的な冷却水出口温度 T3は、燃料電池 10 1の所定の出力電流密度を考慮して決定される。この冷却水の温度調整は、制御装 置 108が冷却システム 104の放熱装置 105の放熱量及び冷却水循環ポンプ 109の 流量の少なくともいずれかを制御することにより遂行される。また、この冷却水の温度 制御は、冷却水入口温度 T2及び冷却水出口温度 T3をそれぞれ検出する温度セン サ TS1及び温度センサ TS2の検出値に基づいて、制御装置 108が冷却水入口温 度 T2及び冷却水出口温度 T3をフィードバック制御することにより遂行される。
また、酸化剤ガス流路 17及び燃料ガス流路 28における各流路 (流路溝)は相当直 径が 0. 78mm〜l. 30mm以下となるように形成されている。また、制御装置 108が 、酸化剤ガス供給装置 103を制御して、酸化剤ガス流路 17における酸化剤ガスの流 速が 2. 8mZs〜7. 7mZsの範囲となり、セルスタック 1における圧力損失が 2kPa〜 lOkPaとなるように酸化剤ガスを供給する。また、制御装置 108が、燃料ガス供給装 置 102を制御して、燃料ガス流路 28における燃料ガスの流速が 1. 8mZs〜4. lm Zsの範囲となり、セルスタック 1における圧力損失が 2kPa〜10kPaとなるように燃料 ガスを供給する。
次に、以上のように構成された燃料電池発電システム 100の動作を説明する。燃料 電池発電システム 100は制御装置 108の制御により動作し、起動モード、運転モード 、及び停止モードを有している。起動モードにおいては所定の起動動作が順次遂行 されることにより、燃料電池発電システム 100が円滑に起動される。運転モード (発電 運転時)では、通常の発電が行われる。停止モードでは、所定の停止動作が順次遂 行されることにより、燃料電池発電システム 100が円滑に停止される。本実施の形態 では、起動モード及び停止モードは周知の動作が遂行されるので、その説明を省略 し、以下では、運転モードについてのみ説明する。
[0134] 図 1乃至図 9を参照すると、運転モードでは、燃料ガス供給装置 102から燃料ガス( 供給燃料ガス)が燃料電池 101のアノード 42Bに供給される。一方、酸化剤ガス供給 装置 103から酸化剤ガス (供給酸化剤ガス)が燃料電池 101の力ソード 42Aに供給さ れる。そして、アノード 42B及び力ソード 42Aにおいて発電反応が起こり、電力及び 熱 (排熱)が発生する。この発電反応により消費されなかった未反応の燃料ガス (排 出燃料ガス)及び酸化剤ガス (排出酸化剤ガス)は、燃料電池 101から排出される。 一方、燃料電池 101は、冷却システム 104の冷却水循環流路 112を循環する冷却 水によって冷却される。
[0135] この過程において、供給燃料ガスは、アノード側全熱交 17において、排出燃 料ガスと全熱交換した後、さらに燃料電池 101通過後の冷却水 (排出冷却水)と全熱 交換し、その燃料電池 101の入口における露点換算温度 (入口露点換算温度) T1 が所定値となるよう加湿及び加熱される。
[0136] 一方、供給酸化剤ガスは、力ソード側全熱交 118において、排出酸化剤ガスと 全熱交換した後、さらに排出冷却水と全熱交換し、その入口露点換算温度 T1が所 定値となるよう加湿及び加熱される。
[0137] また、制御装置 108は、入口温度センサ TS1及び出口温度センサ TS2の検出値 に基づき、冷却システム 104の放熱装置 105の放熱量及び冷却水循環ポンプ 106 の流量を制御して、冷却水入口温度 Τ2及び冷却水出口温度 Τ3を調節する。この場 合、燃料電池 101の発熱量に対する冷却システムの冷却能力(放熱量)に応じて冷 却水入口温度 Τ2が定まり、冷却水の流量に応じて冷却水入口温度 Τ2と冷却水出 口温度 Τ3との温度差 ΔΤが定まる。また、冷却水出口温度 Τ3が定まると、実質的に 、アノード側全熱交 117及び力ソード側全熱交 118の熱交換可能温度差 Τ 3-T1に従って、供給燃料ガス及び供給酸化剤ガスの入口露点換算温度 T1が定ま る。すなわち、冷却システム 104の放熱装置 105の放熱量及び冷却水循環ポンプ 10 6の流量を制御することにより、冷却水出口温度 T3、冷却水入口温度 Τ2、並びに燃 料ガス及び酸化剤ガスの入口露点換算温度 T1を制御することができる。なお、燃料 電池 101の出力の変動に応じて燃料電池 101の排熱量が変化するので、制御装置 108は、この排熱量の変化に応じて冷却システム 104の冷却能力を変化させながら 上述の冷却水の温度制御を行う。このように、制御装置 108の制御により、運転モー ドにおいて、燃料電池発電システム 100が上述の(運転条件 1)乃至 (運転条件 9)を 満たすように運転される。それにより、燃料電池 101の発電が起こる領域が全領域に 渡ってフル加湿又は過加湿の雰囲気に保たれる。その結果、 ΜΕΑ43の高分子電 解質膜 41の劣化が抑制され、燃料電池 101の寿命が向上する。
[0138] 次に、本実施の形態における上述の特徴的構成による効果を、後述する実施例に よる実験結果に基づ!、て説明する。
[0139] 図 13は燃料電池の寿命試験の結果を示すグラフである。図 13において、横軸は 運転時間を示し、縦軸はセル電圧を示す。
[0140] この実験では、本実施の形態の実施例として、ハードウェアが、全熱交翻 117, 1 18を除き、本実施の形態に従って作成された燃料電池発電システム 100を、運転条 件を第 1の運転条件と第 2の運転条件との間で切り換えながら運転することにより行つ た。本実施例の燃料電池発電システム 100では、全熱交^^ 117, 118に代えてバ ブラーを用い、このバブラ一によつて、所定の入口露点換算温度 T1となるように燃料 ガス及び酸化剤ガスを加湿及び加温した。従って、燃料ガス及び酸化剤ガスの入口 露点換算温度 T1は本実施の形態(図 1)の燃料電池システム 100を動作させる場合 と同様に適切に制御された。なお、燃料ガス流路 28における燃料ガスの流速が 1. 8 mZs〜4. lmZsの範囲となるよう制御され、酸化剤ガス流路 17における酸化剤ガ スの流速が 2. 8mZs〜7. 7mZsの範囲となるよう制御され、セルスタック 1における 酸化剤ガス及び燃料ガスの圧力損失が 2kPa〜: LOkPaとなるよう制御された。
[0141] ここで、第 1の運転条件は、 T1≥T2+ 1°C (運転条件 1)を満たさない比較例として の運転条件であり、具体的には、冷却水入口温度 T2が 64°C、冷却水出口温度 T3 力 S69°C、燃料ガス及び酸化剤ガスの入口露点換算温度 T1が 64°Cである。第 2の運 転条件は、 T1≥T2+ (X°C+Y°C X (N— 1) X AT/8°C) 但し、 X= l〜2. 5かつ Υ=0. 02〜0. 027 (運転条件 2 (及び運転条件 1) )を満す本発明の運転条件であ り、具体的には、冷却水入口温度 Τ2が 61°C、冷却水出口温度 T3が 69°C、燃料ガ ス及び酸化剤ガスの入口露点換算温度 T1が 64°Cである。
