WO2006069675A1 - Messsystem zur messung von stoffkonzentrationen in fluiden medien - Google Patents

Messsystem zur messung von stoffkonzentrationen in fluiden medien Download PDF

Info

Publication number
WO2006069675A1
WO2006069675A1 PCT/EP2005/013701 EP2005013701W WO2006069675A1 WO 2006069675 A1 WO2006069675 A1 WO 2006069675A1 EP 2005013701 W EP2005013701 W EP 2005013701W WO 2006069675 A1 WO2006069675 A1 WO 2006069675A1
Authority
WO
WIPO (PCT)
Prior art keywords
test strip
analysis module
measuring
data
strip container
Prior art date
Application number
PCT/EP2005/013701
Other languages
English (en)
French (fr)
Inventor
Albert Wohland
Original Assignee
Roche Diagnostics Gmbh
F. Hoffmann-La Roche Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Roche Diagnostics Gmbh, F. Hoffmann-La Roche Ag filed Critical Roche Diagnostics Gmbh
Priority to DE502005010359T priority Critical patent/DE502005010359D1/de
Priority to AT05818436T priority patent/ATE484031T1/de
Priority to CN2005800448163A priority patent/CN101088093B/zh
Priority to EP05818436A priority patent/EP1834263B1/de
Priority to CA002588658A priority patent/CA2588658A1/en
Priority to JP2007547317A priority patent/JP2008525764A/ja
Priority to US11/793,794 priority patent/US7998407B2/en
Publication of WO2006069675A1 publication Critical patent/WO2006069675A1/de
Priority to HK08106163.0A priority patent/HK1115721A1/xx

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/487Physical analysis of biological material of liquid biological material
    • G01N33/48785Electrical and electronic details of measuring devices for physical analysis of liquid biological material not specific to a particular test method, e.g. user interface or power supply
    • G01N33/48792Data management, e.g. communication with processing unit
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/483Physical analysis of biological material
    • G01N33/487Physical analysis of biological material of liquid biological material
    • G01N33/4875Details of handling test elements, e.g. dispensing or storage, not specific to a particular test method
    • G01N33/48757Test elements dispensed from a stack
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H40/00ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices
    • G16H40/20ICT specially adapted for the management or administration of healthcare resources or facilities; ICT specially adapted for the management or operation of medical equipment or devices for the management or administration of healthcare resources or facilities, e.g. managing hospital staff or surgery rooms
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/11Automated chemical analysis
    • Y10T436/112499Automated chemical analysis with sample on test slide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T436/00Chemistry: analytical and immunological testing
    • Y10T436/14Heterocyclic carbon compound [i.e., O, S, N, Se, Te, as only ring hetero atom]
    • Y10T436/142222Hetero-O [e.g., ascorbic acid, etc.]
    • Y10T436/143333Saccharide [e.g., DNA, etc.]
    • Y10T436/144444Glucose

