WO2006070560A1 - 雑音抑圧装置、雑音抑圧方法、雑音抑圧プログラムおよびコンピュータに読み取り可能な記録媒体 - Google Patents

雑音抑圧装置、雑音抑圧方法、雑音抑圧プログラムおよびコンピュータに読み取り可能な記録媒体 Download PDF

Info

Publication number
WO2006070560A1
WO2006070560A1 PCT/JP2005/022095 JP2005022095W WO2006070560A1 WO 2006070560 A1 WO2006070560 A1 WO 2006070560A1 JP 2005022095 W JP2005022095 W JP 2005022095W WO 2006070560 A1 WO2006070560 A1 WO 2006070560A1
Authority
WO
WIPO (PCT)
Prior art keywords
spectrum
noise
frame
speech
gain
Prior art date
Application number
PCT/JP2005/022095
Other languages
English (en)
French (fr)
Inventor
Mitsuya Komamura
Original Assignee
Pioneer Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pioneer Corporation filed Critical Pioneer Corporation
Priority to JP2006550638A priority Critical patent/JP4568733B2/ja
Priority to US11/794,130 priority patent/US7957964B2/en
Publication of WO2006070560A1 publication Critical patent/WO2006070560A1/ja

Links

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L21/00Speech or voice signal processing techniques to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
    • G10L21/02Speech enhancement, e.g. noise reduction or echo cancellation
    • G10L21/0208Noise filtering
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS TECHNIQUES OR SPEECH SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING TECHNIQUES; SPEECH OR AUDIO CODING OR DECODING
    • G10L21/00Speech or voice signal processing techniques to produce another audible or non-audible signal, e.g. visual or tactile, in order to modify its quality or its intelligibility
    • G10L21/02Speech enhancement, e.g. noise reduction or echo cancellation
    • G10L21/0208Noise filtering
    • G10L21/0216Noise filtering characterised by the method used for estimating noise

