WO2006068042A1 - アキシャルギャップ型モータ - Google Patents

アキシャルギャップ型モータ Download PDF

Info

Publication number
WO2006068042A1
WO2006068042A1 PCT/JP2005/023130 JP2005023130W WO2006068042A1 WO 2006068042 A1 WO2006068042 A1 WO 2006068042A1 JP 2005023130 W JP2005023130 W JP 2005023130W WO 2006068042 A1 WO2006068042 A1 WO 2006068042A1
Authority
WO
WIPO (PCT)
Prior art keywords
stator
rotor
axial gap
stators
rotating shaft
Prior art date
Application number
PCT/JP2005/023130
Other languages
English (en)
French (fr)
Inventor
Toru Okazaki
Shingo Ohashi
Hidehiko Sugimoto
Toshio Takeda
Original Assignee
Sumitomo Electric Industries, Ltd.
Ishikawajima-Harima Heavy Industries Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries, Ltd., Ishikawajima-Harima Heavy Industries Co., Ltd. filed Critical Sumitomo Electric Industries, Ltd.
Priority to CA2592163A priority Critical patent/CA2592163C/en
Priority to EP05816387A priority patent/EP1830454A1/en
Priority to CN2005800446986A priority patent/CN101088209B/zh
Priority to US11/793,805 priority patent/US7821169B2/en
Publication of WO2006068042A1 publication Critical patent/WO2006068042A1/ja
Priority to NO20073219A priority patent/NO20073219L/no
Priority to HK08101725.2A priority patent/HK1111271A1/xx

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/24Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets axially facing the armatures, e.g. hub-type cycle dynamos
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K55/00Dynamo-electric machines having windings operating at cryogenic temperatures
    • H02K55/02Dynamo-electric machines having windings operating at cryogenic temperatures of the synchronous type
    • H02K55/04Dynamo-electric machines having windings operating at cryogenic temperatures of the synchronous type with rotating field windings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Definitions

