WO2006062074A1 - 基板処理方法、露光方法、露光装置及びデバイス製造方法 - Google Patents

基板処理方法、露光方法、露光装置及びデバイス製造方法 Download PDF

Info

Publication number
WO2006062074A1
WO2006062074A1 PCT/JP2005/022329 JP2005022329W WO2006062074A1 WO 2006062074 A1 WO2006062074 A1 WO 2006062074A1 JP 2005022329 W JP2005022329 W JP 2005022329W WO 2006062074 A1 WO2006062074 A1 WO 2006062074A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
liquid
exposure apparatus
exposure
time
Prior art date
Application number
PCT/JP2005/022329
Other languages
English (en)
French (fr)
Inventor
Tomoharu Fujiwara
Takashi Horiuchi
Original Assignee
Nikon Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corporation filed Critical Nikon Corporation
Priority to US11/792,054 priority Critical patent/US20080137056A1/en
Priority to EP05814663A priority patent/EP1833082A4/en
Publication of WO2006062074A1 publication Critical patent/WO2006062074A1/ja

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70908Hygiene, e.g. preventing apparatus pollution, mitigating effect of pollution or removing pollutants from apparatus
    • G03F7/70916Pollution mitigation, i.e. mitigating effect of contamination or debris, e.g. foil traps
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/20Exposure; Apparatus therefor
    • G03F7/2041Exposure; Apparatus therefor in the presence of a fluid, e.g. immersion; using fluid cooling means
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70216Mask projection systems
    • G03F7/70341Details of immersion lithography aspects, e.g. exposure media or control of immersion liquid supply

Definitions

  • Substrate processing method exposure method, exposure apparatus, and device manufacturing method
  • the present invention relates to a substrate processing method, an exposure method, and an exposure apparatus that include a step of exposing via a liquid.
  • an exposure apparatus that projects and exposes a pattern formed on a mask onto a photosensitive substrate is used. It is done.
  • This exposure apparatus has a mask stage that supports a mask and a substrate stage that supports the substrate, and projects an image of the mask pattern onto the substrate via the projection optical system while sequentially moving the mask stage and the substrate stage. .
  • miniaturization of patterns formed on a substrate is required in order to increase the density of devices. In order to meet this demand, it is desired to further increase the resolution of the exposure apparatus.
  • a liquid immersion space is formed by filling a space between the projection optical system and the substrate, and the liquid immersion is performed.
  • An immersion method has been devised in which an exposure process is performed through a liquid in an area.
  • Patent Document 1 Pamphlet of International Publication No. 99Z49504
  • the adhesion mark of the liquid is formed on the substrate.
  • the adhesion mark of the liquid is referred to as a water mark.
  • the manufactured device may be defective.
  • the substrate is subjected to immersion exposure and then developed with a watermark formed on the substrate, a development defect may occur and a device having desired performance may not be manufactured.
  • the present invention has been made in view of such circumstances, and in a device manufacturing process including an immersion exposure process, a substrate processing method, an exposure method, an exposure apparatus, and an An object is to provide a device manufacturing method.
  • the present invention employs the following configurations corresponding to FIGS. 1 to 12 shown in the embodiments.
  • the reference numerals in parentheses attached to each element are merely examples of the element and do not limit each element.
  • a substrate processing method comprising a liquid (LQ) immersion region (A
  • R2 is formed on the substrate (P), the substrate (P) is irradiated with exposure light (EL) through the liquid (LQ) in the immersion area (AR2), and the substrate (P) is exposed.
  • the substrate (P) is the liquid in the immersion area (AR2) (
  • a substrate processing method for controlling the contact time of contact / swing with LQ is provided.
  • the adhesion trace of the liquid on the substrate can be prevented.
  • a substrate processing method comprising a liquid (LQ) immersion region (A
  • R2 is formed on the substrate (P), the substrate (P) is irradiated with exposure light (EL) through the liquid (LQ) in the immersion area (AR2), and the substrate (P) is exposed.
  • a substrate processing method including removing the liquid immersion area from the substrate and managing a time after removing the liquid immersion area (AR2) from the substrate (P).
  • the second aspect of the present invention by controlling the time after removing the force immersion area on the substrate, it is possible to prevent inconvenience that a liquid adhesion mark (watermark) is formed on the substrate. it can.
  • removing the liquid immersion area from the substrate means that the liquid is moved onto another member by simply using the liquid recovery mechanism to recover the liquid from the substrate.
  • a method for removing the immersion area from the substrate or a mechanism used therefor is arbitrary.
  • Substrate force Even when the liquid immersion area is removed, liquid droplets may remain on the substrate depending on the affinity between the substrate surface and the liquid. The present invention can cope with such a situation. Therefore, in this application, the term “force on the substrate after removing the immersion area”
  • the ⁇ state '' means not only the state in which the force on the substrate is completely removed but also the state in which liquid droplets remain on the substrate even if the immersion area is removed from the substrate.
  • a substrate processing method wherein a liquid (LQ) immersion region (AR2) is formed on a substrate (P), and the liquid immersion region (AR2) liquid is formed. Irradiating the substrate (P) with exposure light (EL) via (LQ) to expose the substrate (P), removing the liquid immersion area (AR2) from the substrate (P), After removing the immersion area (AR2) from the substrate (P), set the contact angle of the substrate (P) to the liquid (LQ) so that the liquid (LQ) remains on the substrate (P).
  • a substrate processing method is provided.
  • the contact angle of the substrate with respect to the liquid is set on the substrate so that the liquid remains on the substrate after removing the liquid immersion region. It is possible to prevent the inconvenience of forming a liquid adhesion mark (watermark).
  • removing the liquid immersion area from the substrate means that the liquid is moved onto another member by simply using the liquid recovery mechanism to recover the liquid from the substrate.
  • a method for removing the immersion area from the substrate or a mechanism used therefor is arbitrary.
  • the liquid (LQ) liquid immersion region (AR2) is formed on the substrate (P), and the liquid immersion region (AR2) liquid (LQ) is interposed through the substrate.
  • An exposure apparatus that exposes a substrate (P) by irradiating exposure light (EL) onto (P), a substrate holder (PH) that holds the substrate (P), and a liquid on the substrate (P) ( Liquid removal mechanism (20, 90) for removing (LQ) and control device that manages the contact time when the substrate (P) contacts the liquid (LQ) in the immersion area (AR2)!
  • An exposure apparatus (EX) equipped with (CONT) is provided.
  • the control device manages the liquid contact time (the elapsed time after the substrate starts to contact the liquid) when the substrate comes into contact with the liquid! In addition, it is possible to prevent the inconvenience that a liquid adhesion mark (watermark) is formed on the substrate.
  • the liquid (LQ) liquid immersion region (AR2) is formed on the substrate (P), and the liquid immersion region (AR2) liquid (LQ) is interposed through the substrate.
  • An exposure apparatus that irradiates (P) with exposure light (EL) to expose the substrate (P), and forms a substrate holder (PH) that holds the substrate (P) and a liquid immersion area (AR2).
  • the substrate (P) in contact with the liquid (LQ) has become wet from the substrate holder (PH).
  • An exposure apparatus (EX) provided with a transport system (H) for transporting as it is is provided.
  • the substrate in contact with the liquid in the liquid immersion region is transported while being wetted by the substrate holder by the transport system, whereby a liquid adhesion mark (watermark) is formed on the substrate. ) Can be prevented.
  • the liquid immersion region (AR2) of the liquid (LQ) is formed on the substrate (P), and the substrate is interposed via the liquid (LQ) of the liquid immersion region (AR2).
  • An exposure apparatus that exposes the substrate (P) by irradiating the exposure light (EL) to (P), and the substrate holder (PH) holding the substrate (P) and the substrate) are located in the immersion area (AR2).
  • An exposure apparatus (EX) is provided that includes a control unit (CONT) that manages the contact time when the liquid (LQ) is in contact with / in contact with the liquid (LQ).
  • CONT control unit
  • the control device manages the liquid contact time (elapsed time after the substrate starts contact with the liquid), so that a desired pattern is formed on the substrate. can do.
  • an exposure method using the substrate processing method of the above aspect According to the seventh aspect of the present invention, there is provided an exposure method using the substrate processing method of the above aspect. According to the seventh aspect of the present invention, it is possible to prevent the occurrence of adhesion marks (watermarks) and form a desired exposure pattern.
  • the eighth aspect of the present invention there is provided a device manufacturing method using the exposure apparatus (EX) of the above aspect. According to the eighth aspect of the present invention, it is possible to suppress the occurrence of device defects caused by adhesion marks (watermarks) and manufacture a device having desired performance.
  • EX exposure apparatus
  • FIG. 1 is a schematic configuration diagram showing an embodiment of a device manufacturing system provided with an exposure apparatus.
  • FIG. 2 is a cross-sectional view showing an example of a substrate.
  • FIG. 3 is a schematic block diagram showing an example of an exposure apparatus main body.
  • FIG. 4 is a diagram showing a state in which the substrate is exposed through the liquid in the immersion area.
  • FIG. 5 is a cross-sectional view showing another example of a substrate.
  • FIGS. 6A and 6B are flowcharts showing an example of the operation of the device manufacturing system.
  • FIG. 7 is a diagram showing a state where the transport system is transporting the substrate while wet.
  • FIG. 8 shows an example of a cleaning device.
  • FIG. 9 shows an example of a liquid removal system.
  • FIG. 10 is a diagram showing a state in which the immersion area is moving between the substrate stage and the measurement stage.
  • FIG. 11 is a flowchart showing another example of the operation of the device manufacturing system.
  • FIG. 12 is a flowchart showing an example of a microdevice manufacturing process.
  • FIG. 1 is a view showing an embodiment of a device manufacturing system provided with an exposure apparatus according to the present invention.
  • the device manufacturing system SYS includes an exposure apparatus EX-SYS and a coater / developer apparatus CZD-SYS.
  • the exposure apparatus EX-SYS is an interface unit IF that forms a connection with the coater / developer apparatus CZD-SYS, an exposure apparatus body EX that performs exposure processing of the substrate P, and a transport that transports the substrate P.
  • the control device CONT has a timer 7 for managing the time related to the exposure process.
  • the exposure apparatus body EX includes a mask stage MST that can move while holding the mask M, and a substrate holder PH that holds the substrate P, and the substrate holder PH that holds the substrate P can be moved.
  • the substrate stage PST and the mask stage MST hold the illumination optical system IL that illuminates the mask M with the exposure light EL and the pattern image of the mask M illuminated with the exposure light EL is projected onto the substrate P.
  • a projection optical system PL a projection optical system PL.
  • the “substrate” here includes a substrate such as a semiconductor wafer coated with a photosensitive material (resist), and the “mask” is a reticle on which a device pattern that is reduced and projected onto the substrate is formed. Including.
  • the exposure apparatus body EX is an immersion exposure apparatus to which an immersion method is applied in order to improve the resolution by substantially shortening the exposure wavelength and substantially increase the depth of focus.
  • a liquid LQ immersion region AR2 is formed on the substrate P held by the PST, and the substrate P is exposed by irradiating the exposure light EL onto the substrate P through the liquid LQ in the liquid immersion region AR2.
  • the exposure apparatus body EX is a scanning type that exposes the pattern formed on the mask M onto the substrate P while synchronously moving the mask M and the substrate P in different directions (reverse directions) in the scanning direction.
  • a case where an exposure apparatus (so-called scanning stepper) is used will be described as an example.
  • the synchronous movement direction (scanning direction) of the mask M and the substrate P in the horizontal plane is the X-axis direction
  • the direction orthogonal to the X-axis direction in the horizontal plane is the Y-axis direction (non-scanning direction).
  • the direction perpendicular to the axis and Y-axis direction and coincident with the optical axis AX of the projection optical system PL is defined as the Z-axis direction.
  • the rotation (inclination) directions around the X, Y, and Z axes are the ⁇ , 0 Y, and 0 Z directions, respectively.
  • the exposure apparatus EX-SYS is provided in the middle of the transport path of the transport system H, and a liquid removal system 90 for removing the liquid LQ on the substrate P after the immersion exposure process, and the substrate P And an image pickup device 80 for picking up the surface of the camera.
  • the imaging result of the imaging device 80 is output to the control device CONT, and the control device CONT can obtain the surface information of the substrate P based on the imaging result of the imaging device 80.
  • the imaging device 80 is supported by a drive mechanism (not shown), and is provided so as to be movable along the transport path of the transport system H.
  • the coater 'developer device CZD—SYS is a coating device (not shown) for applying a photosensitive material (resist) to the base material (semiconductor wafer) of the substrate P before the exposure processing, and Coater / developers main body CZD including a developing device (not shown) for developing the substrate P after the exposure processing in the exposure apparatus body EX, a transport system H for transporting the substrate P,
  • a cleaning device 100 for cleaning the substrate P The exposure equipment EX-SYS is cleaned. Equipped with the device 100.
  • the exposure apparatus main body EX, the transport system H, and the like are arranged inside the first chamber apparatus CH1 in which the cleanliness is controlled.
  • the second chamber device CH2 is separate from the first chamber device CHI.
  • the first chamber device CH1 and the second chamber device CH2 are connected via an interface unit IF.
  • the transport system H includes a plurality of transport arms HI to H4 that transport the substrate P between the interface unit IF and the exposure apparatus main body EX.
  • the transport system H includes a first transport arm HI that loads (loads) the substrate P before the exposure processing onto the substrate stage PST (substrate holder PH), and the substrate P that has been subjected to the exposure processing to the substrate stage PST (substrate). And a second transfer arm H2 for unloading from the holder PH).
  • the transport system H includes third and fourth transport arms H3 and H4 that transport the substrate P after the exposure processing to the interface unit IF.
  • Coater / Developer body The substrate P, which has been coated with photosensitive material by the CZD coating device, is interfaced by the transport system H.
  • each of the first and second chamber devices CH1 and CH2 has an opening and a shatter that opens and closes the opening at the part facing the interface part IF, and transports to the interface part IF of the substrate P.
  • the shatter is released during operation.
  • the substrate P transferred to the bri alignment unit is roughly aligned with the substrate stage PST in the bri alignment unit.
  • the imaging device 80 images the surface of the substrate P held by the bri alignment unit, and outputs the imaging result to the control device CONT.
  • the control device CONT acquires the surface information of the substrate P before the exposure processing based on the imaging result of the imaging device 80.
  • the imaging device 80 images the surface of the substrate P before the exposure processing
  • the imaging device 80 is disposed above the substrate P held by the bri alignment unit by a driving mechanism (not shown).
  • the control device CONT loads the substrate P, which has been aligned by the bri alignment unit, onto the substrate stage PST (substrate holder PH) by the first transfer arm HI.
  • Control device CONT After performing immersion exposure processing of the substrate P loaded on the substrate stage PST, the substrate P after the exposure processing is unloaded from the substrate stage PST (substrate holder PH) by the second transport arm H2.
  • the imaging device 80 images the surface of the substrate P held by the second transfer arm H2, and outputs the imaging result to the control device CONT.
  • the control device CONT acquires the surface information of the substrate P after the exposure processing based on the imaging result of the imaging device 80. Note that when the imaging device 80 images the surface of the substrate P after the exposure processing, the imaging device 80 is disposed above the substrate P held by the second transport arm H2 by a drive mechanism (not shown).
  • the control device CONT transports the substrate P after the exposure process unloaded from the substrate stage PST by the second transport arm H2 to the interface unit IF.
  • the control device CONT transfers the substrate P after the exposure processing unloaded from the substrate stage PST by the second transport arm H2 to the fourth transport arm H4 and transports it to the interface unit IF by the fourth transport arm H4.
  • a liquid removal system 90 is provided on the transport path of the transport system H, and the control device CONT removes the substrate P after the exposure processing unloaded from the substrate stage PST by the second transport arm H2. It can also be passed to the liquid removal system 90.
  • the control device CONT uses the second transfer arm H2 to transfer the substrate P after the exposure process unloaded from the substrate stage PST via the liquid removal system 90 to the third transfer arm H3 or the fourth transfer arm. Pass to one of H4.
  • the control device CONT selects one of the third transfer arm H3 and the fourth transfer arm H4 according to the processing content by the liquid removal system 90, and uses the selected transfer arm (H3 or H4), Transport board P to interface section IF.
  • the substrate P after the exposure processing that has been transported to the interface section IF is delivered to the transport system H of the coater / developer apparatus CZD-SYS.
  • the transport system H cleans the substrate P after the exposure process.
  • the cleaning apparatus 100 cleans the substrate P after the exposure processing.
  • the transport system H transfers the substrate P after being cleaned by the cleaning device 100 to the coater 'developer body CZD.
  • Coater 'Developer body CZD's development device performs development processing on the transported substrate P.