Definitions

  • Noise suppression device noise suppression method, noise suppression program, and computer-readable recording medium
  • the present invention relates to a noise suppression device, a noise suppression method, a noise suppression program, and a computer-readable recording medium that suppress noise from an audio signal on which noise is superimposed.
  • use of the present invention is not limited to the above-described noise suppression device, noise suppression method, noise suppression program, and computer-readable recording medium.
  • Spectral subtraction proposed by S. F. Boll is known as a simple and very effective technique for suppressing noise from a speech signal on which noise is superimposed. Based on this spectral subtraction, the gain is calculated using the noise superimposed speech power spectrum of the current frame (see Non-Patent Document 1, for example).
  • Non-Patent Document 1 S 'F' Ball (SF Boll), "Suppression of Acoustic Noise in Speech Using Spectral SuDtraction", Z Le Eey Transactions on Acoustics, Speech Processing and Signal Processing (197 ESP, 27-2, p. 113—120
  • Non-Patent Document 2 Norihide Kitaoka, Ichiro Akahori, Kiyoshi Nakagawa, “Speech recognition under noisy environment using spectral subtraction and time-direction smoothing”, IEICE Transactions, 2 February 000, J83—D—II ⁇ , No. 2, p. 500—508
  • the noise suppression device includes a first frame dividing means for dividing an input voice on which noise is superimposed, and an input voice divided into frames by the first frame dividing means into a spectrum.
  • First spectrum converting means speech section detecting means for discriminating whether each frame divided by the first frame dividing means is a speech section or a non-speech section, and the speech section detecting means being determined as a non-speech section
  • Noise spectrum estimation means for estimating a noise spectrum using the input voice spectrum in a section
  • second frame division means for dividing the input voice into frames longer than the frame length of the first frame division means
  • second spectrum conversion means for converting the input speech divided by the second frame dividing means into a spectrum
  • Smoothing means for smoothing the spectrum converted by the second spectral conversion means in the frequency direction, the spectrum smoothed by the smoothing means, and the estimated noise estimated by the noise spectrum estimation means
  • Gain calculating means for calculating a gain based on the spectrum, and extra-subtracting means for subtracting extra-scale
  • the noise suppression method according to the invention of claim 7 includes a first frame dividing step of dividing an input speech on which noise is superimposed, and an input divided into frames by the first frame dividing step.
  • a first spectrum converting step for converting speech into a spectrum a speech segment detecting step for determining whether each frame divided by the first frame dividing means is a speech segment or a non-speech segment, and a non-speech step in the speech segment detecting step.
  • the input speech is framed to a frame length longer than the frame length of the noise spectrum estimation step of estimating the noise spectrum using the input speech spectrum of the interval determined as the speech interval and the first frame dividing step.
  • a noise suppression program according to the invention of claim 8 causes a computer to execute the noise suppression method according to claim 7.
  • the noise suppression program described in 8 is recorded.
  • FIG. 1 is a block diagram showing a functional configuration of a noise suppression apparatus according to an embodiment of the present invention.
  • FIG. 2 is a flowchart showing the processing of the noise suppression method according to the embodiment of the present invention.
  • FIG. 3 is a block diagram showing a functional configuration of a noise suppression apparatus using spectral subtraction in the prior art.
  • FIG. 4 shows a noise suppression apparatus using a time-direction smoothed noise-powered speech power spectrum. It is a block diagram which shows the functional structure of these.
  • FIG. 5 is a block diagram showing a functional configuration of the noise suppression device of this embodiment.
  • FIG. 6 is an explanatory diagram for explaining frame division of input speech.
  • FIG. 7 is an explanatory diagram for explaining gain calculation when smoothing is performed in the frequency direction. Explanation of symbols
  • FIG. 1 is a block diagram showing a functional configuration of a noise suppression device according to an embodiment of the present invention.
  • the noise suppression apparatus calculates an input speech force speech spectrum and a noise vector, calculates a gain based on the speech spectrum and the noise spectrum, and uses the calculated gain to determine the noise of the input speech. Repress. Further, this noise suppression apparatus includes a first frame division unit 101, a first conversion unit 102, a noise spectrum estimation unit 103, a second frame division unit 104, a second conversion unit 105, a smoothing unit 106, a gain calculation unit. 107 and a spectrum subtracting unit 108.
  • the first frame dividing unit 101 divides the input speech into frames with a predetermined frame length.
  • the first conversion unit 102 converts the input speech that has been frame-divided by the first frame division unit into a vector.
  • the noise spectrum estimation unit 103 estimates a noise vector using a spectrum of a frame determined to be a non-speech interval among the spectra converted by the first conversion unit 102.
  • the second frame dividing unit 104 divides the input speech into frames having a frame length longer than that of the first frame dividing unit 101. Also, the second frame dividing unit 104 can divide the input voice into frames that are an integral multiple of the frame length of the first frame dividing unit 101, for example, twice the frame length.
  • the first frame dividing unit 101 and the second frame dividing unit 104 can respectively perform windowing processing on the divided input speech. Further, the first frame dividing unit 101 and the second frame dividing unit 104 can perform windowing processing on the divided input speech using a hanging window.
  • the second conversion unit 105 converts the input speech that has been frame-divided by the second frame division unit 104 into a spectrum.
  • the smoothing unit 106 smoothes the spectrum converted by the second conversion unit 105 in the frequency direction. For example, when the second frame division unit 104 divides the input speech into frames that are twice the frame length of the first frame division unit 101, the smoothing unit 106 uses the second conversion unit 105 to The even numbered spectrum of the converted spectrum can be smoothed using the numbered spectra before and after the even numbered spectrum. That is, the smoothing unit 106 converts the 2K-th spectrum converted by the second conversion unit 105 into the 2K-first spectrum, the 2K-th spectrum, and the 2K + Smooth using the first spectrum.
  • Gain calculating section 107 calculates a gain based on the spectrum smoothed by smoothing section 103 and the noise spectrum estimated by noise spectrum estimating section 103.
  • the vector subtractor 108 multiplies the input speech spectrum converted by the first converter 102 by the gain calculated by the gain calculator 107, thereby suppressing the noise of the input speech.
  • the spectrum subtraction unit 108 can input the gain calculated by the gain calculation unit 107 and the input speech spectrum converted by the first conversion unit 102 at the same timing.
  • FIG. 2 is a flowchart showing processing of the noise suppression method according to the embodiment of the present invention.
  • first frame division section 101 divides audio into frames with a predetermined frame length (step S201).
  • the first conversion unit 102 converts the input voice frame-divided by the first frame division unit into a spectrum (step S202).
  • the noise spectrum estimation unit 103 estimates the noise spectrum using the spectrum of the frame determined to be a non-speech period among the spectrum converted by the first conversion unit 102 (step S203).
  • the second frame dividing unit 104 divides the input voice into frames longer than the frame length of the first frame dividing unit 101 (step S204).
  • the second conversion unit 105 converts the input voice frame-divided by the second frame division unit 104 into a spectrum (step S205).
  • the smoothing unit 106 smoothes the vector converted by the second conversion unit 105 in the frequency direction (step S206).
  • the gain calculation unit 107 calculates a gain based on the spectrum smoothed by the smoothing unit 103 and the noise spectrum estimated by the noise spectrum estimation unit 103 (step S207).
  • the vector subtraction unit 108 subtracts the spectrum by multiplying the input speech spectrum converted by the first conversion unit 102 by the gain calculated by the gain calculation unit 107 (step S208).
  • the third term on the right side of the above equation is a cross-correlation term between speech and noise.
  • speech and noise are uncorrelated, they are approximated by the following equation (2).
  • the clean speech power spectrum is estimated as the following formula (3) by subtracting the noise power spectrum power estimation noise power spectrum.
  • I s (k) ⁇ 2 ⁇ l X (k)
  • a is a subtraction coefficient, and is set to a value larger than 1 in order to subtract a large amount of the estimated noise power spectrum.
  • is a floor coefficient, and is set to a small positive value to avoid the spectrum after subtraction being negative or close to zero.
  • the above formula is gay G (k) can be used as a filtering for I x (k) I.
  • the estimated clean speech amplitude spectrum can be obtained by the following equation (6).
  • the estimated clean speech spectrum is obtained by the following equation (7).
  • FIG. 3 is a block diagram showing a functional configuration of a conventional spectral subtraction noise suppression apparatus.
