WO2006064949A1 - キャピラリーエレクトロウェッティング現象を用いたバルブ及びアクチュエータ - Google Patents

キャピラリーエレクトロウェッティング現象を用いたバルブ及びアクチュエータ Download PDF

Info

Publication number
WO2006064949A1
WO2006064949A1 PCT/JP2005/023300 JP2005023300W WO2006064949A1 WO 2006064949 A1 WO2006064949 A1 WO 2006064949A1 JP 2005023300 W JP2005023300 W JP 2005023300W WO 2006064949 A1 WO2006064949 A1 WO 2006064949A1
Authority
WO
WIPO (PCT)
Prior art keywords
passage
electrode
liquid
voltage
valve
Prior art date
Application number
PCT/JP2005/023300
Other languages
English (en)
French (fr)
Inventor
Hiroto Sugahara
Original Assignee
Brother Kogyo Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Brother Kogyo Kabushiki Kaisha filed Critical Brother Kogyo Kabushiki Kaisha
Priority to JP2006520531A priority Critical patent/JP4784510B2/ja
Priority to US11/721,962 priority patent/US8172375B2/en
Priority to EP20050816950 priority patent/EP1835213B1/en
Publication of WO2006064949A1 publication Critical patent/WO2006064949A1/ja
Priority to US13/433,024 priority patent/US8348391B2/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K13/00Other constructional types of cut-off apparatus; Arrangements for cutting-off
    • F16K13/08Arrangements for cutting-off not used
    • F16K13/10Arrangements for cutting-off not used by means of liquid or granular medium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/165Prevention or detection of nozzle clogging, e.g. cleaning, capping or moistening for nozzles
    • B41J2/16505Caps, spittoons or covers for cleaning or preventing drying out
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/17Ink jet characterised by ink handling
    • B41J2/175Ink supply systems ; Circuit parts therefor
    • B41J2/17503Ink cartridges
    • B41J2/17513Inner structure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/17Ink jet characterised by ink handling
    • B41J2/175Ink supply systems ; Circuit parts therefor
    • B41J2/17596Ink pumps, ink valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K99/00Subject matter not provided for in other groups of this subclass
    • F16K99/0001Microvalves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K99/00Subject matter not provided for in other groups of this subclass
    • F16K99/0001Microvalves
    • F16K99/0003Constructional types of microvalves; Details of the cutting-off member
    • F16K99/0017Capillary or surface tension valves, e.g. using electro-wetting or electro-capillarity effects
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K99/00Subject matter not provided for in other groups of this subclass
    • F16K99/0001Microvalves
    • F16K99/0003Constructional types of microvalves; Details of the cutting-off member
    • F16K99/0019Valves using a microdroplet or microbubble as the valve member
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K99/00Subject matter not provided for in other groups of this subclass
    • F16K99/0001Microvalves
    • F16K99/0034Operating means specially adapted for microvalves
    • F16K99/0042Electric operating means therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41JTYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
    • B41J2/00Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed
    • B41J2/005Typewriters or selective printing mechanisms characterised by the printing or marking process for which they are designed characterised by bringing liquid or particles selectively into contact with a printing material
    • B41J2/01Ink jet
    • B41J2/135Nozzles
    • B41J2/14Structure thereof only for on-demand ink jet heads
    • B41J2002/14395Electrowetting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K99/00Subject matter not provided for in other groups of this subclass
    • F16K2099/0082Microvalves adapted for a particular use
    • F16K2099/0092Inkjet printers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/206Flow affected by fluid contact, energy field or coanda effect [e.g., pure fluid device or system]
    • Y10T137/218Means to regulate or vary operation of device
    • Y10T137/2191By non-fluid energy field affecting input [e.g., transducer]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/206Flow affected by fluid contact, energy field or coanda effect [e.g., pure fluid device or system]
    • Y10T137/218Means to regulate or vary operation of device
    • Y10T137/2202By movable element
    • Y10T137/2213Electrically-actuated element [e.g., electro-mechanical transducer]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/206Flow affected by fluid contact, energy field or coanda effect [e.g., pure fluid device or system]
    • Y10T137/218Means to regulate or vary operation of device
    • Y10T137/2202By movable element
    • Y10T137/2218Means [e.g., valve] in control input
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/206Flow affected by fluid contact, energy field or coanda effect [e.g., pure fluid device or system]
    • Y10T137/2224Structure of body of device