  • the first transport arm HI removes the substrate P to which the liquid LQ before the exposure processing is not attached. Hold and load onto substrate stage PST.
  • the second transfer arm H2 holds the substrate P to which the liquid LQ after the liquid immersion exposure process may adhere, and unloads it from the substrate stage PST.
  • the first transfer arm HI that transfers the substrate P to which the liquid LQ is not attached and the second transfer arm H2 that transfers the substrate P to which the liquid LQ may be attached are properly used. Therefore, the liquid LQ can be prevented from adhering to the back surface of the substrate P loaded on the substrate stage PST without the liquid LQ adhering to the first transfer arm HI.
  • the substrate holder PH of the substrate stage PST holds the substrate P by vacuum suction, it prevents the occurrence of inconvenience such as liquid LQ entering the vacuum system such as a vacuum pump through the suction hole of the substrate holder PH. be able to.
  • the liquid removal system 90 is for removing the liquid LQ on the substrate P after the immersion exposure process, but as will be described later, the control device CONT performs the immersion exposure process by the liquid removal system 90. In some cases, the liquid LQ removal operation on the substrate P is not performed later.
  • the control device CONT performs the removal operation of the liquid LQ on the substrate P after the immersion exposure processing by the liquid removal system 90
  • the control device CONT takes out the substrate P from the liquid removal system 90 by the third transfer arm H3. If the liquid LQ on the substrate P is not removed, the substrate P is transferred by the fourth transfer arm H4.
  • the third transport arm H3 that transports the substrate P that has been subjected to the liquid removal processing by the liquid removal system 90, and the substrate P that may have liquid LQ attached without being subjected to the liquid removal processing. Therefore, it is possible to prevent the liquid LQ from adhering to the third transfer arm H3.
  • a recovery mechanism 60 that recovers the liquid LQ scattered (dropped) from the exposed substrate P is provided in the transport path of the substrate P.
  • the recovery mechanism 60 includes a scissor member 61 disposed below the transport path of the transport system H (second transport arm H2) between the substrate stage PST and the liquid removal system 90, and the liquid recovered by the scissor member 61.
  • a liquid suction device 62 for discharging the LQ from the flange member 61.
  • the flange member 61 is provided inside the first chamber device CH1, and the liquid suction device 62 is provided outside the first chamber device CH1.
  • the scissors member 61 and the liquid sucking bow I device 62 are connected via a pipe line 63, and the pipe line 63 is provided with a valve 63B for opening and closing the flow path of the pipe line 63.
  • the recovery mechanism 60 is located below the transfer path of the transfer system H (fourth transfer arm H4) between the liquid removal system 90 and the interface unit IF.
  • the liquid LQ recovered by the collar member 64 is also discharged from the collar member 64 by the liquid suction device 62.
  • the liquid LQ may fall from the substrate P.
  • the dropped liquid LQ can be collected by the saddle members 61 and 64. it can.
  • the liquid suction device 62 sucks the liquid LQ on the scissors members 61 and 64 provided inside the chamber device CH 1 to discharge the liquid LQ to the outside of the chamber device CH 1, and the scissors members 61 and 61 inside the chamber device CH 1. It is possible to prevent liquid LQ from staying at 64. Therefore, it is possible to prevent inconvenience that humidity variation (environmental variation) occurs in the chamber device CH1.
  • the liquid suction device 62 can continuously perform the suction operation of the liquid LQ collected in the flange members 61 and 64, and can perform the suction operation intermittently only during a predetermined period set in advance. You can also. By continuously performing the suction operation, the liquid LQ does not remain on the eaves members 61 and 64, so that the humidity fluctuation in the chamber device CH1 can be further prevented. On the other hand, for example, during exposure of the substrate P in the exposure apparatus main body EX, the suction operation (discharge operation) by the liquid suction device 62 is not performed, and the suction operation is performed only during a period other than the exposure, thereby performing the suction operation. It is possible to prevent inconvenience that the generated vibration affects the exposure accuracy.
  • FIG. 2 is a view showing an example of the substrate P after the coating process is performed in the coater / developer body CZD.
  • a substrate P has a base material 1 and a film 2 formed on the upper surface 1A of the base material 1.
  • the substrate 1 includes a silicon wafer.
  • the film 2 is formed of a photosensitive material (resist), and a region occupying most of the central portion of the upper surface 1A of the substrate 1 is covered with a predetermined thickness (for example, about 200 m).
  • a chemically amplified resist is used as the photosensitive material.
  • the photosensitive material (film) 2 is not coated on the peripheral portion 1As of the upper surface 1A of the base material 1, and the base material 1 is exposed at the peripheral portion lAs of the upper surface 1A. Further, the side surface 1C and the lower surface 1B of the substrate 1 are not coated with the photosensitive material 2.
  • a predetermined coating method such as spin coating
  • the photosensitive material 2 at the peripheral edge of the base material 1 is easily peeled off, and the peeled photosensitive material 2 becomes a foreign substance.
  • the photosensitive material 2 is provided on the substrate 1 by a predetermined coating method, before the exposure process is performed, the photosensitive material 2 on the peripheral edge lAs is removed using, for example, a solvent (so-called edge rinse). Done. As a result, the photosensitive material 2 is removed at the periphery of the substrate 1 (substrate P), and the substrate 1 is exposed at the periphery lAs.
  • a solvent so-called edge rinse
  • FIG. 3 is a schematic block diagram that shows the exposure apparatus body EX.
  • the exposure apparatus body EX exposes the substrate P based on the immersion method, and includes an immersion mechanism 300 for filling the optical path space of the exposure light EL on the image plane side of the projection optical system PL with the liquid LQ. ing.
  • the liquid immersion mechanism 300 is provided in the vicinity of the image plane of the projection optical system PL, and has a supply port 12 for supplying the liquid LQ and a recovery port 22 for recovering the liquid LQ, and a supply provided for the nozzle member 70.
  • the liquid supply mechanism 10 for supplying the liquid LQ to the image plane side of the projection optical system PL via the port 12 and the liquid LQ on the image plane side of the projection optical system PL via the recovery port 22 provided in the nozzle member 70 And a liquid recovery mechanism 20 for recovery.
  • the nozzle member 70 is located above the substrate P (substrate stage PST), and among the plurality of optical elements constituting the projection optical system PL, the first optical element LSI closest to the image plane of the projection optical system PL is provided. Formed in an annular shape to surround!
  • the exposure apparatus main body EX is on the substrate P including the projection area AR1 of the projection optical system PL by the liquid LQ supplied from the liquid supply mechanism 10 at least while the pattern image of the mask M is projected onto the substrate P.
  • a local liquid immersion method is used in which a liquid LQ liquid immersion area AR2 that is larger than the projection area AR1 and smaller than the substrate P is locally formed.
  • the exposure apparatus body EX is closest to the image plane of the projection optical system PL!
  • the lower surface LS A of the first optical element LS 1 and the substrate P arranged on the image plane side of the projection optical system PL The optical path space between the upper surface and the upper surface is filled with liquid LQ, and the substrate P is irradiated with the exposure light EL that has passed through the mask M via the liquid LQ and the projection optical system PL between the projection optical system PL and the substrate P. As a result, the substrate P is exposed with an image of the pattern of the mask M.
  • the controller CONT uses the liquid supply mechanism 10 to supply a predetermined amount of liquid LQ onto the substrate P, and also uses the liquid recovery mechanism 20 to collect a predetermined amount of the liquid LQ on the substrate P. Form the liquid LQ immersion area AR2.
  • the illumination optical system IL includes an exposure light source, an optical integrator that equalizes the illuminance of the light beam emitted from the exposure light source, a condenser lens that collects the exposure light EL from the optical integrator, a relay lens system, and an exposure. It has a field stop to set the illumination area on the mask M with light EL. A predetermined illumination area on the mask M is illuminated with the exposure light EL having a uniform illuminance distribution by the illumination optical system IL.
  • Illumination optical system IL force Dew light emitted EL, such as bright lines (g-line, h-line, i-line) and KrF excimer laser light (wavelength 248nm) emitted from mercury lamps, etc. Light), vacuum ultraviolet light (VUV light) such as ArF excimer laser light (wavelength 193 nm) and F laser light (wavelength 157 nm)
  • pure water is used as the liquid LQ that forms the immersion area AR2.
  • Pure water includes not only ArF excimer laser light but also far ultraviolet light (DUV light) such as bright lines (g-line, h-line, i-line) emitted from mercury lamps and KrF excimer laser light (wavelength 248 nm). It can be transmitted.
  • DUV light far ultraviolet light
  • Mask stage MST is movable while holding mask M.
  • the mask stage MST holds the mask M by vacuum suction (or electrostatic suction).
  • the mask stage MST is in a plane perpendicular to the optical axis AX of the projection optical system PL with the mask M held by the drive of the mask stage drive device MST D including the linear motor controlled by the control device CONT. That is, it can move two-dimensionally in the XY plane and can rotate slightly in the ⁇ Z direction.
  • a movable mirror 41 that moves together with the mask stage MST is fixed on the mask stage MST.
  • a laser interferometer 42 is provided at a position facing the movable mirror 41.
  • the position of the mask M on the mask stage MST in the two-dimensional direction and the rotation angle in the ⁇ Z direction are measured in real time by the laser interferometer 42.
  • the measurement result of the laser interferometer 42 is output to the control device CONT.
  • the control device CONT controls the mask stage driving device MSTD based on the measurement result of the laser interferometer 42, drives the mask stage MST, and controls the position of the mask M held by the mask stage MST! Do.
  • Projection optical system PL projects an image of the pattern of mask M onto substrate ⁇ at a predetermined projection magnification ⁇ .
  • the projection optical system PL includes a plurality of optical elements, and these optical elements are held by a lens barrel PK. It is held.
  • the projection optical system PL is a reduction system whose projection magnification j8 is 1Z4, 1/5, or 1Z8, for example.
  • the projection optical system PL may be a unity magnification system or an enlargement system.
  • the first optical element LSI closest to the image plane of the projection optical system PL is exposed from the lens barrel PK.
  • the projection optical system PL of the present embodiment is a refractive system that does not include a reflective element, but may be a catadioptric system that includes a refractive element and a reflective element, or a reflective system that does not include a refractive element.
  • the substrate stage PST has a substrate holder PH that holds the substrate P, and is movable on the base member BP on the image plane side of the projection optical system PL.
  • the substrate holder PH holds the substrate P by vacuum suction, for example.
  • a recess 46 is provided on the substrate stage PST, and a substrate holder PH for holding the substrate P is disposed in the recess 46.
  • the upper surface 47 of the substrate stage PST other than the recess 46 is a flat surface (flat portion) that is almost the same height (flat) as the upper surface of the substrate P held by the substrate holder PH! /
  • the substrate stage PST is driven by the substrate stage driving device PSTD including a linear motor and the like controlled by the control device CONT, and is held on the base member BP while holding the substrate P via the substrate holder PH. It can move two-dimensionally in the XY plane and can rotate slightly in the ⁇ Z direction. Furthermore, the substrate stage PST can also move in the Z-axis direction, ⁇ X direction, and ⁇ Y direction. Therefore, the upper surface of the substrate P supported by the substrate stage PST can move in the directions of six degrees of freedom in the X axis, Y axis, Z axis, 0 X, 0 Y, and 0 Z directions.
  • a movable mirror 43 that moves together with the substrate stage PST is fixed on the side surface of the substrate stage PST.
  • a laser interferometer 44 is provided at a position facing the moving mirror 43. The position and rotation angle of the substrate P on the substrate stage PST in a two-dimensional direction are measured in real time by the laser interferometer 44.
  • the exposure apparatus EX includes an oblique incidence type focus / leveling detection system 30 that detects surface position information of the upper surface of the substrate P supported by the substrate stage PST.
  • the focus / leveling detection system 30 includes a light projecting unit 31 that projects the detection light La on the upper surface of the substrate P, and a light receiving unit 32 that receives the reflected light of the detection light La reflected on the upper surface of the substrate P.
  • the surface position information of the upper surface of the substrate P (position information in the Z-axis direction and inclination information of the substrate P in the ⁇ X and ⁇ Y directions) is detected.
  • the measurement result of the laser interferometer 44 is Output to control unit CONT.
  • the detection result of the focus / leveling detection system 30 (light receiving unit 32) is also output to the control device CONT.
  • the control device CONT drives the substrate stage drive device PSTD based on the detection result of the focus / leveling detection system 30 and controls the focus position (Z position) and tilt angle ( ⁇ X, ⁇ ⁇ ) of the substrate P.
  • the top surface of the substrate P is aligned with the image plane of the projection optical system PL, and the position control of the substrate P in the X-axis direction, the Y-axis direction, and the ⁇ Z direction is performed based on the measurement result of the laser interferometer 44. .
  • the liquid supply mechanism 10 supplies the liquid LQ to the image plane side of the projection optical system PL.
  • the liquid supply mechanism 10 includes a liquid supply unit 11 that can deliver the liquid LQ, and a supply pipe 13 that connects one end of the liquid supply unit 11 to the liquid supply unit 11. The other end of the supply pipe 13 is connected to the nozzle member 70. Inside the nozzle member 70, an internal flow path (supply flow path) that connects the other end of the supply pipe 13 and the supply port 12 is formed.
  • the liquid supply unit 11 includes a tank that stores the liquid LQ, a pressure pump, a filter unit that removes foreign matter in the liquid LQ, and the like. Note that the tank, pressure pump, filter unit, etc. of the liquid supply mechanism 10 may be replaced with equipment such as a factory where the exposure apparatus EX is installed, which is not necessarily equipped with the exposure apparatus EX. The operation of the liquid supply unit 11 is controlled by the control device CONT.
  • the liquid recovery mechanism 20 recovers the liquid LQ on the image plane side of the projection optical system PL.
  • the liquid recovery mechanism 20 includes a liquid recovery unit 21 that can recover the liquid LQ, and a recovery pipe 23 that connects one end of the liquid recovery unit 21 to the liquid recovery unit 21.
  • the other end of the recovery pipe 23 is connected to the nozzle member 70.
  • Inside the nozzle member 70 an internal flow path (recovery flow path) that connects the other end of the recovery pipe 23 and the recovery port 22 is formed.
  • the liquid recovery unit 21 includes, for example, a vacuum system (a suction device) such as a vacuum pump, a gas-liquid separator that separates the recovered liquid LQ and gas, and a tank that stores the recovered liquid LQ.
  • a vacuum system a suction device
  • the vacuum system, gas-liquid separator, tank, etc. of the liquid recovery mechanism 20 may be replaced with equipment such as a factory where the exposure apparatus EX is installed. .
  • the operation of the liquid supply unit 21 is controlled by the
  • the supply port 12 for supplying the liquid LQ and the recovery port 22 for recovering the liquid LQ are formed on the lower surface 70A of the nozzle member 70.
  • the lower surface 70A of the nozzle member 70 corresponds to the upper surface of the substrate P and the base It is provided at a position facing the upper surface 47 of the plate stage PST.
  • the nozzle member 70 is an annular member provided so as to surround the side surface of the optical element LSI
  • the supply port 12 is the first optical element LSI (projection optical system) of the projection optical system PL on the lower surface 70A of the nozzle member 70.
  • a plurality of systems are provided so as to surround the optical axis AX) of the system PL.
  • the recovery port 22 is provided on the lower surface 70A of the nozzle member 70 so as to be separated from the supply port 12 with respect to the first optical element LSI, and surrounds the first optical element LSI and the supply port 12. Is provided.
  • the control device CONT supplies a predetermined amount of the liquid LQ onto the substrate P using the liquid supply mechanism 10, and collects a predetermined amount of the liquid LQ on the substrate P using the liquid recovery mechanism 20.
  • the liquid LQ immersion area AR2 is locally formed on the substrate P.
  • the controller CONT drives the liquid supply unit 11 and the liquid recovery unit 21.
  • the liquid LQ is delivered from the liquid supply unit 11 under the control of the control device CONT, the liquid LQ delivered from the liquid supply unit 11 flows through the supply pipe 13 and then the supply flow of the nozzle member 70. Via the path, the image is supplied from the supply port 12 to the image plane side of the projection optical system PL.
  • the liquid recovery unit 21 When the liquid recovery unit 21 is driven under the control device CONT, the liquid LQ on the image plane side of the projection optical system PL flows into the recovery flow path of the nozzle member 70 via the recovery port 22 and is recovered. After flowing through the pipe 23, the liquid is recovered by the liquid recovery unit 21.
  • At least a part of the liquid LQ recovered by the liquid recovery mechanism 20 may be returned to the liquid supply mechanism 10. Alternatively, all the liquid LQ recovered by the liquid recovery mechanism 20 may be discarded, and a new clean liquid LQ may be supplied from the liquid supply mechanism 10.