  • the noise suppression apparatus shown in FIG. 3 includes a signal frame division unit 401, a spectrum conversion unit 402, a speech section detection unit 403, a noise spectrum estimation unit 404, a gain calculation unit 405, a spectrum subtraction unit 406, a waveform conversion unit 407,
  • the waveform synthesis unit 408 is configured.
  • the signal frame division unit 401 divides the noise-superimposed speech into frames having a certain number of sample powers, and sends the frames to the spectrum conversion unit 402 and the speech interval detection unit 403.
  • the spectrum conversion unit 402 calculates the noise superimposed speech spectrum X (k) by discrete Fourier transform and sends it to the gain calculation unit 405 and the spectrum subtraction unit 406.
  • the speech segment detection unit 403 discriminates the speech segment Z non-speech segment and sends the noise superimposed speech spectrum of the frame determined to be a non-speech segment to the noise spectrum estimation unit 404.
  • the noise spectrum estimation unit 404 is a power spectrum of the past several frames determined to be non-speech. And calculate the estimated noise power spectrum.
  • Gain calculation section 405 calculates gain G (k) using the noise superimposed speech power spectrum and the estimated noise power spectrum.
  • Spectrum subtraction section 406 multiplies gain G (k) by noise-superimposed speech spectrum X (k) to estimate an estimated clean speech spectrum.
  • the waveform converter 407 converts the estimated clean speech spectrum into a time waveform by inverse discrete Fourier transform.
  • the waveform synthesis unit 408 synthesizes a continuous waveform by overlapping and adding time waveforms in frame units.
  • FIG. 4 is a block diagram showing a functional configuration of a noise suppression device that uses a time-direction smoothed noise-superimposed speech power spectrum.
  • the noise suppression apparatus shown in FIG. 4 has a configuration in which a time direction smoothing unit 409 is provided in front of the gain calculation unit 405 shown in FIG.
  • the time-direction smooth noise-superimposed speech power spectrum at the current frame time t is obtained by a moving average of past L frames including the current frame as shown in the following equation (8).
  • a is a weight for smoothing and is given by the following equation (9).
  • Gain calculation section 405 calculates the noise superimposed speech power spectrum of the current frame in equation (5).
  • FIG. 5 is a block diagram showing a functional configuration of the noise suppression apparatus of this embodiment.
  • the noise suppression apparatus shown in FIG. 5 includes a signal frame division unit 401, a spectrum conversion unit 402, a speech interval detection unit 403, a noise spectrum estimation unit 404, a gain calculation unit 405, a spectrum subtraction unit 406, a waveform conversion unit 407, A waveform synthesis unit 408, a gain calculation frame division unit 601, a spectrum conversion unit 602, and a frequency direction smoothing unit 603 are configured.
  • the actual processing is executed by using the RAM as a work area by reading the program written in the CPU power ROM.
  • the embodiment will be described with reference to FIG. First, the noise superimposed speech is sent to the signal frame division unit 401 and the gain calculation frame division unit 601.
  • the signal frame division unit 401 divides the noise-superimposed speech into frames composed of N (for example, 256) samples. At this time, a windowing process is performed in order to increase the frequency analysis accuracy of the discrete Fourier transform (DFT) in the spectrum conversion unit 402. In addition, when performing waveform synthesis processing, the frames are divided so as to overlap in order to prevent discontinuous waveforms at the frame boundaries.
  • N for example, 256
  • X (n) S (n) + d (n), 0 ⁇ n ⁇
  • S (n) is a clean speech signal and d (n) is noise.
  • Spectrum X (k) is sent to spectrum subtraction unit 406.s
  • the speech segment detection unit 403 converts the noise-superimposed speech signal X (n) divided into frames in parallel.
  • Noise spectrum estimation section 404 calculates a time average of power spectra for the past several frames determined to be non-speech intervals, and gives an estimated noise power spectrum DP by the following equation (11).
  • the gain calculating frame dividing unit 601 divides the noise-superimposed speech into frames having more than N (for example, 512) sample forces. At this time, the center of the gain calculation frame division window is made to coincide with the center of the signal frame division window.
  • the spectrum converter 602 converts the frame-divided noise-superimposed speech signal x (m) into discrete frames g
  • X (1) S (1) + D (1), expressed as 0 ⁇ 1 ⁇ M—1.
  • S (1) is the clean speech spectrum g g g g g
  • the first component of Toll, D (1) is the first component of the noise spectrum.
  • the frequency direction smoothing unit 603 smoothes the gain calculation spectrum X (1).
  • Gain g the gain calculation spectrum X (1).
  • the gain calculation unit 405 uses the estimated noise power spectrum DP and the frequency-direction smoothed power spectrum XP sent from the noise spectrum estimation unit 404 to calculate the gain G (k) as shown in the following equation (13). To calculate.
  • is a subtraction coefficient and is set to a value larger than 1 to subtract a large amount of the estimated noise power spectrum DP
  • is a floor coefficient
  • the spectrum after subtraction is negative or 0 It is set to a small positive value to avoid a value close to.
  • the calculated gain G (k) is sent to the spectrum subtraction unit 406.
  • the spectrum subtraction unit 406 multiplies the spectrum X (k) calculated by the spectrum conversion unit 402 by the gain s in G (k) to obtain the estimated clean speech vector from which the estimated noise spectrum is subtracted. Calculated as shown in the following formula (14).
  • the waveform converter 407 performs inverse discrete Fourier transform (InverSe Discrete Fourier Transform (IDFT) is used to obtain a time waveform in units of frames.
  • the waveform synthesizer 408 synthesizes a continuous waveform by overlapping the time waveforms in units of frames, and outputs noise-suppressed speech.
  • FIG. 6 is an explanatory diagram for explaining frame division of input speech.
  • FIG. 6 (a) shows a case where the signal frame dividing unit 401 divides the noise-superimposed speech into frames having N (for example, 256) sample power.
  • N for example, 256
  • a windowing process is performed in order to increase the frequency analysis accuracy of Discrete Fourier Transform (DFT).
  • DFT Discrete Fourier Transform
  • the frames are divided so as to overlap to prevent discontinuous waveforms at the frame boundaries.
  • FIG. 6B shows a case where the gain calculation frame dividing unit 601 divides the noise-superimposed speech into frames of more than N (for example, 512) samplers.
  • N for example, 512
  • the time width is twice that of Fig. 6 (a). In this way, the number of samples in the gain calculation frame is made larger than the number of samples in the signal frame. Also, the center of the gain calculation frame and the center of the signal frame are matched.
  • FIG. 7 is an explanatory diagram illustrating gain calculation when smoothing is performed in the frequency direction. As shown in the diagram 801, the gain calculation spectrum X (1) is converted by the spectrum conversion unit 602.
  • the number-direction smoothing uses a plurality of spectral components centered on a spectral component that matches the frequency of the signal spectral component.
  • the gain 802 indicated by G (3) is calculated.
  • the gain 802 is combined with the spectrum X (k) shown by the graph 803 in the spectrum subtraction unit 406.
  • the window function will be described.
  • the spectrum conversion of a long signal is a discrete Fourier transform because it uses force discrete value data that is divided into frame units and Fourier-transformed.
  • the width of the main lobe (frequency force ⁇ the surrounding amplitude spectrum is large and the region) is narrow, and the amplitude of the side lobe (the amplitude spectrum where the frequency is away from 0 is small and the region) is small. It is a condition.
  • Specific examples include rectangular windows, Hayung windows, windows, ming windows, and Gauss windows.
  • the window function used in the present embodiment is a Hayung window.
  • the window function of the Hayung window is 0 ⁇ n ⁇ N
  • This window function has relatively low sidelobe amplitude, although the frequency resolution of the main lobe is relatively poor.
  • smoothing is performed in the frequency direction using a plurality of spectral components of the noise superimposed speech power spectrum, so that the cross-correlation term between speech and noise can be reduced, and high The accuracy gain can be estimated. Further, since the center of the gain calculation frame and the signal frame coincide with each other, the gain can be calculated using a frame at almost the same time as the signal frame, so that the gain can be estimated with high accuracy. As a result, the musical noise can provide high-quality sound with less distortion of the sound spectrum. In addition, when the embodiment is used as preprocessing for voice recognition, the effect of improving the voice recognition rate under noise is significant.
  • the noise suppression method described in the present embodiment can be realized by executing a program prepared in advance on a computer such as a personal computer or a workstation.
  • This program is recorded on a computer-readable recording medium such as a hard disk, a flexible disk, a CD-ROM, an MO, and a DVD, and is executed by being read by the computer.
  • This program is a transmission medium that can be distributed over a network such as the Internet. Also good.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computational Linguistics (AREA)
  • Quality & Reliability (AREA)
  • Signal Processing (AREA)
  • Health & Medical Sciences (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)
  • Compression, Expansion, Code Conversion, And Decoders (AREA)
  • Circuit For Audible Band Transducer (AREA)
  • Noise Elimination (AREA)

