WO2006064639A1 - チタン結合性フェリチン及び無機粒子の配置方法 - Google Patents

チタン結合性フェリチン及び無機粒子の配置方法 Download PDF

Info

Publication number
WO2006064639A1
WO2006064639A1 PCT/JP2005/021510 JP2005021510W WO2006064639A1 WO 2006064639 A1 WO2006064639 A1 WO 2006064639A1 JP 2005021510 W JP2005021510 W JP 2005021510W WO 2006064639 A1 WO2006064639 A1 WO 2006064639A1
Authority
WO
WIPO (PCT)
Prior art keywords
titanium
ferritin
substrate
binding
inorganic particles
Prior art date
Application number
PCT/JP2005/021510
Other languages
English (en)
French (fr)
Inventor
Ichiro Yamashita
Kiyotaka Shiba
Original Assignee
Matsushita Electric Industrial Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co., Ltd. filed Critical Matsushita Electric Industrial Co., Ltd.
Priority to JP2006519658A priority Critical patent/JP3916653B2/ja
Priority to US11/354,864 priority patent/US7439334B2/en
Publication of WO2006064639A1 publication Critical patent/WO2006064639A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/46Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
    • C07K14/47Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/551Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals the carrier being inorganic
    • G01N33/553Metal or metal coated
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K2319/00Fusion polypeptide