Definitions

  • the invention relates to a portable analytical measuring system for measuring substance concentrations in fluid media, in particular a measuring system for measuring blood glucose concentrations and / or blood lipid concentrations. Furthermore, the invention relates to a method for measuring substance concentrations in fluid media by means of a measuring system according to the invention and the use of an "intelligent" TeststMailbe- ratio in such a measuring system for measuring substance concentrations in fluid media.
  • the monitoring of the blood glucose concentration is an essential part of the daily routine for diabetics.
  • the blood glucose concentration must be determined quickly and easily several times a day in order to be able to take appropriate medical measures if necessary.
  • In order to limit the daily routine of the diabetic no more than necessary often corresponding mobile devices are used, which should be easy to transport and handle, so that the measurement of blood glucose concentration, for example, at work or in the leisure can take place.
  • test strips are constructed, for example, such that a predetermined amount of blood is guided via a capillary system in the test strip to an electrode system.
  • the electrode system may be, for example - -
  • the coating generally contains various enzymes and so-called mediators and causes charge carriers (for example in the form of redox molecules) to form on the electrodes within the sample, the concentration of which depends on the blood glucose concentration.
  • the concentration of these charge carriers can be determined by means of the gold electrodes and a suitable measuring system, for example by means of a current-voltage measurement, so that finally it can be calculated back to the blood glucose concentration.
  • test strips An essential element of such portable diagnostic systems thus form the corresponding test strips. Typically, about 5 to 7 such test strips per day are needed by a diabetic. It is essential that the test strips are kept clean and dry in order not to falsify the measurement of the blood glucose concentration by appropriate contamination or exposure to moisture.
  • test strip container for test strips after removing one or more test strips. It can also happen that the test strip container is not closed at all for a long time. The resulting leakage or exposure to air on the test strips can lead to quality impairments of the test strips and to incorrect measurement results.
  • the problem with the test strips is that the properties of the test strips used can often vary from batch to batch. This results in some massive fluctuations in the accuracy of the blood glucose concentration measurement. Therefore, in many known commercial systems, batch information on the test strips must be entered into an analysis module prior to a corresponding blood glucose concentration measurement so that the analysis module can properly "interpret" the measurement data of the test strip using this batch information to determine a correct blood glucose concentration.
  • batch information on the test strips must be entered into an analysis module prior to a corresponding blood glucose concentration measurement so that the analysis module can properly "interpret" the measurement data of the test strip using this batch information to determine a correct blood glucose concentration.
  • corresponding barcodes which are for example mounted on the test strip container and which can be read out by the analysis module.
  • systems are also known in which the test strip container of the test strip is a data carrier, often called "ROM key” attached. This data carrier may, for example, be added loosely to the closed test strip container of the test strips or else be integrated firmly into the test strip container. Does this
  • the known types of transfer of batch information in the analysis module have the disadvantage that in each case a corresponding action of the user or patient is required.
  • An automatic transfer of the batch information does not take place.
  • the user or the patient forgets to transfer this batch information, or if an error occurs when transferring the batch information, this can have the fatal consequence that, for example, blood glucose concentrations are calculated incorrectly.
  • false medical countermeasures for example in the form of incorrect dosages of insulin, can be stimulated, which can have fatal consequences for the patient.
  • a device for administering medicaments in which a medicament is dispensed from a container which comprises a cap, wherein a sensor device registers when the cap of the container is opened. Furthermore, the container comprises a clock which registers the times of opening or closing of the cap. Furthermore, a device and a display are provided, via which a patient is made aware of when a drug must be taken again.
  • RFID radio frequency identification
  • the object of the present invention is to provide a system which enables a simple and reliable measurement of substance concentrations in fluid media by means of test strips.
  • the described system is intended to avoid the disadvantages of the prior art, to ensure dry and clean storage of the test strips, and to allow correct batch information of the test strips to be used at all times.
  • a portable analytical measuring system for measuring substance concentrations in fluid media is proposed.
  • it may be the measurement of blood glucose concentrations and / or blood lipid concentrations.
  • it is also possible to determine other substance concentrations or to carry out corresponding other analyzes, for example pH measurements or similar analyzes.
  • Fluid media should be understood as meaning, in particular, liquid samples or even gaseous samples.
  • test strips may be one of the above-mentioned test strips for electrochemical and / or photometric analysis of liquid samples.
  • these may be test strips of the type described above with a capillary system and one or more electrodes and additional chemical auxiliaries (for example enzymes, mediators).
  • additional chemical auxiliaries for example enzymes, mediators.
  • the test strip container has at least one closure device for closing the test strip container or for opening the test strip container for the purpose of taking one or more test strips.
  • This closure device can be designed in various ways. In particular, this closure device can be designed so that the test strip container can be hermetically sealed by means of the closure device. In this way, test strips contained in the test strip container are optimally protected against the effects of atmospheric moisture or atmospheric oxygen or other contaminants.
  • the closure device can be designed, for example, so that it has a simple plug, which is pressed for closing in an opening of the test strip container. In particular, this plug may be loose or may also be connected to the test strip receptacle, for example via a flexible connection, so that the likelihood of loss of the plug in the opened state of the test strip receptacle is reduced.
  • the closure device may for example also have a lid with a hinge, wherein ideally in the closed state the lid hermetically seals the test strip container.
  • the test strip container has a counting device for counting a number and / or a duration of opening processes of the closure device and a data carrier for storing batch-specific data of the test strips and / or a number and / or duration of opening operations.
  • the counting device may, for example, comprise a clock and a corresponding device (for example a device as described in EP 0 101 812 Bl) which registers an opening of the closure device and, for example, increases a counter variable by one each time it is opened. Also, as soon as an opening of the closure device is registered, the device can start a time counter, for example a clock, which is then stopped again on subsequent closing of the closure device. In this way, the times during which the test strip container is opened can be determined.
  • individual times or even times can be determined cumulatively in this way.
  • the times thus determined or the number of opening operations of the closure device determined in this way can in particular be stored on the data carrier.
  • batch-specific data of the test strips, as described above, can be stored on the data carrier.
  • test strip container has a data transmission device for the wireless transmission of batch-specific data and a number and / or duration of opening operations to an analysis module.
  • data stored on the data carrier can be transmitted by means of this data transmission device.
  • the data transmission to the analysis module should be wireless. - -
  • the data transmission device can have at least one transponder.
  • a transponder can in particular be understood to be a radio frequency identification (RFID) tag or a device having such an RFID tag.
  • the transponder can also have a microprocessor and also its own memory.
  • the transponder has at least one antenna for transmitting data, for example a copper coil printed on a substrate.
  • the transponder can have its own energy source, for example a battery.
  • the transponder can also be externally supplied with energy, for example by receiving corresponding electromagnetic paths, which are emitted, for example, by an analysis module.
  • the transponder may be configured to merely transmit data, but may also be configured to send data and receive data.
  • the transponder can transmit, for example, in a frequency range of about 900 MHz.
  • the measuring system has an analysis module with a device for measuring substance concentrations in fluid media by means of a test strip.
  • This may be, for example, an analysis module, which essentially has functions of a blood glucose concentration measuring device known from the prior art.
  • it can be an analysis module which, as described above, determines blood glucose concentrations by means of an electrochemical or optical measuring method.
  • analysis modules are known from the prior art, so that the further functionality of these modules should not be further described here.
  • the analysis module further comprises a data receiving device for the wireless reception of batch-specific data and a number and / or duration of ⁇ ffenungsvorêtn on.
  • a data receiving device for example, the information transmitted by the data transmission device in the test strip container (see above) can be received.
  • the data receiving device can be configured as a pure receiving device, but it can also be a device which has both a receiving device and a transmitting device.
  • the data receiving device may comprise a transmitting device, which first excites a data transmission device in a test strip receptacle, which may be located in the vicinity of the analysis module, for wireless transmission of data via a wireless signal (which is emitted, for example, at regular intervals).
  • the data receiving device preferably also be used simultaneously for E nergy supply of the data transmission device in a test strip container via electromagnetic waves.
  • electromagnetic waves for the exchange of data and energy between the analysis module and the test strip can be understood, for example, high-frequency waves or electromagnetic waves in the infrared spectral range. Other spectral ranges of the electromagnetic spectrum are conceivable.
  • the measuring system can be designed such that the analysis module has a warning device for warning a user. If, for example, based on the transmission of data from the test strip receptacle, it is determined that the test strip receptacle has been opened too often, ie more often than a predetermined number, a warning may be issued to a user of the measuring system.
  • This warning can take place, for example, in the form of an acoustic signal or in the form of an optical display, for example a display by a light-emitting diode or by a display on a display.
  • it can also be determined, for example, based on the data transmitted by the test strip container, whether the test strip container was opened too long.
  • other warning functions can be perceived. For example, it can be concluded from the maximum number of opening operations, for example, assuming that a test strip is removed from the test strip container at each opening operation, that there are only a certain number of test strips in the test strip container. For example, this number of remaining test strips can be communicated to the user of the measuring system via a display device, for example a display in the analysis module. If the test strip container is empty, a warning can also be issued.
  • warning signals may also be generated, for example if the test strip receptacle contains a humidity sensor that measures total exposure of the test strips to atmospheric moisture in the test strip receptacle, transmits that information to the analysis module via the communication device, and then evaluates whether the test strips exposed to a certain maximum humidity for too long. - o -
  • the measurement of substance concentrations in fluid media by means of the test strips can then take place in the analysis module, in particular with the aid of the data transmitted by the test strip container.
  • the batch information or the batch-specific data can be used to calculate the substance concentrations.
  • the analysis module may have a corresponding evaluation device.
  • Other data, such as data on the moisture absorbed in the test strips, can also be included in the calculation of the substance concentrations.
  • a calibration can be carried out taking into account how the calculation of the substance concentration is to be modified when a test strip has absorbed a certain amount of atmospheric moisture.
  • This information can be stored in the analysis module, for example in the evaluation device, for example in an electronic table (for example a lookup table).
  • test strip container according to the invention in a measuring system for measuring substance concentrations in fluid media is proposed.
  • a method for measuring substance concentrations in fluid media by means of a measuring system according to the invention is proposed.
  • the measuring system described and the corresponding method for using the measuring system have numerous advantages over conventional systems and methods.
  • a significant advantage is in particular that batch-specific data of the test strips, in particular calibration data and possibly further information, are automatically transmitted from the test strip receptacle to the analysis module.
  • An intervention of the user for example in the form of a readout of a ROM key or a bar code, is not required.
  • the data carrier in the test strip container can not be lost because it is part of the test strip container, for example integrated in the closure device, which in turn is required for closing the test strip container.
  • FIG. 1 shows an embodiment of a portable analytical measuring system for measuring substance concentrations in fluid media with a test strip container and an analysis module;
  • FIG. 2 shows a flow chart of a method for measuring substance concentrations in fluid media by means of a measuring system according to the invention.
  • FIG. 1 shows a portable analytical measuring system 110 for measuring substance concentrations in fluid media, in particular for measuring blood glucose concentrations.
  • the measuring system 110 has a test strip container 112 and an analysis module 114.
  • the test strip container 112 has a storage space 116 in which a number of test strips 118 are mounted.
  • the test strips 118 in this embodiment are prior art test strips 118 for measuring blood glucose concentration by means of an electrochemical measurement method (see above).
  • the test strips 118 are sensitive to moisture. For this reason, a desiccant 120 is introduced into the storage space 116, which reduces the humidity in the interior of the storage space 116. Furthermore, the storage space 116 has a closure device 122.
  • the closure device 122 has a hinge 124, a closure 126 and a lid 128. By means of the closure device 122, the storage space 116 can be closed airtight by closing the lid 128 by means of the hinge 124 and fixing it by means of the closure 126.
  • the edge of the lid 128 can _ _
  • the lid 128 is designed as a so-called electronic lid (eCap) 128, similar to the device described in EP 0 101 812 B1.
  • the lid 128 has a ⁇ ffhungssensor 130, which registers whether the closure device 122 is opened or closed.
  • This opening sensor 130 may be configured in various ways and may comprise, for example, one or more electrical contacts and a resilient member, wherein upon closure of the closure means 122, an electrical connection is made between the contacts by means of the compliant member.
  • a ⁇ ffhungssensor is described for example in EP 0 101 812 Bl and should therefore not be shown in detail here.
  • the opening sensor 130 is connected to a microprocessor 132, which has a counting device 134 (for example in the form of an electronic clock, in particular a clock). Furthermore, the microprocessor 132 has a data carrier 136, for example in the form of a volatile memory (RAM) or even of a read-only memory, in particular of an EPROM. The microprocessor 132 may also have a plurality of data carriers 136, for example a volatile memory for continuously storing and reading out information about opening operations of the closure device 122, as well as a fixed memory in the form of an EPROM for storing and reading batch-specific information about the test strips 118.
  • a microprocessor 132 which has a counting device 134 (for example in the form of an electronic clock, in particular a clock). Furthermore, the microprocessor 132 has a data carrier 136, for example in the form of a volatile memory (RAM) or even of a read-only memory, in particular of an EPROM. The microprocessor 132 may also have a plurality of data
  • the microprocessor 132 is connected to a display element 138 in the form of a simple LC display and with an operating element 140, for example in the form of one or more push buttons.
  • the microprocessor 132 is connected to a transmitting and receiving device 142, which is shown symbolically in Figure 1 as a coil antenna. Other types of antennas are possible.
  • the transmitting and receiving device 142 may also comprise a number of further elements (not shown), for example corresponding other components of an electrical resonant circuit such as capacitors and resistors. This transmitting and receiving device 142 may in particular also be designed as a printed circuit.
  • Microprocessor 132 and transmitting and receiving device 142 together form a transponder 144 in this embodiment.
  • the portable analytical measurement system 110 has an analysis module 114.
  • the analysis module 114 is in particular configured to receive a test strip 118, wherein this test strip 118 is electrically contacted by means of a measuring electrode system 146.
  • charge concentrations can be determined via a suitable evaluation device 148, for example an electronic circuit for impedance or current-voltage measurement, and thus conclusions can be drawn about the blood glucose concentration of a blood drop applied to the test strip 118.
  • a suitable evaluation device 148 for example an electronic circuit for impedance or current-voltage measurement, and thus conclusions can be drawn about the blood glucose concentration of a blood drop applied to the test strip 118.
  • Such devices are known from the prior art and are already commercially available in the form of corresponding measuring devices.
  • the evaluation device 148 is connected to a microprocessor 150.
  • the microprocessor 150 has one or more data memories 152, again in the form of volatile memories or in the form of non-volatile memories.
  • the microprocessor 150 is connected to operating elements 154, for example in the form of push buttons, which are arranged on a user interface of the analysis module 114 and via which a user can operate the analysis module 114.
  • a display element 156 is provided in the analysis module 114, which is connected to the microprocessor 150. By way of this display element 156, which may in turn have an LC display, for example, a user can read out results of the blood glucose concentration measurement.
  • the analysis module 114 in turn has a transmitting and receiving device 158, which is connected to the microprocessor 150.
  • the transmitting and receiving device 158 is in this embodiment again shown symbolically by a transmitting coil, but, as in the case of the test strip container 112, may again have a number of additional electronic components (not shown), in particular a series of Capacitors, resistors or even active electronic components and their own microprocessors.
  • the described measurement system 110 has a number of functionalities that are adapted to the specific needs of monitoring a patient's blood glucose concentration.
  • the test strip container 112 in addition to the function of a dry and clean storage of the test strips 118 in the reservoir 116 a number of warning and information functions.
  • the microprocessor 132 registers each opening and closing operation of the shutter 122 detected by the opening sensor 130.
  • the microprocessor 132 may include an acoustic (via a speaker not shown) or an optical (for example - -
  • test strip container 112 can intervene immediately and close the test strip container 112 accordingly.
  • the number of opening and closing operations of the shutter 122 can be registered via the counter 134. This information can be used for various purposes.
  • the "fill level" of the test strip container 112 can be monitored and transmitted to the user. For example, the number of test strips 118 may be counted back from an initial number such that a user of the test strip container 112 is warned in a timely manner when the test strips 118 in the test strip container 112 are running out.
  • the user may, for example, pretend that he would like to be warned for a certain minimum number of test strips 118 in the test strip container 112 in order to be able to refill the test strip container 112 in good time.
  • the time periods determined by the counter 134 during which the test strip container 112 was opened may be added by the microprocessor 132 to a total duration of an opening. If a certain maximum total duration is exceeded, then for example a warning signal can be output to a user.
  • the microprocessor 132 may also be connected to a humidity sensor (not shown) in the reservoir 116 of the test strip container 112, which permanently monitors the humidity in the reservoir 116 and communicates it to the microprocessor.
  • the microprocessor 132 can be programmed by the user via the control element 140, with information being conveyed to the user in the opposite direction via the display element 138. For example, the user may also pretend to be reminded by the microprocessor 132 at regular intervals that are user-definable (again, for example, via an optical or acoustical signal) that a blood glucose concentration measurement must be performed. Instead of a direct communication of the microprocessor 132 with the user via optical or acoustic signals, all functionalities can also be taken over by the analysis module 114, for example. For this purpose, all the information available to the microprocessor 132 of the test strip container 112 can be transmitted via the transmitting and receiving device 142 to the analysis module 114.
  • this can take place in that the transmitting and receiving device 158 emits signals in the analysis module 114 at regular intervals, which signals can be received by a transponder 144 of a test strip container 112 located in the vicinity. In turn, the transponder 144 of the test strip container 112 can in turn send back a corresponding signal to the analysis module 114.
  • the measurement system 110 recognizes that a test strip container 112 and an analysis module 114 are in sufficient spatial proximity to each other and can exchange data. Subsequently, a corresponding exchange of data between the microprocessor 132 of the test strip container 112 and the microprocessor 150 of the analysis module 114 take place.
  • the analysis module 114 may request corresponding information from the test strip container 112, for example information about whether test strips 118 are still in the storage space 116 of the test strip container 112 and, if appropriate, in which state (with respect to absorption of atmospheric moisture or the like) these test strips 118 are located. Corresponding information can then be communicated to the user by the microprocessor 150 of the analysis module 114, for example via the display element 156 of the analysis module 114 or via suitable acoustic signals. For example, the analysis module 114 may also alert a user that new test strips 118 need to be inserted into the reservoir 116 of the test strip container 112, or that the time has come for re-determination of the blood glucose concentration.
  • the microprocessor 132 in the test strip container 112 can also be programmed on the analysis module 114, for example. This has the advantage of increased user-friendliness and an expansion of the functionalities of the measuring system 110.
  • test strip container 112 can be designed as a disposable container - -
  • test strip container 112 acquires.
  • batch-specific information about the test strips 118 is already stored when the test strip container 112 is acquired in the data carrier 136 of the electronic lid 128.
  • a corresponding deposit system would also be conceivable.
  • a returned, empty test strip container 112 for example, in a pharmacy or pharmaceutical wholesaler, filled again with test strips 118, in which case either the transponder 144 or components thereof is completely replaced, or alternatively, new batch-specific information about the Test strips 118 are recorded via the transmitting and receiving device 142 in the microprocessor 132.
  • a user may also receive a corresponding transponder 144 or components thereof, along with instructions to insert that transponder 144 into lid 122 of test strip container 112.
  • the transfer of batch-specific information from the data carrier 136 of the microprocessor 132 via the transmitting and receiving device 142 to the analysis module 114 can take place automatically with the measuring system 110 shown.
  • the analysis module 114 may request from the test strip receptacle 112 by means of a special request signal the corresponding batch specific information on the test strips 118 as soon as a corresponding test strip receptacle 112 is in a proximity suitable for data transmission.
  • the analysis module 114 can be supplied, for example, via a set of batteries with electrical energy. More complex is the E- nergiemakers the test strip container 112 with electrical energy, since in particular in the lid 128 only small space for a corresponding arrangement of batteries is available. Nevertheless, for example, in the lid 128 a corresponding e- lekthari button cell for energy supply can be introduced. Alternatively or additionally, however, it is also possible to use an energy supply system in which the power supply of the cover 128 takes place, for example, via electromagnetic waves, which are transmitted to the test strip container 112 by the analysis module 114, specifically by the transmitting and receiving device 158.
  • These electromagnetic waves may in particular be received, for example, by the transmitting and receiving device 142 of the lid 128 and used, for example, to charge a corresponding energy source, for example a capacitor.
  • a corresponding energy source for example a capacitor.
  • Such a principle is already being used today in various transponder devices on other technical see areas used.
  • a separation of the functionalities in the lid 128 is conceivable, for example, a separate power supply of transmitting and receiving device 142 and microprocessor 132.
  • the simple requesting of data by the analysis module 114 are excited by a corresponding signal, which of the transmitting and Receiving device 158 of the analysis module 114 is emitted, these electromagnetic waves are received by the transmitting and receiving device 142 of the test strip container 112, where it is charged a corresponding energy source, and then to be able to send back the requested data to the nalysis module 114.
  • FIG. 2 shows a method for measuring substance concentrations in fluid media by means of a measuring system 110, for example the measuring system 110 described in FIG.
  • the illustrated steps need not necessarily be performed in the order shown, and additional steps not shown in FIG. 2 may also be performed.
  • a number and / or duration of opening operations of a closure device 122 are detected by means of a counting device 134 and stored on a data carrier 136. Subsequently, in step 212, batch-specific data and a number and / or duration of opening operations are transmitted to an analysis module 114.
  • the analysis module 114 determines that a maximum number of open operations, which may be stored in a data memory 152 of a microprocessor 150 in the analysis module 114 and may be adjusted by a user, such as via the controls 154, or if a maximum temporal total duration of opening operations of the test strip container 112 has been exceeded, so in the optional method step 214, a corresponding warning to a user of the analysis module 114, for example in the form of an optical display on the display 156 or in the form of an acoustic display. Subsequently, in method step 216, a substance concentration in a fluid medium, in particular a blood glucose concentration, is determined by means of a test strip 118 on the analysis module 114. - -