Abstract

 入力音声から音声スペクトルと雑音スペクトルを算出し、この音声スペクトルと雑音スペクトルに基づいてゲインを算出し、算出されたゲインを用いて前記入力音声の雑音を抑圧する雑音抑圧装置を提供する。この雑音抑圧装置は入力音声を所定のフレーム長にフレーム分割する第1フレーム分割部(101)と、第1フレーム分割部(101)のフレーム長より長いフレーム長に、入力音声をフレーム分割する第2フレーム分割部(104)と第2フレーム分割部(104)によってフレーム分割された入力音声をスペクトル変換する第2変換部(105)と、第2変換部(105)によって変換されたスペクトルを周波数方向に平滑化する平滑化部(106)と、平滑化部(106)によって平滑化されたスペクトルおよび雑音スペクトルに基づいてゲインを算出するゲイン算出部(107)と、を備えることを特徴とする。

Description

明 細 書
雑音抑圧装置、雑音抑圧方法、雑音抑圧プログラムおよびコンピュータ に読み取り可能な記録媒体
技術分野
[0001] この発明は、雑音が重畳した音声信号から雑音を抑圧す雑音抑圧装置、雑音抑圧 方法、雑音抑圧プログラムおよびコンピュータに読み取り可能な記録媒体に関する。 ただし、この発明の利用は、上述の雑音抑圧装置、雑音抑圧方法、雑音抑圧プログ ラムおよびコンピュータに読み取り可能な記録媒体に限らない。
背景技術
[0002] 雑音が重畳した音声信号から雑音を抑圧する簡便でかつ非常に有効な手法として S. F. Bollが提案したスペクトルサブトラクシヨンが知られている。このスペクトルサブ トラクシヨンにより、現フレームの雑音重畳音声パワースペクトルを用いてゲインを算 出している (たとえば、非特許文献 1参照。 ) o
[0003] また、時間方向平滑ィ匕雑音重畳音声パワースペクトルを用いてゲインを算出する手 法がある。これによると、相互相関項の影響を低減するために、現フレームを含む過 去数フレームの雑音重畳音声パワースペクトルを時間方向に移動平均して平滑ィ匕を 行うものがある。すなわち、現フレームを含む過去数フレームの雑音重畳音声パワー スペクトルを時間方向に平滑化した時間方向平滑化雑音重畳音声パワースペクトル を用いてゲインを算出している (たとえば、非特許文献 2)。
[0004] 非特許文献 1 : S 'F'ボール(S. F. Boll)、 「サブレッシヨン ォブ アコースティック ノイズ イン スピーチ ユージング スぺクトラル サブトラクシヨン(Suppression of Acoustic Noise in speech Using Spectral SuDtraction)」、 Zィ 'トリプ ル 'ィー トラザクシヨン オン アコースティックス'スピーチ 'シグナルプロセシング(I EEE Transaction on Acoustics, ¾peecn and Signal Processingノ、 197 9年、第 ASSP— 27卷第 2号、 p. 113— 120
非特許文献 2 :北岡 教英、赤堀 一郎、中川 聖ー、「スペクトルサブトラクシヨンと時 間方向スムージングを用いた雑音環境下音声認識」、電子情報通信学会論文誌、 2 000年 2月、第 J83— D— II卷、第 2号、 p. 500— 508
発明の開示
発明が解決しょうとする課題
[0005] しかしながら、スペクトルサブトラクシヨンでは、現フレームのみの雑音重畳音声パヮ 一スペクトルを用いてゲインを算出しているので、音声と雑音の相互相関項の影響が 大きくなり高精度のゲインの推定が困難である。そのために、雑音抑圧後の音声にミ ユージカルノイズと呼ばれる特有の消し残り雑音が発生したり、音声スペクトルが歪む ので音質が悪い。また、音声認識の前処理としてスペクトルサブトラクシヨンを利用す る場合に認識率の改善効果が少な 、と 、う問題が一例として挙げられる。
[0006] また、現フレームを含む過去数フレームの雑音重畳音声パワースペクトルを時間方 向に平滑化して音声と雑音の相互相関項の影響を低減する場合、時間的に変動す る音声スペクトルを現フレームから時間的に離れたフレームにわたって平滑ィ匕してい るためにゲインの推定精度が劣るという問題が一例として挙げられる。
課題を解決するための手段
[0007] 請求項 1の発明にかかる雑音抑圧装置は、雑音が重畳した入力音声をフレーム分 割する第 1フレーム分割手段と、前記第 1フレーム分割手段によりフレーム分割され た入力音声をスペクトルに変換する第 1スペクトル変換手段と、前記第 1フレーム分割 手段により分割された各フレームが音声区間か非音声区間かを判別する音声区間 検出手段と、前記音声区間検出手段で非音声区間と判別された区間の前記入力音 声スペクトルを用いて、雑音スペクトルを推定する雑音スペクトル推定手段と、前記第 1フレーム分割手段のフレーム長より長いフレーム長に、前記入力音声をフレーム分 割する第 2フレーム分割手段と、前記第 2フレーム分割手段によってフレーム分割さ れた入力音声をスペクトルに変換する第 2スペクトル変換手段と、 前記第 2スぺタト ル変換手段によって変換されたスペクトルを周波数方向に平滑ィ匕する平滑ィ匕手段と 、前記平滑化手段によって平滑化されたスペクトルおよび前記雑音スペクトル推定手 段により推定された推定雑音スペクトルに基づいてゲインを算出するゲイン算出手段 と、前記第 1スペクトル変換手段により求めた入力音声スペクトルに、前記ゲインを乗 算することによりスぺ外ル減算を行うスぺ外ル減算手段と、を備えることを特徴とす る。
[0008] また、請求項 7の発明に力かる雑音抑圧方法は、雑音が重畳した入力音声をフレ ーム分割する第 1フレーム分割工程と、前記第 1フレーム分割工程によりフレーム分 割された入力音声をスペクトルに変換する第 1スペクトル変換工程と、前記第 1フレー ム分割手段により分割された各フレームが音声区間か非音声区間かを判別する音声 区間検出工程と、前記音声区間検出工程で非音声区間と判別された区間の前記入 力音声スペクトルを用いて、雑音スペクトルを推定する雑音スペクトル推定工程と、前 記第 1フレーム分割工程のフレーム長より長いフレーム長に、前記入力音声をフレー ム分割する第 2フレーム分割工程と、前記第 2フレーム分割工程によってフレーム分 割された入力音声をスペクトルに変換する第 2スペクトル変換工程と、前記第 2スぺク トル変換工程によって変換されたスペクトルを周波数方向に平滑ィ匕する平滑ィ匕工程 と、前記平滑ィ匕工程によって平滑化されたスペクトルおよび前記雑音スペクトル推定 工程により推定された推定雑音スペクトルに基づいてゲインを算出するゲイン算出ェ 程と、前記第 1スペクトル変換工程により求めた入力音声スペクトルに、前記ゲインを 乗算することによりスぺ外ル減算を行うスぺ外ル減算工程と、を含むことを特徴とす る。
[0009] また、請求項 8の発明に力かる雑音抑圧プログラムは、請求項 7に記載の雑音抑圧 方法を、コンピュータに実行させることを特徴とする。
[0010] また、請求項 9の発明にかかるコンピュータに読み取り可能な記録媒体は、請求項
8に記載の雑音抑圧プログラムを記録したことを特徴とする。
図面の簡単な説明
[0011] [図 1]図 1は、この発明の実施の形態に力かる雑音抑圧装置の機能的構成を示すブ ロック図である。
[図 2]図 2は、この発明の実施の形態に力かる雑音抑圧方法の処理を示すフローチヤ ートである。
[図 3]図 3は、従来技術のスペクトルサブトラクシヨンを用いる雑音抑圧装置の機能的 構成を示すブロック図である。
[図 4]図 4は、時間方向平滑ィ匕雑音重畳音声パワースペクトルを用いる雑音抑圧装置 の機能的構成を示すブロック図である。
[図1—
〇 5]図 5は、この実施例の雑音抑圧装置の機能的構成を示すブロック図である。
1—
[図 6]図 6は、入力音声のフレーム分割を説明する説明図である。
圆 7]図 7は、周波数方向に平滑ィ匕した場合のゲイン算出を説明する説明図である。 符号の説明
第 1フレーム分割部
102 第 1変換部
103 雑音スペクトル推定部
104 第 2フレーム分割部
105 第 2変換部
106 平滑化部
107 ゲイン算出部
108 スペクトル減算部
401 信号用フレーム分割部
402 スペクトル変換部
403 音声区間検出部
404 雑音スペクトル推定部
405 ゲイン算出部
406 スペクトル減算部
407 波形変換部
408 波形合成部
409 時間方向平滑化部
601 ゲイン算出用フレーム分割部
602 スペクトル変換部
603 周波数方向平滑化部
発明を実施するための最良の形態
以下に添付図面を参照して、この発明にかかる雑音抑圧装置、雑音抑圧方法、雑 音抑圧プログラムおよびコンピュータに読み取り可能な記録媒体の好適な実施の形 態を詳細に説明する。
[0014] 図 1は、この発明の実施の形態に係る雑音抑圧装置の機能的構成を示すブロック 図である。この実施の形態の雑音抑圧装置は、入力音声力 音声スペクトルと雑音ス ベクトルを算出し、該音声スペクトルと該雑音スペクトルに基づいてゲインを算出し、 算出されたゲインを用いて前記入力音声の雑音を抑圧する。また、この雑音抑圧装 置は、第 1フレーム分割部 101、第 1変換部 102、雑音スペクトル推定部 103、第 2フ レーム分割部 104、第 2変換部 105、平滑化部 106、ゲイン算出部 107、スペクトル 減算部 108により構成されている。
[0015] 第 1フレーム分割部 101は所定のフレーム長に、前記入力音声をフレーム分割する 。第 1変換部 102は、第 1フレーム分割部によってフレーム分割された入力音声をス ベクトルに変換する。雑音スペクトル推定部 103は、第 1変換部 102によって変換さ れたスペクトルの内、非音声区間と判定されたフレームのスペクトルを用いて、雑音ス ベクトルを推定する。
[0016] 第 2フレーム分割部 104は、第 1フレーム分割部 101のフレーム長より長いフレーム 長に、前記入力音声をフレーム分割する。また、第 2フレーム分割部 104は第 1フレ ーム分割部 101のフレーム長の整数倍、たとえば 2倍のフレーム長に、入力音声をフ レーム分割することができる。第 1フレーム分割部 101、第 2フレーム分割部 104は、 分割した入力音声をそれぞれ窓掛け処理することができる。また、第 1フレーム分割 部 101、第 2フレーム分割部 104は、分割した入力音声を、ハユング窓を用いて窓掛 け処理することができる。
