JP2006185617A - 燃料電池システム - Google Patents

燃料電池システム Download PDF

Info

Publication number
JP2006185617A
JP2006185617A JP2004374576A JP2004374576A JP2006185617A JP 2006185617 A JP2006185617 A JP 2006185617A JP 2004374576 A JP2004374576 A JP 2004374576A JP 2004374576 A JP2004374576 A JP 2004374576A JP 2006185617 A JP2006185617 A JP 2006185617A
Authority
JP
Japan
Prior art keywords
cooling medium
refrigerant
fuel cell
temperature
flow path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004374576A
Other languages
English (en)
Inventor
Masaru Idono
大 井殿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2004374576A priority Critical patent/JP2006185617A/ja
Publication of JP2006185617A publication Critical patent/JP2006185617A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)

Abstract

【課題】燃料電池スタックの温度を正確に制御する燃料電池システムを提供する。
【解決手段】水素流路10を有するアノードセパレータ6と、空気流路11を有するカソードセパレータ7と、冷媒流路を有する冷媒セパレータ8を備えた燃料電池スタック有する燃料電池スタックにおいて、冷媒流路を空気流路11を流れる空気の流れ方向に交差する方向に仕切部27、28によって分割し、分割した第1冷却部20、第2冷却部30、第3冷却部40にそれぞれ冷媒を環流させ、冷媒の流量を流量制御弁62、72、82によって制御する。
【選択図】 図3