[0142] そして、運転開始力も約 4400時間を経過するまでの期間 P1において、(運転条件 1)を満たさない第 1の運転条件で燃料電池発電システム 100を運転した。すると、セ ル電圧が徐々に低下した。その後、 400時間程度の期間 P2において (運転条件 2 ( 及び運転条件 1) )を満たす第 2の運転条件で運転した。すると、セル電圧が上昇(回 復)した。その後、 400時間程度の期間 P3において、再度、(運転条件 1)を満たさな い第 1の運転条件で運転した。すると、セル電圧が再度徐々に低下した。その後、運 転開始力も約 9400時間を経過するまでの期間 P4において、再度、(運転条件 2 (及 び運転条件 1) )を満たす第 2の運転条件で運転した。すると、セル電圧が再度回復 し、運転開始力も約 9400時間を経過してもそのセル電圧が維持された。
[0143] このことから、従来の運転方法を用いると燃料電池 101の性能 (セル電圧)が低下し て燃料電池 101の寿命が短くなることが予測されるのに対し、本発明の運転方法 (運 転条件 1及び 2を満たす運転方法)を用いると、一旦低下した燃料電池 101の性能が 回復してそのまま維持され、燃料電池 101の寿命が向上することが実証された。 (実施の形態 2)
図 14は本発明の実施の形態 2に係る高分子電解質型燃料電池発電システムの構 成を模式的に示すブロック図である。図 14において図 1と同一符号は同一又は相当 する部分を示す。
[0144] 図 14に示すように、本実施の形態では、アノード側全熱交 117及び力ソード側 全熱交 118が、供給反応ガスを排出反応ガスと全熱交換し、この全熱交換後の 供給反応ガスを排出冷却水と単に熱交換するよう構成されている。また、図 2及び図 3のセルスタック 1が 2セル毎に冷却されている。その他は、上述の実施の形態 1と同 様である。
詳しく説明すると、本実施の形態のアノード側全熱交 117は、図 1に示された構 成において、第 2の全熱交換セルスタック 301Bに代えて、アノード側対冷却水熱交 換器 303Aを有している。図 14、図 8、及び図 9に示すように、第 1の全熱交換セルス タック 301Aにおいては、第 1の流体供給マ-ホールド 204、第 1の流体流路 217、 及び第 1の流体排出マ-ホールド 207がアノード側全熱交換器 117の燃料ガス流路 117aを構成し、第 2の流体供給マ-ホールド 205、第 2の流体流路 228、及び第 2の 流体排出マ-ホールド 206がアノード側全熱交翻 117の燃料ガス流路 117bを構 成している。また、第 1の流体供給配管 251が燃料ガス供給流路 109の燃料ガス供 給装置 102側の部分 109aを構成しており、第 1の流体排出配管 252はアノード側対 冷却水熱交換器 303Aの二次側流路の入口に接続されている。また、第 2の流体供 給配管 253が燃料ガス排出流路 110の燃料電池 101側の部分 110aを構成し、第 2 の流体排出配管 254が燃料ガス排出流路 110の大気側の部分 110bを構成して ヽ る。
また、アノード側対冷却水熱交換器 303Aは、一次側流路を流れる流体と二次側流 路を流れる流体とが熱交換可能に形成された周知の構成を有し、一次側流路がァノ 一ド側全熱交換器 117の冷却水流路 117cを構成している。そして、この一次側流路 の両端が冷却水循環流路 112の分流路 112aに接続されている。また、二次側流路 の入口は上述のように全熱交換セルスタック 301の第 1の流体排出マ-ホールド 207 に一端が接続された第 1の流体排出配管 252の他端に接続されており、二次側流路 の出口は燃料ガス供給流路 109の燃料電池 101側の部分 109bに接続されている。 従って、この二次側流路はアノード側全熱交 17の燃料ガス流路 117aの一部 を構成している。
このように構成されたアノード側全熱交 117では、第 1の全熱交換セルスタック 301Aにおいて、第 1の流体マ-ホールド 204に燃料電池 101に供給燃料ガスが供 給され、第 2の流体マ-ホールド 205に燃料電池 101から排出された排出燃料ガス が供給される。そして、各全熱交換セル 202において、第 1の流体流路 217を流れる 供給燃料ガスと第 2の流体流路 228を流れる排出燃料ガスとが高分子電解質膜 41 を介して全熱交換をし、それにより、供給燃料ガスが排出燃料ガスによって加湿及び 加熱される。そして、アノード側対冷却水熱交換器 303Αにおいて、一次側流路を流 れる冷却水と二次側流路を流れる供給燃料ガスとが熱交換し、それにより、全熱交換 後の供給燃料ガスが、燃料電池 101を通過して昇温した冷却水でさらに加熱される 。そして、このように加湿及び加熱された供給燃料ガスが燃料電池 101に供給される
[0146] 次に、力ソード側全熱交翻118の構成を説明する。本実施の形態の力ソード側 全熱交 118は、図 1に示された構成において、第 4の全熱交換セルスタック 301 Dに代えて、力ソード側対冷却水熱交換器 303Βを有している。第 3の全熱交換セル スタック 301Cにおいては、第 1の流体供給配管 251が酸化剤ガス供給流路 107の 酸化剤ガス供給装置 103側の部分 107aを構成しており、第 1の流体供給マ-ホー ルド 204、第 1の流体流路 217、及び第 1の流体排出マ-ホールド 207が力ソード側 全熱交 118の酸化剤ガス流路 118aを構成し、第 1の流体排出配管 252はカソ 一ド側対冷却水熱交換器 303Bの二次側流路の入口に接続されている。また、第 2 の流体供給配管 253が酸化剤ガス排出流路 111の燃料電池 101側の部分 11 laを 構成し、第 2の流体供給マ-ホールド 205、第 2の流体流路 228、及び第 2の流体排 出マ-ホールド 206が力ソード側全熱交翻 118の酸化剤ガス流路 118bを構成し、 第 2の流体排出配管 254が酸化剤ガス排出流路 111の大気側の部分 11 lbを構成し ている。
[0147] また、力ソード側対冷却水熱交換器 303Bは、一次側流路を流れる流体と二次側流 路を流れる流体とが熱交換可能に形成された周知の構成を有し、一次側流路カ^ソ 一ド側全熱交換器 118の冷却水流路 118cを構成している。そして、この一次側流路 の両端が冷却水循環流路 112の分流路 112bに接続されている。また、二次側流路 の入口は上述のように全熱交換セルスタック 301の第 1の流体排出マ-ホールド 207 に一端が接続された第 1の流体排出配管 252の他端に接続されており、二次側流路 の出口は酸化剤ガス供給流路 107の燃料電池 101側の部分 107bに接続されてい る。従って、この二次側流路はカソード側全熱交翻118の酸化剤ガス流路 118aの 一部を構成している。
[0148] このように構成された力ソード側全熱交 118では、第 3の全熱交換セルスタック 301Cにおいて、第 1の流体マ-ホールド 204に燃料電池 101に供給される酸化剤 ガス (以下、供給酸化剤ガスという)が供給され、第 2の流体マ-ホールド 205に燃料 電池 101から排出された酸化剤ガス (以下、排出酸化剤ガスという)が供給される。そ して、各全熱交換セル 202において、第 1の流体流路 217を流れる供給酸化剤ガス と第 2の流体流路 228を流れる排出酸化剤ガスとが高分子電解質膜 41を介して全熱 交換をし、それにより、供給酸化剤ガスが排出酸化剤ガスによって加湿及び加熱され る。そして、力ソード側対冷却水熱交換器 303Bにおいて、一次側流路を流れる冷却 水と二次側流路を流れる酸化剤燃料ガスとが熱交換し、それにより、全熱交換後の 供給酸化剤ガスが、燃料電池 101を通過して昇温した冷却水でさらに加熱される。そ して、このように加湿及び加熱された供給酸化剤ガスが燃料電池 101に供給される。