  • the structure of the liquid immersion mechanism 1 such as the nozzle member 70 is not limited to the above-described structure.
  • European Patent Publication No. 1420298, International Publication No. 2004Z055803, International Publication No. 2004,057589, Those described in International Publication No. 2004Z057590 and International Publication No. 2005/029559 can also be used.
  • FIG. 4 is a cross-sectional view showing a state in which the substrate P held by the substrate holder PH is subjected to immersion exposure processing.
  • the substrate holder PH is disposed in the recess 46 of the substrate stage PST, and is provided on the base member 51 having the upper surface 51A facing the lower surface 1B of the substrate P (base material 1) and the upper surface 51A of the base member 51,
  • the lower surface 1B of the substrate P is opposed to the peripheral region of the peripheral area 1B in plan view.
  • a plurality of pin-shaped support portions 53 provided inside.
  • a plurality of suction holes 54 connected to a vacuum system (not shown) are provided at positions other than the position where the support portion 53 is provided on the upper surface 51A of the base member 51.
  • the substrate holder PH is a part of a so-called pin chuck mechanism
  • the control device CONT drives the vacuum system connected to the suction hole 54 and connects the upper surface 51A of the base member 51 via the suction hole 54.
  • the lower surface 1B of the substrate P is supported by the support portion 53 by sucking the gas in the space 55 surrounded by the peripheral wall portion 52 and the lower surface 1B of the substrate P and making the space 55 have a negative pressure.
  • the liquid LQ immersion area AR2 is formed on the substrate P and the liquid LQ and the photosensitive material 2 are brought into contact with each other, the liquid LQ and the substrate 1 are interposed via the photosensitive material 2. May come into contact. For example, if the liquid LQ penetrates the photosensitive material 2 and the permeated liquid LQ comes into contact with the substrate 1 or there is a coating defect in a part of the photosensitive material 2, the liquid LQ passes through the coating defect portion. There is a possibility that LQ and base material 1 come into contact. In addition, when the peripheral region of the upper surface of the substrate P is subjected to liquid immersion exposure, the liquid LQ may contact the peripheral portion lAs of the base material 1.
  • a liquid adhesion mark is a dry residue formed by drying a liquid containing impurities (contaminated state).
  • One of the impurities that cause the water mark is a silica compound derived from silicon, which is a substance constituting the base material 1 eluted in the liquid LQ of the immersion area AR2.
  • an oxide film SiO 2 is formed on the surface of the base material 1.
  • the base material 1 After contact between the base material 1 and the liquid LQ, it reacts with dissolved oxygen in the liquid LQ and oxygen dissolved in the liquid LQ from the atmosphere in addition to the oxygen in the atmosphere. It is thought that it is formed.
  • the oxide film on the upper surface 1A of the substrate 1 When an oxide film is formed on the upper surface 1A of the substrate 1, the oxide film on the upper surface 1A and the liquid LQ are passed through the photosensitive material 2 (in the peripheral portion lAs without passing through the photosensitive material 2).
  • the oxide film formed on the substrate 1 When contacted, the oxide film formed on the substrate 1 elutes in the liquid LQ and diffuses as a silica compound (H 2 SiO 3). Silica compounds eluted in this liquid LQ
  • the object acts as an impurity causing the watermark.
  • the silica compound that causes the watermark is eluted from the acid film formed on the substrate 1 into the liquid LQ. Therefore, as one of the measures to suppress the occurrence of watermark, liquid
  • liquid One example is suppression of elution of the silica compound into LQ.
  • the generation of watermarks can be suppressed by suppressing the amount of silica compound eluted into the liquid LQ and suppressing the concentration of the silica compound in the liquid LQ below the allowable concentration.
  • the contact time between the substrate P and the liquid LQ is suppressed to less than the predetermined time (allowable time) Tr. That is, the liquid contact time Ta after the substrate P contacts the liquid LQ, that is, the elapsed time after the substrate P starts the liquid LQ is suppressed to a predetermined time (allowable time) Tr or less.
  • the concentration of the silica compound in the liquid LQ can be kept below the allowable concentration.
  • the liquid contact time Ta after the substrate P contacts the liquid LQ in the liquid immersion area AR2 should not exceed the allowable time Tr.
  • the allowable time Tr can be obtained in advance by, for example, experiments or simulations, and information on the obtained allowable time Tr is stored in advance in the control device CONT.
  • the control device C ONT performs various processes including the exposure process and the transfer process while the substrate P contacts the liquid LQ in the immersion area AR2 and manages the liquid contact time Ta by force depending on the allowable time Tr.
  • the exposure apparatus may include a memory that stores the above information inside or outside the control apparatus CONT.
  • Such a memory can store the allowable time Tr depending on the type of the liquid LQ and the substrate used (the base material and the film (particularly the uppermost layer) formed thereon). Further, such a memory stores a liquid contact time in consideration of the allowable time Tr according to the type of the liquid LQ and the substrate (base material and the film (particularly, the uppermost layer) formed thereon) to be used. obtain.
  • the predetermined time Tr is set based on the information about the liquid LQ and Z or the substrate P, and the liquid contact time Ta after the substrate P comes into contact with the liquid LQ should be kept below the allowable time Tr.
  • the concentration of the silica compound in the liquid LQ can be suppressed below the allowable concentration, and the formation of a watermark on the substrate P can be prevented.
  • the allowable time Tr can be set relatively long. In this way, the allowable time Tr can be set based on information on the film configuration of the substrate P (laminated structure and particularly the material forming the uppermost layer).
  • the oxygen concentration in the chamber apparatus is reduced to reduce the oxygen concentration in the environment where the substrate P is placed, the oxygen concentration in the environment around the immersion area AR2 is locally reduced, the liquid supply mechanism, etc.
  • the amount of dissolved oxygen in the liquid LQ supplied from 10 can be reduced.
  • the impurities that cause the watermark include the above-described "(1) the base material 1 eluted into the liquid LQ in the immersion area AR2.
  • “silica compounds derived from silicon, which is a material to be treated” “(2) contaminants such as airborne particles and chemicals dispersed or dissolved in the liquid LQ in the immersion area AR2” . Therefore, by shortening the liquid contact time Ta after the substrate P comes into contact with the liquid LQ, the time during which the liquid LQ in contact with the substrate P is exposed to the atmosphere can be shortened. In addition, the amount of pollutants in the atmosphere dispersed or dissolved can be suppressed, and the formation of watermarks due to the above (2) can be suppressed.
  • a watermark is said to be a dry residue formed by drying a liquid containing impurities. Once such a watermark is formed by drying the liquid containing impurities, it is extremely difficult to remove it even if the substrate is immersed again in the liquid or the liquid flows on the substrate. It is. In this embodiment, the water The liquid containing impurities that would form a mark is not dried on the substrate. Specifically, after the substrate P and the liquid LQ are brought into contact (after completion of the liquid immersion exposure of the substrate P), the liquid LQ is not completely removed from the substrate P, that is, the substrate P is kept wet.
  • the substrate is transferred to 100 and transferred to a cleaning process, and the cleaning apparatus 100 removes impurities that cause the watermark including silica compounds and contaminants in the atmosphere, whereby a watermark is formed on the substrate P. It suppresses that.
  • transporting the substrate P to the cleaning device 100 while it is wet means that a liquid or droplet of water is not formed on the substrate to the extent that the liquid dries on the substrate P and no water mark is formed during the transport of the substrate P. Means the remaining state.
  • the impurities that cause the watermark include (1), (2) above, "(3) adsorbate adsorbed on the substrate P", "(4) liquid Impurities contained in the liquid LQ supplied from the supply mechanism 10 ”. Therefore, before the substrate P is exposed, for example, by cleaning the substrate P using a cleaning device provided in the coater / developer apparatus CZD-SYS and the exposure apparatus EX-SYS, the water caused by the above (3) can be obtained. Generation of marks can be suppressed. In addition, by improving the quality (water quality) of the liquid LQ supplied from the liquid supply mechanism 10, it is possible to suppress the occurrence of watermarks due to the above (4).
  • Coater / developers device CZD-SYS force Exposure device EX When substrate P before exposure processing is transferred to the pre-alignment section of SYS, controller CONT transfers substrate P to the substrate stage in the brialignment section. Align with great force against PST. Further, the control device CONT obtains the surface information of the substrate P before the exposure processing by the imaging device 80. The liquid LQ does not adhere to the surface of the substrate P before the exposure process, and the control device CONT adheres the liquid LQ before the exposure process. (Reference image information) is stored (step SA1).
  • the control device CONT loads the substrate P onto the substrate holder PH of the exposure apparatus main body EX by the first transfer arm HI.
  • the substrate P is held by the substrate holder PH.
  • the control device CONT has the liquid LQ immersion area A on the substrate P held by the substrate holder PH.
  • R2 the liquid LQ supply operation by the liquid supply mechanism 10 and the recovery operation by the liquid recovery mechanism 20 are started.
  • the controller CONT uses the timer 7 as the measurement start time T when the substrate P and the liquid LQ for forming the immersion area AR2 first contact each other.
  • control device CONT starts the supply operation of the liquid LQ by the liquid supply mechanism 10 on the substrate P, and the liquid LQ supplied from the liquid supply mechanism 10 contacts the substrate P for the first time.
  • Time measurement by timer 7 is started with time T as measurement start time T
  • a liquid sensor capable of detecting the liquid LQ is provided in the vicinity of the supply port 12 of the nozzle member 70, and the control device CONT starts time measurement by the timer 7 based on the detection result of the liquid sensor.
  • the control device CONT The time when the liquid sensor first detects the liquid LQ can be the time when the substrate P and the liquid LQ first contact each other.
  • the time / time measurement may be started when the control device CONT transmits a signal for starting the supply of the liquid LQ to the liquid supply mechanism 10. In this case, start a realistic measurement by finding the time required for such a signal to be transmitted and the liquid to contact the substrate P in advance, and subtracting that time from the time when the time measurement was started. Time T can be determined without using a liquid sensor.
  • control apparatus CONT forms an immersion area AR2 of the liquid LQ between the upper surface 47 of the substrate stage PST and the projection optical system PL, and then moves the substrate stage PST in the XY direction to The time when the area AR2 is first placed on the substrate P is defined as the measurement start time T.
  • the time measurement by the marker T may be started.
  • the control device CONT determines whether or not the immersion area AR2 is arranged on the substrate P based on the measurement result of the laser interferometer 44 that measures the position of the substrate stage PST in the XY direction, that is, the substrate P and the liquid. Judgment is made on whether or not the force is in contact with the LQ, and the time measurement by the timer 7 can be started.
  • the control device CONT After the immersion area AR2 of the liquid LQ is formed on the substrate P, the control device CONT starts the immersion exposure of the substrate P (step SA3).
  • the control device CONT emits the exposure light EL from the illumination optical system IL and is held by the mask stage MST !, and the mask M is illuminated by the exposure light EL. Light up.
  • the exposure light EL that has passed through the mask M is irradiated onto the substrate P held by the substrate holder PH via the projection optical system PL and the liquid LQ in the immersion area AR2, and the substrate P is subjected to immersion exposure processing.
  • a plurality of shot areas are set on the substrate P, and after the exposure to one shot area is completed, the next shot area is moved to the scanning start position by the stepping movement of the substrate P.
  • the scanning exposure process is sequentially performed on each shot area while moving the substrate P by the “and” scanning method.
  • step SA4 After the immersion exposure process for each shot area is completed (step SA4), the control device CONT stops the liquid supply onto the substrate P by the liquid supply mechanism 10 and the measurement result of the timer 7 Based on the measurement time T
  • the exposure conditions may differ for each lot. For example, if the exposure processing time per P substrate (and thus the liquid contact time Ta) differs for each lot, the lot (substrate P) where the liquid contact time Ta is less than the allowable time Tr and the liquid contact time Ta are allowed There is a possibility of mixing lots (substrate P) with time Tr or more.
  • the control device CONT manages the liquid contact time Ta, and determines whether the liquid contact time Ta exceeds the allowable time Tr every time the exposure of each substrate P is completed.
  • step SA5 if the liquid contact time Ta after the substrate P contacts the liquid LQ in the liquid immersion area AR2 is determined to have exceeded the allowable time Tr, the controller CONT sets the liquid recovery mechanism 20 to Use the liquid LQ that forms the immersion area AR2 on the substrate P so that a part of the liquid LQ remains on the substrate P, that is, keep the substrate P wet.
  • Step SA6 maintaining the wet state of the substrate P prevents the liquid remaining after the recovery of the liquid LQ from being immediately dried on the substrate P to form a watermark.
  • the liquid remaining on the substrate P is preferably left on the substrate P to some extent without drying to form a watermark.
  • step SA6 the control device CONT uses the liquid recovery mechanism 20 to recover the liquid LQ on the substrate P, and then uses the second transfer arm H2 to transfer the substrate P from the substrate holder PH. Download it.
  • the second transfer arm H2 also unloads the substrate holder PH force with the substrate P wetted (step SA7).
  • the second transport arm H2 transports the wet substrate P.
  • the control device CONT uses the second transfer arm H2 and does not perform the liquid removal work in the liquid removal system 90, and leaves the substrate P wet with the coater 'developer device CZD-SYS via the interface unit IF. Transport (step SA8).
  • the control device CONT passes the wet substrate P from the second transfer arm H2 to the fourth transfer arm H4, and the coater / developer device CZD-SYS via the interface IF by the fourth transfer arm H4. Even if it is transported to. While the liquid LQ after exposure adheres and the substrate P is being transported by the second transport arm H2 (or the fourth transport arm H4), the liquid LQ may fall from the substrate P.
  • the dropped liquid LQ can be collected by the trough member 61 (or 64). By collecting the dropped liquid LQ with the eave member 61, it is possible to prevent inconveniences such as the liquid LQ scattering around the transport path.
  • the control device CONT may acquire the surface information by observing the surface of the substrate P after the exposure processing with the imaging device 80. Good.
  • the control device CONT confirms that the liquid LQ has adhered to the substrate P (the substrate P is wet) based on the imaging result of the imaging device 80 and the reference surface information obtained in step SA1. can do. Since the imaging state when the liquid LQ is attached to the surface of the substrate P is different from the imaging state when the liquid LQ is not attached, the control device CON T determines that the substrate P before the exposure processing obtained in step SA1.
  • the liquid LQ is attached, that is, whether or not the substrate P is wet. If the substrate P gets wet for some reason, V, in this case, a liquid supply device that can supply the liquid LQ to the substrate P is provided on the transfer path of the transfer system H, for example, and the liquid supply device is used.
  • the substrate P can be wetted by supplying the substrate P with liquid LQ, for example, by spraying it.
  • control device CONT uses the focus' leveling system 30 to adjust the substrate holder PH. It can also be confirmed that the substrate P before being unloaded gets wet. Since the light receiving state of the light receiving unit 32 of the focus' leveling system 30 when the liquid LQ is attached to the surface of the substrate P and the light receiving state when it is not attached are different from each other, the control device CONT uses the light receiving unit 32. Based on the light reception result, it can be confirmed that the substrate P gets wet!
  • the substrate P from which the substrate holder PH force has also been unloaded is transported to the cleaning device 100 of the coater / developer device CZD-S YS, and the cleaning device 100 performs a cleaning process on the transported substrate P (step SA9).
  • the cleaning apparatus 100 may be provided in the exposure apparatus EX-SYS.
  • FIG. 8 is a diagram showing the cleaning device 100.
  • the cleaning apparatus 100 includes a holder 101 that holds the central portion of the lower surface of the substrate P (the lower surface 1B of the base material 1), a shaft portion 103 that is connected to the holder 101, and a holder 101 that holds the substrate P.
  • a rotating mechanism 102 that rotates through the section 103, a ring-shaped member 104 that is provided so as to surround the periphery of the substrate P held by the holder 101 in order to prevent liquid from scattering, and a cleaning liquid LQ ′ on the substrate P.
  • a supply member 105 for supplying.
  • the cleaning liquid LQ ′ and the liquid LQ in the immersion area AR2 are the same liquid (pure water).
  • a vacuum suction hole constituting a part of the vacuum device is provided on the upper surface of the holder 101, and the holder 101 sucks and holds the central portion of the lower surface of the substrate P.
  • the rotation mechanism 102 includes an actuator such as a motor, and rotates the shaft 103 connected to the holder 101 to rotate the substrate P held by the holder 101 in the ⁇ Z direction.
  • the supply member 105 is disposed above the substrate P held by the holder 101, and supplies the cleaning liquid LQ, to the upper surface of the substrate P from above the substrate P.
  • the supply member 105 can be moved in the X axis, Y axis, Z axis, 0 X, 0 Y, and 0 Z directions by a drive mechanism (not shown).
  • the supply member 105 can move relative to the substrate P held by the holder 101.