Definitions

  • the present invention relates to a valve capable of opening and closing a passage that connects two spaces separated from each other, and more particularly, to a valve and an actuator using a capacitive electrowetting phenomenon.
  • An inkjet printer has an ink cartridge that supplies ink to an inkjet head that ejects ink.
  • This ink cartridge is provided with an air communication path for allowing the air to flow into the ink cartridge by the reduced amount of the ink that has flowed out of the ink supply loca- tion for the purpose of smoothly supplying ink to the ink jet head.
  • the ink inside the ink cartridge gradually evaporates and its viscosity increases.
  • an ink cartridge (ink tank) is proposed in which the atmosphere communication passage is formed into a labyrinth structure that is narrowed and folded many times to reduce the ink evaporation rate. (For example, see Patent Document 1).
  • Patent Document 1 Japanese Patent Laid-Open No. 11-105305 (FIG. 1)
  • a general structure such as an electromagnetic valve capable of opening and closing the atmosphere communication path in the ink cartridge It is possible to prevent ink drying by opening the valve only when ink jet head force ink is ejected and closing the valve otherwise.
  • a general valve such as a solenoid valve has a mechanism that drives a valve element that contacts the valve seat, and the structure is relatively complicated. , Ink cartridge manufacturing costs will be quite high
  • a first passage that communicates two spaces separated from each other, and a second passage that branches from the first passage.
  • a first electrode provided on a wall surface forming the second passage and a surface of the first electrode.
  • a predetermined voltage is applied, a predetermined voltage is applied.
  • a valve having a first insulating film in which the wetting angle of the first liquid on the surface thereof is lower than in a state where no voltage is applied.
  • the valve may further include a voltage application unit that applies a predetermined voltage to the first electrode.
  • This valve applies a predetermined voltage to the first electrode!
  • the wetting angle of the first liquid on the surface of the first insulating film is changed, and the first liquid is moved between the first passage and the second passage.
  • the first passage can be opened and closed. Therefore, the valve structure is simple with no moving parts, and the manufacturing cost can be kept low. In addition, noise and energy consumption during valve operation are reduced.
  • the first liquid moves to the surface of the first insulating film in the second passage, and the first liquid moves to the first passage.
  • the passage is opened and the application of the voltage to the first electrode is released, the first liquid moves from the first insulating film of the second passage to the force first passage and moves to the first passage. Is configured to be closed It may be.
  • the wetting angle of the first liquid with respect to the first electrode in a state where a predetermined voltage is applied to the first electrode, the wetting angle of the first liquid with respect to the first electrode is less than 90 °, and the first electrode
  • the wetting angle of the first liquid with respect to the first electrode can be 90 ° or more.
  • the liquid wetting angle with respect to the surface of the first electrode is less than 90 °, so that the liquid is reliably moved from the first passage to the second passage. be able to.
  • the wetting angle with respect to the surface of the first electrode becomes 90 ° or more, so that the liquid can be reliably moved from the second passage to the first passage.
  • the first electrode and the first insulating film are formed at positions separated from the branching position force of the wall surface forming the second passage, and the wall surface forming the second passage is
  • the wetting angle of the first liquid with respect to the vicinity of the branch position can be lower than the wetting angle of the first liquid with respect to the first insulating film in a state where the predetermined voltage is not applied to the first electrode.
  • the first liquid partially enters the second passage in the vicinity of the branch position in a state where a predetermined voltage is not applied to the first electrode. Therefore, when a predetermined voltage is applied to the first electrode, the first liquid can easily move to the first passage force and the second passage, and the first passage is reliably opened.
  • the valve of the present invention includes a second electrode provided on the wall surface forming the first passage, and a second insulating film provided on the surface of the second electrode.
  • the unit may be configured to apply a voltage to the second electrode only when the predetermined voltage is not applied to the first electrode.
  • a voltage is applied to the second electrode, the liquid wetting angle with respect to the second insulating film on the surface of the second electrode is reduced, so that the liquid easily flows from the second passage to the first passage.
  • the passage can be closed more reliably.
  • the voltage application state to the second electrode is released, the liquid wetting angle in the second insulating film of the first passage increases, so that the liquid flows into the first passage force second passage.
  • the first passage can be opened more reliably.
  • the responsiveness of the opening and closing operation of the valve becomes faster.
  • a third electrode may be provided on a wall surface that forms an internal passage so as to be kept at a predetermined constant potential and to always contact the first liquid. According to this, since a potential difference is surely generated between the liquid in contact with the third electrode and the first electrode when a predetermined voltage is applied to the first electrode, the liquid on the surface of the first electrode The wetting angle is reliably reduced and the liquid is reliably transferred from the first passage to the second passage. Furthermore, when a predetermined voltage is applied to the second electrode, a potential difference is surely generated between the second electrode and the first liquid, so that the liquid wetting angle on the surface of the second electrode is reliably reduced. Thus, the first liquid can be reliably moved from the second passage to the first passage.
  • the third electrode may be formed in the vicinity of the branch position of the wall surface forming the second passage.
  • the first liquid can always be brought into contact with the third electrode, and the first liquid can be more reliably held at a predetermined constant potential.
  • the passage area of the first passage may be larger than the passage area of the second passage. According to this, since the capillary force generated in the second passage is larger than the capillary force generated in the first passage, the first liquid can easily move from the first passage to the second passage, It can be opened more reliably. In addition, the responsiveness of the opening / closing operation becomes faster.
  • the surface of the portion that is not in contact with the wall surface of the internal passage of the first liquid may be covered with a second liquid having non-volatility. According to this, the first liquid can be prevented from evaporating by covering with the non-volatile second liquid.
  • a liquid supply source connected to the internal passage and supplying the first liquid to the internal passage may be provided. According to this, even when the first liquid in the internal passage evaporates and the amount thereof decreases, the first liquid can be supplied into the liquid supply source internal passage.
  • the valve of the present invention is provided in an ink cartridge having an ink storage space formed therein and an air communication path that connects the ink storage space and the atmosphere, and the air communication path can be opened and closed. It may be configured. Therefore, when the ink in the ink storage space decreases, the air communication path is opened by the valve, so that the ink can be reduced. Since air can be introduced into the ink storage space from the outside, the ink can be smoothly supplied to the ink jet head. In addition, when ink is not supplied to the ink jet head, the air communication path is closed by a valve, so that the ink inside the ink cartridge can be prevented from drying up and increasing in viscosity. According to the present invention, an ink cartridge comprising such a valve is also provided.
  • the valve of the present invention has a communication path that can be mounted on the ink discharge surface of an ink jet head that discharges ink to a recording medium, and communicates the space on the ink discharge surface side with the outside.
  • the cap may be provided so that the communication path can be opened and closed. According to this, by opening the communication path with the valve and pressing the cap against the ink ejection surface of the inkjet head, the change in atmospheric pressure inside the cap is eliminated by the change in atmospheric pressure inside the cap, and the meniscus of the nozzle is damaged. Can be prevented. Furthermore, by closing the communication path with a valve after pressing the cap, it is possible to prevent the ink in the nozzle from drying. According to the present invention, a cap for an inkjet head comprising such a nozzle is also provided.
  • the voltage application unit is configured to periodically apply a predetermined voltage to the first electrode. Also good. In this case, by opening and closing the passage with a valve every time a certain period of time elapses, the air present inside the ink cartridge or between the cap and the ink ejection surface due to a change in temperature or pressure of the outside air expands or It is possible to prevent shrinkage.
  • the valve of the present invention further includes a third passage branched from the first passage, the second electrode is formed on the wall surface forming the first passage, and the second wall is formed on the wall surface forming the third passage. 3 electrodes are formed, the first passage communicates with the first space and the fourth space, the third passage communicates with the first space and the third space, and the second passage communicates with the first space. And the second space may communicate.
  • the valve of the present invention functions as a multi-way valve.
  • the first space is connected to the second space by applying a predetermined voltage to the third electrode without applying a voltage to the first electrode, and the predetermined voltage is applied to the first electrode without applying a voltage to the third electrode.
  • a passage having an open end opened to a predetermined space, a plurality of electrodes provided in the passage, an insulating layer formed on the electrode, and movable in the passage And a conductive liquid is loaded in the passage so as to contact the plunger and the insulating layer.
  • the actuator of the present invention is a new actuator that utilizes a phenomenon electrowetting phenomenon.
  • a voltage By applying a voltage to a predetermined electrode, the wetting angle of the conductive liquid in the region of the insulating film formed on the electrode is reduced, and the conductive liquid moves to that region. Accordingly, the plunger can move in the passage in contact with the conductive liquid.
  • the end opposite to the end of the plunger facing the predetermined space may be in contact with the liquid in the passage. Further, the plunger may be enclosed in the passage and contained in the liquid.
  • the actuator of the present invention further includes a spindle, the electrode and the insulating layer are provided on the spindle, the plunger has a hollow portion, the spindle is accommodated in the hollow portion, and the plunger is It may be movable on the spindle via liquid.
  • the actuator of the present invention may further include a voltage applying device that selectively applies a voltage to the plurality of electrodes.
  • the actuator of the present invention and a wall provided at a predetermined interval from the opening end of the passage are provided, and a flow path is defined between the wall and the opening end.
  • a flow path closing mechanism is provided in which the flow path is closed when the plunger protrudes from the opening end force and contacts the wall.
  • the flow path opening / closing mechanism of the present invention can effectively control the flow of fluid using the actuator of the present invention.
  • An engaging portion is formed at the tip of the plunger of the actuator, and an engaged portion that engages with the engaging portion is formed on the wall! ⁇ ⁇ Brief Description of Drawings
  • FIG. 1 is a schematic configuration diagram of an ink jet printer according to a first embodiment.
  • FIG. 2 is a perspective view of an ink cartridge.
  • FIG. 3 is a cross-sectional view of an ink cartridge.
  • FIG. 4 is an enlarged view of the vicinity of the valve in FIG.
  • FIG. 5 is an enlarged sectional view of the valve.
  • FIG. 6 is a block diagram showing an electrical configuration of the ink jet printer.
  • FIG. 7 is a flowchart of a series of operations of the ink jet printer when printing is performed.
  • ⁇ 8] A sectional view of the valve in a state where the first passage is closed.
  • FIG. 10 is a cross-sectional view corresponding to FIG.
  • FIG. 11 is a cross-sectional view corresponding to FIG.
  • FIG. 12 is a cross-sectional view corresponding to FIG.
  • FIG. 13 is a cross-sectional view corresponding to FIG.
  • FIG. 14 is a schematic configuration diagram of an ink jet printer according to a second embodiment.
  • FIG. 15 is a longitudinal sectional view of an ink jet head with a nozzle cap attached.
  • FIG. 16 is an enlarged cross-sectional view of the valve of FIG.
  • FIG. 17 is a block diagram showing an electrical configuration of the ink jet printer according to the second embodiment.
  • FIG. 18 is a flowchart of a series of operations including a printing operation of the inkjet printer.
  • FIG. 19 (a) is a cross-sectional view showing a state where a nozzle cap is attached to the ink jet head, and (b) is an enlarged cross-sectional view of the valve of (a).
  • FIG. 20 (a) is a sectional view showing a state immediately before the nozzle cap is mounted on the ink jet head, and (b) is an enlarged sectional view of the valve of (a).
  • FIG. 21 is a diagram conceptually showing a channel structure according to a third embodiment.
  • FIG. 22 is a plan view of the flow path (lower plate) of the flow path structure according to the third embodiment, showing a state where gas cannot communicate.
  • FIG. 23 is a plan view of the flow path (lower plate) of the flow path structure according to the third embodiment, showing a state in which the first flow path and the third flow path are in communication!
  • FIG. 24 is a plan view of the flow path (lower plate) of the flow path structure according to the third embodiment, showing a state where the first flow path and the fourth flow path are in communication!
  • This is a modification of the flow path structure of the third embodiment, and shows a flow path structure in which a plurality of flow paths are three-dimensionally connected.
  • FIG. 26 is a diagram conceptually showing an open state of an opening / closing mechanism of a fourth embodiment.
  • FIG. 27 is a diagram conceptually showing a closed state of the opening / closing mechanism of the fourth embodiment.
  • FIG. 28 It is a diagram conceptually showing an open state of the opening / closing mechanism of Modification 1 of the fourth embodiment.
  • FIG. 29 A diagram conceptually showing a closed state of the opening / closing mechanism of the first modification of the fourth embodiment.
  • FIG. 30 It is a diagram conceptually showing an open state of the opening / closing mechanism of Modification 2 of the fourth embodiment.
  • FIG. 31 is a diagram conceptually showing a closed state of the opening / closing mechanism of Modification 2 of the fourth embodiment.
  • FIG. 32 It is a diagram explaining the capillary phenomenon, Fig. 32 (a) is a diagram showing the capillary phenomenon when the wetting angle is less than 90 °, and Fig. 32 (b) is the wetting angle larger than 90 °. It is a figure showing the capillary phenomenon in a case.
  • Fig. 33 (a) is a schematic cross-sectional view when a droplet is placed on a liquid-repellent insulating film
  • Fig. 33 (b) shows the application of a voltage between the droplet and the electrode.
  • FIG. 6 is a schematic cross-sectional view showing an electrowetting phenomenon that occurs in the case of this.
  • CEW phenomenon a chiral electrowetting phenomenon used for transporting and moving a liquid found by the present inventor, which is used in the novere and the actuator of the present invention.
  • FIGS. 32 (a) and 32 (b) when a thin tube (capillary tube) is set up in the liquid, the liquid level in the tube rises or falls below the liquid level outside the tube (capillary phenomenon). .
  • the liquid level rises and does not wet (wet) when the liquid wets the tube (wetting angle is less than 90 °) due to the magnitude relationship between the cohesive force between the liquid molecules and the adhesion between the liquid and the tube wall.
  • the liquid level falls when the angle is greater than 90 °.
  • the wetting angle between the tube 450 and the liquid level is smaller than the ⁇ force
  • the difference in height between the liquid levels inside and outside the tube 450 is the resultant force F of the surface tension F1 acting on the liquid level of the liquid in the tube 450. It is determined by the balance with the gravity G acting on the liquid above the liquid level outside the tube (see Fig. 32 (a)).
  • the wetting angle is greater than ⁇ force
  • the difference in the height of the liquid level inside and outside the pipe h is the resultant force F of the surface tension F1 exerted on the liquid level inside the pipe and the liquid level inside the pipe due to the descent of the liquid level inside the pipe. It is determined by the balance with buoyancy f acting on the body (see Fig. 32 (b)).
  • the rise in the liquid level in the tube is about lcm, whereas the inner diameter of the tube is 0.1 mm. In this case, the rise of the liquid level in the pipe is about 28cm.
  • the inventors of the present application have conducted thoughts and experiments to establish a method capable of freely controlling the rise and fall of the liquid level and the height of the liquid level in the capillary.
  • the electrowetting phenomenon and the capillary By combining the phenomena, we have an electrowetting current I found a new phenomenon that should be called an elephant.
  • the electrowetting phenomenon for example, as shown in FIGS. 33 (a) and 33 (b), a liquid liquid having conductivity is formed on the water-repellent thin film 1402 provided on the plate electrode 1401.
  • a droplet 1403 is placed and a fine wire-like electrode 1404 is inserted into this droplet, the state before voltage is applied between the droplet 1403 and the plate electrode 1401 (Fig. 33 (a))
  • the wettability of the thin film 1402 increases after the voltage is applied, and the wetting angle ⁇ between the thin film 1402 and the droplet 1403 decreases (see Fig. 33 (b)).
  • the inventor of the present application pays particular attention to the fact that the wetting angle greater than 90 ° can be lowered to less than 90 ° in the electrowetting phenomenon, and controls the wettability of the wall surface of the capillary using the electrowetting phenomenon.
  • CEW phenomenon the movement of the liquid surface in the capillary phenomenon can be controlled freely and instantaneously (CEW phenomenon). That is, by providing an electrode on the wall surface of the capillary, coating the electrode and the wall surface with a predetermined water-repellent thin film, and applying a voltage between the conductive liquid and the electrode, the magnitude and voltage of the voltage can be reduced. It is possible to control the movement of the liquid level according to the application range.
  • the inventor of the present application has completed a valve, an actuator, and an opening / closing mechanism including the actuator that can be applied to various applications.
  • the inner diameter (width) of the capillary (passage) is preferably 4 mm or less! /.
  • the first embodiment is an example in which the present invention is applied to an ink cartridge that stores ink supplied to an inkjet head.
  • FIG. 1 is a schematic configuration diagram of an inkjet printer 1 according to the present embodiment.
  • the inkjet printer 1 includes an inkjet head 3 that ejects ink onto recording paper, an ink cartridge 2 that is connected to the inkjet head 3 via a tube 5, and an ink ejection operation by the inkjet head 3.
  • a control device 40 (see FIG. 6) for controlling various operations of the inkjet printer 1 is provided.
  • the ink jet printer 1 then supplies ink from the ink cartridge 2 to the ink jet head 3 through the tube 5. Then, ink is ejected from a plurality of nozzles (not shown) formed on the ink ejection surface 3a of the inkjet head 3, and an image is recorded on the recording paper.
  • FIGS. 2 is a perspective view of the ink cartridge 2 of FIG. 1, and FIG. 3 is a cross-sectional view of the ink cartridge 2.
  • the back side in FIG. 2 is defined as the upper side
  • the horizontal direction in FIG. 2 is defined as the horizontal direction.
  • the ink cartridge 2 is configured to open and close the cartridge main body 10 having the ink containing space 22 and the atmosphere communication path 24 that communicates the ink containing space 22 with the atmosphere, and the atmosphere communication path 24. With possible valve 25.
  • the cartridge body 10 has two flat plate members (a first plate member 11 and a second plate member 12) formed of a synthetic resin material (for example, polypropylene) excellent in ink wettability. These two plate members 11 and 12 are formed so as to have the same planar shape, and are joined together by welding or the like while facing each other.
  • a synthetic resin material for example, polypropylene
  • the outer edge of the first plate member 11 has an upper wall portion l la, left and right side wall portions l ib, l lc and so as to surround the center portion thereof.
  • a bottom wall portion l id is formed.
  • a partition wall ie extending from the bottom wall portion id to the right after extending upward is further formed.
  • the space surrounded by the upper wall portion l la of the first plate member 11, the left and right side wall portions l ib and 1 lc, the bottom wall portion l id and the second plate member 12 is left and right by the partition wall l ie.
  • the ink containing space 22 is formed on the left side of the partition wall l ie and the air communication path 24 is formed on the right side of the partition wall l ie.
  • a communication path 26 is formed between the partition wall ie and the upper wall portion 11a so as to communicate the upper part of the ink containing space 22 and the upper part of the atmospheric communication path 24.
  • a first passage (see FIGS. 4 and 5), which will be described later, communicates with the atmosphere communication passage 24 and is formed in the right side portion of the bottom wall portion id in a penetrating manner.
  • the second passage 32 of the valve 25 branched from 31 is also formed in the bottom wall portion 1 Id.
  • the left portion of the bottom wall portion id of the first plate member 11 is formed with a protruding portion 1 If that protrudes downward.
  • a portion of the second plate member 12 facing the protruding portion 1 If is also formed with a protruding portion 12f having the same planar shape as the protruding portion 1 If and joined to the protruding portion 1 If. .
  • a tube 5 is connected to these protrusions 1 If, 12f via an annular seal member 15, and the protrusions In the inks lf and 12f, an ink supply path 23 is formed to connect the ink containing space 22 and the tube 5.
  • FIG. 4 is a perspective view of the valve 25, and FIG. 5 is an enlarged sectional view of the valve 25.
  • This valve 25 opens the atmosphere communication path 24 when ink is supplied from the ink cartridge 2 to the ink jet head 3, while ink is not supplied from the ink cartridge 2 to the ink jet head 3. In this case, the air communication path 24 is closed to prevent the ink I in the ink storage space 22 from drying.
  • the valve 25 includes a first passage 31 that allows the atmosphere communication passage 24 and the outside of the cartridge body 10 to communicate with each other, and a second passage 32 that branches from the first passage 31.
  • the passage 3 3 internal passage
  • the electrode 35 first electrode
  • the electrode 37 second electrode
  • a driver IC 44 voltage application unit: see FIG. 6
  • a predetermined voltage to either one of the types of electrodes 35 and 37
  • an insulating film 36 provided on the surface of the electrode 35, and a surface of the electrode 37 And an insulating film 38 provided.
  • the first passage 31 is formed so as to penetrate the bottom wall portion 11 d in the vertical direction by a groove l lg formed in the bottom wall portion l id of the first plate member 11.
  • the second passage 32 is formed by a groove l lh that branches from the center in the vertical direction of the groove l lg to the right and further extends upward, and communicates with both the first passage 31 and the atmosphere communication passage 24. is doing.
  • the first passage 31 and the second passage 32 have a rectangular cross section.
  • the cross-sectional area of the first passage 31 is larger than the cross-sectional area of the second passage 32. For example, as shown in FIG.
  • the width of the second path 32 is desirably 4 mm or less in order to make the second electrowetting phenomenon manifest in the second path 32.
  • a conductive liquid 34 that opens and closes the first passage 31 by moving between the first passage 31 and the second passage 32 is provided.
  • the conductive liquid 34 for example, water or an aqueous solution in which dariserine or the like is dissolved in water can be used.
  • an ionic liquid room temperature molten salt
  • this ionic liquid is generally non-volatile, it has the advantage that it does not evaporate when exposed to the atmosphere.
  • the wall surface of the groove l lh that forms a portion extending from the first passage 31 and extending to the right of the second passage 32, there is an upper and lower 1 at a position away from the branch position by a predetermined distance.
  • a pair of electrodes 35 is formed.
  • the electrode 35 is connected to the driver IC 44 (see FIG. 6) via the connection portion 35a.
  • an electrode 37 is formed at a position of the groove l lg forming the first passage 31 facing the portion where the second passage on the left wall surface branches.
  • the electrode 37 is connected to the driver IC 44 by a connection portion 37a.
  • a predetermined voltage is applied to either one of these two types of electrodes 35 and 37 from the driver IC 44.
  • the electrodes 35 and 37 to which no voltage is applied are held at the ground potential via the connecting portions 35a and 37a.
  • These three types of electrodes 35, 37, 39 can be formed by known methods such as vapor deposition, sputtering, and printing.
  • an insulating film 36 made of a fluorinated resin such as ethylene tetrafluoride is formed on the wall surface of the groove l lh including the surface of the electrode 35 of the second passage 32 except for the vicinity of the branch position. It is formed entirely.
  • the liquid repellency of the surface of the insulating film 36 is higher than that of the portion where the insulating film 36 is not formed.
  • the insulating film 36 is formed, and the wetting angle force of the liquid 34 near the branching position is lower than the wetting angle of the liquid 34 on the surface of the insulating film 36.
  • the liquid repellency of the portion of the insulating film 36 on the surface of the electrode 35 (corresponding to the first insulating film of the present application) is partially reduced.
  • the wetting angle of the liquid 34 on the surface is reduced (electrowetting phenomenon).
  • this liquid repellency The high insulating film 36 is formed from the wall surface forming the second passage 32 to a portion further back than the electrode 35. Therefore, even if a pressure difference between the inside and outside of the cartridge body 10 occurs, the liquid 34 does not move deeper than the electrode 35.
  • an insulating film 38 having the same material (for example, fluorine-based grease) force as that of the above-described insulating film 36 is entirely formed on the wall surface of the groove l lg including the surface of the electrode 37 in the first passage 31.
  • the liquid repellency of the surface of the insulating film 38 is higher than that of the portion where the insulating film 38 is not formed.
  • a voltage is applied from the driver IC 44 to the electrode 37, an electrowetting phenomenon occurs as in the case of the insulating film 36 described above, and a portion of the insulating film 38 on the surface of the electrode 37 (in the second insulating film of the present application). The liquid repellency of the liquid 34 on the surface is reduced.
  • the highly liquid-repellent insulating film 38 is also formed on the upper and lower portions of the wall surface of the first passage 31 where the electrode 37 is formed. For this reason, the liquid 34 is not sucked into the atmospheric passage 24 or dropped due to the pressure difference between the inside and outside of the cartridge body 10 and the influence of gravity.
  • These insulating films 36 and 38 can be formed on the walls of the grooves llg and the grooves llh forming the first passage 31 and the second passage 32 by a method such as spin coating or sputtering.
  • the nozzle 25 changes the wetting angle of the liquid 34 with respect to the surfaces of the insulating films 36 and 38 by applying a predetermined voltage from the driver IC 44 to one of the electrodes 35 and 37, and thereby the liquid body It is possible to open and close the first passage 31 by moving 34 between the first passage 31 and the second passage 32.
  • the opening / closing operation of the first passage 31 will be described in detail later.
  • the insulating film 36 is not formed on the surface of the electrode 39 that is formed in the vicinity of the branch position and is always kept at the ground potential. Therefore, the liquid 34 is always in contact with the electrode 39 and is held at the ground potential. Therefore, when a predetermined voltage is applied to the electrode 35 or the electrode 37, a predetermined potential difference is always generated between these electrodes and the liquid 34. Therefore, the insulating films 36 and 38, the electrodes 35 and 37 It is possible to reliably reduce the wetting angle of the liquid 34 in the surface portion.
  • the control device 40 includes a central processing unit (CPU) and various programs for controlling the overall operation of the inkjet printer 1. It includes ROM (Read Only Memory) that stores RAM and data, and RAM (Random Access Memory) that temporarily stores data processed by the CPU. Also, as shown in FIG. 6, the control device 40 controls the ink discharge operation by the ink jet head 3 and the valve control that controls the opening / closing operation of the air communication path 24 of the ink cartridge 2 by the valve 25. Part 42.
  • CPU central processing unit
  • ROM Read Only Memory
  • RAM Random Access Memory
  • the head control unit 41 controls the ink jet head 3 based on the print data input from the PC 100 to the control device 40 to eject ink onto the recording paper, thereby causing the recording paper to perform predetermined printing. . Further, the valve control unit 42 opens the atmosphere communication path 24 before the ink discharge operation by the inkjet head 3 is performed when a print command is input from the PC 100, and the atmosphere connection when the ink discharge operation by the inkjet head 3 is completed. The driver IC 44 of the valve 25 is controlled so that the passage 24 is closed.
  • the head control unit 41 and the valve control unit 42 are configured by a CPU, a ROM, a RAM, and the like, respectively.
  • FIG. 8 shows a state where the first passage 31 communicating with the atmospheric communication passage 24 is closed
  • FIG. 9 shows a state where the first passage 31 is opened.
  • “+” of the connection portion 35a of the electrode 35 and the connection portion 37a of the electrode 37 represents that a predetermined voltage is applied to these electrodes 35 and 37.
  • “GND” of the connection portion 35a of the electrode 35, the connection portion 37a of the electrode 37, and the connection portion 39a of the electrode 39 indicates that these electrodes 35, 37, and 39 are at the ground potential.
  • the electrode 35 in the second passage is held at the ground potential, and the liquid 34 is wetted with the insulating film 36.
  • the insulating film 36 in the vicinity of the branch position is formed at the corner, and the corner is larger than the wetting angle of the liquid 34 with respect to the portion (high liquid repellency).
  • a predetermined voltage is applied to the electrode 37 in the first passage, and the wetting angle of the liquid 34 with respect to the surface portion of the electrode 37 of the insulating film 36 is partially lowered (low liquid repellency). ). Therefore, the liquid 34 is held in the vicinity of the branch position in the first passage 31, and a part of the liquid 34 is completely separated from the second passage 32. It is in a state where it has entered a portion where the edge film 36 is not formed. Then, the first passage 31 is closed by the liquid 34 and the atmosphere communication passage 24 is closed to prevent the ink in the ink containing space 22 from being dried.
  • the driver IC 44 applies a predetermined voltage to the electrode 35 and cancels the application of the voltage to the electrode 37.
  • 37 is set to the ground potential (S 10).
  • S 10 ground potential
  • the wetting angle ⁇ of the liquid 34 at the surface portion of the electrode 35 of the insulating film 36 decreases, and the liquid force is generated by the capillary force generated in the second passage 32.
  • 34 moves from the first passage 31 to the second passage 32. Since the liquid repellency of the portion near the branch position in the wall surface forming the second passage 32 is always low, the liquid 34 moved to the second passage 32 is separated from the portion near the branch position and the electrode. The liquid repellency is temporarily lowered by the voltage application to the insulating film 38 and is held over the surface portion of the electrode 37.
  • the movement of the liquid 34 to the second passage 32 opens the first passage 31 that has been blocked by the liquid 34, so that the atmosphere communication passage 24 communicates with the atmosphere.
  • the wetting angle ⁇ of the liquid 34 at the surface portion of the electrode 37 of the insulating film 38 increases, and the liquid 34 flows from the first passage 31 to the second passage.
  • Easy to move to 32 Since the cross-sectional area of the second passage 32 is smaller than the cross-sectional area of the first passage 31, the capillary force in the second passage is larger than the capillary force generated in the first passage 31, and the liquid 34 It is easier to move from the first passage 31 to the second passage 32.
  • the atmosphere communication path 24 As described above, after the atmosphere communication path 24 is opened, printing is performed on the recording paper by the inkjet head 3 based on the print data input from the PC 100 (Sl l). At this time, since the atmosphere communication path 24 is open, the atmosphere is introduced into the ink accommodation space 22 from the atmosphere communication path 24 according to the amount of ink supplied from the ink accommodation space 22 to the inkjet head 3. Therefore, the ink supply to the inkjet head 3 is performed smoothly.
  • the driver IC 44 cancels the application of the voltage to the electrode 35 to bring the electrode 35 to the ground potential, and applies a predetermined voltage to the electrode 37 (S12). Then, as shown in FIG. 8, the wetting angle ⁇ of the liquid 3 4 at the surface portion of the electrode 35 of the insulating film 36 increases, so that the liquid 34 moves from the second passage 32 to the first passage 31 and again. The liquid 34 is held in the vicinity of the branch position in the first passage 31. Accordingly, the first passage 31 is blocked by the liquid 34 and the atmosphere communication passage 24 is closed.
  • the wetting angle ⁇ of the liquid 34 with respect to the portion of the insulating film 36 located on the surface of the electrode 35 is When the voltage is applied to the electrode 35, it is preferably less than 90 °. In this case, the liquid 34 can be reliably moved from the first passage 31 to the second passage 32. Further, it is preferable that the wetting angle ⁇ force is 90 ° or more when no voltage is applied to the electrode 35. In this case, the liquid 34 can be reliably moved from the second passage 32 to the first passage 31.