[0017] 第 2変換部 105は、第 2フレーム分割部 104によってフレーム分割された入力音声 をスペクトルに変換する。平滑ィ匕部 106は、第 2変換部 105によって変換されたスぺ タトルを周波数方向に平滑ィ匕する。たとえば、第 2フレーム分割部 104が、第 1フレー ム分割部 101のフレーム長の 2倍のフレーム長に、入力音声をフレーム分割する場 合は、平滑化部 106は、第 2変換部 105によって変換されたスペクトルの偶数番号の スペクトルを、該偶数番号のスペクトルの前後の番号のスペクトルを用いて平滑化す ることができる。すなわち、平滑化部 106は、第 2変換部 105によって変換された 2K 番目のスペクトルを、 2K— 1番目のスペクトル、前記 2K番目のスペクトルおよび 2K + 1番目のスペクトルを用いて平滑化する。
[0018] ゲイン算出部 107は、平滑ィ匕部 103によって平滑ィ匕されたスペクトルと、雑音スぺク トル推定部 103によって推定された雑音スペクトルに基づいてゲインを算出する。ス ベクトル減算部 108は、第 1変換部 102によって変換された入力音声スペクトルに、 ゲイン算出部 107で算出されたゲインを乗算することにより、前記入力音声の雑音を 抑圧する。スペクトル減算部 108は、ゲイン算出部 107で算出されたゲインと、第 1変 換部 102で変換された入力音声スペクトルを同一のタイミングで入力することができ る。
[0019] 図 2は、この発明の実施の形態に係る雑音抑圧方法の処理を示すフローチャート である。まず、第 1フレーム分割部 101は、所定のフレーム長に音声をフレーム分割 する (ステップ S201)。次に、第 1変換部 102は、第 1フレーム分割部によってフレー ム分割された入力音声をスペクトルに変換する (ステップ S202)。次に、雑音スぺタト ル推定部 103は、第 1変換部 102によって変換されたスペクトルの内、非音声区間と 判定されたフレームのスペクトルを用いて、雑音スペクトルを推定する(ステップ S203
) o
[0020] 第 2フレーム分割部 104は、第 1フレーム分割部 101のフレーム長より長いフレーム 長に、前記入力音声をフレーム分割する (ステップ S204)。次に、第 2変換部 105は 、第 2フレーム分割部 104によってフレーム分割された入力音声をスペクトルに変換 する (ステップ S205)。次に、平滑ィ匕部 106は、第 2変換部 105によって変換されたス ベクトルを周波数方向に平滑化する (ステップ S206)。次に、ゲイン算出部 107は、 平滑ィ匕部 103によって平滑ィ匕されたスペクトルと、雑音スペクトル推定部 103によつ て推定された雑音スペクトルに基づいてゲインを算出する (ステップ S207)。次に、ス ベクトル減算部 108は、第 1変換部 102によって変換された入力音声スペクトルに、 ゲイン算出部 107で算出されたゲインを乗算することにより、スペクトル減算する (ステ ップ S 208)。
[0021] 以上説明した実施の形態により、音声と雑音の相互相関項の影響を低減でき、高 精度のゲインを推定することができる。その結果として高音質の音声が得られ、音声 認識の前処理として用いた場合、雑音下での音声認識率を改善できる。 実施例
[0022] ここで、従来技術であるスペクトルサブトラクシヨンにっ 、て説明する。スペクトルサ ブトラタシヨンは雑音重畳音声をスぺ外ル領域に変換し、雑音区間で推定された推 定雑音スペクトルを雑音重畳音声スペクトルから減算する手法である。雑音重畳音声 スペクトルを X(k)、クリーン音声スペクトルを S (k)、雑音スペクトルを D(k)とすると、 X(k) =S(k) +D(k)と表せる。パワースペクトル領域では、下記式(1)として表せる
[0023] [数 1]
I X(k) |2=| S(k) + D(k) |2 S(k) I2 + 1 D(k) I2 +21 S(k) || D(k) | cos 9(k)
… )
[0024] 上式の右辺第 3項は音声と雑音の相互相関項である。ここで、音声と雑音は無相関 と仮定して、下記式(2)のように近似する。
[0025] [数 2]
|X(k)|2=|S(k)|2+|D(k)|2 -(2)
[0026] これより、クリーン音声パワースペクトルは雑音重畳音声パワースペクトル力 推定 雑音パワースペクトルを減算して、下記式(3)のように推定される。
[0027] [数 3]
|S(k)|2=|X(k)|2-|D(k)|2 ー(3)
[0028] より一般的には下記式 (4)のように推定される。
[0029] 画
I s(k) \2 = \l X(k) |2α 1 D(k) |2' if I x(k) I2 _α 10(k) I2 > β I x(k) I2
β|Χ(1ί)|2, otherwise
…(
[0030] ここで、 aはサブトラクシヨン係数で、推定雑音パワースペクトルを多めに減算する ために 1より大きい値に設定される。 βはフロア係数で、減算後のスペクトルが負ある いは 0に近い値になることを回避するために正の小さな値に設定される。上式はゲイ ン G (k)を用いて I x(k) I に対するフィルタリングとしても表現できる。
[数 5]
Figure imgf000010_0001
■(5)
[0032] 上記式(5)のようにおくと、推定クリーン音声振幅スペクトルは下記式 (6)で求めら れる。
[0033] [数 6]
| S(k) |= G(k) | X(k) | -(6)
[0034] さらに、推定クリーン音声スペクトルは下記式(7)で求められる。
[0035] [数 7]
S(k) = G(k)X(k) -(7)
[0036] 次に、上述のスペクトルサブトラクシヨンを用いて雑音除去する場合の構成につい て説明する。図 3は、従来技術のスペクトルサブトラクシヨン雑音抑圧装置の機能的 構成を示すブロック図である。図 3に示す雑音抑圧装置は、信号用フレーム分割部 4 01、スペクトル変換部 402、音声区間検出部 403、雑音スペクトル推定部 404、ゲイ ン算出部 405、スペクトル減算部 406、波形変換部 407、波形合成部 408によって構 成される。
[0037] 信号用フレーム分割部 401は、雑音重畳音声を一定数のサンプル力 なるフレー ムに分割しスペクトル変換部 402と音声区間検出部 403に送る。スペクトル変換部 40 2は、離散フーリエ変換により雑音重畳音声スペクトル X (k)を求め、ゲイン算出部 40 5とスペクトル減算部 406へ送る。音声区間検出部 403は、音声区間 Z非音声区間 を判別し、非音声区間と判定されたフレームの雑音重畳音声スペクトルを雑音スぺク トル推定部 404に送る。
[0038] 雑音スペクトル推定部 404は、非音声と判定された過去数フレームのパワースぺク トルの時間平均を計算し、推定雑音パワースペクトルを求める。ゲイン算出部 405は 、雑音重畳音声パワースペクトルと推定雑音パワースペクトルを用いてゲイン G (k)を 算出する。
[0039] スペクトル減算部 406は、ゲイン G (k)を雑音重畳音声スペクトル X(k)に乗算して、 推定クリーン音声スペクトルを推定する。波形変換部 407は、逆離散フーリエ変換に より推定クリーン音声スペクトルを時間波形に変換する。波形合成部 408は、フレー ム単位の時間波形をオーバーラップ加算して連続波形を合成する。
[0040] 上述のスペクトルサブトラクシヨンでは音声と雑音は無相関と仮定して、式(1)の右 辺第 3項の相互相関項を 0とお 、て、式(2)のように雑音重畳音声パワースペクトルを クリーン音声パワースペクトルと雑音パワースペクトルの和で近似している。し力し、音 声と雑音が無相関であっても短時間フレーム分析する場合、相互相関項は 0になら ない。単に期待値力^になるだけである。そのため、式(1)の右辺第 3項を 0とおいた 影響によりスペクトルサブトラクシヨン後の推定クリーン音声に雑音が残る。
[0041] 図 4は、時間方向平滑ィ匕雑音重畳音声パワースペクトルを用いる雑音抑圧装置の 機能的構成を示すブロック図である。図 4の示す雑音抑圧装置は、図 3に示したゲイ ン算出部 405の前に時間方向平滑ィ匕部 409を備えた構成である。この雑音抑圧装 置では、現フレーム時刻 tの時間方向平滑ィ匕雑音重畳音声パワースペクトルを、下記 式(8)のように現フレームを含む過去 Lフレームの移動平均により求める。
[0042] [数 8]
L一 1
| X(k,t) |2= Xai | X(k,t -l) |2
1=0
… )
[0043] ここで、 aは平滑化の重みで、下記式(9)のようになる。
1
[数 9]
[0044] ゲイン算出部 405は、式(5)において現フレームの雑音重畳音声パワースペクトル
I x(k) 1 2の代わりに、下記式(10)で示される時間方向平滑ィ匕雑音重畳音声パヮ 一スペクトルを用いてゲイン G (k)を算出する。
[数 10]
| X(k,t) |2 …( )
[0045] 以上、従来技術のスペクトルサブトラクシヨンを用いたゲイン算出について説明した 力 この実施例では、上述の構成に加え、信号用フレーム分割部 401およびスぺタト ル変換部 402とは別の、ゲイン算出用フレーム分割部 601およびスペクトル変換部 6 02を備え、かつ信号用フレームのサンプル数よりゲイン算出用フレームのサンプル 数を多くする。それにより、周波数方向に平滑化した雑音重畳音声パワースペクトル が算出可能になり、これを用いてゲイン G (k)を算出する。
[0046] (雑音抑圧装置の機能的構成)
図 5は、この実施例の雑音抑圧装置の機能的構成を示すブロック図である。図 5に 示す雑音抑圧装置は、信号用フレーム分割部 401、スペクトル変換部 402、音声区 間検出部 403、雑音スペクトル推定部 404、ゲイン算出部 405、スペクトル減算部 40 6、波形変換部 407、波形合成部 408、ゲイン算出用フレーム分割部 601、スぺタト ル変換部 602、周波数方向平滑ィ匕部 603によって構成される。
[0047] 実際の処理は CPU力 ROMに書き込まれたプログラムを読み出すことによって、 R AMをワークエリアとして使用することにより実行する。図 5を用いて実施例を説明す る。まず、雑音重畳音声が、信号用フレーム分割部 401とゲイン算出用フレーム分割 部 601へ送られる。