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biomedical Technology (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Business, Economics & Management (AREA)
  • Molecular Biology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Hematology (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Urology & Nephrology (AREA)
  • General Business, Economics & Management (AREA)
  • Medical Informatics (AREA)
  • Epidemiology (AREA)
  • Primary Health Care (AREA)
  • Public Health (AREA)
  • Databases & Information Systems (AREA)
  • Human Computer Interaction (AREA)
  • Investigating Or Analysing Biological Materials (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Treatment Of Fiber Materials (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

Insbesondere zur Messung von Blutglukosekonzentrationen sind benutzerfreundliche und handhabungssichere tragbare analytische Messsysteme (110) erforderlich. Es wird daher ein tragbares analytisches Messsystem (110) zur Messung von Stoffkonzentrationen in fluiden Medien vorgeschlagen, welches ein Teststreifenbehältnis (112) und ein Analysemodul (114) aufweist. Das Teststreifenbehältnis (112) weist eine Verschlusseinrichtung (122) zum 6ffnen des Teststreifenbehältnisses (112) zum Zwecke der Entnahme eines oder mehrerer Teststreifen (118) auf. Weiterhin weist das Teststreifenbehältnis (112) eine Zählvorrichtung (134) zum Zahlen einer Anzahl und/oder zeitlichen Dauer von Öffnungsvorgängen der Verschlusseinrichtung (122) auf. Weiterhin weist das Teststreifenbehältnis (112) einen Datenspeicher zum Speichern von chargenspezifischen Daten der Teststreifen (118) und/oder von einer Anzahl und/oder zeitlichen Dauer von Öffnungsvorgängen der Verschlusseinrichtung (122) auf, sowie eine Datenübertragungsvorrichtung (144) zum drahtlosen Übertragen von chargenspezifischen Daten und einer Anzahl und/oder zeitlichen Dauer von Öffnungsvorgängen an ein Analysemodul (114). Das Analysemodul (114) weist eine Vorrichtung (148) zum Messen von Stoffkonzentrationen in fluiden Medien mittels eines Teststreifens (118) auf, sowie eine Datenempfangsvorrichtung (158) zum drahtlosen Empfang von chargenspezifischen Daten und einer Anzahl und/oder zeitlichen Dauer von Öffnungsvorgängen einer Verschlusseinrichtung (122) des Teststreifenbehältnisses (112).