Description

本発明は燃料電池システムに関するものである。
燃料電池は、燃料の供給と燃焼性生物の排出とを連続的に行い、燃料の持つ化学エネルギーを直接電気エネルギーに変化する装置であり、発電効率の高さ、大気汚染物質の少なさ、騒音の少なさ等を特徴としている。
燃料電池の発電単位となる単位セルは、電解質の両面にガス拡散電極を接合し、その両面にガス流路を備えたセパレータで狭持した構造をとる。燃料電池の発電原理は、このような構造を有する単電池の一方のガス拡散電極(燃料極)側に燃料ガス、例えば水素を、他方のガス拡散電極(酸素極)側に酸化剤ガス、例えば空気を流すことにより、燃料を酸化させ、その際の自由エネルギーの変化を単電池の両端に配したセパレータを介して、電気エネルギーとして取り出すものである。
このような燃料電池の出力とセル温度には密接な関係があり、最大出力を得るには単位セルのセル温度を最適に維持する必要があることはよく知られている。
例えば、燃料ガスとして純水素ではなく改質ガスを用いる固体高分子型燃料電池の場合、セル温度が低すぎると、ガス拡散電極中の電極触媒が改質ガス中の一酸化炭素により被毒され、発電性能が低下する。また、セル温度が固体高分子電解質膜に含まれる加湿水の沸点以上の温度になると、水蒸気挙動が変化し、発電性能が低下する。また、セル温度が固体高分子電解質膜のガラス転移点以上の温度になると、電解質膜が変成し、発電性能が低下する。さらに、単位セル内において、酸化剤ガスの出口側の温度が入口側に対して高くなる現象が確認されており、単位セル内においても温度のばらつきが生じていることがよく知られている。
そのため燃料電池では各単位セルを最適温度に維持する必要があり、その温度維持方法として、燃料ガス/酸化剤ガス流路に平行な冷却面を設け、そこに冷媒(冷却媒体)を流通させ、セパレータを介して冷却する方法がよく用いられている。
従来、燃料電池の構成では、燃料ガス及び酸化剤ガスを重力方向に沿って供給し、冷媒をその反対方向から流通させることで、単位セル内に生じる温度勾配を均一化したものが特許文献1に開示されている。
特開平8−306371号公報
しかし、上記の発明では、高加湿雰囲気においては、温度を下げ過ぎることによって水の凝縮結露が引き起こされ、そのため燃料ガス供給流路あるいは酸化剤ガス供給流路を凝縮水によって閉塞状態、いわゆるフラッディングを生じ、燃料電池の性能を低下させる恐れがある。また、それを避けようとすると、セル温度を所望の温度まで下げることができなくなる恐れがある。
本発明は、このような問題点を解決するためになされたもので、単位セルによる燃料ガス供給流路あるいは酸化剤ガス供給流路における閉塞状態を抑制することを目的とする。
本発明では、酸化剤ガスが流れる酸化剤ガス流路を有する酸化剤ガスセパレータと、燃料ガスが流れる燃料ガス流路を有する燃料ガスセパレータと、酸化剤ガスセパレータと燃料ガスセパレータとに挟持された電解質膜と、酸化剤ガスセパレータと燃料ガスセパレータと電解質膜から構成された単位セルを冷却する冷却媒体が流れる冷却媒体流路を有する冷却媒体セパレータと、を備えた燃料電池を有する燃料電池システムにおいて、酸化剤ガス流路を流れる酸化剤ガスの流れ方向に対して交差する方向に冷却媒体流路を分割する分割手段と、分割手段によって分割した複数の冷却媒体流路に冷却媒体をそれぞれ環流させる冷却媒体環流手段と、分割した複数の冷却媒体流路を流れる冷却媒体の流量を制御する冷却媒体流量制御手段と、を備える。
本発明によると、単位セルにおいて冷却媒体が流れる冷却媒体流路を複数に分割し、それぞれの冷却媒体流路に流れる冷却媒体の流量を制御することで、単位セルの温度分布を制御することができる。これによって例えば酸化剤ガス流路の下流でフラッディングが生じる可能性がある場合には、酸化剤ガス下流付近の冷却媒体の流量を少なくすることで、酸化剤ガス下流付近の温度を高くし、フラッディングを抑制することができる。
本発明の第1実施形態で用いる燃料電池スタックを構成する単位セル1について図1の概略構成図を用いて説明する。燃料電池スタックは単位セル1を例えば100〜200枚積層したスタックの両側から単位セル1の積層方向に図示しないエンドプレート加圧し、ボルトなどによって締結して構成される。
単位セル1は、電解質膜2と、電解質膜2を挟持するアノード触媒層3aとカソード触媒層3bと、アノード触媒層3aとカソード触媒層3bの外側に設けたアノードガス拡散層4aとカソードガス拡散層4bから構成される膜電極複合体5(MEA:Membrane Electorode Assembly)を備える。また、アノード拡散層4aの外側に設けられたアノードセパレータ(燃料ガスセパレータ)6と、カソード拡散層4bの外側に設けられたカソードセパレータ(酸化剤ガスセパレータ)7を備える。また、カソードセパレータ7の外側に冷媒セパレータ(冷却媒体セパレータ)8を備える。さらにMEA5から水素または空気がリークしないようにエッジシール9を備える。
アノードセパレータ6は、アノードガス拡散層4aに水素(燃料ガス)を拡散するための水素流路(燃料ガス流路)10を備え、カソードセパレータ7は、カソードガス拡散層4bに空気(酸化剤ガス)を拡散するための空気流路(酸化剤ガス流路)11を備える。水素流路10と空気流路11は直線状の流路であり、水素流路10と空気流路11は平行となるように配設され、単位セル1においては水素流路10を流れる水素と空気流路11を流れる空気の流れは逆方向となる。なお、水素流路10と空気流路11が交差するように設けても良い。