Definitions

  • the present invention relates to a method for selectively arranging titanium-binding ferritin whose surface is modified by a peptide that recognizes and binds titanium to titanium on the substrate surface.
  • the present invention also relates to a method of regularly arranging inorganic particles encapsulated in titanium-binding ferritin on titanium formed on a substrate.
  • Proteins and inorganic particles (inorganic particles) arranged on a substrate are attracting attention in industrial fields such as catalysts, sensors, biochips, transistors, semiconductor lasers, magnetic disks, and displays.
  • industrial fields such as catalysts, sensors, biochips, transistors, semiconductor lasers, magnetic disks, and displays.
  • inorganic particles there is a need for a patterning technique in which inorganic particles are selectively arranged in specific regions or regularly arranged in nano-sized minute regions.
  • TAS micro total analysis system
  • the reasons behind this include advantages such as improved biocompatibility, low cost due to mass production, and on-site measurement (portable).
  • FIGS. 1 An arrangement method of inorganic particles using an LB film (PBLH film) according to a conventional method (Patent Document 1) is shown in FIGS.
  • a buffer 11 is stored in a water tank 10 made of Teflon (registered trademark), and natural ferritin 21 containing inorganic particles 20 is dispersed in this buffer.
  • a PBLH film 30 is applied to the liquid surface of the solution, and the pH is adjusted with an appropriate acidic solution. While the surface of the PBLH film is positively charged, ferritin is negatively charged, so natural ferritin adheres to the PBLH film.
  • the substrate (silicon substrate) 40 having been subjected to the hydrophobic surface treatment was floated on the liquid surface on which the PBLH film was stretched, and natural ferritin was attached to the substrate. Apply PBLH film.
  • the water tank force is also taken out of the silicon substrate 40 to which the PBLH film to which natural ferritin is attached is attached.
  • the surface of the surface to which natural ferritin is attached is applied to the buffer solution.
  • UV irradiation is performed using an appropriate mask pattern 50. Natural ferritin in the UV-irradiated area is broken down and dispersed in the solution.
  • the silicon substrate 40 subjected to the patterning shown in FIG. 1 (e) is washed with water.
  • the silicon substrate 40 is dried to obtain a pattern arrangement of natural ferritin that encloses inorganic particles.
  • a heat treatment at 500 ° C. is performed in an inert gas 60 (for example, in nitrogen) to burn off the natural ferritin and the PBLH film enclosing the inorganic particles on the substrate.
  • the inorganic particles are arranged in a two-dimensional pattern. This structure is further processed into the structure required for the devices described above.
  • Patent Document 1 Japanese Patent Laid-Open No. 11-204774
  • Non-Patent Document 1 AS Blawas, WM Reichert, Biomaterials, 19, 595 (1998)
  • Non-Patent Document 2 A. Bernard, JP Renault, B. Michel, HR Bosshard, E. Delamarche, Adv. Mater., 12, 1067 (2000)
  • Non-Patent Document 3 K. B. Lee, S. J. Park, C. A. Mirkin, J. C. Smith, M. Mrksick, Science, 295, 1702 (2002)
  • an SAM film is formed on the substrate side, and the SAM film is patterned using ultraviolet rays, or an LB film that is an adsorption film of inorganic particles is used as an intermediate layer with the substrate.
  • an object of the present invention is to provide a substrate recognizability on the substrate on the inorganic particle side without using an intermediate layer at high mass productivity and low cost, and in particular, the diameter is several to several tens of nanometers.
  • the purpose is to provide a technique for selectively and regularly arranging inorganic particles of about 1 Torr in a necessary area in a necessary amount.
  • the present invention controls the binding force between ferritin and titanium on the substrate surface by modifying the N-terminal part of ferritin with a peptide that recognizes and binds titanium.
  • a peptide that recognizes and binds titanium By the action of this peptide, the binding force between ferritin and the substrate can be controlled, and ferritin can be selectively adsorbed and arranged on the titanium portion.
  • ferritin itself the ability (self-recognition ability) to strengthen or conversely weaken the binding power inherent to ferritin with titanium or other parts on the substrate.
  • modifying the N-terminal part of ferritin with a peptide means replacing the amino acid residue (methionine residue) at the N-terminal of ferritin with a titanium-binding peptide, or the N-terminal of ferritin. Including the displacement of adding a titanium-binding peptide to the amino acid sequence and inserting the titanium-binding peptide into the amino acid sequence of the N-terminal part of ferritin.
  • inorganic particles are included in titanium-binding ferritin, titanium on the substrate It is also possible to dispose inorganic particles encapsulated in the ferritin-binding agent.
  • the inorganic particles are not included in the titanium-binding ferritin, the inorganic particles are not disposed on the titanium on the substrate, and it becomes possible to protect the titanium with the titanium-binding ferritin.
  • a method for determining an amino sequence that specifically binds and adsorbs to a certain substance there is a biopanning method using a phage peptide library.
  • This method uses a phage population (virus that infects E. coli) displaying a random peptide sequence, and screens for peptides that selectively bind to a specific substance.
  • This method elucidates a specific interaction between biomolecules to a specific substance, and has a new combined function that does not exist in the design of a multifunctional microgene or a natural protein. It is a technology that can synthesize artificial proteins. In recent years, it has become possible to synthesize artificial peptides that specifically bind to inorganic substances such as metals.
  • the present invention is a method for arranging titanium-binding ferritin, which is a ferritin obtained by isolating a peptide having an amino acid sequence that specifically binds to titanium using this bio-banning method and modifying the peptide on the surface.
  • the present invention is characterized in that the binding force between titanium-binding ferritin and titanium on the substrate is further selectively controlled by a nonionic surfactant.
  • a nonionic surfactant basically acts on the interface between a protein and an inorganic substrate to weaken the binding force between them, and this action causes titanium-binding ferritin and titanium on the substrate to be weakened. It is possible to weaken only the bonding force between the inorganic materials other than. In other words, by this method, the substrate selectivity of titanium-binding ferritin (ratio of protein adsorbed in the particle arrangement necessary area and unnecessary area) is increased, or the amount of titanium-binding ferritin adsorbed in the arrangement necessary area is increased. It becomes possible to control effectively.
  • the present invention relates to a solution containing titanium-binding ferritin modified with the peptide of SEQ ID NO: 1 that recognizes and binds titanium to the N-terminal part of the subunit, and titanium is partially present on the surface.
  • the titanium-binding ferritin is dropped by dropping on the substrate on which is formed
  • the present invention also relates to a method for arranging ferritin having a binding step of selectively binding to titanium.
  • the solution further contains a nonionic surfactant and, after the binding step, includes a removal step of removing the nonionic surfactant from the force on the substrate, thereby obtaining a titanium-binding ferritin. It is possible to further increase the selectivity. After the titanium-binding ferritin is selectively disposed on the titanium of the substrate, the nonionic surfactant can be removed by washing the substrate.
  • the concentration of the nonionic surfactant is preferably 0.006 v / v% or more and 10 v / v% or less.
  • ferritin Since ferritin has a space inside, it is possible to enclose inorganic particles (for example, Fe 0) in titanium-binding ferritin.
  • a solution containing ferritin other than the titanium-binding ferritin is dropped on the substrate, whereby ferritin other than the titanium-binding ferritin is added to the substrate other than the titanium on the substrate. It is also possible to arrange in a part.
  • the titanium-binding ferritin By heating the substrate on which the titanium-binding ferritin is disposed, the titanium-binding ferritin is decomposed, whereby the inorganic particles encapsulated in the titanium-binding ferritin are selected on the titanium of the substrate. It is also possible to fix and arrange them.
  • the present invention is a method for arranging inorganic particles
  • the present invention is also a method for arranging inorganic particles
  • a solution containing titanium-binding ferritin modified with the peptide of SEQ ID NO: 1 that recognizes and binds titanium to the N-terminal of the subunit is dropped onto a substrate on which titanium is formed on a part of the surface.
  • a biodevice using the properties of titanium-binding ferritin is produced by selectively disposing titanium-binding ferritin on titanium on a substrate using the above-described method for disposing titanium-binding ferritin. Is possible.
  • a biosensor or a biochip can be listed.
  • ferritin and titanium formed on the substrate can be controlled by modifying a peptide (SEQ ID NO: 1) that recognizes titanium on the ferritin surface (N-terminal part), and the two-dimensional regular arrangement of ferritin on the substrate can be controlled. Is also possible.
  • the method for arranging titanium-binding ferritin according to the present invention can arrange a necessary amount of inorganic particles in a necessary region with high mass productivity and cost performance, or arrange inorganic particles on a substrate regularly with high accuracy. can do
  • FIG. 1 is a process explanatory diagram of a conventional method for arranging inorganic particles.
  • FIG. 2 is a flow chart conceptually showing the method for arranging titanium-binding ferritin of the present invention.
  • FIG. 3 is an explanatory diagram of bio-banning technology.
  • FIG. 4 is a diagram showing the structure of conventional ferritin and the like.
  • FIG. 5 is a diagram schematically showing the main structure of the plasmid of the L-type ferritin subunit and the uptake of the plasmid into E. coli.
  • FIG. 6 is a diagram showing the structure and the like of the titanium-binding ferritin of the present invention.
  • FIG. 7 is a diagram for explaining the concept of the method for arranging inorganic particles according to the present invention.
  • FIG. 8 is a diagram for explaining the concept of a modification of the method for arranging inorganic particles according to the present invention.
  • FIG. 9 (a) is a schematic diagram for explaining the first embodiment.
  • FIG. 9 (b) is a scanning electron micrograph of the substrate surface of Example 1.
  • FIG. 10 (a) is a schematic diagram for explaining Comparative Example 1.
  • FIG. 10 (b) is a scanning electron micrograph of the substrate surface of Comparative Example 1.
  • FIG. 11 is a diagram for explaining a method of reverse-selectively arranging inorganic particles in Embodiment 4 of the present invention.
  • FIG. 2 is a flowchart conceptually showing the method for arranging the titanium-binding ferritin of the present invention.
  • the method for arranging titanium-binding ferritin of the present invention comprises steps S1 to S.
  • step S1 a solution containing titanium-binding ferritin is prepared (prepared).
  • step S2 the solution prepared in step S1 is dropped onto the substrate on which titanium is formed.
  • the titanium-binding ferritin itself recognizes and specifically binds to titanium formed on the substrate.
  • step S3 of adding a nonionic surfactant to the solution prepared in step S1 may be performed between step S1 and step S2.
  • the selective binding of titanium-binding ferritin to titanium can be improved by adding a nonionic surfactant.
  • step S1 and step S2 described here as independent processes can be simultaneously performed as a single process.
  • natural ferritin (derived from horse spleen) was used instead of the titanium-binding ferritin used in step S1 as a comparative example.
  • a method for producing these fine particles will be described.
  • a method for isolating a peptide that specifically binds to titanium by the above-described biobanning technique will be described.
  • This method utilizes filamentous phage that infects E. coli.
  • the phage has a structure directly covered with several coat proteins.
  • a foreign gene can be inserted into any of these coat protein genes, and the product can be displayed (displayed) as a coat protein at a specific site of phage particle 70.
  • a peptide library having any peptide sequence 71 at the N-terminus can be prepared.
  • phage particles 70 are prepared in the step shown in FIG. 3 (a).
  • the leftmost phage particle 70a has a peptide sequence 71a having affinity for the target.
  • the phage that did not bind to the target was washed and removed, and the phage 72 that strongly bound to the target was recovered.
  • phage 72 having high affinity for the target is concentrated.
  • the strongly bound phage is recovered from the target by acid treatment or the like.
  • the recovered phage having specificity is infected with the host Escherichia coli 73 and amplified.
  • the phage clone is recovered from the host E. coli 73.
  • a phage clone having high affinity for the target is isolated, and the amino acid sequence 74 that specifically binds to the target is read from the DNA sequence.
  • a recombinant protein 75 in which the read amino acid sequence is added to the N-terminus is synthesized.
  • an artificial peptide (SEQ ID NO: 1) that specifically binds to titanium has been isolated, and this artificial peptide binds electrostatically to the titanium surface.
  • the present invention relates to titanium-binding ferritin to a specific position (on titanium) on a substrate using recombinant ferritin in which an artificial peptide (peptide specifically binding to titanium) shown in SEQ ID NO: 1 is added to the N-terminal portion. And arranging the inorganic particles encapsulated by the titanium-binding ferritin.
  • titanium-binding ferritin is a titanium-binding ferritin in which an artificial peptide (SEQ ID NO: 1) that specifically binds to titanium is modified at the N-terminus. SEQ ID NO: 5) was used.
  • recombinant ferritin obtained by modifying the N-terminal portion with a titanium-binding polypeptide and recombinant ferritin having no titanium-binding polypeptide were used as protein microparticles.