[0048] 信号用フレーム分割部 401は、雑音重畳音声を、 N (例えば 256)サンプルからなる フレームに分割する。このときスペクトル変換部 402における離散フーリエ変換 (DiS crete Fourier Transform : DFT)の周波数分析精度を高くするために窓掛け処 理される。また、波形合成処理する場合はフレーム境界で不連続な波形になることを 防止するために、フレームはオーバーラップするように分割される。
[0049] フレーム分割された雑音重畳音声信号 X (n)は、 X (n) =S (n) +d (n) , 0≤n≤
s s s s
N— 1、と表される。ここで、 S (n)はクリーン音声信号、 d (n)は雑音である。
S S
[0050] スペクトル変換部 402は、フレーム分割された雑音重畳音声信号 X (n)を、離散フ 一リエ変換によりスペクトルに変換する。スペクトル X (k)は X (k) =S (k) +D (k)、 s s s s
0≤k≤N—l、と表される。ここで、 S (k)はクリーン音声スペクトルの第 k成分、 D (k
S S
)は雑音スペクトルの第 k成分である。スペクトル X (k)はスペクトル減算部 406に送ら s
れる。
[0051] 音声区間検出部 403は、並行してフレーム分割された雑音重畳音声信号 X (n)に
S
ついて、音声区間 Z非音声区間を判別し、非音声区間と判定されたフレームの雑音 重畳音声信号のスペクトル X (k) =D (k)を雑音スペクトル推定部 404に送る。
S S
[0052] 雑音スペクトル推定部 404は、非音声区間と判定された過去数フレーム分のパワー スペクトルの時間平均を計算し、推定雑音パワースペクトル DPを、下記式(11)で与 える。
[0053] [数 11]
DP =| Ds(k) |2 …(川
[0054] ゲイン算出用フレーム分割部 601は、雑音重畳音声を、 Nより多い M (たとえば 512 )サンプル力もなるフレームに分割する。このとき、ゲイン算出用フレーム分割の窓の 中心を信号用フレーム分割の窓の中心と一致させる。フレーム分割された雑音重畳 音声信号 X (m)は、 X (m) =S (m) + d (m)、 0≤m≤M— 1、と表される。ここで、 S g g g g
(m)はクリーン音声信号、 d (m)は雑音である。
g g
[0055] スペクトル変換部 602は、フレーム分割された雑音重畳音声信号 x (m)を離散フー g
リエ変換によりゲイン算出用スペクトルに変換する。ゲイン算出用スペクトル X (1)は、 g
X (1) =S (1) +D (1)、 0≤1≤M—1と表される。ここで、 S (1)は、クリーン音声スぺク g g g g
トルの第 1成分、 D (1)は雑音スペクトルの第 1成分である。
g
[0056] 周波数方向平滑ィ匕部 603は、ゲイン算出用スペクトル X (1)を平滑化する。ゲイン g
算出用フレーム分割のサンプル数 Mを信号用フレームのサンプル数 Nの 2倍(M = 2 N)に取った場合、後述する図 7に示すように、ゲイン算出用スペクトル X (1)と信号ス g ベクトル X (k)は、 l= 2k (k=0, 1, · ··, N— 1)のときに周波数が一致する。
S
[0057] そこで、スペクトル X (k)に対するゲイン G (k)を算出するために X (2k)を中心とす s g
る X (2k— 1)、X (2k)および X (2k+ l)を用いて、周波数方向平滑ィ匕パワースぺク トル XPは、下記式(12)のようにおく c
[0058] [数 12]
XP=|Xe(k j2=a_,|Xg(2k-l +a0|Xg(2k + a 2k + if, … )
0≤k≤N-1
[0059] ここで、 a 、 a、 a は平滑化の重みで、 a +a +a =1.0の関係がある。ここでは、
- 1 0 +1 -1 0 +1
a =a =a = lZ3とする。この周波数方向平滑ィ匕パワースペクトル XPは、ゲイン算
- 1 0 +1
出部 405に送られる。
[0060] ゲイン算出部 405は、雑音スペクトル推定部 404から送られた推定雑音パワースぺ タトル DPと周波数方向平滑ィ匕パワースペクトル XPを用いて、ゲイン G (k)を下記式( 13)のように算出する。
[数 13] if |Xs(k)| "|Ds(k)|2>P|X。(k)|」 otherwise
Figure imgf000014_0001
■(13)
[0061] ここで αはサブトラクシヨン係数で、推定雑音パワースペクトル DPを多めに減算す るために 1より大きい値に設定される、 βはフロア係数であり、減算後のスペクトルが 負あるいは 0に近い値になることを回避するために正の小さな値に設定される。算出 されたゲイン G (k)はスペクトル減算部 406へ送られる。
[0062] スペクトル減算部 406は、スペクトル変換部 402で算出されたスペクトル X (k)にゲ s イン G (k)を乗算することにより、推定雑音スペクトルが減算された推定クリーン音声ス ベクトルを、下記式(14)のように算出する。
[数 14]
Ss(k) = G(k)Xs(k) ■(14)
[0063] 波形変換部 407は、推定クリーン音声スペクトルを逆離散フーリエ変換 (InverSe Discrete Fourier Transform :IDFT)してフレーム単位の時間波形を求める。 波形合成部 408は、フレーム単位の時間波形をオーバーラップ加算して連続波形を 合成し、雑音抑圧音声を出力する。
[0064] 図 6は、入力音声のフレーム分割を説明する説明図である。図 6 (a)は、信号用フレ ーム分割部 401において、雑音重畳音声を N (たとえば 256)サンプル力もなるフレ ームに分割する場合を示す。このとき、離散フーリエ変換 (Discrete Fourier Tra nSform: DFT)の周波数分析精度を高くするために窓掛け処理される。また、波形 合成処理する場合はフレーム境界で不連続な波形になることを防止するために、フ レームはオーバーラップするように分割される。
[0065] 図 6 (b)は、ゲイン算出用フレーム分割部 601において、雑音重畳音声を Nより多 い M (たとえば 512)サンプルカゝらなるフレームに分割する場合を示す。ここでは、時 間幅を図 6 (a)の場合の 2倍にとってある。このように、ゲイン算出用フレームのサンプ ル数を、信号用フレームのサンプル数より多くする。また、ゲイン算出用フレームの中 心と信号用フレームの中心を一致させる。
[0066] 図 7は、周波数方向に平滑ィ匕した場合のゲイン算出を説明する説明図である。ダラ フ 801に示すように、ゲイン算出用スペクトル X (1)は、スペクトル変換部 602によって
g
周波数に応じた 1本のスペクトルが出力される。ゲイン算出用スペクトル X (1)の周波
g
数方向平滑ィ匕は、信号スペクトル成分の周波数と一致するスペクトル成分を中心とす る複数のスペクトル成分を用いる。
[0067] たとえば、ゲイン算出用フレーム分割のサンプル数 Mを、信号用フレームのサンプ ル数 Nの 2倍 (M = 2N)に取った場合、ゲイン算出用スペクトル X (1)と信号スぺタト
g
ル X (k)は、 l= 2k (k=0, 1, · ··, N— 1)のときに周波数が一致する。すなわち、ダラ s
フ 801は、 1=0, 1,…に対応したスペクトルを示している力 このうち、太線で示した 偶数番号に対応したスペクトルを、このスペクトルの前後にある細線で示したスぺタト ルと組み合わせることにより周波数方向平滑ィ匕している。たとえば、 1=6のスペクトル に対し、 1= 5および 1= 7のスペクトルを使用する。これに対し、 G (3)で示されるゲイ ン 802が算出される。ゲイン 802は、スペクトル減算部 406において、グラフ 803で示 されるスペクトル X (k)と力け合わされる。 [0068] 次に、窓関数について説明する。長い信号のスペクトル変換は、上述のようにフレ ーム単位で分割してフーリエ変換する力 離散値のデータを用いることになるので、 離散フーリエ変換となる。離散フーリエ変換の場合、データの周期性が仮定されてい るが、切り出したデータの両端が極端な値の場合、影響が大きくなつてしまい、結果と して高周波成分の歪みが発生してしまう。この対策として、信号に窓関数をかけた結 果を離散フーリエ変換する。この窓関数をかけ合わせる処理のことを窓掛け処理と 、
[0069] 窓関数は、メインローブ (周波数力 ^周辺の振幅スペクトルが大き 、領域)の幅が狭 く、サイドローブ (周波数が 0から離れた位置の振幅スペクトルが小さ 、領域)の振幅 が小さいことが条件となる。具体的には、方形窓、ハユング窓、ノ、ミング窓、ガウス窓 などが挙げられる。
[0070] 本実施例で用いる窓関数はハユング窓である。ハユング窓の窓関数は、 0≤n≤N
1の範囲で、 h (n) =0. 5-0. 5{cos (27u nZ (N—l) ) }で与えられ、その他の範 囲では h (n) =0である。この窓関数は、メインローブの周波数分解能は比較的劣るも のの、サイドローブの振幅が比較的小さい。
[0071] 以上説明した実施例によれば、雑音重畳音声パワースペクトルの複数のスペクトル 成分を用いて周波数方向に平滑ィヒを行って 、るので、音声と雑音の相互相関項を 低減でき、高精度のゲインを推定できる。さらに、ゲイン算出用フレームと信号用フレ ームの中心が一致しているので、信号フレームとほぼ同時刻のフレームを用いてゲイ ンを算出できるので精度の高いゲインの推定が可能である。これによりミュージカルノ ィズゃ音声スペクトルの歪みの少ない高音質の音声が得られる。また、音声認識の 前処理として実施例を用いた場合、雑音下での音声認識率の改善効果が大き!ヽ。
[0072] なお、本実施の形態で説明した雑音抑圧方法は、予め用意されたプログラムをパ 一ソナル 'コンピュータやワークステーションなどのコンピュータで実行することにより 実現することができる。このプログラムは、ハードディスク、フレキシブルディスク、 CD -ROM, MO、 DVDなどのコンピュータで読み取り可能な記録媒体に記録され、コ ンピュータによって記録媒体力 読み出されることによって実行される。またこのプロ グラムは、インターネットなどのネットワークを介して配布することが可能な伝送媒体で もよい。