Description

Messsystem zur Messung von Stoffkonzentrationen in fluiden Medien
Gebiet der Erfindung
Die Erfindung betrifft ein tragbares analytisches Messsystem zur Messung von Stoffkonzentrationen in fluiden Medien, insbesondere ein Messsystem zum Messen von Blutglukosekonzentrationen und/oder Blutfettkonzentrationen. Weiterhin betrifft die Erfindung ein Verfahren zur Messung von Stoffkonzentrationen in fluiden Medien mittels eines erfindungsgemäßen Messsystems sowie die Verwendung eines "intelligenten" Teststreifenbe- hältnisses in einem derartigen Messsystem zur Messung von Stoffkonzentrationen in fluiden Medien.
Stand der Technik
Die Überwachung der Blutglukosekonzentration ist für Diabetiker ein essentieller Bestandteil des Tagesablaufs. Dabei muss die Blutglukosekonzentration schnell und einfach mehrmals am Tag bestimmt werden, um gegebenenfalls entsprechende medizinische Maßnahmen ergreifen zu können. Um den Tagesablauf des Diabetikers nicht mehr als nötig einzuschränken, werden dabei häufig entsprechende mobile Geräte eingesetzt, welche einfach zu transportieren und zu handhaben sein sollten, so dass die Messung der Blutglukosekonzentration beispielsweise am Arbeitsplatz oder auch in der Freizeit erfolgen kann.
Derzeit sind verschiedene mobile Geräte auf dem Markt, welche teilweise nach unter- schiedlichen Messmethoden funktionieren. Dabei kommen verschiedene Diagnoseverfahren zum Einsatz, beispielsweise optische oder auch elektrochemische Messverfahren. Ein Beispiel eines häufig eingesetzten Messverfahrens nutzt eine spezielle Art elektrochemischer Teststreifen. Diese Teststreifen sind beispielsweise so aufgebaut, dass eine vorgegebene Blutmenge über ein Kapillarensystem in dem Teststreifen zu einem Elektrodensystem geführt wird. Für moderne Teststreifen genügt dabei eine Blutmenge von ca. 1,5 μl, teilweise auch Blutmengen unter 1 μl. Bei dem Elektrodensystem kann es sich zum Beispiel - -
um Goldelektroden handeln, welche mit einer Beschichtung versehen sind. Die Beschich- tung enthält zumeist verschiedene Enzyme und sogenannte Mediatoren und bewirkt, dass sich innerhalb der Probe an den Elektroden Ladungsträger (beispielsweise in Form von Redox-Molekülen) bilden, deren Konzentration abhängig ist von der Blutglukosekonzent- ration. Die Konzentration dieser Ladungsträger kann mittels der Goldelektroden und einem geeigneten Messsystem, beispielsweise mittels einer Strom-Spannungs-Messung, bestimmt werden, so dass daraus schließlich auf die Blutglukosekonzentration zurückgerechnet werden kann.
Ein wesentliches Element derartiger portabler Diagnosesysteme bilden somit die entsprechenden Teststreifen. Typischerweise werden von einem Diabetiker ca. 5 bis 7 derartiger Teststreifen pro Tag benötigt. Essentiell ist dabei, dass die Teststreifen sauber und trocken aufbewahrt werden, um nicht durch eine entsprechende Verschmutzung beziehungsweise Einwirkung von Feuchtigkeit die Messung der Blutglukosekonzentration zu verfälschen.
Häufig kommt es jedoch vor, dass der Nutzer beziehungsweise Patient ein Teststreifenbehältnis für Teststreifen nach der Entnahme eines oder mehrerer Teststreifen nicht korrekt verschließt. Auch kann es vorkommen, dass das Teststreifenbehältnis über längere Zeit überhaupt nicht geschlossen wird. Durch die dadurch verursachte Undichtigkeit bezie- hungsweise Lufteinwirkung auf die Teststreifen kann es zu Qualitätsbeeinträchtigungen der Teststreifen und zu falschen Messergebnissen kommen.
Weiterhin tritt bei den Teststreifen das Problem auf, dass die Eigenschaften der eingesetzten Teststreifen häufig von Charge zu Charge variieren können. Hierdurch ergeben sich teilweise massive Schwankungen der Genauigkeit der Blutglukosekonzentrationsmessung. Bei vielen bekannten kommerziellen Systemen müssen daher Chargeninformationen über die Teststreifen vor einer entsprechenden Blutglukosekonzentrationsmessung in ein Analysemodul eingegeben werden, damit das Analysemodul mittels dieser Chargeninformationen die Messdaten des Teststreifens richtig "interpretieren" kann, um daraus eine korrekte Blutglukosekonzentration zu ermitteln. Für diese Eingabe der Chargeninformationen in das Analysemodul existieren mehrere bekannte Verfahren. Beispielsweise kann hier mit entsprechenden Strichcodes gearbeitet werden, welche zum Beispiel auf dem Teststreifenbehältnis angebracht sind und welche vom Analysemodul ausgelesen werden können. Alternativ sind auch Systeme bekannt, bei denen dem Teststreifenbehältnis der Teststreifen ein Datenträger, häufig auch "ROM-Key" genannt, beigefügt wird. Dieser Datenträger kann beispielsweise lose dem verschlossenen Teststreifenbehältnis der Teststreifen beigefügt sein oder auch fest in das Teststreifenbehältnis integriert sein. Geht dieser ROM-Key je- . .
doch (beispielsweise aufgrund einer Lösung vom Teststreifenbehältnis) verloren, so gehen mit ihm auch die Chargeninformationen verloren, und die Teststreifen sind somit weitgehend unbrauchbar.
Weiterhin haben die bekannten Arten der Übertragung von Chargeninformationen in das Analysemodul den Nachteil, dass jeweils eine entsprechende Aktion des Nutzers beziehungsweise Patienten vorausgesetzt wird. Eine automatische Übertragung der Chargenin- formationen erfolgt nicht. Vergisst der Nutzer beziehungsweise der Patient jedoch, diese Chargeninformationen zu übertragen, oder tritt beim Übertragen der Chargeninformationen ein Fehler auf, so kann dies die fatale Folge haben, dass beispielsweise Blutglukosekonzentrationen falsch berechnet werden. Hierdurch können insbesondere falsche medizinische Gegenmaßnahmen, beispielsweise in Form falscher Dosierungen von Insulin, angeregt werden, was fatale Folgen für den Patienten haben kann.
Aus der EP 0 101 812 Bl ist eine Vorrichtung zur Darreichung von Medikamenten bekannt, bei der ein Medikament von einem Behälter ausgegeben wird, welcher eine Kappe umfasst, wobei eine Sensoreinrichtung registriert, wenn die Kappe des Behälters geöffnet wird. Weiterhin umfasst der Behälter eine Uhr, welche die Zeitpunkte eines Öffnens beziehungsweise Schließens der Kappe registriert. Weiterhin sind eine Vorrichtung und eine Anzeige vorgesehen, über welche ein Patient darauf aufmerksam gemacht wird, wann ein Medikament wieder eingenommen werden muss.
Aus dem Bereich der Pharmazie sind mehrere Systeme bekannt, bei denen mittels sogenannter radio frequency identification (RFID) tags pharmazeutische Produkte verfolgt wer- den. Ein derartiges System ist beispielsweise aus der WO 03/071943 bekannt. In der dort beschriebenen Anordnung werden medizinische Produkte mit RFID tags versehen und in einem entsprechenden Speicherschrank aufbewahrt. Ein Empfangsgerät, welches mit einem entsprechenden Prozessor gekoppelt ist, empfängt die Signale der RFID tags der medizinische Produkte und kann beispielsweise automatisch eine Lagerverwaltung dieser Produkte organisieren. Aufgabe der Erfindung
Aufgabe der vorliegenden Erfindung ist es, ein System bereitzustellen, welches eine einfache und sichere Messung von Stoffkonzentrationen in fluiden Medien mittels Teststreifen ermöglicht. Das beschriebene System soll insbesondere die dargestellten Nachteile des Standes der Technik vermeiden, eine trockene und saubere Aufbewahrung der Teststreifen sicherstellen und ermöglichen, dass jederzeit korrekte Chargeninformationen der Teststreifen verwendet werden.
Lösung
Diese Aufgabe wird durch die Erfindung mit den Merkmalen der unabhängigen Ansprüche gelöst. Vorteilhafte Weiterbildungen der Erfindung sind in den Unteransprüchen gekennzeichnet. Der Wortlaut sämtlicher Ansprüche wird hiermit durch Bezugnahme zum Inhalt dieser Beschreibung gemacht.
Es wird ein tragbares analytisches Messsystem zur Messung von Stoffkonzentrationen in fluiden Medien vorgeschlagen. Insbesondere kann es sich dabei um die Messung von Blutglukosekonzentrationen und/oder Blutfettkonzentrationen handeln. Alternativ oder zusätz- lieh können jedoch auch andere Stoffkonzentrationen ermittelt werden oder entsprechende andere Analysen durchgeführt werden, beispielsweise pH-Messungen oder ähnliche Analysen. Unter fluiden Medien sollen dabei insbesondere flüssige Proben oder auch gasförmige Proben zu verstehen sein.
Das Messsystem weist ein Teststreifenbehältnis zur Aufnahme mindestens eines Teststreifens auf. Bei diesen Teststreifen kann es sich beispielsweise um einen der oben erwähnten Teststreifen für eine elektrochemische und/oder photometrische Analyse flüssiger Proben handeln. Insbesondere kann es sich dabei um Teststreifen der oben beschriebenen Art mit einem Kapillarsystem und einer oder mehreren Elektroden sowie zusätzlichen chemischen Hilfsstoffen (zum Beispiel Enzymen, Mediatoren) handeln. Unter "Teststreifen" lassen sich dabei sinngemäß auch andere Testvehikel verstehen, insbesondere kleine Teströhrchen oder auch kontinuierliche Rollen von Teststreifen.
Das Teststreifenbehältnis weist mindestens eine Verschlusseinrichtung zum Verschließen des Teststreifenbehältnisses bzw. zum Öffnen des Teststreifenbehältnisses zum Zwecke der Entnahme eines oder mehrerer Teststreifen auf. Diese Verschlusseinrichtung kann auf verschiedene Weise ausgestaltet sein. Insbesondere kann diese Verschlusseinrichtung der- art ausgestaltet sein, dass sich mittels der Verschlusseinrichtung das Teststreifenbehältnis hermetisch verschließen lässt. Auf diese Weise werden in dem Teststreifenbehältnis enthaltene Teststreifen optimal gegen Einwirkungen durch Luftfeuchtigkeit oder Luftsauerstoff beziehungsweise andere Verschmutzungen geschützt. Die Verschlusseinrichtung kann dabei beispielsweise so ausgestaltet sein, dass sie einen einfachen Stopfen aufweist, welcher zum Verschließen in eine Öffnung des Teststreifenbehältnisses eingepresst wird. Dieser Stopfen kann insbesondere lose sein oder auch, beispielsweise über eine flexible Verbindung, mit dem Teststreifenbehältnis verbunden sein, so dass die Wahrscheinlichkeit eines Verlusts des Stopfens in geöffnetem Zustand des Teststreifenbehältnisses verringert wird. Alternativ oder zusätzlich kann die Verschlusseinrichtung beispielsweise auch einen Deckel mit einem Scharnier aufweisen, wobei idealerweise in geschlossenem Zustand der Deckel das Teststreifenbehältnis hermetisch verschließt.
Weiterhin weist das Teststreifenbehältnis eine Zählvorrichtung zum Zählen einer Anzahl und/oder einer zeitlichen Dauer von Öffnungsvorgängen der Verschlusseinrichtung sowie einen Datenträger zum Speichern von chargenspezifischen Daten der Teststreifen und/oder von einer Anzahl und/oder zeitlichen Dauer von Öffnungsvorgängen auf. Die Zählvorrichtung kann beispielsweise eine Uhr aufweisen und eine entsprechende Vorrichtung (beispielsweise eine Vorrichtung, wie sie in der EP 0 101 812 Bl beschrieben ist), welche ein Öffnen der Verschlusseinrichtung registriert und beispielsweise bei jedem Öffnen eine Zählervariable um Eins erhöht. Auch kann die Vorrichtung, sobald ein Öffnen der Verschlusseinrichtung registriert wird, einen zeitlichen Zähler, beispielsweise eine Uhr, starten, welche dann bei anschließendem Schließen der Verschlusseinrichtung wieder gestoppt wird. Auf diese Weise lassen sich die Zeiten, während derer das Teststreifenbehältnis ge- öffnet ist, ermitteln. Insbesondere lassen sich auf diese Weise einzelne Zeiten oder auch Zeiten kumulativ bestimmen. Die so ermittelten Zeiten beziehungsweise die so ermittelte Anzahl von Öffnungsvorgängen der Verschlusseinrichtung können insbesondere auf dem Datenträger gespeichert werden. Weiterhin können auf dem Datenträger chargenspezifische Daten der Teststreifen, wie oben beschrieben, abgespeichert werden.
Weiterhin weist das Teststreifenbehältnis eine Datenübertragungsvorrichtung zum drahtlosen Übertragen von chargenspezifischen Daten und eine Anzahl und/oder zeitlichen Dauer von Öffnungsvorgängen an ein Analysemodul auf. Insbesondere können mittels dieser Datenübertragungsvorrichtung die auf dem Datenträger gespeicherten Daten übertragen werden. Die Datenübertragung an das Analysemodul soll dabei drahtlos erfolgen. - -
Insbesondere kann die Datenübertragungsvorrichtung mindestens einen Transponder aufweisen. Unter einem Transponder kann dabei insbesondere ein radio frequency identifϊca- tion (RFID) tag oder eine einen solchen RFID tag aufweisende Vorrichtung verstanden werden. Insbesondere kann der Transponder auch einen Mikroprozessor und auch einen eigenen Speicher aufweisen. Weiterhin weist der Transponder mindestens eine Antenne zum Übertragen von Daten auf, beispielsweise eine auf ein Substrat aufgedruckte Kupferspule. Weiterhin kann der Transponder eine eigene Energiequelle aufweisen, beispielsweise eine Batterie. Alternativ oder zusätzlich kann der Transponder auch extern mit Energie versorgt werden, beispielsweise durch Empfang entsprechender elektromagnetischer WeI- len, welche beispielsweise von einem Analysemodul ausgesandt werden. Der Transponder kann ausgestaltet sein, um Daten lediglich zu senden, kann jedoch auch ausgestaltet sein, um Daten zu senden und Daten zu empfangen. Insbesondere kann der Transponder beispielsweise in einem Frequenzbereich von ca. 900 MHz senden.