  • RF recombinant ferritin
  • FIG. 4 shows the structure of conventional ferritin (natural ferritin (cage-like protein)).
  • Natural ferritin is a spherical fine particle (diameter of about 12 °) with 24 subunits bonded and pores (diameter of about 7 °) inside.
  • Various fine particles (core) of various inorganic materials can be taken into the pores.
  • One subunit has a specific three-dimensional structure as shown in the center of Fig. 4, and it has been analyzed in detail by X-ray analysis and other means that it also has the combined force of the secondary structure of a helix and j8 sheet.
  • the skeleton of this protein (how the polypeptide main chain is folded) also has amino acid side chains protruding in various directions, and the sequence of this amino acid residue is unique to each protein. It has characteristics.
  • the ferritin surface reflects the characteristics of these protruding amino acid residues, and the chemical properties of the entire protein (between substrates and protein-protein interactions) are determined.
  • ferritin does not have a certain structure because there are L-type and H-type subunits that are slightly different in structure.
  • RF recombinant ferritin
  • L-type ferritin SEQ ID NO: 2, 528 base pairs
  • DNA encoding L-type ferritin SEQ ID NO: 2, 528 base pairs
  • this L-type ferritin DNA was cleaved at a site (restriction enzyme site) where the restriction enzymes EcoRI and Hind III specifically cleave.
  • a solution of L-type ferritin DNA fragment having EcoRI and Hind III restriction enzyme sites was prepared. This solution was subjected to DNA electrophoresis, and only the DNA fragment encoding L-type ferritin was recovered and purified.
  • this L-type ferritin DNA fragment was incubated with a vector plasmid (pMK-2) treated with EcoRI-Hind III restriction enzyme for ligation.
  • a vector plasmid pMK-2-fer-0 containing L-type ferritin DNA in the multicloning site (MSC) of the pMK-2 plasmid was prepared.
  • the vector plasmid used was pMK-2. It was selected because it has a Tac promoter in the motor and has a high copy number as a multi-copy plasmid, which is advantageous for obtaining a large amount of ferritin.
  • the prepared plasmid (pMK-2-fer-0) is used as the host E. coli Nova Blue
  • Fig. 5 shows a schematic diagram of the major structure of the plasmid of the L-type ferritin subunit and the uptake of the plasmid into E. coli.
  • THF titanium-binding ferritin
  • SEQ ID NO: 1 a titanium-binding polypeptide
  • the amino terminal (N-terminal) of the subunit constituting ferritin is modified with a peptide, as shown in FIG. 6, the peptide protrudes outside the ferritin particle. Therefore, the surface of ferritin particles can be modified with the peptide by modifying the N-terminal portion with an arbitrary peptide (in FIG. 6, a titanium-binding peptide).
  • ferritin SEQ ID NO: 5
  • SEQ ID NO: 2 The full length gene of the natural ferritin (derived from horse liver) type subunit is shown in SEQ ID NO: 2. It has been reported that seven of the amino acids that are also synthesized from the N-terminus are also processed and deleted in nature.
  • ferritin having the amino acid sequence shown in SEQ ID NO: 3 should be synthesized, but from the N-terminal to the 7th amino acid residue from the 2nd to the 8th. Since it is deleted, it actually becomes ferritin having the amino acid sequence shown in SEQ ID NO: 4.
  • the present inventor added and modified a titanium-binding peptide (SEQ ID NO: 1) to the N-terminus.
  • a titanium-binding peptide SEQ ID NO: 1
  • By synthesize ferritin a flexible structure-invariant titanium-binding peptide was formed on the outside of the ferritin particle, and an arrangement method for selectively adsorbing ferritin modified with this peptide to titanium was found. .
  • DNAs (SEQ ID NO: 6 (30 base pairs) and SEQ ID NO: 7 (22 base pairs)) encoding a titanium-binding peptide (SEQ ID NO: 1) were amplified using PCR, A large amount of DNA was prepared.
  • ligation was performed by incubating the above-described DNA and a vector plasmid (pMK-2) encoding human recombinant L-type ferritin treated with the restriction enzymes Bam I and Sac I.
  • a vector plasmid (pKISl) was prepared in which the DNA of the above base sequence and the L-type ferritin DNA were contained in the multicloning site (MSC) of the pMK-2 plasmid.
  • the vector plasmid pMK-2 used for pKISl preparation was selected because it has a Tac promoter as a promoter and has a large number of copies as a multi-copy plasmid, and is advantageous for obtaining a large amount of ferritin.
  • the prepared plasmid was introduced (transformed) into E. coli XLI Blue (Novagen), which is a host, to produce a titanium-binding L-type ferritin strain.
  • the binding force between titanium-binding ferritin and titanium on the substrate is controlled by the titanium-binding ferritin itself. Is possible, the process is very simple.
  • FIGS. 7 (a) and (b) Here, an example of using ferric oxide (Fe 0) as the inorganic particles is shown.
  • a solution of titanium-binding ferritin 2 containing Fe 0 1 is dropped on a substrate 80 having a titanium region 81 that requires ferritin arrangement, and is incubated for a certain period of time.
  • the substrate was washed with pure water.
  • a nonionic surfactant 83 can also be added to the titanium-binding ferritin 2 solution. This makes it possible to further improve the selective binding of titanium-binding ferritin 2 to titanium.
  • the substrate is heated in nitrogen gas at 500 ° C to burn out TBF containing Fe 0, and Fe 0 is removed from the titanium region 81.
  • the type of inorganic particles encapsulated in the recombinant ferritin (RF) is not particularly limited, but in the above description and the embodiments described later, the ferric oxide (Fe) (Fe 0) was used.
  • the TBF with 2 3 cores formed was recovered by molecular purification by centrifugation and gel filtration. Centrifugation is performed under conditions of 1,600G, 10 minutes, and 10,000G, 30 minutes, and unnecessary portions other than TBF are removed stepwise as precipitates. , twenty three
  • the pellet was recovered by ultracentrifugation at 0,000 G for 1 hour.
  • the obtained TBF was subjected to gel filtration using HPL C [Column: TSK-GEL G4000SWXL PEEK Z Flow rate: lml / min Z buffer: 50 mM Tris-HCl (pH 8.0) +150 mM NaCl] Separate the peak (approximately 480 kDa).
  • the separated TBF solution is concentrated using an ultrafiltration membrane, and TBF containing Fe 0 is encapsulated.
  • Embodiment 1 of the present invention exemplifies a method for arranging titanium-binding ferritin and inorganic particles on a substrate.
  • a Pt portion and a Ti portion are formed on the substrate.
  • Fig. 9 (a) shows the surface of peptide 302 containing Fe 0 301 and adsorbed specifically to Ti.
  • a schematic diagram of an experiment in which the modified TBF310 is placed on a Ti substrate 200 having a platinum film (Pt) 400 formed on a part of the surface is shown.
  • Example 1 inorganic particles were arranged on a substrate as follows.
  • the concentration was adjusted to / ml.
  • the TBF solution was dropped onto a Ti substrate 200 having a platinum film (Pt) 400 formed on a part of the surface, left at room temperature for 1 hour, and then washed with pure water. After cleaning, the substrate was heat-treated by the method described above to fix Fe 0 301 on the substrate.
  • Pt platinum film
  • FIG. 9 (b) shows the substrate after fixing the Fe 0 301 corresponding to the schematic diagram shown in FIG. 9 (a).
  • Fe 0 301 is selectively placed on the Ti substrate 200.
  • TBF310 does not adsorb to the Pt film 400 but specifically adsorbs to the Ti substrate 200.
  • Example 2 As a result of adding 0.5 v / v% of TCI20 made by ICI, which is a nonionic surfactant, to the noffer solution and performing the same operation as in Example 1, TBF310 is applied to the Pt film 400. It was verified that most of the Ti was adsorbed specifically on the Ti substrate 200. In other words, the selective adsorption of TBF to the Ti substrate was improved by adding Tween20.
  • Embodiment 2 of the present invention exemplifies a method for arranging titanium-binding ferritin and inorganic particles on a substrate.
  • an oxide silicon (SiO 2) portion is formed on the substrate.
  • Example 3 inorganic particles were arranged on the substrate as follows.
  • TBF containing Fe 0 is 2 mg / ml using a buffer solution (10 mM Tris-HC1, pH 8.0).
  • the TBF solution was added dropwise on the top, left at room temperature for 1 hour, and then washed with pure water. After cleaning, the substrate was heat-treated by the method described above, and Fe 0 was fixed on the substrate.
  • BF310 does not adsorb to the SiO substrate 100 but specifically adsorbs to the Ti film 200.
  • Example 4 As a result of adding 0.5 v / v% of TCI20 manufactured by ICI, which is a nonionic surfactant, to the noffer solution and performing the same operation as in Example 3, TBF310 was applied to the SiO substrate 100. Is
  • Embodiment 3 of the present invention exemplifies a method for arranging titanium-binding ferritin and inorganic particles on a substrate, to which a nonionic surfactant is added.
  • inorganic particles were arranged on the substrate as follows.
  • FIG. 10 (a) shows the surface of natural ferritin (NF) 300 derived from horse spleen containing Fe 0 301.
  • a schematic diagram of an experiment arranged on a Ti substrate 200 in which a platinum film (Pt) 400 is partially formed is shown. Experiments were performed under the same conditions as in Example 1 except that NF was used instead of TBF. Here, no nonionic surfactant is used.
  • FIG. 10 (b) is a scanning electron micrograph of the substrate after the heat treatment corresponding to FIG. 10 (a). Fe 0 is placed on both the Pt film and Ti substrate, making it quite selective to the substrate.
  • the selective arrangement ratio is the number of Fe 0 adsorbed on Pt, which is adsorbed on Ti with respect to N (Pt).
  • Fe 0 number N (Ti) ratio that is, N (Ti) ZN (Pt).
  • the adsorption number of Fe 0 is
  • the number of Fe 0 in the 200 nm mouth region of the scanning electron micrograph of the substrate surface was counted.
  • inorganic particles were arranged on the substrate as follows.
  • inorganic particles were arranged on the substrate as follows.
  • Example 2 As a nonionic surfactant, the same operation as in Example 1 was performed except that a solution containing 0.5 v / v% TCI20 manufactured by ICI was dropped on a substrate and then a solution containing TBF was dropped. Went.
  • Table 1 shows the experimental results of the above Examples and Comparative Examples.
  • Example 5 when a solution containing 0.5 v / v% of Tween 20 or Tween 80 was dropped on the substrate, and then a TBF buffer solution containing Fe 0 was dropped, the same result as in Example 2 was obtained.
  • the surface of the Ti substrate and the Ti substrate surface can be modified. It was possible to specifically strengthen the adsorption force and arrange it specifically on the Ti substrate surface. In particular, it was possible to dramatically improve selectivity by using a nonionic surfactant in combination with TBF.
  • Tween20 and Tween80 which are nonionic surfactants used this time, are polyoxyethylene sorbitan alkyl esters, which are particularly soluble at low temperatures and have no groups that dissociate into ions in aqueous solution. It is a substance with characteristics that can adjust hydrophilicity.
  • the general structural formula of Tween 20 and Tween 80 is shown below.
  • the concentration of the nonionic surfactant to be added is less than 0.006 v / v%, RF and T Adsorption controllability to BF was lowered, and the selective arrangement ratio was lowered.
  • the concentration of nonionic surfactant exceeded 10 v / v%, the amount adsorbed on the Ti film decreased. Therefore, it is preferable to determine the practical ability, and it is preferable that the nonionic surfactant in the solution containing ferritin in the present invention has a concentration range of 0.006 v / v% or more and 10 v / v% or less. / v% or more 1 /. The lower concentration range is more preferable.
  • Embodiment 4 of the present invention exemplifies a method of reverse selective placement of titanium-binding ferritin and inorganic particles on a substrate.
  • Embodiments 1 and 2 the method for arranging ferritin and inorganic particles in the region where ferritin specifically adsorbs has been described. Conversely, a method for arranging proteins and inorganic particles in a region other than the region where ferritin specifically adsorbs will be described with reference to FIGS.
  • a solution containing TBF (apoferritin) 84 not including Fe 0 is dropped onto a substrate 80 in which a titanium region 81 is formed on a part of the surface.
  • the substrate After incubating for a time, the substrate is washed with pure water.
  • TBF 84 is adsorbed only in the titanium region 81, and the substrate 80 selectively disposed is obtained.
  • a solution containing RF85 encapsulating inorganic particles is used as a substrate.
  • the RF 85 containing the inorganic particles is adsorbed only in the inorganic particle arrangement necessary region 86, which is a region other than the titanium region 81 where the TBF 84 is already adsorbed.
  • Proteins encapsulating inorganic particles are not limited to RF, but other types of proteins Can be used.
  • proteins that do not contain inorganic particles can be placed in a selective manner. This technique is useful when, for example, an enzyme having a specific function is arranged in a specific region on a substrate to produce a biosensor.
  • ferritin containing Fe 0 is used as the inorganic particle
  • the present invention relates to a method for selectively arranging ferritin or inorganic particles on a substrate with high mass productivity and cost performance, and in particular, inorganic particles having a diameter of several to several tens of nanometers.
  • the technology provides selective placement in the required region and regular placement in the nano-region. This technology makes it possible to place inorganic material particles on a substrate on a substrate that is necessary in a self-selective manner at the nanoscale, and can be used in industrial applications such as catalysts, sensors, biochips, transistors, semiconductor lasers, magnetic disks, and displays. It can be applied in the manufacturing process of the field.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Hematology (AREA)
  • Biochemistry (AREA)
  • Organic Chemistry (AREA)
  • Urology & Nephrology (AREA)
  • Biotechnology (AREA)
  • Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • General Physics & Mathematics (AREA)
  • Food Science & Technology (AREA)
  • Toxicology (AREA)
  • Zoology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Biophysics (AREA)
  • Genetics & Genomics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Inorganic Chemistry (AREA)
  • Peptides Or Proteins (AREA)