  • the present invention relates to an axial gap type motor, and in particular, a high-power series connection suitable for use as a drive source for vehicles, ships, and the like, particularly as a propulsion motor for large ships such as government ships and passenger ships.
  • the present invention relates to a synchronous motor.
  • a radial gap type motor is widely used because it has a rotor in a hollow portion of an annular cross section and directs the magnetic flux direction of the coil in the radial direction.
  • the axial gap type motor has a configuration in which a stator is disposed oppositely in the axial direction of the rotor and the magnetic flux direction of the coil is directed in the axial direction.
  • the armature coil that protrudes from the stator to the rotor side is wound around the iron core and attached, and the iron core protrudes from the tip of the armature coil, so if a permanent magnet is placed on the rotor side, The permanent magnet and the iron core are attracted to each other, and the work of providing the required air gap between the rotor and the stator is troublesome. There is also a risk that the operator's finger may be caught between the permanent magnet and the iron core.
  • the tip of the iron core protruding from the armature coil and the tip of the permanent magnet do not interfere with each other, and the gap between the stator and the rotor needs to be large.
  • the motor device itself is enlarged in the axial direction of the rotating shaft.
  • the series connection in which rotors and stators are alternately stacked in the axial direction with gaps therebetween In the synchronous type, since it is necessary to arrange a large number of rotors and stators with large gaps alternately, it is necessary to solve the above problem.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2004-140937
  • the present invention has been made in view of the above problems, and in a serially coupled synchronous type axial gap type motor, high output can be obtained while reducing the size of the motor by reducing the interval between the stator and the rotor. It is also an object of the present invention to enable easy assembly by opening a required small gap between the rotor and the stator.
  • the present invention provides a serially coupled synchronous type axial gap type motor in which a rotor and a stator are alternately stacked in the axial direction with a rotation axis as a main axis, with a required gap being alternately formed.
  • the rotor is fixed to the rotating shaft, and the stator is disposed so as not to be interlocked with the rotating shaft,
  • a plurality of rotating field bodies are attached to the rotor around the axis, while a plurality of armature coils are attached around the axis so that the stator is opposed to the rotating field bodies with a gap therebetween, and the direction of magnetic flux is changed.
  • An axial gap type motor is provided, which is oriented in the axial direction, and the armature coil is attached with a core made of an air core or a magnetic material (hereinafter referred to as a flux collector). .
  • the flux collector that generates a magnetic moment when the hollow portion of the armature coil is placed in an air core or a magnetic field is used as a core material, so that the separation distance between the opposing stator and the rotor is Even if the (air gap) is reduced, interference during assembly is suppressed.
  • the armature coil and the field body attached to the stator and the rotor can be arranged close to each other to increase the efficiency and reduce the size of the motor. If the armature coil is not wound around the flux collector, the armature coil is adhesively fixed to the stator, press-fitted into a through-hole or recess provided in the stator, or sealed in a container described later, Removably attach the container to the stator Yes.
  • the armature coil and / or the field coil as the rotating field body is formed of a superconducting material.
  • the superconducting coil When the superconducting coil is used as described above, a large current can be applied, and a small size and light weight can be realized while achieving high motor torque output.
  • a material for the superconducting material it is preferable to use a high-temperature superconducting material such as bismuth or yttrium.
  • the stator and the rotor are alternately arranged with small gaps, if the rotating field body is a field coil made of a superconducting material, even if a flux collector is attached to the armature coil, they are attracted to each other. It can be prevented, and it can be positioned and arranged with high accuracy by opening a small gap with good workability.
  • the rotating field body may be formed of a high-temperature superconducting Balta magnet. Even when the high-temperature superconducting bulk magnet is used, a large magnetic field can be formed and the motor output can be increased.
  • the high-temperature superconducting barta magnet is made up of a mass of high-temperature superconductors that are non-superconducting phases dispersed and grown in the RE-Ba-Cu-O high-temperature superconductor, and captures a magnetic field larger than that of high-performance permanent magnets. It can be magnetized.
  • the rotating field body may be formed of a permanent magnet.
  • the armature coil to be attached to the stator is preferably a force that makes the core empty, and the core material made of a magnetic material is preferably attached without protruding from the tip of the armature coil.
  • the air gap distance between the armature coil of the stator and the rotating field body facing the armature coil is preferably 0.1 mm to: 1 mm.
  • the armature coil is a core made of an air core or a flux collector and a superconducting coil is used instead of a permanent magnet as a rotating field magnetic body
  • the gap between the armature coil and the rotating field magnetic body is increased as described above.
  • the range can be made small, and the motor can be miniaturized.
  • the range of the gap distance is 0.1 mm to 1 mm.
  • the gap is smaller than 0.1 mm, the field body and the armature coil are in contact with each other when the rotor is displaced in the axial direction of the rotating shaft due to vibration or the like. Because there is a risk of doing. If it is larger than 1 mm, the distance between the rotor and the stator becomes too large, the magnetizing force decreases, the output decreases, and the motor moves in the axial direction. This is to increase the size.
  • the armature coil is attached to the stator by providing an axial through hole in the stator, the armature coil is fitted and fixed in the through hole, and both ends of the armature coil are connected to both end surfaces of the stator. Projecting from the stator and facing the field body fixed to the rotor on both sides of the stator with a gap.
  • the stator and the rotor are alternately stacked with the rotation shaft as the main shaft, the back yoke is disposed only at both ends in the axial direction, and the back yoke is disposed in the axial direction. It is preferable that the stators at both ends are detachably attached with screws.
  • the back yoke is arranged only at both ends in the axial direction, and each stator is not provided with a back yoke. Therefore, assembly is facilitated and the stator and rotor can be arranged at high density, and the size in the radial direction can be increased. High output can be obtained without increasing the value. Therefore, the motor can be reduced in size and weight.
  • the back yokes are arranged at both ends in the axial direction, so that the magnetic field penetrating the stator can be prevented from leaking to the outside, and the torque can be increased by strengthening the magnetic field. High output can be realized.
  • stator and rotor assembled alternately along the rotation axis are assembled and disassembled by finally detachably connecting the stators at both ends in the axial direction to the back yoke fixed in advance to the fixing material. Can be easily performed.
  • the back yoke may not be attached to both ends in the axial direction, the stators at both ends in the axial direction may be thick, and the stator may be detachably attached to the fixing member with screws or the like.
  • the rotor and the stator that are alternately stacked with the rotation shaft as the main shaft are, for example, arranged such that the rotation shaft is penetrated and fixed in the center hole of the rotor, and arranged on both sides in the axial direction of the rotor.
  • the stators are connected with a gap through a connecting tool, and the rotor is fitted in the gap between the stators on both sides.
  • each stator is vertically divided at a position sandwiching the rotation shaft, and the upper stator is connected by the upper connector to form the upper divided member.
  • the lower stator is connected by a lower connector to form a lower split member, and a rotor fixed to the rotary shaft is sandwiched between the upper and lower split members.
  • the rotor fixed with a space between the rotating shafts is inserted between the stators in P contact.
  • the gap between each rotor and the stator can be easily assembled with a large number of rotors, stators and built-ins that are alternately stacked.
  • all the stators can be fixedly arranged at predetermined positions only by screwing and fixing only the rotors at both ends in the axial direction to the back yoke, and a serially coupled synchronous motor can be easily manufactured.
  • the coupling tool may include an outer frame portion disposed on the outer peripheral side of the stator, and a coupling portion that protrudes from the outer frame portion with a required interval and is coupled to each stator. I like it.
  • it may be a u-shaped connector that is connected to each adjacent stator, or may be a single comb-shaped connector.
  • the connecting part of the connecting tool and the stator may be connected and fixed using an adhesive, or a fastener such as a screw, or a fitting part formed on the connecting part and the stator. They may be connected.
  • the connecting portion of the connecting tool is fixed to the rotor-side facing surface of the stator, an opening is provided in the armature coil arrangement portion, and the axial thickness of the opening is set on the rotor side rotating magnetic field body and the stator side. It is preferable to use a gap dimension with the armature coil. With this configuration, the required gap can be automatically obtained simply by inserting the rotor between the connecting portions.
  • stator and the rotor are sequentially placed on the rotating shaft. It is good also as a structure assembled through.
  • one end of the back yoke is attached to one end side of the rotating shaft, and a center hole of the stator is loosely fitted into the rotating shaft so that the stator and the rotor are connected to the rotating shaft.
  • the stator is positioned alternately on the outer peripheral side. Therefore, the stator is positioned and held by a fixing material, and the stator at the tip of the other end of the rotating shaft is attached to the other side of the back yoke.
  • stator and the rotor can be simply assembled by sequentially inserting them into the rotating shaft, and when disassembling, the stator and the back yoke at the end in the axial direction can be easily fixed.
  • the stator and rotor can be removed, and assembly and disassembly can be easily performed.
  • a peripheral wall is provided between the back yokes at both ends with a gap between the rotor and the outer periphery of the stator.
  • Concavities and convexities may be provided on the inner surface of the peripheral wall so that the positioning and fixing material of the stator is also used.
  • the stator is positioned and held when the lower end of the stator that is sequentially inserted into the rotating shaft is fitted into the concave part of the uneven part. be able to.
  • the present invention provides a force S that can be suitably used for a serially coupled synchronous type in which rotors and stators are alternately stacked, and a configuration in which a pair of stators are disposed on both axial sides of one rotor.
  • the present invention is also suitably used in the axial gap type motor.
  • a plurality of the rotating field bodies or Zs and armature coils arranged in the circumferential direction with a space between the rotor or Z and the stator are accommodated in advance in the container with a required space, It is preferable that the container is detachably attached to the rotor or Z and the stator.
  • the container is also attached to the stator as a pair of upper and lower semi-annular shapes.
  • the rotor is also divided into upper and lower parts, and the rotating magnetic body attached to the rotor is housed in a pair of upper and lower semi-annular containers and attached to the rotor independently.
  • the container is formed of a heat insulating container and is filled with a refrigerant.
  • the container is formed of a main body made of a magnetically permeable material such as resin and a lid, and by opening the lid, an armature coil or a rotating field body sealed inside can be taken out and taken in.
  • the armature coil is provided with the core material consisting of an air core or a flux collector, the armature coil and the stator arranged on the stator are provided.
  • the rotating field body to be disposed in the vicinity of each other can be arranged close to each other, so that the output can be increased and the motor can be miniaturized.
  • the rotating field body or Z and the armature coil are formed of a superconducting material, high output can be achieved while further reducing the size.
  • stator and the rotor are alternately arranged with the rotation shaft as the main shaft, and the stators at both ends in the axial direction are detachably fixed to the back yoke, the stator and the rotor are arranged at high density.
  • the magnetic field whose magnetic flux direction is the axial direction can be blocked from leaking to the outside, and the magnetic field can be strengthened to achieve high torque output.
  • the stator and rotor can be easily disassembled by removing the axially leading stator from the back yoke.
  • the gap between the rotor and the stator is set to a predetermined dimension.
  • a coupled synchronous motor can be used.
  • FIG. 1 is a cross-sectional view showing a motor according to a first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view showing the assembling method of the first embodiment.
  • FIG. 3 is a schematic view of the first embodiment.
  • FIG. 4 is a graph showing the relationship between coil current and magnetic flux.
  • FIG. 5 is a schematic view showing a modification of the first embodiment.
  • FIG. 6 is a drawing showing another modification of the first embodiment.
  • FIG. 7 is a cross-sectional view showing a motor according to a second embodiment.
  • FIG. 8 is a cross-sectional view showing a motor according to a third embodiment.
  • FIG. 9 is a sectional view showing another motor.
  • FIG. 10 is a perspective view of the motor of FIG.
  • FIG. 11 is a schematic sectional view showing a motor of a fourth embodiment.
  • FIG. 12 is a cross-sectional view showing the assembly method of the fourth embodiment.
  • FIG. 13 is a cross-sectional view showing a motor according to a fifth embodiment.
  • FIG. 14 is a schematic cross-sectional view showing a sixth embodiment.
  • FIGS. 15A and 15B are sectional views showing a container according to a sixth embodiment.
  • FIG. 16 (A) and (B) are drawings showing a container of a seventh embodiment.
  • FIGS. 1 and 2 are force diagrams in which two rotors 11, stators 12 at both ends in the axial direction, and stators 13 at the intermediate portion are alternately arranged in the axial direction of the rotating shaft 30. As shown in FIG. 3, a large number of intermediate stators 13 are provided, and the rotors 11 are arranged between the adjacent stators 12 and 13 and 13 and 13, respectively.
  • the rotor 11 is fixed to the rotary shaft 30, and the stators 13 and 12 are arranged with a required gap (air gap) on both sides in the axial direction of the rotor 11.
  • the stators 12 and 13 are connected by upper and lower connecting members 14 and 15, and the stators 12 at both axial ends are fixed to back yokes 16 and 17 by screws 19.
  • the rotor 11 includes a disk-shaped rotor portion 20b that protrudes in the vertical direction in the figure from the center of the bearing portion 20a of the rotor yoke 20, and rotates in a through hole 20c drilled in the shaft center of the bearing portion 20a.
  • the shaft 30 is fixed through, and the rotor 11 and the rotating shaft 30 are rotated together.
  • the rotor portion 20b is provided with mounting holes 20d at intervals in the circumferential direction around the axis, and the permanent magnets 22 are fitted and fixed to the mounting holes 20d so that the magnetic flux direction faces the axial direction. Yes.
  • the both end surfaces of the permanent magnets 22 are attached so as to form the same plane as the both end surfaces of the rotor portion 20b, so that the permanent magnets 22 do not protrude from the rotor portion 20b.
  • a plurality of rotors 11 are passed through through holes 20d formed in the shaft center of the bearing portion 20a of the rotor yoke 20 through the rotary shaft 30 sequentially, and a plurality of rotors 11 are provided at predetermined intervals in the axial direction of the rotary shaft 30.
  • the rotor 11 is fixed through.
  • the rotation axis 30 between the adjacent rotors 11 The rotary bearing 35 is fitted, and the openings of the stators 12 and 13 are fitted at the position of the rotary bearing 35.
  • the stators 12 at both ends in the axial direction have a symmetrical shape
  • the stators 13 at the intermediate position have the same shape.