Weiterhin weist das Messsystem ein Analysemodul mit einer Vorrichtung zu Messen von Stoffkonzentrationen in fluiden Medien mittels eines Teststreifens auf. Hierbei kann es sich beispielsweise um ein Analysemodul handeln, welches im Wesentlichen aus dem Stand der Technik bekannte Funktionen eines Blutglukosekonzentrationsmessgerätes aufweist. Insbesondere kann es sich dabei um ein Analysemodul handeln, welches, wie oben beschrieben, Blutglukosekonzentrationen mittels eines elektrochemischen oder optischen Messverfahrens bestimmt. Derartige Analysemodule sind aus dem Stand der Technik bekannt, so dass die weitere Funktionalität dieser Module hier nicht weiter beschrieben werden soll.
Das erfindungsgemäße Analysemodul weist weiterhin eine Datenempfangsvorrichtung zum drahtlosen Empfang von chargenspezifischen Daten und einer Anzahl und/oder zeitlichen Dauer von Öffhungsvorgängen auf. Mit dieser Datenempfangsvorrichtung können beispielsweise die von der Datenübertragungsvorrichtung im Teststreifenbehältnis ausgesandten Informationen (siehe oben) empfangen werden. Dabei kann die Datenempfangs- Vorrichtung als reine Empfangsvorrichtung ausgestaltet sein, es kann sich jedoch auch um eine Vorrichtung handeln, welche sowohl eine Empfangsvorrichtung als auch eine Sendevorrichtung aufweist. So kann die Datenempfangsvorrichtung beispielsweise eine Sendevorrichtung aufweisen, welche zunächst über ein drahtloses Signal (welches beispielsweise in regelmäßigen Abständen ausgesandt wird) eine Datenübertragungsvorrichtung in einem Teststreifenbehältnis, welches sich möglicherweise in der Nähe des Analysemoduls befindet, zum drahtlosen Übertragen von Daten anregt. Anschließend werden diese Daten vom Analysemodul mittels der Datenempfangsvorrichtung empfangen. Weiterhin kann, wie oben beschrieben, die Datenempfangsvorrichtung vorzugsweise gleichzeitig auch zur E- nergieversorgung der Datenübertragungsvorrichtung in einem Teststreifenbehältnis über elektromagnetische Wellen genutzt werden. Unter elektromagnetischen Wellen für den Austausch von Daten und Energie zwischen dem Analysemodul und dem Teststreifenbe- hältnis können dabei beispielsweise Hochfrequenzwellen oder auch elektromagnetische Wellen im infraroten Spektralbereich verstanden werden. Auch andere Spektralbereiche des elektromagnetischen Spektrums sind denkbar.
Das Messsystem kann insbesondere so ausgestaltet sein, dass das Analysemodul eine Warnvorrichtung zum Warnen eines Benutzers aufweist. Wird beispielsweise anhand der Übertragung von Daten vom Teststreifenbehältnis festgestellt, dass das Teststreifenbehältnis zu oft, d.h. öfters als eine vorgegebene Anzahl, geöffnet worden ist, so kann eine Warnung an einen Benutzer des Messsystems ausgegeben werden. Diese Warnung kann beispielsweise in Form eines akustischen Signals oder in Form einer optischen Anzeige, bei- spielsweise eine Anzeige durch eine Leuchtdiode oder durch eine Anzeige auf einem Display, erfolgen. Weiterhin kann, ebenfalls beispielsweise anhand der vom Teststreifenbehältnis übertragenen Daten, ermittelt werden, ob das Teststreifenbehältnis zu lange geöffnet war. Dabei kann es sich um eine maximale zeitliche Gesamtdauer von Öffnungsvorgängen des Teststreifenbehältnisses oder auch um die Dauer eines einzelnen Öffnungsvor- gangs handeln. Auf diese Weise wird verhindert, dass der Benutzer für die Messung von Stoffkonzentrationen Teststreifen einsetzt, welche zu lange der Atmosphäre beziehungsweise der Luftfeuchtigkeit ausgesetzt waren. Alternativ oder zusätzlich können auch andere Warnfunktionen wahrgenommen werden. Beispielsweise kann aus der maximalen Anzahl von Öffnungsvorgängen geschlossen werden, beispielsweise unter der Annahme, dass bei jedem Öffnungsvorgang ein Teststreifen aus dem Teststreifenbehältnis entnommen wird, dass sich nur noch eine bestimmte Anzahl von Teststreifen in dem Teststreifenbehältnis befindet. Beispielsweise kann diese Anzahl verbleibender Teststreifen über eine Anzeigevorrichtung, beispielsweise ein Display im Analysemodul, dem Nutzer des Messsystems mitgeteilt werden. Ist das Teststreifenbehältnis leer, so kann ebenfalls eine Warn- meidung ausgegeben werden. Auch andere Warnsignale können erzeugt werden, beispielsweise wenn das Teststreifenbehältnis einen Feuchtigkeitssensor enthält, der eine Gesamtbeaufschlagung der Teststreifen mit Luftfeuchtigkeit in dem Teststreifenbehältnis misst, diese Information über die Datenübertragungsvorrichtung an das Analysemodul ü- bertragen wird, und diese dann dahingehend ausgewertet wird, ob die Teststreifen insge- samt zu lange einer bestimmten maximalen Luftfeuchtigkeit ausgesetzt waren. - o -
Die Messung von Stoffkonzentrationen in fluiden Medien mittels der Teststreifen kann dann im Analysemodul, insbesondere unter Zuhilfenahme der vom Teststreifenbehältnis übertragenen Daten, erfolgen. So kann insbesondere die Chargeninformation beziehungsweise die chargenspezifischen Daten zum Berechnen der Stoffkonzentrationen genutzt werden. Zu diesem Zweck kann das Analysemodul eine entsprechende Auswertevorrichtung aufweisen. Auch andere Daten, wie beispielsweise Daten über die aufgenommene Feuchtigkeit in den Teststreifen, können in die Berechnung der Stoffkonzentrationen einfließen. So kann beispielsweise eine Kalibration durchgeführt werden, in welcher berücksichtigt wird, wie die Berechnung der Stoffkonzentration zu modifizieren ist, wenn ein Teststreifen eine bestimmte Menge an Luftfeuchtigkeit aufgenommen hat. Diese Informationen können im Analysemodul, beispielsweise in der Auswertevorrichtung, zum Beispiel in einer elektronischen Tabelle (z. B. einer lookup table) hinterlegt sein.
Weiterhin wird eine Verwendung eines erfindungsgemäßen Teststreifenbehältnisses (wie oben beschrieben) in einem Messsystem zur Messung von Stoffkonzentrationen in fluiden Medien vorgeschlagen. Schließlich wird ein Verfahren zur Messung von Stoffkonzentrationen in fluiden Medien mittels eines erfindungsgemäßen Messsystems (wie oben beschrieben) vorgeschlagen.
Das beschriebene Messsystem und das entsprechende Verfahren zur Nutzung des Messsystems weisen gegenüber herkömmlichen Systemen und Verfahren zahlreiche Vorteile auf. Ein wesentlicher Vorteil liegt insbesondere darin, dass chargenspezifische Daten der Teststreifen, insbesondere Kalibrationsdaten und eventuell weitere Informationen, automatisch vom Teststreifenbehältnis an das Analysemodul übertragen werden. Ein Eingriff des Be- nutzers, beispielsweise in Form eines Auslesens eines ROM-Keys oder eines Strichcodes, ist nicht erforderlich. Dadurch wird die Sicherheit der Handhabung des Messsystems erheblich erhöht, da Fehler bei der Eingabe der chargenspezifischen Informationen in das Analysemodul stark verringert beziehungsweise unwahrscheinlicher werden. Auch besteht nicht mehr die Gefahr, dass beispielsweise lose am Teststreifenbehältnis angebrachte Da- tenträger, insbesondere ROM-Keys, beim Handhaben des Teststreifenbehältnisses verloren gehen. Der Datenträger im Teststreifenbehältnis kann nicht verloren gehen, da er Bestandteil des Teststreifenbehältnisses ist, beispielsweise in die Verschlusseinrichtung integriert ist, welche wiederum zum Verschließen des Teststreifenbehältnisses benötigt wird.
Weiterhin wird die Sicherheit der Messung von Stoffkonzentrationen durch Kenntnis des Zustandes der Teststreifen stark verbessert. Die Information darüber, wie oft und wie lange das Teststreifenbehältnis geöffnet war und wie oft dementsprechend die Teststreifen der Luft und der Luftfeuchtigkeit ausgesetzt waren, verhindert beziehungsweise verringert Abweichungen der Messungen und Fehlmessungen, welche, wie oben beschrieben, zu fatalen Folgen für den Nutzer beziehungsweise Patienten führen könnten.
Im Folgenden wird die Erfindung anhand von Ausführungsbeispielen näher beschrieben. Die Erfindung ist jedoch nicht auf die dargestellten Ausführungsbeispiele beschränkt. Die Ausführungsbeispiele sind in den Figuren schematisch dargestellt. Gleiche Bezugsziffern in den einzelnen Figuren bezeichnen dabei gleiche oder funktionsgleiche beziehungsweise hinsichtlich ihrer Funktionen einander entsprechende Elemente.
Im Einzelnen zeigt:
Figur 1 ein Ausführungsbeispiel eines tragbaren analytischen Messsystems zur Messung von Stoffkonzentrationen in fluiden Medien mit einem Teststreifenbehältnis und einem Analysemodul; und
Figur 2 einen Ablaufplan eines Verfahrens zur Messung von Stoffkonzentrationen in fluiden Medien mittels eines erfindungsgemäßen Messsystems.
hi Figur 1 ist ein tragbares analytisches Messsystem 110 zur Messung von Stoffkonzentrationen in fluiden Medien, insbesondere zur Messung von Blutglukosekonzentrationen, dargestellt. Das Messsystem 110 weist ein Teststreifenbehältnis 112 und ein Analysemodul 114 auf. Das Teststreifenbehältnis 112 weist einen Vorratsraum 116 auf, in welchem eine Anzahl von Teststreifen 118 gelagert ist. Bei den Teststreifen 118 handelt es sich in diesem Ausführungsbeispiel um dem Stand der Technik entsprechende Teststreifen 118 zur Blut- glukosekonzentrationsmessung mittels eines elektrochemischen Messverfahrens (siehe oben).
Die Teststreifen 118 sind feuchtigkeitsempfindlich. Aus diesem Grund ist in den Vorratsraum 116 ein Trockenmittel 120 eingebracht, welches die Luftfeuchtigkeit im Inneren des Vorratsraums 116 reduziert. Weiterhin weist der Vorratsraum 116 eine Verschlusseinrichtung 122 auf. Die Verschlusseinrichtung 122 weist ein Scharnier 124, einen Verschluss 126 und einen Deckel 128 auf. Mittels der Verschlusseinrichtung 122 kann der Vorrats- räum 116 luftdicht verschlossen werden, indem der Deckel 128 mittels des Scharniers 124 geschlossen und mittels des Verschlusses 126 fixiert wird. Der Rand des Deckels 128 kann _ _
zusätzlich mit einem O-Ring versehen sein, um den Vorratsraum 116 zusätzlich abzudichten.
Der Deckel 128 ist in diesem Ausfuhrungsbeispiel als sogenannter elektronischer Deckel (eCap) 128 ausgestaltet, ähnlich der in der EP 0 101 812 Bl beschriebenen Vorrichtung. Zu diesem Zweck weist der Deckel 128 einen Öffhungssensor 130 auf, welcher registriert, ob die Verschlusseinrichtung 122 geöffnet oder geschlossen ist. Dieser Öffhungssensor 130 kann verschiedenartig ausgestaltet sein und kann beispielsweise einen oder mehrere elektrische Kontakte sowie ein nachgiebiges Glied umfassen, wobei bei Schließen der Ver- Schlusseinrichtung 122 mittels des nachgiebigen Gliedes eine elektrische Verbindung zwischen den Kontakten hergestellt wird. Ein derartiger Öffhungssensor ist beispielsweise in der EP 0 101 812 Bl beschrieben und soll daher hier nicht mehr im Detail dargestellt werden.
Der Öffhungssensor 130 ist verbunden mit einem Mikroprozessor 132, welcher über eine Zählvorrichtung 134 (beispielsweise in Form eines elektronischen Taktgebers, insbesondere einer Uhr) verfugt. Weiterhin verfugt der Mikroprozessor 132 über einen Datenträger 136, beispielsweise in Form eines flüchtigen Speichers (RAM) oder auch eines Festspeichers, insbesondere eines EPROM's. Der Mikroprozessor 132 kann auch über mehrere Datenträger 136 verfügen, beispielsweise über einen flüchtigen Speicher zum fortlaufenden Abspeichern und Auslesen von Informationen über Öffhungsvorgänge der Verschlusseinrichtung 122, sowie einen festen Speicher in Form eines EPROM's zum Abspeichern und Auslesen von chargenspezifischen Informationen über die Teststreifen 118.
Weiterhin ist der Mikroprozessor 132 verbunden mit einem Anzeigeelement 138 in Form eines einfachen LC-Displays sowie mit einem Bedienelement 140, beispielsweise in Form eines oder mehrerer Druckknöpfe. Schließlich ist der Mikroprozessor 132 verbunden mit einer Sende- und Empfangsvorrichtung 142, welche in Figur 1 symbolisch als Spulenantenne dargestellt ist. Auch andere Antennenformen sind möglich. Neben der Spulenantenne kann die Sende- und Empfangsvorrichtung 142 jedoch noch eine Reihe weiterer Elemente umfassen (nicht dargestellt), beispielsweise entsprechende andere Komponenten eines e- lektrischen Schwingkreises wie Kondensatoren und Widerstände. Diese Sende- und Empfangsvorrichtung 142 kann insbesondere auch als gedruckte Schaltung ausgeführt sein. Mikroprozessor 132 und Sende- und Empfangs Vorrichtung 142 bilden gemeinsam in die- sem Ausführungsbeispiel einen Transponder 144. Weiterhin weist das tragbare analytische Messsystem 110, wie oben beschrieben, ein Analysemodul 114 auf. Das Analysemodul 114 ist insbesondere ausgestaltet, um einen Teststreifen 118 aufzunehmen, wobei dieser Teststreifen 118 mittels eines Messelektrodensystems 146 elektrisch kontaktiert wird. Über eine geeignete Auswertevorrichtung 148, bei- spielsweise eine elektronische Schaltung zur Impedanz- oder Strom-Spannungs-Messung, können - wie oben beschrieben - Ladungskonzentrationen bestimmt werden und somit auf die Blutglukosekonzentration eines auf den Teststreifen 118 aufgebrachten Bluttropfens zurückgeschlossen werden. Derartige Vorrichtungen sind aus dem Stand der Technik bekannt und sind bereits heute in Form entsprechender Messgeräte kommerziell verfügbar.
Weiterhin ist die Auswertevorrichtung 148 verbunden mit einem Mikroprozessor 150. Der Mikroprozessor 150 verfügt über einen oder mehrere Datenspeicher 152, beispielsweise wiederum in Form von flüchtigen Speichern oder auch in Form von nicht-flüchtigen Speichern. Weiterhin ist der Mikroprozessor 150 verbunden mit Bedienelementen 154, bei- spielsweise in Form von Druckknöpfen, welche auf einer Benutzeroberfläche des Analysemoduls 114 angeordnet sind und über die ein Benutzer das Analysemodul 114 bedienen kann. Auch ein Anzeigeelement 156 ist im Analysemodul 114 vorgesehen, welches mit dem Mikroprozessor 150 verbunden ist. Über dieses Anzeigeelement 156, welches beispielsweise wiederum ein LC-Display aufweisen kann, kann ein Benutzer beispielsweise Ergebnisse der Blutglukosekonzentrationsmessung ablesen.