[0149] また、図 3に示すセルスタック 1は、力ソードセパレータ 10及びアノードセパレータ 20 に冷却水流路 19, 29力 S形成されているセル 2と、力ソードセパレータ 10及びアノード セパレータ 20に冷却水流路 19, 29が形成されていないセル 2とが交互に積層される ようにして構成されている。
[0150] また、制御装置 108は、反応ガス入口露点換算温度 T1及び冷却水入口温度 T2を
Tl≥T2+ (3°C + 0. 02°C X (N— 1) )運転条件 10)を満たすように制御する。
[0151] これにより、燃料電池 101の発電反応が起こる領域の全領域を、フル加湿又は過 加湿の雰囲気に保つことができる。その結果、高分子電解質膜 41の劣化が防止され
、燃料電池 101の寿命が向上する。また、アノード側対冷却水熱交換器 303A及び 力ソード側対冷却水熱交換器 303Bの構成が簡素化される。
[0152] なお、上記では、燃料電池発電システム 100は、アノード側全熱交^^ 117とカソ 一ド側全熱交翻 118とを共に備えたが、簡略化する場合には、いずれかを省略し てもよい。
(実施の形態 3)
図 15は本発明の実施の形態 3に係る燃料電池発電システムの構成を模式的に示 すブロック図である。図 15において図 1と同一符号は同一又は相当する部分を示す
[0153] 図 15に示すように、本実施の形態では、反応ガス同士の全熱交換にカ卩えて反応ガ スと冷却水との全熱交換をも行う図 1のアノード側全熱交 117及び力ソード側全 熱交^^ 118に代えて、反応ガスと冷却水との間でのみ全熱交換を行うアノード側 全熱交^^ 121及び力ソード側全熱交翻122を備えている。これ以外の点は実施 の形態 1と同様である。
[0154] 具体的には、アノード側全熱交換器 121は、実施の形態 1のアノード側全熱交換器 117の第 2の全熱交換セルスタック 301Bと全く同じ構成を有しており、従って、その 詳細な説明を省略する。このアノード側全熱交換器 121では、供給側燃料ガス流路 121aを流れる供給燃料ガスが冷却水流路 121bを流れる排出冷却水と全熱交換し て、加湿及び加熱される。
[0155] また、力ソード側全熱交翻122は、実施の形態 1の力ソード側全熱交翻118の 第 4の全熱交換セルスタック 301Dと全く同じ構成を有しており、従って、その詳細な 説明を省略する。この力ソード側全熱交 122では、供給側酸化剤ガス流路 122a を流れる供給酸化剤ガスが冷却水流路 122bを流れる排出冷却水と全熱交換して、 加湿及び加熱される。
[0156] この場合、アノード側全熱交 121及び力ソード側全熱交 122の熱交換可 能温度差は、 T3—T1≥2°C程度となる。
[0157] このように構成された本実施の形態の燃料電池発電システムにおいても、実施の形 態 1の燃料電池発電システムと同様の効果が得られる。
[0158] なお、簡略化する場合には、アノード側全熱交 121及び力ソード側全熱交換 器 122の!、ずれかを省略してもよ!/ヽ。
(実施の形態 4)
図 16は本発明の実施の形態 4に係る燃料電池発電システムの構成を模式的に示 すブロック図である。図 16において図 1と同一符号は同一又は相当する部分を示す
[0159] 図 16に示すように、本実施の形態では、反応ガス同士の全熱交換にカ卩えて反応ガ スと冷却水との全熱交換をも行う図 1のアノード側全熱交 117及び力ソード側全 熱交換器 118に代えて、同じ反応ガスの供給側のガスと排出側のガスとの間でのみ 全熱交換を行うアノード側全熱交 119及び力ソード側全熱交 120を備えて いる。これ以外の点は実施の形態 1と同様である。 [0160] 具体的には、アノード側全熱交換器 119は、実施の形態 1のアノード側全熱交換器 117の第 1の全熱交換セルスタック 301Aと全く同じ構成を有しており、従って、その 詳細な説明を省略する。このアノード側全熱交換器 119では、供給側燃料ガス流路 119aを流れる供給燃料ガスが排出側燃料ガス流路 119bを流れる排出燃料ガスと 全熱交換して、加湿及び加熱される。
[0161] また、力ソード側全熱交翻 120は、実施の形態 1の力ソード側全熱交翻 118の 第 3の全熱交換セルスタック 301Cと全く同じ構成を有しており、従って、その詳細な 説明を省略する。この力ソード側全熱交 122では、供給側酸化剤ガス流路 122a を流れる供給酸化剤ガスが排出側酸化剤ガス流路 122bを流れる排出酸化剤ガスと 全熱交換して、加湿及び加熱される。
[0162] この場合、アノード側全熱交 119及び力ソード側全熱交 120の熱交換可 能温度差は、 T3—T1≥4°C程度となる。
[0163] このように構成された本実施の形態の燃料電池発電システムにおいても、実施の形 態 1の燃料電池発電システムと同様の効果が得られる。
[0164] なお、簡略化する場合には、アノード側全熱交 119及び力ソード側全熱交換 器 120の!、ずれかを省略してもよ!/ヽ。
(実施の形態 5)
図 17は本発明の実施の形態 5に係る燃料電池発電システムの構成を模式的に示 すブロック図、図 18は図 17の燃料電池発電システムに用いられる加湿器付燃料電 池の構成を模式的に示す側面図、図 19は図 18の加湿器付燃料電池を構成するセ パレータを示す図であって、(a)は第 1のセパレータの正面図、(b)は第 2のセパレー タの正面図である。図 17において図 1と同一符号は同一又は相当する部分を示す。 また、図 18において図 2及び図 8と同一符号は同一又は相当する部分を示す。
[0165] 図 17に示すように、本実施の形態では、燃料電池発電システム 100が図 1の燃料 電池 101に代えて、加湿器付燃料電池 500を備えている。その他の点は実施の形態 1と同様である。
[0166] 加湿器付燃料電池 500は、供給燃料ガスと排出燃料ガスとを全熱交換すると同時 にこれらのガスと排出冷却水とを単に熱交換し、かつ供給酸化剤ガスと排出酸化剤 ガスとを全熱交換すると同時にこれらのガスと排出冷却水とを単に熱交換するように 構成されている。
[0167] 図 18に示すように、図 1の燃料電池 101のセル積層体 201と同様の構成を有する 電池部 502と、加湿部 503とを有している。加湿部 503は図 8の全熱交換セルスタツ ク 302と同様の構成を有している。そして、電池部 502においてセル 2が積層されか つ加湿部 503において全熱交換セル 202がそれぞれ積層されかっこのセル 2及び 全熱交換セル 202からなる積層体の両端に一対の端板 504A及び 504Bが配設され て電池及び加湿器一体化セルスタック 501が形成されて!、る。