  • the atmosphere communication path 24 is opened by the valve 25 before the printing operation by the inkjet head 3, and the atmosphere communication path 24 is closed by the valve 25 after the completion of the printing operation. . Therefore, during the printing operation, ink can be supplied from the ink cartridge 2 to the ink jet head 3 while introducing air into the ink containing space 22 from the air communication path 24, and ink can be supplied smoothly. . Further, when the printing operation is not performed, the atmosphere communication path 24 is closed, and the ink in the ink storage space 22 can be reliably prevented from drying.
  • the nove 25 reduces the wetting angle of the liquid 34 on the surfaces of the insulating films 36 and 38 by applying a voltage to the electrode 35 or the electrode 37, whereby the first passage 31 and the second passage 32 are connected.
  • the liquid 34 is moved between the first passage 31 and the first passage 31 is opened and closed. Therefore, the structure is simple and has no moving parts, unlike general solenoids such as solenoid valves. Therefore, the manufacturing cost of the ink cartridge 2 can be kept low. In addition, noise / J is reduced when the valve is activated.
  • the insulating film 36 is not formed in the vicinity of the branch position on the wall surface forming the second passage 32. If the insulating film 36 is formed, the liquid 34 is wet with respect to the vicinity of the branch position. When a voltage is applied to the angular force electrode 35, the wetting angle of the liquid 34 on the surface of the insulating film 36 in the state is lower. Therefore, the liquid 34 always enters the second passage 32 in the vicinity of the branch position. Therefore, when a predetermined voltage is applied to the electrode 35, the liquid 34 easily moves from the first passage 31 to the second passage 32, and the first passage 31 31 is definitely opened.
  • An electrode 39 is provided in the vicinity of the branch position on the wall surface forming the second passage 32, and the liquid 34 is always in contact with the electrode 39 and held at the ground potential. Accordingly, when a predetermined voltage is applied to the electrode 35 or the electrode 37, a predetermined potential difference is always generated between these electrodes and the liquid 34. Therefore, the surfaces of the insulating films 36 and 38, the surfaces of the electrodes 35 and 37, It is possible to reliably reduce the wetting angle of the liquid 34 in this portion. That is, since the liquid 34 can be reliably moved between the first passage 31 and the second passage 32, the reliability of the opening / closing operation of the valve 25 is increased. In addition, the responsiveness becomes faster.
  • the liquid acts as a valve, if the wettability (liquid wetting angle) of the insulating film in the first passage is set appropriately, the cross-sectional shape of the first passage is complicated. Therefore, it can be closed easily and securely without considering special designs.
  • the positions of the electrodes 35, 37, 39 on the wall surfaces forming the first passage 31 and the second passage 32 are not limited to the positions in the first embodiment.
  • the electrode 35 may be formed only on either the upper inner surface or the lower inner surface of the groove l lh.
  • the electrodes 37A may be formed on the left and right wall surfaces forming the first passage 31, respectively. In this case, since the capillary force generated in the first passage 31 when a voltage is applied to the electrode 37A increases, the liquid 34 easily moves from the second passage 32 to the first passage 31.
  • the insulating films 36 and 38 do not necessarily have to be formed entirely on the wall surfaces forming the first passage 31 and the second passage 32, and it is only necessary that the insulating films 36 and 38 be formed on at least the surfaces of the electrodes 35 and 37, respectively. Yes.
  • the electrode 37 of the first passage 31 can be omitted. Even in this case, the liquid 34 is moved to the second passage 32 by applying a voltage to the electrode 35 in the second passage 32, and the liquid 34 is moved to the first passage 31 by releasing the application of the voltage to the electrode 35.
  • the first passage 31 (atmospheric communication passage 24) can be opened and closed.
  • the liquid 34 is made of a volatile liquid such as water, as shown in the valve 25C in FIG. Of the liquid). In this case, evaporation of the volatile liquid 34 can be prevented by the liquid 45, and the life of the valve 25C is extended.
  • a configuration may be provided in which the nozzle replenishes the liquid 34.
  • the valve 25D of FIG. 13 has a liquid storage chamber 46 (liquid supply source) that stores the liquid 34, and the liquid storage chamber 46 is connected to the second passage 32 by a liquid supply passage 47.
  • the liquid 34 is replenished from the liquid storage chamber 46 via the liquid supply path 47.
  • a predetermined voltage is periodically applied to the electrode 35 by the NORB 25 force driver IC 44 only for a predetermined time. If printing is performed for a long time, the air communication path 24 is not opened for a long time by the valve 25. Therefore, the ink in the cartridge body 10 is caused by a change in atmospheric temperature or pressure. The pressure in the storage space 22 becomes excessively high or becomes negative. Therefore, for example, when the control device 40 of the ink jet printer 1 determines that the predetermined time has passed, the driver IC 44 applies a predetermined voltage to the electrode 35 for a predetermined time. When configured to be applied, it is possible to regularly open the atmosphere communication path 24 to always reduce the pressure difference between the inside and outside of the force cartridge body 10.
  • the first embodiment described above is an example in which the present invention is applied to a valve that opens the atmosphere communication path of the ink force cartridge, but the application target of the present invention is not limited to the ink cartridge.
  • the second embodiment described below is an example in which the valve of the present invention is applied to a nozzle cap that is attached to the ink ejection surface of an inkjet head and prevents the ink in the nozzle from drying.
  • FIG. 14 is a schematic perspective view of an ink jet printer 80 according to the second embodiment.
  • the inkjet printer 80 includes a carriage 81 that can reciprocate in the left-right direction in FIG. 14 and a serial inkjet that is provided on the carriage 81 and ejects ink onto the recording paper P.
  • Ink jet printer 80 includes a head 60, a transport roller 82 that transports recording paper P forward in FIG. 1, and an ink ejection operation by ink jet head 60, a reciprocating operation of carriage 81, a paper transport operation by transport opening roller 82, and the like. It is equipped with a control device 51 (see Fig. 17) that controls various operations.
  • the inkjet head 60 moves in the left-right direction (scanning direction) integrally with the carriage 81 driven by the carriage drive unit 58 (see FIG. 17), and has a plurality of nozzles formed on the lower surface of the ink ejection surface 60a. 63 (Refer to Fig. 15) Ejection ink is ejected to the recording paper P. Then, the recording paper P recorded by the ink jet head 60 is discharged forward (paper feeding direction) by the transport roller 82.
  • the carriage 81 retreats the area further in the width direction (left and right direction in FIG. 14) outside the area (for example, the right end in FIG. 14) than the area (paper conveyance area) in which the recording paper P is conveyed. It is configured to be movable to a position.
  • a nozzle cap 64 (see FIG. 15) is disposed at the retracted position, and the nozzle cap 64 is configured to be driven up and down by a cap drive unit 59 (see FIG. 17).
  • the ink jet head 60 is moved to the retracted position together with the carriage 81, and the nozzle cap 64 covers the ink ejection surface 60a from below at the retracted position. 60 is detachably attached.
  • FIG. 15 is a longitudinal sectional view of the inkjet head 60 with the nozzle cap 64 attached.
  • the inkjet head 60 has a flow path unit 90 connected to an ink force cartridge (not shown) via a tube 83.
  • the flow path unit 90 is composed of three laminated plates 91, 92, 93 joined together.
  • the uppermost plate 91 is formed with a mould 61 and an ink supply path 94 that allows the mould 61 and the tube 83 to communicate with each other.
  • the central plate 92 is formed with a plurality of ink flow paths 62 branched from the holder 61 and extending downward.
  • a plurality of nozzles 63 communicating with the plurality of ink flow paths 62 are formed in the lowermost plate 93, and the lower surface of the plate 93 is an ink ejection surface 60a where the nozzles 63 are opened. .
  • the ink that has flowed into the holder 61 from the tube 83 is ejected from the plurality of nozzles 63 via the plurality of ink flow paths 62.
  • the nozzle cap 64 has a substantially the same area as the ink discharge surface 60a and covers the nozzle 63 from below, and extends upward from the peripheral edge of the cap portion 64a to the nozzle of the ink discharge surface 60a. It has a contact part 64b that can be brought into close contact with the region around the outlet 63, and a base part 64c that supports the cap part 64a also with a downward force.
  • the cap part 64a and the contact part 64b are formed of a material having elasticity such as a synthetic resin. Further, inside the base portion 64c, there is a space 95 (see FIG.
  • a communication path 65 communicating with the outside of the nozzle cap 64 is formed. Further, a valve 66 capable of opening and closing the communication path 65 is provided at the base c.
  • the valve 66 has the same configuration as the valve 25 (see FIG. 5) of the first embodiment described above, and the configuration will be briefly described below.
  • the valve 66 has a passage 73 (internal passage) having a first passage 71 for communicating the communication passage 65 and the outside of the nozzle cap 64 and a second passage 72 for branching the force of the first passage 71.
  • a driver IC 57 (voltage application section: see FIG. 17) for selectively applying a predetermined voltage to one of these two types of electrodes 75 and 77, and an insulating film 76 provided on the surface of the electrode 75 And an insulating film 78 provided on the surface of the electrode 77.
  • a liquid 74 having conductivity is sealed in the passage 73, and the nozzle 66 moves the first passage 71 between the first passage 71 and the second passage 72 by moving the liquid 74 between the first passage 71 and the second passage 72. Open and close. Electric
  • the pole 75 and the electrode 77 are connected to the driver IC 57 (see FIG. 17) via the contact part 75a and the contact part 77a. Then, a predetermined voltage is applied from the driver IC 57 to one of the electrode 75 and the electrode 77, and the electrode to which no voltage is applied is held at the ground potential.
  • An electrode 79 (third electrode) is also formed in the vicinity of the branch position in the wall surface forming the second passage 72, and this electrode 79 is always held at the ground potential via the contact portion 79a. ing.
  • the insulating films 76 and 78 have the same function as the insulating films 36 and 38 of the first embodiment. That is, when a predetermined voltage is applied to the electrode 75, the wetting angle of the liquid 74 with respect to the surface portion of the insulating film 76 of the electrode 75 (corresponding to the first insulating film of the present application) decreases. In addition, when a predetermined voltage is applied to the electrode 77, the wetting angle of the liquid 74 with respect to the surface portion of the insulating film 78 on the surface of the electrode 77 (corresponding to the second insulating film of the present application) decreases.
  • the valve 66 applies a predetermined voltage to the electrode 75 from the driver IC 57, thereby reducing the wetting angle of the liquid 74 with respect to the surface portion of the electrode 75 of the insulating film 76, and causing the liquid 74 to
  • the first passage 71 is opened by moving from the first passage 71 to the second passage 72. Further, by applying a predetermined voltage from the driver IC 57 to the electrode 77, the wetting angle of the liquid 74 with respect to the surface portion of the electrode 77 of the insulating film 78 is reduced, and the liquid 74 is discharged from the second passage 72 to the first passage. Move to 71 and close the first passage 71.
  • the control device 51 includes a CPU that is a central processing unit, a ROM that stores various programs and data for controlling the overall operation of the printer 80, and a RAM that temporarily stores data processed by the CPU. Etc. As shown in FIG. 17, the control device 51 includes a head control unit 52 that controls the ink ejection operation by the inkjet head 60, a carriage control unit 53 that controls the reciprocating operation of the carriage 81 by the carriage drive unit 58, and a cap. A cap control unit 54 that controls the raising / lowering operation of the nozzle cap 64 by the drive unit 59 and a valve control unit 55 that controls the opening / closing operation of the communication path 65 of the nozzle cap 64 by the valve 66 are provided.
  • the carriage control unit 53 controls the carriage drive unit 58 to reciprocate the carriage 81.
  • the head control unit 52 The ink jet head 60 is controlled to eject ink onto the recording paper.
  • the cap control unit 54 controls the cap driving unit 59 to mount the nozzle cap 64 on the ink discharge surface 60a of the ink jet head 60 that has moved up to the retracted position after the nozzle cap 64 has been moved up after printing.
  • the nozzle cap 64 is lowered to remove the nozzle cap 64 from the ink ejection surface 60a.
  • valve control unit 55 controls the driver IC 44 of the valve 25 so that the communication path 65 is opened before the nozzle cap 64 is mounted and the communication path 65 is closed when the mounting is completed.
  • the head control unit 52, the carriage control unit 53, the cap control unit 54, and the valve control unit 55 are configured by a CPU, a ROM, a RAM, and the like, respectively.
  • the nozzle cap 64 is lowered by the cap drive unit 59 to separate the nozzle cap 64 from the ink discharge surface 60 a, and the ink discharge surface The state pressed against 60a is released (S20). Then, the carriage 81 is also moved in the retracting position so that the ink jet head 60 faces the paper conveyance area ( S21), a printing operation is executed by the inkjet head 60 and the carriage 81 (S22). When printing is completed, the carriage 81 is moved again to the retracted position (S23).
  • the driver IC 57 applies a predetermined voltage to the electrode 75 and cancels the state in which the voltage is applied to the electrode 77 (S24). Then, while the wetting angle of the liquid 74 with respect to the surface portion of the electrode 75 of the insulating film 76 is reduced, the wetting angle of the liquid 74 with respect to the portion of the surface of the electrode 77 of the insulating film 78 is increased. Moving from the first passage 71 to the second passage 72, the first passage 71 (communication passage 65) is opened.
  • the nozzle cap 64 is raised by the cap driving unit 59, the nozzle cap 64 is pressed against the ink discharge surface 60a (S25), and the contact portion 64b is brought into close contact with the ink discharge surface 60a.
  • the communication path 65 is opened, the pressure increase in the space 95 caused by the mounting operation of the nozzle cap 64 is alleviated. Therefore, it is possible to prevent the meniscus of the nozzle 63 from being destroyed by this pressure increase.
  • the driver IC 57 cancels the state in which the voltage is applied to the electrode 75, and applies a predetermined voltage to the electrode 77 (S26). ).
  • the wetting angle ⁇ of the liquid 74 with respect to the surface portion of the electrode 75 of the insulating film 76 increases, while the wetting angle of the liquid 74 with respect to the surface portion of the electrode 77 of the insulating film 78 decreases.
  • the second passage 72 moves from the first passage 71 to the first passage 71, and the first passage 71 is closed with the liquid 74.
  • the communication path 65 is closed and the space 95 is hermetically sealed, and the ink in the nozzle 63 is prevented from drying.
  • the first passage 71 is opened before the nozzle cap 64 is separated from the ink discharge surface 60a after the printing command is input to the control device 51 (S20), and the first passage is opened immediately after S20. 71 may be closed.
  • the pressure fluctuation in the space 95 can be reduced at the moment when the nozzle cap 64 is separated from the ink discharge surface 60a, and the meniscus formed in the nozzle 63 can be prevented from being destroyed.
  • the nozzle cap 64 is attached to the ink discharge surface 60a of the ink jet head 60 at the end of printing.
  • Cap 65a when the nozzle cap 64 is installed to open the passage 65 and press the nozzle cap 64 against the ink discharge surface 60a.
  • the pressure increase in the space 95 between the ink discharge surface 60a can be reduced.
  • the communication path 65 is closed by the valve 66 after the nozzle cap 64 is attached, the ink in the nozzle 63 can be prevented from drying.
  • opening and closing of the first passage is controlled by changing the capillary force or wetting angle of the liquid in the second passage.
  • a flow path structure having a plurality of flow paths and including an opening / closing mechanism that selectively controls the flow of fluid in the flow paths will be described.
  • the channel structure 101 is configured by superposing an upper plate 103 and a lower plate 105, and a cross-shaped channel 107 is formed on the upper surface 105a of the lower plate 105.
  • the flow path 107 has a recess (intersection) 115 in the center of the upper surface 105a of the upper plate 103, and from there, the first groove (first flow path) radially (crosswise) at intervals of 90 degrees.
  • Each groove has a rectangular channel cross-sectional shape and the same cross-sectional area.
  • the first channel 111 communicates with the first space 1S
  • the second channel 112 communicates with the fourth space 4S
  • the third channel 113 communicates with the second space 2S
  • the fourth channel 114 communicates with the third space 1S. It communicates with space 3S.
  • the first electrode 11 la is embedded in the opposing side wall of the first flow path 111
  • the second electrode 112 a is embedded in the opposing side wall of the second flow path 112.
  • the third electrode 113a is embedded in the opposite side wall of the third channel 113
  • the fourth electrode 114a is embedded in the opposite side wall of the fourth channel 114.
  • a fifth electrode 115a is formed so as to extend from the side wall (peripheral wall) of the intersecting portion 115 to a part of the first flow path 111 to the fourth flow path 114 therefrom.
  • the first channel 111 to the fourth channel 114 and the intersecting portion 115 are formed with an insulating film 118 made of tetrafluorinated titanium so as to cover the electrodes 11 la to L 15a! .
  • a predetermined voltage is selectively applied to these electrodes 11 la to l 15 a from a voltage application section (not shown) (for example, “driver IC” in FIG. 6) or a power source.
  • the flow path 107 is filled with water W as a conductive liquid! [0093] As shown in FIG.
  • the first to fourth currents Since the cross-sectional areas of the channels 111 to 114 are equal, the capillary forces in the flow channels 111 to 114 are equal, and the water W is equal in length to the intersection 115 and the force is also along the flow channels 111 to 114. Fills part of channel 111-114. Since the intersection 115 is filled with water W, the gas cannot move to the other flow path. That is, since the first channel 111 to the fourth channel 114 are separated from each other by the water W, the first space S1 to the fourth space S4 do not circulate with each other.
  • the first flow path 111 and the third flow path 113 are in communication with each other via a gap formed at the intersection 115. Based on this principle, by applying a predetermined voltage to the second electrode 112a and the fourth electrode 114a, the first space S1 and the second space S2 are circulated through the first channel 111 and the third channel 113. (See the arrow in the figure).
  • the insulating film formed on the second electrode 112a and the third electrode 113a is electrically insulated.
  • the liquid repellency of the region of the film 118 is lowered, and the wetting angle force of the water W on the insulating film 118 in the region is reduced.
  • the water W moves toward the fourth space and the third space S3 along the second flow path 112 and the third flow path 113, which act as a fly. Therefore, as shown in FIG. 24, the water present in the intersection 115 moves to the second flow path 112 and the third flow path 113, and the intersection 115 is partially free of water W. Is formed.
  • the first flow path 111 and the fourth flow path 114 communicate with each other through a gap formed in the intersection 115.
  • the first space S1 and the third space S3 are circulated through the first flow path 111 and the fourth flow path 114.
  • the passage made up of the first passage 111 and the second passage 112, the third passage 113 and the fourth passage 114 are respectively referred to as the “first passage” and the “second passage” in the present invention.
  • the gas flow flowing into the first flow path 111 is applied to the third flow path 111. It is possible to flow out into a desired space through either the channel 113 or the fourth channel 114.
  • This channel structure 101 can function as a two-way nore. Note that a voltage is applied only to the second electrode 112a or the third electrode 113a, and gas is allowed to flow into two flow paths, for example, the second and fourth flow paths, thereby changing the first space S1 to the second space S2 and the second space S2. It is also possible to communicate with 4 spaces S4.
  • the force given as an example having four flow paths may be formed by extending the cross section force radially by using five or more flow paths.
  • the force given as an example having four flow paths may be formed by extending the cross section force radially by using five or more flow paths.
  • the first to fourth flow paths are formed in a plane parallel to the surfaces of the upper plate and the lower plate.
  • a fifth flow path 127 and a sixth flow path 128 You may have.
  • the fifth flow path 127 communicates with the intersecting portion 115 and is formed in the upper plate 123 so as to extend in a direction orthogonal to the surface of the upper plate 123.
  • the sixth flow path 128 communicates with the intersection 115 and is formed in the lower plate 125 so as to extend in a direction perpendicular to the surface of the lower plate 125. That is, in this modification, the plurality of flow paths are formed in a three-dimensional manner, and it is possible to flow liquid from a specific flow path to a desired flow path (multivalve).
  • the opening / closing mechanism 201 has a first passage 31 and a second passage 32 (passage diameter (width) of about 4 mm) by grooves l lg and l lh formed in the first plate member. Is defined.
  • An electrode 235 comprising a plurality of pairs of electrodes 235a to 235f is embedded in the side wall of the second flow path 32. These electrodes 235a to 235f are connected to a driver IC (see FIG. 6), and can individually apply a voltage.
  • An insulating film 36 is formed on the side wall of the second flow path 32 so as to cover the plurality of electrodes 235a to 235f.
  • the second flow path 32 is charged with a conductive liquid, here water W, in an amount that fills a part of the second flow path 32, and the elongated water tube WT is provided.
  • Plunger 205 is loaded in the second channel 32 closer to the first channel 31 than the water W.
  • the plunger 205 is a rod-shaped body (rectangular body) having a rectangular cross section, and in this example, a plastic cover is also formed.
  • the plunger 205 has a length longer than the width (diameter) of the first flow path.
  • the plunger 205 can move smoothly in the second flow path 32 and is slightly smaller than the inner diameter of the second flow path 32 so that water W does not enter between the plunger 205 and the wall surface of the second flow path 32.
  • One end surface 205a of the plunger 205 is flat, and a recess 205c is formed on the other end surface 205b.
  • the plunger 205 is loaded in the second flow path 32 so that the end face 205b formed with the recess 205c faces the first flow path 31 side.
  • the end face 205a of the plunger 205 is joined to the end face of the water tube WT confined in the second flow path 32 by the surface tension of the water W.
  • the end surface 205a of the plunger 205 may be subjected to a hydrophilic treatment.
  • a convex portion l lg that engages with the concave portion 205 c of the plunger 205 is formed on the wall surface portion of the first flow channel 31 that faces the second flow channel 32.
  • the end face 205a of the plunger 205 is Since it is joined to the motor tube WT, the plunger 205 is inserted into the second flow path 36 and as a result, the first flow path 31 is opened. That is, the interior of the ink cartridge communicates with the external atmosphere (predetermined space) through the first flow path 31.
  • the movement amount of the plunger 205 is changed. It is possible to adjust the flow rate of the gas flowing through the first flow path 31 by adjusting (the degree of opening and closing of the first flow path 31). By doing so, the opening / closing mechanism 201 can also function as a flow rate adjusting valve.
  • the electrode 235, the insulating film 36, the plunger 205, and the water W in the opening / closing mechanism 201 constitute a novel activator.
  • the flow path can be opened and closed instantaneously with a small amount of power through the movement control of the plunger 205 by the water tube WT. Further, when the flow path is closed by the plunger 205, the tightness or certainty of the closing is that of the water W as the liquid. It depends on the strength of the plunger 205, not the surface tension. Therefore, the opening / closing mechanism 201 can act as a very strong locking mechanism. Therefore, although the fluid flowing in the flow path is a gas in this embodiment, the opening / closing mechanism may be used for another application, for example, an application for reliably stopping the flow of high-pressure gas, liquid, or solid. it can.
  • the water tube WT urges the end surface 205a of the plunger 205 or The movement of the plunger 205 was controlled by retracting.
  • the outer diameter Dp of the plunger 305 is such that the water W can enter between the second flow path 32 and the plunger 305. It is smaller than the inner diameter Do of the path 32.
  • the diameter of the plunger 305 (the width in the direction perpendicular to the longitudinal direction) is made shorter than the diameter of the second flow path 32 by about 100 / ⁇ ⁇ to 8 ⁇ .
  • the plunger 305 is maintained in the water tube WT of the water W, and in particular, the side surface of the plunger 305 can be supported by the water tube WT by the surface tension of the water W. Further, as shown in FIG. 28, the liquid repellent film is formed on the side wall of the region near the end 305b where the recess 305c of the plunger 305 is formed so that only the region close to the end surface 305a of the plunger 305 is in contact with water. 305d is formed.
  • the other structure of the opening / closing mechanism 301 is the same as that of the opening / closing mechanism 201 in the fourth embodiment.
  • the portion of the side surface of the plunger 305 having low liquid repellency (the portion where the liquid repellent film 305d is not formed) is supported in the water tube WT, and therefore the plunger 305 is in the second flow path 36. As a result, the first flow path 31 is opened.
  • the plunger 305 By this movement of the water tube WT, the plunger 305 is pushed out from the second flow path 32 toward the first flow path 31 while being supported in the water tube WT, and the end surface 305b of the plunger 305 is pushed to the first flow path 31.
  • the concave portion 305c of the plunger 305 is engaged with the convex portion l li.
  • the first flow path 31 is completely closed by the plunger 305.
  • the liquid repellent film 305d blocks the first flow path 31, when the first flow path 31 is a liquid flow path, the liquid repellent film 305d of the plunger 305 prevents liquid leakage. It works effectively.
  • a spindle 407 that supports a plunger 405 so as to be slidable through water W is fixed. Inside the spindle 407, a plurality of electrodes 435a to 435f are provided at predetermined intervals along the longitudinal direction. An insulating film 436 is formed on the surface of the spindle 407 so as to cover all the electrodes 435a to 435f.
  • the plunger 405 is hollow, and the spindle 407 is accommodated therein through water W.
  • a liquid repellent film 405d is formed on a part of the inner wall 405 of the plunger 405 (region close to the first flow path side). Therefore, the water W is supported by the surface tension in the inner wall region where the liquid repellent film 405d is not formed.
  • a cylinder member 403 that defines a first passage 31 is fixed to the first plate member 11, and a through passage 403a having an open end that communicates with the first passage 31 is formed in the cylinder member 403. Has been.
  • the outer peripheral portion of the plunger 405 is supported by the through passage 403a of the cylinder member 403 so as to be slidable.
  • the through passage 403 of the cylinder member 403 is In addition, it acts as a passage for the plunger 405, water W as a liquid is accommodated in the through passage 403, and an electrode 435 is provided.
  • a protrusion 1 lj that engages with the inner wall 405 of the plunger 405 is formed on the wall surface of the first passage 31 that faces the plunger 405.
  • the portion of the side surface of the plunger 405 having low liquid repellency (the portion where the liquid repellent film 405d is formed) is inserted into the region of the insulating layer 436 covering the electrodes 435c to 435f via the water tube WT.
  • the plunger 405 is positioned away from the protrusion l lj.
  • a predetermined voltage is applied to the electrodes 435a to 435d of the spindle 407, and the voltage application to the electrodes 435e and 435f is interrupted. To ground potential. Then, the wettability with respect to water W in the region of the insulating layer 436 covering the electrodes 435a to 435d is higher than the wettability with respect to the water W in the region of the insulating layer 436 covering the electrodes 435e and 435f (the liquid repellency is increased). Lower).
  • the water tube WT instantaneously moves on the region of the insulating layer 436 covering the electrodes 435a to 435d inside the plunger 405 based on the capillary electrowetting phenomenon. Due to the movement of the water tube WT, the plunger 405 is pushed out toward the first flow path 31 with respect to the spindle 407 while being supported in the water tube WT, and the end surface 405b of the plunger 405 is pushed out of the first flow path 31. Joined to the wall surface, the inner wall 405c of the plunger 405 engages with the convex portion l lj. As a result, the first flow path 31 is completely closed by the plunger 405. It can be seen that among the opening / closing mechanism 401 in this modification, the cylinder member 403 (passage), the electrode 435, the insulating film 436, the plunger 405, the spindle 407, and the water W constitute a novel actuator.
  • the inside of the spindle 407 is formed hollow, and a plurality of holes communicating the inside and outside of the spindle 407 are formed on the surface of the spindle 407. You can. If water W (conductive liquid) is filled inside the spindle 407, the water W oozes out of the spindle 407 through these holes, which may make up for the lack of water W held inside the plunger 405. In addition, the entire outer periphery of the spindle 407 can be kept wet with water W.
  • water W conductive liquid
  • the liquid repellent film is provided on the plunger, but instead, the area where the liquid repellent film is not provided is lyophilic (high wettability). Processing may be applied.
  • the plunger has a physical surface treatment, such as wettability improvement by adjusting the surface roughness of the plunger, or a coating that improves the wettability by applying a chemical action to the liquid (water W). It may be applied to the surface.
  • the plunger is a plastic material, but any synthetic resin material such as urethane foam, metal, rubber-based material, glass material or ceramic may also be used. good. Since the plunger used in Modification 1 is held in a floating state in the liquid (water W), it is desirable to mold it with a material having a specific gravity approximately equal to that of the liquid used. Alternatively, if a closed hollow chamber is formed inside the plunger, it can be formed using a material having a relatively high specific gravity. For example, a metal material having a hollow inside may be used.
  • the surface of the plunger should be Teflon (registered trademark), silicon coating, glass material, etc. to prevent wear due to friction and leakage due to the friction. It is desirable to provide a plunger with such material force. Alternatively, lubrication oil may be applied to the outer surface of the plunger.
  • the first passage is reliably closed by the engagement of the concave portion of the plunger and the convex portion of the wall surface of the first passage.
  • the concave portion is formed on the wall surface, and the plunger A convex part may be formed on (for example, the tip of the plunger is tapered).
  • both the plunger and the wall surface of the first passage may be provided with concave and convex portions that engage or fit with each other.
  • the uneven portion may be sealed with Teflon (registered trademark) or the like.
  • the fourth embodiment and its modifications a specific number of electrodes is provided.
  • the number of electrodes can be arbitrarily changed, and a single electrode can be operated.
  • the second passage 32 is opposite to the first passage 31.
  • the opposite end need not be an open end and may be sealed to form a closed space.
  • the longitudinal shape and the cross-sectional shape of the passage may be arbitrary, and in particular, the cross-sectional shape can be circular considering the movement resistance of the plunger, and the cross-sectional shape of the plunger can also be circular according to this.
  • valve of the present invention is applied to an ink jet printer.
  • liquids such as a chemical solution and a biochemical solution are used inside a micro total analysis system ( ⁇ TAS).
  • ⁇ TAS micro total analysis system
  • the valve of the present invention can also be applied to an apparatus for transferring a conductive liquid other than ink, such as an apparatus for transferring a liquid, an apparatus for transferring a liquid such as a solvent or a chemical solution within a microchemical system, and the like.
  • the open / close mechanism of the fourth embodiment and its modification is mechanically strong in the blocking by the plunger. Therefore, the flow path through which the liquid or solid (powder) flows in the first passage It is also effective for the structure.
  • the gap between the plunger and the second flow path can be reduced, it is also effective in blocking a passage where high pressure is applied to the fluid.
  • the plunger since the plunger can be enlarged, it can be applied to a gas valve for city gas piping, a valve for an automatic valve, and the like. It can also be used as a regulator valve in fuel transportation pipes in automobiles. It can also be used in drug supply systems for medical devices.
  • the plunger can use the operation of contacting the wall surface of the first passage of the plunger for a switch or a display operation.
  • a plurality of plungers may be arranged along the first passage with respect to the wall surface of the first passage, or may be arranged in a two-dimensional array with respect to the wall surface of the first passage.
  • any object can be used as long as it is an object that moves with the liquid due to the cupillary electrowetting phenomenon, regardless of its name.
  • the present invention has been described as a structure for opening and closing a fluid flow.
  • the valve and the actuator of the present invention are not limited thereto, and sound waves, electromagnetic waves, light, magnetic fields are not limited thereto.
  • a switch that selectively shuts off the switch or a lock mechanism it can be used for any application as a mechanism for selectively stopping or directing the movement (or flow) of the moving body (or wave).
  • due to the nature of the one-elect mouth fitting phenomenon it is expected to be used in water or in space where there is no influence of gravity or gravity.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Ink Jet (AREA)
  • Electrically Driven Valve-Operating Means (AREA)