  • the cleaning apparatus 100 adjusts the direction in which the cleaning liquid LQ ′ is supplied to the substrate P, the distance between the supply member 105 and the substrate P, and the like by moving the supply member 105 relative to the substrate P. Can do.
  • the cleaning apparatus 100 supplies the cleaning liquid LQ ′ from the supply member 105 to the substrate P held by the holder 101, and cleans the substrate P with the cleaning liquid LQ ′.
  • the cleaning apparatus 100 causes the substrate P held by the holder 101 by the rotation mechanism 102 to rotate against the substrate P held by the holder 101 while rotating in the ⁇ Z direction in the figure.
  • the cleaning liquid LQ ′ is continuously supplied from the supply member 105 while relatively moving the supply member 105.
  • the cleaning liquid LQ ′ is supplied to a wide area on the upper surface of the substrate P. Therefore, the cleaning apparatus 100 can clean a wide area of the substrate P with the cleaning liquid LQ ′.
  • the ring-shaped member 104 is provided around the substrate P held by the holder 101, the ring-shaped member 104 can prevent the second liquid LQ2 from being scattered.
  • the substrate P that has been subjected to the cleaning process in the cleaning apparatus 100 stops the supply of the cleaning liquid LQ 'and rotates the shaft 103 to remove the cleaning liquid LQ'. It is transported to the main body CZD and developed (step SA10). Since the generation of water marks is suppressed on the substrate P, it can be developed satisfactorily without causing development defects.
  • step SA5 if it is determined that the liquid contact time Ta after contact of the substrate P with the liquid LQ in the liquid immersion area AR2 does not exceed the allowable time Tr, the controller CONT performs the liquid recovery mechanism 20 Then, the liquid LQ in the immersion area AR2 on the substrate P, which is held by the substrate holder PH, is sufficiently removed (step SA11).
  • control device CONT After sufficiently removing the liquid LQ on the substrate P using the liquid recovery mechanism 20, the control device CONT unloads the substrate P from the substrate holder PH using the second transfer arm H2. Tape SA12).
  • the substrate P upper force also removes the immersion area AR2
  • the liquid recovery mechanism This includes, for example, tilting the substrate P without using 20, and moving the force liquid on the substrate P only by the movement of the liquid LQ due to gravity action or the like.
  • the case where the immersion area AR2 is moved from the substrate P onto another object is included.
  • the substrate stage PST is moved and the substrate P upper force also moves the immersion area AR2 onto the substrate stage PST (upper surface 47), or as shown in FIG. It also includes moving the immersion area AR2 formed on the measurement stage PST2.
  • the measurement stage PST2 is a stage that does not hold the substrate P.
  • an illuminance unevenness sensor as disclosed in JP-A-57-117238 is disclosed in JP-A-11 16816. It is equipped with various measuring instruments that perform measurement processing related to exposure processing, such as a dose sensor (illuminance sensor).
  • the substrate stage PST1 and the measurement stage PST2 move together in the XY direction while being close to or in contact with each other, so that the immersion area A R2 formed on the image plane side of the projection optical system PL is measured on the substrate stage PST1. Can be moved between stage PST2
  • the control device CONT After unloading the substrate P from the substrate holder PH, the control device CONT obtains surface information by observing the surface of the substrate P after the exposure processing with the imaging device 80 (step S A13). Then, the control device CONT confirms that the liquid LQ has adhered to the substrate P based on the imaging result of the imaging device 80 and the reference surface information obtained in step SA1 (the adhesion). (Step SA14). That is, even when the liquid recovery mechanism 20 is used to remove the liquid LQ on the substrate P before unloading the substrate holder PH force substrate P, the liquid LQ may remain on the substrate P.
  • the control device CONT determines whether or not the liquid LQ is attached (residual) on the substrate P based on the imaging information of the imaging device 80. Even in this case, the control device CONT uses the focus leveling system 30 to check whether or not the liquid LQ adheres to the substrate P before being unloaded from the substrate holder PH. be able to.
  • step SA14 If it is determined in step SA14 that the liquid LQ has adhered to the substrate P, the control device CONT has not adhered the liquid LQ using the second transfer arm H2.
  • the substrate P is transferred to the coater / developer CZD-SYS via the interface unit IF (step SA15).
  • the control device CONT passes the substrate P to which the liquid LQ is not attached (not wet) from the second transfer arm H2 to the third transfer arm H3, and the third transfer arm H3 passes through the interface unit IF.
  • the substrate P transported to the coater / developers CZD-SYS Development processing is performed (step SA10).
  • step SA14 if it is determined in step SA14 that the liquid LQ has adhered to the substrate P, the control device CONT, based on the measurement result of the timer 7, passes the measurement start time T force.
  • the liquid contact time Ta is the T force immersion area AR2 at the start of measurement.
  • step SA14 the controller CONT removes the immersion area AR2 from the substrate P and remains on the substrate P according to the liquid contact time Ta including the time that the liquid LQ remains on the substrate P. Determine whether to remove the liquid LQ.
  • step SA16 If it is determined in step SA16 that the liquid contact time Ta exceeds the allowable time Tr, the control device CONT performs the liquid removal operation for removing the liquid LQ remaining on the substrate P. Run using system 90 (step S A17).
  • FIG. 9 is a diagram showing a liquid removal system 90.
  • the liquid removal system 90 performs the removal operation of the liquid LQ on the substrate P after being unloaded with the substrate holder PH force, and holds the holding table 91 capable of holding the substrate P and the holding table 91.
  • the cover member 92 and the spray nozzle 93 that blows gas onto the substrate P held by the holding table 91 are provided.
  • First and second openings 94 and 95 are formed in the cover member 92, and shirters 94A and 95A are provided in the first and second openings 94 and 95, respectively.
  • the second transfer arm H2 holding the substrate P after immersion exposure enters the cover member 92 containing the holding table 91 through the first opening 94.
  • the controller CONT drives the shirt 94A to open the first opening 94.
  • the second opening 95 is closed by a shirt 95A.
  • a spray nozzle (not shown) blows gas to the back surface of the substrate P, and the liquid adhering to the back surface of the substrate P is removed.
  • the second transfer arm H2 transfers the substrate P to the holding tape 91.
  • the holding table 91 holds the delivered substrate P by vacuum suction.
  • a spray nozzle 93 that constitutes a part of the liquid removal system 90 is arranged inside the cover member 92.
  • a gas supply system 97 is connected to the spray nozzle 93 via a flow path 96.
  • the channel 96 mm is provided with a filter that removes foreign substances (dust and oil mist) in the gas blown against the substrate P.
  • a predetermined gas is sprayed from the spray nozzle 93 to the surface of the substrate P through the flow path 96, and the liquid LQ adhering to the surface of the substrate P is sprayed. It is blown away by gas and removed.
  • a liquid recovery unit 99 is connected to the cover member 92 via a recovery pipe 98.
  • the recovery pipe 98 is provided with a valve 98B for opening and closing the flow path of the recovery pipe 98.
  • the liquid LQ ejected from the substrate P is recovered by the liquid recovery unit 99 connected to the cover member 92.
  • the liquid recovery unit 99 collects the liquid LQ that has been ejected from the substrate P by sucking the gas inside the cover member 92 together with the scattered liquid LQ.
  • the liquid recovery unit 99 continuously performs the suction operation of the gas inside the cover member 92 and the scattered liquid LQ.
  • the liquid LQ does not stay inside the cover member 92 such as the inner wall or bottom of the cover member 92, so that the humidity inside the cover member 92 does not vary greatly.
  • the moist gas in the cover member 92 does not flow out of the cover member 92.
  • the controller CONT After removing the liquid LQ on the substrate P by the liquid removal system 90, the controller CONT carries out the substrate P from the liquid removal system 90 using the third transfer arm H3.
  • the third transport arm H3 enters through the second opening 95 into the cover member 92 that houses the holding table 91. At this time, the control device CONT drives the shirt 95A to open the second opening 95. On the other hand, the first opening 94 is closed by a shirt 94A. Then, the third transfer arm H3 is unloaded from the holding table 91 and taken out of the cover member 92.
  • the control device CONT transports the substrate P, which has been subjected to the liquid removal processing in the liquid removal system 90, to the coater 'developer device CZD-SYS via the interface IF using the third transport arm H3 (Ste SA15).
  • the conveyed substrate P is developed by the coater / developer body CZD (step SA10).
  • control device CONT uses the imaging device 80 to transfer the substrate P after the liquid removal processing to the interface unit IF before the substrate P that has been subjected to the liquid removal processing by the liquid removal system 90 is transported to the interface IF.
  • Surface information can be acquired.
  • the control device CONT Based on the imaging result of the imaging device 80 and the reference surface information obtained in step SA1, the control device CONT performs liquid LQ from the substrate P. It is possible to determine whether or not the mark has been completely removed. If it is determined that the liquid LQ is attached and it is determined that the allowable time Tr has not yet been exceeded, the controller CONT executes the liquid removal operation on the substrate P by the liquid removal system 90 again. Can do.
  • step SA16 if it is determined in step SA16 that the liquid contact time Ta has exceeded the allowable time Tr, the controller CONT does not perform the liquid removal operation by the liquid removal system 90 and is in a wet state.
  • Board P is transferred to the coater / developer device CZD—S YS via the interface IF (step SA18).
  • the transported substrate P is subjected to a cleaning process by the cleaning apparatus 100 (step SA9), and then subjected to a development process by the coater / developer body CZD (step SA10).
  • step SA5 the control device CONT takes into account the amount of time required for liquid removal in step SA11 to the liquid contact time Ta so far, and the force exceeding the allowable time Tr. It is desirable to judge whether or not.
  • step SA16 it is desirable that the controller CONT determines whether or not the allowable time has been exceeded, taking into account the time until the liquid removal system 90 starts the liquid removal operation.
  • the imaging device 80 may be omitted. That is, in the flowcharts of FIGS. 6A and 6B, step SA1 and steps SA13, SA14, SA16 to SA18 are omitted, the substrate P is unloaded from the substrate stage PST, and then passed through the interface unit IF. Coater / Developer Device CZD— Transport to SYS for immediate development.
  • FIG. 11 is a flowchart showing an example of transporting the substrate P unloaded from the substrate stage PST to the liquid removal system 90. Note that the flowchart of FIG. 11 shows the operation in which the imaging device 80 is omitted.
  • the control device CONT uses the first transfer arm HI to load the substrate P onto the substrate holder PH and to form a liquid LQ immersion area AR2 on the substrate P held by the substrate holder PH.
  • the liquid LQ supply operation by the supply mechanism 10 and the liquid LQ recovery operation by the liquid recovery mechanism 20 are started.
  • the control device CONT forms the substrate P and the immersion area AR2. The time when the liquid LQ comes into contact with the
  • the controller CONT starts the immersion exposure of the substrate surface (step SB2). After the liquid immersion exposure process for each shot area is completed (step SB3), the controller CONT stops the liquid supply onto the substrate P by the liquid immersion supply mechanism 10 and uses the liquid recovery mechanism 20. Then, the liquid LQ in the immersion area AR2 is removed from the substrate P (step SB4).
  • the immersion area AR2 may be moved only on the substrate P to another object such as the substrate stage PST.
  • the control device CONT unloads the substrate stage PST (substrate holder PH) force based on the measurement result of the timer 7, transports it to the liquid removal system 90, and removes the liquid. It is determined whether the elapsed time until the operation starts exceeds the allowable time Tr (step SB5).
  • the control device CONT carries out the determination in step SB5 using the time from the transfer to the liquid removal system 90 and the start of the liquid removal operation as part of the liquid contact time Ta. This is because some liquid LQ may remain on the substrate P even if the liquid recovery mechanism 20 removes the liquid on the substrate P, and the liquid removal system 90 does not perform the liquid removal operation until the liquid is removed. This is because the LQ may come into contact with the substrate P.
  • step S B5 If it is determined in step S B5 that the liquid contact time Ta exceeds the allowable time Tr, the controller CONT unloads the substrate P from the substrate holder PH using the second transfer arm H2 (step SB6).
  • the second transfer arm H2 transfers the substrate P to the cleaning device 100 of the coater / developer device CZD-SYS via the interface unit IF without performing the liquid removal operation in the liquid removal system 90 (step SB7).
  • Coater 'Developer Device CZD-S YS is the same as the above (Step SB8) after washing off the liquid LQ containing impurities that may be adhering to the substrate P transferred to the cleaning device 100 (Step SB8).
  • the substrate P after cleaning is transferred to the developer body CZD and developed (step SB9).
  • step SB5 If it is determined in step SB5 that the liquid contact time Ta does not exceed the allowable time Tr, the controller CONT uses the second transfer arm H2 to place the substrate P on the substrate holder PH. Unload (step SB10) and transport to the liquid removal system as above. In this manner, the liquid removal operation of the substrate P is executed (step SB11). After removing the liquid on the substrate P by the liquid removal system 90, the controller CONT carries out the substrate P from the liquid removal system 90 by using the third transfer arm H3. The third transport system H3 transports the substrate P that has been subjected to the liquid removal process to the coater / developer device CZD-SYS via the interface unit IF (step SB12). The substrate P transferred to the coater / developer apparatus CZD—SYS is subjected to the development process without being subjected to the cleaning process in the cleaning apparatus 100 (step SB9).
  • the liquid removal system 90 determines that the liquid removal process can be started before the liquid contact time Ta exceeds the predetermined allowable time Tr.
  • the liquid removal system 90 performs the liquid removal process on the substrate P that may be contaminated with the contaminated liquid, so that the generation of the watermark can be prevented. If it is determined that the liquid contact time Ta exceeds the allowable time Tr before the liquid removal process is started, the substrate P is immediately transported to the cleaning device 100 and the contaminated liquid is removed. Since the substrate P that may be attached is cleaned, the generation of watermarks can be prevented as in the operation examples shown in FIGS. 6 (A) and 6 (B).
  • step SA3 an error for stopping the exposure operation for some reason may occur.
  • the control device CONT may unload the substrate P from the substrate stage PST and perform a process of retracting it to a predetermined retract position.
  • the control device CONT reduces the amount of liquid recovery processing by the liquid recovery mechanism 20 and liquid removal processing by the liquid removal system 90. After performing at least one, the substrate P in which an error has occurred is transported to a predetermined retreat position.
  • the substrate P in which the error has occurred is immediately transported to the cleaning device 100 and subjected to the cleaning process. Later, it is transported to a predetermined retreat position. By doing so, it is possible to prevent the occurrence of a watermark on the substrate P in which an error has occurred.
  • the control device CONT has a predetermined allowable time Tr. Accordingly, the substrate P is in contact with the liquid LQ in the immersion area AR2 and performs various processes including the exposure process and the transfer process while managing the liquid contact time Ta by force. Various treatments may be performed while removing the immersion area AR2 and managing the force time Tb.
  • the substrate P upper force also removes the liquid immersion area AR2 means that the liquid recovery mechanism 20 is used to recover the liquid LQ using the liquid recovery mechanism 20 as described above. Without using, for example, tilting the substrate P and moving the liquid on the substrate P only by the movement of the liquid LQ due to gravity action, etc.
  • the case where the immersion area AR2 is moved from the substrate P onto another object is included.
  • the measurement stage PST2 is a stage that does not hold the substrate P.
  • an illuminance unevenness sensor as disclosed in JP-A-57-117238 is disclosed in JP-A-11-16816.
  • the substrate stage PST1 and the measurement stage PST2 move together in the XY direction while being close to or in contact with each other, so that the immersion area AR2 formed on the image plane side of the projection optical system PL is changed to the substrate stage PST1. It can be moved between the top and the measurement stage PST2.
  • the state after removing the immersion area AR2 of the substrate P includes a state in which the liquid LQ remains on the substrate P (even if the substrate P upper force immersion area AR2 is moved or removed).
  • the liquid LQ force may remain on the substrate P, for example, in the form of droplets).
  • the liquid removal operation is completed in the liquid removal system 90 before the remaining liquid LQ is dried on the substrate P, the generation of a watermark can be prevented. Therefore, when the operation to remove the immersion area AR2 from the substrate P is completed (completed) as the measurement start time T, the elapsed time of the T force at the measurement start time, that is, the force on the substrate P also removes the immersion area AR2.
  • the substrate P upper force is not subjected to the liquid removal process by the liquid removal system 90. Immediately transporting the substrate P to the cleaning device 100 and cleaning it can prevent the generation of watermarks.
  • the time required to unload the substrate P from the substrate stage PST and start the liquid removal process in the liquid removal system 90 may be considered to be almost constant after the substrate P upper force is removed.
  • the allowable time Tr ′ must be changed for each substrate or lot. For example, when the contact angle (including the dynamic contact angle) of the liquid LQ on the surface of the substrate P is small, a large amount of the liquid LQ remains on the substrate P and spreads wet. Since the time until the large amount of the remaining liquid LQ dries becomes longer, the allowable time Tr ′ can be set longer.