[0168] 全熱交換セル 202は、本実施の形態では、図 9に示す構成において、第 1のセパレ ータ 210及び第 2のセパレータ 220に代えて、図 19 (a)に示す第 1のセパレータ 510 及び図 19 (b)に示す第 2のセパレータ 520が配設されている。
[0169] 図 19 (a)に示すように、第 1のセパレータ 510の正面には供給酸化剤ガス流路 511 と供給燃料ガス流路 512とが形成されている。図 19 (a)には、供給酸化剤ガス流路 5 11及び供給燃料ガス流路 512が各々の形成されている領域(1点鎖線によって囲ま れた領域)によって示されている。これらの領域は全熱交換セル 202の厚み方向(積 層方向)から見て、疑似 MEA243 (図 9参照)の高分子電解質膜 4が露出して 、る領 域に重なるようにかつ左右に間隔を置 、て並ぶように形成されて!、る。第 1のセパレ ータ 510の背面には、冷却水流路(図示せず)が図 3の力ソード側セパレータ 10の冷 却水流路 19と同様に形成されている。第 1のセパレータ 510の周縁部の適所には、 供給酸化剤ガス流路 511の上流端及び下流端にそれぞれ接続する入口マ-ホール ド孔及び出口マ-ホールド孔(図示せず)と、供給燃料ガス流路 512の上流端及び 下流端にそれぞれ接続する入口マ-ホールド孔及び出口マ-ホールド孔(図示せず )と、冷却水流路の上流端及び下流端にそれぞれ接続する入口マ二ホールド孔及び 出口マ-ホールド孔(図示せず)とが形成されて 、る。
[0170] 図 19 (b)に示すように、第 2のセパレータ 520の正面には排出酸化剤ガス流路 521 と排出燃料ガス流路 522とが形成されている。図 19 (b)には、排出酸化剤ガス流路 5 21及び排出燃料ガス流路 522が各々の形成されている領域(1点鎖線によって囲ま れた領域)によって示されている。これらの領域は全熱交換セル 202の厚み方向から 見て、疑似 MEA243 (図 9参照)の高分子電解質膜 4が露出している領域に重なるよ うにかつ左右に間隔を置いて並ぶように形成されている。また、排出酸化剤ガス流路 521及び排出燃料ガス流路 522は、全熱交換セル 202の厚み方向から見て、第 1の セパレータ 510の供給酸化剤ガス流路 511及び供給燃料ガス流路 512と実質的に 重なり合うように形成されている。第 2のセパレータ 520の背面には、冷却水流路(図 示せず)が図 3のアノード側セパレータ 20の冷却水流路 29と同様に形成されている 。第 2のセパレータ 520の周縁部の適所には、排出酸化剤ガス流路 521の上流端及 び下流端にそれぞれ接続する入口マ-ホールド孔及び出口マ-ホールド孔(図示せ ず)と、排出燃料ガス流路 522の上流端及び下流端にそれぞれ接続する入口マ-ホ 一ルド孔及び出口マ二ホールド孔(図示せず)と、冷却水流路の上流端及び下流端 にそれぞれ接続する入口マ-ホールド孔及び出口マ-ホールド孔(図示せず)とが 形成されている。
[0171] そして、電池及び加湿器一体化セルスタック 501の全体にお!/、ては、加湿器部 50 3及び電池部 502を貫通するように、供給燃料ガスを供給する供給燃料ガス供給マ 二ホールド (図示せず)、供給燃料ガスを排出する供給燃料ガス排出マ-ホールド( 図示せず)、排出燃料ガスを供給する排出燃料ガス供給マ二ホールド (図示せず)、 排出燃料ガスを排出する排出燃料ガス排出マ二ホールド (図示せず)、供給酸化剤 ガスを供給する供給酸化剤ガス供給マ-ホールド (図示せず)、供給酸化剤ガスを排 出する供給酸化剤ガス排出マ-ホールド (図示せず)、排出酸化剤ガスを供給する 排出酸化剤ガス供給マ-ホールド (図示せず)、排出酸化剤ガスを排出する排出酸 ィ匕剤ガス排出マ二ホールド(図示せず)、冷却水を供給する冷却水供給マ二ホールド (図示せず)、及び冷却水を排出する冷却水排出マ二ホールド(図示せず)が形成さ れている。これらの各マ-ホールドは、上述のマ-ホールド孔を含む、各マ-ホール ドに対応するマ-ホールド孔カ 加湿器部 503の第 1のセパレータ 210、疑似 MEA 243、及び第 2のセパレータ 220、並びに、電池部 502の力ソード側セパレータ 10、 MEA43、及びアノード側セパレータ 20に形成され、それらが繋がって形成されてい る。
[0172] 以上のように構成された加湿器付燃料電池 500では、加湿器部 503の全熱交換ス タック 202において、第 1のセパレータ 510の供給燃料ガス流路 512を流れる供給燃 料ガスが第 2のセパレータ 520の排出燃料ガス流路 522を流れる排出燃料ガスと高 分子電解質膜 4 (図 9参照)を介して全熱交換される。また、第 1のセパレータ 510の 供給酸化剤ガス流路 511を流れる供給酸化剤ガスが第 2のセパレータ 520の排出酸 ィ匕剤ガス流路 521を流れる排出酸化剤ガスと高分子電解質膜 4 (図 9参照)を介して 全熱交換される。そして、この際に、第 1のセパレータ 510の冷却水流路及び第 2の セパレータ 520の冷却水流路(図示せず、両者で 1つの冷却水流路を形成する)を 流れる排出冷却水によって、供給燃料ガス及び供給酸化剤ガスが、排出燃料ガス及 び排出酸化剤ガスとともに加熱される。
このような本実施の形態によれば、排出冷却水によって排出燃料ガス及び排出酸 ィ匕剤ガスをも加熱する分、排出冷却水による供給燃料ガス及び供給酸化剤ガスの加 熱効率が実施の形態 1に比べて若干低下するものの、電池部 502から排出される水 分及び排熱を有効に利用して供給燃料ガス及び供給酸化剤ガスを加湿及び加熱す ることができる。しかも、加湿器部 503が電池部 502と一体化されているので、燃料電 池発電システムを小型化することができる。
(実施の形態 6)
図 30は本発明の実施の形態 6に係る高分子電解質型燃料電池発電システムの構 成を模式的に示すブロック図である。図 30において図 1と同一符号は同一又は相当 する部分を示す。
図 30に示すように、本実施の形態では、アノード側全熱交 17が、図 1に示さ れた構成において、第 2の全熱交換セルスタック 301Bに代えて、アノード側対冷却 水熱交換器 303Aを有している。その他は、上述の実施の形態 2と同様である。 このような構成によれば、アノード側全熱交翻 117では、供給燃料ガスが排出燃 料ガスと全熱交換され、この全熱交換された後の供給燃料ガスが排出冷却水と単に 熱交換される。一方、力ソード側全熱交翻 118では、実施の形態 1と同様に、供給 酸化剤ガスが排出酸化剤ガスと全熱交換され、この全熱交換された後の供給酸化剤 ガスが排出冷却水と全熱交換される。
ところで、実施の形態 2のように、アノード側全熱交 117及び力ソード側全熱交 118を、供給反応ガスを排出反応ガスと全熱交換し、この全熱交換後の供給反 応ガスを排出冷却水と単に熱交換するよう構成すると、排出反応ガスにより加熱され て昇温した供給反応ガスをさらに排出冷却水の顕熱で加熱するため、供給反応ガス 中の水分 (液状水の分量)が少ないと、供給反応ガスを排出冷却水との全熱交換に より該排出冷却水の顕熱と潜熱との双方で加熱する場合に比べて、排出冷却水から 供給反応ガスへの熱伝達量、すなわち加熱能力が低下する。ここで、燃料ガスの利 用率は高いので、排出燃料ガスは結露水を多量に含んでいて、この排出燃料ガスと 全熱交換した供給燃料ガスも水分を多く含んでいる。従って、供給燃料ガスを排出 冷却水と単に熱交換しても、排出冷却水による加熱能力が低下することはない。一 方、酸化剤ガスの利用率は低いので、排出酸化剤ガスは水分が少なぐこの排出酸 ィ匕剤ガスと全熱交換した供給酸化剤ガスも水分が少ない。しかし、供給酸化剤ガス は排出冷却水と全熱交換されるので、排出冷却水によって十分加熱される。