Abstract

 本発明は、チタンに特異的に結合するペプチドで修飾したフェリチンを、基板表面に形成されたチタンに選択的に配置する方法を提供することを目的とする。  本発明のフェリチンの配置方法は、フェリチンのN末端部分を、チタンと特異的に結合するペプチドで修飾することにより、基板上のチタン上にフェリチンを選択的に結合させることを特徴とする。また、本発明のフェリチンの配置方法は、非イオン性界面活性剤を添加することにより、チタンへの選択性を飛躍的に向上させることを特徴とする。

Description

明 細 書
チタン結合性フェリチン及び無機粒子の配置方法
技術分野
[0001] 本発明は、チタンを認識して結合するペプチドによって表面を修飾したチタン結合 性フェリチンを、基板表面のチタンに選択的に配列させる方法に関する。また、本発 明は、チタン結合性フェリチンに内包させた無機粒子を、基板上に形成されたチタン に規則的に配置する方法に関する。
背景技術
[0002] 基板上に配置したタンパク質及び無機物カゝらなる粒子 (無機粒子)は、触媒、セン サー、バイオチップ、トランジスター、半導体レーザー、磁気ディスク、ディスプレイ等 の工業分野で、注目されている。特に、工業的に無機粒子を応用する際には、無機 粒子を特定の領域に選択的に配置したり、ナノサイズの微小な領域に規則的に配置 したりするパターユング技術が求められている。また、近年では、バイオセンサーをは じめとする総合的な分析システムの微小化を目的に、微小化学物質分析システム (M icro Total Analysis System ( TAS))への応用も注目されている。その背景には、生 体適合性の向上、大量生産による低コストィ匕やその場での計測 (ポータブル)を可能 とするなどの利点があげられる。
[0003] 固体表面上にタンパク質や無機粒子を選択的に配置することは極めて困難な技術 である。即ち、タンパク質や無機物の表面に自己認識機能を持たせることが極めて困 難だ力もである。生体分子であるタンパク質を用いて微細パターンを形成する方法と しては、フォトリソグラフィーを応用した方法 (非特許文献 1参照)、マイクロコンタクトプ リンティング (非特許文献 2参照)、ディップペンナノリソグラフィー (非特許文献 3参照 )等の方法が知られている。しかし、量産性とコストの観点から、ナノサイズ領域で微 粒子をパターユングする技術が要求されている。また、タンパク質分子で囲むナノサ ィズの粒子を規則的に配置する方法は、特許文献 1に開示されて ヽる。
[0004] これらの方法には選択的に粒子を配置するために SAM膜(自己組織化単分子膜) や LB膜 (単分子累積膜)等の表面に加工を施し、さらにフォトリソグラフィ一等を組み 合わせて、粒子のパター-ングを行ったり、 AFM (Atmic Force Microscope :原子間 力顕微鏡)等のナノプローブで基板にパターンを直接描画する等して、選択的に無 機粒子を配置する領域を基板上に形成した後に、無機粒子を配置する手段が用い られている。
[0005] ここで、従来法 (特許文献 1)による LB膜 (PBLH膜)を用いた無機粒子の配置方法 を、図 1(a)〜(! 1)に示す。
[0006] まず、図 1(a)に示す工程において、テフロン (登録商標)製の水槽 10にバッファ 11を 貯め、このバッファに無機粒子 20を内包する天然フェリチン 21を分散させる。
[0007] 次に、図 1(b)に示す工程において、溶液の液面に PBLH膜 30を張り、適当な酸'ァ ルカリ溶液で pH調整を行う。 PBLH膜表面が正電荷を帯びているのに対し、フェリチ ンは負電荷を帯びて 、るために、天然フェリチンは PBLH膜に付着する。
[0008] 次に、図 1(c)に示す工程において、疎水性表面処理を施した基板 (シリコン基板) 4 0を、 PBLH膜を張った液面に浮かべて、基板に天然フェリチンが付着した PBLH膜を 貼り付ける。
[0009] 次に、図 1(d)に示す工程において、天然フェリチンが付着した PBLH膜を貼り付けた シリコン基板 40を水槽力も取り出す。
[0010] 次に、図 1(e)に示す工程において、天然フェリチンの付着した面の表面を緩衝溶液
11で覆った後、適当なマスクパターン 50を用いて、紫外線照射を行う。紫外線照射さ れた領域の天然フェリチンは分解され、溶液中に分散する。
[0011] 次に、図 1(1)に示す工程において、図 1 (e)に示すパターユングを行なったシリコン 基板 40を水洗する。
[0012] 次に、図 1(g)に示す工程において、シリコン基板 40を乾燥させ、無機粒子を内包す る天然フェリチンのパターン配置を得る。
[0013] その後、図 1(h)に示す工程において、不活性ガス 60中(例えば窒素中)で 500°Cの 熱処理を行い、無機粒子を内包する天然フェリチン及び PBLH膜を焼失させ、基板 上に無機粒子を二次元的にパターン配置する。この構造は、さらに前述したデバイス に必要な構造に加工される。
特許文献 1:特開平 11― 204774号公報 非特許文献 1 : A. S. Blawas, W. M. Reichert, Biomaterials, 19, 595 (1998) 非特許文献 2 : A. Bernard, J. P. Renault, B. Michel, H. R. Bosshard, E. Delamarche, Adv. Mater., 12, 1067 (2000)
非特許文献 3 : K. B. Lee, S. J. Park, C. A. Mirkin, J. C. Smith, M. Mrksick, Science , 295, 1702 (2002)
発明の開示
発明が解決しょうとする課題
[0014] しかし、上記従来方法では、基板側に SAM膜を形成し、該 SAM膜に紫外線を用い てパター-ングしたり、無機粒子の吸着膜である LB膜を基板との中間層として利用 するため、工程が複雑になったり、 SAM膜や LB膜の構成物質又は溶液に含まれる不 純物力 無機粒子の配置表面に残ってデバイスへの悪影響を引き起こす可能性が ある。そこで、本発明の目的は、高い量産性と低いコスト下で、中間層を必要とせず、 無機粒子側に基板上の基材認識性を持たせることで、特に、直径が数〜数十ナノメ 一トル程度の無機粒子を、必要な領域に必要な量だけ選択的、規則的に配置する 技術を提供することにある。
課題を解決するための手段
[0015] 上記目的を達成するために、本発明は、フェリチンの N末端部を、チタンを認識して 結合するペプチドで修飾するによって、フェリチンと基板表面のチタンとの結合力を 制御することを特徴とする。このペプチドの働きにより、フェリチンと基板間の結合力を 制御し、チタン部分に選択的にフェリチンを吸着及び配置することが可能である。す なわち、基板上のチタン又はそれ以外の部分とフェリチンが本来持つ結合力を強め たり、逆に弱めたりする能力(自己認識能力)を、フェリチン自身に持たせることが可 能となる。
[0016] ここで、「フェリチンの N末端部をペプチドで修飾する」とは、フェリチンの N末端のァ ミノ酸残基 (メチォニン残基)をチタン結合性ペプチドで置換すること、フェリチンの N 末端にチタン結合性ペプチドを付加すること、及びフェリチンの N末端部のアミノ酸配 列にチタン結合性ペプチドを挿入することの 、ずれをも含む。
[0017] また、チタン結合性フェリチンに無機粒子を内包させれば、基板上のチタンに、チタ ン結合性フェリチンが内包する無機粒子を配置することも可能となる。
[0018] 一方、チタン結合性フェリチンに無機粒子を内包させなければ、基板上のチタンに は無機粒子が配置されず、チタン結合性フェリチンでチタンを保護することが可能と なる。
[0019] ここで、ある物質に特異的結合 ·吸着するァミノ配列を決定する手法として、ファー ジペプチドライブラリーによるバイオバニング (Biopanning)法がある。この手法は、ラン ダムなペプチド配列をディスプレイしたファージ (大腸菌に感染するウィルス)集団を 用い、この中から特定物質に選択的に結合するペプチドをスクリーニングする手法で ある。
[0020] この手法は、生体分子間について、特定物質への特異的相互作用を解明したり、 多機能マイクロ遺伝子のデザインや天然タンパク質には存在しな 、新し 、組み合わ せの複合機能をもった人工タンパク質を合成したりすることができる技術である。近年 では、この技術により金属等の無機物質に特異的に結合する人工ペプチドを合成す ることが可能となっている。
[0021] 本発明は、このバイオバニング法を用いてチタンに特異的に結合するアミノ酸配列 のペプチドを単離し、そのペプチドを表面に修飾したフェリチンであるチタン結合性 フェリチンの配置方法である。
[0022] また、本発明は、チタン結合性フェリチンと基板上のチタンとの結合力を、非イオン 性界面活性剤によって、さらに選択的に制御することを特徴とする。非イオン性界面 活性剤は、基本的にタンパク質と無機物である基板との界面に作用して、両者の結 合力を弱める働きを有するが、この働きによりチタン結合性フェリチンと、基板上のチ タン以外の無機材料との間の結合力のみを弱めることが可能である。すなわち、この 手法により、チタン結合性フェリチンの基材選択性 (粒子配置必要領域と不必要領域 に吸着するタンパク質の比率)を高めたり、配置必要領域に吸着するチタン結合性フ エリチンの吸着量を効果的に制御することが可能となる。
[0023] 具体的に、本発明は、サブユニット N末端部にチタンを認識して結合する配列番号 : 1に記載のペプチドを修飾したチタン結合性フェリチンを含む溶液を、表面の一部 にチタンが形成された基板上に滴下することによって、前記チタン結合性フェリチン を選択的に前記チタンに結合させる結合工程を有するフェリチンの配置方法に関す る。
[0024] フェリチンのサブユニット N末端部を、チタンを認識して特異的に結合するペプチド
(配列番号: 1)で修飾することにより、フェリチンと基板上のチタンとを特異的に結合さ せることが可能となり、基板上のチタンにフェリチンを選択的に配置することができる。
[0025] 前記溶液が、さらに非イオン性界面活性剤を含み、前記結合工程の後に、前記基 板上力ゝら非イオン性界面活性剤を除去する除去工程を含むことにより、チタン結合性 フェリチンの選択性をより高めることが可能となる。チタン結合性フェリチンを基板の チタン上に選択的に配置させた後、基板を洗浄することによって、非イオン性界面活 性剤を除去することができる。
[0026] 前記結合工程の前に、非イオン性界面活性剤により前記基板を被覆する被覆工程 を有することによつても、同様の効果を得ることができる。
[0027] V、ずれの場合であっても、非イオン性界面活性剤の濃度は、 0.006 v/v%以上 10 v /v%以下であることが好まし 、。
[0028] フェリチンは、内部に空間を有するため、チタン結合性フェリチンに無機粒子 (例え ば、 Fe 0 )を内包させることもできる。
2 3
[0029] 前記結合工程の後、前記チタン結合性フェリチン以外のフェリチンを含む溶液を前 記基板上に滴下し、それによつて前記チタン結合性フェリチン以外のフェリチンを、 前記基板上の前記チタン以外の部分に配置することも可能である。