  • These stators 12 and 13 have a disk shape and are divided into upper and lower parts as shown in FIG. 2 and are provided with semi-disk-shaped upper stators 12a and 13a and lower stators 12b and 13b.
  • a plurality of armature coils 24 and 25 made of normal conducting material are fixed to the upper and lower stators 12a to 13b at intervals in the circumferential direction around the axis on the rotor facing surface, and project in the axial direction. I am letting.
  • the armature coil 24 is fixed only on one side facing the rotor 11, while in the intermediate stator 13, the armature coil 25 is fixed on both sides.
  • the armature coils 24 and 25 are fixed to the stators 12 and 13 with an adhesive, but one end side may be press-fitted and fixed in a groove formed on the end surface of the stator.
  • the armature coils 24, 25 are air cores 24a, 25a without providing an iron core in the hollow portion, and are configured so that the coil is wound around the iron core.
  • the permanent magnet 22 and the armature coils 24 and 25 are arranged opposite to each other on the same axis, and the distance between the permanent magnet 22 and the armature coils 24 and 25, that is, the air gap distance L is set to 0, 1 mm to : 1 mm, and in this embodiment, 0.5 mm.
  • the armature coils 24 and 25 are configured to be supplied with required power from a power source (not shown).
  • the upper stators 12a and 13a and the lower stators 12b and 13b which are arranged so as to be spaced from both side end surfaces of the rotor part 20b, are connected to each other via an upper connecting tool 14 and a lower connecting tool 15, respectively.
  • the upper connector 14 and the lower connector 15 are formed in a comb-like shape in which the connection portions 14b and 15b are projected from the outer frame portions 14a and 15a with a predetermined interval.
  • the connecting part 14b of the upper connecting tool 14 is fixed to the upper stators 12a and 13a with screws
  • the connecting part 15b of the lower connecting tool 15 is fixed to the lower stators 12b and 13b with screws.
  • a screw hole is provided on the rear surface (the surface opposite to the armature coil projecting portion) of the stator 12 (upper stator 12a, lower stator 12b) at both ends in the axial direction, and a nut N is mounted on the rear surface.
  • Screw yokes 16a and 17a are provided with screw holes 16a and 17a, and screws 19 are respectively inserted therein and screwed into nuts N to be fixed.
  • the back yokes 16 and 17 are made of a nonmagnetic material.
  • the rotary shaft 14 is fixed to the rotor yoke 20 to which the permanent magnet 22 is attached.
  • armature coils 24 and 25 are attached to the stators 12 and 13, and the upper stators 12a and 13a are connected by the upper connector 14, and the lower stators 12b and 13b are connected by the lower connector 15. .
  • the lower stators 12b and 13b connected by the lower connector 15 are placed on the rotor 11 fixed to the rotating shaft 30 from below, and the rotors 11 are respectively connected to the lower stators 12b and 13b, 13b and 13b. Insert each into the gap.
  • the openings provided in the upper end surfaces of the stators 12b and 13b are brought into contact with the outer peripheral surface of the rotary bearing 35 and stopped, and the lower stator and the rotor 11 are positioned and held with a necessary gap.
  • upper stators 12a and 13a which are similarly connected by the upper connector 14, are placed on the upper half circumference of the rotor part 20b from above, and the rotor part 20a is placed between the stators 12a and 13a and 13a and 13a. Insert the upper part.
  • the openings at the lower end surfaces of the stators 12a and 13a are stopped by coming into contact with the outer peripheral surface of the rotary bearing 35, and the upper stator and the rotor 11 are positioned and held with a required gap.
  • one end of the rotary shaft 30 is passed through a through hole provided in one back yoke 16, and then the other end of the rotary shaft 30 is passed through a through hole provided in the other back yoke 17.
  • the back yokes 16 and 17 and the stators 12 at both ends in the axial direction are connected and fixed with screws 19 to complete the assembly.
  • the upper stators 12a and 13a and the lower stators 12b and 13b are assembled in advance with the upper and lower connectors 14, 15, and the rotor is interposed between the lower stators 12b and 13b and the upper stators 12a and 13b.
  • the required air gap can be maintained and assembly can be easily performed with good workability.
  • the cap of the rotor and stator can be held with high accuracy. wear.
  • the armature cores 24 and 25 of the stators 12 and 13 are air cores and are not provided with an iron core protruding from the armature coils 24 and 25 toward the permanent magnet 22 side. Therefore, the permanent magnet and the armature coil are not attracted at the time of the assembly work, and the stators 12 and 13 are previously connected and held by the connecting tool, so that workability is extremely improved.
  • the air gap distance between the opposing rotor 11 and the stators 12 and 13 can be reduced, the motor can be reduced in size, and the motor torque can be increased in output.
  • the magnetic field is strengthened when the iron core is arranged in the coil hollow part.
  • the magnetic flux is exceeded after a certain current value as shown in Fig. 4.
  • the axial gap type motor 10 of the present embodiment can increase the motor torque output when the upper limit value of the current can be set high.
  • back yokes 16 and 17 are provided on the back side of the stator 12 at both ends in the axial direction to prevent generation of a leakage magnetic field, further strengthening of the magnetic field realizes higher output of Tonolek. Is possible.
  • the back yokes 16 and 17 are attached to the stator 12 by bolting so as to be detachable, the rotor and the stator can be easily detached and disassembled during maintenance or the like.
  • FIG. 5 shows a modification of the first embodiment in which a permanent magnet 22 is used as a rotating field body, and a flux collector 110 is arranged as a core material in the armature coils 24 and 25.
  • the tip of the flux collector 110 is not protruded from the tips of the armature coils 24 and 25, and is attracted to the permanent magnet 22 so that the tip is removed.
  • FIG. 6 also shows a modification of the first embodiment, in which the shapes of the couplers 14 ′ (15 ′) are different.
  • the connecting tool 14 ' is U-shaped and connects between the stators 13 and 13 (12 and 13) that are in P contact. In this way, when the P-contacting stator is sequentially connected by the connecting tool 14 ′, the stator can be used in general for different numbers of stators.
  • FIG. 7 shows a second embodiment.
  • an intermediate position stator 13 to which the armature coil 25 is attached is provided with a through-hole 13d in the axial direction, and the armature coil 25 is fitted and fixed in the through-hole 13d, and both ends thereof are connected to both sides of the stator 13. It protrudes from the end face, and is opposed to the field coil 100 made of superconducting material fixed to the rotor 11 on both sides with a required gap.
  • a flux collector 101 is disposed as a core material in the space of the field coil 100, and these flux collectors 101 are substantially the same as the front end of the field coil 100. The position. It may be slightly protruded.
  • the back yokes 16 'and 17' at the left and right ends are also divided into upper and lower parts, and upper back yokes 16a 'and 17a' and lower back yokes 16b 'and 17b' are provided.
  • Upper back yokes 16a 'and 17a' at both left and right ends are connected by a peripheral wall portion 55a having a semicircular cross section.
  • the lower back yokes 16b ′ and 17b ′ are connected by a peripheral wall portion 55b having a semicircular arc shape in cross section.
  • the point that the rotor 11 is fixed to the rotary shaft 30 with an interval in the axial direction, and the point that the stator 50 is divided into upper and lower parts and connected by the upper and lower couplers 14 'and 15' is the same as the first embodiment. It is.
  • a plurality of rotors 11 and a plurality of stators 12 and 13 are alternately assembled in the same manner as in the first embodiment, and then connected to the upper back yokes 16a ′ and 17a connected by the peripheral wall portion 55a. And cover the lower back yokes 16b 'and 17b' connected by the peripheral wall 55b with a downward force, and fix the knock yokes 16 'and 17' to the upper and lower stators 12a and 12b with screws 19 Yes.
  • the armature coil 25 to be attached to both end surfaces of the stator 13 sandwiched between the rotors 11 can be configured by one armature coil 25, thereby reducing the number of parts and the number of work. be able to.
  • a field coil made of a superconducting material is used as a rotating magnetic field body fixed to the rotor 11, a problem of attraction that occurs when permanent magnets are used when the rotor and the stator are alternately stacked. Can be eliminated. Therefore, the armature coil and the rotating field body can be disposed close to each other, and the flux collector and the core material are disposed on the rotating field body, so that the motor can have higher output.
  • the rotor 11 and the stators 12 and 13 can be surrounded by a back yoke and a peripheral wall with a sealed structure, and external leakage of magnetic flux can be reliably prevented. And superconducting the field coil Since it is made of a material, it is necessary to attach a cooling mechanism (not shown). In that case, it is possible to achieve heat insulation by using a sealed structure. Other functions and effects are the same as those of the first embodiment.
  • FIG. 8 shows a third embodiment, in which a field coil 100 made of a superconducting material is attached to the rotor 11 as in the second embodiment, and a flux collector 101 is disposed in the hollow portion.
  • the flux collector 102 is also arranged in the spaces 24a and 25a of the armature coinlets 24 and 25 attached to the stators 12 and 13, and the tip of the flux collector 102 is slightly protruded from the tips of the armature coils 24 and 25. ing.
  • liquid hydrogen stored in the liquid hydrogen tank 60 is introduced into the hollow portion 30a of the rotating shaft 30. Balta magnet 22 'is cooling.
  • the rotary shaft 30 is provided with a hollow portion 30a that opens to one end side in the axial direction, and a pipe 63 having a refrigerant flow path 62 is inserted from the liquid hydrogen tank 60 into the hollow portion 30a via a bearing 64, It is terminated before the rotor placement position.
  • the pipe 63 has a double-pipe structure and has a refrigerant flow path 62 through which liquid hydrogen is conducted in the central space, and the field coil 100 is cooled by filling the hollow portion 30a with liquid hydrogen at the rotor arrangement position.
  • the outer circumferential space of the pipe 62 is a vacuum heat insulation space, and vacuum heat insulation is achieved except for the position corresponding to the rotor 11.
  • the distance between the stators 12 and 13 and the rotor 11 can be reduced to reduce the size of the motor, and the field coil is formed of a superconducting material. Therefore, the magnetic field can be strengthened to increase the output of the motor.
  • the armature coil attached to the stators 12 and 13 may be made of a superconducting material. In that case, a refrigerant flow path is provided on the stator side.
  • the configuration of the first embodiment is not a serially coupled synchronous type axial gap motor, but is arranged on both sides in the axial direction of one rotor 11 as shown in FIGS.
  • the present invention can also be applied to an axial gap type motor having a configuration in which a pair of stators 12 are arranged.
  • 9 and 10 are denoted by the same reference numerals as in FIGS. 1 to 3 and will not be described.
  • FIG. 11 and FIG. 12 show a fourth embodiment.
  • the stator is preliminarily connected using a connector, and the stator is sandwiched from the direction perpendicular to the axis with respect to the rotor fixed to the rotation shaft.
  • the rotation shaft is used.
  • One back yoke 16 "disposed at one end in the axial direction is provided with a shaft hole 16a" larger than the rotation shaft 30, while the other back yoke 17 “is a circle in which the rotation shaft 30 is fitted.
  • the lower peripheral wall 55b is fixed to the one back yoke 16 ", an uneven portion is provided on the inner peripheral surface of the lower peripheral wall 55b, and the lower end portions of the stators 12 and 13 are fitted into the concave portions 55b_l.
  • the convex portion 55b_2 serves as a stop display portion of the rotor 11.
  • the upper peripheral wall 55a is connected to the other back yoke 17 ".
  • the stator 12 at both ends in the axial direction and the stator 13 at the intermediate position have the same shape as that of the second embodiment except that they are not divided vertically, and air core armature coils 24 and 25 are attached. Center holes 12k and 13k for loosely fitting the rotary shaft 30 are provided at the center.
  • the rotor 11 has the same shape as that of the first embodiment, and a field coil 100 made of a superconducting material is attached.
  • the rotating shaft 30 is passed through the shaft hole 16a "of the back yoke 16" connected to the lower peripheral wall 55b.
  • the stator 12 on one end side in the axial direction is moved to a position where the stator 12 is brought into contact with the back yoke 16 "through the rotating shaft 30.
  • the lower end of the stator 12 is fitted and positioned in the recess 55b_l of the lower peripheral wall 55b.
  • the rotor 11 is passed through the rotary shaft 30 and stopped at the position of the convex portion 55b_2 of the lower peripheral wall 55b, and is positioned with a required gap from the stator 12.
  • the bearing portion 20a of the rotor 11 at this position.
  • the rotating shaft 30 are fixed with screws, etc.
  • the stator 13 is passed through the rotating shaft 30, and the lower end is inserted into the recess 55b_l in the same manner as described above to stop, and then the rotor 11 is moved to the rotating shaft 30.
  • all the stators 13 and the rotor 11 are sequentially assembled to the rotary shaft 30.
  • the other back yoke 17 Pass "through the rotating shaft 30 .
  • the stator and the rotor can be inserted into the rotating shaft in sequence, and can be easily assembled, and at the time of disassembly, if the back yoke and the stator at the axial end are removed, The stator and rotor can be easily removed, and assembly and disassembly can be easily performed, improving maintenance.
  • the rotor and the stator can be arranged at high density with a narrow gap on the rotating shaft, and high output can be obtained.
  • FIG. 13 shows a fifth embodiment, in which the back yokes at both ends in the axial direction are eliminated, and the stator 12 ′ at both ends in the axial direction has a thick structure made of a nonmagnetic material.
  • the stator 12 ′ itself is fixed to the fixing member 110 with screws N so as to be detachable.
  • the force that directly fixes the armature coil to the stator and directly fixes the rotating field body to the stator instead of directly fixing the stator to the rotor in this way,
  • the sixth embodiment shown in FIGS. 14 and 15 and the seventh embodiment shown in FIG. 16 preliminarily accommodate the armature coil 201 made of superconducting material and the field coil 202 of the rotating field body in the container 200.
  • the container 200 is a magnetically permeable resin molded product, and has an annular cylindrical container main body 210 having an opening at one end, and the opening of the container main body 210 is closed. It consists of a lid 211.
  • the inside of the container body 210 and the lid 211 sealed in a vacuum state is partitioned by a partition wall 213 into a coil storage portion 217 and a refrigerant filling portion 218, and the armature coil 201 or the field magnet is provided in each coil storage portion 217.
  • One coil 202 is accommodated.
  • the refrigerant filling unit 218 is filled with a refrigerant 214 made of liquid nitrogen.
  • a heat-permeable insulating material 215 is attached to the outer surface of the container body 210 and the lid body 211 to form a heat insulating container.
  • the container body 210 is provided with a mounting flange 210a, and the flange 210 is fixed to the stator and the rotor with screws 216.
  • the container 200 is detachably fitted in fitting portions recessed in both surfaces of the rotors of the first to fourth embodiments and both end surfaces of the stator of the fourth embodiment, and is fixed by the screws 216.
  • the seventh embodiment shown in FIG. 16 is a case where the container 200 ′ is attached to the vertically divided stator of the first to third embodiments, and the container 200 ′ is a pair of upper and lower semi-annular containers. 200A ', 200B'. Other configurations are the same as those shown in FIGS. 14 and 15 and will not be described.
  • the armature coil and the rotating field body are not directly fixed to the stator and rotor, but are collectively enclosed in a container, and the container is detachably attached to the stator and rotor. Maintenance can be facilitated, and cooling of armature coils and field coils made of superconducting material can be easily achieved.
  • the axial gap type motor of the present invention is suitably used as a power source for large ships and vehicles that require high output. Furthermore, it can be suitably used for various industries such as power generation facilities.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)
  • Superconductive Dynamoelectric Machines (AREA)
  • Motor Or Generator Cooling System (AREA)
  • Synchronous Machinery (AREA)