Abstract

 バルブ25は、大気連通路24とカートリッジ本体10の外部とを連通させる第1通路31とこの第1通路31から分岐する第2通路32とを有する通路33と、第2通路32を形成する壁面に設けられた電極35と、第1通路31を形成する底壁部11dの壁面に設けられた電極37と、これら2種類の電極35,37の何れか一方に選択的に所定電圧を印加するドライバIC44と、電極35の表面に設けられた絶縁膜36と、電極37の表面に設けられた絶縁膜38とを有する。互いに隔てられた2つの空間を連通させる通路を開閉可能で、且つ、可動部がなくその構造が簡単なバルブが実現される。

Description

明 細 書
キヤビラリ一エレクトロウエツティング現象を用いたバルブ及びァクチユエ ータ
技術分野
[0001] 本発明は、互いに隔てられた 2つの空間を連通させる通路を開閉可能なバルブに 関し、さらに詳細には、キヤビラリ一エレクトロウエツティング現象を用いたバルブ及び ァクチユエータに関する。
背景技術
[0002] インクジェットプリンタには、インクを吐出するインクジェットヘッドにインクを供給する インクカートリッジを有する。このインクカートリッジには、インクジェットヘッドへのイン ク供給を円滑に行うことを目的として、インク供給ロカ 流出したインクの減少分だけ 内部に大気を流入させるための大気連通路が設けられている。しかし、インクカートリ ッジの内部と大気とが大気連通路により連通していると、内部のインクが徐々に蒸発 してその粘度が高くなつてしまう。この場合、インクジェットヘッドのノズルから吐出され るインクの液滴体積や液滴速度が変化することから、印字品質が低下することになる 。そこで、例えば、この大気連通路を、その通路幅が狭ぐ且つ、何回も折り返された ラビリンス構造に形成することにより、インクの蒸発速度を遅らせることが可能なインク カートリッジ (インクタンク)が提案されている(例えば、特許文献 1参照)。
[0003] 特許文献 1:特開平 11― 105305号公報(図 1)
発明の開示
発明が解決しょうとする課題
[0004] 前記特許文献 1のインクカートリッジでは、大気連通路をラビリンス構造に形成され ていることから、インクの蒸発はある程度遅くなるものの、インクカートリッジの内部と大 気が常に連通している状態には変わりないため、同じインクカートリッジを長期間プリ ンタに取り付けた状態で使用していると、やはり、インクカートリッジ内のインクが乾燥 してしまう。
[0005] そこで、インクカートリッジに、大気連通路を開閉可能な電磁弁等の一般的な構造 のバルブを設けて、インクジェットヘッド力 インクを吐出するときにのみバルブを開放 し、それ以外の状態ではバルブを閉止することで、インクの乾燥を防止することは一 応可能である。しかし、電磁弁等の一般的なバルブは、弁座に当接する弁体を駆動 する機構を有し、その構造は比較的複雑なものが多ぐこのようなバルブをインカート リッジに設けるとなると、インクカートリッジの製造コストがかなり高いものとなってしまう
[0006] 本発明の目的は、互いに隔てられた 2つの空間を連通させる通路を開閉可能で、 且つ、可動部がなくその構造が簡単なノ レブを提供することである。本発明の別の 目的は、キヤビラリ一エレクトロウエツティング現象を用いた新規なァクチユエータ及び それを用いた流路開閉機構を提供することにある。
課題を解決するための手段及び発明の効果
[0007] 本発明の第 1の態様に従えば、互いに隔てられた 2つの空間を連通させる第 1通路 と、この第 1通路から分岐する第 2通路とを有し、その内部に導電性を有する第 1の液 体が封入された内部通路と、第 2通路を形成する壁面に設けられた第 1の電極と、第 1の電極の表面に設けられ、所定電圧が印加されたときには、所定電圧が印加され ていない状態よりも、その表面における第 1の液体の濡れ角が低下する第 1絶縁膜と を有するバルブが提供される。このバルブは第 1の電極に所定の電圧を印加する電 圧印加部を更に備え得る。
[0008] このバルブは、第 1の電極への所定電圧の印力!]、あるいは、その電圧印加状態の 解除を行うことにより、第 1絶縁膜の表面における第 1の液体の濡れ角を変化させ、 第 1の液体を第 1通路と第 2通路との間で移動させて、第 1通路を開閉することが可能 になっている。そのため、バルブの構造が、可動部のない簡単なものとなり、その製 造コストを低く抑えることができる。また、バルブ作動時の騒音及び消費エネルギーも 小さくなる。
[0009] また、バルブが、電圧印加部により第 1の電極に所定電圧が印加されたときには、 第 1の液体が第 1通路力 第 2通路の第 1絶縁膜の表面に移動して第 1通路が開放さ れ、この第 1の電極への電圧の印加が解除されたときには、第 1の液体が第 2の通路 の第 1絶縁膜から力 第 1の通路へ移動して第 1の通路が閉止されるように構成され ていてもよい。
[0010] また、本発明のバルブは、第 1の電極に所定電圧が印加されている状態では、第 1 の液体の第 1の電極に対する濡れ角が 90° 未満であり、第 1の電極に所定電圧が 印加されていない状態では、第 1の液体の第 1の電極に対する濡れ角が 90° 以上 にし得る。これによると、第 1の電極に所定電圧が印加されたときには、第 1の電極の 表面に対する液体の濡れ角が 90° 未満となるため、液体を第 1通路から第 2通路へ 確実に移動させることができる。また、第 1の電極に電圧が印加されていないときには 、第 1の電極の表面に対する濡れ角が 90° 以上になるため、液体を第 2通路から第 1通路へ確実に移動させることができる。
[0011] また、本発明のバルブにおいて、第 1の電極及び第 1絶縁膜は、第 2通路を形成す る壁面の分岐位置力 離れた位置に形成され、第 2通路を形成する壁面のうち、前 記分岐位置の近傍に対する第 1の液体の濡れ角は、第 1の電極に前記所定電圧が 印加されていない状態の第 1絶縁膜に対する第 1の液体の濡れ角よりも低くし得る。 この場合、第 1の電極に所定電圧が印加されていない状態で、第 1の液体が、分岐 位置近傍において第 2通路内に部分的に入り込むことになる。そのため、第 1の電極 に所定電圧が印加されたときに、第 1の液体が第 1通路力 第 2通路へ移動しやすく なり、第 1通路が確実に開放される。また、逆に、第 1の電極に所定電圧が印加され ている状態から、電圧の印加状態が解除されたときには、第 1の液体は第 2通路から 第 1通路へ移動しやすくなる。従って、バルブの開閉動作の信頼性が高くなり、また、 その応答性も速くなる。
[0012] また、本発明のバルブにおいて、第 1通路を形成する壁面に設けられた第 2の電極 と、この第 2の電極の表面に設けられた第 2絶縁膜とを有し、電圧印加部は、前記第 1の電極に前記所定電圧が印加されていないときにのみ、第 2の電極に電圧を印加 するように構成されていてもよい。第 2の電極に電圧が印加されたときには、第 2の電 極表面の第 2絶縁膜に対する液体の濡れ角が小さくなることから、第 2通路から第 1 通路に液体が流れやすくなり、第 1通路をより確実に閉止することができる。一方、こ の第 2の電極に対する電圧印加状態が解除されたときには、第 1通路の第 2絶縁膜 における液体の濡れ角が大きくなることから、液体が第 1通路力 第 2通路へ流れや すくなり、より確実に第 1通路を開放することができる。また、バルブの開閉動作の応 答性も速くなる。
[0013] さらに、本発明のバルブにおいて、所定の一定電位に保持され、且つ、第 1の液体 に常に接触するように内部通路を形成する壁面に第 3の電極が設けられ得る。これ によると、第 3の電極に接触する液体と、第 1の電極に所定電圧を印加したときに第 1 の電極との間に確実に電位差が生じるため、第 1の電極の表面における液体の濡れ 角が確実に低下し、液体を確実に第 1通路から第 2通路へ移動する。さらに、第 2の 電極に所定電圧を印加したときに、第 2の電極と第 1の液体との間に確実に電位差が 生じるため、第 2の電極の表面における液体の濡れ角が確実に低下し、第 1の液体 を確実に第 2通路から第 1通路へ移動させることができる。
[0014] このとき、第 3の電極は、第 2通路を形成する壁面の前記分岐位置の近傍に形成さ れ得る。この場合には、第 1の液体を第 3の電極に常に接触させることが可能になり、 第 1の液体をより確実に所定の一定電位に保持することができる。
[0015] また、本発明のバルブにおいて、第 1通路の通路面積が第 2通路の通路面積よりも 大きくし得る。これによると、第 1通路に生じる毛管力よりも第 2通路に生じる毛管力の 方が大きくなるため、第 1の液体が第 1通路から第 2通路へ移動しやすくなり、第 1通 路をより確実に開放することができる。また、開閉動作の応答性も速くなる。
[0016] また、本発明のバルブにおいて、第 1の液体の内部通路の壁面と接触していない 部分の表面が、不揮発性を有する第 2の液体で覆われていてもよい。これによると、 不揮発性の第 2の液体で覆うことにより、第 1の液体の蒸発を防止することができる。
[0017] また、本発明のバルブにおいて、内部通路に接続されて、第 1の液体を内部通路 に供給する液体供給源が設けられていてもよい。これによると、内部通路内の第 1の 液体が蒸発してその量が減少したときでも、液体供給源力 内部通路内に第 1の液 体を供給することができる。
[0018] また、本発明のバルブは、その内部に形成されたインク収容空間と、このインク収容 空間と大気とを連通させる大気連通路とを有するインクカートリッジに設けられ、大気 連通路を開閉可能に構成されていてもよい。従って、インク収容空間内のインクが減 少したときに、バルブにより大気連通路を開放することにより、インクの減少に応じて 外部からインク収容空間内に空気を導入できるため、インクジェットヘッドに対するィ ンクの供給を円滑に行うことができる。また、インクをインクジェットヘッドに対して供給 しないときには、バルブにより大気連通路を閉止することにより、インクカートリッジ内 部のインクが乾燥して粘度が高くなるのを防止できる。本発明に従えば、このようなバ ルブを備えるインクカートリッジもまた提供される。
[0019] また、本発明のバルブは、被記録媒体に対してインクを吐出するインクジェットへッ ドのインク吐出面に装着可能で且つインク吐出面側の空間と外部とを連通させる連 通路を有するキャップに設けられ、この連通路を開閉可能に構成されていてもよい。 これによると、バルブにより連通路を開放してからインクジェットヘッドのインク吐出面 にキャップを押し当てることにより、キャップ内部における気圧変化でノズル内部にお ける気圧の変化をなくしノズルのメニスカスが破損するのを防止することができる。さら に、キャップを押し当てた後にバルブで連通路を閉止することにより、ノズル内のイン クが乾燥するのを防止することができる。本発明に従えば、このようなノ レブを備える インクジェットヘッド用のキャップもまた提供される。
[0020] また、これらインクカートリッジの大気連通路やノズルキャップの連通路を開閉する バルブにおいて、電圧印加部は、定期的に第 1の電極に対して所定電圧を印加する ように構成されていてもよい。この場合には、一定時間が経過するごとにバルブにより 通路を開閉することで、外気の温度変化や気圧変化による、インクカートリッジの内部 又はキャップとインク吐出面との間に存在する空気が膨張又は収縮するのを防止す ることがでさる。
[0021] 本発明のバルブは、さらに、第 1通路から分岐する第 3通路を有し、第 1通路を形成 する壁面に第 2電極が形成されており、第 3通路を形成する壁面に第 3電極が形成さ れており、第 1通路が第 1空間と第 4空間を連通しており、第 3通路が第 1空間と第 3 空間を連通しており、第 2通路が第 1空間と第 2空間を連通してもよい。こうすることで 、本発明のバルブはマルチウェイバルブとして機能する。この場合、第 1電極に電圧 を印加せずに第 3電極に所定電圧を印加することで第 1空間と第 2空間を連通し、第 3電極に電圧を印加せずに第 1電極に所定電圧を印加することで第 1空間と第 3空間 を連通することができる。 [0022] 本発明に従えば、所定空間に開放した開口端を有する通路と、前記通路内に設け られた複数の電極と、前記電極上に形成された絶縁層と、前記通路内を移動可能な プランジャとを備え、前記通路内部にプランジャと絶縁層に接触するように導電性液 体が装填されており、複数の電極のうち所定の電極に電圧を印加することにより、プ ランジャが通路内を移動して開口端力も突出可能であるァクチユエータが提供される
[0023] 本発明のァクチユエータは、キヤビラリ一エレクトロウエツティング現象を利用した新 規なァクチユエータである。所定の電極に電圧を印加することにより、その電極上に 形成された絶縁膜の領域における導電性液体の濡れ角が低下して、その領域に導 電性液体が移動する。それに応じて導電性液体に接触して 、るプランジャは通路内 を移動することができる。
[0024] 前記所定空間に向いたプランジャの端部と反対側の端部が通路内で液体と接触し ていてもよい。また、前記通路内にプランジャが液体に包囲されて収容されていても よい。本発明のァクチユエータは、さらに、スピンドルを備え、前記電極及び前記絶縁 層がスピンドル上に設けられ、前記プランジャが中空部を有し、前記スピンドルが前 記中空部に収容されており、前記プランジャがスピンドル上を液体を介して移動可能 にし得る。
[0025] また、前記プランジャの一部にのみ親液性または撥液性処理が施されて 、てもよ!/ヽ 。こうすることでプランジャの特定部分のみが液体で支持され得る。本発明のァクチュ エータは、さらに、前記複数の電極に選択的に電圧を印加する電圧印加装置を備え ていてもよい。
[0026] 本発明の第 3の態様に従えば、本発明のァクチユエータと、前記通路の開口端から 所定間隔を開けて設けられた壁とを備え、壁と開口端の間に流路が画成されており、 プランジャが開口端力 突出して壁に接触することにより該流路が閉鎖される流路開 閉機構が提供される。本発明の流路開閉機構は、本発明のァクチユエータを用いて 流体の流動を有効に制御することができる。前記ァクチユエータのプランジャの先端 に係合部が形成され、係合部と係合する被係合部が前記壁に形成されて!ヽてもよ ヽ 図面の簡単な説明
[図 1]第 1の実施の形態に係るインクジェットプリンタの概略構成図である。
[図 2]インクカートリッジの斜視図である。
[図 3]インクカートリッジの断面図である。
[図 4]図 2のバルブ近傍の拡大図である。
[図 5]バルブの拡大断面図である。
[図 6]インクジェットプリンタの電気的な構成を示すブロック図である。
[図 7]印刷を実行する際のインクジェットプリンタの一連の動作のフローチャートである 圆 8]第 1通路が閉止された状態におけるバルブの断面図である。
圆 9]第 1通路が開放された状態におけるバルブの断面図である。
[図 10]変更形態 1の図 5相当の断面図である。
[図 11]変更形態 3の図 5相当の断面図である。
[図 12]変更形態 4の図 5相当の断面図である。
[図 13]変更形態 5の図 5相当の断面図である。
[図 14]第 2の実施の形態に係るインクジェットプリンタの概略構成図である。
[図 15]ノズルキャップが装着された状態のインクジェットヘッドの縦断面図である。
[図 16]図 15のバルブの拡大断面図である。
[図 17]第 2の実施の形態のインクジェットプリンタの電気的な構成を示すブロック図で ある。
[図 18]インクジェットプリンタの印刷動作を含む一連の動作のフローチャートである。
[図 19] (a)はインクジェットヘッドにノズルキャップが装着された状態を示す断面図で あり、(b)は(a)のバルブの拡大断面図である。
[図 20] (a)はインクジェットヘッドにノズルキャップが装着される直前の状態を示す断 面図であり、 (b)は(a)のバルブの拡大断面図である。
[図 21]第 3実施形態の流路構造体を概念的に示す図である。
圆 22]第 3実施形態の流路構造体の流路 (下板)の平面図であり、気体が連通できな い状態を示す。 [図 23]第 3実施形態の流路構造体の流路 (下板)の平面図であり、第 1流路と第 3流 路が連通して!/、る状態を示す。
[図 24]第 3実施形態の流路構造体の流路 (下板)の平面図であり、第 1流路と第 4流 路が連通して!/、る状態を示す。
圆 25]第 3実施形態の流路構造の変形例であり、複数の流路が 3次元的に連結して V、る流路構造を示す図である。
[図 26]第 4実施形態の開閉機構の開放状態を概念的に示す図である。
[図 27]第 4実施形態の開閉機構の閉鎖状態を概念的に示す図である。
圆 28]第 4実施形態の変形例 1の開閉機構の開放状態を概念的に示す図である。 圆 29]第 4実施形態の変形例 1の開閉機構の閉鎖状態を概念的に示す図である。 圆 30]第 4実施形態の変形例 2の開閉機構の開放状態を概念的に示す図である。 圆 31]第 4実施形態の変形例 2の開閉機構の閉鎖状態を概念的に示す図である。 圆 32]毛細管現象を説明する図であり、図 32 (a)は濡れ角が 90° 未満の場合にお ける毛細管現象を表す図であり、図 32 (b)は濡れ角が 90° より大きい場合における 毛細管現象を表す図である。
圆 33]図 33 (a)は、撥液性を有する絶縁膜の上に液滴を置いた場合の模式断面図 であり、図 33 (b)は、液滴と電極の間に電圧を印加した場合に起こるエレクトロウエツ ティング現象を示す模式断面図である。
符号の説明
2 インクカートリッジ、 3 インクジェットヘッド、 22 インク収容空間、
24 大気連通路、 25, 25A, 25B, 25C, 25D ノ レブ、 31 液体、 31 第 1通 路、 32 第 2通路、 33 通路(内部通路)、 34 液体、 35 電極 (第 1の電極)、
36 絶縁膜、 37, 37A 電極(第 2の電極)、 38 絶縁膜、 39 電極(第 3の電 極)、 44 ドライバ IC、 45 液体、 46 液体貯留室、 57 ドライバ IC、 60 ィ ンクジェットヘッド、 60a インク吐出面、 63 ノズル、 64 ノズルキャップ、 65 連通路、 66 バルブ、 71 第 1通路、 72 第 2通路、 73 通路(内部通路)、 74 液体、 75 電極(第 1の電極)、 76 絶縁膜、 77 電極(第 2の電極)、 78 絶縁膜、 79 電極 (第 3の電極)、 121 流路構造、 201、 301、 401 流路開 閉機構、 205, 305, 405 プランジャ
発明を実施するための最良の形態
[0029] まず、本発明のノ レブ及びァクチユエータに用いる、本発明者が見出した液体の 搬送及び移動に用いるキヤビラリ一エレクトロウエツティング現象(以下、適宜 CEW現 象と称する)について説明する。
[0030] 図 32 (a)及び 32 (b)に示すように、液体中に細い管 (毛細管)を立てると、管内の液 面が管外の液面よりも上昇若しくは下降する (毛管現象)。液体分子間の凝集力と液 体と管壁の間の付着力との大小関係により、液体が管を濡らす (濡れ角が 90° より小 さい)ときは液面は上昇し、濡らさない (濡れ角が 90° より大きい)ときには液面は下 降する。
[0031] 管 450と液面との濡れ角 Θ力 よりも小さい場合において、管 450の内外の液 面の高さの差 hは、管内の液体の液面に力かる表面張力 F1の合力 Fと、管外の液面 よりも上にある部分の液体に力かる重力 Gとの釣り合いにより決まる(図 32 (a)参照)。 濡れ角 Θ力 よりも大きい場合における管の内外の液面の高さの差 hは、管内の 液体の液面に力かる表面張力 F1の合力 Fと、管内の液面の下降によって管内の液 体に働く浮力 fとの釣り合いによって決まる(図 32 (b)参照)。例えば、管の材質がガ ラスであり、液体が水である場合において、管の内径が 3mmのときの管内の液面の 上昇は約 lcmであるのに対して、管の内径が 0. 1mmのときの管内の液面の上昇は 約 28cmである。
[0032] このように、毛管現象によって管内の液面が管外の液面と比べて上昇するか下降 するかは、管の材質及び液体の組成によって決まる。さらに、管の内外の液面の高さ の差 hは、管の材質及び液体の組成に加えて、管の内径及び液体の密度によって決 まる量であることが知られている。従って、従来は毛管現象による管内の液面の上昇 及び下降を自由に制御することはできず、さらに液面の高さを設定する際には、それ に応じて管の内径を変更する必要があった。
[0033] そこで本願の発明者は、毛管内の液面の上昇及び下降並びに液面の高さを自由 に制御しうる手法を確立すべく思考及び実験を重ねた結果、エレクトロウエツティング 現象と毛管現象を組み合わせることによって、キヤビラリ一エレクトロウエツティング現 象とも呼ぶべき新たな現象を見出した。ここで、エレクトロウエツティング現象によると、 例えば図 33 (a)、図 33 (b)に示すように、平板電極 1401の上に設けられた撥水性 の薄膜 1402上に導電性を有する液体の液滴 1403を置き、この液滴中に微細な針 金状の電極 1404を挿入する場合において、液滴 1403と平板電極 1401との間に電 圧を印加する前の状態(図 33 (a) )と比べて、電圧を印カロした後は薄膜 1402の濡れ 性が高くなり、薄膜 1402と液滴 1403との間の濡れ角 Θが小さくなる(図 33 (b)参照)