  • the allowable time Tr ′ when the contact angle of the liquid LQ on the surface of the substrate P is large (for example, 100 ° or more), the liquid LQ remains on the substrate P as small droplets. Since the time until such a small amount of remaining liquid dries is very short, the allowable time Tr ′ must also be set short. Alternatively, as described later, the allowable time can be adjusted by appropriately selecting the combination of the liquid and the material forming the surface of the substrate as the contact angle. In addition, when the film at the periphery of the substrate P is removed as in the substrate P shown in FIG. 2, a minute droplet remains near the center of the substrate P, and a large amount of liquid remains at the periphery. (Attachment) may occur.
  • the control device CONT determines the allowable time Tr ′ from the surface state of the substrate P.
  • a table or function for determining the exposure is stored, and information on the substrate P to be exposed next (such as the contact angle with the liquid LQ on the surface of the substrate P and the presence or absence of a film) is acquired in advance, so It is possible to determine the allowable time Tr ′ for the substrate P to be formed.
  • the elapsed time Tb after removing the force immersion area AR2 of the substrate P is a predetermined value. If the liquid removal process is performed by the liquid removal system 90 before the allowable time Tr ′ is exceeded and the elapsed time Tb exceeds the predetermined time Tr ′, the liquid removal process 90 is not performed and the liquid P is attached to the substrate P. As a result, it is possible to prevent the generation of watermarks.
  • the controller CONT removes the force immersion area AR2 on the substrate P where the error occurred, and the elapsed time Tb is a predetermined allowable time. If it does not exceed Tr ′, the liquid removal process is performed by the liquid removal system 90, and then the substrate P in which the error has occurred is transferred to a predetermined retreat position, and the elapsed time Tb exceeds the allowable time Tr. In such a case, the substrate P in which an error has occurred is immediately transported to the cleaning apparatus 100, subjected to cleaning processing, and then transported to a predetermined retreat position. By rubbing in this way, it is possible to prevent the occurrence of a watermark on the substrate P in which an error has occurred.
  • the cleaning apparatus When it is determined that the elapsed time Tb exceeds the predetermined time Tr 'and the substrate P is transported to the cleaning apparatus 100 without performing the liquid removal process in the liquid removal system 90, the cleaning apparatus If there is a possibility that the liquid remaining on the substrate P may be dried before being transferred to 100, the substrate P may be unloaded before or during the transfer of the substrate P. Liquid LQ may be supplied onto P.
  • the liquid removal system 90 may be arranged in the force interface unit IF arranged in the exposure apparatus EX-SYS or in the coater / developer apparatus CZD-SYS! /, .
  • the contact time Ta of the substrate P and the elapsed time Tb after removing the immersion region from Z or the substrate P are managed to generate the watermark on the substrate P.
  • the substrate P is unloaded from the substrate stage PST in a wet state and immediately washed by the coater's developer device CZD-SYS 100 Even if it is transported to.
  • the liquid contact time Ta exceeds the allowable time Tr, and various treatments are performed. Based on the force allowable time Tr, the liquid contact time Ta, that is, the immersion state is determined. You can set the duration of the maintenance.
  • the liquid contact time Ta can be set for each material of the liquid LQ and the substrate P (particularly, the material of the film in contact with the liquid LQ). This minimizes the effects of contact between the liquid and the substrate, which is thought to affect the exposure characteristics of immersion exposure. Optimal immersion exposure can be realized with a small limit.
  • the liquid contact time Ta set for each material of the liquid LQ and the substrate P may be stored in advance in the control device or storage device of the exposure apparatus.
  • the liquid recovery mechanism 20 can be omitted. Further, the recovery operation by the liquid recovery mechanism 20 may be performed so that an appropriate amount of liquid that does not dry the substrate P before the substrate P is transported to the cleaning apparatus 100 remains on the substrate P. Even if the liquid recovery mechanism 20 recovers the liquid and removes the immersion area AR2 from the substrate P, the appropriate amount of liquid that does not dry the substrate P before the substrate P is transferred to the cleaning device 100 is obtained. A predetermined treatment may be performed on the surface of the substrate P so as to remain on the substrate P.
  • a predetermined film can be formed on the surface of the substrate P so that the contact angle (including the dynamic contact angle) of the liquid LQ on the surface of the substrate P becomes small.
  • the contact angle is determined by the combination of the material that forms the surface of the liquid LQ and the surface of the substrate P (the surface in contact with the liquid). Therefore, by selecting them in advance, the liquid LQ can easily remain on the substrate. It is possible to control the allowable range of contact time between the sheath and the liquid LQ.
  • the contact angle of the substrate with respect to the liquid is set so that the liquid remains on the substrate after removing the liquid immersion region from the substrate, thereby forming a liquid adhesion mark (watermark) on the substrate. Can be suppressed.
  • the contact time Ta of the substrate p and Z or the force on the substrate P are removed and the elapsed time of the force is removed.
  • Tb is managed, the contact time Ta of the substrate P and the force immersion time Tb by removing the force immersion area on the Z or substrate P is not limited to this purpose.
  • the contact time between the substrate P and the liquid LQ exceeds the allowable time, the photosensitive material 3 of the substrate P is modified, and the line width of the pattern to be formed on the substrate P after development is abnormal. May occur. An error in the line width of the pattern formed on the substrate P may cause a device defect.
  • the allowable time Tr of the liquid contact time Ta and Z or the elapsed time Tb may be set in consideration of the line width change of the pattern formed on the substrate.
  • the coater 'developer device C / D-SYS is applied to the substrate P after immersion exposure to prevent pattern line width error.
  • the conditions of the heat treatment performed (heating temperature, heating time, etc. ) Can be adjusted.
  • the contact time Ta exceeds the permissible time Tr beforehand, the dose amount for the substrate P during immersion exposure should be adjusted so that no line width error will occur. Moyo.
  • the liquid LQ in the present embodiment uses pure water.
  • Pure water has the advantage that it can be easily obtained in large quantities at semiconductor manufacturing factories and the like, and has no adverse effect on the photoresist on the substrate P and optical elements (lenses).
  • pure water has no harmful effect on the environment and has an extremely low impurity content, so that it cleans the surface of the substrate P and the surface of the optical element provided on the front end surface of the projection optical system PL. Can also be expected.
  • the exposure apparatus may have an ultrapure water production device.
  • the refractive index n of pure water (water) for exposure light EL with a wavelength of about 193 nm is said to be approximately 1. 44, and ArF excimer laser light (wavelength 193 nm) is used as the light source of exposure light EL.
  • lZn that is, the wavelength is shortened to about 134 nm to obtain a high resolution.
  • the projection optical system PL can be used if it is sufficient to ensure the same depth of focus as in the air.
  • the numerical aperture can be increased further, and the resolution is improved in this respect as well.
  • an optical element LSI is attached to the tip of the projection optical system PL, and the optical characteristics of the projection optical system PL, such as aberration (spherical aberration, coma aberration, etc.) are adjusted by this lens. be able to.
  • the optical element attached to the tip of the projection optical system PL may be an optical plate used for adjusting the optical characteristics of the projection optical system PL. Alternatively, it may be a plane parallel plate that can transmit the exposure light EL.
  • the space between the projection optical system PL and the surface of the substrate P is filled with the liquid LQ.
  • a cover glass having parallel plane plate force is attached to the surface of the substrate P. It may be configured to fill liquid LQ in a wet state.
  • the projection optical system of the above-described embodiment has an optical path space on the image plane side of the tip optical element. Although it is filled with liquid, as disclosed in the pamphlet of International Publication No. 2004Z019128, it is possible to adopt a projection optical system that fills the optical path space on the mask side of the optical element at the tip with liquid.
  • the liquid LQ of the present embodiment may be a liquid other than water, which is water.
  • the light source of the exposure light EL is an F laser
  • the F laser light does not pass through water. So
  • liquid LQ for example, perfluorinated polyether (PFPE) and F laser light can be transmitted.
  • PFPE perfluorinated polyether
  • F laser light can be transmitted.
  • the part that comes into contact with the liquid LQ may be a fluorine-based fluid such as fluorine-based oil.
  • the part that comes into contact with the liquid LQ for example, has a small polarity including fluorine!
  • the film is made lyophilic by forming a thin film with a molecular structure.
  • the liquid LQ is stable to the projection optical system PL that is transmissive to the exposure light EL and has a refractive index as high as possible, and to the photoresist applied to the surface of the substrate P (for example, Cedar). Oil) can also be used.
  • the surface treatment is performed according to the polarity of the liquid LQ used.
  • various fluids such as a supercritical fluid can be used.
  • the substrate P in each of the above embodiments is not limited to a semiconductor wafer for manufacturing a semiconductor device, but also a glass substrate for a display device, a ceramic wafer for a thin film magnetic head, or a mask used in an exposure apparatus.
  • Reticle masters synthetic quartz, silicon wafers are applied.
  • the exposure apparatus EX in addition to the step-and-scan type scanning exposure apparatus (scanning stepper) that scans and exposes the mask M pattern by synchronously moving the mask M and the substrate P, the mask The present invention can also be applied to a step-and-repeat projection exposure apparatus (steno) in which the pattern of the mask M is collectively exposed while M and the substrate P are stationary, and the substrate P is sequentially moved stepwise.
  • steno step-and-repeat projection exposure apparatus
  • a reduced image of the first pattern is projected with the first pattern and the substrate P substantially stationary (for example, a refractive type including a reflective element at a 1Z8 reduction magnification). It can also be applied to an exposure apparatus that uses a projection optical system) to perform batch exposure on the substrate P. In this case, after that, with the second pattern and the substrate P almost stationary, a reduced image of the second pattern is collectively exposed on the substrate P by partially overlapping the first pattern using the projection optical system. It can also be applied to a stitch type batch exposure apparatus.
  • the stitch type dew The optical device can be applied to a step-and-stitch type exposure apparatus in which at least two patterns are partially overlapped and transferred on the substrate P, and the substrate P is sequentially moved.
  • the present invention can be applied to an exposure apparatus and an exposure method that do not use the force projection optical system PL, which has been described by taking an exposure apparatus including the projection optical system PL as an example.
  • the present invention can also be applied to a twin stage type exposure apparatus.
  • the structure and exposure operation of a twin stage type exposure apparatus are described in, for example, Japanese Patent Laid-Open Nos. 10-163099 and 10-214783 (corresponding US Pat. Nos. 6,341,007, 6,400,441, 6,549,269 and 6). , 590,634), Special Table 2000-505958 (corresponding U.S. Pat. No. 5,969,441) or U.S. Pat.No. 6,208,407, and is permitted by the laws of the country specified or selected in this international application. As far as they are accepted, their disclosure is incorporated herein by reference.
  • a substrate stage for holding a substrate, a reference member on which a reference mark is formed, and a measurement stage on which various photoelectric sensors are mounted can also be applied to an exposure apparatus.
  • an exposure apparatus that locally fills the liquid between the projection optical system PL and the substrate P is employed.
  • the present invention is disclosed in JP-A-6-124873, As disclosed in JP-A-10-303114 and US Pat. No. 5,825,043, an immersion exposure apparatus that exposes a substrate in a state where the entire substrate surface to be exposed is immersed in a liquid. Is also applicable.
  • the structure and exposure operation of such an immersion exposure apparatus is described in detail in US Pat. No. 5,825,043, to the extent permitted by national legislation designated or selected in this international application. The contents of this US patent are incorporated herein by reference.
  • the type of exposure apparatus EX is not limited to an exposure apparatus for manufacturing a semiconductor element that exposes a semiconductor element pattern on a substrate P, but an exposure apparatus for manufacturing a liquid crystal display element or a display, a thin film magnetic head, It can be widely applied to an exposure device for manufacturing an imaging device (CCD) or a reticle or mask.
  • CCD imaging device
  • each stage PST, MST is such that a magnet mute with two-dimensionally arranged magnets is opposed to an armature unit with two-dimensionally arranged coils, and each stage PST, MST is driven by electromagnetic force.
  • either one of the magnet unit or armature unit is connected to the stage PST or MST, and the other of the magnet unit or armature unit is provided on the moving surface side of the stage PST or MST!
  • reaction force generated by the movement of the mask stage MST is not transmitted to the projection optical system PL, as described in JP-A-8-330224 (US Pat. No. 5,874,820). It may be mechanically released to the floor (ground) using a frame member. To the extent permitted by national legislation designated or selected in this international application, the disclosure of US Pat. No. 5,874,820 is incorporated herein by reference.
  • the exposure apparatus EX of the present embodiment has various mechanical subsystems including the constituent elements recited in the claims of the present application with predetermined mechanical accuracy, electrical accuracy, and optical accuracy. Manufactured by assembling to keep. In order to ensure these various accuracies, before and after the assembly, various optical systems are adjusted to achieve optical accuracy, various mechanical systems are adjusted to achieve mechanical accuracy, various electrical systems Is adjusted to achieve electrical accuracy.
  • the assembly process from various subsystems to the exposure system includes mechanical connections, electrical circuit wiring connections, and pneumatic circuit piping connections between the various subsystems. Assembly of these various subsystems into exposure equipment Needless to say, there is an assembly process for each subsystem before the process. When the assembly process of the various subsystems to the exposure apparatus is completed, comprehensive adjustment is performed to ensure various accuracies for the entire exposure apparatus. It is desirable to manufacture the exposure apparatus in a clean room in which the temperature and cleanliness are controlled.
  • a microdevice such as a semiconductor device is composed of a step 201 for designing the function and performance of the microdevice, a step 202 for producing a mask (reticle) based on the design step, and a substrate of the device.
  • Step 203 for manufacturing a substrate
  • substrate processing (exposure processing step) 204 for exposing the mask pattern onto the substrate by the exposure apparatus EX of the above-described embodiment, and exposing the exposed substrate
  • device assembly step (dicing step, bonding) (Including processing processes such as process and knocking process) 205, inspection step 206, etc.