冷媒セパレータ8について図2を用いて詳しく説明する。図2は冷媒セパレータ8をカソードセパレータ7から見た正面図の概略構成図である。冷媒セパレータ8は、3つの冷却部を備えており、以下において、第1冷却部20、第2冷却部30、第3冷却部40とする。また、アノードセパレータ6に水素を導入する水素導入マニホールド12と、単位セル1において発電反応で使用されなかった水素を単位セル1から排出する水素排出マニホールド13と、カソードセパレータ7に空気を導入する空気導入マニホールド14と、単位セル1において発電反応で使用されなかった空気を排出する空気排出マニホールド15と、を備える。なお、この実施形態では冷却部を3つ設けたが、これに限られることはない。
第1冷却部20は、冷媒(冷却媒体)が流れる第1冷媒流路21と、第1冷媒流路21に冷媒を導入する第1冷媒導入マニホールド22と、第1冷媒流路21を流れた冷媒を単位セル1から排出する第1冷媒排出マニホールド23と、第1冷媒導入マニホールド22と第1冷媒流路21を連結する第1連結部24と、第1冷媒流路21と第1冷媒排出マニホールド23を連結する第1連結部25を備える。この実施形態では冷媒としては冷却水を用いるが、冷媒としては、冷却水に限られることはない。
第1冷媒流路21は、直線形状の流路であり、直線形状の空気流路11と平行となるように形成される。
第1冷媒導入マニホールド22は、冷媒セパレータ8において冷媒の長手方向、つまり冷媒、空気の流れ方向の一方の端部に設けられ、第1冷媒排出マニホールド23は、冷媒セパレータ8の長手方向に対して交差する方向の端部に設けられる。
第2冷却部30は、冷媒が流れる第2冷媒流路31と、第2冷媒流路31に冷媒を導入する第2冷媒導入マニホールド32と、第2冷媒流路31を流れた冷媒を単位セル1から排出する第2冷媒排出マニホールド33と、第2冷媒導入マニホールド32と第2冷媒流路31を連結する第2連結部34と、第2冷媒流路31と第2冷媒排出マニホールド33を連結する第2連結部35を備える。
第2冷媒流路31は、直線形状の流路であり、直線形状の空気流路11と平行となるように形成される。
第2冷媒導入マニホールド32は、冷媒セパレータ8の長手方向に対して交差する方向の端部に設けられ、第2冷媒排出マニホールド33は、冷媒セパレータ8の長手方向に対して交差する方向の端部に設けられる。なお、第2冷媒導入マニホールド32は第1冷媒排出マニホールド23と同じ側の端部に設けられ、第2冷媒排出マニホールド33は第2冷媒導入マニホールド32とは反対側の端部に設けられる。
第2連結部35と第1連結部25は、冷媒セパレータ8の長手方向において同一付近に設けられ、仕切部27(分割手段)によって第2連結部35と第1連結部25を流れる冷媒が混じらないようになっており、仕切部27を挟んで、第1連結部25と第2連結部35を流れる冷媒の流れ方向は逆方向となる。すなわち仕切部27によって第1冷却部20と第2冷却部30は分離される。
第3冷却部40は、冷媒が流れる第3冷媒流路41と、第3冷媒流路41に冷媒を導入する第3冷媒導入マニホールド42と、第3冷媒流路41を流れた冷媒を単位セル1から排出する第3冷媒排出マニホールド43と、第3冷媒導入マニホールド42と第3冷媒流路41を連結する第3連結部44と、第3冷媒流路41と第3冷媒排出マニホールド43を連結する第3連結部45を備える。
第3冷媒流路41は、直線形状の流路であり、直線形状の空気流路11と平行となるように形成される。つまり、第1冷媒流路21と第2冷媒流路31と第3冷媒流路41は空気流路11と平行であり、さらに第1冷媒流路21と第2冷媒流路31と第3冷媒流路41もまた互いに平行である。
第3冷媒導入マニホールド42は、冷媒セパレータ8において長手方向の第1冷媒導入マニホールド22とは反対側の端部に設けられ、第3冷媒排出マニホールド43は、冷媒セパレータ8の長手方向に対して交差する方向の端部に設けられる。第3冷媒排出マニホールド43は、第2冷媒排出マニホールド33と同じ端部に設けられ、つまり第2冷媒導入マニホールド32とは反対側の端部に設けられる。
第3連結部45と第2連結部24は、冷媒セパレータ8の長手方向において同一付近に設けられ、仕切部28(分割手段)によって第3連結部45と第2連結部24を流れる冷媒が混じらないようになっており、仕切部28を挟んで、第3連結部45と第2連結部24を流れる冷媒の流れ方向は同一方向となる。すなわち仕切部28によって第2冷却部30と第3冷却部40は分離される。
以上の構成によって、冷媒セパレータ8を仕切部27、28で第1冷却部20、第2冷却部30、第3冷却部40の3つに分割し、第1冷却流路にそれぞれ異なる冷媒導入マニホールド(22、32、42)から冷媒を導入し、冷媒排出マニホールド(23、3、43)から排出することで第1冷却部20、第2冷却部30、第3冷却部40の温度をそれぞれ独立して制御することができる。
なお、第1冷媒流路21、第2冷媒流路31、第3冷媒流路41を流れる冷媒の流れ方向、つまり第1冷媒流路21、第2冷媒流路31、第3冷媒流路41の形状、または冷媒導入マニホールド(22、32、42)、冷媒排出マニホールド(23、33、43)の位置については、この実施形態以外でもよく、単位セル1で必要な温度分布に応じて、特に空気流路11の温度分布に応じて変更しても良い。
次に単位セル1を積層して構成される燃料電池スタックを用いた燃料電池システムについて図3の概略図を用いて説明する。なお、図3においては、説明のため燃料電池スタックについては冷媒セパレータ8のみを記載する。