Abstract

 回転軸を主軸として、ロータとステータとが軸線方向に交互に所要の空隙をあけて積層された直列結合同期タイプのアキシャルギャップ型モータであって、前記ロータは前記回転軸に固定されると共に、前記ステータは前記回転軸に対して連動不可に配置され、前記ロータに複数の回転界磁体が軸線回りに取り付られている一方、前記ステータに前記回転界磁体と空隙をあけて対向させて軸線回りに複数の電機子コイルが取り付けられて磁束方向が軸線方向に向けられており、かつ、前記電機子コイルは空芯あるいは磁性体からなる芯材を取り付けている。

Description

明 細 書
アキシャノレギャップ型モータ
技術分野
[0001] 本発明は、アキシャルギャップ型モータに関し、詳しくは、車両や船舶等の駆動源、 特に、官公庁船、客船等の大型船舶の推進用モータとして好適に用レ、られる高出力 の直列結合同期型のモータに関するものである。
背景技術
[0002] 従来、モータとしてラジアルギャップ型モータとアキシャルギャップ型モータがある。
ラジアルギャップ型モータは、断面円環状のステータの中空部にロータを設けてコィ ルの磁束方向を径方向に向けているもので広く一般に用いられている。一方、アキシ ャルギャップ型モータは、特開 2004— 140937号公報に開示されているように、ロー タの軸線方向にステータを対向配置し、コイルの磁束方向を軸線方向に向けた構成 としている。
[0003] 従来のアキシャルギャップ型モータにおいて、高出力が必要なために、ロータとステ ータとが軸線方向に交互に所要の空隙をあけて積層された直列結合同期タイプとし たものでは、ロータとステータとの間に所定の空隙を設けて精度よく配置することが困 難で、製造上のネックになっている。
即ち、ステータからロータ側へ突設する電機子コイルは鉄心に巻き付けて取り付け 、鉄心が電機子コイルの先端より突出しているため、ロータ側に永久磁石を配置して レ、ると、組付時に永久磁石と鉄心とが吸着しあレ、、ロータとステータとの間に所要の エアギャップが設ける作業に手数がかかる。また、作業者の指が永久磁石と鉄心との 間に挟み込まれる危険性もある。
[0004] その結果、電機子コイルから突出した鉄心の先端と永久磁石の先端とが干渉しな レ、ようステータとロータとの空隙を大とする必要があり、近接配置できないことより、高 出力を得にくいと共に、モータ装置自体が回転軸の軸線方向に大型化することとなる 特に、軸線方向にロータとステータとを交互に空隙をあけて積層配置した直列結合 同期タイプでは、多数枚のロータとステータとを交互に大きな空隙をあけて配置して レ、く必要があることより、前記問題を解決する必要がある。
特許文献 1:特開 2004— 140937号公報
発明の開示
発明が解決しょうとする課題
[0005] 本発明は、前記問題に鑑みてなされたもので、直列結合同期タイプのアキシャルギ ヤップ型モータにおいて、ステータとロータの間隔を小さくすることによりモータを小型 化しながら高出力が得られること、およびロータとステータとの間に所要の小さいギヤ ップをあけて簡単に組みつけができるようにすることを課題としている。
課題を解決するための手段
[0006] 前記課題を解決するため、本発明は、回転軸を主軸として、ロータとステータとが軸 線方向に交互に所要の空隙をあけて積層された直列結合同期タイプのアキシャルギ ヤップ型モータであって、
前記ロータは前記回転軸に固定されると共に、前記ステータは前記回転軸に対し て連動不可に配置され、
前記ロータに複数の回転界磁体が軸線回りに取り付られている一方、前記ステータ に前記回転界磁体と空隙をあけて対向させて軸線回りに複数の電機子コイルが取り 付けられて磁束方向が軸線方向に向けられており、かつ、前記電機子コイルは空芯 あるいは磁性体(以下、フラックスコレクタと称す)からなる芯材を取り付けていることを 特徴とするアキシャルギャップ型モータを提供している。
[0007] 前記構成のモータでは、電機子コイルの中空部を空芯あるいは磁界内におかれた 場合に磁気モーメントを生じるフラックスコレクタを芯材としているため、対向するステ ータとロータの離反距離 (エアギャップ)を小さくしても、組付時に干渉することを抑制
、防止できる。その結果、ステータとロータに取り付けた電機子コイルと界磁体とを近 接配置して高効率化を図ることができると共に、モータの小型化を図ることができる。 なお、電機子コイルをフラックスコレクタに巻き付けていな場合には、電機子コイル をステータに接着固定する力、、ステータに設けた貫通孔もしくは凹部に圧入固定する 、あるいは後述する容器内に封入し、該容器をステータに着脱自在に取り付けて いる。
[0008] 前記電機子コイルあるいは/および前記回転界磁体とする界磁コイルを超電導材 より形成していることが好ましい。
前記のように超電導コイルで形成すると、大電流を通電することが可能となり、モー タトルクの高出力化を図りながらも小型軽量を実現することができる。超電導材の材 料としては、ビスマス系やイットリウム系等の高温超電導材等を用いると好適である。 かつ、ステータとロータとを小さく空隙をあけて交互に配置する場合に、前記回転界 磁体を超電導材からなる界磁コイルとすると、電機子コイルにフラックスコレクタを取り 付けても互いに吸着することを防止でき、作業性良く小さい空隙をあけて高精度で位 置決め配置することができる。
また、回転界磁体は高温超電導バルタ磁石で形成してもよい。該高温超電導バル ク磁石を用いても、大きな磁界を形成できモータの高出力化を図ることができる。該 高温超電導バルタ磁石は RE— Ba— Cu—〇高温超電導体の中に非超電導相を分 散して溶融成長させた高温超電導体の塊からなり、高性能永久磁石よりも大きな磁 場を捕捉、着磁できるものである。
[0009] さらに、前記回転界磁体は永久磁石から形成してもよい。この場合、ステータに取り 付ける電機子コイルは空芯とする力、磁性体からなる芯材を電機子コイルの先端から 突出させずに取り付けることが好ましレ、。
[0010] ステータの電機子コイルと、該電機子コイルと対向する前記回転界磁体とのエアギ ヤップ距離は、 0. 1mm〜: 1mmとしていることが好ましレ、。
前記のように、電機子コイルを空芯、あるいはフラックスコレクタからなる芯材とし、回 転界磁体として永久磁石ではなく超電導コイルを用いると、電機子コイルと回転界磁 体とのギャップを前記のように小さい範囲とすることができ、モータを小型化することが できる。
前記ギャップ距離の範囲を 0. lmm〜lmmとしているのは、 0. 1mmより小さいと、 ロータが振動等により回転軸の軸線方向に位置ズレしたときに、界磁体と電機子コィ ルとが接触する恐れがあるためである。また、 1mmより大きいと、ロータとステータの 間隔が大きくなり過ぎて着磁力が低下し、出力低下が生じると共に、モータが軸線方 向に大型化するためである。
[0011] 前記ステータへの電機子コイルの取り付けは、ステータに軸線方向の貫通孔を設 け、該貫通孔に前記電機子コイルを内嵌固定し、該電機子コイルの両端をステータ の両側端面から突出させて、該ステータの両側の前記ロータに固定された界磁体に 空隙をあけて対向させてもょレ、。
前記構成とすると、ステータの両側端面にそれぞれ電機子コイルを取り付ける必要 はなくなり、作業性を高めることができる。
[0012] また、本発明のアキシャルギャップ型モータでは、回転軸を主軸としてステータとロ 一タとを交互に積層配置し、バックヨークは軸線方向の両端にのみ配置し、該バック ヨークに軸線方向両端のステータをネジ止めで着脱自在に取り付ける構成とすること が好ましい。
このように、バックヨークは軸線方向の両端にのみ配置し、各ステータにそれぞれバ ックヨークを設けていないことより、組みつけが容易になると共にステータとロータとを 高密度配置でき、径方向にサイズを大きくすることなく高出力を得ることができる。よつ て、モータの小型化および軽量化を図ることができる。
また、磁束方向が軸線方向であるアキシャルギャップ型モータにおいて、軸線方向 両端にバックヨークを配置しているため、ステータを貫通する磁場が外部に漏れるの を遮断でき、磁場の強化を図ってトルクの高出力化を実現することができる。
さらに、回転軸に沿って交互に組みつけるステータとロータとは、最終的に軸線方 向両端のステータを固定材に予め固定しているバックヨークに着脱自在に連結する ことにより、組みつけ及び分解を容易に行うことができる。
[0013] なお、前記軸線方向の両端にバックヨークを取り付けず、軸線方向の両端のステー タを厚肉とし、該ステータを固定材にネジ等で着脱自在に取り付ける構成としてもよ レ、。
[0014] 前記回転軸を主軸として交互に積層される前記ロータとステータとは、例えば、ロー タの中心穴に回転軸が貫通固定されている一方、前記ロータの軸線方向両側に配 置されるステータは連結具を介して間隔をあけて連結され、両側のステータ間の空隙 に前記ロータがはめ込まれる構成としている。 [0015] 前記連結具を介してステータを連結する場合、具体的には、各ステータは回転軸を 挟む位置で上下に分割され、上部ステータを上部連結具で連結して上分割材とされ る一方、下部ステータを下部連結具で連結して下分割材とされ、上下分割材の間に 回転軸に固定されたロータを挟んではめ込まれる構成とすることが好ましい。
[0016] 前記のように、ロータの両側に配置するステータを連結具で順次連結しておくと、回 転軸に間隔をあけて固定したロータを、 P 接するステータの間にはめ込んでいくだけ で、各ロータとステータとのギャップを精度良く保持しながら、交互に積層配置する多 数のロータとステータとビルトインで簡単に組みつけることができる。かつ、軸線方向 の両端のロータのみをバックヨークにネジ止め固定するだけで全ステータを所定位置 に固定配置することができ、直列結合同期モータを容易に製造することができる。
[0017] 前記連結具はステータの外周側に配置される外枠部と、該外枠部から所要間隔を あけて突出されて各ステータに連結される連結部とを備えた構成とすることが好まし レ、。
その場合、隣接するステータ毎に連結する u形状の連結具としてもよいし、櫛歯状 の 1つの連結具としてもよい。
連結具の連結部とステータとの連結は、接着剤を用いて接着固定しても良いし、ビ ス等の止め具を用い、あるいは連結部とステータとに形成した凹凸嵌合部で嵌合さ せて連結してもよい。
また、前記連結具の連結部はステータのロータ側対向面に固定し、電機子コイルの 配置部分に開口を設け、該開口の軸線方向の厚みをロータ側の回転磁界体とステ ータ側の電機子コイルとのギャップ寸法としていることが好ましい。該構成とすると、連 結部の間にロータを揷入するだけで自動的に所要のギャップが得られることとなる。
[0018] 前記連結具を用いてステータを予定め連結し、回転軸に固定されたロータに対して 軸直角方向よりステータを挟みこむ構成に代えて、回転軸にステータをロータとを順 次揷通させて組みつける構成としてもよい。
其の場合、前記回転軸の一端側に前記バックヨークの一方が取り付けられていると 共に、該回転軸に前記ステータの中心穴が遊嵌されて貫通され、該ステータと前記 ロータとが回転軸に交互に組付けられ、前記ステータは外周側に配置される位置決 め固定材で位置決め保持され、前記回転軸の他端側先端の前記ステータが前記バ ックヨークの他方に取り付けられる構成とされる。
[0019] 前記構成によれば、回転軸に順次ステータとロータとを差し込んでいくだけで簡単 に組みつけが行え、分解時には、軸線方向端のステータとバックヨークとの固定を外 せば、簡単にステータとロータとを取りはすしていくことができ、組み立ておよび分解 を容易に行うことができる。
[0020] 前記両端のバックヨークの間に、前記ロータおよびステータの外周側と空隙をあけ て配置される周壁が設けられてレ、ることが好ましレ、。
より詳細には、両端のバックヨークの内、一方のバックヨークに下周壁を連結して設 けておき、他方側のバックヨークに上周壁を連結して設けておくと、軸線方向両端の ステータをバックヨークに固定した状態で、上下周壁によりロータおよびステータが全 て囲まれることとなり外部への磁束漏れを確実に防止できる。
[0021] 前記周壁の内面に凹凸を設けて、前記したステータの位置決め固定材を兼用させ てもよい。