Weiterhin weist das Analysemodul 114 wiederum eine Sende- und Empfangsvorrichtung 158 auf, welche mit dem Mikroprozessor 150 verbunden ist. Die Sende- und Empfangsvor- richtung 158 ist in diesem Ausführungsbeispiel wiederum symbolisch durch eine Sende- spule dargestellt, kann jedoch, wie auch im Fall des Teststreifenbehältnisses 112, wiederum über eine Reihe von zusätzlichen elektronischen Bauelementen verfügen (nicht dargestellt), insbesondere eine Reihe von Kondensatoren, Widerständen oder auch aktiven elektronischen Bauelementen sowie eigenen Mikroprozessoren.
Das beschriebene Messsystem 110 verfügt über eine Reihe von Funktionalitäten, welche auf die speziellen Bedürfnisse einer Überwachung einer Blutglukosekonzentration durch einen Patienten angepasst sind. So weist insbesondere das Teststreifenbehältnis 112 neben der Funktion einer trockenen und sauberen Lagerung der Teststreifen 118 im Vorratsraum 116 eine Reihe von Warn- und Informationsfunktionen auf. So registriert der Mikroprozes- sor 132 jeden mittels des Öffnungssensors 130 festgestellten Öfmungs- und Schließvorgang der Verschlusseinrichtung 122. Insbesondere kann der Mikroprozessor 132 ein akustisches (über einen nicht dargestellten Lautsprecher) oder auch ein optisches (zum Beispiel - -
über eine Leuchtdiode oder das Anzeigeelement 138) Warnsignal erzeugen, wenn über den Öfmungssensor 130 festgestellt wird, dass die Verschlusseinrichtung 122 über einen längeren Zeitraum hinweg nicht geschlossen ist. Somit kann ein Benutzer des Teststreifenbehältnisses 112 sofort einschreiten und das Teststreifenbehältnis 112 entsprechend ver- schließen.
Weiterhin kann die Anzahl der Öffnungs- und Schließ Vorgänge der Verschlusseinrichtung 122 über die Zählvorrichtung 134 registriert werden. Diese Information kann zu verschiedenen Zwecken genutzt werden. Zum einen kann, unter der Annahme, dass bei jedem Öff- nungsvorgang ein Teststreifen 118 aus dem Vorratsraum 116 entnommen wird, der "Füllstand" des Teststreifenbehältnisses 112 überwacht und an den Benutzer übermittelt werden. Beispielsweise kann die Anzahl der Teststreifen 118 von einer ursprünglichen Anzahl rückwärts gezählt werden, so dass ein Benutzer des Teststreifenbehältnisses 112 rechtzeitig gewarnt wird, wenn die Teststreifen 118 im Teststreifenbehältnis 112 zur Neige gehen. Insbesondere kann der Benutzer beispielsweise vorgeben, dass er bei einer bestimmten Mindestanzahl von Teststreifen 118 im Teststreifenbehältnis 112 gewarnt werden möchte, um rechtzeitig das Teststreifenbehältnis 112 wieder auffüllen zu können.
Weiterhin kann aus der Anzahl der Öffnungs- beziehungsweise Schließvorgänge der Ver- Schlusseinrichtung 122 beziehungsweise aus der Gesamtdauer der Öffnungen auf eine Luftfeuchtigkeit im Vorratsraum 116 geschlossen werden. Beispielsweise können die mittels der Zählvorrichtung 134 ermittelten Zeitspannen, während derer das Teststreifenbehältnis 112 geöffnet war, vom Mikroprozessor 132 zu einer Gesamtdauer einer Öffnung addiert werden. Wird eine bestimmte maximale Gesamtdauer überschritten, so kann bei- spielsweise ein Warnsignal an einen Benutzer ausgegeben werden. Zusätzlich oder alternativ kann der Mikroprozessor 132 auch mit einem Feuchtigkeitssensor (nicht dargestellt) im Vorratsraum 116 des Teststreifenbehältnisses 112 verbunden sein, welcher permanent die Luftfeuchtigkeit im Vorratsraum 116 überwacht und an den Mikroprozessor übermittelt.
Der Mikroprozessor 132 kann über das Bedienelement 140 vom Benutzer programmiert werden, wobei in Gegenrichtung über das Anzeigeelement 138 Informationen an den Benutzer vermittelt werden. So kann der Benutzer beispielsweise auch vorgeben, dass er vom Mikroprozessor 132 in regelmäßigen Zeitabständen, welche vom Benutzer definierbar sind, daran erinnert werden möchte (wiederum beispielsweise über ein optisches oder a- kustisches Signal), dass eine Blutglukosekonzentrationsmessung durchgeführt werden muss. Anstelle einer direkten Kommunikation des Mikroprozessors 132 mit dem Benutzer über optische oder akustische Signale können sämtliche Funktionalitäten beispielsweise auch vom Analysemodul 114 übernommen werden. Zu diesem Zweck können sämtliche dem Mikroprozessor 132 des Teststreifenbehältnisses 112 zur Verfügung stehenden Informatio- nen über die Sende- und Empfangsvorrichtung 142 an das Analysemodul 114 übertragen werden. Insbesondere kann dies dadurch erfolgen, dass die Sende- und Empfangsvorrichtung 158 im Analysemodul 114 in regelmäßigen Abständen Signale aussendet, welche von einem Transponder 144 eines in der Nähe befindlichen Teststreifenbehältnisses 112 empfangen werden können. Seinerseits kann dann wiederum der Transponder 144 des Teststreifenbehältnisses 112 ein entsprechendes Signal an das Analysemodul 114 zurücksenden. Auf diese Weise erkennt das Messsystem 110, dass sich ein Teststreifenbehältnis 112 und ein Analysemodul 114 in ausreichender räumlicher Nähe zueinander befinden und Daten austauschen können. Anschließend kann ein entsprechender Datenaustausch zwischen dem Mikroprozessor 132 des Teststreifenbehältnisses 112 und dem Mikroprozessor 150 des Analysemoduls 114 stattfinden. So kann beispielsweise das Analysemodul 114 vom Teststreifenbehältnis 112 entsprechende Informationen anfordern, beispielsweise Informationen darüber, ob sich noch Teststreifen 118 im Vorratsraum 116 des Teststreifenbehältnisses 112 befinden und gegebenenfalls in welchem Zustand (bezüglich Aufnahme von Luftfeuchtigkeit oder ähnlichem) sich diese Teststreifen 118 befinden. Entsprechende Informationen können dann vom Mikroprozessor 150 des Analysemoduls 114 dem Benutzer, beispielsweise über das Anzeigeelement 156 des Analysemoduls 114 oder über geeignete akustische Signale, vermittelt werden. So kann beispielsweise auch das Analysemodul 114 einen Benutzer darauf hinweisen, dass neue Teststreifen 118 in den Vorratsraum 116 des Teststreifenbehältnisses 112 eingebracht werden müssen, oder dass die Zeit für eine erneute Bestimmung der Blutglukosekonzentration gekommen ist. Da üblicherweise das Analysemodul 114 über einen leistungsfähigeren Mikroprozessor 150 mit umfangreicheren Bedienelementen 154 verfügt, kann beispielsweise auch der Mikroprozessor 132 im Teststreifenbehältnis 112 am Analysemodul 114 programmiert werden. Dies hat den Vorteil einer erhöhten Benutzerfreundlichkeit und einer Erweiterung der Funktionalitäten des Messsystems 110.
Weiterhin kann auch automatisch eine Übertragung von Chargeninformationen zwischen dem Teststreifenbehältnis 112 und dem Analysemodul 114 erfolgen. Zu diesem Zweck können im Datenträger 136 des Mikroprozessors 132, beispielsweise in einem EPROM, entsprechende chargenspezifische Informationen über die Teststreifen 118 im Teststreifenbehältnis 112 gespeichert werden. Dabei kann auf verschiedene Weise vorgegangen werden. Beispielsweise kann das Teststreifenbehältnis 112 als Einwegbehältnis ausgestaltet - -
sein, wobei ein Benutzer beispielsweise in einer Apotheke das vollständige Teststreifenbehältnis 112 erwirbt. In diesem Fall sind chargenspezifische Informationen über die Teststreifen 118 bereits beim Erwerb des Teststreifenbehältnisses 112 im Datenträger 136 des elektronischen Deckels 128 gespeichert. Auch ein entsprechendes Pfandsystem wäre denk- bar. Dabei kann das beispielsweise ein zurückgegebenes, leeres Teststreifenbehältnis 112, beispielsweise in einer Apotheke oder bei einem Pharma-Großhändler, wieder mit Teststreifen 118 befüllt werden, wobei dann entweder der Transponder 144 oder Bestandteile desselben komplett ausgetauscht wird, oder alternativ auch neue chargenspezifische Informationen über die Teststreifen 118 über die Sende- und Empfangsvorrichtung 142 in den Mikroprozessor 132 eingespielt werden. Alternativ kann ein Benutzer beim Erwerb von Teststreifen 118 auch einen entsprechenden Transponder 144 oder Bestandteile desselben erhalten, zusammen mit den Anweisungen, diesen Transponder 144 in den Deckel 122 des Teststreifenbehältnisses 112 einzufügen.
Die Übertragung von chargenspezifischen Informationen aus dem Datenträger 136 des Mikroprozessors 132 über die Sende- und Empfangsvorrichtung 142 an das Analysemodul 114 kann mit dem dargestellten Messsystem 110 automatisch erfolgen. Beispielsweise kann das Analysemodul 114, sobald (siehe oben) festgestellt wird, dass sich ein entsprechendes Teststreifenbehältnis 112 in einer für eine Datenübertragung geeigneten Nähe be- findet, vom Teststreifenbehältnis 112 mittels eines speziellen Anforderungssignals die entsprechenden chargenspezifischen Informationen über die Teststreifen 118 anfordern.
Nicht dargestellt in Figur 1 sind die jeweiligen Energieversorgungen des Analysemoduls 114 und des Teststreifenbehältnisses 112. Das Analysemodul 114 kann beispielsweise über einen Satz von Batterien mit elektrischer Energie versorgt werden. Komplexer ist die E- nergieversorgung des Teststreifenbehältnisses 112 mit elektrischer Energie, da insbesondere im Deckel 128 nur geringer Platz für eine entsprechende Anordnung von Batterien zur Verfügung steht. Dennoch kann beispielsweise in den Deckel 128 eine entsprechende e- lektrische Knopfzelle zur Energieversorgung eingebracht werden. Alternativ oder zusätz- lieh kann jedoch auch ein Energieversorgungssystem angewandt werden, bei welchem die Energieversorgung des Deckels 128 beispielsweise über elektromagnetische Wellen erfolgt, welche vom Analysemodul 114, speziell von der Sende- und Empfangsvorrichtung 158, an das Teststreifenbehältnis 112 übertragen werden. Diese elektromagnetischen Wellen können insbesondere beispielsweise von der Sende- und Empfangsvorrichtung 142 des Deckels 128 empfangen werden und beispielsweise zum Aufladen einer entsprechenden Energiequelle, beispielsweise eines Kondensators, verwendet werden. Ein derartiges Prinzip wird bereits heute in verschiedenen Transponder- Vorrichtungen auf anderen techni- sehen Gebieten eingesetzt. Auch eine Trennung der Funktionalitäten im Deckel 128 ist denkbar, beispielsweise eine getrennte Energieversorgung von Sende- und Empfangsvorrichtung 142 und Mikroprozessor 132. So kann beispielsweise das einfache Anfordern von Daten durch das Analysemodul 114 durch ein entsprechendes Signal angeregt werden, welches von der Sende- und Empfangsvorrichtung 158 des Analysemoduls 114 ausgesandt wird, wobei diese elektromagnetischen Wellen von der Sende- und Empfangsvorrichtung 142 des Teststreifenbehältnisses 112 empfangen werden, wobei dort eine entsprechende Energiequelle aufgeladen wird, um dann entsprechend die angeforderten Daten an das A- nalysemodul 114 zurücksenden zu können.
In Figur 2 ist ein Verfahren zur Messung von Stoffkonzentrationen in fluiden Medien mittels eines Messsystems 110, beispielsweise des in Figur 1 beschriebenen Messsystems 110, dargestellt. Die dargestellten Schritte müssen nicht notwendigerweise in der abgebildeten Reihenfolge durchgeführt werden, und es können auch zusätzliche, in Figur 2 nicht darge- stellte Schritte durchgeführt werden.
Zunächst wird in Verfahrensschritt 210 eine Anzahl und/oder zeitliche Dauer von Öffnungsvorgängen einer Verschlusseinrichtung 122 mittels einer Zählvorrichtung 134 erfasst und auf einem Datenträger 136 gespeichert. Anschließend werden in Verfahrensschritt 212 chargenspezifische Daten und eine Anzahl und/oder zeitliche Dauer von Öffnungsvorgän- gen an ein Analysemodul 114 übertragen. Stellt das Analysemodul 114 durch Vergleich dieser Daten fest, dass eine maximale Anzahl von Öffnungsvorgängen, welche beispielsweise in einem Datenspeicher 152 eines Mikroprozessors 150 im Analysemodul 114 gespeichert sein kann und durch einen Benutzer, beispielsweise über die Bedienelemente 154 eingestellt werden kann, oder wenn eine maximale zeitliche Gesamtdauer von Öffnungsvorgängen des Teststreifenbehältnisses 112 überschritten worden ist, so erfolgt im optionalen Verfahrensschritt 214 eine entsprechende Warnung an einen Benutzer des Analysemoduls 114, beispielsweise in Form einer optischen Anzeige auf dem Display 156 oder in Form einer akustischen Anzeige. Anschließend wird in Verfahrensschritt 216 mittels eines Teststreifens 118 am Analysemodul 114 eine Stoffkonzentration in einem fluiden Medium, insbesondere eine Blutglukosekonzentration, bestimmt. - -
Bezugszeichenliste
110 tragbares analytisches Messsystem
112 Teststreifenbehältnis
114 Analysemodul
116 Vorratsraum
118 Teststreifen
120 Trockenmittel
122 Verschlusseinrichtung
124 Scharnier
126 Verschluss
128 Deckel
130 Öffhungssensor
132 Mikroprozessor
134 Zählvorrichtung
136 Datenträger
138 Anzeigeelement
140 Sende- und Empfangsvorrichtung
144 Transponder
146 Messelektrodensystem
148 Auswertevorrichtung
150 Mikroprozessor
152 Datenspeicher
154 Bedienelement
156 Anzeigeelement
158 Sende- und Empfangsvorrichtung
210 Erfassen und Abspeichern einer Anzahl von Öffnungsvorgängen
212 Übertragung von Daten an Analysemodul 14 214 Warnung an Benutzer
216 Blutglukosekonzentrationsmessung