よって、本実施の形態によれば、反応ガスに対する排出冷却水による加熱能力の低 下を招くことなぐアノード側及び力ソード側のうちの一方の全熱交^^ 117の構成を 簡素化することができる。
実施例
[0174] 本発明の実施の形態の実施例として、図 1乃至図 9に示す構成を有する燃料電池 発電システムを作製した。
[0175] 図 1乃至図 9において、ここでは、燃料電池 101、アノード側全熱交 117、及び 力ソード側全熱交換器 118についてのみ具体的構成を示す。その他の部分は周知 のように構成されている。
[0176] まず、アノード 42B及び力ソード 42A (以下、電極という)の作製方法を説明する。
[0177] アセチレンブラック粉末に、平均粒径約 30 Aの白金粒子を 25重量%担持させたも の触媒として用いた。この触媒の粉末をイソプロパノ—ルに分散させた溶液に、パー フルォロカーボンスルホン酸をエチルアルコールに分散したデイスパージヨン溶液を 混合して触媒ペーストを作成した。
[0178] 一方、ガス拡散層を構成する外寸 12cmラ 12cm、厚み 220·高フカーボンクロス (T ORAY製 TGP-H-090)を撥水処理した。このカーボンクロスの触媒層を形成する側 の面に、カーボンブラック粉末 (電気化学工業株式会社製 DENKA BLACKFX-35) と PTFEの水性ディスパージヨン (ダイキン製 D-1)との混合物を塗布し、 400°Cで 30 分間焼成して撥水層を付与した。このカーボンクロスの撥水層を付与した方の面に、 触媒ペーストをスクリ一ン印刷法を用いて塗布することにより触媒層を形成した。そし て、この触媒層が形成された力一ボンクロスを電極として用いた。この触媒層が形成 された電極中に含まれる白金量は、 0. 3mg/cm2であり、パーフルォロカーボンス ルホン酸の量は 1. OmgZcm2であった。
[0179] 次に、高分子電解質膜 41として、外寸が 20cmラ 20cmのパーフルォロカーボンス ルホン酸膜 (DUPONT製 Nafionll2 (登録商標))を用いた。この高分子電解質膜 41 の両面に、一対の電極を触媒層が高分子電解質膜 41に接するようにホットプレスで 接合して MEA43を作製した。ここでは、高分子電解質膜としてパーフルォロカーボ ンスルホン酸を 30 ·高フ厚みに薄膜ィ匕したものを用いた。
[0180] 次に、平均粒径 100 μ mの人造黒鉛粉末 80wt%とカーボンブラック 5wt%と熱硬 化前のフエノール榭脂 15wt%とを混合して、コンパウンドを作製した。このコンパゥン ドを、セパレータの形状を転写した形状の金型に投入し、 180°Cでホットプレスするこ とによってフエノール榭脂を硬化させ、それにより、図 4乃至図 7に示す導電性の成形 セパレータ 10, 20を作製した。図 4及び図 6はセパレータ 10, 20の正面 (内面)に形 成したガス流通用溝の形状を示したものである。セパレータ 10, 20の大きさは 20cm ラ 20cm、厚さは 3mmであり、反応ガスの流路 17, 28は幅 1. 2mmで深さ 0. 7mm の溝状に形成されている。
[0181] 次いで、セパレータ 10, 20に、酸化剤ガスのマ-ホールド孔 21, 23と、燃料ガスの マ-ホールド孔 22, 24を形成した。
[0182] また図 5及び図 7は、冷却水流路 19, 29の形状を示したものであり、図 4及び図 6に 示したセパレータ 19の背面 (外面)に形成したものである。冷却水流路 19, 29は、深 さ 0. 7mmの溝状に形成されている。
[0183] 次に、 MEA43の高分子電解質膜 41に、冷却水、燃料ガス、及び酸化剤ガス流通 用のマ-ホールド穴を形成し、 MEA43の、中央部の電極部分の周囲と各マ-ホー ルド穴 11〜 16の周囲に、バイトン製 O―リング状の流体シール部材を張り合わせガ スケットとした。
[0184] このようにして作成したアノード側セパレータ 20と力ソード側セパレータ 10とで ME A43を挟み、セル 2を作成した。このセル 2を 40個積層してセル積層体 201を作成し た。そして、セル積層体 201の両端に、銅の表面に金メッキした集電板と、 PPS製の 絶縁板と、 SUSを切削加工することで作成した端板 3A, 3Bとを配設し、これらを締 結ロッドで固定した。この時の締結圧は電極の面積当たり lOkgfZcm2とした。
このようにして燃料電池 101 (セルスタック 1)を作成した。
[0185] また、アノード側全熱交翻117及び力ソード側全熱交翻118を上述の燃料電 池 101と同様の製造方法で作成した。
[0186] このように作製した本実施例の燃料電池発電システム 100を用いて、実施の形態 1 で図 13に基づき説明した寿命試験を行った。
[0187] その結果、実施の形態 1で述べたように、燃料電池 101の寿命を向上させることが できた。
[0188] なお、上記実施の形態 1乃至 3では、燃料電池 101から排出される反応ガス及び冷 却水の少なくともいずれかとの全熱交換により、反応ガスを、所定の入口露点換算温 度を有するように加湿及び加熱したが、これを、バブラ一等の一般の加湿器を用いて 行ってもよい。
[0189] また、上記実施の形態 1乃至 3では、アノード側全熱交換器 117, 119, 121とカソ 一ド側全熱交翻 118, 120, 122とを別体としたが、これらを一体ィ匕してもよい。ま た、これらをセルスタック 1と一体ィ匕してもよい。この場合、アノード側全熱交翻 117 , 119, 121と、力ソード佃 J全熱交^^ 118, 120, 122と、セノレスタック 1とは基本的 構成が同じであるので、これらを容易に一体ィ匕することができる。
[0190] また、実施の 1及び 2では、アノード側全熱交 117, 121と力ソード側全熱交換 器 118, 22とを冷却システム 104の冷却循環流路 112に並列に接続した力 ァノー ド側全熱交 117, 121と力ソード側全熱交 118, 22とを冷却システム 104の 冷却循環流路 112に直列に接続してもよ 、。
[0191] また、上記実施の形態 1乃至 3では、冷却水流路 19, 29を 1又は 2セル毎に設けた 力 これを 3以上のセル毎に設けてもよい。 上記説明から、当業者にとっては、本発明の多くの改良や他の実施形態が明らか である。従って、上記説明は、例示としてのみ解釈されるべきであり、本発明を実行 する最良の態様を当業者に教示する目的で提供されたものである。本発明の精神を 逸脱することなぐその構造及び Z又は機能の詳細を実質的に変更できる。
産業上の利用可能性
本発明の高分子電解質型燃料電池発電システムは、ポータブル電源、電気自動 車用電源、コージエネシステム等に使用する燃料電池発電システムとして有用である