例えば、一端のバックヨークに連結される下周壁の内面に凹凸部を設けておくと、 回転軸に順次差し込んでいくステータの下端を前記凹凸部の凹部に嵌合すると、ス テータを位置決め保持することができる。
[0022] なお、本発明は、ロータとステータとを交互に積層配置する直列結合同期型に好適 に用いることができる力 S、 1個のロータの軸線方向両側に一対のステータを配置する 構成としたアキシャルギャップ型モータにおいても好適に用いられることは言うまでも ない。
[0023] 前記ロータあるいは Zおよびステータとに周方向に間隔をあけて複数個数配置さ れる前記回転界磁体あるいは Zおよび電機子コイルは、容器内部に所要間隔をあけ て予め収容しておき、該容器をロータあるは Z及びステータに着脱自在に取り付ける 構成とすることが好ましい。
該構成とすると、回転界磁体や電機子コイルのメンテナンスが必要となった際、電 機子コイルや回転界磁体をステータゃロータに固定している場合と比較して、容器を ステータゃロータから取り外し、容器内の回転磁性体や電気コイルを交換することで 簡単にメンテナンスを行うことができる。
[0024] その際、ステータを前記のように上下に分割する場合には、前記容器も上下一対の 半円環形状としてステータに取り付けられる。又、ロータも上下に分割して、ロータに 取り付ける回転磁性体も上下一対の半円環形状の容器に収容して、ロータに着脱自 在に取り付ける構成としてレ、る。
[0025] 前記容器内に収容される回転界磁体あるいは Zおよび電機子コイルが超電導材 力 なる場合には、前記容器は断熱容器からなると共に、該容器内部に冷媒を充填 している。
前記容器は樹脂等の透磁性材カ なる本体と蓋とから形成し、蓋を明けることにより 内部に密封した電機子コイルや回転界磁体を取り出し、取り入れができるようにして いる。
発明の効果
[0026] 以上の説明より明らかなように、本発明によれば、電機子コイルは空芯、あるいはフ ラックスコレクタからなる芯材を設けているため、ステータに配置する電機子コイルと口 ータに配置する回転界磁体とを近接配置でき、高出力化を図ることができると共に、 モータの小型化を図ることができる。
特に、回転界磁体あるいは Zおよび電機子コイルを超電導材より形成すると、さら に小型化を図りながら、高出力化を達成することができる。
[0027] また、回転軸を主軸としてステータとロータとを交互に配置して、軸方向両端のステ ータをバックヨークに着脱自在に固定する構成とすると、ステータとロータとを高密度 で配置出来ると共に、磁束方向が軸線方向である磁場が外部に漏れるのを遮断でき 、磁場の強化を図ってトルクの高出力化を実現することができる。かつ、軸線方向先 端のステータをバックヨークから取り外すことで、ステータおよびロータを簡単に分解 する事ちでさる。
[0028] また、ステータを連結具を介して所定間隔をあけて連結しておき、該ステ一タの間 の空隙にロータをはめ込む構成とすると、ロータとステータとの間のギャップを所定寸 法に精度良く特定することができると共に、多数枚のロータとステータとを簡単に組み つけることができる。 このように、小型でありながら高出力が得られ、し力も、組立、分解が容易でメンテナ ンス性に優れている点より、官公庁船や客船等の大型船舶の推進用モータとして最 適な直列結合同期型のモータとすることができる。
図面の簡単な説明
[0029] [図 1]本発明の第 1実施形態のモータを示す断面図である。
[図 2]第 1実施形態の組付方法を示す断面図である。
[図 3]第 1実施形態の概略図である。
[図 4]コイル電流と磁束の関係を示すグラフである。
[図 5]第 1実施形態の変形例を示す概略図である。
[図 6]第 1実施形態の他の変形例を示す図面である。
[図 7]第 2実施形態のモータを示す断面図である。
[図 8]第 3実施形態のモータを示す断面図である。
[図 9]他のモータを示す断面図である。
[図 10]図 9のモータの斜視図である。
[図 11]第 4実施形態のモータを示す概略断面図である。
[図 12]第 4実施形態の組付方法を示す断面図である。
[図 13]第 5実施形態のモータを示す断面図である。
[図 14]第 6実施形態を示す概略断面図である。
[図 15] (A) (B)は第 6実施形態の容器を示す断面図である。
[図 16] (A) (B)は第 7実施形態の容器を示す図面である。
符号の説明
[0030] 10 アキシャルギャップ型超電導モータ
11 ロータ
12、 13 ステータ
14 上部連結具
15 下部連結具
16、 17 ノくックヨーク 20 ロータヨーク
22 永久磁石
24、 25 電機子コイル
30 回転軸
100 超電導材からなる界磁コイル
101、 102 フラックスコレクタ
発明を実施するための最良の形態
[0031] 本発明の実施形態を図面を参照して説明する。
図 1乃至図 3は本発明の第 1実施形態の直列結合同期タイプのアキシャルギャップ 型モータ 10を示す。なお、図 1および図 2は図示を簡略化するため、 2枚のロータ 11 と軸方向両端のステータ 12と中間部のステータ 13を回転軸 30の軸線方向に交互に 配置した構成としている力 図 3に示すように、中間部のステータ 13を多数枚設け、 隣接するステータ 12と 13、 13と 13の間にそれぞれロータ 11を配置している。
[0032] ロータ 11は回転軸 30に固定し、該ロータ 11の軸線方向の両側に所要の空隙(ェ ァギャップ)をあけてステータ 13、 12を配置している。ステータ 12、 13は上下の連結 具 14、 15で連結すると共に、軸線方向両端のステータ 12はバックヨーク 16、 17にネ ジ 19で固定している。
[0033] ロータ 11は、ロータヨーク 20の軸受部 20aの中心より図中垂直方向に突出させた 円盤状のロータ部 20bを有する備え、軸受部 20aの軸心に穿設された貫通穴 20cに 回転軸 30を貫通固定し、ロータ 11と回転軸 30とを共回転させる構成としている。 前記ロータ部 20bには軸線回りの周方向に間隔をあけて取付穴 20dを設け、これら 取付穴 20dに永久磁石 22を内嵌固定して取り付け、磁束方向が軸線方向を向くよう に配置している。これら永久磁石 22の両側端面はロータ部 20bの両側端面と同一平 面を形成するように取り付け、永久磁石 22がロータ部 20bから突出しないようにして いる。
[0034] 複数枚のロータ 11はロータヨーク 20の軸受部 20aの軸心に形成した貫通穴 20dに 回転軸 30を順次通して貫通させ、該回転軸 30の軸線方向に所要間隔をあけて複数 枚のロータ 11を貫通固定している。かつ、隣接するロータ 11の間の回転軸 30には 回転軸受 35を嵌合し、該回転軸受 35の位置にステータ 12、 13の開口が嵌合するよ うにしている。
[0035] 前記軸方向両端のステータ 12は対称形状とすると共に、中間位置のステータ 13 ( 図 1では:!枚であるが、図 3に示すように多数枚)は同一形状としている。これらステー タ 12、 13は円盤形状とすると共に、図 2に示すように、それぞれ上下に分割し、半円 盤状の上部ステータ 12a、 13aと下部ステータ 12b、 13bとを設けている。これら上部 ステータおよび下部ステータ 12a〜: 13bにはロータ対向面に軸線回りの周方向に間 隔をあけて、常電導材からなる複数の電機子コイル 24、 25を固定し、軸線方向に突 出させている。
軸線方向両端のステータ 12ではロータ 11に対向する一面側にのみ前記電機子コ ィル 24を固定している一方、中間のステータ 13では両面に電機子コイル 25を固定し ている。
前記電機子コイル 24、 25はステータ 12、 13に接着剤で固定しているが、ステータ に端面に形成した溝に一端側を圧入固定してもよい。
[0036] 電機子コイル 24、 25は中空部には鉄心を設けずに空芯 24a、 25aとし、鉄心にコィ ルを卷き付ける構成としてレ、なレ、。
前記永久磁石 22と電機子コイル 24、 25の配置位置は同一軸線上として対向配置 し、かつ、永久磁石 22と電機子コイル 24、 25との間隔、即ち、エアギャップ距離 Lを 0 , 1mm〜: 1mmとし、本実施形態では、 0. 5mmとしている。
なお、電機子コイル 24、 25には図示しない電源から所要の電力が供給される構成 としている。
[0037] 前記ロータ部 20bの両側端面と空隙をあけて配置する上部ステータ 12aと 13a、下 部ステータ 12bと 13bとは夫々上部連結具 14、下部連結具 15を介して連結してレ、る 上記上部連結具 14、下部連結具 15は外枠部 14a、 15aより連結部 14b、 15bを所 定間隔をあけて突設した櫛歯形状としている。上部連結具 14の連結部 14bを上部ス テータ 12a、 13aにネジ止め固定し、下部連結具 15の連結部 15bを下部ステータ 12 b、 13bにネジ止め固定している。 [0038] 前記軸方向両端のステータ 12 (上部ステータ 12a、下部ステータ 12b)の背面面( 電機子コイル突設部と反対面)にはネジ穴を設けてナット Nを坦設する一方、前記バ ックヨーク 16、 17にネジ穴 16a、 17aを設け、それぞれネジ 19を挿入してナット Nに 螺嵌して固定している。
上記バックヨーク 16、 17は非磁性材で形成している。
[0039] 前記構成のアキシャルギャップ型モータ 10の組み立ては、永久磁石 22を取り付け たロータヨーク 20に回転軸 14を貫通固定しておく。
一方、ステータ 12、 13には電機子コィノレ 24、 25を取り付けておき、上部ステータ 1 2a、 13aを上部連結具 14で連結すると共に、下部ステータ 12b、 13bを下部連結具 15で連結しておく。
この状態で、下部連結具 15で連結された下部ステータ 12b、 13bを回転軸 30に固 定されたロータ 11に対して下方から被せ、各ロータ 11を下部ステータ 12bと 13b、 13 bと 13bの隙間にそれぞれ挿入する。ステータ 12b、 13bの上端面に設けられた開口 が回転軸受 35の外周面に当接して停止され、下部ステータとロータ 11とが所要のギ ヤップをあけて位置決め保持される。
ついで、ロータ部 20bの上半周部に対して、同様に上部連結具 14で連結された上 咅ステータ 12aと 13aを上方より被せて、ステータ 12aと 13a、 13aと 13aの間にロータ 部 20aの上側部を挿入する。該ステータ 12a、 13aの下端面の開口が回転軸受 35の 外周面に当接して停止され、上部ステータとロータ 11とが所要のギャップをあけて位 置決め保持される。
その後、一方のバックヨーク 16に設けた貫通穴に回転軸 30の一端側を通した後、 回転軸 30の他端を他方のバックヨーク 17に設けた貫通穴に通す。
バックヨーク 16、 17と軸方向両端のステータ 12とをネジ 19で連結固定して組み立 てを終了する。
[0040] 前記のように、上下の連結具 14、 15で上部ステータ 12aと 13a、下部ステータ 12b と 13bとを予め組みつけておき、下部ステータ 12bと 13b、上部ステータ 12aと 13bの 間にロータ 11をはめ込むだけで、所要のエアギャップを保持でき、作業性良く簡単 に組みつけを行うことができる。かつ、ロータとステータとのキャップを精度良く保持で きる。
[0041] 前記構成力 なるアキシャルギャップ型モータ 10では、ステータ 12、 13の電機子コ ィノレ 24、 25は空芯として、電機子コイル 24、 25から永久磁石 22側へ突出する鉄心 を設けていないため、組付作業時に永久磁石と電機子コイルとが吸着することがなく 、かつ、ステータ 12、 13は予め連結具に連結して位置決め保持しているため、非常 に作業性が良くなる。
[0042] かつ、対向するロータ 11とステータ 12、 13のエアギャップ距離を小さく出来、モー タの小型化を図ることができると共に、モータトノレクの高出力化を図ることができる。 一般に、コイル中空部に鉄心を配置した方が界磁が強化されることが知られている が、鉄心を配置した場合、図 4に示すように、ある一定の電流値を超えてからは磁束 の増加が殆どなくなり、鉄心なしの方が磁束が強くなる傾向がある。即ち、本実施形 態のアキシャルギャップ型モータ 10は、電流の上限値を高く設定できる場合に、モー タトルクの高出力化を図ることができる。さらに、鉄心を設けないことにより、部品点数 の削減、モータの軽量ィ匕を図ることもできる。