[0034] 本願の発明者は、エレクトロウエツティング現象において、 90° より大きな濡れ角を 90° 未満に下げうる点に特に着目し、エレクトロウエツティング現象を用いて毛管の 壁面の濡れ性を制御することによって、毛管現象における液面の動きを自由に且つ 瞬時に制御しうること (CEW現象)を見出した。即ち、毛管の壁面上に電極を設け、 電極及び壁面を所定の撥水性の薄膜でコーティングし、導電性を有する液体と電極 との間に電圧を印加することにより、電圧の大きさ及び電圧を印加する範囲に応じて 液面の動きを制御することが可能である。本願の発明者は、この CEW現象に基づき 、種々の用途に適用可能なバルブ、ァクチユエータ、及びそのァクチユエータを備え た開閉機構を完成するに至った。 CEW現象を利用するには毛管 (通路)の内径 (幅) は 4mm以下であることが好まし!/、。
[0035] [第 1実施形態]
本発明の第 1の実施の形態について説明する。第 1の実施の形態は、インクジェット ヘッドに供給されるインクを貯留するインクカートリッジに本発明を適用した一例であ る。
[0036] まず、インクジェットヘッドを備えたインクジェットプリンタについて簡単に説明する。
図 1は、本実施の形態に係るインクジェットプリンタ 1の概略構成図である。図 1に示 すように、インクジェットプリンタ 1は、記録用紙にインクを吐出するインクジェットヘッド 3と、このインクジェットヘッド 3にチューブ 5を介して接続されたインクカートリッジ 2と、 インクジェットヘッド 3によるインク吐出動作等、インクジェットプリンタ 1の種々の動作 を制御する制御装置 40 (図 6参照)を備えている。そして、インクジェットプリンタ 1は、 インクカートリッジ 2からチューブ 5を介してインクジェットヘッド 3にインクを供給しなが ら、インクジェットヘッド 3のインク吐出面 3aに形成された複数のノズル(図示省略)か らインクを吐出して、記録用紙に対する画像の記録を行う。
[0037] 次に、インクカートリッジ 2について図 2、図 3を用いて説明する。図 2は、図 1のイン クカートリッジ 2の斜視図であり、図 3はインクカートリッジ 2の断面図である。以下では 、図 2の奥側を上方とし、図 2の左右方向を左右方向と定義して説明する。図 2に示 すように、インクカートリッジ 2は、インク収容空間 22とこのインク収容空間 22と大気と を連通させる大気連通路 24とをその内部に有するカートリッジ本体 10と、大気連通 路 24を開閉可能なバルブ 25とを備えている。
[0038] まず、カートリッジ本体 10について説明する。カートリッジ本体 10は、インクの濡れ 性に優れる合成樹脂材料 (例えば、ポリプロピレン)で形成された平板状の 2枚の板 部材 (第 1板部材 11及び第 2板部材 12)を有する。これら 2枚の板部材 11, 12はそ の平面形状が同一となるように形成されており、互いに対向した状態で溶着等により 接合されている。
[0039] 図 2、図 3に示すように、第 1板部材 11の外縁部には、その中央部を囲うように、上 壁部 l la、左右の側壁部 l ib, l lc、及び、底壁部 l idがそれぞれ形成されている。 底壁部 l idからは、ー且上方へ延びた後、右方へ延び、にさらに上方へ延びる隔壁 l ieが形成されている。そして、第 1板部材 11の上壁部 l la、左右の側壁部 l ib, 1 lc、及び、底壁部 l idと、第 2板部材 12により囲われた空間が隔壁 l ieにより左右に 分割され、隔壁 l ieの左側にはインク収容空間 22が、隔壁 l ieの右側には大気連通 路 24が夫々形成されている。尚、隔壁 l ieと上壁部 11aとの間には、インク収容空間 22の上部と大気連通路 24の上部とを連通させる連通路 26が形成されて 、る。また、 底壁部 l idの右側部分には、大気連通路 24に連通する、後述のバルブ 25の第 1通 路(図 4、図 5参照)が貫通状に形成され、さらに、第 1通路 31から分岐するバルブ 25 の第 2通路 32も底壁部 1 Idに形成されて 、る。
[0040] 第 1板部材 11の底壁部 l idの左側部分には下方へ突出する突出部 1 Ifが形成さ れている。また、第 2板部材 12の、突出部 1 Ifと対向する部分にも、突出部 1 Ifと同じ 平面形状を有し、且つ、突出部 1 Ifと接合された突出部 12fが形成されている。これ ら突出部 1 If, 12fには環状のシール部材 15を介してチューブ 5が接続され、突出部 l lf, 12f内には、インク収容空間 22とチューブ 5とを連通させるインク供給路 23が形 成されている。
[0041] そして、インク収容空間 22内のインク Iがインク供給路 23からチューブ 5を介してィ ンクジェットヘッド 3へインク Iが供給されるときには、同時に、インク収容空間 22から流 出したインク Iの量に対応する大気が大気連通路 24からインク収容空間 22内に導入 されるようになつている。
[0042] 次に、バルブ 25について図 4、図 5を参照して説明する。図 4はバルブ 25の斜視図 、図 5はバルブ 25の拡大断面図である。このバルブ 25は、インクカートリッジ 2からィ ンクジェットヘッド 3に対してインクが供給される場合には大気連通路 24を開放し、一 方、インクカートリッジ 2からインクジェットヘッド 3に対してインクが供給されない場合 には、大気連通路 24を閉止してインク収容空間 22内のインク Iの乾燥を防止するも のである。
[0043] 図 4、図 5に示すように、バルブ 25は、大気連通路 24とカートリッジ本体 10の外部と を連通させる第 1通路 31とこの第 1通路 31から分岐する第 2通路 32とを有する通路 3 3 (内部通路)と、第 2通路 32の壁面に設けられた電極 35 (第 1電極)と、第 1通路 31 の壁面に設けられた電極 37 (第 2電極)と、これら 2種類の電極 35, 37の何れか一方 に選択的に所定電圧を印加するドライバ IC44 (電圧印加部:図 6参照)と、電極 35の 表面に設けられた絶縁膜 36と、電極 37の表面に設けられた絶縁膜 38とを有する。
[0044] 第 1通路 31は、第 1板部材 11の底壁部 l idに形成された溝 l lgにより、底壁部 11 dを上下方向に貫通するように形成されている。一方、第 2通路 32は、溝 l lgの上下 方向中央部から右方へ分岐し、さらに、上方へ延びる溝 l lhにより形成されており、 第 1通路 31と大気連通路 24の両方に連通している。また、これら第 1通路 31及び第 2通路 32は、断面が矩形に形成されている。そして、本実施形態のバルブ 25におい ては、第 1通路 31の断面積は、第 2通路 32の断面積よりも大きくなつている。例えば 、図 4【こ示す、第1通路31の幅81 = 200 111、高さ HI = 120 /z m【こ対して、第 2通 路 32の幅 Β2= 120 /ζ πι、高さ H2= 120 mとなっている。より一般的には、第 2通 路 32において、キヤビラリ一エレクトロウエツティング現象を顕在化させるには、第 2通 路 32の幅は、 4mm以下であることが望ましい。 [0045] これら第 1通路 31及び第 2通路 32からなる通路 33には、第 1通路 31と第 2通路 32 の間を移動することにより第 1通路 31を開閉する、導電性を有する液体 34 (第 1の液 体)が封入されている。この導電性を有する液体 34としては、例えば、水や、水にダリ セリン等を溶かした水溶液等を使用できる。あるいは、イオンのみ力もなるイオン性液 体 (常温溶融塩)を使用することもできる。このイオン性液体は、一般的に、不揮発性 であることから、大気にさらされて 、ても蒸発しな 、と 、う長所がある。
[0046] 第 2通路 32の、第 1通路 31から分岐して右方へ延びる部分を形成する溝 l lhの壁 面のうち、その分岐位置カゝら所定距離離れた位置には、上下 1対の電極 35が形成さ れている。この電極 35は接続部 35aを介してドライバ IC44 (図 6参照)に接続されて いる。また、第 1通路 31を形成する溝 l lgのうち、左側の壁面の第 2通路が分岐する 部分に対向する位置には、電極 37が形成されている。この電極 37は、接続部 37aに よってドライバ IC44に接続されている。そして、これら 2種類の電極 35, 37の何れか 一方に、ドライバ IC44から所定の電圧が印加される。尚、電圧が印加されていない 方の電極 35, 37は、接続部 35a, 37aを介してグランド電位に保持されている。さら に、第 2通路 32を形成する溝 l lhの壁面のうち、第 1通路 31からの分岐位置の近傍 (分岐位置と電極 35が形成されている位置との間の位置)には、電極 39 (第 3の電極 )が形成されており、この電極 39は、接続部 39aを介して常にグランド電位に保持さ れている。これら 3種類の電極 35, 37, 39は、蒸着法、スパッタ法、印刷等の公知の 方法により形成することができる。
[0047] さらに、第 2通路 32の、電極 35の表面を含む溝 l lhの壁面には、例えば、四フッ化 エチレン等のフッ素系榭脂からなる絶縁膜 36が、分岐位置の近傍を除いて全面的 に形成されている。そして、電極 35に電圧が印加されていない状態ではこの絶縁膜 36の表面の撥液性は、絶縁膜 36が形成されていない部分よりも高くなつている。言 V、換えると、絶縁膜 36が形成されて 、な 、分岐位置近傍に対する液体 34の濡れ角 力 絶縁膜 36の表面における液体 34の濡れ角よりも低くなつている。しかし、ドライバ IC44から電極 35に電圧が印加されたときには、この電極 35の表面の絶縁膜 36の 部分 (本願の第 1絶縁膜に相当する)の撥液性が部分的に低下して、その表面にお ける液体 34の濡れ角が小さくなる(エレクトロウエツティング現象)。尚、この撥液性の 高い絶縁膜 36は、第 2通路 32を形成する壁面の、電極 35よりもさらに奥側の部分ま で形成されている。そのため、カートリッジ本体 10の内外の気圧差などが生じても、 液体 34が電極 35よりも奥へ移動することがな 、。
[0048] また、第 1通路 31の、電極 37の表面を含む溝 l lgの壁面には、前述の絶縁膜 36と 同じ材料 (例えば、フッ素系榭脂)力もなる絶縁膜 38が全面的に形成されており、こ の絶縁膜 38の表面の撥液性は、絶縁膜 38が形成されていない部分よりも高くなつて いる。しかし、ドライバ IC44から電極 37に電圧が印加されたときには、前述の絶縁膜 36と同様にエレクトロウエツティング現象が生じ、この電極 37の表面の絶縁膜 38の部 分 (本願の第 2絶縁膜に相当する)の撥液性が低下して、その表面における液体 34 の濡れ角が小さくなる。尚、この撥液性の高い絶縁膜 38は、第 1通路 31を形成する 壁面の電極 37が形成された部分よりも上側及び下側の部分にも形成されて 、る。そ のため、カートリッジ本体 10の内外の気圧差や重力の影響により、液体 34が大気連 通路 24へ吸い込まれたり、あるいは、落下したりすることがない。これらの絶縁膜 36, 38は、第 1通路 31及び第 2通路 32を形成する溝 l lg及び溝 l lhの壁面に、スピンコ ート、スパッタ等の方法により形成することができる。
[0049] そして、ノ レブ 25は、ドライバ IC44から電極 35, 37の何れか一方に所定の電圧を 印加することにより、絶縁膜 36, 38の表面に対する液体 34の濡れ角を変化させ、液 体 34を第 1通路 31と第 2通路 32との間で移動させて、第 1通路 31を開閉することが 可能になっている。この第 1通路 31の開閉動作については、後ほど詳しく説明する。
[0050] 尚、分岐位置の近傍に形成されて、常にグランド電位に保持されている電極 39の 表面には、絶縁膜 36が形成されていない。そのため、液体 34は、この電極 39に常 に接触しており、グランド電位に保持されている。従って、電極 35又は電極 37に所 定の電圧が印加されたときに、これらの電極と液体 34との間に常に所定の電位差が 生じることから、絶縁膜 36, 38の、電極 35, 37の表面の部分における液体 34の濡 れ角を確実に低下させることができる。
[0051] 次に、本実施の形態のインクジェットプリンタ 1の電気的な構成について図 6のブロ ック図を参照して説明する。制御装置 40は、中央演算処理装置である CPU (Central Processing Unit)と、インクジェットプリンタ 1の全体動作を制御するための各種プログ ラムやデータ等が格納された ROM (Read Only Memory)、 CPUで処理されるデータ を一時的に記憶する RAM (Random Access Memory)等を備えている。また、図 6に 示すように、制御装置 40はインクジェットヘッド 3によるインク吐出動作を制御するへ ッド制御部 41と、バルブ 25によるインクカートリッジ 2の大気連通路 24の開閉動作を 制御するバルブ制御部 42とを有する。
[0052] ヘッド制御部 41は、 PC100から制御装置 40に入力された印刷データに基づいて インクジェットヘッド 3を制御して記録用紙に対してインクを吐出させ、記録用紙に所 定の印刷を行わせる。また、バルブ制御部 42は、 PC100から印刷指令が入力され たときには、インクジェットヘッド 3によるインク吐出動作を行う前に大気連通路 24を開 放し、インクジェットヘッド 3によるインク吐出動作が終了したときには大気連通路 24 を閉止するように、バルブ 25のドライバ IC44を制御する。尚、これらヘッド制御部 41 及びバルブ制御部 42は、夫々、 CPU、 ROM,及び、 RAM等により構成されている
[0053] 次に、記録用紙に対する印刷を実行する際のインクジェットプリンタ 1の一連の動作 について、図 7のフローチャート及び図 8、図 9を参照して説明する。図 8は、大気連 通路 24に連通する第 1通路 31が閉止されている状態、図 9は、第 1通路 31が開放さ れている状態をそれぞれ示している。尚、図 7における Si (i= 10, 11, 12)は、各ス テツプを示している。また、図 8、図 9において、電極 35の接続部 35a及び電極 37の 接続部 37aの" + "は、これらの電極 35, 37に所定の電圧が印加されていることを表 しており、電極 35の接続部 35a、電極 37の接続部 37a及び電極 39の接続部 39aの "GND"は、これらの電極 35, 37, 39がグランド電位にあることを表している。
[0054] 図 8に示すように、制御装置 40に対して印刷指令が入力される前の状態では、第 2 通路の電極 35はグランド電位に保持されており、絶縁膜 36に対する液体 34の濡れ 角は、分岐位置近傍の絶縁膜 36が形成されて 、な 、部分に対する液体 34の濡れ 角よりも大きくなつている (撥液性が高くなつている)。一方、第 1通路の電極 37には 所定の電圧が印加されており、絶縁膜 36の電極 37の表面の部分に対する液体 34 の濡れ角が、部分的に低くなつている (撥液性が低い)。そのため、液体 34は、第 1 通路 31において分岐位置の近傍に保持され、さらに、その一部が第 2通路 32の、絶 縁膜 36が形成されていない部分に入り込んだ状態となっている。そして、この液体 3 4により第 1通路 31が塞がれて大気連通路 24が閉止され、インク収容空間 22内のィ ンクの乾燥が防止されている。
[0055] この状態から、 PC100から制御装置 40に対して印刷指令が入力されると、ドライバ IC44により、電極 35に所定の電圧を印加するとともに、電極 37に対する電圧の印加 を解除して、電極 37をグランド電位にする(S 10)。図 9に示すように、電極 35に電圧 が印加されると、絶縁膜 36の電極 35の表面の部分における液体 34の濡れ角 Θが低 下し、第 2通路 32に生じる毛管力により、液体 34が第 1通路 31から第 2通路 32へ移 動する。尚、第 2通路 32を形成する壁面のうち、分岐位置近傍の部分の撥液性は常 に低いことから、第 2通路 32へ移動した液体 34は、この分岐位置近傍の部分と、電 極への電圧印加により撥液性が一時的に低下した、絶縁膜 38の電極 37の表面の部 分に亙って保持される。
[0056] このように、液体 34が第 2通路 32へ移動することにより、液体 34で塞がれていた第 1通路 31が開放されるので、大気連通路 24が大気と連通する。また、同時に、電極 3 7への電圧印加状態が解除されるため、絶縁膜 38の電極 37の表面の部分における 液体 34の濡れ角 Θが大きくなり、液体 34が第 1通路 31から第 2通路 32へ移動しや すくなる。尚、第 2通路 32の断面積は、第 1通路 31の断面積よりも小さいため、第 1通 路 31に生じる毛管力よりも、第 2通路のほうが毛管力が大きくなり、液体 34は第 1通 路 31から第 2通路 32へ移動しやすくなつている。
[0057] このように、大気連通路 24が開放された後、 PC100から入力された印刷データに 基づいて、インクジェットヘッド 3により記録用紙に対して印刷を実行する(Sl l)。この とき、大気連通路 24が開放されていることから、インク収容空間 22からインクジェット ヘッド 3に供給されたインクの量に応じて、大気連通路 24からインク収容空間 22内に 大気が導入されるため、インクジェットヘッド 3へのインク供給が円滑に行われる。
[0058] 次に、印刷が終了したときには、ドライバ IC44により、電極 35に対する電圧の印加 を解除して電極 35をグランド電位にするとともに、電極 37に所定の電圧を印加する( S12)。すると、図 8に示すように、絶縁膜 36の電極 35の表面の部分における液体 3 4の濡れ角 Θが増加するため、液体 34が第 2通路 32から第 1通路 31へ移動し、再び 液体 34は、第 1通路 31において分岐位置の近傍に保持される。従って、この液体 3 4により第 1通路 31が塞がれて、大気連通路 24が閉止される。
[0059] 尚、電極 35に印加する電圧の値、あるいは、絶縁膜 36の材質を適切に決定するこ とにより、電極 35の表面に位置する絶縁膜 36の部分に対する液体 34の濡れ角 Θが 、電極 35に電圧が印加されているときには 90° 未満になることが好ましい。この場合 には、液体 34を第 1通路 31から第 2通路 32へ確実に移動させることができる。さらに 、電極 35に電圧が印加されていないときには濡れ角 Θ力 90° 以上になることが好ま しい。この場合には、液体 34を第 2通路 32から第 1通路 31へ確実に移動させること ができる。
[0060] 以上説明したインクジェットプリンタ 1においては、インクジェットヘッド 3による印刷 動作の前にバルブ 25により大気連通路 24が開放され、この印刷動作の完了後には バルブ 25により大気連通路 24が閉止される。従って、印刷動作中には、大気連通路 24から大気をインク収容空間 22内に導入しつつ、インクカートリッジ 2からインクジェ ットヘッド 3にインクを供給することができ、インク供給を円滑に行うことができる。また 、印刷動作を行わないときには、大気連通路 24を閉止して、インク収容空間 22内の インクの乾燥を確実に防止できる。
[0061] ノ レブ 25は、電極 35又は電極 37への電圧印加により、絶縁膜 36、 38の表面にお ける液体 34の濡れ角を低下させることにより、第 1通路 31と第 2通路 32との間で液体 34を移動させて、第 1通路 31を開閉するように構成されている。そのため、その構造 は、電磁弁等の一般的なノ レブとは異なり、可動部のない簡単なものとなる。従って 、インクカートリッジ 2の製造コストを低く抑えることができる。また、バルブ作動時の騒 音ち/ Jヽさくなる。
[0062] 絶縁膜 36は、第 2通路 32を形成する壁面において、分岐位置の近傍には形成さ れておらず、この絶縁膜 36が形成されて 、な 、分岐位置近傍に対する液体 34の濡 れ角力 電極 35に電圧が印加されて 、な 、状態での絶縁膜 36の表面における液体 34の濡れ角よりも低くなつている。そのため、液体 34が、常に、分岐位置近傍におい て第 2通路 32内に部分的に入り込むことになる。従って、電極 35に所定の電圧が印 加されたときに、液体 34が第 1通路 31から第 2通路 32へ移動しやすくなり、第 1通路 31が確実に開放される。また、逆に、電極 35に所定の電圧が印加されている状態か ら、この電圧の印加状態が解除されたときに、液体 34が第 2通路 32から第 1通路 31 へ移動しやすくなる。従って、バルブ 25の開閉動作の信頼性が高くなり、また、その 応答性も速くなる。
[0063] 第 2通路 32を形成する壁面の、分岐位置の近傍には電極 39が設けられており、液 体 34はこの電極 39に常に接触してグランド電位に保持されている。従って、電極 35 又は電極 37に所定の電圧が印加されたときに、これらの電極と液体 34との間に常に 所定の電位差が生じることから、絶縁膜 36, 38の、電極 35, 37の表面の部分にお ける液体 34の濡れ角を確実に低下させることができる。つまり、第 1通路 31と第 2通 路 32との間で液体 34を確実に移動させることができるため、バルブ 25の開閉動作の 信頼性が高くなる。また、その応答性も速くなる。
[0064] この実施形態では、液体がバルブとして作用するため、第 1通路の絶縁膜の濡れ 性 (液体の濡れ角)さえ適正に設定されれば、第 1通路の断面形状が複雑なものであ つても特別な設計を考慮することなぐ容易で確実に閉鎖させることができる。