この実施形態では、冷媒セパレータ8に供給する冷媒の温度を調整するラジエータ50と、冷媒を循環させるポンプ51と、第1冷却部20へ冷媒を環流させる第1冷媒経路52と、第2冷却部30へ冷媒を環流させる第2冷媒経路53と、第3冷却部40へ冷媒を環流させる第3冷媒経路54と、を備える。第1冷却経路52と第2冷却流路53と第3冷却経路54は、ラジエータ50の上流において一つの経路となり、ポンプ51の下流において分岐する。また、燃料電池スタックに水素を供給する水素ボンベ55と、空気を供給するコンプレッサ56を備える。
第1冷媒経路52は、ラジエータ50によって温度を調整された冷媒を第1冷媒導入マニホールド22に供給する第1冷媒供給路60と、第1冷媒排出マニホールド23から冷媒を排出する第1冷媒排出路61を備える。また、第1冷媒供給路60には第1冷却流路21へ供給する冷媒の流量を制御する流量制御弁(冷却媒体流量制御手段)62を備える(ポンプ51と第1冷媒経路52が冷却媒体環流手段を構成する)。
第2冷媒経路53は、ラジエータ50によって温度を調整された冷媒を第2冷媒導入マニホールド32に供給する第2冷媒供給路70と、第2冷媒排出マニホールド33から冷媒を排出する第2冷媒排出路71を備える。また、第2冷媒供給路70には第2冷却流路31へ供給する冷媒の流量を制御する流量制御弁(冷却媒体流量制御手段)72を備える(ポンプ51と第2冷媒経路53が冷却媒体環流手段を構成する)。
第3冷媒経路54は、ラジエータ50によって温度を調整された冷媒を第3冷媒導入マニホールド42に供給する第3冷媒供給路80と、第3冷媒排出マニホールド43から冷媒を排出する第3冷媒排出路81を備える。また、第3冷媒供給路80には第3冷却流路41へ供給する冷媒の流量を制御する流量制御弁(冷却媒体流量制御手段)82を備える(ポンプ51と第3冷媒経路54が冷却媒体環流手段を構成する)。
また、流量制御弁62、72、82の開度を制御することで第1冷却部20、第2冷却部30、第3冷却部40を環流する冷媒の流量を制御するコントローラ100を備える。
流量制御弁62、72、82の開度は、燃料電池スタックの出力や外気温などを検出し、その結果に応じて予め設定されたマップに基づいて制御される。また、ポンプ51によって環流する冷媒の全流量が制御される。
燃料電池スタックでは、空気流路11の下流となるに従って発電反応によって生成された生成水によって空気流路11を塞ぐ、フラッディングが生じ易くなるが、このような場合に空気流路11の下流、つまり第3冷却部40を流れる冷媒の流量が少なくなるように流量制御弁82を制御することで、空気流路11の温度を高くし、空気流路11の下流におけるフラッディングを抑制する。また、燃料電池スタックの中心部は端部に比べて外部の温度の影響を受け難いので、運転時には中心部は比較的高温となり易い。そのため例えば流量制御弁72の開度を他の流量制御弁62、82よりも、大きくし第2冷却部30へ流れる冷媒の流量を多くすることで、燃料電池スタックの温度を均一にすることができる。
なお、冷媒を一時的に蓄える冷媒タンクを設けても良い。
本発明の第1実施形態の効果について説明する。
この実施形態では、燃料電池スタックを冷却するための冷媒が流れる冷媒セパレータ8において、それぞれ独立した第1冷却部20、第2冷却部30、第3冷却部40を備える。そして、第1冷却部20、第2冷却部30、第3冷却部40にそれぞれ冷媒を環流させる第1冷媒経路52、第2冷媒経路53、第1冷媒経路54を備え、流量制御弁62、72、82によって冷媒の流量を制御し、第1冷却部20、第2冷却部30、第3冷却部40の温度を制御することができる。そのため水素流路10、空気流路11の温度を正確に制御することができ、水素流路10、空気流路11におけるフラッディングや電解質膜2の乾燥などを正確に抑制することができる。例えば空気流路11の下流において、生成水によるフラッディングが生じる場合には、第3冷却部40の温度を高くすることで、空気流路11の下流でのフラッディングを抑制することができる。
また、燃料電池スタックの温度分布に応じて第1冷却部20、第2冷却部30、第3冷却部40への冷媒流量を制御することで、燃料電池スタックの温度を均一にすることができ、燃料電池スタックの発電効率を向上することができる。
次に本発明の第2実形態の燃料電池システムについて図4の概略図を用いて説明する。この実施形態は第1実施形態に加えて、第1冷媒経路52において、第1冷却部20の上流と下流に温度センサ(温度検出手段)90、91を備え、第2冷媒経路53において、第2冷却部30の上流と下流に温度センサ(温度検出手段)92、93を備え、第3冷媒経路54において、第3冷却部40の上流と下流に温度センサ(温度検出手段)94、95を備える。その他の構成については第1実施形態と同じ構成なので、ここでの説明は省略する。
この実施形態では、第1冷却部20、第2冷却部30、第3冷却部40のそれぞれ上流と下流の冷媒の温度を検出し、検出した温度、またはそれぞれの上流と下流の温度差に基づいて流量制御弁62、72、82を制御することで第1冷却部20、第2冷却部30、第3冷却部40の温度を正確に制御することができる。
例えば、第3冷却部40の上流側の温度センサ94では冷媒の温度が設定された温度であるが、下流側の温度センサ95では冷媒の温度が設定温度よりも高い場合には、第3冷却部40による冷却能力が不足していると判断し、流量制御弁82の開度を大きくし、第3冷却部40への冷媒流量を増加させる。または、温度センサ95と温度センサ94との温度差が大きい場合には、冷媒の熱交換量が大きい、つまり燃料電池スタックの温度が高いので、冷媒流量を増加させる。