[0030] チタン結合性フェリチンが配置された前記基板を加熱することにより、チタン結合性 フェリチンを分解し、それにより、チタン結合性フェリチンに内包されていた無機粒子 を、前記基板のチタン上に選択的に固定し、かつ、配置することも可能である。
[0031] すなわち、本発明は、無機粒子の配置方法であって、
前記無機粒子を内包すると共に、サブユニット N末端部にチタンを認識して結合す る配列番号: 1に記載のペプチドを修飾したチタン結合性フェリチンを含む溶液を、 表面の一部にチタンが形成された基板上に滴下することによって、前記チタン結合 性フェリチンを選択的に前記基板上のチタンに結合させる結合工程と、
前記基板を加熱して前記チタン結合性フェリチンを分解する分解工程と、 を有する無機粒子の配置方法に関する。
[0032] また、本発明は、無機粒子の配置方法であって、
サブユニット N末端部にチタンを認識して結合する配列番号:1に記載のペプチドを 修飾したチタン結合性フェリチンを含む溶液を、表面の一部にチタンが形成された基 板上に滴下することによって、前記チタン結合性フェリチンを選択的に前記基板上の チタンに結合させる結合工程と、
無機粒子を内包する前記チタン結合性フェリチン以外のフェリチンを含む溶液を前 記基板上に滴下し、それによつて前記無機粒子を内包するフェリチンを、前記基板 上のチタン以外の部分に配置する配置工程と、
前記基板を加熱して前記基板上のフェリチンを分解する分解工程と、
を有する無機粒子の配置方法に関する。
[0033] 上記チタン結合性フェリチンの配置方法を用いて、基板上のチタンにチタン結合性 フェリチンを選択的に配置することにより、チタン結合性フェリチンの有する性質を利 用したバイオデバイスを作成することが可能である。
[0034] ノィォデバイスの例として、バイオセンサー又はバイオチップを掲げることができる。
[0035] 本発明の上記目的、他の目的、特徴及び利点は、添付図面参照の下、以下の好 適な実施態様の詳細な説明から明らかにされる。
発明の効果
[0036] 本発明のチタン結合性フェリチンの配置方法によれば、チタン結合性フェリチン及 びそれが内包する無機粒子を基板上へ配置及び固定する際に、フェリチンと基板上 に形成されたチタンとの物理的吸着力を、フェリチン表面 (N末端部)にチタンを認識 するペプチド (配列番号: 1)を修飾することにより制御可能であり、基板上へのフェリ チンの 2次元的な規則配置をも可能となる。本発明のチタン結合性フェリチンの配置 方法は、高い量産性とコストパフォーマンスで、必要な領域に必要な量の無機粒子を 配置させたり、高精度で規則的に無機粒子を基板上に配置させたりすることができる
図面の簡単な説明
[0037] [図 1]図 1は、従来の無機粒子の配置方法の工程説明図である。 [図 2]図 2は、本発明のチタン結合性フェリチンの配置方法を概念的に示すフローチ ヤートである。
[図 3]図 3は、バイオバニング技術の説明図である。
[図 4]図 4は、従来フェリチンの構造等を示す図である。
[図 5]図 5は、 L型フェリチンサブユニットのプラスミドの主要構成と、大腸菌へのプラス ミドの取り込みを模式ィ匕した図である。
[図 6]図 6は、本発明のチタン結合性フェリチンの構造等を示す図である。
[図 7]図 7は、本発明の無機粒子の配置方法の概念を説明する図である。
[図 8]図 8は、本発明の無機粒子の配置方法の変形例の概念を説明する図である。 圆 9]図 9(a)は、実施例 1を説明する模式図である。図 9(b)は、実施例 1の基板表面の 走査型電子顕微鏡写真である。
圆 10]図 10(a)は、比較例 1を説明する模式図である。図 10(b)は、比較例 1の基板表 面の走査型電子顕微鏡写真である。
[図 11]図 11は、本発明の実施の形態 4における、無機粒子を逆選択的に配置する 方法を説明する図である。
符号の説明
10 テフロン (登録商標)製の水槽
11 ノ ッファ
20 無機粒子
21 天然フェリチン
30 PBし H膜
40 シリコン基板
50 マスクノ ターン
60 不活性ガス (熱処理槽)
70 ファージ粒子
71 あらゆる種類の N末端ペプチド配列
72 ターゲットに強く結合したファージ 74 ターゲットに特異的に結合するアミノ酸配列
75 読み取ったアミノ酸配列を N末端に付加したリコンビナントタンパク質
80 基板
81 フェリチン配置が必要なチタン領域
82 フェリチンを選択的にチタン領域にのみ配置した基板
83 非イオン性界面活性剤
84 無機粒子を内包しな 、チタン結合性フェリチン (TBF)
85 無機粒子を内包するフェリチン (RF)
86 タンパク質が吸着していない領域
87 チタン以外の領域に対して逆選択的に無機粒子を配置した基板
88 無機粒子
89 チタンに特異的に結合するペプチド
90 無機粒子を内包したチタン結合性フェリチン
200 チタン基板
300 天然フェリチン
301 Fe O微粒子
2 3
302 チタンに特異的に吸着するペプチド
310 チタン結合 ¾フェリチン
400 白金膜
発明を実施するための最良の形態
以下に、本発明の実施の形態について、適宜図面を参照しながら説明する。なお、 本発明はこれらに限定されるものではない。
(本発明の概念)
最初に、本発明の概念を説明する。ここでは、チタン結合性フェリチンの配置方法 と基板上への無機粒子の配置方法とを説明する。
[チタン結合性フェリチンの配置方法]
図 2は、本発明のチタン結合性フェリチンの配置方法を概念的に示すフローチヤ一 トである。 [0040] 図 2に示すように、本発明のチタン結合性フェリチンの配置方法は、ステップ S1〜S
3の 3つの工程を有して!/、る。
[0041] まず、ステップ S1の工程において、チタン結合性フェリチンを含む溶液を準備 (調 製)する。
[0042] 次に、ステップ S2の工程において、チタンが形成された基板上に、ステップ S1で調 製した溶液を滴下する。それにより、チタン結合性フェリチン自身が、基板上に形成さ れたチタンを認識し、特異的に結合する。
[0043] なお、ステップ S 1とステップ S2の間に、ステップ S 1で調製した溶液に非イオン性界 面活性剤を添加するステップ S3の工程を行ってもょ ヽ。本発明のチタン結合性フェリ チンの配置方法においては、非イオン性界面活性剤を添加することにより、チタン結 合性フェリチンの、チタンに対する選択的結合性を向上させることが可能である。
[0044] また、ここではステップ S1とステップ S2を、それぞれ独立した工程として説明してい る力 ステップ S1とステップ S2を同時に一つの工程として行うことも可能である。
[0045] なお、本発明の実施の形態においては、比較例として、ステップ S1で用いるチタン 結合性フェリチンの代わりに、天然フェリチン (ゥマ脾臓由来)を使用した。以下、これ らの微粒子の製造方法を説明する。
<チタン結合性ポリペプチドの単離 >
図 3(a)〜(g)を参照しつつ、上述のバイオバニング技術による、チタンに特異的に結 合するペプチドの単離方法について説明する。この方法では、大腸菌に感染する繊 維状ファージを利用する。ファージは、数種のコートタンパク質に直接覆われた構造 を持つ。これらのコートタンパク質遺伝子のいずれかに外来遺伝子を挿入し、その産 物をコートタンパク質としてファージ粒子 70の特定部位に提示 (ディスプレイ)させるこ とができる。ランダムな合成 DNAを挿入することで、 N末端にあらゆるペプチド配列 71 を有するペプチドライブラリーが作製可能である。
[0046] 具体的には、図 3(a)に示す工程において、ファージ粒子 70を準備する。ここでは、 左端のファージ粒子 70aがターゲットに対する親和性を有するペプチド配列 71aを有 している。
[0047] 次に、図 3(b)に示す工程において、ファージペプチドライブラリーを用いて、あるタ 一ゲット (本発明では、チタン)に対する親和性 (結合性)に基づいてスクリーニングを 行う。具体的には、ターゲットにファージペプチドライブラリー溶液を加えて適当な時 間インキュベートすると、ターゲットには親和性の高いファージ 72が結合する。
[0048] 次に、図 3(c)に示す工程において、ターゲットに結合しな力つたファージを洗浄して 除去し、ターゲットに強く結合したファージ 72を回収する。この一連の操作によって、 ターゲットに親和性の高いファージ 72が濃縮される。その後、酸処理などによって強く 結合したファージをターゲットから回収する。
[0049] 次に、図 3(d)に示す工程において、回収した特異性を有するファージを宿主大腸 菌 73に感染させて増幅する。
[0050] 次に、図 3(e)に示す工程において、宿主大腸菌 73からファージクローンを回収する
[0051] 次に、図 3(b)〜(e)の工程を所定回数繰り返す。これによつて、ターゲットに親和性 の高 、ファージクローンを増殖させる。
[0052] 次に、図 3(1)に示す工程において、ターゲットに親和性の高いファージクローンを単 離し、 DNA配列からターゲットに特異的に結合するアミノ酸配列 74を読み取る。
[0053] その後、図 3(g)に示す工程において、読み取ったアミノ酸配列を N末端に付加した リコンビナントタンパク質 75を合成する。
[0054] ところで、このバイオバニング技術を用いて、チタンに特異的に結合する人工ぺプ チド (配列番号: 1)が単離されており、この人工ペプチドがチタン表面に静電気的に 結合することも明らかになつている(K. Sano, K. Shiba, J. AM. CHEM. SOC. Vol.125 , No.47 (2003)を参照)。本発明は、配列番号: 1に示す人工ペプチド (チタンと特異 的に結合するペプチド)を N末端部分に付加したリコンビナントフェリチンを用いて、 基板上の特定位置 (チタン上)へのチタン結合性フェリチン及び該チタン結合性フエ リチンが内包する無機粒子の配置を行うことを特徴とする。
[0055] なお、以下に記載する実施の形態においては、チタン結合性フェリチンとして、チタ ンに特異的に結合する人工ペプチド (配列番号: 1)を N末端に修飾した、チタン結合 性フェリチン (TBF、配列番号: 5)を使用した。
<リコンビナントフェリチンの製造方法 > 以下に記載する実施の形態においては、タンパク質の微粒子として、チタン結合性 ポリペプチドで N末端部を修飾したリコンビナントフェリチン、及びチタン結合性ポリべ プチドを有しないリコンビナントフェリチンを使用した。ここで、チタン結合性ポリぺプ チドを有しな 、リコンビナントフェリチン (RF)の製造方法にっ 、て説明する。
[0056] 図 4に従来のフェリチン (天然フェリチン (かご状タンパク質))の構造を示す。天然フ エリチンは、 24個のサブユニットが結合して内部に空孔(直径約 7應)を有する球状微 粒子(直径約 12應)である。この空孔内には、各種の無機材料微粒子 (コア)を取り込 むことが可能である。一つのサブユニットは、図 4中央に示すような特定の立体構造 を持っており、 aヘリックスと j8シートの二次構造の組み合せ力も成ることが X線解析 等カゝら詳しく解析されている。
[0057] このタンパク質の骨組み (ポリペプチド主鎖の折たたまれ方)力もアミノ酸側鎖が様 々な方向に突き出しており、このアミノ酸残基の配列は、それぞれのタンパク質に独 自の化学的特性を持たせている。フェリチン表面は、この突き出たアミノ酸残基の特 徴を反映し、タンパク質全体の化学的特性 (基材間、タンパク質間相互作用)が決定 される。