[0043] また、軸線方向両端のステータ 12の背面側にはバックヨーク 16、 17を設けて漏れ 磁場の発生を防止しているので、更なる磁場の強化がトノレクの高出力化を実現する ことが可能となる。かつ、バックヨーク 16、 17をステータ 12にボルト締めにより取り付 けて着脱自在としているため、メンテナンス時等にロータとステータとを簡単に取り外 して分解することができる。
[0044] 図 5は回転界磁体として永久磁石 22を用いた場合の第 1実施形態の変形例を示し 、電機子コイル 24、 25に芯材としてフラックスコレクタ 110を配置している。該フラック スコレクタ 110の先端は電機子コイル 24、 25の先端より突出させず、永久磁石 22と 吸着しあわなレ、ようにしてレ、る。
[0045] 図 6も第 1実施形態の変形例を示し、連結具 14' (15 ' )の形状を相違させている。
連結具 14'は U形状とし、 P 接するステータ 13と 13 (12と 13)の間を夫々連結してい る。このように、 P 接するステータを順次連結具 14'で連結していく構成とすると、ステ ータの枚数が相違に対応して汎用することができる。
[0046] 図 7は第 2実施形態示す。 第 2実施形態では、電機子コイル 25を取り付ける中間位置のステータ 13には軸線 方向に貫通孔 13dを設け、該貫通孔 13dに電機子コイル 25を内嵌固定し、その両端 をステータ 13の両側端面より突出させ、両側のロータ 11に固定した超電導材からな る界磁コイル 100と所要の空隙をあけて対向させている。
前記電機子コイル 25、両端のステータ 12は空芯とする一方、界磁コイル 100の中 空部にフラックスコレクタ 101を芯材として配置し、これらフラックスコレクタ 101は界磁 コイル 100の先端と略同一位置としている。なお若干突出させてもよい。
[0047] また、左右両端のバックヨーク 16 '、 17 'も上下に分割して上部バックヨーク 16a'、 1 7a'、下部バックヨーク 16b '、 17b 'を設けてレ、る。左右両端の上部バックヨーク 16a' と 17a'とを断面半円弧形状の周壁部 55aで連結している。同様に、下部バックヨーク 16b 'と 17b 'とを断面半円弧形状の周壁部 55bで連結している。
ロータ 11を回転軸 30に軸線方向に間隔をあけて固定している点、ステータ 50を上 下に分割して上下連結具 14 '、 15 'で連結している点は第 1実施形態と同様である。
[0048] 該第 2実施形態では複数のロータ 11と複数のステータ 12、 13とを第 1実施形態と 同様に交互に組みつけたのち、前記周壁部 55aで連結した上部バックヨーク 16a'と 17a'を上方から被せると共に、周壁部 55bで連結した下部バックヨーク 16b'と 17b' とを下方力 被せ、ノくックヨーク 16 '、 17 'を両端の上下ステータ 12a, 12bにネジ 19 で固定している。
[0049] 前記構成とすると、ロータ 11に挟まれるステータ 13の両側端面に取り付ける電機子 コイル 25を 1つの電機子コイル 25で構成することができ、部品点数の削減および作 業手数の低減を図ることができる。
さらに、ロータ 11に固定する回転磁界体として超電導材からなる界磁コイルを用レ、 ているため、ロータとステータとを交互に積層配置する際に永久磁石を用いた場合に 発生する吸着の問題を解消できる。よって、電機子コイルと回転界磁体とを近接配置 でき、しかも回転界磁体にフラックスコレクタを芯材を配置しているため、モータをより 高出力化することができる。
また、ロータ 11およびステータ 12、 13をバックヨークおよび周壁部により密閉構造 で囲むことができ、磁束の外部漏れを確実に防止できる。かつ、界磁コイルを超電導 材で形成しているため、冷却機構(図示せず)を付設する必要があるが、その場合、 密閉構造とすることで断熱を図ることができる。他の作用効果は第 1実施形態と同様 である。
[0050] 図 8は第 3実施形態を示し、ロータ 11には第 2実施形態と同様に超電導材からなる 界磁コイル 100を取り付け、その中空部にフラックスコレクタ 101を配置している。 一方、ステータ 12、 13に取り付ける電機子コィノレ 24、 25の中空き 24a、 25aにもフ ラックスコレクタ 102を配置し、該フラックスコレクタ 102の先端を電機子コイル 24、 25 の先端より僅かに突出させている。
[0051] 第 3実施形態では、超電導材からなる界磁コイル 100を極低温まで冷却する必要 があるため、液体水素タンク 60に貯留した液体水素を回転軸 30の中空部 30aに導 入してバルタ磁石 22 'を冷却している。
詳しくは、回転軸 30には軸線方向の一端側に開口する中空部 30aを設け、液体水 素タン 60から冷媒流路 62を有するパイプ 63を中空部 30aへと軸受 64を介して挿入 し、ロータ配置位置の手前で終端させている。該パイプ 63は二重管構造とし、中心 空間に液体水素を導通させる冷媒流路 62とし、ロータ配置位置では中空部 30aに液 体水素を充填させて界磁コイル 100を冷却している。一方、パイプ 62の外周空間は 真空断熱空間とし、ロータ 11と対応する位置以外では真空断熱を図っている。
[0052] 前記構成によれば、第 1実施形態と同様、ステータ 12、 13とロータ 11の間隔を小さ くしてモータの小型化を図ることができると共に、界磁コイルを超電導材で形成してい るため、磁場を強化してモータの高出力化を図ることができる。
なお、他の構成及び作用効果は第 1実施形態と同様のため、同一の符号を付して 説明を省略する。
また、ステータ 12、 13に取り付ける電機子コイルを超電導材で構成してもよぐその 場合には冷媒流路をステータ側に設けている。
[0053] なお、前記第 1実施形態の構成を、直列結合同期タイプのアキシャルギャップ型モ ータとせずに、図 9、図 10に示すように、 1枚のロータ 11の軸線方向の両側に一対の ステータ 12を配置する構成とするアキシャルギャップ型モータにも適用することがで きる。 なお、図 9、図 10は図 1〜図 3と同一符号を付して説明を省略する。
[0054] 図 11、図 12は第 4実施形態を示す。
第 1〜第 3実施形態では連結具を用いてステータを予定め連結し、回転軸に固定 されたロータに対して軸直角方向よりステータを挟みこむ構成としているが、第 4実施 形態では回転軸 30にステータ 12→ロータ 11→ステータ 13→ロータ 11→ステータ 1 3…ロータ 11→ステータ 12を順次揷通させて組みつける構成としてレ、る。
[0055] 軸線方向の一端に配置する一方のバックヨーク 16"には回転軸 30よりも大きな軸 穴 16a"を設けている一方、他方のバックヨーク 17"には回転軸 30を内嵌する円形の 軸穴 17a"を設けている。また、前記一方のバックヨーク 16"に下部周壁 55bを固定し ておき、該下部周壁 55bの内周面に凹凸部を設け、凹部 55b _ lにステータ 12、 13 の下端部をはめ込むようにして位置決め固定材として兼用している。また凸部 55b_ 2はロータ 11の停止用表示部としている。他方のバックヨーク 17"には上部周壁 55a を連結している。
[0056] 軸方向両端のステータ 12、中間位置のステータ 13は上下に分割していない点を 除き、第 2実施形態と同様な形状とし、空芯の電機子コイル 24、 25を取り付けている 。其の中心には回転軸 30を遊嵌する中心穴 12k、 13kを設けている。
一方、ロータ 11は第 1実施形態と同様な形状とし、超電導材からなる界磁コイル 10 0を取り付けている。
[0057] 該第 4実施形態では、まず、下部周壁 55bを連結したバックヨーク 16"の軸穴 16a" に回転軸 30を貫通させる。ついで、軸方向一端側のステータ 12を回転軸 30に通し てバックヨーク 16"に接触させる位置まで移動させる。該位置でステータ 12の下端が 下部周壁 55bの凹部 55b _ lに嵌合し位置決めされる。ついで、ロータ 11を回転軸 3 0に通し、下部周壁 55bの凸部 55b _ 2の位置で停止し、ステータ 12と所要の空隙を あけて位置決めする。該位置でロータ 11の軸受部 20aと回転軸 30とをネジ止め等で 固定する。ついで、ステータ 13を回転軸 30に通し、前記と同様に凹部 55b _ lに下 端を揷入させて停止、ついで、ロータ 11を回転軸 30に通す。これを繰り返すことで、 全てのステータ 13とロータ 11とを回転軸 30に順次組みつけていく。軸方向他端のス テータ 12を回転軸 30に取り付けた後、他方のバックヨーク 17"を回転軸 30にと通す 。この状態で、ノ ックヨーク 17"に連結した上部周壁 55aが下部周壁 55bに接合する と共にバックヨーク 16"の外周面とも接合し、ロータ 11およびステータ 12、 13を密閉 空間で囲むこととなる。最終的に、バックヨーク 16"、 17"からステータ 12、 12にネジ 1 9を差し込んで連結固定している。
[0058] 前記構成によれば、回転軸に順次ステータとロータとを差し込んでレ、くだけで簡単 に組みつけが行え、分解時には、軸線方向端のバックヨークとステータとの固定を外 せば、簡単にステータとロータとを取り外していくことができ、組み立ておよび分解を 容易に行うことができメンテナンス性を高めることができる。かつ、回転軸上に狭いギ ヤップでロータとステータとを高密度配置することができ、高出力が得られる。
[0059] 図 13は第 5実施形態を示し、軸方向両端のバックヨークを廃止して、軸方向両端の ステータ 12'を非磁性体からなる厚肉構造としている。該ステータ 12'自体を固定材 110にネジ Nで着脱自在にネジ止め固定している。
他の構成は第 1実施形態と同様であるため、同一符号を付して説明を省略する。
[0060] 前記したいずれの実施形態も、ステータに電機子コイルと直接固定すると共に、口 ータに回転界磁体を直接固定している力 このようにステータゃロータに直接固定す る代わりに、図 14、図 15に示す第 6実施形態図、図 16に示す第 7実施形態ように容 器 200内に超電導材からなる電機子コイル 201、回転界磁体の界磁コイル 202を予 め収容しておき、該容器 200をステータ 12 (13)とロータ 11に着脱自在に取り付ける ことがメンテナンス上で好ましレ、。
[0061] 図 15 (A) (B)に示すように、容器 200は、透磁性の樹脂成形品で、一端開口の円 環筒形状の容器本体 210と、該容器本体 210の開口を閉鎖する蓋体 211とからなる 。該容器本体 210と蓋体 211で真空状態に密封される内部は仕切壁 213でコイル収 容部 217と冷媒充填部 218に区画され、各コイル収容部 217に電機子コイル 201あ るいは界磁コイル 202を 1つづつ収容している。冷媒充填部 218内には液体窒素か らなる冷媒 214を充填している。前記容器本体 210、蓋体 211の外面に透磁性の断 熱材 215を取り付けて断熱容器としている。
また、容器本体 210には取付用フランジ 210aを突設し、該フランジ 210をステータ 、ロータにネジ 216で固定するようにしている。 前記容器 200は第 1〜第 4実施形態のロータの両面、第 4実施形態のステータの両 端面に凹設された嵌合部に着脱自在に内嵌し、前記ネジ 216で固定している。
[0062] 図 16に示す第 7実施形態は、第 1〜第 3実施形態の上下分割されたステータに容 器 200'を取り付ける場合であり、容器 200'を上下一対の半円環形状の容器 200A '、 200B'となる。他の構成は図 14、 15と同様であるため付して説明を省略する。
[0063] このように、電機子コイル、回転界磁体を直接にステータ、ロータに固定せずに、容 器内に一括封入しておき、該容器をステータ、ロータに着脱自在に取り付ける構成と すると、メンテナンスが容易となり、かつ、超電導材からなる電機子コイル、界磁コイル の冷却を簡単に図ることができる。
産業上の利用可能性
[0064] 本発明のアキシャルギャップ型モータは、高出力が必要な大型の船舶や車両等の 動力源として好適に用いられるものである。さらに発電設備等の各種産業用としても 好適に用いることができる。