Claims

Patentansprüche
1. Tragbares analytisches Messsystem (110) zur Messung von Stoffkonzentrationen in fluiden Medien mit a) einem Teststreifenbehältnis (112) zur Aufnahme mindestens eines Teststreifens (118), wobei das Teststreifenbehältnis (112) folgendes aufweist:
- eine Verschlusseinrichtung (122) zum Verschließen des Teststreifenbehältnisses (112) bzw. zum Öffnen des Teststreifenbehältnisses (112) zum Zwecke der Ent- nähme eines oder mehrerer Teststreifen (118), eine Zählvorrichtung (134) zum Zählen einer Anzahl und/oder zeitlichen Dauer von Öffnungsvorgängen der Verschlusseinrichtung (122), einen Datenträger (136) zum Speichern von chargenspezifischen Daten der Teststreifen (118) und/oder von einer Anzahl und/oder zeitlichen Dauer von Öff- nungsvorgängen, eine Datenübertragungsvorrichtung (144) zum drahtlosen Übertragen von chargenspezifischen Daten und einer Anzahl und/oder zeitlichen Dauer von Öffnungsvorgängen an ein Analysemodul (114); und b) einem Analysemodul (114), wobei das Analysemodul (114) folgendes aufweist: - eine Vorrichtung (148, 150) zum Messen von Stoffkonzentrationen in fluiden
Medien mittels eines Teststreifens (118), eine Datenempfangsvorrichtung (158) zum drahtlosen Empfang von chargenspezifischen Daten und einer Anzahl und/oder zeitlichen Dauer von Öffnungsvorgängen.
2. Messsystem (110) gemäß dem vorhergehenden Anspruch, dadurch gekennzeichnet, dass die Datenübertragungsvorrichtung (144) mindestens einen Transponder (144) aufweist.
3. Messsystem (110) gemäß einem der beiden vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Analysemodul (114) eine Warnvorrichtung (150, 156) zum Warnen eines Benutzers bei Überschreiten einer maximalen Anzahl von Öffnungsvorgängen und/oder bei Überschreiten einer maximalen zeitlichen Gesamtdauer von Öffnungsvorgängen des Teststreifenbehältnisses (112) aufweist.
4. Messsystem (110) gemäß einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Vorrichtung (148, 150) zum Messen von Stoffkonzentrationen in fluiden Medien eine Auswertevorrichtung (150) zum Berechnen der Stoffkonzentra- - o -
tionen in Abhängigkeit der chargenspezifischen Daten der Teststreifen (118) aufweist.
5. Messsystem (110) gemäß einem der vorhergehenden Ansprüche, dadurch gekenn- zeichnet, dass das Teststreifenbehältnis (112) in einem geschlossenen Zustand durch die Verschlusseinrichtung (122) hermetisch abgedichtet ist.
6. Messsystem (110) gemäß einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Vorrichtung (148, 150) zum Messen von Stoffkonzentrationen in fluiden Medien eine Vorrichtung (148, 150) zum Messen von Blutglukosekonzentrationen und/oder Blutfettkonzentrationen aufweist.
7. Messsystem (110) gemäß dem vorhergehenden Anspruch, dadurch gekennzeichnet, dass die Vorrichtung (148, 150) zum Messen von Blutglukosekonzentrationen und/oder Blutfettkonzentrationen eine elektrochemische Messvorrichtung (148) und/oder eine optische Messvorrichtung aufweist.
8. Verwendung eines Teststreifenbehältnisses (112) zur Aufnahme mindestens eines Teststreifens (118) mit einer Verschlusseinrichtung (122) zum Öffnen des Teststrei- fenbehältnisses (112) zum Zwecke der Entnahme eines oder mehrerer Teststreifen
(118), einer Zählvorrichtung (134) zum Zählen einer Anzahl und/oder zeitlichen Dauer von Öffnungsvorgängen der Verschlusseinrichtung (122), einem Datenträger (136) zum Speichern von chargenspezifischen Daten der Teststreifen (118) und/oder von einer Anzahl und/oder zeitlichen Dauer von Öffnungsvorgängen, einer Daten- Übertragungsvorrichtung (144) zum drahtlosen Übertragen von chargenspezifischen
Daten und einer Anzahl und/oder zeitlichen Dauer von Öffnungsvorgängen an ein Analysemodul (114) in einem Messsystem (1 10) zur Messung von Stoffkonzentrationen in fluiden Medien.
9. Verfahren zur Messung von Stoffkonzentrationen in fluiden Medien mittels eines Messsystems (1 10) gemäß einem der vorhergehenden, auf ein Messsystem (110) gerichteten Ansprüche, gekennzeichnet durch folgende Schritte: a) eine Anzahl und/oder zeitlichen Dauer von Öffnungsvorgängen wird mittels der Zähl Vorrichtung (134) erfasst und auf dem Datenträger (136) gespei- chert; b) chargenspezifische Daten und eine Anzahl und/oder zeitliche Dauer von Öffiiungsvorgängen werden drahtlos an das Analysemodul (114) übertragen; und c) mittels eines Teststreifens (118) wird eine Stoffkonzentration in einem flui- den Medium bestimmt.
10. Verfahren gemäß dem vorhergehenden Anspruch mit zusätzlich folgendem Schritt: d) der Ausgabe einer Warnung an einen Benutzer durch das Analysemodul (114) bei Feststellung des Überschreitens einer maximalen Anzahl von Öff- nungsvorgängen und/oder einer maximalen zeitlichen Gesamtdauer von
Öffnungs Vorgängen des Teststreifenbehältnisses (112).
PCT/EP2005/013701 2004-12-23 2005-12-20 Messsystem zur messung von stoffkonzentrationen in fluiden medien WO2006069675A1 (de)

Priority Applications (8)

Application Number Priority Date Filing Date Title
DE502005010359T DE502005010359D1 (de) 2004-12-23 2005-12-20 Messsystem zur messung von stoffkonzentrationen in fluiden medien
AT05818436T ATE484031T1 (de) 2004-12-23 2005-12-20 Messsystem zur messung von stoffkonzentrationen in fluiden medien
CN2005800448163A CN101088093B (zh) 2004-12-23 2005-12-20 用于测量流体介质中材料浓度的测量系统
EP05818436A EP1834263B1 (de) 2004-12-23 2005-12-20 Messsystem zur messung von stoffkonzentrationen in fluiden medien
CA002588658A CA2588658A1 (en) 2004-12-23 2005-12-20 Measurement system for measuring substance concentrations in liquid media
JP2007547317A JP2008525764A (ja) 2004-12-23 2005-12-20 流動性媒体中の物質濃度の測定用の測定システム
US11/793,794 US7998407B2 (en) 2004-12-23 2005-12-20 Measurement system for measuring substance concentrations in liquid media
HK08106163.0A HK1115721A1 (en) 2004-12-23 2008-06-03 Measuring system for the measurement of material concentrations in liquid media

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004062255A DE102004062255B3 (de) 2004-12-23 2004-12-23 Tragbares analytisches Messsystem zur Messung von Stoffkonzentrationen in fluiden Medien, Teststreifenbehältnis und Verfahren zur Messung von Stoffkonzentrationen in fluiden Medien
DE102004062255.8 2004-12-23

Publications (1)

Publication Number Publication Date
WO2006069675A1 true WO2006069675A1 (de) 2006-07-06

Family

ID=35668823

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2005/013701 WO2006069675A1 (de) 2004-12-23 2005-12-20 Messsystem zur messung von stoffkonzentrationen in fluiden medien

Country Status (9)

Country Link
US (1) US7998407B2 (de)
EP (1) EP1834263B1 (de)
JP (1) JP2008525764A (de)
CN (1) CN101088093B (de)
AT (1) ATE484031T1 (de)
CA (1) CA2588658A1 (de)
DE (2) DE102004062255B3 (de)
HK (1) HK1115721A1 (de)
WO (1) WO2006069675A1 (de)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006086423A2 (en) 2005-02-08 2006-08-17 Therasense, Inc. Rf tag on test strips, test strip vials and boxes
WO2009062722A1 (de) * 2007-11-13 2009-05-22 Roche Diagnostics Gmbh Verfahren zum überwachen der nutzung eines verbrauchsmaterials in einwegausführung in einem oder mehreren analysegeräten
JP2009521684A (ja) * 2005-12-22 2009-06-04 ハネウェル・インターナショナル・インコーポレーテッド 携帯用サンプル分析装置のカートリッジ
JP2010500600A (ja) * 2006-08-14 2010-01-07 バイエル・ヘルスケア・エルエルシー 実行個別化検査センサー用計測システム
JP2010500601A (ja) * 2006-08-14 2010-01-07 バイエル・ヘルスケア・エルエルシー 較正データ転送システム及びその方法
EP2400411A1 (de) 2010-06-24 2011-12-28 Roche Diagnostics GmbH Analysesystem mit erweiterter Benutzerinformation
EP2908129A1 (de) * 2007-06-15 2015-08-19 Roche Diagniostics GmbH System zur Messung einer Analykonzentration einer Körperflüssigkeitsprobe

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8460243B2 (en) 2003-06-10 2013-06-11 Abbott Diabetes Care Inc. Glucose measuring module and insulin pump combination
US7722536B2 (en) 2003-07-15 2010-05-25 Abbott Diabetes Care Inc. Glucose measuring device integrated into a holster for a personal area network device
US8394337B2 (en) * 2003-12-31 2013-03-12 Nipro Diagnostics, Inc. Test strip container with integrated meter
US8394328B2 (en) * 2003-12-31 2013-03-12 Nipro Diagnostics, Inc. Test strip container with integrated meter having strip coding capability
CA3090413C (en) 2004-06-04 2023-10-10 Abbott Diabetes Care Inc. Glucose monitoring and graphical representations in a data management system
US9351669B2 (en) 2009-09-30 2016-05-31 Abbott Diabetes Care Inc. Interconnect for on-body analyte monitoring device
US8388905B2 (en) * 2006-03-13 2013-03-05 Nipro Diagnostics, Inc. Method and apparatus for coding diagnostic meters
US11559810B2 (en) 2006-03-13 2023-01-24 Trividia Health, Inc. Method and apparatus for coding diagnostic meters
US8388906B2 (en) 2006-03-13 2013-03-05 Nipro Diagnostics, Inc. Apparatus for dispensing test strips
US8940246B2 (en) 2006-03-13 2015-01-27 Nipro Diagnostics, Inc. Method and apparatus for coding diagnostic meters
CN101470118A (zh) * 2007-12-24 2009-07-01 天津九安医疗电子股份有限公司 血糖检测装置
DE102008017196B4 (de) 2008-04-04 2010-10-07 Dräger Safety AG & Co. KGaA Verfahren zur Inbetriebnahme und zum Betrieb einer Messvorrichtung
EP2366163B1 (de) * 2008-12-12 2019-02-27 Roche Diagnostics GmbH Verfahren und system zum verwalten von daten von analysegeräten
US8394246B2 (en) * 2009-02-23 2013-03-12 Roche Diagnostics Operations, Inc. System and method for the electrochemical measurement of an analyte employing a remote sensor
EP2287605A1 (de) * 2009-08-20 2011-02-23 Roche Diagnostics GmbH Vereinfachte Magazinierung integrierter Systeme
EP2400292A1 (de) * 2010-06-24 2011-12-28 Roche Diagnostics GmbH System zur Messung einer Analytkonzentration einer Körperflüssigkeitsprobe
US8157437B2 (en) * 2010-09-17 2012-04-17 Justin L Richmond Insulated beverage container with counting device
US10136845B2 (en) 2011-02-28 2018-11-27 Abbott Diabetes Care Inc. Devices, systems, and methods associated with analyte monitoring devices and devices incorporating the same
US20120306628A1 (en) * 2011-05-31 2012-12-06 Tara Chand Singhal Integrated blood glucose measurement device with a test strip count system
CN103748459B (zh) 2011-06-30 2015-11-25 雅培医护站股份有限公司 用于确定传感装置可用性的方法和装置
WO2013003705A1 (en) 2011-06-30 2013-01-03 Abbott Point Of Care Inc. Methods and devices for determining sensing device usability
EP2726860A1 (de) 2011-06-30 2014-05-07 Abbott Point of Care Inc. Verfahren und vorrichtungen zur bestimmung der brauchbarkeit einer erfassungsvorrichtung
CN103703359B (zh) * 2011-07-27 2016-03-16 松下健康医疗控股株式会社 生物试料测量装置及生物试料测量传感器收纳装置
DE102012102517A1 (de) * 2012-03-23 2013-09-26 Endress + Hauser Wetzer Gmbh + Co. Kg Feldgerätegehäuse
DE102013217457A1 (de) * 2013-09-02 2015-03-05 Robert Bosch Gmbh Verfahren und Vorrichtungen zur Bereitstellung von Informationen über ein Batteriepack
JP6921674B2 (ja) * 2017-07-28 2021-08-18 テラメックス株式会社 試験片収納容器連続処理装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0101812B1 (de) * 1982-07-02 1989-11-23 Bart Joseph Dr. Zoltan Hilfsvorrichtung zur Befolgung einer Heilkur
US5307263A (en) * 1992-11-17 1994-04-26 Raya Systems, Inc. Modular microprocessor-based health monitoring system
EP1225448A2 (de) * 1996-02-13 2002-07-24 Inverness Medical Technology, Inc. Verbessertes Glucose-Messgerät und hierin zu verwendender Teststreifenbehälter
WO2002078533A2 (en) * 2001-03-29 2002-10-10 Inverness Medical Limited Integrated sample testing meter
WO2003082091A2 (en) * 2002-04-02 2003-10-09 Inverness Medical Limited Integrated sample testing meter
DE10237602A1 (de) * 2002-08-16 2004-03-18 I.E.M. Industrielle Entwicklung Medizintechnik Und Vertriebsgesellschaft Mbh Glucosemessgerät
WO2004090503A2 (en) * 2003-04-04 2004-10-21 Abbott Laboratories Method and system for transferring analyte test data