Claims

請求の範囲
[1] 高分子電解質膜と該高分子電解質膜を挟むように形成されたアノード及び力ソード とを有する複数のセルと、燃料ガスを該燃料ガスの入口力 各セルの前記アノード〖こ 導き、そこカゝら外部に排出するよう形成された燃料ガス経路と、酸化剤ガスを該酸ィ匕 剤ガスの入口力も各セルの前記力ソードに導き、そこ力も外部に排出するよう形成さ れた酸化剤ガス経路と、冷却流体を、該冷却流体の入口から冷却流体供給マ二ホー ルドを通って前記複数のセルの前記アノード及び力ソード力 なる発電領域に対向 する領域に導き、そこから該冷却流体の出口を経て外部に排出するよう形成された 冷却流体経路と、を備え、前記発電領域において前記燃料ガスと酸化剤ガスとが反 応して発熱を伴う発電が行われるよう構成された燃料電池と、
前記燃料電池の前記燃料ガスの入口に前記燃料ガスを供給する燃料ガス供給装 置と、
前記燃料電池の前記酸化剤ガスの入口に前記酸化剤ガスを供給する酸化剤ガス 供給装置と、
前記燃料電池の前記冷却流体経路を通るように冷却流体を流すことにより該燃料 電池を冷却する冷却流体供給装置と、
制御装置と、を備え、
前記制御装置は、前記発電が行われる時に、前記燃料ガス及び前記酸化剤ガス の少なくともいずれかの前記入口における全水分量を露点に換算した温度(以下、 入口露点換算温度)を T1で表し、前記冷却流体の前記入口における温度(以下、冷 却流体入口温度)を T2で表した場合に、 Tl≥T2+ 1°Cの条件を満たすように、前記 冷却流体供給装置を介して前記冷却流体入口温度を制御する、高分子電解質型燃 料電池発電システム。
[2] 前記燃料ガス及び前記酸化剤ガスの少なくとも ヽずれかの前記入口露点換算温度 を調整するための露点調整装置を備えた、請求項 1記載の高分子電解質型燃料電 池発電システム。
[3] 前記セルは、前記高分子電解質膜並びに前記アノード及び力ソードを有する MEA と、前記 MEAの一方の側に正面が前記アノードに接触するように配置され該正面の 該アノードに接触する領域に溝状の燃料ガス流路が形成された導電性及び熱伝導 性の板状のアノード側セパレータと、前記 MEAの他方の側に正面が前記力ソードに 接触するように配置され該正面該カソードに接触する領域に溝状の酸化剤ガス流路 が形成された導電性及び熱伝導性の板状の力ソード側セパレータと、を有し、 前記燃料電池は複数の前記セルが積層されてなるセルスタックと、前記セルスタツ クの内部に、前記セルの積層方向に延びるようにそれぞれ形成された燃料ガス供給 マ-ホールド、燃料ガス排出マ-ホールド、酸化剤ガス供給マ-ホールド、酸化剤ガ ス排出マ-ホールド、前記冷却流体供給マ-ホールド、及び冷却流体排出マ-ホー ノレドと、を有し、
前記各セルの前記燃料ガス流路が前記燃料ガス供給マ-ホールドと前記燃料ガス 排出マ-ホールドとを接続するように形成され、
前記各セルの前記酸化剤ガス流路が前記酸化剤ガス供給マ二ホールドと前記酸 ィ匕剤ガス排出マ-ホールドとを接続するように形成され、
所定数のセル毎に、冷却流体流路が、前記アノードセパレータ及び前記力ソードセ パレータのうちの少なくともいずれかの背面の、前記セルの積層方向から見て前記発 電領域と重なる領域に前記冷却流体供給マ二ホールドと前記冷却流体主排出マ二 ホールドとを接続するように形成され、
前記燃料ガス供給マ二ホールドの上流側の端が前記燃料ガスの前記入口に連通 しかつ前記燃料ガス排出マ-ホールドの下流側の端が外部に連通し、
前記酸化剤ガス供給マ-ホールドの上流側の端が前記酸化剤ガスの前記入口に 連通しかつ前記酸化剤ガス排出マ-ホールドの下流側の端が外部に連通し、 前記冷却流体供給マ二ホールドの上流側の端が前記冷却流体の前記入口に連通 しかつ前記冷却流体排出マ二ホールドの下流側の端が前記冷却流体の前記出口に 通し、
前記燃料ガス供給マ二ホールド、前記燃料ガス流路、及び前記燃料ガス排出マ二 ホ—ルドが前記燃料ガス経路を構成し、
前記酸化剤ガス供給マ二ホールド、前記酸化剤ガス流路、及び前記酸化剤ガス排 出マ-ホ—ルドが前記酸化剤ガス経路を構成し、 前記冷却流体供給マ二ホールド、前記冷却流体流路、及び前記冷却流体排出マ 二ホールドが前記冷却流体経路を構成している、請求項 1記載の高分子電解質型燃 料電池発電システム。
[4] 1セル毎に、前記冷却流体流路が、前記アノードセパレータ及び前記力ソードセパ レータのうちの少なくともいずれかの背面に形成されており、
前記冷却流体の前記出口における温度を T3で表し、 T3— T2を ΔΤで表し、前記 セルスタックにお ヽて積層された前記セルの数を Nで表した場合に、前記制御装置 は、前記発電が行われる時に、 T1≥T2+ (X°C+Y°C X (N— 1) X ΔΤΖ8°0であ り、 Xが 1〜2. 5の範囲の数値であり、 Υが 0. 02〜0. 027の範囲の数値であるという 条件を満たすように、前記冷却流体入口温度を制御する、請求項 3記載の高分子電 解質型燃料電池発電システム。
[5] 前記セルの積層方向力も見て、前記セルスタックの一方の半分の周縁部に、前記 燃料ガス供給マ二ホールド、前記酸化剤ガス供給マ二ホールド、及び前記冷却流体 供給マ二ホールドが形成され、かつ前記セルスタックの他方の半分の周縁部に、前 記燃料ガス排出マ二ホールド、前記酸化剤ガス排出マ二ホールド、及び前記冷却流 体排出マ-ホールドが形成されており、
前記燃料ガス供給マ二ホールド及び前記酸化剤ガス供給マ二ホールドのうち前記 冷却流体供給マ-ホールドに近 、方のマ-ホールドを流れるガスにっ 、ての前記条 件において、 Xが 1. 0〜1. 5の範囲の数値であり、 Υが 0. 02〜0. 027の範囲の数 値であり、かつ前記燃料ガス供給マ-ホールド及び前記酸化剤ガス供給マ-ホール ドのうち前記冷却流体供給マ二ホールドに遠い方のマ二ホールドを流れるガスにつ いての前記条件において、 Xが 2. 5であり、 Υが 0. 023である、請求項 4記載の高分 子電解質型燃料電池発電システム。
[6] 2セル毎に、前記冷却流体流路が、前記アノードセパレータ及び前記力ソードセパ レータのうちの少なくともいずれかの背面に形成されており、
前記冷却流体の前記出口における温度を Τ3で表し、 Τ3— Τ2を ΔΤで表し、前記 セルスタックにお ヽて積層された前記セルの数を Νで表した場合に、前記制御装置 は、前記発電が行われる時に、 T1≥T2+ (X°C+Y°C X (N— 1) X ΔΤΖ8°0であ り、 Xが 2. 8〜4. 2の範囲の数値であり、 Yが 0. 013〜0. 033の範囲の数値である という条件を満たすように、前記冷却流体入口温度を制御する、請求項 3記載の高分 子電解質型燃料電池発電システム。
[7] 前記セルの積層方向力も見て、前記セルスタックの一方の半分の周縁部に、前記 燃料ガス供給マ二ホールド、前記酸化剤ガス供給マ二ホールド、及び前記冷却流体 供給マ二ホールドが形成され、かつ前記セルスタックの他方の半分の周縁部に、前 記燃料ガス排出マ二ホールド、前記酸化剤ガス排出マ二ホールド、及び前記冷却流 体排出マ-ホールドが形成されており、
前記燃料ガス供給マ二ホールド及び前記酸化剤ガス供給マ二ホールドのうち前記 冷却流体供給マ-ホールドに近 、方のマ-ホールドを流れるガスにっ 、ての前記条 件において、 Xが 2. 8〜3. 3の範囲の数値であり、 Yが 0. 013〜0. 033の範囲の数 値であり、かつ前記燃料ガス供給マ-ホールド及び前記酸化剤ガス供給マ-ホール ドのうち前記冷却流体供給マ二ホールドに遠い方のマ二ホールドを流れるガスにつ いての前記条件において、 Xが 3. 7〜4. 2の範囲の数値であり、 Yが 0. 013〜0. 0 30の範囲の数値である、請求項 6記載の高分子電解質型燃料電池発電システム。
[8] 前記制御装置は、前記発電が行われる時に、前記冷却流体の前記出口における 温度(以下、冷却流体出口温度)を T3で表した場合に、 T3— T2≤15°Cの条件を満 たすように、さらに前記冷却流体出口温度を制御する、請求項 1記載の高分子電解 質型燃料電池発電システム。