Claims

請求の範囲
[1] 雑音が重畳した入力音声をフレーム分割する第 1フレーム分割手段と、
前記第 1フレーム分割手段によりフレーム分割された入力音声をスペクトルに変換 する第 1スペクトル変換手段と、
前記第 1フレーム分割手段により分割された各フレームが音声区間か非音声区間 かを判別する音声区間検出手段と、
前記音声区間検出手段で非音声区間と判別された区間の前記入力音声スぺタト ルを用いて、雑音スペクトルを推定する雑音スペクトル推定手段と、
前記第 1フレーム分割手段のフレーム長より長いフレーム長に、前記入力音声をフ レーム分割する第 2フレーム分割手段と、
前記第 2フレーム分割手段によってフレーム分割された入力音声をスペクトルに変 換する第 2スペクトル変換手段と、
前記第 2スペクトル変換手段によって変換されたスペクトルを周波数方向に平滑ィ匕 する平滑化手段と、
前記平滑化手段によって平滑化されたスペクトルおよび前記雑音スペクトル推定手 段により推定された推定雑音スペクトルに基づいてゲインを算出するゲイン算出手段 と、
前記第 1スペクトル変換手段により求めた入力音声スペクトルに、前記ゲインを乗算 することによりスペクトル減算を行うスペクトル減算手段と、
を備えることを特徴とする雑音抑圧装置。
[2] 前記第 2フレーム分割手段は、前記入力音声を、前記第 1フレーム分割手段のフレ ーム長の整数倍のフレーム長にフレーム分割することを特徴とする請求項 1に記載の 雑音抑圧装置。
[3] 前記第 2フレーム分割手段は、前記入力音声を、前記第 1フレーム分割手段のフレ ーム長の 2倍のフレーム長にフレーム分割し、前記平滑化手段は、前記第 2スぺタト ル変換手段によって変換された周波数方向の順番にお 、て偶数番号のスぺクトルを 、該偶数番号のスペクトルの前後の番号のスペクトルを用いて平滑ィヒすることを特徴 とする請求項 2に記載の雑音抑圧装置。
[4] 前記第 1フレーム分割手段および前記第 2フレーム分割手段は、分割した入力音 声にそれぞれ窓関数をかけ合わせることを特徴とする請求項 1に記載の雑音抑圧装 置。
[5] 前記第 1フレーム分割手段および前記第 2フレーム分割手段は、前記窓関数にハ ニング窓を用いることを特徴とする請求項 4に記載の雑音抑圧装置。
[6] 前記スペクトル減算手段は、前記ゲイン算出手段によって算出されたゲインを、前 記第 1スペクトル変換手段により求めた入力音声スペクトルと同一のタイミングで入力 することを特徴とする請求項 1〜5のいずれか一つに記載の雑音抑圧装置。
[7] 雑音が重畳した入力音声をフレーム分割する第 1フレーム分割工程と、
前記第 1フレーム分割工程によりフレーム分割された入力音声をスペクトルに変換 する第 1スペクトル変換工程と、
前記第 1フレーム分割手段により分割された各フレームが音声区間か非音声区間 かを判別する音声区間検出工程と、
前記音声区間検出工程で非音声区間と判別された区間の前記入力音声スぺタト ルを用いて、雑音スペクトルを推定する雑音スペクトル推定工程と、
前記第 1フレーム分割工程のフレーム長より長いフレーム長に、前記入力音声をフ レーム分割する第 2フレーム分割工程と、
前記第 2フレーム分割工程によってフレーム分割された入力音声をスペクトルに変 換する第 2スペクトル変換工程と、
前記第 2スペクトル変換工程によって変換されたスペクトルを周波数方向に平滑ィ匕 する平滑化工程と、
前記平滑ィ匕工程によって平滑化されたスペクトルおよび前記雑音スペクトル推定ェ 程により推定された推定雑音スペクトルに基づいてゲインを算出するゲイン算出工程 と、
前記第 1スペクトル変換工程により求めた入力音声スペクトルに、前記ゲインを乗算 することによりスペクトル減算を行うスペクトル減算工程と、
を含むことを特徴とする雑音抑圧方法。
[8] 請求項 7に記載の雑音抑圧方法をコンピュータに実行させることを特徴とする雑音 抑圧プログラム。
請求項 8に記載の雑音抑圧プログラムを記録したことを特徴とするコンビュ み取り可能な記録媒体。
PCT/JP2005/022095 2004-12-28 2005-12-01 雑音抑圧装置、雑音抑圧方法、雑音抑圧プログラムおよびコンピュータに読み取り可能な記録媒体 WO2006070560A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006550638A JP4568733B2 (ja) 2004-12-28 2005-12-01 雑音抑圧装置、雑音抑圧方法、雑音抑圧プログラムおよびコンピュータに読み取り可能な記録媒体
US11/794,130 US7957964B2 (en) 2004-12-28 2005-12-01 Apparatus and methods for noise suppression in sound signals

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004382163 2004-12-28
JP2004-382163 2004-12-28

Publications (1)

Publication Number Publication Date
WO2006070560A1 true WO2006070560A1 (ja) 2006-07-06