[0058] サブユニットにはわずかに構造の異なる L型と H型があるため、天然フェリチンは、 一定の構造を有さない。以下の実施の形態においては、 L型サブユニットのみ力も構 成されるリコンビナントフェリチン (RF)を使用した。
[0059] まず、 L型のフェリチンをコードする DNA (配列番号: 2、 528塩基対)を、 PCR法を用 いて増幅し、多量の L型フェリチン DNAを用意した。次に、この L型フェリチン DNAを、 制限酵素 EcoRI及び Hind IIIが特異的に切断する部位 (制限酵素サイト)で切断した。 この切断処理により、 EcoRI及び Hind IIIの制限酵素サイトを有する L型フェリチン DN A断片の溶液を調製した。この溶液に DNA電気泳動を行い、 L型フェリチンをコード する DNA断片だけを回収、精製した。
[0060] その後、この L型フェリチン DNA断片と、 EcoRI - Hind IIIの制限酵素で処理したベ クタ一プラスミド (pMK-2)をインキュベートしてライゲーシヨンを行った。これにより pMK -2プラスミドのマルチクローユングサイト(MSC)に L型フェリチン DNAが入ったベクタ 一プラスミド pMK- 2- fer- 0を作製した。使用したベクタープラスミドの pMK- 2は、プロ モーターに Tacプロモーターを有し、多コピープラスミドとしてコピー数が多いという 特徴を持っため、大量のフェリチンを得るのに有利であることから選択した。
[0061] 作製したプラスミド(pMK- 2- fer- 0)を宿主(ホスト)である大腸菌株 E. coli Nova Blue
(Novagen )に導入 (形質転換)し、リコンビナント L型フェリチン株(fer- 0 )を作製した 。なお、 L型フェリチンサブユニットのプラスミドの主要構成と、大腸菌へのプラスミドの 取り込みを模式ィ匕した図を、図 5に示した。
[0062] これらのリコンビナントフェリチンの内部に、フローティングゲートを構成するナノ粒 子群作製のために必要な無機粒子を内包させた。上記方法によって作製されたリコ ンビナントフェリチン (fer-0)の熱安定性は、ァミノ末端の付カ卩により向上することが示 された。天然フェリチンの耐熱温度が 55°C程度であることに対し、 fer-0は 95°Cであつ た。この耐熱性により、従来不可能であった高温での力ご状タンパク質利用ナノ粒子 合成が可能となった。
<チタン結合性フェリチンの製造方法 >
次に、チタン結合性ポリペプチド (配列番号: 1)で N末端部を修飾したチタン結合性 フェリチン (TBF)の製造方法につ 、て説明する。
[0063] フェリチンを構成するサブユニットのァミノ末端 (N末端)をペプチドで修飾すると、 図 6に示したように、フェリチン粒子の外側に該ペプチドが突き出した構造となる。そ のため、この N末端部分を任意のペプチド(図 6では、チタン結合性ペプチド)で修飾 することにより、フェリチン粒子の表面を該ペプチドで修飾することが可能である。
[0064] ここで、配列番号: 1に示すアミノ酸配列のペプチドを、 N末端に付加及び修飾した フェリチン (配列番号 : 5)の具体的な製造方法を示す。天然フェリチン (ゥマ肝臓由来 )のしタイプのサブユニットの全長遺伝子を、配列番号: 2に示した。 N末端からの 24塩 基力も合成されるァミノ残基のうちの 7残基は、自然界にお 、てはプロセスされ欠失し ていることが報告されている。
[0065] すなわち、配列番号: 2の DNAからは、配列番号: 3に示すアミノ酸配列のフェリチン が合成されるはずであるが、 N末端から 2番目〜8番目までの 7つのアミノ酸残基まで が欠失するため、実際には配列番号: 4に示すアミノ酸配列のフェリチンとなる。
[0066] 本願発明者は、 N末端に、チタン結合性ペプチド (配列番号: 1)を付加及び修飾し たフェリチンを合成することにより、フェリチン粒子の外側に、柔軟性を持つ構造不定 のチタン結合性ペプチドを形成させ、このペプチドで修飾されたフェリチンを、チタン へ選択的に吸着させる配置方法を見出した。
[0067] まず、チタン結合性ペプチド (配列番号: 1)をコードする DNA (配列番号: 6 (30塩基 対)及び配列番号: 7 (22塩基対))を、 PCR法を用いて増幅し、多量の DNAを用意し た。
[0068] 次に、上記 DNAと、制限酵素 Bam I及び Sac Iの制限酵素で処理した、ヒトリコンビナ ント L型フェリチンをコードするベクタープラスミド (pMK- 2)をインキュベートしてライゲ ーシヨンを行った。これにより pMK-2プラスミドのマルチクロー-ングサイト(MSC)に、 上記塩基配列の DNA及び L型フェリチン DNAが入ったベクタープラスミド(pKISl)を 作製した。 pKISl作製に使用したベクタープラスミドの pMK-2は、プロモーターに Tac プロモーターを有し、多コピープラスミドとしてコピー数が多いという特徴を持っため、 大量のフェリチンを得るのに有利であることから選択した。
[0069] 作製したプラスミドを宿主(ホスト)である大腸菌株 E. coli XLI Blue (Novagen)に導 入 (形質転換)し、チタン結合性 L型フェリチン株を作製した。
[0070] 以上に説明したように、本発明のチタン結合性フェリチンの配置方法によれば、チ タン結合性フェリチンと基板上のチタンとの結合力は、チタン結合性フェリチン自身に よって制御することが可能であるため、工程が非常に単純ィ匕される。
[基板上への無機粒子の配置方法]
次に、本発明の無機粒子の配置方法を、図 7(a)及び (b)を用いて説明する。ここで は、無機粒子として、酸ィ匕第二鉄 (Fe 0 )を用いた例を示す。
2 3
[0071] 図 7(a)に示す工程において、フェリチン配置が必要なチタン領域 81を持つ基板 80 に、 Fe 0 1を内包したチタン結合性フェリチン 2の溶液を滴下し、一定時間インキュ
2 3
ペートした後、純水を用いて基板を洗浄した。
[0072] 次に、図 7(b)に示す工程にぉ 、て、チタン結合性フェリチン 2は、基板 80上のチタン 領域 81に特異的に吸着されるため、内包される Fe O 1もチタン領域 81に配置するこ
2 3
とができる。その結果、フェリチンを選択的にチタン領域にのみ配置した基板 82を作 製することができる。 [0073] また、上記方法の変形例として、図 8(a)及び図 8(b)に示すように、 Fe 0 1を内包し
2 3
たチタン結合性フェリチン 2の溶液に、非イオン性界面活性剤 83を添加することもでき る。これにより、チタン結合性フェリチン 2のチタンへの選択的結合性をさらに向上さ せることが可能となる。
[0074] 以下に記載する実施の形態においては、水洗後、基板を窒素ガス中、 500°Cでカロ 熱することにより、 Fe 0を内包していた TBFを焼失させ、 Fe 0をチタン領域 81に固
2 3 2 3
定させた。なお、窒素ガスの替わりに不活性ガスや酸素ガス、水素ガス等を用いるこ ともできる。また、チタン結合'性フェリチンの替わりに従来のリコンビナントフェリチンを 用いる場合にも、上記と同様の操作を行った。
[0075] 次に、上述のチタン結合性フェリチンへの無機粒子の導入について説明する。
<チタン結合性フェリチンへの無機粒子の導入 >
本発明において、リコンビナントフェリチン (RF)に内包させる無機粒子の種類は、 特に限定されるものではないが、上述の説明及び後述する実施の形態においては、 無機粒子として酸ィ匕第二鉄 (Fe 0 )を用いた。 TBFへの Fe 0コアの導入は、以下の
2 3 2 3
ようにして行った。
[0076] 反応溶液として、 0.5mg/ml TBF/100mM HEPES- NaOH (pH7.0)を調製し、ここに 5 mM酢酸アンモ-ゥム鉄を添加した。 25°Cで一晩反応させ、反応後の溶液から Fe 0
2 3 のコアが形成された TBFを、遠心分離とゲルろ過により分子精製して回収した。遠心 分離は、 1,600G、 10分及び 10,000G、 30分の条件で行って、段階的に TBF以外の 不要部分を沈殿として除去し、最後に残った上清より Fe 0コアを形成した TBFを、 23
2 3
0,000G、 1時間の超遠心分離によってペレットとして回収した。得られた TBFを、 HPL Cを用いたゲルろ過 [カラム: TSK- GEL G4000SWXL PEEK Z流速: lml/min Zバッ ファ: 50mM Tris-HCl (pH8.0)+150mM NaCl]を行い、 24量体(約 480kDa)のピークを 分取する。分取した TBF溶液は、限外ろ過膜を用いて濃縮し、 Fe 0を内包した TBF
2 3
を得た。
[0077] なお、 RF〖こ上記と同様の操作を行うこと〖こより、 Fe 0を内包した RFを得た。
2 3
[0078] 以下、本発明の具体的な実施の形態を順次説明する。
[0079] (実施の形態 1) 本発明の実施の形態 1は、チタン結合性フェリチン及び無機粒子の基板上への配 置方法を例示したものである。本実施の形態では、基板上に Pt部分及び Ti部分が形 成されている。
[0080] 以下、本実施の形態の具体例を実施例として示し、その効果を、比較例を挙げて 説明する。
[0081] [実施例 1]
まず、図 9(a)に、 Fe 0 301を内包した、 Tiに特異的に吸着するペプチド 302を表面
2 3
に修飾した TBF310を、表面の一部に白金膜 (Pt) 400を形成した Ti基板 200上へ配置 させた実験の模式図を示す。
[0082] 実施例 1として、以下のようにして、基板上に無機粒子を配置した。
[0083] Fe 0 301を内包した TBF310をバッファ溶液(10mM Tris- HC1, pH8.0)を用いて 2mg
2 3
/mlの濃度に調整した。表面の一部に白金膜 (Pt) 400を形成した Ti基板 200上に、該 TBF溶液を滴下して、 1時間室温で放置した後、純水で洗浄した。洗浄後、基板を上 述した方法で加熱処理し、 Fe 0 301を基板上に固定させた。
2 3
[0084] 図 9(b)は、図 9(a)に示す模式図に対応する、上記 Fe 0 301を固定させた後の基板
2 3
表面の走査型電子顕微鏡写真である。 Fe 0 301は、 Ti基板 200上に選択的に配置さ
2 3
れていたことから、 TBF310は、 Pt膜 400には吸着せず、 Ti基板 200に特異的に吸着す ることが検証された。このようにフェリチンと基板上の基材との吸着力を、フェリチン表 面のペプチド修飾により制御することが可能であった。
[0085] [実施例 2]
実施例 2として、ノ ッファ溶液に非イオン性界面活性剤である ICI社製 Tween20を 0.5 v/v%添加して、実施例 1と同様の操作を行った結果、 TBF310は、 Pt膜 400には吸着 せず、 Ti基板 200にその大部分が特異的に吸着することが検証された。すなわち、 Tw een20を添加することにより、 TBFの Ti基板への選択的吸着性が向上した。
[0086] (実施の形態 2)