[9] 前記制御装置は、前記発電が行われる時に、 T3— T2≤ 10°Cの条件を満たすよう に、前記冷却流体出口温度を制御する、請求項 8記載の高分子電解質型燃料電池 発電システム。
[10] 前記燃料ガス流路及び前記酸化剤ガス流路の各々の最上流部と前記冷却流体流 路の最上流部とが前記セルの積層方向から見て概ね同じ位置に位置し、かつ、前記 燃料ガス流路及び前記酸化剤ガス流路の各々の最下流部と前記冷却流体流路の 最下流部とが前記セルの積層方向から見て概ね同じ位置に位置するように形成され て ヽる、請求項 8記載の高分子電解質型燃料電池発電システム。
[11] 前記燃料電池に供給される前記燃料ガス (以下、供給燃料ガス)と前記燃料電池か ら排出される前記燃料ガス (以下、排出燃料ガス)との全熱交換及び前記燃料電池 に供給される前記酸化剤ガス (以下、供給酸化剤ガス)と前記燃料電池から排出され る前記酸化剤ガス (以下、排出酸化剤ガス)との全熱交換のうちの少なくともいずれか を行 ヽ、それにより前記全熱交換を行ったガスの前記入口露点換算温度を調整する 露点調整装置を備えて!/ヽる、請求項 10記載の高分子電解質型燃料電池発電システ ム。
[12] 前記燃料ガス及び前記酸化剤ガスの少なくとも!ヽずれかの前記入口露点換算温度 、前記冷却流体入口温度、及び前記冷却流体出口温度が、前記発電が行われる時 に、 T2≤T1≤T3の条件を満たす、請求項 11記載の高分子電解質型燃料電池発 電システム。
[13] 前記露点調整装置が、前記発電が行われる時に Τ3— Tl≥ 1°Cの条件が満たされ るように構成されて!ヽる、請求項 12記載の高分子電解質型燃料電池発電システム。
[14] 前記露点調整装置が、前記発電が行われる時に T3— T1≥2°Cの条件が満たされ るように構成されて!ヽる、請求項 12記載の高分子電解質型燃料電池発電システム。
[15] 前記露点調整装置は、前記供給燃料ガスと前記排出燃料ガスとの全熱交換及び 前記供給酸化剤ガスと前記排出酸化剤ガスとの全熱交換のうちの少なくともいずれ かを行 ヽ、かっこの全熱交換を行ったガスと前記燃料電池カゝら排出される冷却流体 とを全熱交換し、この冷却流体と全熱交換したガスを前記燃料電池に供給するよう構 成されて!/ヽる、請求項 13記載の高分子電解質型燃料電池発電システム。
[16] 前記露点調整装置が、前記発電が行われる時に T3— T1≥4°Cの条件が満たされ るように構成されて!ヽる、請求項 12記載の高分子電解質型燃料電池発電システム。
[17] 前記露点調整装置は、前記供給燃料ガスと前記排出燃料ガスとの全熱交換及び 前記供給酸化剤ガスと前記排出酸化剤ガスとの全熱交換のうちの少なくともいずれ かを行 ヽ、かっこの全熱交換を行ったガスと前記燃料電池カゝら排出される冷却流体 とを単に熱交換し、この冷却流体と熱交換したガスを前記燃料電池に供給するよう構 成されて!/ヽる、請求項 12記載の高分子電解質型燃料電池発電システム。
[18] 前記露点調整装置は、前記供給燃料ガスと前記燃料電池力 排出される冷却流 体との全熱交換及び前記供給酸化剤ガスと前記燃料電池から排出される冷却流体 との全熱交換のうちの少なくとも 、ずれかを行 ヽ、この全熱交換したガスを前記燃料 電池に供給するよう構成されている、請求項 16記載の高分子電解質型燃料電池発 電システム。
[19] 前記冷却流体供給装置は、前記燃料電池の前記冷却流体経路の両端に閉流路 を形成するように接続された冷却流体循環流路と、前記冷却流体循環流路中に設け られ前記冷却流体を、前記閉流路を通って循環させる冷却流体循環器と、前記冷却 流体循環流路に前記冷却流体循環器と前記燃料電池の前記冷却流体の出口との 間に位置するように設けられ前記冷却流体の保持する熱を放出させる放熱器とを有 して!ヽる、請求項 1記載の高分子電解質型燃料電池発電システム。
[20] 前記制御装置は、前記発電が行われる時に、前記燃料ガス及び前記酸化剤ガス の少なくともいずれかの前記燃料電池力ゝらの出口における全水分量を露点に換算し た温度 (以下、出口露点換算温度)を T4で表した場合に、 T4≥T3の条件を満たす ように、前記冷却流体出口温度を制御する、請求項 8記載の高分子電解質型燃料電 池発電システム。
[21] 前記燃料ガス流路、前記酸化剤ガス流路、及び前記冷却流体流路は、各々を流 体が重力に逆らわずに流れるように形成されて!、る、請求項 1記載の高分子電解質 型燃料電池発電システム。
[22] 前記制御装置は、前記発電が行われる時に、 50°C≥T2≥70°Cの条件を満たすよ うに、前記冷却流体入口温度を制御する、請求項 9記載の高分子電解質型燃料電 池発電システム。
[23] 前記制御装置は、前記発電が行われる時に、 5°C≤T3— T2の条件を満たすように 、前記冷却流体出口温度を制御する、請求項 8記載の高分子電解質型燃料電池発 電システム。
[24] 前記制御装置は、前記発電が行われる時に、前記発電領域の全域に渡って過加 湿又はフル加湿となるよう、前記冷却流体供給装置を介して前記冷却流体の流通を 制御する、
請求項 1記載の高分子電解質型燃料電池発電システム。
[25] 前記制御装置は、前記発電が行われる時に、前記燃料ガス供給装置を制御して、 前記燃料ガス流路の出口における前記燃料ガスの流速が 1. 8mZs以上でかつ 4. lmZs以下となるように前記燃料ガスを供給する、請求項 3記載の高分子電解質型 燃料電池発電システム。
[26] 前記制御装置は、前記発電が行われる時に、前記燃料ガス経路の圧力損失が 2k
Pa以上でかつ lOkPa以下となるように前記燃料ガスの供給を制御する、請求項 25 記載の高分子電解質型燃料電池発電システム。
[27] 前記燃料ガス流路は、複数の流路溝で構成されており、該流路溝の相当直径が 0
. 78mm以上でかつ 1. 30mm以下である、請求項 25記載の高分子電解質型燃料 電池発電システム。
[28] 前記制御装置は、前記発電が行われる時に、前記酸化剤ガス供給装置を制御して
、前記酸化剤ガス流路の出口における前記酸化剤ガスの流速が 2. 8mZs以上でか つ 7. 7mZs以下となるように前記酸化剤ガスを供給する、請求項 3記載の高分子電 解質型燃料電池発電システム。
[29] 前記制御装置は、前記発電が行われる時に、前記酸化剤ガス経路の圧力損失が 2 kPa以上でかつ lOkPa以下となるように前記酸化剤ガスの供給を制御する、請求項
28記載の高分子電解質型燃料電池発電システム。
[30] 前記酸化剤ガス流路は、複数の流路溝で構成されており、該流路溝の相当直径が
0. 78mm以上でかつ 1. 30mm以下である、請求項 28記載の高分子電解質型燃料 電池発電システム。
PCT/JP2005/024135 2004-12-28 2005-12-28 高分子電解質型燃料電池発電システム WO2006077741A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP05844882A EP1843420B1 (en) 2004-12-28 2005-12-28 Polymer electrolyte type fuel cell generation system
DE602005024180T DE602005024180D1 (de) 2004-12-28 2005-12-28 Erzeugungssystem für brennstoffzellen des polymer-elektrolyttyps
CN200580041530XA CN101080838B (zh) 2004-12-28 2005-12-28 高分子电解质型燃料电池发电系统
KR1020077017278A KR101246524B1 (ko) 2004-12-28 2005-12-28 고분자 전해질형 연료 전지 발전 시스템