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB221056A (en) 1923-07-24 1924-09-04 Holmes & James Ltd Improvements, in or relating to, hinges or articulating connections suitable for thecastings of electric fuses but applicable for other purposes
JPS61105686U (de) * 1984-12-14 1986-07-04
GB2210536B (en) * 1987-09-25 1991-10-16 Plessey Co Plc Contents tag
GB9309975D0 (en) * 1993-05-14 1993-06-30 Multilop Ltd A security system
DE4328815A1 (de) * 1993-08-27 1995-03-02 Boehringer Mannheim Gmbh System zur Bevorratung von Testelementen
EP0901634B1 (de) * 1996-05-30 2002-03-20 Radiometer Medical A/S System zur bestimmung mindestens eines parameters mindestens einer probe einer physiologischen flüssigkeit und kassette dafür
DE10059539A1 (de) * 2000-03-10 2001-09-13 Lmb Technologie Gmbh Vorrichtung und Verfahren zum Überwachen und Verwalten von Produkten
JP4430195B2 (ja) * 2000-03-30 2010-03-10 パナソニック株式会社 測定システム
JP2002196003A (ja) * 2000-12-27 2002-07-10 Sankyo Co Ltd 血糖計
CA2473901C (en) 2002-02-26 2010-09-07 Safety Syringes, Inc. Systems and methods for tracking pharmaceuticals within a facility
US6881578B2 (en) * 2002-04-02 2005-04-19 Lifescan, Inc. Analyte concentration determination meters and methods of using the same
DE10218057A1 (de) * 2002-04-23 2003-11-13 Dietrich Haarer Vorrichtung zum Speichern und Überwachen von alterungs- und temperaturempfindlichen Produkten
US20030223906A1 (en) * 2002-06-03 2003-12-04 Mcallister Devin Test strip container system
JP4050974B2 (ja) * 2002-10-17 2008-02-20 株式会社エスアールエル 無線型センサ
US7481976B2 (en) * 2003-01-27 2009-01-27 Terumo Kabushiki Kaisha Body fluid component analyzing system
JP2004354300A (ja) * 2003-05-30 2004-12-16 Dainippon Printing Co Ltd Icタグ付きマイクロアレイ用基板
WO2006009534A1 (en) * 2004-06-18 2006-01-26 Roche Diagnostics Gmbh Dispenser for flattened articles such as diagnostic test strips
DE102004048864A1 (de) * 2004-10-07 2006-04-13 Roche Diagnostics Gmbh Analytisches Testelement mit drahtloser Datenübertragung

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0101812B1 (de) * 1982-07-02 1989-11-23 Bart Joseph Dr. Zoltan Hilfsvorrichtung zur Befolgung einer Heilkur
US5307263A (en) * 1992-11-17 1994-04-26 Raya Systems, Inc. Modular microprocessor-based health monitoring system
EP1225448A2 (de) * 1996-02-13 2002-07-24 Inverness Medical Technology, Inc. Verbessertes Glucose-Messgerät und hierin zu verwendender Teststreifenbehälter
WO2002078533A2 (en) * 2001-03-29 2002-10-10 Inverness Medical Limited Integrated sample testing meter
WO2003082091A2 (en) * 2002-04-02 2003-10-09 Inverness Medical Limited Integrated sample testing meter
DE10237602A1 (de) * 2002-08-16 2004-03-18 I.E.M. Industrielle Entwicklung Medizintechnik Und Vertriebsgesellschaft Mbh Glucosemessgerät
WO2004090503A2 (en) * 2003-04-04 2004-10-21 Abbott Laboratories Method and system for transferring analyte test data

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9060805B2 (en) 2005-02-08 2015-06-23 Abbott Diabetes Care Inc. Analyte meter including an RFID reader
US8410939B2 (en) 2005-02-08 2013-04-02 Abbott Diabetes Care Inc. Analyte meter including an RFID reader
US9907470B2 (en) 2005-02-08 2018-03-06 Abbott Diabetes Care Inc. Analyte meter including an RFID reader
WO2006086423A2 (en) 2005-02-08 2006-08-17 Therasense, Inc. Rf tag on test strips, test strip vials and boxes
US8760297B2 (en) 2005-02-08 2014-06-24 Abbott Diabetes Care Inc. Analyte meter including an RFID reader
EP1851740A2 (de) * 2005-02-08 2007-11-07 Therasense, Inc. Hf-marke an teststreifen, teststreifenampullen und boxen
EP1851740A4 (de) * 2005-02-08 2010-06-30 Therasense Inc Hf-marke an teststreifen, teststreifenampullen und boxen
US8106780B2 (en) 2005-02-08 2012-01-31 Abbott Diabetes Care Inc. Analyte meter including an RFID reader
EP3467796A1 (de) * 2005-02-08 2019-04-10 Abbott Diabetes Care Inc. Hf-etikett auf teststreifen, teststreifenfläschchen und schachteln
US9336423B2 (en) 2005-02-08 2016-05-10 Abbott Diabetes Care Inc. Analyte meter including an RFID reader
US8223021B2 (en) 2005-02-08 2012-07-17 Abbott Diabetes Care Inc. RF tag on test strips, test strip vials and boxes
US8115635B2 (en) 2005-02-08 2012-02-14 Abbott Diabetes Care Inc. RF tag on test strips, test strip vials and boxes
JP2009521684A (ja) * 2005-12-22 2009-06-04 ハネウェル・インターナショナル・インコーポレーテッド 携帯用サンプル分析装置のカートリッジ
US7918121B2 (en) 2006-08-14 2011-04-05 Bayer Healthcare, Llc Meter system designed to run singulated test sensors
JP2010500601A (ja) * 2006-08-14 2010-01-07 バイエル・ヘルスケア・エルエルシー 較正データ転送システム及びその方法
JP2010500600A (ja) * 2006-08-14 2010-01-07 バイエル・ヘルスケア・エルエルシー 実行個別化検査センサー用計測システム
US8029735B2 (en) 2006-08-14 2011-10-04 Bayer Healthcare, Llc System and method for transferring calibration data
EP2908129A1 (de) * 2007-06-15 2015-08-19 Roche Diagniostics GmbH System zur Messung einer Analykonzentration einer Körperflüssigkeitsprobe
WO2009062722A1 (de) * 2007-11-13 2009-05-22 Roche Diagnostics Gmbh Verfahren zum überwachen der nutzung eines verbrauchsmaterials in einwegausführung in einem oder mehreren analysegeräten
EP2400411A1 (de) 2010-06-24 2011-12-28 Roche Diagnostics GmbH Analysesystem mit erweiterter Benutzerinformation

Also Published As

Publication number Publication date
EP1834263A1 (de) 2007-09-19
ATE484031T1 (de) 2010-10-15
US7998407B2 (en) 2011-08-16
HK1115721A1 (en) 2008-12-05
DE102004062255B3 (de) 2006-02-16
DE502005010359D1 (de) 2010-11-18
CN101088093B (zh) 2010-11-03
JP2008525764A (ja) 2008-07-17
US20080145277A1 (en) 2008-06-19
EP1834263B1 (de) 2010-10-06
CA2588658A1 (en) 2006-07-06
CN101088093A (zh) 2007-12-12

Similar Documents

Publication Publication Date Title
EP1834263B1 (de) Messsystem zur messung von stoffkonzentrationen in fluiden medien
EP1800122A1 (de) Analytisches testelement mit drahtloser datenübertragung
EP1563288B1 (de) Messgerät zur bestimmung eines analyten in einer flüssigkeitsprobe unter verwendung von polymerelektronischen gerätekomponenten
US6217744B1 (en) Devices for testing fluid
DE69933547T2 (de) Implantierbare anordnung zur glukose-messung im blut
DE602005004519T2 (de) In-vivo informationsakquisitionsgerät und in-vivo informationsakquisitionsgerätesystem
EP1972269B1 (de) System zur in-vivo Messung einer Analytkonzentration
DE60133653T2 (de) Vorrichtung zum vorhersagen von hypoglyecemiefällen
EP2341884B1 (de) Behälter mit Computerprodukt
DE60310160T2 (de) Streifen zur Verpackung einer Mehrzahl von Geräten zur Flüssigkeitsentnahme und Testung sowie Verfahren zur Herstellung und Verwendung des Streifens
DE69231249T2 (de) Gerät und verfahren zur untersuchung von körperflüssigkeit
EP2335565A1 (de) Schutzbehälter für Aufnahme wieder verwendbarer diagnostischer Komponenten
DE69711177T2 (de) System zur bestimmung mindestens eines parameters mindestens einer probe einer physiologischen flüssigkeit und kassette dafür
EP0680727A1 (de) Analysesystem zur Überwachung der Konzentration eines Analyten im Blut eines Patienten
WO2016188959A1 (de) Chirurgisches behälterinhalt-erfassungssystem
EP2802283B1 (de) Aufbewahrungs- und/oder transportbehälter für medizinische instrumente und verfahren zum erfassen und übertragen von daten medizinischer instrumente
EP0922959A1 (de) Analysensystem für Probenflüssigkeiten
WO2006136527A2 (de) Testvorrichtung mit testelement-lagervorrichtung
EP1988394A1 (de) Messsystem mit verteilten Funktionen
EP1978863A1 (de) Verfahren und vorrichtung zur erfassung von physiologischen messdaten
EP0544237B2 (de) Vorrichtung zum Messen der Ionenkonzentration in fliessfähigen Medien
EP1343011A2 (de) Vorrichtung zum elektrochemischen Nachweis einer Nukleotidsequenz, Analyse-Kassette für eine solche Vorrichtung und Verfahren zur Herstellung einer solchen Analyse-Kassette
EP1995594A1 (de) Analysehandgerät zum Untersuchen einer Probe
DE102006020862A1 (de) Vorrichtung zur Durchführung einer Analyse
DE202006012628U1 (de) Vorrichtung zur Ermittlung medizinischer und/oder biometrischer Daten eines Lebewesens

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2588658

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2007547317

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 200580044816.3

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2005818436

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2005818436

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11793794

Country of ref document: US