[0065] 次に、第 1の実施の形態に種々の変更をカ卩えた変更形態について説明する。但し 、これらの実施の形態と同じ構成を有するものは、同じ符号を付して適宜その説明を 省略する。
[0066] <変更形態 1 >
電極 35, 37, 39の、第 1通路 31及び第 2通路 32を形成する壁面における位置は 、前記第 1の実施の形態の位置に限られない。例えば、電極 35は、溝 l lhの上側の 内面又は下側の内面の何れか一方にのみ形成されていてもよい。あるいは、図 10の バルブ 25Aのように、第 1通路 31を形成する左右両側の壁面に、夫々電極 37Aが 形成されてもよい。この場合には、電極 37Aに電圧が印加されたときに第 1通路 31に 生じる毛管力が大きくなるため、液体 34が第 2通路 32から第 1通路 31へ移動しやす くなる。
[0067] <変更形態 2>
絶縁膜 36, 38は、第 1通路 31や第 2通路 32を形成する壁面に全面的に形成され ている必要は必ずしもなぐ少なくとも電極 35, 37の表面に夫々形成されていればよ い。
[0068] <変更形態 3 >
図 11のバルブ 25Bのように、第 1通路 31の電極 37は省略することが可能である。こ の場合でも、第 2通路 32の電極 35への電圧を印加することにより液体 34を第 2通路 32へ移動させ、電極 35への電圧の印加を解除することにより液体 34を第 1通路 31 へ移動させることができ、第 1通路 31 (大気連通路 24)を開閉することが可能である。
[0069] <変更形態 4 >
液体 34が水などの揮発性の液体からなる場合には、図 12のバルブ 25Cのように、 液体 34の通路 33と接触していない部分の表面力 油などの不揮発性の液体 45 (第 2の液体)によって覆われていてもよい。この場合には、揮発性の液体 34が蒸発して しまうのを液体 45により防止することができ、バルブ 25Cの寿命が長くなる。
[0070] <変更形態 5 >
ノ レブが液体 34を補給する構成を備えていてもよい。例えば、図 13のバルブ 25D は、液体 34を貯留する液体貯留室 46 (液体供給源)を有し、この液体貯留室 46が液 体供給路 47によって第 2通路 32に接続されている。この場合には、液体 34の量が 蒸発等により減少したときには、液体貯留室 46から液体供給路 47を介して液体 34 が補給される。
[0071] <変更形態 6 >
ノ レブ 25力 ドライバ IC44により、電極 35に対して定期的に所定の電圧を所定時 間だけ印加するように構成されて 、てもよ 、。長期間印刷が行われて 、な 、場合に は、バルブ 25により大気連通路 24が長期間開放されないことになるため、大気の温 度変化や気圧変化に起因して、カートリッジ本体 10内のインク収容空間 22内の圧力 が過度に高くなつたり、あるいは、負圧になったりしてしまう。そこで、例えば、インクジ エツトプリンタ 1の制御装置 40において、前回印刷が終了した時間力 所定の時間が 経過していると判断された場合に、ドライバ IC44から電極 35に対して所定の電圧を 所定時間印加するように構成されていると、大気連通路 24を定期的に開放して、力 ートリッジ本体 10の内外の気圧差を常に小さくすることが可能になる。
[0072] [第 2実施形態] 次に、第 2の実施の形態について説明する。前述の第 1の実施の形態は、インク力 ートリッジの大気連通路を開放するバルブに本発明を適用した一例であるが、本発 明の適用対象はインクカートリッジに限られない。以下説明する第 2の実施の形態は 、インクジェットヘッドのインク吐出面に装着されて、ノズル内のインクの乾燥を防止す るノズルキャップに本発明のバルブを適用した一例である。
[0073] 図 14は第 2の実施の形態に係るインクジェットプリンタ 80の概略斜視図である。図 1 4に示すように、インクジェットプリンタ 80は、図 14の左右方向に往復移動可能なキヤ リッジ 81と、このキャリッジ 81に設けられて記録用紙 Pに対してインクを吐出するシリ アル式のインクジェットヘッド 60と、記録用紙 Pを図 1の前方へ搬送する搬送ローラ 8 2と、インクジェットヘッド 60によるインク吐出動作、キャリッジ 81の往復動作、搬送口 ーラ 82による用紙搬送動作等、インクジェットプリンタ 80の種々の動作を制御する制 御装置 51 (図 17参照)等を備えている。インクジェットヘッド 60は、キャリッジ駆動部 5 8 (図 17参照)により駆動されるキャリッジ 81と一体的に左右方向(走査方向)へ移動 して、その下面のインク吐出面 60aに形成された複数のノズル 63 (図 15参照)の出射 ロカ 記録用紙 Pに対してインクを吐出する。そして、インクジェットヘッド 60により記 録された記録用紙 Pは、搬送ローラ 82により前方 (紙送り方向)へ排出される。
[0074] また、キャリッジ 81は、記録用紙 Pが搬送される領域 (用紙搬送領域)よりも、さらに その幅方向(図 14の左右方向)外側(例えば、図 14における右端部)の領域の退避 位置まで移動可能に構成されている。そして、この退避位置にはノズルキャップ 64 ( 図 15参照)が配設されており、このノズルキャップ 64は、キャップ駆動部 59 (図 17参 照)により昇降駆動されるように構成されている。そして、ノズル 63からインクを吐出し ない場合には、インクジェットヘッド 60はキャリッジ 81とともに退避位置に移動され、ノ ズルキャップ 64は、退避位置において、インク吐出面 60aを下方から覆うようにインク ジェットヘッド 60に着脱可能に装着される。
[0075] 次に、インクジェットヘッド 60及びノズルキャップ 64について、図 15を参照してさら に詳細に説明する。尚、図 15はノズルキャップ 64が装着された状態のインクジェット ヘッド 60の縦断面図である。図 15に示すように、インクジェットヘッド 60は、インク力 ートリッジ(図示省略)とチューブ 83を介して接続された流路ユニット 90を有する。そ して、この流路ユニット 90は、互いに接合された積層状の 3枚のプレート 91, 92, 93 からなる。最上層のプレート 91には、マ-ホールド 61と、このマ-ホールド 61とチュ ーブ 83とを連通させるインク供給路 94が形成されている。また、中央のプレート 92に は、マ-ホールド 61から分岐して下方へ延びる複数のインク流路 62が形成されてい る。さらに、最下層のプレート 93には、複数のインク流路 62に夫々連通する複数のノ ズル 63が形成され、このプレート 93の下面は、ノズル 63が開口するインク吐出面 60 aとなっている。そして、チューブ 83からマ-ホールド 61内に流入したインクは、複数 のインク流路 62を介して複数のノズル 63から夫々吐出される。
[0076] ノズルキャップ 64は、インク吐出面 60aと略同じ面積を有し且つノズル 63を下方か ら覆うキャップ部 64aと、このキャップ部 64aの周縁部から上方へ延びてインク吐出面 60aのノズル 63の出射口の周りの領域に密着状に接触可能な接触部 64bと、キヤッ プ部 64aを下方力も支持する基部 64cとを有する。キャップ部 64a及び接触部 64bは 、合成樹脂等の弾力性を有する材料で形成されている。また、基部 64cの内部には、 キャップ部 64a及び接触部 64bと、ノズルキャップ 64がインクジェットヘッド 60に装着 された状態でインク吐出面 60aとの間に形成される空間 95 (図 19参照)をノズルキヤ ップ 64の外部と連通させる連通路 65が形成されている。さらに、基部 cには、連通路 65を開閉可能なバルブ 66が設けられている。
[0077] バルブ 66は、前述の第 1の実施の形態のバルブ 25 (図 5参照)と同様の構成を有 するものであり、その構成を以下に簡単に説明する。図 16に示すように、バルブ 66 は、連通路 65とノズルキャップ 64の外部とを連通させる第 1通路 71とこの第 1通路 71 力も分岐する第 2通路 72とを有する通路 73 (内部通路)と、第 2通路 72を形成する基 部 64cの壁面に形成された電極 75 (第 1の電極)と、第 1通路 71を形成する基部 64c の壁面に形成された電極 77 (第 2の電極)と、これら 2種類の電極 75, 77の何れか一 方に選択的に所定電圧を印加するドライバ IC57 (電圧印加部:図 17参照)と、電極 7 5の表面に設けられた絶縁膜 76と、電極 77の表面に設けられた絶縁膜 78とを有す る。
[0078] 通路 73内には導電性を有する液体 74が封入されており、ノ レブ 66は、液体 74を 第 1通路 71と第 2通路 72との間で移動させることにより、第 1通路 71を開閉する。電 極 75及び電極 77は、接点部 75a及び接点部 77aを介してドライバ IC57 (図 17参照 )に接続されている。そして、ドライバ IC57から電極 75と電極 77の何れか一方に所 定の電圧が印加され、電圧が印加されていない電極はグランド電位に保持される。ま た、第 2通路 72を形成する壁面のうち、分岐位置の近傍には電極 79 (第 3の電極)も 形成されており、この電極 79は接点部 79aを介して常にグランド電位に保持されてい る。
[0079] 絶縁膜 76, 78は、前記第 1の実施の形態の絶縁膜 36, 38と同様の作用を奏する ものである。即ち、電極 75に所定の電圧が印加されたときには、絶縁膜 76の電極 75 の表面の部分 (本願の第 1絶縁膜に相当する)に対する液体 74の濡れ角が低下する 。また、電極 77に所定の電圧が印加されたときには、絶縁膜 78の電極 77の表面の 部分 (本願の第 2絶縁膜に相当する)に対する液体 74の濡れ角が低下する。
[0080] 従って、このバルブ 66は、ドライバ IC57から電極 75に所定の電圧を印加すること により、絶縁膜 76の電極 75の表面の部分に対する液体 74の濡れ角を低下させ、液 体 74を第 1通路 71から第 2通路 72に移動させて、第 1通路 71を開放する。さらに、ド ライバ IC57から電極 77に所定の電圧を印加することにより、絶縁膜 78の電極 77の 表面の部分に対する液体 74の濡れ角を低下させ、液体 74を第 2通路 72から第 1通 路 71に移動させて、第 1通路 71を閉止する。
[0081] 次に、本実施の形態のインクジェットプリンタ 80の電気的な構成について図 17のブ ロック図を用いて説明する。制御装置 51は、中央演算処理装置である CPUと、プリ ンタ 80の全体動作を制御するための各種プログラムやデータ等が格納された ROM と、 CPUで処理されるデータを一時的に記憶する RAM等を備えている。また、図 17 に示すように、制御装置 51はインクジェットヘッド 60によるインク吐出動作を制御する ヘッド制御部 52と、キャリッジ駆動部 58によるキャリッジ 81の往復動作を制御するキ ャリッジ制御部 53と、キャップ駆動部 59によるノズルキャップ 64の昇降動作を制御す るキャップ制御部 54と、バルブ 66によるノズルキャップ 64の連通路 65の開閉動作を 制御するバルブ制御部 55とを有する。
[0082] PC101から制御装置 51に印刷指令が入力されると、キャリッジ制御部 53がキヤリツ ジ駆動部 58を制御してキャリッジ 81を往復移動させ、同時に、ヘッド制御部 52が、ィ ンクジェットヘッド 60を制御して記録用紙に対してインクを吐出させるようになつてい る。また、キャップ制御部 54は、キャップ駆動部 59を制御して、印刷終了後には、ノ ズルキャップ 64を上昇させて退避位置に移動したインクジェットヘッド 60のインク吐 出面 60aにノズルキャップ 64を装着するとともに、印刷開始直前には、ノズルキャップ 64を下降させてノズルキャップ 64をインク吐出面 60aから取り外す。さらに、バルブ 制御部 55は、ノズルキャップ 64の装着前に連通路 65を開放し、装着が完了したとき には連通路 65を閉止するように、バルブ 25のドライバ IC44を制御する。尚、これら ヘッド制御部 52、キャリッジ制御部 53、キャップ制御部 54、及び、バルブ制御部 55 は、夫々、 CPU、 ROM,及び、 RAM等により構成されている。
[0083] 次に、インクジェットプリンタ 80における印刷動作を含む一連の動作について、図 1 8のフローチャートと図 19、図 20を用いて説明する。インクジェットヘッド 60による印 刷動作が行われていない状態では、キャリッジ 81は用紙搬送領域よりも外側の退避 位置にあり、図 19 (a)に示すように、キャリッジ 81に設けられたインクジェットヘッド 60 のインク吐出面 60aにはノズルキャップ 64の接触部 64bが密着して、インク吐出面 60 aはキャップ部 64aにより覆われている。
[0084] このとき、図 19 (b)〖こ示すように、バルブ 66において、電極 75には電圧が印加され ておらず (グランド電位にあり)、絶縁膜 76の電極 75の表面の部分に対する液体 74 の濡れ角 Θは高いままである。一方、電極 77には所定の電圧が印加されており、絶 縁膜 78の電極 77の表面の部分に対する液体 74の濡れ角 Θは、電極 77に電圧が 印加されていないときよりも低下している。そのため、液体 74は、第 1通路 71におい て分岐位置の近傍に保持され、さらに、その一部が第 2通路 72の、電極 75が形成さ れていない部分に入り込んだ状態となっている。従って、この液体 74により第 1通路 7 1が塞がれて連通路 65が閉止されており、ノズル 63内のインクの乾燥が防止されて いる。
[0085] ここで、 PC101から制御装置 51に印刷指令が入力されると、キャップ駆動部 59に よりノズルキャップ 64を下降させて、ノズルキャップ 64をインク吐出面 60aから離間さ せ、インク吐出面 60aに押し当てられた状態を解除する(S20)。そして、インクジエツ トヘッド 60が用紙搬送領域に対向するようにキャリッジ 81を退避位置力も移動させ( S21)、インクジェットヘッド 60及びキャリッジ 81により印刷動作を実行する(S22)。そ して、印刷が終了すると、キャリッジ 81を再び退避位置へ移動させる(S23)。
[0086] 次に、ドライバ IC57により、電極 75に所定の電圧を印加するとともに、電極 77に電 圧が印加されている状態を解除する(S24)。すると、絶縁膜 76の電極 75の表面の 部分に対する液体 74の濡れ角が低下する一方で、絶縁膜 78の電極 77の表面の部 分に対する液体 74の濡れ角が大きくなるため、液体 74が第 1通路 71から第 2通路 7 2へ移動し、第 1通路 71 (連通路 65)が開放される。
[0087] そして、キャップ駆動部 59によりノズルキャップ 64を上昇させて、ノズルキャップ 64 をインク吐出面 60aに押し当て(S25)、接触部 64bをインク吐出面 60aに密着させる 。このとき、連通路 65が開放されているため、ノズルキャップ 64の装着動作に伴って 生じる空間 95内の圧力上昇が緩和される。そのため、この圧力上昇によりノズル 63 のメニスカスが破壊してしまうのを防止することができる。
[0088] このように、ノズルキャップ 64をインク吐出面 60aに装着した後、ドライバ IC57により 、電極 75に電圧が印加されている状態を解除するとともに、電極 77に所定の電圧を 印加する(S26)。すると、絶縁膜 76の電極 75の表面の部分に対する液体 74の濡れ 角 Θが大きくなる一方で、絶縁膜 78の電極 77の表面の部分に対する液体 74の濡れ 角が低下するため、液体 74が第 2通路 72から第 1通路 71へ移動し、第 1通路 71が 液体 74で塞がれて閉止される。従って、連通路 65が閉止されて空間 95が密閉状態 となり、ノズル 63内のインクの乾燥が防止される。尚、制御装置 51に印刷指令が入 力されてから、ノズルキャップ 64をインク吐出面 60aから離間する(S20)前に、ー且 第 1通路 71を開放し、 S20の直後に、第 1通路 71を閉止するようにしてもよい。これ により、ノズルキャップ 64をインク吐出面 60aから離間した瞬間に空間 95の圧力変動 を少なくすることができ、ノズル 63内に形成されたメニスカスが破壊されることを防止 できる。
[0089] 以上説明した第 2の実施の形態のインクジェットプリンタ 80においては、印刷終了 時に、インクジェットヘッド 60のインク吐出面 60aにノズルキャップ 64が装着されるが 、その装着前に、バルブ 66により連通路 65を開放して力もノズルキャップ 64をインク 吐出面 60aに押し当てるため、ノズルキャップ 64の装着時における、キャップ部 64a とインク吐出面 60aとの間の空間 95の圧力上昇を緩和することができる。また、ノズル キャップ 64の装着後には、バルブ 66により連通路 65を閉止するため、ノズル 63内の インクの乾燥を防止できる。
[0090] 尚、この第 2の実施の形態についても、電極や絶縁膜の位置等に関する前述の第 1の実施の形態と同様の種々の変更 (変更形態 1〜6参照)を加えることが可能である
[0091] [第 3実施形態]
第 1の実施の形態では、第 2通路における液体の毛管力または濡れ角を変更する ことにより、第 1通路を開閉を制御した。この実施の形態では、複数の流路を有し、そ の流路における流体の流れを選択的に制御する開閉機構を備えた流路構造を説明 する。図 21に示すように、流路構造体 101は、上板 103と下板 105を重ね合わせて 構成されており、下板 105の上面 105aには、十字状の流路 107が形成されている。 流路 107は、上板 103の上面 105aの中央に凹部(交差部) 115を有し、そこから、互 いに 90度の間隔で放射状に (十字方向に)第 1溝 (第 1流路) 111、第 2溝 (第 2流路) 112、第 3溝 (第 3流路) 113及び第 4溝 (第 4流路) 114が延在するように形成されて いる。各溝は、流路断面の形状が矩形であり、断面積は等しい。第 1流路 111は第 1 空間 1Sと連通し、第 2流路 112は第 4空間 4Sと連通し、第 3流路 113は第 2空間 2S と連通し、第 4流路 114は第 3空間 3Sと連通している。
[0092] 図 22に示すように、第 1流路 111における対向する側壁には第 1電極 11 laが埋設 されており、第 2流路 112の対向する側壁には第 2電極 112aが埋設されており、第 3 流路 113の対向する側壁には第 3電極 113aが埋設されており、第 4流路 114の対向 する側壁には第 4電極 114aが埋設されている。また、交差部 115の側壁 (周壁)及び そこから第 1流路 111〜第 4流路 114の一部に延在するように第 5電極 115aが形成 されている。さらに、第 1流路 111〜第 4流路 114及び交差部 115には、それらの電 極 11 la〜: L 15aを覆うように四フッ化工チレンからなる絶縁膜 118が形成されて!、る 。これらの電極 11 la〜l 15aには図示しない電圧印加部(例えば、図 6の「ドライバ IC 」)または電源から所定の電圧が選択的に印加される。流路 107には、導電性を有す る液体としての水 Wが充填されて!、る。 [0093] 図 22に示すように、第 1電極 11 la〜第 4電極 114a及び第 5電極 115aに電圧が印 加されておらず、全てグランド電位である場合には、第 1〜第 4流路 111〜114の断 面積が等しいので、それらの流路 111〜114における毛管力が等しくなり、水 Wは交 差部 115とそこ力も流路 111〜114に沿って等 、長さでそれらの流路 111〜114 の一部を満たす。交差部 115は水 Wで充満されているために、気体は第 1流路 111 力 他の流路へは移動することができない。すなわち、第 1流路 111〜第 4流路 114 は、水 Wにより互いに隔離されているため、第 1空間 S1〜第 4空間 S4は互いに流通 していない。
[0094] 次に、第 2電極 112a及び第 4電極 114aに所定の電圧が印加されると、第 2電極 11 2a及び第 4電極 114a上に形成されて 、る絶縁膜 118の領域の撥液性が低下して、 その領域における水 Wの絶縁膜 118に対する濡れ角が小さくなる。この結果、水 W は、キヤビラリ一として作用する第 2流路 112及び第 4流路 114に沿って移動する。従 つて、図 23に示すように、交差部 115に存在していた水 Wが第 2流路 112及び第 4 流路 114に移動して、交差部 115には部分的に水 Wの存在しな 、空隙が形成される 。それゆえ、第 1流路 111と第 3流路 113は交差部 115に形成された空隙を介して連 通すること〖こなる。このような原理によって、第 2電極 112a及び第 4電極 114aに所定 の電圧を印加することで第 1流路 111及び第 3流路 113を介して第 1空間 S1と第 2空 間 S2を流通させることができる(図中、矢印参照)。