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-381510 2004-12-28
JP2004381510 2004-12-28

Publications (1)

Publication Number Publication Date
WO2006077741A1 true WO2006077741A1 (ja) 2006-07-27

Family

ID=36692131

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/024135 WO2006077741A1 (ja) 2004-12-28 2005-12-28 高分子電解質型燃料電池発電システム

Country Status (6)

Country Link
US (1) US7611786B2 (ja)
EP (1) EP1843420B1 (ja)
KR (1) KR101246524B1 (ja)
CN (1) CN101080838B (ja)
DE (1) DE602005024180D1 (ja)
WO (1) WO2006077741A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008010205A (ja) * 2006-06-27 2008-01-17 Nok Corp 中空糸膜モジュール及び燃料電池

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2003022417A2 (en) * 2001-06-27 2003-03-20 Nu Element, Inc. Modular micro-reactor architecture and method for fluid processing devices
JP5009162B2 (ja) * 2005-10-19 2012-08-22 パナソニック株式会社 燃料電池システム及びその運転方法
US8277985B2 (en) * 2006-12-14 2012-10-02 Panasonic Corporation Separator including an elastic layer for use in humidifying device, humidifying device, and fuel cell system including humidifying device
CN101652890B (zh) * 2007-02-09 2013-01-16 戴姆勒股份公司 燃料电池组的供给系统和报警装置以及用于控制供给系统的方法
WO2008132783A1 (ja) * 2007-04-18 2008-11-06 Panasonic Corporation 燃料電池システム及びその運転方法
JP2008288148A (ja) * 2007-05-21 2008-11-27 Toyota Motor Corp 燃料電池システムの制御装置
US9105885B2 (en) * 2007-08-16 2015-08-11 Ford Motor Company Apparatus for conditioning temperature of a fluid stream
JP5636153B2 (ja) * 2007-09-27 2014-12-03 日産自動車株式会社 燃料電池システムおよび燃料電池システムの制御方法
WO2009072284A1 (ja) * 2007-12-05 2009-06-11 Panasonic Corporation 燃料電池発電システム
JP4434279B2 (ja) * 2007-12-26 2010-03-17 トヨタ自動車株式会社 燃料電池システム
EP2688132B1 (en) * 2011-03-14 2015-08-19 Panasonic Corporation Fuel cell system and method for operating same
WO2012151190A2 (en) * 2011-05-05 2012-11-08 Bright Automotive, Inc. Close-coupled dry battery system for hybrid and electric vehicles
DE102011111742A1 (de) * 2011-08-24 2013-02-28 Daimler Ag Brennstoffzellensystem
DE112013001164T5 (de) * 2012-02-27 2014-11-06 Dana Canada Corporation Verfahren und System zum Kühlen von Ladeluft für eine Brennstoffzelle und Drei-Fluidladeluftkühler
DE102012022206A1 (de) * 2012-11-13 2014-05-15 Daimler Ag Befeuchtereinrichtung für ein Brennstoffzellensystem
FR3050875B1 (fr) * 2016-04-27 2021-08-20 Snecma Pile a combustible et ensemble de generation de courant
CN107195928B (zh) * 2017-05-15 2020-07-10 中国东方电气集团有限公司 加湿装置及具有其的燃料电池动力系统
CN107195924B (zh) * 2017-05-16 2020-06-05 中国东方电气集团有限公司 燃料电池系统、其控制方法及包括其的交通工具
WO2019111886A1 (ja) * 2017-12-07 2019-06-13 東芝燃料電池システム株式会社 燃料電池システム、及び燃料電池システムの制御方法
DE102021131243B3 (de) 2021-11-29 2023-03-09 Audi Aktiengesellschaft Brennstoffzellenvorrichtung sowie Kraftfahrzeug mit einer solchen Brennstoffzellenvorrichtung

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0696789A (ja) * 1992-09-16 1994-04-08 Fuji Electric Co Ltd 固体高分子電解質型燃料電池システム
JPH06132038A (ja) * 1992-10-20 1994-05-13 Fuji Electric Co Ltd 固体高分子電解質型燃料電池
WO2000065678A1 (fr) * 1999-04-26 2000-11-02 Matsushita Electric Industrial Co., Ltd. Procede de fonctionnement d'une pile a combustible electrolytique a polymere
WO2002047190A1 (fr) * 2000-12-05 2002-06-13 Matsushita Electric Industrial Co., Ltd. Pile a combustible a polyelectrolyte et son procede de mise en service
JP2002343395A (ja) * 2001-05-11 2002-11-29 Nissan Motor Co Ltd 燃料電池システム
JP2003017105A (ja) * 2001-07-04 2003-01-17 Honda Motor Co Ltd 燃料電池の冷却装置
JP2004031073A (ja) * 2002-06-25 2004-01-29 Sanyo Electric Co Ltd 固体高分子形燃料電池システム
JP2004185938A (ja) * 2002-12-02 2004-07-02 Sanyo Electric Co Ltd 燃料電池及び燃料電池システム

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2761059B2 (ja) 1989-06-28 1998-06-04 三菱重工業株式会社 固体高分子電解質型燃料電池
JP3540491B2 (ja) * 1996-03-07 2004-07-07 政廣 渡辺 燃料電池及び電解セル並びにその冷却・除湿方法
JP4245091B2 (ja) 1998-10-01 2009-03-25 本田技研工業株式会社 燃料電池
JP3596332B2 (ja) 1999-02-25 2004-12-02 株式会社豊田中央研究所 積層型燃料電池の運転方法、積層型燃料電池及び積層型燃料電池システム
US6329090B1 (en) * 1999-09-03 2001-12-11 Plug Power Llc Enthalpy recovery fuel cell system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0696789A (ja) * 1992-09-16 1994-04-08 Fuji Electric Co Ltd 固体高分子電解質型燃料電池システム
JPH06132038A (ja) * 1992-10-20 1994-05-13 Fuji Electric Co Ltd 固体高分子電解質型燃料電池
WO2000065678A1 (fr) * 1999-04-26 2000-11-02 Matsushita Electric Industrial Co., Ltd. Procede de fonctionnement d'une pile a combustible electrolytique a polymere
WO2002047190A1 (fr) * 2000-12-05 2002-06-13 Matsushita Electric Industrial Co., Ltd. Pile a combustible a polyelectrolyte et son procede de mise en service
JP2002343395A (ja) * 2001-05-11 2002-11-29 Nissan Motor Co Ltd 燃料電池システム
JP2003017105A (ja) * 2001-07-04 2003-01-17 Honda Motor Co Ltd 燃料電池の冷却装置
JP2004031073A (ja) * 2002-06-25 2004-01-29 Sanyo Electric Co Ltd 固体高分子形燃料電池システム
JP2004185938A (ja) * 2002-12-02 2004-07-02 Sanyo Electric Co Ltd 燃料電池及び燃料電池システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1843420A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008010205A (ja) * 2006-06-27 2008-01-17 Nok Corp 中空糸膜モジュール及び燃料電池

Also Published As

Publication number Publication date
DE602005024180D1 (de) 2010-11-25
KR20070091687A (ko) 2007-09-11
CN101080838A (zh) 2007-11-28
US7611786B2 (en) 2009-11-03
KR101246524B1 (ko) 2013-03-26
EP1843420A4 (en) 2009-04-01
EP1843420B1 (en) 2010-10-13
EP1843420A1 (en) 2007-10-10
US20060251943A1 (en) 2006-11-09
CN101080838B (zh) 2010-05-26

Similar Documents

Publication Publication Date Title
WO2006077741A1 (ja) 高分子電解質型燃料電池発電システム
JP2009043493A (ja) 燃料電池スタック
JP4034804B2 (ja) 高分子電解質型燃料電池発電システム
US20110269035A1 (en) Fuel cell system and operating method thereof
JP2006210334A5 (ja)
US10026977B2 (en) Humidification device for humidifying process gases and fuel cell arrangement comprising same
KR100683977B1 (ko) 고분자 전해질형 연료전지
KR101127004B1 (ko) 내부 막가습기를 포함하는 연료전지 스택
JP5089884B2 (ja) 高分子電解質型燃料電池システム
JPH08111230A (ja) 固体高分子型燃料電池の運転方法
JP2006156411A (ja) 高分子電解質型燃料電池
US8492043B2 (en) Fuel cell, fuel cell system, and method for operating fuel cell
JP5385371B2 (ja) 燃料電池の分離プレート構成
JP2008047395A (ja) 燃料電池
US20100104908A1 (en) Fuel cell system and operating method thereof
EP1646099A2 (en) Electrochemical device
US6913848B2 (en) Fuel cell reactant control
JP2005038845A (ja) 高分子電解質型燃料電池
JP2008243540A (ja) 固体高分子電解質形燃料電池発電装置
JP2005032561A (ja) 固体高分子形燃料電池及び固体高分子形燃料電池の運転システム
JP2006032094A (ja) 燃料電池システム
KR101876061B1 (ko) 연료전지 스택
KR20160023815A (ko) 연료 전지 공기 흐름 방법 및 시스템
Berning Multiphase simulations and design of validation experiments for proton exchange membrane fuel cells
JP2006185617A (ja) 燃料電池システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 200580041530.X

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2005844882

Country of ref document: EP

Ref document number: 1020077017278

Country of ref document: KR

WWP Wipo information: published in national office

Ref document number: 2005844882

Country of ref document: EP