Family

ID=36614685

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/022095 WO2006070560A1 (ja) 2004-12-28 2005-12-01 雑音抑圧装置、雑音抑圧方法、雑音抑圧プログラムおよびコンピュータに読み取り可能な記録媒体

Country Status (3)

Country Link
US (1) US7957964B2 (ja)
JP (1) JP4568733B2 (ja)
WO (1) WO2006070560A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010055024A (ja) * 2008-08-29 2010-03-11 Toshiba Corp 信号補正装置
JP2010532879A (ja) * 2007-07-06 2010-10-14 オーディエンス,インコーポレイテッド アダプティブ・インテリジェント・ノイズ抑制システム及び方法
JP2011081033A (ja) * 2009-10-02 2011-04-21 Toshiba Corp 信号処理装置、及び携帯端末装置
US8515098B2 (en) 2008-10-24 2013-08-20 Yamaha Corporation Noise suppression device and noise suppression method
CN112837703A (zh) * 2020-12-30 2021-05-25 深圳市联影高端医疗装备创新研究院 医疗成像设备中语音信号获取方法、装置、设备和介质

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100207689A1 (en) * 2007-09-19 2010-08-19 Nec Corporation Noise suppression device, its method, and program
DK2164066T3 (da) * 2008-09-15 2016-06-13 Oticon As Støjspektrumsporing i støjende akustiske signaler
JP5526524B2 (ja) 2008-10-24 2014-06-18 ヤマハ株式会社 雑音抑圧装置及び雑音抑圧方法
JP5245714B2 (ja) 2008-10-24 2013-07-24 ヤマハ株式会社 雑音抑圧装置及び雑音抑圧方法
JP5566846B2 (ja) * 2010-10-15 2014-08-06 本田技研工業株式会社 ノイズパワー推定装置及びノイズパワー推定方法並びに音声認識装置及び音声認識方法
EP2717263B1 (en) * 2012-10-05 2016-11-02 Nokia Technologies Oy Method, apparatus, and computer program product for categorical spatial analysis-synthesis on the spectrum of a multichannel audio signal
JP6477295B2 (ja) * 2015-06-29 2019-03-06 株式会社Jvcケンウッド 雑音検出装置、雑音検出方法及び雑音検出プログラム
JP6597062B2 (ja) * 2015-08-31 2019-10-30 株式会社Jvcケンウッド 雑音低減装置、雑音低減方法、雑音低減プログラム
JP6729187B2 (ja) 2016-08-30 2020-07-22 富士通株式会社 音声処理プログラム、音声処理方法及び音声処理装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0822297A (ja) * 1994-07-07 1996-01-23 Matsushita Commun Ind Co Ltd 雑音抑圧装置
JPH09311698A (ja) * 1996-05-21 1997-12-02 Oki Electric Ind Co Ltd 背景雑音消去装置
JP2001134287A (ja) * 1999-11-10 2001-05-18 Mitsubishi Electric Corp 雑音抑圧装置
JP2002221988A (ja) * 2001-01-25 2002-08-09 Toshiba Corp 音声信号の雑音抑圧方法と装置及び音声認識装置
JP2003101445A (ja) * 2001-09-20 2003-04-04 Mitsubishi Electric Corp エコー処理装置
JP2004234023A (ja) * 2004-04-02 2004-08-19 Mitsubishi Electric Corp 雑音抑圧装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1376539B8 (en) * 2001-03-28 2010-12-15 Mitsubishi Denki Kabushiki Kaisha Noise suppressor

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0822297A (ja) * 1994-07-07 1996-01-23 Matsushita Commun Ind Co Ltd 雑音抑圧装置
JPH09311698A (ja) * 1996-05-21 1997-12-02 Oki Electric Ind Co Ltd 背景雑音消去装置
JP2001134287A (ja) * 1999-11-10 2001-05-18 Mitsubishi Electric Corp 雑音抑圧装置
JP2002221988A (ja) * 2001-01-25 2002-08-09 Toshiba Corp 音声信号の雑音抑圧方法と装置及び音声認識装置
JP2003101445A (ja) * 2001-09-20 2003-04-04 Mitsubishi Electric Corp エコー処理装置
JP2004234023A (ja) * 2004-04-02 2004-08-19 Mitsubishi Electric Corp 雑音抑圧装置

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010532879A (ja) * 2007-07-06 2010-10-14 オーディエンス,インコーポレイテッド アダプティブ・インテリジェント・ノイズ抑制システム及び方法
JP2010055024A (ja) * 2008-08-29 2010-03-11 Toshiba Corp 信号補正装置
US8108011B2 (en) 2008-08-29 2012-01-31 Kabushiki Kaisha Toshiba Signal correction device
US8515098B2 (en) 2008-10-24 2013-08-20 Yamaha Corporation Noise suppression device and noise suppression method
JP2011081033A (ja) * 2009-10-02 2011-04-21 Toshiba Corp 信号処理装置、及び携帯端末装置
CN112837703A (zh) * 2020-12-30 2021-05-25 深圳市联影高端医疗装备创新研究院 医疗成像设备中语音信号获取方法、装置、设备和介质

Also Published As

Publication number Publication date
US20080010063A1 (en) 2008-01-10
JP4568733B2 (ja) 2010-10-27
US7957964B2 (en) 2011-06-07
JPWO2006070560A1 (ja) 2008-06-12

Similar Documents

Publication Publication Date Title
WO2006070560A1 (ja) 雑音抑圧装置、雑音抑圧方法、雑音抑圧プログラムおよびコンピュータに読み取り可能な記録媒体
AU696152B2 (en) Spectral subtraction noise suppression method
JP4958303B2 (ja) 雑音抑圧方法およびその装置
JP5791092B2 (ja) 雑音抑圧の方法、装置、及びプログラム
KR101737824B1 (ko) 잡음 환경의 입력신호로부터 잡음을 제거하는 방법 및 그 장치
JP4856662B2 (ja) 雑音除去装置、その方法、そのプログラム及び記録媒体
JP4787851B2 (ja) エコー抑圧ゲイン推定方法とそれを用いたエコー消去装置と、装置プログラムと記録媒体
JP4454591B2 (ja) 雑音スペクトル推定方法、雑音抑圧方法及び雑音抑圧装置
CN115223583A (zh) 一种语音增强方法、装置、设备及介质
JP4965891B2 (ja) 信号処理装置およびその方法
EP1944754B1 (en) Speech fundamental frequency estimator and method for estimating a speech fundamental frequency
JP5769671B2 (ja) エコー抑圧ゲイン推定方法とそれを用いたエコー消去装置とプログラム
JP4123835B2 (ja) 雑音抑圧装置および雑音抑圧方法
JP5889224B2 (ja) エコー抑圧ゲイン推定方法とそれを用いたエコー消去装置とプログラム
JP5413575B2 (ja) 雑音抑圧の方法、装置、及びプログラム
JP5769670B2 (ja) エコー抑圧ゲイン推定方法とそれを用いたエコー消去装置とプログラム
JP3279254B2 (ja) スペクトル雑音除去装置
JP5769672B2 (ja) エコー抑圧ゲイン推定方法とそれを用いたエコー消去装置とプログラム
JP4325044B2 (ja) 音声認識システム
JP5562451B1 (ja) エコー抑圧ゲイン推定方法とそれを用いたエコー消去装置とプログラム
EP1635331A1 (en) Method for estimating a signal to noise ratio
JP5700850B2 (ja) 遅延推定方法とその方法を用いたエコー消去方法と、それらの装置とプログラムとその記録媒体
JP2005099405A (ja) 雑音除去方法、雑音除去装置およびプログラム
CN111226278B (zh) 低复杂度的浊音语音检测和基音估计
JP2019060976A (ja) 音声処理プログラム、音声処理方法および音声処理装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006550638

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 11794130

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 11794130

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 05811370

Country of ref document: EP

Kind code of ref document: A1

WWW Wipo information: withdrawn in national office

Ref document number: 5811370

Country of ref document: EP