本発明の第2実施形態の効果について説明する。この実施形態では、第1実施形態の効果に加えて、以下の効果を得ることができる。
この実施形態では、第1冷却部20、第2冷却部30、第3冷却部40のそれぞれ上流と下流に温度センサ90、91、92、93、94、95を備える。これによって第1冷却部20、第2冷却部30、第3冷却部40の冷却状態、つまり燃料電池スタックの温度分布を正確に検出することができ、燃料電池スタックの温度分布に応じて、素早く温度調整を行うことができる。これによって燃料電池スタックの温度をさらに均一にすることができ、燃料電池スタックの発電効率を更に向上することができる。
また、燃料電池スタックの温度を正確に検出するので、検出した温度に基づいてフラッディングや電解質膜2の乾燥を更に抑制することができる。
次に本発明の第3実形態の燃料電池システムについて図5の概略図を用いて説明する。この実施形態は第2実施形態に加えて、空気流路11の上流と下流に湿度センサ(湿度検出手段)96、97を備える。その他の構成については第2実施形態と同じ構成なので、ここでの説明は省略する。この構成によって空気流路11の湿度を正確検出することができる。
湿度センサ96、97によって空気流路11を流れる空気の湿度を検出し、検出した湿度に応じて、流量制御弁62、72、82を制御する。
例えば、湿度センサ97の湿度が高い場合、つまり空気流路11の下流の湿度が高い場合には、空気流路11の下流でフラッディングが生じるので、流量制御弁82の開度を小さくし、第3冷却部40への冷媒流量を少なくする。これによって、空気流路11の下流の温度を高くすることができ、フラッディングをより抑制することができる。
また、湿度センサ96の湿度が低い場合には、空気が乾燥しており、電解質膜2が乾燥することで、電解質膜2の伝導性が低下し、燃料電池スタックの発電効率を低下させる恐れがあるが、この場合に流量制御弁62の開度を大きくすることで、第1冷却部20への冷媒流量を多くする。これによって、第1冷却部20の湿度を高くすることができ、電解質膜2の乾燥を抑制することができる。
なお、湿度センサ96、97の代わりに露点センサを用いてもよい。
本発明の第3実施形態の効果について説明する。この実施形態では、第2実施形態の効果に加えて、以下の効果を得ることができる。
この実施形態では空気流路11の上流と下流に湿度センサ96、97を備える。これによって、空気流路11の湿度を検出し、その湿度に基づいて流量制御弁62、72、82することで、第1冷却部20、第2冷却部30、第3冷却部40における冷却能力をそれぞれ制御し、空気流路11の湿度を正確に制御することができる。そのため、空気流路11におけるフラッディングを更に抑制することができ、また電解質膜2の乾燥を更に抑制することができる。
次に本発明の第4実形態の燃料電池システムについて図6の概略図を用いて説明する。この実施形態では、第1冷却部20、第2冷却部30、第3冷却部40を環流する第1冷媒経路110と、第2冷媒経路111と、第3冷媒経路112をそれぞれ独立して設ける。
第1冷媒経路110はラジエータ113と、ポンプ114を備え、第2冷媒経路111はラジエータ115と、ポンプ116備え、第3冷媒経路112はラジエータ17と、ポンプ118を備える。その他の構成は第1実施形態と同じ構成であるので、ここでの説明は省略する。この構成によって第1冷却部20、第2冷却部30、第3冷却部40の温度制御をより正確に行うことができる。
本発明の第4実施形態の効果について説明する。この実施形態では、第1実施形態の効果に加えて、以下の効果を得ることができる。
この実施形態では第1冷却部20、第2冷却部30、第3冷却部40を冷却するため第1冷媒経路110と、第2冷媒経路111と、第3冷媒経路112をそれぞれ個別に設ける。これによって第1冷却部20、第2冷却部30、第3冷却部40に独立した経路から冷媒を供給することができ、それぞれ冷媒の比熱の異なる、つまりラジエータ113、115、117によって冷媒の温度をそれぞれ設定することができ、第1冷却部20、第2冷却部30、第3冷却部40の温度をより正確に制御することができる。
本発明は上記した実施形態に限定されるものではなく、その技術的思想の範囲内でなしうるさまざまな変更、改良が含まれることは言うまでもない。
冷媒によって燃料電池スタックを冷却する燃料電池システムに利用することができる。
本発明の単位セルの概略構成図である。 本発明の冷媒セパレータの概略構成図である。 本発明の第1実施形態の燃料電池システムの概略構成図である。 本発明の第2実施形態の燃料電池システムの概略構成図である。 本発明の第3実施形態の燃料電池システムの概略構成図である。 本発明の第4実施形態の燃料電池システムの概略構成図である。
符号の説明
1 単位セル
2 電解質膜
6 アノードセパレータ(燃料ガスセパレータ)
7 カソードセパレータ(酸化剤ガスセパレータ)
8 冷媒セパレータ(冷却媒体セパレータ)
10 水素流路(燃料ガス流路)
11 空気流路(酸化剤ガス流路)
20 第1冷却部
27、28 仕切部(分割手段)
30 第2冷却部
40 第3冷却部
51、114、116、118 ポンプ
52、110 第1冷媒経路
53、111 第2冷媒経路
54、112 第3冷媒経路
62、72、82 流量制御弁(冷却媒体流量制御手段)
90、91、92、93、94、95 温度センサ(温度検出手段)
96、97 湿度センサ(湿度検出手段)
100 コントローラ