[0095] 同様にして、図 24に示すように、第 2電極 112a及び第 3電極 113aに所定の電圧 が印加されると、第 2電極 112a及び第 3電極 113a上に形成されて 、る絶縁膜 118 の領域の撥液性が低下して、その領域における水 Wの絶縁膜 118に対する濡れ角 力 、さくなる。この結果、水 Wは、キヤビラリ一として作用する第 2流路 112及び第 3流 路 113に沿って第 4空間及び第 3空間 S3の方に移動する。従って、図 24に示すよう に、交差部 115に存在していた水が第 2流路 112及び第 3流路 113に移動して、交 差部 115には部分的に水 Wの存在しない空隙が形成される。それゆえ、第 1流路 11 1と第 4流路 114は交差部 115に形成された空隙を介して連通することになる。このよ うな原理で、第 2電極 112a及び第 3電極 113aに所定の電圧を印加することで第 1流 路 111と第 4流路 114を介して第 1空間 S1と第 3空間 S3を流通させることができる( 図中矢印)。なお、この実施形態における第 1流路 111と第 2流路 112からなる通路、 第 3流路 113及び第 4流路 114は、それぞれ、本発明における「第 1通路」、「第 2通 路」及び「第 3通路」に相当する。
[0096] 以上のことより、第 1流路 111に流入する気体の流れを、第 2電極 112aに加えて第 3電極 113aまたは第 4電極 114aのいずれかに電圧を印加することにより、第 3流路 1 13または第 4流路 114のいずれかを介して所望の空間に流出させることができる。こ の流路構造 101は 2ウェイノ レブとして機能することができる。なお、第 2電極 112a または第 3電極 113aのみに電圧を印加して、 2の流路、例えば、第 2及び第 4流路に 気体を流入させて第 1空間 S1を第 2空間 S2及び第 4空間 S4と連通させることも可能 である。さらに、この実施形態では 4つの流路を有する例を挙げた力 5つ以上の流 路を交差部力も放射状に延在させてもよい。各流路の側壁に電極を設け、それらに 印加する電極を制御することで、特定の一つの流路と他の特定の一つの流路 (空間) あるいは複数の流路 (複数の空間)を連通させることができる。
[0097] [第 3実施形態の変形例]
上記実施形態では、第 1〜第 4流路は、上板及び下板の面と平行な面内に形成さ れていたが、図 25に示すように、流路構造 121が上板 123及び下板 125を有し、上 板 123及び下板 125の面内の方向に延在する第 1流路 111〜第 4流路 114に加え て、第 5流路 127及び第 6流路 128とを有していてもよい。第 5流路 127は、交差部 1 15と連通し、上板 123の面と直交する方向に延在するように上板 123内に形成され ている。第 6流路 128は交差部 115と連通し、下板 125の面と直交する方向に延在 するように下板 125内に形成されている。すなわち、この変形例では、複数の流路が 3次元的に形成されており、特定の流路から所望の流路に液体を流すことが可能とな る(マルチバルブ)。
[0098] [第 4実施形態]
この実施形態では、第 1実施形態のインクカートリッジにおいて、ノ レブ 25に代え て用いることができる新規な開閉機構 (及びそこで使用されるァクチユエータ)を説明 する。図 2〜4において説明したインクカートリッジ及びそれを使用するインクジェット プリンタの構造及び部品については、同様であるために説明を省略する。また、図 5 に示したインクカートリッジのノ レブと共通の部分については同一の符号を付してそ の説明は省略する。
[0099] 図 26に示すように、開閉機構 201には、第 1板部材に形成された溝 l lg及び l lh により第 1通路 31及び第 2通路 32 (通路の径 (幅)約 4mm)が画成されて 、る。第 2 流路 32の側壁には複数の電極 235a〜235fの対からなる電極 235が埋設されてい る。それらの電極 235a〜235fはドライバ IC (図 6参照)に接続されており、個別に電 圧を印加することができる。第 2流路 32の側壁には複数の電極 235a〜235fを覆うよ うに絶縁膜 36が形成されている。図 26に示すように、第 2流路 32には、導電性の液 体、ここでは水 Wが、第 2流路 32の一部を満たす量で装填されて、細長い形状のゥ ォータチューブ WTを形成して!/、る。
[0100] 第 2流路 32には水 Wよりも第 1流路 31に近い側にプランジャ 205が装填されている 。プランジャ 205は、断面形状が矩形の棒状体 (直方体)であり、この例ではプラスチ ックカも形成されている。プランジャ 205は、第 1流路の幅 (径)よりも長い長さを有す る。プランジャ 205は、第 2流路 32内でスムーズに移動でき且つプランジャ 205と第 2 流路 32の壁面との間に水 Wが侵入しないように、第 2流路 32の内径よりもわずかに 小さい外径を有する。プランジャ 205の一方の端面 205aは平坦であり、他方の端面 205bには凹部 205cが形成されている。この凹部 205cが形成された端面 205bが第 1流路 31側に向くように、プランジャ 205は第 2流路 32内に装填されている。プランジ ャ 205の端面 205aは水 Wの表面張力により第 2流路 32に閉じ込められたウォータチ ユーブ WTの端面と接合している。なお、プランジャ 205の端面 205aに、親水性処理 を施してもよい。第 1流路 31の第 2流路 32と対向する壁面部には、プランジャ 205の 凹部 205cと係合する凸部 l lgが形成されている。
[0101] この開閉機構 201の動作について、図 26及び 27を用いて説明する。電極 235c〜 電極 235fに所定の電圧が印加されており、電極 235a及び電極 235bがグランド電 位に保持されている場合には、電極 235c〜235fを覆う絶縁層 36の領域の水 Wに 対する濡れ性が、電極 235a及び電極 235bを覆う絶縁層 36の領域の水 Wに対する 濡れ性よりも高くなる(撥液性が低くなる)。それゆえ、水 Wは、電極 235c〜235fを 覆う絶縁層 36の領域上に滞在する。この状態では、プランジャ 205の端面 205aがゥ ォータチューブ WTと接合して 、るので、プランジャ 205は第 2流路 36内に弓 Iき込ま れて、その結果、第 1流路 31は開放されている。すなわち、第 1流路 31を通じてイン クカートリッジ内部は外部雰囲気 (所定空間)と連通している。
[0102] 次に、図 27〖こ示すよう〖こ、電極 235a〜電極 235dに所定の電圧を印加し、電極 23 5e及び電極 235fをグランド電位に変更すると、電極 235a〜電極 235dを覆う絶縁層 36の領域の水 Wに対する濡れ性力 電極 235e及び電極 235fを覆う絶縁層 36の領 域の水 Wに対する濡れ性よりも高くなる (撥液性が低くなる)。それゆえ、キヤビラリ一 エレクトロウエツティング現象に基づき、ウォータチューブ WTは、第 2通路 32内で、電 極 235a〜235dを覆う絶縁層 36の領域上に瞬時に移動する。このウォータチューブ WTの移動により、プランジャ 205の一部は第 2流路 32から第 1流路 31に向力つて押 し出され、プランジャ 205の端面 205bは第 1流路 31の壁面に接合してプランジャ 20 5の凹部 205cが凸部 l liと係合する。この結果、第 1流路 31は、プランジャ 205によ り完全に閉鎖され、インクカートリッジ内部空間と外部雰囲気の連通が遮断される。
[0103] 再び第 1流路 31を開放したい場合には、電極 235c〜電極 235fに所定の電圧を 印加し、電極 235a及び電極 235bをグランド電位にすれば、プランジャ 205は図 26 に示した状態に戻る。このように、複数の電極 235a〜235fの電位を選択的に切り換 えることで、第 2流路 32のウォータチューブ WTの位置を変動し、それによりプランジ ャ 205の移動を自在に制御して第 1流路 31を開閉することができる。なお、複数の電 極 235a〜235fのうち電圧を印加する電極を適宜選択することにより(例えば、電極 2 35aのみをグランド電位とし、他の電極には電圧を印加する)、プランジャ 205の移動 量 (第 1流路 31の開閉度)を調整して第 1流路 31を流れるガスの流量を調整すること 可能である。こうすることで、開閉機構 201は流量調整バルブとしても機能することが できる。ここで、開閉機構 201のうち、第 2流路 32、電極 235、絶縁膜 36、プランジャ 205及び水 Wに着目すれば、これらは新規なァクチユエータを構成している。
[0104] この実施形態の開閉機構 201について、特に以下のことに注目すべきである。まず 、ウォータチューブ WTによるプランジャ 205の移動制御を通じて、わずかな電力で 瞬時に、流路の開閉を行うことができることである。さらに、流路はプランジャ 205によ り閉鎖されているときには、その閉鎖の強固さまたは確実さは、液体としての水 Wの 表面張力ではなくプランジャ 205の強度に依存する。よって、開閉機構 201は、非常 に強力なロック機構として作用することができる。それゆえ、流路を流れる流体はこの 実施形態では気体であつたが、この開閉機構を、別の用途、例えば、高圧気体や、 液体、固体の流動を確実に停止する用途に使用することができる。
[0105] [第 4実施形態の第 1変形例]
第 4実施形態では、第 2流路 32内で、プランジャ 205の端面 (底面) 205aがウォー タチューブ WTと接触して!/ヽたので、ウォータチューブ WTがプランジャ 205の端面 2 05aを付勢または引き込むことでプランジャ 205の移動を制御していた。この第 1変 形例の開閉機構 301では、図 28に示すように、プランジャ 305の外径 Dpが、第 2流 路 32とプランジャ 305との間に水 Wが浸入できる程度に、第 2流路 32の内径 Doより も小さい。具体的には、プランジャ 305の直径 (長手方向と直交する方向の幅)を第 2 流路 32の直径よりも 100 /ζ πι〜8πιπι程度短くしている。これにより、プランジャ 305 は、水 Wのウォータチューブ WT内に維持され、特に、プランジャ 305の側面が水 W の表面張力によりウォータチューブ WTに支持されることができる。また、図 28に示す ように、プランジャ 305の端面 305aに近い領域のみが水と接触するように、プランジ ャ 305の凹部 305cが形成された端部 305bに近い領域の側壁には撥液性膜 305d が形成されている。開閉機構 301のその他の構造については、第 4実施形態との開 閉機構 201と同様である。
[0106] この開閉機構 301を作動させるための操作は、第 4実施形態と同様であり、以下に 簡単に説明する。図 28に示すように。電極 235c〜電極 235fに所定の電圧が印加さ れており、電極 235a及び電極 235bがグランド電位に保持されている場合には、電 極 235c〜235fを覆う絶縁層 36の領域の水 Wに対する濡れ性力 電極 235a及び 電極 235bを覆う絶縁層 36の領域の水 Wに対する濡れ性よりも高くなる (撥液性が低 くなる)。それゆえ、水 Wは、電極 235c〜235fを覆う絶縁層 36の領域上に滞在する 。この状態では、プランジャ 305の側面の撥液性が低い部分 (撥液性膜 305dが形成 されていない部分)がウォータチューブ WT内に支持されているので、プランジャ 305 は第 2流路 36内に引き込まれて、その結果、第 1流路 31は開放されている。
[0107] 第 1流路 31を閉鎖するには、図 29に示すように、電極 235a〜電極 235dに所定の 電圧を印加し、電極 235e及び電極 235fへの電圧印加を遮断してグランド電位にす る。すると、電極 235a〜電極 235dを覆う絶縁層 36の領域の水 Wに対する濡れ性が 、電極 235e及び電極 235fを覆う絶縁層 36の領域の水 Wに対する濡れ性よりも高く なる (撥液性が低くなる)。それゆえ、キヤビラリ一エレクトロウエツティング現象に基づ き、ウォータチューブ WTは、第 2通路 32内で、電極 235a〜235dを覆う絶縁層 36の 領域上に瞬時に移動する。このウォータチューブ WTの移動により、プランジャ 305は ウォータチューブ WT内に支持されたまま第 2流路 32から第 1流路 31に向力つて押し 出され、プランジャ 305の端面 305bは第 1流路 31の壁面に接合して、プランジャ 30 5の凹部 305cが凸部 l liと係合する。この結果、第 1流路 31は、プランジャ 305によ り完全に閉鎖される。特に、撥液性膜 305dが第 1流路 31を遮断しているので、第 1 流路 31が液体の流路である場合には、このプランジャ 305の撥液性膜 305dは液漏 れ防止に有効に作用する。この変形例の開閉機構でも、電圧を印加する電極を適宜 選択することにより、流路 31を流れる流量を調整することが可能である。開閉機構 30 1のうち、第 2流路 32、電極 235、絶縁膜 36、プランジャ 305及び水 Wに着目すると、 それらは新規なァクチユエータを構成していることが分ろう。
[第 4実施形態の第 2変形例]
第 4実施形態の開閉機構のさらなる変形例を図 30及び 31を用いて説明する。この 変形例の開閉機構 401では、プランジャ 405を水 Wを介してスライド移動可能に支持 するスピンドル 407が固設されている。スピンドル 407の内部には、長手方向に沿つ て所定間隔で複数の電極 435a〜435fが設けられている。スピンドル 407の表面に は全ての電極 435a〜435fを覆うように絶縁膜 436が形成されている。プランジャ 40 5は中空であり、その内部に水 Wを介してスピンドル 407が収容される。プランジャ 40 5の内壁 405の一部(第 1流路側に近い領域)には撥液性膜 405dが形成されている 。それゆえ、水 Wは撥液性膜 405dが形成されていない内壁領域で表面張力により 支持される。第 1板部材 11には、第 1通路 31を画成するシリンダ部材 403が固設さ れており、シリンダ部材 403には、第 1通路 31に連通する開口端を有する貫通路 40 3aが形成されている。プランジャ 405の外周部は、シリンダ部材 403の貫通路 403a にスライド移動可能に支持されている。すなわち、シリンダ部材 403の貫通路 403は 、プランジャ 405の通路として作用し、貫通路 403内に液体としての水 Wが収容され 、また電極 435が設けられている。第 1通路 31のプランジャ 405と対向する壁面には 、プランジャ 405の内壁 405と係合する突起 1 ljが形成されて 、る。
[0109] この開閉機構 401では、図 30に示すように。電極 435c〜電極 435fに所定の電圧 が印加されており、電極 435a及び電極 435bがグランド電位に保持されている場合 には、電極 435c〜435fを覆う絶縁層 436の領域の水 Wに対する濡れ性力 電極 4 35a及び電極 435bを覆う絶縁層 436の領域の水 Wに対する濡れ性よりも高くなる( 撥液性が低くなる)。それゆえ、水 Wは、電極 435c〜435fを覆う絶縁層 436の領域 とプランジャ 405の内壁 405c (撥液性膜 405dが形成されて ヽな 、部分)の間に滞在 する。この状態では、プランジャ 405の側面の撥液性が低い部分 (撥液性膜 405dが 形成されて 、な 、部分)が電極 435c〜435fを覆う絶縁層 436の領域にウォータチュ ーブ WT内を介して支持されているので、プランジャ 405は、突起 l ljから離れて位 置している。
[0110] 第 1流路 31を閉鎖するには、図 31に示すように、スピンドル 407の電極 435a〜電 極 435dに所定の電圧を印加し、電極 435e及び電極 435fへの電圧印加を遮断して グランド電位にする。すると、電極 435a〜電極 435dを覆う絶縁層 436の領域の水 W に対する濡れ性力 電極 435e及び電極 435fを覆う絶縁層 436の領域の水 Wに対 する濡れ性よりも高くなる (撥液性が低くなる)。それゆえ、キヤビラリ一エレクトロウエツ ティング現象に基づき、ウォータチューブ WTは、プランジャ 405の内部で電極 435a 〜435dを覆う絶縁層 436の領域上に瞬時に移動する。このウォータチューブ WTの 移動により、プランジャ 405はウォータチューブ WT内に支持されたままスピンドル 40 7に対して第 1流路 31に向力つて押し出され、プランジャ 405の端面 405bは第 1流 路 31の壁面に接合して、プランジャ 405の内壁 405cが凸部 l ljと係合する。この結 果、第 1流路 31は、プランジャ 405により完全に閉鎖される。この変形例における開 閉機構 401のうち、シリンダ部材 403 (通路)、電極 435、絶縁膜 436、プランジャ 40 5、スピンドル 407及び水 Wは、斬新なァクチユエータを構成していることが分ろう。
[0111] 第 4実施形態の変形例 2のさらなる改良として、スピンドル 407の内部を中空に形成 し、スピンドル 407の表面にスピンドル 407の中外を連通する複数の孔を形成するこ とができる。スピンドル 407内部に水 W (導電性を有する液体)を満たすと、これらの 孔を通じて、水 Wがスピンドル 407外部に滲み出るために、プランジャ 405内部に保 持される水 Wの不足を補うことができるとともに、スピンドル 407の外周全体を水 Wで 濡れた状態に保つことができる。
[0112] 第 4実施形態及びその変形例においては、撥液性膜をプランジャに設けたが、そ の代わりに撥液性膜を設けなかった領域に親液性 (濡れ性の高 ヽ)の加工を施しても よい。親液性として、物理的な表面加工、例えば、プランジャの表面粗さを調整するこ とによる濡れ性改善や、液体 (水 W)に化学的作用を与えて濡れ性を改善させるコー ティングをプランジャ表面に施しても良い。
[0113] 第 4実施形態及びその変形例にお 、て、プランジャはプラスチック材料であつたが 、ウレタンフォームなどの任意の合成樹脂材料、金属、更には、ゴム系素材、ガラス素 材ゃセラミックでも良い。変形例 1で用いるプランジャは液体 (水 W)中で浮いた状態 で保持されるので、使用される液体とほぼ同等の比重を有する材質で成型することが 望ましい。あるいは、プランジャの内部に閉じた中空室を形成すれば比較的比重が 重い材料を用いて形成し得る。例えば、内部が中空の金属材料であっても良い。
[0114] プランジャが第 2通路 32と接触する場合には、それらの摩擦による摩耗とそれによ るリークを防止するために、プランジャの表面にテフロン (登録商標)加工やシリコンコ 一ティング、ガラス素材などを設けるかそのような材料力もプランジャを形成するのが 望ましい。あるいは、プランジャの外表面に、潤滑のためのオイルの類を塗っても良 い。
[0115] 第 4実施形態及びその変形例では、プランジャの凹部と、第 1通路の壁面の凸部の 係合により第 1通路を閉鎖を確実にしていたが、壁面に凹部が形成され、プランジャ に凸部が形成されてもよい (例えば、プランジャの先端を先細りに加工する)。第 1流 路の閉鎖及び遮断 (気密性または液密性)を一層向上するために、プランジャと第 1 通路の壁面の両方に互いに係合または嵌合する凹凸部を備えてもよい。シール性を さらに向上するために、凹凸部にテフロン (登録商標)などのシールを施してもよい。
[0116] 第 4実施形態及びその変形例では、特定数の電極を設けてたが、電極の数は任意 に変更し得、単一の電極でも動作可能である。また、第 2通路 32の第 1通路 31と反 対側の端部は開放端にする必要はなぐ封鎖されて閉じた空間を形成してもよい。ま た、通路の長手方向の形状や断面形状は任意にし得、特に、断面形状はプランジャ の移動抵抗を考慮して円形にすることができ、これに応じてプランジャの断面形状も 円形にし得る。また、上記実施形態及びその変形例では通路 (またはスピンドル)に 電極を設けた力 電極の配線を工夫して電極をプランジャ側に設けることも可能であ る。
[0117] 第 1実施形態〜第 4実施形態では、インクジェットプリンタに本発明のバルブを適用 した例を挙げて説明したが、マイクロ総合分析システム( μ TAS)内部で薬液や生化 学溶液等の液体を移送する装置、マイクロ化学システム内部で溶媒や化学溶液等の 液体を移送する装置等、インク以外の導電性の液体を移送する装置に本発明のバ ルブを適用することもできる。
[0118] 第 4実施形態及びその変形例の開閉機構は、前述のように、プランジャによる遮断 は機械的に強固であるために、第 1通路に液体または固体 (粉体)が流動する流路 構造にも有効である。また、プランジャと第 2流路との間の隙間を小さくできるので、流 体に高圧がかかる通路の遮断にも有効である。第 4実施形態の変形例 1及び 2では プランジャの寸法を大きくすることができるので、都市ガス配管のガス用バルブや自 動弁のバルブ等にも応用できる。また、 自動車などにおける燃料輸送のパイプ中の レギユレータゃ弁として使用することもできる。また、医療機器の薬剤供給システムに も使用可能である。また、プランジャは、プランジャの第 1通路の壁面に接触する動作 をスィッチや表示動作に利用することができる。また、第 1通路の壁面に対して複数 のプランジャを第 1通路に沿って複数配列させてもよぐまた第 1通路の壁面に対して 2次元的にアレイ状に配置させてもよい。プランジャについては、その名称に拘泥せ ず、キュピラリーエレクトロウエツティング現象で液体と共に移動する物体であれば任 意の物体を使用し得る。
産業上の利用可能性
[0119] 上記実施形態及びその変形例では、流体の流動の開閉のための構造として本発 明を説明してきたが、本発明のバルブ及びァクチユエータはそれに限らず、音波、電 磁波、光、磁場を選択的に遮断するスィッチや、ロック機構〖こ使用することもできる。 すなわち、移動体 (または波)の移動 (または流動)を選択的に停止または方向付け るための機構として任意の用途に使用することができる。特に、キヤビラリ一エレクト口 ゥ ッテイング現象の性質上、水上や水中での用途や重力の影響がない宇宙空間で の使用が期待される。