本発明の実施の形態 2は、チタン結合性フェリチン及び無機粒子の基板上への配 置方法を例示したものである。本実施の形態では、基板上に酸ィ匕シリコン (SiO )部分
2 及び Ti部分が形成されて ヽる。 [0087] [実施例 3]
実施例 3として、以下のようにして、基板上に無機粒子を配置した。
[0088] Fe 0を内包する TBFを、バッファ溶液(10mM Tris- HC1, pH8.0)を用いて 2 mg/ml
2 3
の濃度に調整した。表面の一部にチタン膜 (Ti)を形成した酸ィ匕シリコン (SiO )基板 100
2 上に、該 TBF溶液を滴下して、 1時間室温で放置した後、純水で洗浄した。洗浄後、 基板を上述した方法で加熱処理し、 Fe 0を基板上に固定した。
2 3
[0089] Fe 0を固定させた後の基板表面の走査型電子顕微鏡写真を確認すると、 Fe 0は
2 3 2 3
、 SiO基板上にはほとんど配置されず、 Ti膜上に選択的に配置されていたことから、 T
2
BF310は、 SiO基板 100には吸着せず、 Ti膜 200に特異的に吸着することが検証され
2
た。
[0090] [実施例 4]
実施例 4として、ノ ッファ溶液に非イオン性界面活性剤である ICI社製 Tween20を 0.5 v/v%添加して、実施例 3と同様の操作を行った結果、 TBF310は、 SiO基板 100には
2
吸着せず、 Ti膜 200にその大部分が特異的に吸着することが検証された。すなわち、 Tween20を添加することにより、 TBFの Ti膜への選択的吸着性が向上した。
[0091] (実施の形態 3)
本発明の実施の形態 3は、非イオン製界面活性剤を添加する、チタン結合性フェリ チン及び無機粒子の基板上への配置方法を例示したものである。
非イオン ' rii活件 のネ目 カ 及び撰 西 R i:hの ¾平
[比較例 1]
比較例 1として、以下のようにして、基板上へ無機粒子を配置した。
[0092] 図 10(a)に、 Fe 0 301を内包したゥマ脾臓由来の天然フェリチン(NF) 300を、表面
2 3
の一部に白金膜 (Pt) 400を形成した Ti基板 200上へ配置させた実験の模式図を示す 。 TBFの替わりに、 NFを使用したこと以外は、全て実施例 1と同じ条件で実験を行つ た。なお、ここでは非イオン性界面活性剤は使用していない。
[0093] 図 10(b)は、図 10(a)に対応する、加熱処理後の基板の走査型電子顕微鏡写真で ある。 Pt膜上及び Ti基板上の両方に Fe 0が配置され、基材に対して全く選択性が
2 3
認められな力つた。 Ti基板上及び Pt膜上に配置された Fe 0は、それぞれ 79個及び 7 6個であり、選択配置比は 1.0となった。
[0094] ここで、選択配置比とは、 Pt上に吸着した Fe 0の数 N(Pt)に対する Ti上に吸着した
2 3
Fe 0の数 N(Ti)の比、すなわち、 N(Ti)ZN(Pt)を意味する。また、 Fe 0の吸着数は、
2 3 2 3
基板表面の走査型電子顕微鏡写真の 200nm口領域内の Fe 0数をカウントした。
2 3
[0095] [比較例 2]
比較例 2として、以下のようにして、基板上へ無機粒子を配置した。
[0096] Fe 0を内包した NFのバッファ溶液に、非イオン性界面活性剤として ICI社製 Tween
2 3
20を 0.5v/v%添カ卩した場合、 Pt膜上に配置された Fe 0が 12個であったのに対し、 Ti
2 3
基板上に配置された Fe 0は 79個であり、選択配置比は 6.6となった。非イオン性界
2 3
面活性剤として ICI社製 Tween80を 0.5v/v%添加した場合にも、全く同じ結果が得ら れた。
[0097] [比較例 3]
比較例 3として、以下のようにして、基板上へ無機粒子を配置した。
[0098] Tween20又は Tween80を 0.5v/v%含有する溶液を基板に滴下した後、 Fe 0を内包
2 3 した NFのバッファ溶液を滴下した場合、 Pt膜上に配置された Fe 0が 13個であつたの
2 3
に対し、 Ti基板上に配置された Fe 0は 77個であり、選択配置比は 6.6となった。 Twee
2 3
n20又は Tween80を 0.5 v/v%含有する溶液を基板に滴下した後、 Fe 0を内包した R
2 3
Fのノ ッファ溶液を滴下した場合にも、全く同じ結果が得られた。
[0099] [実施例 5]
非イオン性界面活性剤として、ノ ッファ溶液に ICI社製 Tween20を 0.5 v/v%含んだ 溶液を基板上に滴下した後、 TBFを含む溶液を滴下すること以外、実施例 1と同様の 操作を行った。
[0100] 上記実施例及び比較例の実験結果を、表 1に示す。
[0101] [表 1] 配置方法 天然フェリチン チタン結合性フェリチン
1. フェリチン質溶液、基板の界面 Ti上: 79個 選択配置比 Ti上: 250個 選択配置比 活性剤による処理なし 1.0 8.3
Pt上: 76個 【比較例 1】 Pt上: 30個 【実施例 1】
2. フェリチン溶液に非イオン性界 Ti上: 79個 選択配置比 Ti上: 200個 選択配置比 面活性剤 0.5v/v%を加えた 6.6 200.0
Pt上: 12個
【比較例 Pt
2】 上: 1個 【実施例 2】
3. 非イオン性界面活性剤を 0.5 Ti上: 77個 選択配置比 Ti上: 20 選択配置比 V/V %含んだ溶液を基板に滴下した 6.6 200.0 後、 フェリチン溶液を滴下した Pt上: 13個 Pt上: 1個
【比較例 3】 【実施例 5】
[0102] 実施例 1の実験結果では、 Pt膜上に配置された Fe 0が 30個であったのに対し、 Ti
2 3
基板上に配置された Fe 0力 ¾50個であり、選択配置比は 8.3であった。一方、実施例
2 3
2では、 Pt膜上に配置された Fe 0力 ^個であったのに対し、 Ti基板上に配置された F
2 3
e 0は 200個であり、選択配置比は、実施例 1の約 24倍である 200にまで増大した。非
2 3
イオン性界面活性剤として ICI社製 Tween80を 0.5v/v%添加した場合にも、全く同じ 結果が得られた。
[0103] また、実施例 5では、 Tween20又は Tween80を 0.5v/v%含有する溶液を基板に滴下 した後、 Fe 0を内包した TBFのバッファ溶液を滴下した場合、実施例 2と全く同じ結
2 3
果が得られた。
[0104] このように、本来、 Ti基板及び Pt膜に対して全く選択吸着性を有しな 、フェリチンに 、 Tiに特異的に結合するペプチドで表面を修飾することによって、 Ti基板表面との吸 着力を特異的に強化し、 Ti基板表面に特異的に配置されるようにすることが可能であ つた。特に、 TBFに非イオン性界面活性剤を併用することにより、選択性を飛躍的に 向上させることが可能であった。
[0105] 今回用いた非イオン性界面活性剤である Tween20及び Tween80は、ポリオキシェチ レンソルビタン(Polyoxyethylene sorbitan alkyl ester)類で、特に低温で溶解しやすく 、水溶液中でイオンに解離する基を持たず、親水性を調整できる特徴を持つ物質で ある。 Tween20及び Tween80の一般的構造式を、以下に示す。
[0106] [化 1]
Tween 20
Figure imgf000021_0001
Sum of + x + y + z - 20
2]
0
0£』 ζ + Λ + χ +nο E=
Figure imgf000022_0001
Figure imgf000022_0002
なお、添加する非イオン性界面活性剤の濃度を 0.006 v/v%未満にすると、 RF及び T BFに対する吸着制御性が低くなり、選択配置比が低下した。一方、非イオン性界面 活性剤の濃度を 10 v/v%超にすると Ti膜への吸着量が低下した。よって実用性力も判 断して、本発明におけるフェリチンを含む溶液中の非イオン性界面活性剤は、 0.006 v/v%以上 10 v/v%以下の濃度範囲とすることが好ましぐ 0.01 v/v%以上 1 /。 下の濃度範囲とすることがさらに好ましい。
[0109] (実施の形態 4)
本発明の実施の形態 4は、チタン結合性フェリチン及び無機粒子の基板上への逆 選択的配置方法を例示したものである。
アポフェリチンを用いた無機粒子の逆選択西 R置方法
実施の形態 1及び 2では、フェリチンが特異的に吸着する領域へのフェリチン及び 無機粒子の配置方法を説明した。逆に、フェリチンが特異的に吸着する領域以外の 領域へのタンパク質及び無機粒子の配置方法を、図 11(a)〜( を参照しながら説明 する。
[0110] まず、図 11(a)に示す工程において、表面の一部にチタン領域 81を形成した基板 80 に、 Fe 0を内包しない TBF (アポフェリチン) 84を含む溶液を滴下する。そして、一定
2 3
時間インキュベートした後、純水を用いて基板を洗浄する。
[0111] 次に、図 11(b)に示す工程において、 TBF84は、チタン領域 81にのみ吸着し、選択 的に配置された基板 80が得られる。
[0112] 次に、図 11(c)に示す工程において、無機粒子を内包する RF85を含む溶液を基板
80に滴下して、上記と同様の操作を行う。このとき、非イオン性界面活性剤は使用し ない。
[0113] 次に、図 11(d)に示す工程において、無機粒子を内包する RF85は、既に TBF84が 吸着しているチタン領域 81以外の領域である無機粒子配置必要領域 86にのみ吸着 する。
[0114] その後、図 11(e)に示す工程において、基板 80を上述した方法によって加熱すると 、チタン領域 81以外の領域に対して逆選択的に無機粒子 88を配置した基板 87が得 られる。
[0115] 無機粒子を内包するタンパク質としては、 RFに限定されず、他の種類のタンパク質 を使用することができる。また、無機粒子を内包する RFの替わりに、無機粒子を内包 しないタンパク質を逆選択的に配置することも可能である。この技術は、例えば、特 定の機能を有する酵素を、基板上の特定領域に配置してバイオセンサーを製造する 場合等に有用となる。
[0116] なお、上記実施の形態では無機粒子として Fe 0を内包したフェリチンを用いて、基
2 3
板上のチタン膜に Fe 0を選択的に配置した力 無機粒子を内包しないフェリチンを
2 3
用いても、全く同じ結果が得られるはずである。
[0117] 上記説明から、当業者にとっては、本発明の多くの改良や他の実施の形態が明ら かである。したがって、上記説明は例示としてのみ解釈されるべきであり、本発明を実 行する最良の態様を当業者に教示する目的で提供されたものである。本発明の精神 を逸脱することなぐその構造および Zまたは機能の詳細を実質的に変更できる。 産業上の利用可能性
[0118] 本発明は、高い量産性とコストパフォーマンスで、基板上にフェリチン又は無機粒 子を選択的に配置する方法に関するものであり、特に、直径が数〜数十ナノメートル 程度の無機粒子を必要な領域に選択的に配置したり、ナノ領域に規則的に配置した りする技術を提供するものである。この技術により、ナノスケールで自己選択的に必 要な基板上の基材に無機材料粒子を配置することが可能となり、触媒、センサー、バ ィォチップ、トランジスター、半導体レーザー、磁気ディスク、ディスプレイ等の工業分 野の製造工程で応用できる。