Claims

請求の範囲
[1] 回転軸を主軸として、ロータとステータとが軸線方向に交互に所要の空隙をあけて 積層された直列結合同期タイプのアキシャルギャップ型モータであって、
前記ロータは前記回転軸に固定されると共に、前記ステータは前記回転軸に対し て連動不可に配置され、
前記ロータに複数の回転界磁体が軸線回りに取り付られている一方、前記ステータ に前記回転界磁体と空隙をあけて対向させて軸線回りに複数の電機子コイルが取り 付けられて磁束方向が軸線方向に向けられており、かつ、前記電機子コイルは空芯 あるいは磁性体からなる芯材を取り付けてレ、ることを特徴とするアキシャルギャップ型 モータ。
[2] 軸線方向両端の前記ステータがー対のバックヨークにネジ止めで着脱自在に結合 されている請求項 1に記載のアキシャルギャップ型モータ。
[3] 前記ステータに軸線方向の貫通孔が設けられ、該貫通孔に前記電機子コイルを内 嵌固定し、該電機子コイルの両端をステータの両側端面から突出させて、該ステータ の両側の前記ロータに固定された回転界磁体に空隙をあけて対向させている請求 項 1または請求項 2に記載のアキシャルギャップ型モータ。
[4] 前記電機子コイルあるいは Zおよび前記回転界磁体とする界磁コイルを超電導材 より形成している請求項 1乃至請求項 3のいずれ力 4項に記載のアキシャルギャップ 开モータ
[5] 前記回転界磁体は永久磁石から形成する一方、前記ステータに取り付ける電機子 コイルは空芯あるいは磁性体からなる芯材を電機子コイルの先端から突出させずに 取り付けている請求項 1乃至請求項 3のいずれか 1項に記載のアキシャルギャップ型 モータ。
[6] 前記回転界磁体と電機子コイルの空隙は、 0. lmm〜lmmとしている請求項 1乃 至請求項 5のいずれ力 1項に記載のアキシャルギャップ型モータ。
[7] 前記ロータの中心穴に回転軸が貫通固定されている一方、前記ロータの軸線方向 両側に配置されるステータは連結具を介して間隔をあけて連結され、両側のステータ 間の空隙に前記ロータがはめ込まれている請求項 1乃至請求項 6のいずれ力 1項に 記載のアキシャルギャップ型モータ。
[8] 前記連結具を介して連結する前記各ステータは回転軸を挟む位置で上下に分割 され、上部ステータを上部連結具で連結して上分割材とされる一方、下部ステータを 下部連結具で連結して下分割材とされ、上下分割材の間に回転軸に固定された口 ータを挟んではめ込まれている請求項 7に記載のアキシャルギャップ型モータ。
[9] 前記連結具はステータの外周側に配置される外枠部と、該外枠部から所要間隔を あけて突出されて各ステータに連結される連結部とを備えている請求項 7または請求 項 8に記載のアキシャルギャップ型モータ。
[10] 前記回転軸の一端側に前記バックヨークの一方が取り付けられていると共に、該回 転軸に前記ステータの中心穴が遊嵌されて貫通され、該ステータと前記ロータとが回 転軸に交互に組付けられており、前記ステータは外周側に配置される位置決め固定 材で位置決め保持され、前記回転軸の他端側先端の前記ステータが前記バックョー クの他方に取り付けられている請求項 2に記載のアキシャルギャップ型モータ。
[11] 前記両端のバックヨークの間に、前記ロータおよびステータの外周側と空隙をあけ て配置される周壁が設けられている請求項 2乃至請求項 10のいずれ力 1項に記載の アキシャルギャップ型モータ。
[12] 前記周壁の内面に凹凸を設けて、請求項 6に記載の前記位置決め固定材を兼用 させてレ、る請求項 11に記載のアキシャルギャップ型モータ。
[13] 前記ロータあるいは/およびステータとに周方向に間隔をあけて複数個数配置さ れる前記回転界磁体あるいは/および電機子コイルは、容器内部に所要間隔をあけ て予め収容され、該容器がロータあるは/及びステータに着脱自在に取り付けられる 請求項 1乃至請求項 12に記載のアキシャルギャップ型モータ。
[14] 前記容器が上下一対の半円環形状とされ、それぞれ独立してロータあるいは Zお よびステータに着脱自在に取り付けられる請求項 13に記載のアキシャルギャップ型 モータ。
[15] 前記容器内に収容される回転界磁体あるいは Zおよび電機子コイルは超電導材 からなり、前記容器は断熱容器力 なると共に、該容器内部に冷媒が充填されている 請求項 13または請求項 13または請求項 14に記載のアキシャルギャップ型モータ。
PCT/JP2005/023130 2004-12-24 2005-12-16 アキシャルギャップ型モータ WO2006068042A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CA2592163A CA2592163C (en) 2004-12-24 2005-12-16 Axial gap type motor
EP05816387A EP1830454A1 (en) 2004-12-24 2005-12-16 Axial gap motor
CN2005800446986A CN101088209B (zh) 2004-12-24 2005-12-16 轴向间隙类型电机
US11/793,805 US7821169B2 (en) 2004-12-24 2005-12-16 Axial gap type motor
NO20073219A NO20073219L (no) 2004-12-24 2007-06-22 Motor med aksial spalte
HK08101725.2A HK1111271A1 (en) 2004-12-24 2008-02-18 Axial gap type motor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004374796A JP4690032B2 (ja) 2004-12-24 2004-12-24 アキシャルギャップ型モータ
JP2004-374796 2004-12-24

Publications (1)

Publication Number Publication Date
WO2006068042A1 true WO2006068042A1 (ja) 2006-06-29

Family

ID=36601642

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/023130 WO2006068042A1 (ja) 2004-12-24 2005-12-16 アキシャルギャップ型モータ

Country Status (11)

Country Link
US (1) US7821169B2 (ja)
EP (1) EP1830454A1 (ja)
JP (1) JP4690032B2 (ja)
KR (1) KR100976884B1 (ja)
CN (1) CN101088209B (ja)
CA (1) CA2592163C (ja)
HK (1) HK1111271A1 (ja)
NO (1) NO20073219L (ja)
RU (1) RU2007128341A (ja)
TW (1) TWI369837B (ja)
WO (1) WO2006068042A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010516226A (ja) * 2007-01-25 2010-05-13 タエチャンエヌイーティー カンパニー リミテッド Afpmコアレス型マルチ発電機及びモーター
US8115364B2 (en) 2007-03-23 2012-02-14 Shin-Etsu Chemical Co., Ltd. Permanent magnet generator and wind power generator having a multi-stage rotor and stator
US8188633B2 (en) * 2009-01-05 2012-05-29 Eric Stephane Quere Integrated composite electromechanical machines
US20120326541A1 (en) * 2008-08-15 2012-12-27 Millennial Research Corporation Regenerative Motor and Coil
JP2014528228A (ja) * 2011-04-04 2014-10-23 コロンビア・パワー・テクノロジーズ・インコーポレーテッドColumbia Power Technologies,Inc. 電気機械エネルギー変換器のステータとロータとの間の空隙を維持する機械組立体
WO2015075784A1 (ja) * 2013-11-20 2015-05-28 株式会社日立製作所 アキシャルギャップ型回転電機
WO2017077812A1 (ja) * 2015-11-02 2017-05-11 株式会社神戸製鋼所 電動ウインチ装置及び移動式クレーン
WO2017199828A1 (ja) * 2016-05-19 2017-11-23 Ntn株式会社 電動式直動アクチュエータ
US10038349B2 (en) 2008-08-15 2018-07-31 Millennial Research Corporation Multi-phase modular coil element for electric motor and generator
JP2023511326A (ja) * 2020-12-22 2023-03-17 シェンジェン コア メディカル テクノロジー カンパニー リミテッド 血液ポンプ
JP7368197B2 (ja) 2019-11-22 2023-10-24 三菱重工業株式会社 回転電機および回転電機の製造方法