Claims (6)

  1. 酸化剤ガスが流れる酸化剤ガス流路を有する酸化剤ガスセパレータと、
    燃料ガスが流れる燃料ガス流路を有する燃料ガスセパレータと、
    前記酸化剤ガスセパレータと前記燃料ガスセパレータとに挟持された電解質膜と、
    前記酸化剤ガスセパレータと前記燃料ガスセパレータと前記電解質膜から構成された単位セルを冷却する冷却媒体が流れる冷却媒体流路を有する冷却媒体セパレータと、を備えた燃料電池を有する燃料電池システムにおいて、
    前記酸化剤ガス流路を流れる前記酸化剤ガスの流れ方向に対して交差する方向に前記冷却媒体流路を複数に分割する分割手段と、
    前記分割手段によって分割した複数の冷却媒体流路に前記冷却媒体をそれぞれ環流させる冷却媒体環流手段と、
    前記分割した複数の冷却媒体流路を流れる冷却媒体の流量を制御する冷却媒体流量制御手段と、を備えることを特徴とする燃料電池システム。
  2. 前記単位セルの温度を検出する温度検出手段を備え、
    前記冷却媒体流量制御手段は、前記温度検出手段で検出された前記単位セルの温度に基づいて前記分割した複数の冷却媒体流路を流れる冷却媒体の流量を制御することを特徴とする請求項1に記載の燃料電池システム。
  3. 前記温度検出手段は、前記分割した冷却媒体流路の上流と下流にそれぞれ設けられ、環流する前記冷却媒体の温度を検出し、
    前記冷却媒体流量制御手段は、前記温度差に基づいて前記分割した複数の冷却媒体流路を流れる冷却媒体の流量を制御することを特徴とする請求項2に記載の燃料電池システム。
  4. 前記酸化剤ガスの湿度を検出する湿度検出手段を備え、
    前記冷却媒体流量制御手段は、前記湿度検出手段で検出された前記酸化剤ガスの湿度に基づいて前記分割した複数の冷却媒体流路を流れる冷却媒体の流量を制御することを特徴とする請求項1から3のいずれか一つに記載の燃料電池システム。
  5. 前記冷却媒体流量制御手段は、
    前記酸化剤ガスの湿度が高い場合には前記分割した複数の冷却媒体流路の中で前記酸化剤ガス流路の下流側に位置する前記冷却媒体流路の温度を高くし、
    前記酸化剤ガスの湿度が低い場合には前記分割した複数の冷却媒体流路の中で前記酸化剤ガス流路の上流側に位置する前記冷却媒体流路の温度を低くすることを特徴とする請求項4に記載の燃料電池システム。
  6. 前記冷却媒体環流手段を複数設け、
    前記分割した複数の冷却媒体流路に、それぞれ異なる冷却媒体環流手段によって前記冷却媒体を環流することを特徴とする請求項1から5のいずれか一つに記載の燃料電池システム。
JP2004374576A 2004-12-24 2004-12-24 燃料電池システム Pending JP2006185617A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004374576A JP2006185617A (ja) 2004-12-24 2004-12-24 燃料電池システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004374576A JP2006185617A (ja) 2004-12-24 2004-12-24 燃料電池システム