Claims

請求の範囲
[1] サブユニット N末端部にチタンを認識して結合する配列番号: 1に記載のペプチドを 修飾したチタン結合性フェリチンを含む溶液を、表面の一部にチタンが形成された基 板上に滴下することによって、前記チタン結合性フェリチンを選択的に前記チタンに 結合させる結合工程を有するフェリチンの配置方法。
[2] 前記溶液は、さらに非イオン性界面活性剤を含み、
前記結合工程の後に、前記基板上力ゝら非イオン性界面活性剤を除去する除去ェ 程を有する請求項 1に記載のフェリチンの配置方法。
[3] 前記結合工程の前に、非イオン性界面活性剤により前記基板を被覆する被覆工程 を有する請求項 1に記載のフェリチンの配置方法。
[4] 前記非イオン性界面活性剤の濃度が、 0.006 v/v%以上 10 v/v%以下である請求 項 2に記載のフェリチンの配置方法。
[5] 前記チタン結合性フェリチンが、無機粒子を内包する請求項 1に記載のフェリチン の配置方法。
[6] 前記結合工程の後、前記チタン結合性フェリチン以外のフェリチンを含む溶液を前 記基板上に滴下し、それによつて前記チタン結合性フェリチン以外のフェリチンを、 前記基板上の前記チタン以外の部分に配置する配置工程を有する請求項 1に記載 のフェリチンの配置方法。
[7] 無機粒子の配置方法であって、
前記無機粒子を内包すると共に、サブユニット N末端部にチタンを認識して結合す る配列番号 1に記載のペプチドを修飾したチタン結合性フェリチンを含む溶液を表面 の一部にチタンが形成された基板上に滴下することによって、前記チタン結合性フエ リチンを選択的に前記基板上のチタンに結合させる結合工程と、
前記基板を加熱して前記チタン結合性フェリチンを分解する分解工程と、 を有する無機粒子の配置方法。
[8] 前記溶液は、さらに非イオン性界面活性剤を含み、
前記結合工程と前記配置工程との間に、前記基板上から非イオン性界面活性剤を 除去する除去工程を有する請求項 7に記載の無機粒子の配置方法。
[9] 前記結合工程の前に、非イオン性界面活性剤により前記基板を被覆する被覆工程 を有する請求項 7に記載の無機粒子の配置方法。
[10] 前記非イオン性界面活性剤の濃度が、 0.006 v/v%以上 10 v/v%以下である請求 項 7に記載の無機粒子の配置方法。
[11] 無機粒子の配置方法であって、
サブユニット N末端部にチタンを認識して結合する配列番号:1に記載のペプチドを 修飾したチタン結合性フェリチンを含む溶液を、表面の一部にチタンが形成された基 板上に滴下することによって、前記チタン結合性フェリチンを選択的に前記基板上の チタンに結合させる結合工程と、
無機粒子を内包する前記チタン結合性フェリチン以外のフェリチンを含む溶液を前 記基板上に滴下し、それによつて前記無機粒子を内包するフェリチンを、前記基板 上のチタン以外の部分に配置する配置工程と、
前記基板を加熱して前記基板上のフェリチンを分解する分解工程と、
を有する無機粒子の配置方法。
[12] 前記チタン結合性フェリチンを含む溶液力 さらに非イオン性界面活性剤を含み、 前記結合工程と前記配置工程との間に、前記基板上から非イオン性界面活性剤を 除去する除去工程を有する請求項 11に記載の無機粒子の配置方法。
[13] 前記結合工程の前に、非イオン性界面活性剤を前記基板に被覆する被覆工程を 有する請求項 11に記載の無機粒子の配置方法。
[14] 前記非イオン性界面活性剤の濃度が、 0.006 v/v%以上 10 v/v%以下である請求 項 11に記載の無機粒子の配置方法。
PCT/JP2005/021510 2004-12-14 2005-11-24 チタン結合性フェリチン及び無機粒子の配置方法 WO2006064639A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006519658A JP3916653B2 (ja) 2004-12-14 2005-11-24 チタン結合性フェリチン及び無機粒子の配置方法
US11/354,864 US7439334B2 (en) 2004-12-14 2006-02-16 Method of arrangement of titanium-binding ferritin and inorganic particles

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004-361987 2004-12-14
JP2004361987 2004-12-14
JP2005-006720 2005-01-13
JP2005006720 2005-01-13

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/354,864 Continuation US7439334B2 (en) 2004-12-14 2006-02-16 Method of arrangement of titanium-binding ferritin and inorganic particles

Publications (1)

Publication Number Publication Date
WO2006064639A1 true WO2006064639A1 (ja) 2006-06-22

Family

ID=36587700

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/021510 WO2006064639A1 (ja) 2004-12-14 2005-11-24 チタン結合性フェリチン及び無機粒子の配置方法

Country Status (3)

Country Link
US (1) US7439334B2 (ja)
JP (1) JP3916653B2 (ja)
WO (1) WO2006064639A1 (ja)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008099968A1 (ja) 2007-02-15 2008-08-21 Tohoku University 酸化亜鉛結合性抗体及びその用途
WO2010134140A1 (ja) * 2009-05-22 2010-11-25 パナソニック株式会社 フェリチンの配置方法
WO2010134139A1 (ja) * 2009-05-21 2010-11-25 パナソニック株式会社 フェリチンの配置方法
WO2012086647A1 (ja) * 2010-12-22 2012-06-28 味の素株式会社 融合タンパク質
US9815866B2 (en) 2012-09-14 2017-11-14 Japanese Foundation For Cancer Research Peptides that bind to epithelial cell adhesion molecule
CN108295320A (zh) * 2018-01-25 2018-07-20 武汉大学 一种植入式传感器表面抗污涂层的制备及应用
WO2019142800A1 (ja) * 2018-01-17 2019-07-25 国立大学法人東京大学 金属結合ペプチドおよびその使用

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100028387A1 (en) * 2007-06-12 2010-02-04 Ganesan Balasundaram Biocompatible Coated Nanostructured Titanium Surfaces
US8178158B2 (en) * 2008-06-02 2012-05-15 Hitachi Global Storage Technologies Netherlands B.V. Method for making a current-perpendicular-to-the-plane giant magnetoresistance (CPP-GMR) sensor with a confined-current-path (CCP)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11204774A (ja) * 1998-01-14 1999-07-30 Matsushita Electric Ind Co Ltd 二次元的に配置された量子素子及びその製造方法
JP2003033191A (ja) * 2001-05-14 2003-02-04 Matsushita Electric Ind Co Ltd 組み換えかご状タンパク質、その作製方法、貴金属−組み換えかご状タンパク質複合体、その作製方法、及び組み換えdna

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1262489A1 (en) * 2001-05-14 2002-12-04 Matsushita Electric Industrial Co., Ltd. Complex comprising recombinant ferritin and a precious metal and DNA encoding said ferritin

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11204774A (ja) * 1998-01-14 1999-07-30 Matsushita Electric Ind Co Ltd 二次元的に配置された量子素子及びその製造方法
JP2003033191A (ja) * 2001-05-14 2003-02-04 Matsushita Electric Ind Co Ltd 組み換えかご状タンパク質、その作製方法、貴金属−組み換えかご状タンパク質複合体、その作製方法、及び組み換えdna

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"Tanpakushitsu I -Bunrei Seisei Seishitsu-, Tokyo Kagaku Dojin", THE JAPANESE BIOCHEMICAL SOCIETY, 26 February 1990 (1990-02-26), pages 62 - 63, XP003000451 *
SANO K. ET AL: "A hexapeptide motif that electrostatically binds to the surface of titanium", J AM CHEM SOC, vol. 125, no. 47, 2003, pages 14234 - 14235, XP002904281 *
SANO K. ET AL: "Titanium Hyomen ni Seidenteki ni Ketsugo suru Hexapeptide Motif no Tanri", 26TH ANNUAL MEETING OF THE MOLECULAR BIOLOGY SCIENTY OF JAPAN PROGRAM KOEN YOSHISHU, 25 November 2003 (2003-11-25), pages 917 - 3PC-172, XP003000450 *
TAKAOKA Y. ET AL: "Titanium Zairyo Hyomen ni Kyuchaku shi Kotsusaibo Secchaku ni Eikyo o Ataeru Jinko Peptide", 27TH ANNUAL MEETING OF THE MOLECULAR BIOLOGY SCIENTY OF JAPAN PROGRAM KOEN YOSHISHU, 25 November 2004 (2004-11-25), pages 1030 - 3PB-613, XP003000452 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008099968A1 (ja) 2007-02-15 2008-08-21 Tohoku University 酸化亜鉛結合性抗体及びその用途
WO2010134139A1 (ja) * 2009-05-21 2010-11-25 パナソニック株式会社 フェリチンの配置方法
JP4834788B2 (ja) * 2009-05-21 2011-12-14 パナソニック株式会社 フェリチンの配置方法
WO2010134140A1 (ja) * 2009-05-22 2010-11-25 パナソニック株式会社 フェリチンの配置方法
JP4834789B2 (ja) * 2009-05-22 2011-12-14 パナソニック株式会社 フェリチンの配置方法
WO2012086647A1 (ja) * 2010-12-22 2012-06-28 味の素株式会社 融合タンパク質
US9187570B2 (en) 2010-12-22 2015-11-17 Ajinomoto Co., Ltd. Fusion protein
US9815866B2 (en) 2012-09-14 2017-11-14 Japanese Foundation For Cancer Research Peptides that bind to epithelial cell adhesion molecule
WO2019142800A1 (ja) * 2018-01-17 2019-07-25 国立大学法人東京大学 金属結合ペプチドおよびその使用
JP2019122306A (ja) * 2018-01-17 2019-07-25 国立大学法人 東京大学 金属結合ペプチドおよびその使用
CN108295320A (zh) * 2018-01-25 2018-07-20 武汉大学 一种植入式传感器表面抗污涂层的制备及应用

Also Published As

Publication number Publication date
US20060257931A1 (en) 2006-11-16
JP3916653B2 (ja) 2007-05-16
US7439334B2 (en) 2008-10-21
JPWO2006064639A1 (ja) 2008-06-12

Similar Documents

Publication Publication Date Title
JP3916653B2 (ja) チタン結合性フェリチン及び無機粒子の配置方法
JP4015177B2 (ja) フェリチンの選択的配置方法
Sarikaya et al. Molecular biomimetics: nanotechnology through biology
Dickerson et al. Protein-and peptide-directed syntheses of inorganic materials
Sano et al. Endowing a ferritin‐like cage protein with high affinity and selectivity for certain inorganic materials
Lv et al. Molecular imprinting of proteins in polymers attached to the surface of nanomaterials for selective recognition of biomacromolecules
JP4843505B2 (ja) ナノ黒鉛構造体−金属ナノ粒子複合体
WO2004020453A2 (en) Functionalized nanoparticles
Bittner Biomolecular rods and tubes in nanotechnology
JP2006516240A (ja) カーボンナノチューブ結合ペプチド
JP2002527107A (ja) アフィニティ分離の方法及びそれに用いるリガンド
Behrens Synthesis of inorganic nanomaterials mediated by protein assemblies
JP2023504477A (ja) 生体磁性マイクロスフェア及びその製造方法と使用
JP6453208B2 (ja) 抗体のリフォールディング方法、リフォールディングされた抗体の製造方法、リフォールディングされた抗体、及びこれらの利用
JP4834788B2 (ja) フェリチンの配置方法
WO2019046699A1 (en) NON-DETERGENT GPCR BIOELECTRONIC INTERFACES COUPLED TO THE 2D S-PROTEIN NETWORK, DEVICES AND METHODS OF USE THEREOF
Janairo et al. Synergic strategies for the enhanced self-assembly of biomineralization peptides for the synthesis of functional nanomaterials
JP5311806B2 (ja) バイオシリカ製造法、およびバイオシリカ固定基板の製造法
JP4834789B2 (ja) フェリチンの配置方法
Ishikawa et al. Adsorption properties of a gold-binding peptide assessed by its attachment to a recombinant apoferritin molecule
US20050095651A1 (en) Photoswitchable method for the ordered attachment of proteins to surfaces
Messina et al. From nanoaggregates to mesoscale ribbons: the multistep self-organization of amphiphilic peptides
JP4915986B2 (ja) 金属イオン結合能およびナノチューブ形成能を有する環状ペプチドと、それを用いたペプチドで構成されるナノチューブ、並びにそれらの製造方法。
Okamoto et al. Silicon-dioxide-specific peptides for biological nanofabrication: Selecting aptamers for target-specific ferritin supramolecule delivery
JP2006187845A (ja) 微粒子固定方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 11354864

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2006519658

Country of ref document: JP

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWP Wipo information: published in national office

Ref document number: 11354864

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05809697

Country of ref document: EP

Kind code of ref document: A1