Claims

請求の範囲
[1] 互いに隔てられた 2つの空間を連通させる第 1通路とこの第 1通路力 分岐する第 2 通路とを有し、その内部に導電性を有する第 1の液体が封入された内部通路と、 前記第 2通路を形成する壁面に設けられた第 1の電極と、
前記第 1の電極の表面に設けられ、前記第 1の電極に所定電圧が印加されたとき には、前記所定電圧が印加されていない状態よりも、その表面に対する前記第 1の 液体の濡れ角が低下する第 1絶縁膜とを有するバルブ。
[2] さらに、前記第 1の電極に所定電圧を印加する電圧印加部を備えることを特徴とす る請求項 1に記載のバルブ。
[3] 前記電圧印加部により前記第 1の電極に前記所定電圧が印加されたときには、前 記第 1の液体が前記第 1通路から前記第 2通路の前記第 1絶縁膜の表面に移動して 前記第 1通路が開放され、前記第 1の電極への前記所定電圧の印加状態が解除さ れたときには、前記第 1の液体が前記第 2通路の前記第 1絶縁膜の表面から前記第 1 通路へ移動して前記第 1通路が閉止されることを特徴とする請求項 2に記載のバル ブ。
[4] 前記第 1の電極に前記所定電圧が印加されている状態では、前記第 1の液体の前 記第 1絶縁膜に対する濡れ角が 90° 未満であり、前記第 1の電極に前記所定電圧 が印加されていない状態では、前記第 1の液体の前記第 1絶縁膜に対する濡れ角が 90° 以上であることを特徴とする請求項 2に記載のバルブ。
[5] 前記第 1の電極及び前記第 1絶縁膜は、前記第 2通路を形成する壁面のその分岐 位置から離れた位置に形成され、
前記第 2通路を形成する壁面のうち、前記分岐位置の近傍に対する前記第 1の液 体の濡れ角は、前記第 1の電極に前記所定電圧が印加されていない状態の前記第 1絶縁膜に対する前記第 1の液体の濡れ角よりも低いことを特徴とする請求項 2に記 載のバルブ。
[6] 前記第 1通路を形成する壁面に設けられた第 2の電極と、この第 2の電極の表面に 設けられた第 2絶縁膜とを有し、
前記電圧印加部は、前記第 1の電極に前記所定電圧が印加されていないときにの み、前記第 2の電極に電圧を印加することを特徴とする請求項 2に記載のバルブ。
[7] 所定の一定電位に保持され、且つ、前記第 1の液体に常に接触するように前記内 部通路を形成する壁面に設けられた第 3の電極を有することを特徴とする請求項 2に 記載のバルブ。
[8] 前記第 3の電極は、前記第 2通路を形成する壁面の前記分岐位置の近傍に形成さ れていることを特徴とする請求項 7に記載のバルブ。
[9] 前記第 1通路の通路面積が、前記第 2通路の通路面積よりも大きいことを特徴とす る請求項 2に記載のバルブ。
[10] 前記第 1の液体の前記内部通路の壁面と接触していない部分の表面力 不揮発性 を有する第 2の液体で覆われていることを特徴とする請求項 2に記載のバルブ。
[11] 前記内部通路に接続されて前記第 1の液体を前記内部通路内に供給する液体供 給源を有することを特徴とする請求項 2に記載のバルブ。
[12] その内部に形成されたインク収容空間と、このインク収容空間と大気とを連通させる 大気連通路とを有するインクカートリッジに設けられ、
前記大気連通路を開閉可能に構成されていることを特徴とする請求項 2〜11の何 れか一項に記載のバルブ。
[13] 被記録媒体に対してインクを吐出するインクジェットヘッドのインク吐出面に装着可 能で且つ前記インク吐出面側の空間と外部とを連通させる連通路を有するキャップ に設けられ、前記連通路を開閉可能であることを特徴とする請求項 2〜 11の何れ力ゝ 一項に記載のバルブ。
[14] 前記電圧印加部は、定期的に、前記第 1の電極に対して前記所定電圧を所定時 間印加するように構成されて 、ることを特徴とする請求項 12に記載のバルブ。
[15] さらに、第 1通路から分岐する第 3通路を有し、第 1通路を形成する壁面に第 2電極 が形成されており、第 3通路を形成する壁面に第 3電極が形成されており、第 1通路 が第 1空間と第 4空間を連通しており、第 3通路が第 1空間と第 3空間を連通しており 、第 2通路が第 1空間と第 2空間を連通している請求項 1に記載のバルブ。
[16] 第 1電極に電圧を印加せずに第 3電極に所定電圧を印加することで第 1空間と第 2 空間を連通し、第 3電極に電圧を印加せずに第 1電極に所定電圧を印加することで 第 1空間と第 3空間を連通する請求項 15に記載のバルブ。
[17] 請求項 12に記載のノ レブを備えるインクカートリッジ。
[18] 請求項 13に記載のインクジェットヘッド用キャップ。
[19] 所定空間に開放した開口端を有する通路と、
前記通路内に設けられた複数の電極と、
前記電極上に形成された絶縁層と、
前記通路内を移動可能なプランジャとを備え、
前記通路内部にプランジャと絶縁層に接触するように導電性液体が装填されており
、複数の電極のうち所定の電極に電圧を印加することにより、プランジャが通路内を 移動して開口端力 突出可能であるァクチユエータ。
[20] 前記通路の幅 4mm以下である請求項 19に記載のァクチユエータ。
[21] 前記所定空間に向いたプランジャの端部と反対側の端部が通路内で液体と接触し て 、る請求項 19に記載のァクチユエータ。
[22] 前記通路内にプランジャが液体に包囲されて収容されている請求項 19に記載のァ クチユエータ。
[23] さらにスピンドルを備え、前記電極及び前記絶縁層がスピンドル上に設けられ、前 記プランジャが中空部を有し、前記スピンドルが前記中空部に収容されており、前記 プランジャがスピンドル上を液体を介して移動可能である請求項 19に記載のァクチ ユエータ。
[24] 前記プランジャの一部にのみ親液性または撥液性処理が施されて!/、る請求項 21
〜23の何れか一項に記載のァクチユエータ。
[25] さらに、前記複数の電極に選択的に電圧を印加する電圧印加装置を備える請求項
21〜23の何れか一項に記載のァクチユエータ。
[26] 請求項 19に記載のァクチユエータと、
前記通路の開口端力 所定間隔を開けて設けられた壁とを備え、
壁と開口端の間に流路が画成されており、プランジャが開口端力 突出して壁に接 触することにより該流路が閉鎖される流路開閉機構。
[27] 前記ァクチユエータのプランジャの先端に係合部が形成され、係合部と係合する被 係合部が前記壁に形成されている請求項 26に記載の流路開閉機構。
PCT/JP2005/023300 2004-12-17 2005-12-19 キャピラリーエレクトロウェッティング現象を用いたバルブ及びアクチュエータ WO2006064949A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2006520531A JP4784510B2 (ja) 2004-12-17 2005-12-19 キャピラリーエレクトロウェッティング現象を用いたバルブ及びアクチュエータ
US11/721,962 US8172375B2 (en) 2004-12-17 2005-12-19 Valve and actuator employing capillary electrowetting phenomenon
EP20050816950 EP1835213B1 (en) 2004-12-17 2005-12-19 Valve and actuator employing capillary electrowetting phenomenon
US13/433,024 US8348391B2 (en) 2004-12-17 2012-03-28 Valve and actuator employing capillary electrowetting phenomenon

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004365896 2004-12-17
JP2004-365896 2004-12-17

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US11/721,962 A-371-Of-International US8172375B2 (en) 2004-12-17 2005-12-19 Valve and actuator employing capillary electrowetting phenomenon
US13/433,024 Division US8348391B2 (en) 2004-12-17 2012-03-28 Valve and actuator employing capillary electrowetting phenomenon

Publications (1)

Publication Number Publication Date
WO2006064949A1 true WO2006064949A1 (ja) 2006-06-22

Family

ID=36587989

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/023300 WO2006064949A1 (ja) 2004-12-17 2005-12-19 キャピラリーエレクトロウェッティング現象を用いたバルブ及びアクチュエータ

Country Status (4)

Country Link
US (2) US8172375B2 (ja)
EP (1) EP1835213B1 (ja)
JP (1) JP4784510B2 (ja)
WO (1) WO2006064949A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110645408A (zh) * 2019-11-08 2020-01-03 广州大学 一种电润湿驱动液滴微阀控制液体流通装置

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4929950B2 (ja) * 2006-09-27 2012-05-09 ブラザー工業株式会社 移動装置
US8851103B2 (en) * 2008-09-23 2014-10-07 The Curators Of The University Of Missouri Microfluidic valve systems and methods
JP5544812B2 (ja) * 2009-10-02 2014-07-09 株式会社リコー 半導体装置
JP5445025B2 (ja) * 2009-10-22 2014-03-19 株式会社リコー 画像形成装置
KR101130698B1 (ko) * 2009-11-03 2012-04-02 삼성전자주식회사 밸브 유닛과 이를 구비한 미세유동장치 및 밸브 유닛의 구동방법
TWI418849B (zh) * 2009-12-31 2013-12-11 Wintek Corp 電濕潤顯示器及其畫素陣列基板與電濕潤顯示畫素結構
ATE542136T1 (de) * 2010-03-15 2012-02-15 Boehringer Ingelheim Int Vorrichtung und verfahren zur manipulation oder untersuchung einer flüssigen probe
EP3104208B1 (en) * 2015-06-09 2022-08-24 Nokia Technologies Oy Electronic circuitry for a valve for the transfer of an optically-active fluid from a first to a second reservoir
WO2017001436A1 (en) * 2015-06-29 2017-01-05 Imec Vzw Valve-less mixing method and mixing device
US10995879B2 (en) * 2015-12-06 2021-05-04 Purdue Research Foundation Microelectronic thermal valve
US11080440B2 (en) 2017-06-27 2021-08-03 International Business Machines Corporation Characterizing fluid flow at field conditions

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4158118A (en) 1974-08-30 1979-06-12 Graf Ronald E Electrostatic switch
JPH0384274A (ja) * 1989-08-24 1991-04-09 Matsushita Electric Ind Co Ltd 流体制御装置
US5224684A (en) * 1992-04-23 1993-07-06 Minnesota Mining And Manufacturing Company Blowback operated fluid valve
JPH11105305A (ja) 1997-10-08 1999-04-20 Pilot Corp インクタンク
JP2001293900A (ja) * 2000-04-17 2001-10-23 Fuji Photo Film Co Ltd 画像形成方法、装置および画像形成用インク
JP2002514520A (ja) * 1998-05-08 2002-05-21 フェスト アクツィエンゲゼルシャフト ウント コー マイクロバルブアレイ
WO2003068670A2 (en) * 2002-02-14 2003-08-21 Hospira, Inc. Microfluidic valve and system therefor
US20040007275A1 (en) * 2002-07-10 2004-01-15 Robin Hui Liu Fluidic valve having a bi-phase valve element
JP2004188720A (ja) * 2002-12-10 2004-07-08 Canon Inc 液体収納容器

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2000301A (en) * 1932-04-02 1935-05-07 Norman Confections Inc Progressive container
DE3138968A1 (de) * 1981-09-30 1983-04-14 Siemens AG, 1000 Berlin und 8000 München Optische steuervorrichtung zum steuern der in einem optischen wellenleiter gefuehrten strahlung, insbesondere optischer schalter
US4824073A (en) 1986-09-24 1989-04-25 Stanford University Integrated, microminiature electric to fluidic valve
DE3730022A1 (de) 1987-09-08 1989-03-16 Basf Ag Verfahren zum herstellen von homo- und copolymerisaten des propens mittels eines ziegler-natta-katalysatorsystems
JP3667360B2 (ja) 1994-07-14 2005-07-06 明広 石田 単結晶の気相成長方法
US6082851A (en) * 1997-11-14 2000-07-04 Canon Kabushiki Kaisha Liquid ejection printing apparatus and liquid supply method to be employed in the same
WO2004102657A1 (ja) * 1998-01-26 2004-11-25 Masahiro Sano 回路内信号線の最適化方法、最適化装置および最適化プログラムを格納した記憶媒体並びに回路設計方法および回路設計用プログラムを格納した記憶媒体
US6435665B2 (en) * 1998-06-12 2002-08-20 Eastman Kodak Company Device for controlling fluid movement
US6212308B1 (en) * 1998-08-03 2001-04-03 Agilent Technologies Inc. Thermal optical switches for light
US6449081B1 (en) 1999-06-16 2002-09-10 Canon Kabushiki Kaisha Optical element and optical device having it
JP2000356750A (ja) 1999-06-16 2000-12-26 Canon Inc 表示素子および表示装置
JP2000356751A (ja) 1999-06-16 2000-12-26 Canon Inc 光スイッチ
JP2001013306A (ja) 1999-06-28 2001-01-19 Canon Inc 可変焦点レンズ装置
JP2001203900A (ja) 2000-01-21 2001-07-27 Minolta Co Ltd 画像読み取り装置
JP2002013306A (ja) 2000-06-29 2002-01-18 Fujitec Co Ltd 立体駐輪装置
US6561479B1 (en) * 2000-08-23 2003-05-13 Micron Technology, Inc. Small scale actuators and methods for their formation and use
US6575188B2 (en) * 2001-07-26 2003-06-10 Handylab, Inc. Methods and systems for fluid control in microfluidic devices
US6538823B2 (en) 2001-06-19 2003-03-25 Lucent Technologies Inc. Tunable liquid microlens
US6545815B2 (en) 2001-09-13 2003-04-08 Lucent Technologies Inc. Tunable liquid microlens with lubrication assisted electrowetting
TW523611B (en) 2001-12-11 2003-03-11 Ind Tech Res Inst Ink spraying process and apparatus of color filter
US6646527B1 (en) * 2002-04-30 2003-11-11 Agilent Technologies, Inc. High frequency attenuator using liquid metal micro switches
US7329545B2 (en) * 2002-09-24 2008-02-12 Duke University Methods for sampling a liquid flow
US6886912B2 (en) * 2003-01-15 2005-05-03 Xerox Corporation Method and apparatus for processing images having color combinations
US6906271B2 (en) * 2003-04-14 2005-06-14 Agilent Technologies, Inc. Fluid-based switch
US6777630B1 (en) * 2003-04-30 2004-08-17 Agilent Technologies, Inc. Liquid metal micro switches using as channels and heater cavities matching patterned thick film dielectric layers on opposing thin ceramic plates
US7694694B2 (en) * 2004-05-10 2010-04-13 The Aerospace Corporation Phase-change valve apparatuses
US20060153745A1 (en) * 2005-01-11 2006-07-13 Applera Corporation Fluid processing device for oligonucleotide synthesis and analysis
US7980272B2 (en) * 2007-06-21 2011-07-19 Samsung Electronics Co., Ltd. Microfluidic valve, method of manufacturing the same, and microfluidic device comprising the microfluidic valve

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4158118A (en) 1974-08-30 1979-06-12 Graf Ronald E Electrostatic switch
JPH0384274A (ja) * 1989-08-24 1991-04-09 Matsushita Electric Ind Co Ltd 流体制御装置
US5224684A (en) * 1992-04-23 1993-07-06 Minnesota Mining And Manufacturing Company Blowback operated fluid valve
JPH11105305A (ja) 1997-10-08 1999-04-20 Pilot Corp インクタンク
JP2002514520A (ja) * 1998-05-08 2002-05-21 フェスト アクツィエンゲゼルシャフト ウント コー マイクロバルブアレイ
JP2001293900A (ja) * 2000-04-17 2001-10-23 Fuji Photo Film Co Ltd 画像形成方法、装置および画像形成用インク
WO2003068670A2 (en) * 2002-02-14 2003-08-21 Hospira, Inc. Microfluidic valve and system therefor
US20040007275A1 (en) * 2002-07-10 2004-01-15 Robin Hui Liu Fluidic valve having a bi-phase valve element
JP2004188720A (ja) * 2002-12-10 2004-07-08 Canon Inc 液体収納容器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1835213A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110645408A (zh) * 2019-11-08 2020-01-03 广州大学 一种电润湿驱动液滴微阀控制液体流通装置
JP2021076247A (ja) * 2019-11-08 2021-05-20 ▲広▼州大学 エレクトロウェッティングによる液滴駆動マイクロバルブ制御液体流通装置

Also Published As

Publication number Publication date
US20080094448A1 (en) 2008-04-24
US20120180894A1 (en) 2012-07-19
EP1835213A1 (en) 2007-09-19
US8348391B2 (en) 2013-01-08
JP4784510B2 (ja) 2011-10-05
JPWO2006064949A1 (ja) 2008-06-12
US8172375B2 (en) 2012-05-08
EP1835213B1 (en) 2012-03-07
EP1835213A4 (en) 2009-12-02

Similar Documents

Publication Publication Date Title
WO2006064949A1 (ja) キャピラリーエレクトロウェッティング現象を用いたバルブ及びアクチュエータ
US7837306B2 (en) Valve unit with pressure regulating valve assembled in laminate body
KR102042886B1 (ko) 액체 토출 장치, 임프린트 장치 및 부품 제조 방법
JP2004518106A (ja) 正確に制御された少量の液体の分配装置
US20170072720A1 (en) Liquid Ejecting Apparatus
US7370946B2 (en) Pump, liquid transporting apparatus provided with the same, and liquid moving apparatus
JP2019064273A (ja) 液体吐出ヘッドおよび液体吐出装置
US10518529B2 (en) Liquid discharge device
US20080036820A1 (en) Apparatus and Method for Jetting Droplet Using Electrostatic Field
JP4525080B2 (ja) 液体収容体の液体充填方法
CN102431298A (zh) 液体喷射头
JP2005288875A (ja) 液体移送ヘッド及びこれを備えた液体移送装置
JP4333226B2 (ja) キャッピング装置、キャッピング方法、及び液滴吐出装置
JP2019021908A (ja) 流体収納部材
JP4517985B2 (ja) 液滴吐出ヘッドおよび液滴吐出装置
CN109130504B (zh) 液体喷出装置以及液体喷出方法
JP2006035640A (ja) 液体移送装置
US8162455B2 (en) Discharge device
JP4946020B2 (ja) ポンプ、ポンプを備えた液体移送装置並びに液体移動装置
JP4605044B2 (ja) 液滴吐出装置、脱泡方法、及びマイクロアレイ製造方法
JP2007051883A (ja) マイクロアレイ製造方法および液滴吐出装置
US7926922B2 (en) Ink-jet head and valve
JP2020093189A (ja) 吐出材吐出装置およびインプリント装置
JP2024039178A (ja) 液体噴射装置および液体噴射ヘッドのメンテナンス方法
JP2005106752A (ja) ホルダ、液滴吐出装置、マイクロアレイの製造装置、及びマイクロアレイの製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2006520531

Country of ref document: JP

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11721962

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2005816950

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2005816950

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11721962

Country of ref document: US