  • the substrate processing step 204 includes the processing steps described in FIGS. 6A and 6B and FIG.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Atmospheric Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

 液体LQの液浸領域AR2を基板P上に形成し、液浸領域AR2の液体LQを介して基板P上に露光光ELを照射して基板Pを露光する工程を含む基板処理方法において、基板Pが液浸領域AR2の液体LQと接触している接液時間を管理する。デバイス製造工程において、デバイス欠陥の発生を抑制できる。

Description

明 細 書
基板処理方法、露光方法、露光装置及びデバイス製造方法
技術分野
[0001] 本発明は、液体を介して露光する工程を含む基板処理方法、露光方法、露光装置
、及びデバイス製造方法に関する。
背景技術
[0002] 半導体デバイスや液晶表示デバイス等のマイクロデバイスの製造工程の一つであ るフォトリソグラフイエ程では、マスク上に形成されたパターンを感光性の基板上に投 影露光する露光装置が用いられる。この露光装置は、マスクを支持するマスクステー ジと基板を支持する基板ステージとを有し、マスクステージ及び基板ステージを逐次 移動しながらマスクのパターンの像を投影光学系を介して基板に投影する。マイクロ デバイスの製造においては、デバイスの高密度化のために、基板上に形成されるパ ターンの微細化が要求されている。この要求に応えるために露光装置の更なる高解 像度化が望まれている。その高解像度化を実現するための手段の一つとして、下記 特許文献 1に開示されているような、投影光学系と基板との間を液体で満たして液浸 領域を形成し、その液浸領域の液体を介して露光処理を行う液浸法が案出されて 、 る。
特許文献 1:国際公開第 99Z49504号パンフレット
発明の開示
発明が解決しょうとする課題
[0003] 基板上に液体が残留し、その残留した液体が気化すると、基板上に液体の付着跡 が形成される可能性がある。以下、液体が水でない場合も液体の付着跡をウォータ 一マークと称する。ウォーターマークが形成されると、製造されるデバイスに欠陥が生 じる虞がある。例えば基板を液浸露光処理した後、基板上にウォーターマークが形成 された状態で現像処理を行った場合、現像欠陥が生じて所望の性能を有するデバイ スが製造できなくなる虞がある。所望の性能を有するデバイスを製造するためには、 ウォーターマークの発生を抑制することが重要である。 [0004] 本発明はこのような事情に鑑みてなされたものであって、液浸露光工程を含むデバ イス製造工程において、デバイス欠陥の発生を抑制できる基板処理方法、露光方法 、露光装置、及びデバイス製造方法を提供することを目的とする。
課題を解決するための手段
[0005] 上記の課題を解決するため、本発明は実施の形態に示す図 1〜図 12に対応付け した以下の構成を採用している。但し、各要素に付した括弧付き符号はその要素の 例示に過ぎず、各要素を限定するものではない。
[0006] 本発明の第 1の態様に従えば、基板処理方法であって、液体 (LQ)の液浸領域 (A
R2)を基板 (P)上に形成し、液浸領域 (AR2)の液体 (LQ)を介して基板 (P)に露光 光 (EL)を照射して基板 (P)を露光することと、基板 (P)が液浸領域 (AR2)の液体(
LQ)と接触して!/ヽる接液時間を管理する基板処理方法が提供される。
[0007] 本発明の第 1の態様によれば、基板が液体と接触している接液時間(基板が液体と 接触した後の経過時間)を管理することで、基板上に液体の付着跡 (ウォーターマー ク)が形成される不都合を防止できる。
[0008] 本発明の第 2の態様に従えば、基板処理方法であって、液体 (LQ)の液浸領域 (A
R2)を基板 (P)上に形成し、液浸領域 (AR2)の液体 (LQ)を介して基板 (P)に露光 光 (EL)を照射して基板 (P)を露光することと、 前記基板上から液浸領域を取り去る ことと、基板 (P)上から液浸領域 (AR2)を取り去った後の時間を管理することを含む 基板処理方法が提供される。
[0009] 本発明の第 2の態様によれば、基板上力 液浸領域を取り去った後の時間を管理 することで、基板上に液体の付着跡 (ウォーターマーク)が形成される不都合を防止 できる。
[0010] ここで、「基板上から液浸領域を取り去る」とは、液体回収機構を使って基板上から 液体を回収することだけでなぐ基板上力 他の部材上に液体を移動させることも含 み、液浸領域を基板上から取り去る方法またはそれに用いる機構は任意である。基 板上力 液浸領域を取り去る処理を行っても、基板表面と液体との親和性などによつ ては、基板上に液体の滴などが残留する場合がある。本発明は、このような状況にも 対処できる。それゆえ、本願においては、用語「基板上力 液浸領域を取り去った後 の状態」は、基板上力 液体が完全に除去された状態だけではなぐ基板上から液 浸領域を取り去っても液体の滴などが基板上に残留している状態も含む意味である
[0011] 本発明の第 3の態様に従えば、基板処理方法であって、液体 (LQ)の液浸領域 (A R2)を基板 (P)に形成し、液浸領域 (AR2)の液体 (LQ)を介して基板 (P)上に露光 光 (EL)を照射して基板 (P)を露光することと、基板 (P)上から液浸領域 (AR2)を取 り去ることと、基板 (P)上から液浸領域 (AR2)を取り去った後に、基板 (P)上に液体( LQ)が残留するように、基板 (P)の液体 (LQ)に対する接触角を設定することを含む 基板処理方法が提供される。
[0012] 本発明の第 3の態様によれば、基板上力も液浸領域を取り去った後に、基板上に 液体が残留するように、基板の液体に対する接触角を設定することで、基板上に液 体の付着跡 (ウォーターマーク)が形成される不都合を防止できる。
[0013] ここで、「基板上から液浸領域を取り去る」とは、液体回収機構を使って基板上から 液体を回収することだけでなぐ基板上力 他の部材上に液体を移動させることも含 み、液浸領域を基板上から取り去る方法またはそれに用いる機構は任意である。
[0014] 本発明の第 4の態様に従えば、液体 (LQ)の液浸領域 (AR2)を基板 (P)上に形成 し、液浸領域 (AR2)の液体 (LQ)を介して基板 (P)上に露光光 (EL)を照射して基 板 (P)を露光する露光装置であって、基板 (P)を保持する基板ホルダ (PH)と、基板 (P)上の液体 (LQ)を除去するための液体除去機構 (20、 90)と、基板 (P)が液浸領 域 (AR2)の液体 (LQ)と接触して!/ヽる接液時間を管理する制御装置 (CONT)とを 備えた露光装置 (EX)が提供される。
[0015] 本発明の第 4の態様によれば、基板が液体と接触して!/ヽる接液時間(基板が液体と 接触を開始した後の経過時間)を制御装置が管理することで、基板上に液体の付着 跡 (ウォーターマーク)が形成される不都合を防止できる。
[0016] 本発明の第 5の態様に従えば、液体 (LQ)の液浸領域 (AR2)を基板 (P)上に形成 し、液浸領域 (AR2)の液体 (LQ)を介して基板 (P)に露光光 (EL)を照射して基板 ( P)を露光する露光装置であって、基板 (P)を保持する基板ホルダ (PH)と、液浸領 域 (AR2)を形成する液体 (LQ)と接触した基板 (P)を、基板ホルダ (PH)から濡れた まま搬送する搬送系 (H)とを備えた露光装置 (EX)が提供される。
[0017] 本発明の第 5の態様によれば、液浸領域の液体と接触した基板を搬送系によって 基板ホルダカゝら濡れたまま搬送することで、基板上に液体の付着跡 (ウォーターマー ク)が形成される不都合を防止できる。
[0018] 本発明の第 6の態様に従えば、液体 (LQ)の液浸領域 (AR2)を基板 (P)上に形成 し、液浸領域 (AR2)の液体 (LQ)を介して基板 (P)に露光光 (EL)を照射して基板 ( P)を露光する露光装置であって、基板 (P)を保持する基板ホルダ (PH)と、基板 ) が液浸領域 (AR2)の液体 (LQ)と接触して!/ヽる接液時間を管理する制御装置 (CO NT)とを備えた露光装置 (EX)が提供される。本発明の第 6の基板が液体と接触して V、る接液時間 (基板が液体と接触を開始した後の経過時間)を制御装置が管理する ことで、所望のパターンが基板上に形成することができる。
[0019] 本発明の第 7の態様に従えば、上記態様の基板処理方法を用いる露光方法が提 供される。本発明の第 7の態様によれば、付着跡(ウォーターマーク)の発生を防止し て、所望の露光パターンを形成することができる。
[0020] 本発明の第 8の態様に従えば、上記態様の露光装置 (EX)を用いるデバイス製造 方法が提供される。本発明の第 8の態様によれば、付着跡 (ウォーターマーク)に起 因するデバイス欠陥の発生を抑制し、所望の性能を有するデバイスを製造することが できる。
発明の効果
[0021] 本発明によれば、デバイス欠陥の発生を抑制し、所望の性能を有するデバイスを製 造できる。
図面の簡単な説明
[0022] [図 1]露光装置を備えたデバイス製造システムの一実施形態を示す概略構成図であ る。
[図 2]基板の一例を示す断面図である。
[図 3]露光装置本体の一例を示す概略構成図である。
[図 4]液浸領域の液体を介して基板が露光されている状態を示す図である。
[図 5]基板の別の例を示す断面図である。 [図 6]図 6 (A)及び (B)はデバイス製造システムの動作の一例を示すフローチャート 図である。
[図 7]搬送系が基板を濡れたまま搬送している状態を示す図である。
[図 8]洗浄装置の一例を示す図である。
[図 9]液体除去システムの一例を示す図である。
[図 10]基板ステージと計測ステージとの間で液浸領域が移動している状態を示す図 である。
[図 11]デバイス製造システムの動作の別の例を示すフローチャート図である。
[図 12]マイクロデバイスの製造工程の一例を示すフローチャート図である。
符号の説明
[0023] 1…基材、 2· ··感光材 (膜)、 3…保護膜 (膜)、 10· ··液体供給機構、 20· ··液体回収 機構、 90…液体除去システム、 100· ··洗浄装置、 300…液浸機構、 AR2 液浸領 域、 CZD— SYS…コータ'デベロッパ装置、 CONT…制御装置、 EL…露光光、 EX …露光装置本体、 EX— SYS…露光装置、 H…搬送系、 LQ…液体、 P…基板、 PH …基板ホルダ、 SYS…デバイス製造システム
発明を実施するための最良の形態
[0024] 以下、本発明の実施形態について図面を参照しながら説明するが、本発明はこれ に限定されない。
[0025] 図 1は、本発明に係る露光装置を備えたデバイス製造システムの一実施形態を示 す図である。図 1において、デバイス製造システム SYSは、露光装置 EX—SYSと、 コータ .デベロツバ装置 CZD - SYSとを備えて!/、る。
[0026] 露光装置 EX— SYSは、コータ 'デベロッパ装置 CZD— SYSとの接続部を形成す るインターフェース部 IFと、基板 Pの露光処理を行う露光装置本体 EXと、基板 Pを搬 送する搬送系 Hと、露光装置 EX— SYS全体の動作を統括制御する制御装置 CON Tとを備えている。制御装置 CONTは、露光処理に関する時間を管理するために、タ イマ一 7を備えている。
[0027] 露光装置本体 EXは、マスク Mを保持して移動可能なマスクステージ MSTと、基板 Pを保持する基板ホルダ PHを有し、基板 Pを保持した基板ホルダ PHを移動可能な 基板ステージ PSTと、マスクステージ MSTに保持されて!、るマスク Mを露光光 ELで 照明する照明光学系 ILと、露光光 ELで照明されたマスク Mのパターンの像を基板 P 上に投影する投影光学系 PLとを備えている。なお、ここでいう「基板」は半導体ゥェ ハ等の基材上に感光材 (レジスト)を塗布したものを含み、「マスク」は基板上に縮小 投影されるデバイスパターンを形成されたレチクルを含む。
[0028] 露光装置本体 EXは、露光波長を実質的に短くして解像度を向上するとともに焦点 深度を実質的に広くするために液浸法を適用した液浸露光装置であって、基板ステ ージ PSTに保持された基板 P上に液体 LQの液浸領域 AR2を形成し、液浸領域 AR 2の液体 LQを介して基板 P上に露光光 ELを照射して基板 Pを露光する。
[0029] 本実施形態では、露光装置本体 EXとしてマスク Mと基板 Pとを走査方向における 互いに異なる向き(逆方向)に同期移動しつつマスク Mに形成されたパターンを基板 Pに露光する走査型露光装置 (所謂スキャニングステツパ)を使用する場合を例にし て説明する。以下の説明において、水平面内においてマスク Mと基板 Pとの同期移 動方向(走査方向)を X軸方向、水平面内において X軸方向と直交する方向を Y軸方 向(非走査方向)、 X軸及び Y軸方向に垂直で投影光学系 PLの光軸 AXと一致する 方向を Z軸方向とする。また、 X軸、 Y軸、及び Z軸まわりの回転 (傾斜)方向をそれぞ れ、 Θ Χ, 0 Y、及び 0 Z方向とする。
[0030] 露光装置 EX— SYSは、搬送系 Hの搬送経路の途中に設けられ、液浸露光処理さ れた後の基板 P上の液体 LQを除去するための液体除去システム 90と、基板 Pの表 面を撮像する撮像装置 80とを備えて ヽる。撮像装置 80の撮像結果は制御装置 CO NTに出力され、制御装置 CONTは、撮像装置 80の撮像結果に基づいて、基板 P の表面情報を求めることができる。また、撮像装置 80は、不図示の駆動機構に支持 されており、搬送系 Hの搬送経路に沿って移動可能に設けられている。
[0031] コータ 'デベロッパ装置 CZD— SYSは、露光処理される前の基板 Pの基材(半導 体ウェハ)に対して感光材 (レジスト)の塗布処理を行う塗布装置 (不図示)、及び露 光装置本体 EXにおいて露光処理された後の基板 Pに対して現像処理を行う現像装 置 (不図示)を含むコータ 'デベロツバ本体 CZDと、基板 Pを搬送する搬送系 H と、
CD
基板 Pを洗浄する洗浄装置 100とを備えている。なお、露光装置 EX— SYSが洗浄 装置 100を備えて 、てもよ 、。
[0032] 露光装置本体 EX及び搬送系 Hなどは、清浄度が管理された第 1チャンバ装置 CH 1内部に配置されている。一方、コータ 'デベロッパ本体 CZD及び搬送系 H などは
CD
、第 1チャンバ装置 CHIとは別の第 2チャンバ装置 CH2内部に配置されている。第 1 チャンバ装置 CH1と第 2チャンバ装置 CH2とは、インターフェース部 IFを介して接続 されている。
[0033] 搬送系 Hは、インターフェース部 IFと露光装置本体 EXとの間で基板 Pを搬送する 複数の搬送アーム HI〜H4を備えている。搬送系 Hは、露光処理される前の基板 P を基板ステージ PST (基板ホルダ PH)に搬入 (ロード)する第 1搬送アーム HIと、露 光処理された後の基板 Pを基板ステージ PST (基板ホルダ PH)から搬出(アンロード )する第 2搬送アーム H2とを備えている。更に、搬送系 Hは、露光処理された後の基 板 Pをインターフェース部 IFまで搬送する第 3、第 4搬送アーム H3、 H4を備えている
[0034] ここで、基板 Pの搬送手順の概略を説明する。コータ ·デベロツバ本体 CZDの塗布 装置で感光材の塗布処理を施された基板 Pは、搬送系 H によってインターフェース
CD
部 IFまで搬送される。インターフェース部 IFに搬送された基板 Pは、露光装置 EX— SYSに設けられているブリアライメント部 (不図示)に渡される。ここで、第 1、第 2チヤ ンバ装置 CH1、 CH2それぞれのインターフェース部 IFと対面する部分には開口及 びこの開口を開閉するシャツタが設けられており、基板 Pのインターフェース部 IFに対 する搬送動作中にはシャツタが開放される。ブリアライメント部に渡された基板 Pは、 ブリアライメント部において、基板ステージ PSTに対して大まかに位置合わせされる。 このとき、撮像装置 80が、ブリアライメント部に保持された基板 Pの表面を撮像し、撮 像結果を制御装置 CONTに出力する。制御装置 CONTは、撮像装置 80の撮像結 果に基づいて、露光処理前の基板 Pの表面情報を取得する。なお、撮像装置 80によ つて露光処理前の基板 Pの表面を撮像する場合には、不図示の駆動機構により撮像 装置 80がブリアライメント部に保持された基板 Pの上方に配置される。
[0035] 制御装置 CONTは、ブリアライメント部で位置合わせされた基板 Pを、第 1搬送ァー ム HIによって基板ステージ PST (基板ホルダ PH)にロードする。制御装置 CONTは 、基板ステージ PSTにロードされた基板 Pの液浸露光処理を行った後、その露光処 理後の基板 Pを、第 2搬送アーム H2によって基板ステージ PST (基板ホルダ PH)より アンロードする。このとき、撮像装置 80が、第 2搬送アーム H2に保持された基板 Pの 表面を撮像し、撮像結果を制御装置 CONTに出力する。制御装置 CONTは、撮像 装置 80の撮像結果に基づいて、露光処理後の基板 Pの表面情報を取得する。なお 、撮像装置 80によって露光処理後の基板 Pの表面を撮像する場合には、不図示の 駆動機構により撮像装置 80が第 2搬送アーム H2に保持された基板 Pの上方に配置 される。