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2436369A1 (en) * 2003-08-05 2005-02-05 Tecobim Inc. Alternator using permanent magnets
JP5125506B2 (ja) * 2005-05-17 2013-01-23 株式会社デンソー モータとその制御装置
US7719147B2 (en) 2006-07-26 2010-05-18 Millennial Research Corporation Electric motor
JP4987569B2 (ja) * 2007-05-28 2012-07-25 公益財団法人鉄道総合技術研究所 車載可能な磁気浮上式回転体機構
JP4987572B2 (ja) * 2007-05-31 2012-07-25 公益財団法人鉄道総合技術研究所 車載可能な磁気浮上式発電機
JP4701294B2 (ja) * 2009-01-30 2011-06-15 アイシン精機株式会社 超電導装置
US8390157B2 (en) * 2009-05-14 2013-03-05 Shin-Etsu Chemical Co., Ltd. Cooling mechanism for axial gap type rotating machines
US20100295422A1 (en) * 2009-05-19 2010-11-25 Chester Sohn Stacking alternator
US8258737B2 (en) * 2009-06-24 2012-09-04 Casey John R Electric machine with non-coaxial rotors
KR100956767B1 (ko) * 2009-11-13 2010-05-12 태창엔이티 주식회사 에이에프피엠과 알에프피엠 복합 모터 및 발전기
TW201138271A (en) * 2010-04-26 2011-11-01 Chuan-Sheng Chen Armature-free coil motor
EP2412630B1 (de) * 2010-07-27 2019-09-11 Siemens Aktiengesellschaft Antrieb eines Heckrotors eines Hubschraubers
JP5562180B2 (ja) * 2010-08-27 2014-07-30 日立アプライアンス株式会社 アキシャルギャップ型回転電機
DE102010062200A1 (de) * 2010-11-30 2012-05-31 Dunkermotoren Gmbh Zwei- oder mehrphasiger Elektromotor
US9444308B2 (en) * 2011-12-29 2016-09-13 Ta Instruments-Waters L.L.C. Linear motor cooling system
JP5013285B1 (ja) * 2012-01-26 2012-08-29 功一 堀口 超伝導モーターとその制御方法。
DE102012020434B4 (de) * 2012-10-18 2016-09-08 Audi Ag Elektrischer Dämpfer für ein Kraftfahrzeug
KR101312720B1 (ko) * 2013-04-15 2013-10-01 (주)모터일일사 모터 내부로 에어 유로를 형성한 모터 장치
JP2018007380A (ja) * 2016-06-30 2018-01-11 アイシン精機株式会社 回転電機
KR20180065341A (ko) * 2016-12-07 2018-06-18 엘지전자 주식회사 축방향 모터 및 그 제조 방법
KR101955983B1 (ko) 2017-02-24 2019-03-11 엘지전자 주식회사 축방향 공극형 모터 및 이를 구비한 의류처리장치
FR3067880B1 (fr) * 2017-06-15 2020-07-17 Moteurs Leroy-Somer Machine electrique tournante
KR20190019405A (ko) 2017-08-17 2019-02-27 조희덕 양정현파 중공축(中空軸)형의 직렬 전자기(電磁氣) 회전체
US11018565B2 (en) * 2018-05-15 2021-05-25 Regal Beloit America, Inc. Axial flux electric machine and methods of assembling the same
RU2689395C1 (ru) * 2018-07-25 2019-05-28 Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский авиационный институт (национальный исследовательский университет)" Индукторная электрическая машина на основе высокотемпературных сверхпроводников
DE102020102824A1 (de) * 2019-07-15 2021-01-21 Gëzim Krasniqi Elektromotor-Generator-Vorrichtung und Verfahren zum Betrieb einer technischen Anlage
SG10202004135RA (en) * 2020-05-05 2021-12-30 Soon Seng Sin Levitation and propulsion unit - two (lpu-2)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57177370U (ja) * 1981-05-07 1982-11-10
JPH03289344A (ja) * 1990-03-31 1991-12-19 Aisin Seiki Co Ltd 超電導モータ
JPH0787724A (ja) * 1993-09-15 1995-03-31 Imura Zairyo Kaihatsu Kenkyusho:Kk 超電導モーター
JPH08242557A (ja) * 1995-03-01 1996-09-17 Sawafuji Electric Co Ltd 高速回転機の冷却構造
JPH09327163A (ja) * 1996-01-18 1997-12-16 Yuyu Co Ltd コアレス型ブラシレスディーシーモーターおよびステーターアセンブリーの製造方法
JPH10248222A (ja) * 1997-02-28 1998-09-14 Toshiba Corp 超小形モータ及びその製造方法
JP2001333562A (ja) * 2000-05-22 2001-11-30 Mitsubishi Heavy Ind Ltd コアレスアキシャルギャップ型モータ
JP2004140937A (ja) * 2002-10-18 2004-05-13 Fujitsu General Ltd アキシャルギャップ型電動機

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2274158A1 (fr) * 1974-06-07 1976-01-02 Anvar Perfectionnements aux machines electriques tournantes a bobinage supraconducteur
US4187441A (en) * 1977-03-23 1980-02-05 General Electric Company High power density brushless dc motor
JPS5543982A (en) * 1978-09-22 1980-03-28 Sony Corp Motor
JPS57177370A (en) 1981-04-24 1982-11-01 Kyoraku Co Ltd Production of hollow structure
CH663121A5 (de) * 1983-10-03 1987-11-13 Mavilor Syst Sa Wechselstrom-synchron-servomotor.
DE3526166C2 (de) * 1984-07-23 1996-05-02 Asahi Chemical Ind Bürstenloser Elektromotor und Verfahren zum Herstellen einer Spuleneinheit für diesen
US4578606A (en) * 1984-12-13 1986-03-25 Buehler Products, Inc. Brushless DC electric motor and tachogenerator assembly
WO2004075379A1 (ja) 1992-03-18 2004-09-02 Kazuto Sakai アキシャルギャップ回転電機
JP3289344B2 (ja) 1992-12-08 2002-06-04 ミツミ電機株式会社 ドラムモータ
US5581135A (en) * 1993-09-15 1996-12-03 Imra Material R & D Co., Ltd. Superconducting motor
US6037696A (en) 1993-12-29 2000-03-14 Samot Engineering (1992) Ltd. Permanent magnet axial air gap electric machine
RU2098908C1 (ru) * 1995-03-07 1997-12-10 Товарищество с ограниченной ответственностью "ПЭТРО-ФЭСТ" Вентильный электродвигатель
US5731649A (en) 1996-12-27 1998-03-24 Caama+E,Otl N+Ee O; Ramon A. Electric motor or generator
US6720688B1 (en) * 1999-02-12 2004-04-13 Helmut Schiller Electric machine
JP3561248B2 (ja) * 2001-09-17 2004-09-02 日本サーボ株式会社 偏平多相永久磁石形ステッピングモータとその励磁回路
AU2002953478A0 (en) * 2002-12-20 2003-01-09 Jannali Holdings Pty Ltd Modularly segmented air core winding electric motor or generator
JP4653648B2 (ja) * 2004-12-24 2011-03-16 住友電気工業株式会社 誘導子型同期機

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57177370U (ja) * 1981-05-07 1982-11-10
JPH03289344A (ja) * 1990-03-31 1991-12-19 Aisin Seiki Co Ltd 超電導モータ
JPH0787724A (ja) * 1993-09-15 1995-03-31 Imura Zairyo Kaihatsu Kenkyusho:Kk 超電導モーター
JPH08242557A (ja) * 1995-03-01 1996-09-17 Sawafuji Electric Co Ltd 高速回転機の冷却構造
JPH09327163A (ja) * 1996-01-18 1997-12-16 Yuyu Co Ltd コアレス型ブラシレスディーシーモーターおよびステーターアセンブリーの製造方法
JPH10248222A (ja) * 1997-02-28 1998-09-14 Toshiba Corp 超小形モータ及びその製造方法
JP2001333562A (ja) * 2000-05-22 2001-11-30 Mitsubishi Heavy Ind Ltd コアレスアキシャルギャップ型モータ
JP2004140937A (ja) * 2002-10-18 2004-05-13 Fujitsu General Ltd アキシャルギャップ型電動機

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8264107B2 (en) * 2007-01-25 2012-09-11 In-Ho Jee AFPM coreless multi-generator and motor
JP2010516226A (ja) * 2007-01-25 2010-05-13 タエチャンエヌイーティー カンパニー リミテッド Afpmコアレス型マルチ発電機及びモーター
US8115364B2 (en) 2007-03-23 2012-02-14 Shin-Etsu Chemical Co., Ltd. Permanent magnet generator and wind power generator having a multi-stage rotor and stator
US10038349B2 (en) 2008-08-15 2018-07-31 Millennial Research Corporation Multi-phase modular coil element for electric motor and generator
US20120326541A1 (en) * 2008-08-15 2012-12-27 Millennial Research Corporation Regenerative Motor and Coil
US9800111B2 (en) * 2008-08-15 2017-10-24 Millennial Research Corporation Regenerative motor and coil
US8188633B2 (en) * 2009-01-05 2012-05-29 Eric Stephane Quere Integrated composite electromechanical machines
JP2014528228A (ja) * 2011-04-04 2014-10-23 コロンビア・パワー・テクノロジーズ・インコーポレーテッドColumbia Power Technologies,Inc. 電気機械エネルギー変換器のステータとロータとの間の空隙を維持する機械組立体
US9484779B2 (en) 2011-04-04 2016-11-01 Columbia Power Technologies, Inc. Mechanical assembly for maintaining an air gap between a stator and rotor in an electro-mechanical energy converter
WO2015075784A1 (ja) * 2013-11-20 2015-05-28 株式会社日立製作所 アキシャルギャップ型回転電機
US10399828B2 (en) 2015-11-02 2019-09-03 Kobe Steel, Ltd. Electrically driven winch device and mobile crane
WO2017077812A1 (ja) * 2015-11-02 2017-05-11 株式会社神戸製鋼所 電動ウインチ装置及び移動式クレーン
JP2017207140A (ja) * 2016-05-19 2017-11-24 Ntn株式会社 電動式直動アクチュエータ
WO2017199828A1 (ja) * 2016-05-19 2017-11-23 Ntn株式会社 電動式直動アクチュエータ
US11190081B2 (en) 2016-05-19 2021-11-30 Ntn Corporation Electric linear motion actuator
JP7368197B2 (ja) 2019-11-22 2023-10-24 三菱重工業株式会社 回転電機および回転電機の製造方法
JP2023511326A (ja) * 2020-12-22 2023-03-17 シェンジェン コア メディカル テクノロジー カンパニー リミテッド 血液ポンプ
JP7330386B2 (ja) 2020-12-22 2023-08-21 シェンジェン コア メディカル テクノロジー カンパニー リミテッド 血液ポンプ

Also Published As

Publication number Publication date
TW200631279A (en) 2006-09-01
EP1830454A1 (en) 2007-09-05
NO20073219L (no) 2007-09-24
KR20070090950A (ko) 2007-09-06
CN101088209B (zh) 2010-05-12
HK1111271A1 (en) 2008-08-01
KR100976884B1 (ko) 2010-08-18
JP4690032B2 (ja) 2011-06-01
RU2007128341A (ru) 2009-01-27
CA2592163A1 (en) 2006-06-29
JP2006187055A (ja) 2006-07-13
US20080136282A1 (en) 2008-06-12
TWI369837B (en) 2012-08-01
CA2592163C (en) 2012-04-03
US7821169B2 (en) 2010-10-26
CN101088209A (zh) 2007-12-12

Similar Documents

Publication Publication Date Title
WO2006068042A1 (ja) アキシャルギャップ型モータ
EP1032115B1 (en) Reluctance type rotating machine with permanent magnets
US6774527B2 (en) Two rotor single stator type electric motor
US20080238232A1 (en) Motor, rotor structure and magnetic machine
US20070228847A1 (en) High speed electric motor
EP2200154A1 (en) Axial gap motor
US20100283564A1 (en) Superconducting coil apparatus and inductor-type synchronous machine
WO2006068039A1 (ja) アキシャルギャップ型超電導モータ
JP2016532414A (ja) 電気機械のためのロータ
US20100148625A1 (en) Superconducting device and axial-type superconducting motor
JP3675010B2 (ja) 超電導軸受装置
US11990810B2 (en) Printed circuit board stator axial field rotary energy device with ferromagnetic yoke and cooling plate
JP3936340B2 (ja) 超電導同期機
JP6402739B2 (ja) 回転電機
US20100295401A1 (en) Motor and device using the same
JP4920322B2 (ja) 誘導子型同期機
US7779532B2 (en) Manufacturing method of hybrid permanent magnet type electric rotating machine
JP2007060744A (ja) 発電・駆動両用モータおよびそれを備えた車両
JP2007295714A (ja) 密閉型電動圧縮機
US20230018260A1 (en) Dual and multiple air gap rotary device
US20230361634A1 (en) Printed circuit board stator axial field rotary energy device with rotor disks and ferromagnetic yoke
JPS62268346A (ja) ブラシレスモ−タ
JP2008001280A (ja) 舶用推進装置
JP4014336B2 (ja) 2軸同期反転駆動モータ
CN111600405A (zh) 磁极模块、转子、转子的装配方法及电机

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2592163

Country of ref document: CA

Ref document number: 2005816387

Country of ref document: EP

Ref document number: 1020077014349

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 200580044698.6

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007128341

Country of ref document: RU

WWE Wipo information: entry into national phase

Ref document number: 11793805

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2005816387

Country of ref document: EP