Publications (1)

Publication Number Publication Date
JP2006185617A true JP2006185617A (ja) 2006-07-13

Family

ID=36738587

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004374576A Pending JP2006185617A (ja) 2004-12-24 2004-12-24 燃料電池システム

Country Status (1)

Country Link
JP (1) JP2006185617A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019087419A (ja) * 2017-11-07 2019-06-06 株式会社Soken 燃料電池システム
JP2021044073A (ja) * 2019-09-06 2021-03-18 株式会社Subaru 燃料電池システム、制御装置および制御方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019087419A (ja) * 2017-11-07 2019-06-06 株式会社Soken 燃料電池システム
JP2021044073A (ja) * 2019-09-06 2021-03-18 株式会社Subaru 燃料電池システム、制御装置および制御方法
US11695144B2 (en) 2019-09-06 2023-07-04 Subaru Corporation Fuel cell system, control apparatus, and control method
JP7382184B2 (ja) 2019-09-06 2023-11-16 株式会社Subaru 燃料電池システム、制御装置および制御方法

Similar Documents

Publication Publication Date Title
US8304123B2 (en) Ambient pressure fuel cell system employing partial air humidification
US5879826A (en) Proton exchange membrane fuel cell
JP4884604B2 (ja) 燃料電池の冷却装置
US7556879B2 (en) Polymer electrolyte fuel cell
CA2389197C (en) Fuel cell and method of operating same
JP3699063B2 (ja) 燃料電池およびその制御方法
JP4603920B2 (ja) 燃料電池用加湿装置及びこれを備えた燃料電池システム
JP5642172B2 (ja) 燃料電池の運転方法
JP2010129482A (ja) 燃料電池用セパレータ、燃料電池スタック及び燃料電池システム
JPH08111230A (ja) 固体高分子型燃料電池の運転方法
JP5109284B2 (ja) 燃料電池システム
JP2002280029A (ja) 燃料電池システムの制御装置
JP2006216431A (ja) 燃料電池システム
JP2009245818A (ja) 燃料電池装置
JP2006185617A (ja) 燃料電池システム
JP2008243540A (ja) 固体高分子電解質形燃料電池発電装置
JP2006032094A (ja) 燃料電池システム
JP2013157315A (ja) 燃料電池
JP2005032561A (ja) 固体高分子形燃料電池及び固体高分子形燃料電池の運転システム
JP2004206951A (ja) 除加湿装置付き燃料電池
JP2006032092A (ja) 燃料電池システム
JP4601406B2 (ja) 燃料電池システム
KR101876061B1 (ko) 연료전지 스택
JP2008097952A (ja) 燃料電池システム
JP2006012684A (ja) 燃料電池及び燃料電池発電装置