[0036] 制御装置 CONTは、第 2搬送アーム H2によって基板ステージ PSTよりアンロードし た露光処理後の基板 Pを、インターフェース部 IFまで搬送する。あるいは、制御装置 CONTは、第 2搬送アーム H2によって基板ステージ PSTよりアンロードした露光処 理後の基板 Pを、第 4搬送アーム H4に渡し、第 4搬送アーム H4によって、インターフ エース部 IFまで搬送することもできる。
[0037] また、搬送系 Hの搬送経路上には液体除去システム 90が設けられており、制御装 置 CONTは、第 2搬送アーム H2によって基板ステージ PSTよりアンロードした露光 処理後の基板 Pを、液体除去システム 90に渡すこともできる。その場合、制御装置 C ONTは、第 2搬送アーム H2によって基板ステージ PSTよりアンロードした露光処理 後の基板 Pを、液体除去システム 90を介して、第 3搬送アーム H3又は第 4搬送ァー ム H4の一方に渡す。制御装置 CONTは、液体除去システム 90による処理内容に応 じて、第 3搬送アーム H3又は第 4搬送アーム H4の一方を選択し、その選択された搬 送アーム (H3又は H4)を使って、基板 Pをインターフェース部 IFまで搬送する。
[0038] インターフェース部 IFまで搬送された露光処理後の基板 Pは、コータ 'デベロッパ装 置 CZD— SYSの搬送系 H に渡される。搬送系 H は、露光処理後の基板 Pを洗
CD CD
浄装置 100に搬送する。洗浄装置 100は、露光処理後の基板 Pを洗浄する。搬送系 H は、洗浄装置 100で洗浄された後の基板 Pを、コータ 'デベロッパ本体 CZDの
CD
現像装置に搬送する。コータ 'デベロツバ本体 CZDの現像装置は、搬送された基板 Pに対して現像処理を施す。
[0039] 上述のように、第 1搬送アーム HIは露光処理前の液体 LQが付着してない基板 Pを 保持して基板ステージ PSTにロードする。一方、第 2搬送アーム H2は液浸露光処理 後の液体 LQが付着している可能性のある基板 Pを保持して基板ステージ PSTよりァ ンロードする。このように、液体 LQが付着していない基板 Pを搬送する第 1搬送ァー ム HIと、液体 LQが付着している可能性のある基板 Pを搬送する第 2搬送アーム H2 とを使い分けているので、第 1搬送アーム HIには液体 LQが付着することなぐ基板 ステージ PSTにロードされる基板 Pの裏面などへの液体 LQの付着を防止することが できる。したがって、基板ステージ PSTの基板ホルダ PHが基板 Pを真空吸着保持し ても、基板ホルダ PHの吸着穴を介して真空ポンプなどの真空系に液体 LQが浸入す る等の不都合の発生を防止することができる。
[0040] また、液体除去システム 90は、液浸露光処理後の基板 P上の液体 LQを除去するも のであるが、後述するように、制御装置 CONTは、液体除去システム 90による液浸 露光処理後の基板 P上の液体 LQの除去動作を行わな 、場合もある。制御装置 CO NTは、液体除去システム 90による液浸露光処理後の基板 P上の液体 LQの除去動 作を行った場合には、第 3搬送アーム H3によって液体除去システム 90より基板 Pを 取り出して搬送し、基板 P上の液体 LQの除去動作を行わない場合には、第 4搬送ァ ーム H4によって基板 Pを搬送する。このように、液体除去システム 90によって液体除 去処理を施された基板 Pを搬送する第 3搬送アーム H3と、液体除去処理を施されず に液体 LQが付着している可能性のある基板 Pを搬送する第 4搬送アーム H4とを使 V、分けて 、るので、第 3搬送アーム H3に液体 LQが付着することが防止されて 、る。
[0041] また、基板 Pの搬送経路には、露光後の基板 Pから飛散 (落下)した液体 LQを回収 する回収機構 60が設けられている。回収機構 60は、基板ステージ PSTと液体除去 システム 90との間における搬送系 H (第 2搬送アーム H2)の搬送経路の下に配置さ れた樋部材 61と、樋部材 61で回収された液体 LQを樋部材 61より排出する液体吸 引装置 62とを備えている。樋部材 61は第 1チャンバ装置 CH1内部に設けられ、液体 吸引装置 62は第 1チャンバ装置 CH 1外部に設けられて 、る。樋部材 61と液体吸弓 I 装置 62とは管路 63を介して接続されており、管路 63には、この管路 63の流路を開 閉するバルブ 63Bが設けられている。また、回収機構 60は、液体除去システム 90と インターフェース部 IFとの間における搬送系 H (第 4搬送アーム H4)の搬送経路の下 に配置された樋部材 64も備えており、樋部材 64で回収された液体 LQも液体吸弓 |装 置 62によって、樋部材 64より排出されるようになっている。液体 LQが付着している基 板 Pを搬送系 Hで搬送した場合、基板 Pから液体 LQが落下する可能性があるが、そ の落下した液体 LQは樋部材 61、 64で回収することができる。落下した液体 LQを樋 部材 61、 64で回収することで、搬送経路上の周辺機器や部材に基板 Pからの液体 L Qが付着する等の不都合の発生を防止することができる。そして、液体吸引装置 62 はチャンバ装置 CH 1内部に設けられた樋部材 61、 64上の液体 LQを吸弓 |すること で、チャンバ装置 CH1外部に排出し、チャンバ装置 CH1内部の樋部材 61、 64に液 体 LQが留まらないようにすることができる。したがって、チャンバ装置 CH1内部に湿 度変動 (環境変動)が生じる不都合を防止することができる。ここで、液体吸引装置 6 2は、樋部材 61、 64に回収された液体 LQの吸引動作を連続的に行うことができるし 、予め設定された所定期間においてのみ吸引動作を断続的に行うこともできる。吸引 動作を連続的に行うことにより、樋部材 61、 64には液体 LQが留まらないので、チヤ ンバ装置 CH1内部の湿度変動をより一層防止することができる。一方、例えば露光 装置本体 EXでの基板 Pの露光中には、液体吸引装置 62による吸引動作 (排出動作 )を行わず、露光以外の期間においてのみ吸引動作を行うことにより、吸引動作によ つて発生する振動が露光精度に影響を与えるといった不都合を防止することができ る。
図 2は、コータ 'デベロッパ本体 CZDにおいて塗布処理が行われた後の基板 Pの 一例を示す図である。図 2において、基板 Pは、基材 1と、その基材 1の上面 1Aに形 成された膜 2とを有している。基材 1はシリコンウェハを含むものである。膜 2は感光材 (レジスト)によって形成されており、基材 1の上面 1Aの中央部の殆どを占める領域に 、所定の厚み (例えば約 200 m)で被覆されている。本実施形態においては、感光 材として化学増幅型レジストが用いられている。一方、基材 1の上面 1Aの周縁部 1A sには感光材 (膜) 2は被覆されておらず、その上面 1Aの周縁部 lAsにおいては、基 材 1が露出している。また、基材 1の側面 1Cや下面 1Bにも感光材 2は被覆されてい ない。スピンコート法等の所定の塗布方法で基材 1上に感光材 2を設けた場合、基材 1の周縁部にぉ 、て感光材 2が中央部より盛り上がるように多量に設けられる現象が 生じる場合がある。その基材 1の周縁部の感光材 2は剥離し易ぐ剥離した感光材 2 は異物となり、その異物が基板 P上に付着するとパターン転写精度に影響を及ぼす。 そこで、基材 1上に所定の塗布方法で感光材 2を設けた後、露光処理を行う前に、周 縁部 lAsの感光材 2を例えば溶剤を使って除去する処理 (所謂エッジリンス)が行わ れる。これにより、基材 1 (基板 P)の周縁部においては感光材 2が除去され、その周 縁部 lAsにおいて基材 1が露出する。
[0043] 次に、図 3を参照しながら露光装置本体 EXについて説明する。図 3は、露光装置 本体 EXを示す概略構成図である。露光装置本体 EXは、液浸法に基づいて基板 P を露光するものであって、投影光学系 PLの像面側における露光光 ELの光路空間を 液体 LQで満たすための液浸機構 300を備えている。液浸機構 300は、投影光学系 PLの像面近傍に設けられ、液体 LQを供給する供給口 12及び液体 LQを回収する 回収口 22を有するノズル部材 70と、ノズル部材 70に設けられた供給口 12を介して 投影光学系 PLの像面側に液体 LQを供給する液体供給機構 10と、ノズル部材 70に 設けられた回収口 22を介して投影光学系 PLの像面側の液体 LQを回収する液体回 収機構 20とを備えている。ノズル部材 70は、基板 P (基板ステージ PST)の上方にお いて、投影光学系 PLを構成する複数の光学素子のうち、投影光学系 PLの像面に最 も近 ヽ第 1光学素子 LSIを囲むように環状に形成されて!ヽる。
[0044] 露光装置本体 EXは、少なくともマスク Mのパターン像を基板 P上に投影している間 、液体供給機構 10から供給した液体 LQにより投影光学系 PLの投影領域 AR1を含 む基板 P上の一部に、投影領域 AR1よりも大きく且つ基板 Pよりも小さい液体 LQの 液浸領域 AR2を局所的に形成する局所液浸方式を採用している。具体的には、露 光装置本体 EXは、投影光学系 PLの像面に最も近!ヽ第 1光学素子 LS 1の下面 LS A と、投影光学系 PLの像面側に配置された基板 P上面との間の光路空間を液体 LQで 満たし、この投影光学系 PLと基板 Pとの間の液体 LQ及び投影光学系 PLを介してマ スク Mを通過した露光光 ELを基板 Pに照射することによってマスク Mのパターンの像 で基板 Pを露光する。制御装置 CONTは、液体供給機構 10を使って基板 P上に液 体 LQを所定量供給するとともに、液体回収機構 20を使って基板 P上の液体 LQを所 定量回収することで、基板 P上に液体 LQの液浸領域 AR2を形成する。 [0045] 照明光学系 ILは、露光用光源、露光用光源から射出された光束の照度を均一化 するオプティカルインテグレータ、オプティカルインテグレータからの露光光 ELを集 光するコンデンサレンズ、リレーレンズ系、及び露光光 ELによるマスク M上の照明領 域を設定する視野絞り等を有している。マスク M上の所定の照明領域は照明光学系 I Lにより均一な照度分布の露光光 ELで照明される。照明光学系 IL力 射出される露 光光 ELとしては、例えば水銀ランプカゝら射出される輝線 (g線、 h線、 i線)及び KrFェ キシマレーザ光(波長 248nm)等の遠紫外光(DUV光)や、 ArFエキシマレーザ光( 波長 193nm)及び Fレーザ光 (波長 157nm)等の真空紫外光 (VUV光)などが用
2
V、られる。本実施形態にぉ 、ては ArFエキシマレーザ光が用いられる。
[0046] 本実施形態にぉ ヽては、液浸領域 AR2を形成する液体 LQとして純水が用いられ ている。純水は、 ArFエキシマレーザ光のみならず、例えば、水銀ランプから射出さ れる輝線 (g線、 h線、 i線)及び KrFエキシマレーザ光 (波長 248nm)等の遠紫外光( DUV光)も透過可能である。
[0047] マスクステージ MSTは、マスク Mを保持して移動可能である。マスクステージ MST は、マスク Mを真空吸着 (又は静電吸着)により保持する。マスクステージ MSTは、制 御装置 CONTにより制御されるリニアモータ等を含むマスクステージ駆動装置 MST Dの駆動により、マスク Mを保持した状態で、投影光学系 PLの光軸 AXに垂直な平 面内、すなわち XY平面内で 2次元移動可能及び θ Z方向に微少回転可能である。 マスクステージ MST上にはマスクステージ MSTとともに移動する移動鏡 41が固設さ れている。また、移動鏡 41に対向する位置にはレーザ干渉計 42が設けられている。 マスクステージ MST上のマスク Mの 2次元方向の位置、及び θ Z方向の回転角(場 合によっては Θ X、 θ Y方向の回転角も含む)はレーザ干渉計 42によりリアルタイム で計測される。レーザ干渉計 42の計測結果は制御装置 CONTに出力される。制御 装置 CONTは、レーザ干渉計 42の計測結果に基づ ヽてマスクステージ駆動装置 M STDを制御してマスクステージ MSTを駆動し、マスクステージ MSTに保持されて!ヽ るマスク Mの位置制御を行う。
[0048] 投影光学系 PLは、マスク Mのパターンの像を所定の投影倍率 βで基板 Ρに投影 する。投影光学系 PLは、複数の光学素子を含み、それら光学素子は鏡筒 PKで保 持されている。本実施形態において、投影光学系 PLは、投影倍率 j8が例えば 1Z4 、 1/5,あるいは 1Z8の縮小系である。なお、投影光学系 PLは等倍系及び拡大系 のいずれでもよい。また、本実施形態においては、投影光学系 PLを構成する複数の 光学素子のうち、投影光学系 PLの像面に最も近い第 1光学素子 LSIは、鏡筒 PKよ り露出している。また、本実施形態の投影光学系 PLは反射素子を含まない屈折系で あるが、屈折素子と反射素子とを含む反射屈折系であってもよいし、屈折素子を含ま な 、反射系であってもよ 、。
[0049] 基板ステージ PSTは、基板 Pを保持する基板ホルダ PHを有し、投影光学系 PLの 像面側において、ベース部材 BP上で移動可能である。基板ホルダ PHは、例えば真 空吸着等により基板 Pを保持する。基板ステージ PST上には凹部 46が設けられてお り、基板 Pを保持するための基板ホルダ PHは凹部 46に配置されている。そして、基 板ステージ PSTのうち凹部 46以外の上面 47は、基板ホルダ PHに保持された基板 P の上面とほぼ同じ高さ(面一)になるような平坦面(平坦部)となって!/、る。
[0050] 基板ステージ PSTは、制御装置 CONTにより制御されるリニアモータ等を含む基 板ステージ駆動装置 PSTDによって駆動されて、基板 Pを基板ホルダ PHを介して保 持した状態で、ベース部材 BP上で XY平面内で 2次元移動可能及び θ Z方向に微 小回転可能である。更に基板ステージ PSTは、 Z軸方向、 Θ X方向、及び Θ Y方向 にも移動可能である。したがって、基板ステージ PSTに支持された基板 Pの上面は、 X軸、 Y軸、 Z軸、 0 X、 0 Y、及び 0 Z方向の 6自由度の方向に移動可能である。基 板ステージ PSTの側面には基板ステージ PSTとともに移動する移動鏡 43が固設さ れている。また、移動鏡 43に対向する位置にはレーザ干渉計 44が設けられている。 基板ステージ PST上の基板 Pの 2次元方向の位置、及び回転角はレーザ干渉計 44 によりリアルタイムで計測される。また、露光装置 EXは、基板ステージ PSTに支持さ れている基板 Pの上面の面位置情報を検出する斜入射方式のフォーカス'レベリング 検出系 30を備えている。フォーカス'レべリング検出系 30は、基板 Pの上面に検出光 Laを投射する投光部 31と、基板 Pの上面で反射した検出光 Laの反射光を受光する 受光部 32とを備えており、基板 Pの上面の面位置情報 (Z軸方向の位置情報、及び 基板 Pの θ X及び θ Y方向の傾斜情報)を検出する。レーザ干渉計 44の計測結果は 制御装置 CONTに出力される。フォーカス'レべリング検出系 30 (受光部 32)の検出 結果も制御装置 CONTに出力される。制御装置 CONTは、フォーカス'レベリング検 出系 30の検出結果に基づいて、基板ステージ駆動装置 PSTDを駆動し、基板 Pのフ オーカス位置 (Z位置)及び傾斜角( Θ X、 Θ Υ)を制御して基板 Pの上面を投影光学 系 PLの像面に合わせ込むとともに、レーザ干渉計 44の計測結果に基づいて、基板 Pの X軸方向、 Y軸方向、及び Θ Z方向における位置制御を行う。
[0051] 次に、液浸機構 300の液体供給機構 10及び液体回収機構 20について説明する。
液体供給機構 10は、液体 LQを投影光学系 PLの像面側に供給する。液体供給機構 10は、液体 LQを送出可能な液体供給部 11と、液体供給部 11にその一端部を接続 する供給管 13とを備えて 、る。供給管 13の他端部はノズル部材 70に接続されて!ヽ る。ノズル部材 70の内部には、供給管 13の他端部と供給口 12とを接続する内部流 路 (供給流路)が形成されている。液体供給部 11は、液体 LQを収容するタンク、加 圧ポンプ、及び液体 LQ中の異物を取り除くフィルタユニット等を備えている。なお、 液体供給機構 10のタンク、加圧ポンプ、フィルタユニット等は、その全てを露光装置 EXが備えている必要はなぐ露光装置 EXが設置される工場などの設備を代用して もよい。液体供給部 11の動作は制御装置 CONTにより制御される。
[0052] 液体回収機構 20は、投影光学系 PLの像面側の液体 LQを回収する。液体回収機 構 20は、液体 LQを回収可能な液体回収部 21と、液体回収部 21にその一端部を接 続する回収管 23とを備えている。回収管 23の他端部はノズル部材 70に接続されて いる。ノズル部材 70の内部には、回収管 23の他端部と回収口 22とを接続する内部 流路(回収流路)が形成されて!、る。液体回収部 21は例えば真空ポンプ等の真空系 (吸引装置)、回収された液体 LQと気体とを分離する気液分離器、及び回収した液 体 LQを収容するタンク等を備えている。なお、液体回収機構 20の真空系、気液分 離器、タンク等は、その全てを露光装置 EXが備えている必要はなぐ露光装置 EXが 設置される工場などの設備を代用してもよい。液体供給部 21の動作は制御装置 CO NTにより制御される。
[0053] 液体 LQを供給する供給口 12及び液体 LQを回収する回収口 22はノズル部材 70 の下面 70Aに形成されている。ノズル部材 70の下面 70Aは、基板 Pの上面、及び基 板ステージ PSTの上面 47と対向する位置に設けられている。ノズル部材 70は、光学 素子 LSIの側面を囲むように設けられた環状部材であって、供給口 12は、ノズル部 材 70の下面 70Aにおいて、投影光学系 PLの第 1光学素子 LSI (投影光学系 PLの 光軸 AX)を囲むように複数設けられている。また、回収口 22は、ノズル部材 70の下 面 70Aにおいて、第 1光学素子 LSIに対して供給口 12よりも外側に離れて設けられ ており、第 1光学素子 LSI及び供給口 12を囲むように設けられている。
[0054] そして、制御装置 CONTは、液体供給機構 10を使って基板 P上に液体 LQを所定 量供給するとともに、液体回収機構 20を使って基板 P上の液体 LQを所定量回収す ることで、基板 P上に液体 LQの液浸領域 AR2を局所的に形成する。液体 LQの液浸 領域 AR2を形成する際、制御装置 CONTは、液体供給部 11及び液体回収部 21を 駆動する。制御装置 CONTの制御のもとで液体供給部 11から液体 LQが送出される と、その液体供給部 11から送出された液体 LQは、供給管 13を流れた後、ノズル部 材 70の供給流路を介して、供給口 12より投影光学系 PLの像面側に供給される。ま た、制御装置 CONTのもとで液体回収部 21が駆動されると、投影光学系 PLの像面 側の液体 LQは回収口 22を介してノズル部材 70の回収流路に流入し、回収管 23を 流れた後、液体回収部 21に回収される。
[0055] 液体回収機構 20で回収された少なくとも一部の液体 LQを液体供給機構 10に戻し てもよい。あるいは、液体回収機構 20で回収された液体 LQを全て廃棄して、新しい 清浄な液体 LQを液体供給機構 10から供給するようにしてもよい。なお、ノズル部材 70などの液浸機構 1の構造は、上述の構造に限られず、例えば、欧州特許公開第 1 420298号公報、国際公開第 2004Z055803号公報、国際公開第 2004,05758 9号公報、国際公開第 2004Z057590号公報、国際公開第 2005/029559号公 報に記載されて 、るものも用いることができる。
[0056] 図 4は、基板ホルダ PHに保持された基板 Pが液浸露光処理されている状態を示す 断面図である。基板ホルダ PHは、基板ステージ PSTの凹部 46に配置されており、 基板 P (基材 1)の下面 1Bに対向する上面 51Aを有するベース部材 51と、ベース部 材 51の上面 51Aに設けられ、基板 Pの下面 1Bの周縁領域と対向する平面視ほぼ円 環状の上面 52Aを有する周壁部 52と、ベース部材 51の上面 51Aのうち周壁部 52 の内側に複数設けられたピン状の支持部 53とを備えている。また、ベース部材 51の 上面 51Aのうち支持部 53が設けられている位置以外の位置には、不図示の真空系 と接続する吸着穴 54が複数設けられている。すなわち、基板ホルダ PHは、所謂ピン チャック機構の一部であり、制御装置 CONTは、吸着穴 54に接続されている真空系 を駆動し、吸着穴 54を介して、ベース部材 51の上面 51Aと周壁部 52と基板 Pの下 面 1Bとで囲まれた空間 55の気体を吸引して、この空間 55を負圧にすることによって 、基板 Pの下面 1Bを支持部 53で支持する。
[0057] 図 4に示すように、基板 P上に液体 LQの液浸領域 AR2を形成して液体 LQと感光 材 2とを接触させた場合、感光材 2を介して液体 LQと基材 1とが接触する可能性があ る。例えば、液体 LQが感光材 2を浸透し、その浸透した液体 LQと基材 1とが接触し たり、感光材 2の一部に塗布欠陥がある場合には、その塗布欠陥部分を介して液体 LQと基材 1とが接触したりする可能性がある。また、基板 P上面の周縁領域を液浸露 光するときに、液体 LQと基材 1の周縁部 lAsとが接触する場合もある。
[0058] 液体の付着跡 (ウォーターマーク)は、不純物を含んだ状態 (汚染した状態)の液体 が乾燥することで形成される乾燥残渣であると一般的に言われている。ウォーターマ ークの原因となる不純物の 1つとして、液浸領域 AR2の液体 LQ中に溶出した基材 1 を構成する物質であるシリコンに起因するシリカ化合物が挙げられる。シリコンを含む 基材 1が酸素と反応すると、基材 1表面に酸化膜 (SiO )が形成される。酸化膜 (SiO
2
)は、基材 1と液体 LQとが接触する前においては、大気中の酸素と反応することで
2
形成されると考えられ、基材 1と液体 LQとが接触した後においては、大気中の酸素 に加えて、液体 LQ中の溶存酸素や大気中から液体 LQ中に溶解した酸素と反応す ることで形成されると考えられる。そして、基材 1の上面 1Aに酸化膜が形成された場 合、その上面 1Aの酸ィ匕膜と液体 LQとが感光材 2を介して (周縁部 lAsにおいては 感光材 2を介さずに)接触すると、基材 1上に形成された酸化膜は液体 LQ中に溶出 し、シリカ化合物 (H SiO )となって拡散する。この液体 LQ中に溶出したシリカ化合
2 3
物がウォーターマークの原因となる不純物として作用する。このように、基材 1上に形 成された酸ィ匕膜より液体 LQ中にウォーターマークの原因となるシリカ化合物が溶出 する。したがって、ウォーターマークの発生を抑制するための対策の 1つとして、液体 LQへのシリカ化合物の溶出を抑えることが挙げられる。換言すれば、液体 LQへのシ リカ化合物の溶出量を抑え、液体 LQ中のシリカ化合物の濃度を許容濃度以下に抑 えることで、ウォーターマークの発生を抑制することができる。
[0059] ところで、基板 P (基材 1)と液体 LQとが接触してから、シリカ化合物の溶出が開始さ れて液体 LQ中のシリカ化合物の濃度が許容濃度以上に達するまでには、所定時間 (例えば 3分程度) Tr力かると言われている。つまり、基板 P (基材 1)と液体 LQとが接 触している時間が長いほど、液体 LQへのシリカ化合物の溶出量が多くなり、液体 LQ 中のシリカ化合物の濃度が高くなる。したがって、基板 Pと液体 LQとが接触している 時間を所定時間(許容時間) Tr以下に抑えることで、液体 LQ中に、ウォーターマーク の原因となるシリカ化合物が多量に溶出することを防止することができる。すなわち、 基板 Pが液体 LQと接触してからの接液時間 Ta、すなわち基板 Pが液体 LQとを開始 した後の経過時間を予め定められた所定時間(許容時間) Tr以下に抑えることで、液 体 LQ中のシリカ化合物の濃度を許容濃度以下に抑えることができる。そのため、基 板 P上に液体 LQの液浸領域 AR2を形成した場合、基板 Pが液浸領域 AR2の液体 L Qと接触してからの接液時間 Taが許容時間 Trを越えな ヽように、基板 P上の液体 L Qの除去処理を行うことで、基板 Pにウォーターマークが形成されることを防止できる
[0060] 許容時間 Trは、例えば実験又はシミュレーションによって予め求めることができ、求 めた許容時間 Trに関する情報は、制御装置 CONTに予め記憶される。制御装置 C ONTは、許容時間 Trに応じて、基板 Pが液浸領域 AR2の液体 LQと接触して力ゝらの 接液時間 Taを管理しつつ、露光処理及び搬送処理を含む各種処理を行う。露光装 置は、制御装置 CONTの内部にまたはその外部に上記情報を記憶するメモリを備え ていてもよい。このようなメモリは、使用する液体 LQ及び基板 (基材及びその上に形 成される膜 (特に最上層))の種類に応じて許容時間 Trを記憶し得る。また、このよう なメモリは、使用する液体 LQ及び基板 (基材及びその上に形成される膜 (特に最上 層))の種類に応じて、前記許容時間 Trを考慮した接液時間を記憶し得る。
[0061] また、基板 Pと液体 LQとが接触して力も液体 LQへのシリカ化合物の溶出が開始さ れるまでの時間、及び Z又は液体 LQへのシリカ化合物の単位時間あたりの溶出量、 及び Z又は基板 Pが液体 LQと接触して力 液体 LQ中のシリカ化合物の濃度が許容 濃度以上に達するまでの時間は、液体 LQ,及び Z又は基板 P (基材 1)に応じて変 化する可能性がある。したがって、所定時間 Trを、液体 LQ、及び Z又は基板 Pに関 する情報に基づ ヽて設定し、基板 Pが液体 LQと接触してからの接液時間 Taを許容 時間 Tr以下に抑えることで、液体 LQ中のシリカ化合物の濃度を許容濃度以下に抑 え、基板 Pにウォーターマークが形成されることを防止できる。
[0062] また、図 5に示すように、基板 Pが、感光材 2の表面を覆うように形成されたトップコ ート膜と呼ばれる保護膜 3を備えている場合、基材 1から液体 LQ中へのシリカ化合物 の溶出を抑制できる可能性がある。その場合には、許容時間 Trを比較的長く設定す ることができる。このように、許容時間 Trを、基板 Pの膜構成 (積層構造及び特に最上 層を形成する材料)に関する情報に基づいて設定することもできる。
[0063] なお上述のように、液体 LQ中に溶出するシリカ化合物は、基材 1上に形成された 酸ィ匕膜 (SiO )に起因して生成されると考えられるため、酸化膜の形成を抑制するた
2
めに、例えばチャンバ装置内部の酸素濃度を低減して基板 Pが置かれる環境の酸素 濃度を低減したり、液浸領域 AR2の周囲の環境の酸素濃度を局所的に低減したり、 液体供給機構 10から供給される液体 LQ中の溶存酸素量を低減することができる。
[0064] また、本実施形態の露光装置 EX— SYSにおいて、ウォーターマークの原因となる 不純物としては、上述したような「(1)液浸領域 AR2の液体 LQ中に溶出した基材 1を 構成する物質であるシリコンに起因するシリカ化合物」の他に、「(2)液浸領域 AR2 の液体 LQ中に分散又は溶解した大気中の浮遊パーティクルやィ匕学物質などの汚 染物」が挙げられる。したがって、基板 Pが液体 LQと接触してからの接液時間 Taを 短くすることで、基板 Pと接触している液体 LQが大気に曝されている時間を短くする ことができ、液体 LQ中に大気中の汚染物が分散又は溶解する量を抑えることができ 、上記(2)に起因するウォーターマークの形成を抑制することができる。
[0065] 一方、ウォーターマークは、不純物を含んだ状態の液体が乾燥することで形成され る乾燥残渣であると言われている。このようなウォーターマークが不純物を含んだ状 態の液体が乾燥することで一旦形成されると、基板を液体に再度浸漬してもまたは基 板上に液体を流しても除去するのが極めて困難である。本実施形態では、ウォータ 一マークを形成するであろう不純物を含んだ液体を基板上で乾燥させな 、ようにして いる。具体的には、基板 Pと液体 LQとを接触させた後 (基板 Pの液浸露光完了後)、 基板 P上より液体 LQを完全に除去することなぐすなわち、基板 Pを濡れたまま洗浄 装置 100に搬送して洗浄処理に移行し、洗浄装置 100にお ヽてシリカ化合物や大気 中の汚染物を含むウォーターマークの原因となる不純物を除去することで、基板 P上 にウォーターマークが形成されることを抑制する。なお、「基板 Pを濡れたまま洗浄装 置 100に搬送する」とは、基板 Pの搬送中に液体が基板 P上で乾燥してウォーターマ ークが形成されない程度に基板上にバルタまたは水滴として残っている状態を意味 している。
[0066] なお、ウォーターマークの原因となる不純物としては、上記(1)、 (2)〖こカ卩えて、「(3 )基板 Pに吸着して ヽる吸着物」、「 (4)液体供給機構 10から供給される液体 LQ中に 含まれる不純物」なども挙げられる。したがって、基板 Pを露光する前に、例えばコー タ ·デベロツバ装置 CZD— SYSや露光装置 EX— SYSに設けられた洗浄装置を使 つて基板 Pを洗浄することで、上記(3)に起因するウォーターマークの発生を抑制す ることができる。また、液体供給機構 10から供給される液体 LQの品質 (水質)を向上 することで、上記 (4)に起因するウォーターマークの発生を抑制することができる。
[0067] 次に、上述した露光装置本体 EXを備えたデバイス製造システム SYSの動作の一 例につ 、て、図 6 (A)及び (B)のフローチャート図を参照しながら説明する。
[0068] コータ ·デベロツバ装置 CZD - SYS力 露光装置 EX— SYSのプリアライメント部 に露光処理前の基板 Pが搬送されると、制御装置 CONTは、ブリアライメント部にお いて、基板 Pを基板ステージ PSTに対して大ま力に位置合わせする。また、制御装置 CONTは、撮像装置 80によって、露光処理前の基板 Pの表面情報を取得する。露 光処理前の基板 Pの表面には液体 LQは付着しておらず、制御装置 CONTは、この 露光処理前の液体 LQが付着して 、な 、基板 Pの表面情報を、基準表面情報 (基準 画像情報)として記憶する (ステップ SA1)。
[0069] 次 、で、制御装置 CONTは、第 1搬送アーム HIによって、基板 Pを露光装置本体 EXの基板ホルダ PHにロードする。基板 Pは基板ホルダ PHに保持される。そして、 制御装置 CONTは、基板ホルダ PHに保持された基板 P上に液体 LQの液浸領域 A R2を形成するために、液体供給機構 10による液体 LQの供給動作及び液体回収機 構 20による回収動作を開始する。制御装置 CONTは、基板 Pと液浸領域 AR2を形 成するための液体 LQとが初めて接触した時点を計測開始時点 Tとして、タイマー 7
0
による時間計測を開始する (ステップ SA2)。
[0070] 本実施形態においては、制御装置 CONTは、基板 P上に液体供給機構 10による 液体 LQの供給動作を開始し、その液体供給機構 10から供給された液体 LQが基板 Pに初めて接触した時点を計測開始時点 Tとして、タイマー 7による時間計測を開始
0
する。この場合、例えばノズル部材 70の供給口 12近傍に液体 LQを検出可能な液体 センサを設けておき、制御装置 CONTは、その液体センサの検出結果に基づいて、 タイマー 7による時間計測を開始することができる。すなわち、供給口 12近傍に設け られた液体センサが液体 LQを初めて検出した時点と、基板 Pが供給口 12から供給さ れた液体 LQと初めて接触した時点とはほぼ同時なので、制御装置 CONTは、液体 センサが液体 LQを初めて検出した時点を、基板 Pと液体 LQとが初めて接触した時 点とすることができる。あるいは、制御装置 CONTが液体供給機構 10に液体 LQの 供給を開始させる信号を送信した時点力 時間計測を開始してもよい。この場合、予 めそのような信号が送信されて力 液体が基板 Pに接触するまでの必要時間を求め ておき、その必要時間を時間計測を開始した時刻から差し引くことで、現実的な計測 開始時点 Tを液体センサを用いることなく求めることができる。
0
[0071] あるいは、制御装置 CONTは、基板ステージ PSTの上面 47と投影光学系 PLとの 間に液体 LQの液浸領域 AR2を形成した後、基板ステージ PSTを XY方向に移動し て、液浸領域 AR2を基板 P上に初めて配置した時点を計測開始時点 Tとして、タイ
0
マー Tによる時間計測を開始するようにしてもよい。この場合、制御装置 CONTは、 基板ステージ PSTの XY方向に関する位置を計測するレーザ干渉計 44の計測結果 に基づいて、液浸領域 AR2が基板 P上に配置されたか否か、すなわち基板 Pと液体 LQとが接触した力否かを判断し、タイマー 7による時間計測を開始することができる。
[0072] 基板 P上に液体 LQの液浸領域 AR2が形成された後、制御装置 CONTは、基板 P の液浸露光を開始する (ステップ SA3)。制御装置 CONTは、照明光学系 ILより露 光光 ELを射出し、マスクステージ MSTに保持されて!、るマスク Mを露光光 ELで照 明する。マスク Mを通過した露光光 ELは、投影光学系 PL及び液浸領域 AR2の液 体 LQを介して基板ホルダ PHに保持されて 、る基板 P上に照射され、基板 Pは液浸 露光処理される。
[0073] 基板 P上には複数のショット領域が設定されており、 1つのショット領域への露光終 了後に、基板 Pのステッピング移動によって次のショット領域が走査開始位置に移動 し、以下、ステップ'アンド'スキャン方式で基板 Pを移動しながら各ショット領域に対 する走査露光処理が順次行われる。
[0074] 各ショット領域のそれぞれに対する液浸露光処理が終了した後 (ステップ SA4)、制 御装置 CONTは、液体供給機構 10による基板 P上への液体供給を停止するとともに 、タイマー 7の計測結果に基づいて、計測開始時点 T力 の経過時間が許容時間 T
0
rを越えた力否力 すなわち基板 Pが液浸領域 AR2の液体 LQと接触して力 の接液 時間 Taが許容時間 Trを越えた力否かを判断する (ステップ SA5)。
[0075] 例えば露光装置 EX— SYSが複数ロットの基板 Pを順次露光するとき、各ロット毎に 露光条件 (プロセス条件)を異ならせる場合がある。例えば、各ロット毎に基板 P—枚 当たりの露光処理時間(ひいては接液時間 Ta)が異なる場合、接液時間 Taが許容 時間 Tr未満となるロット (基板 P)と、接液時間 Taが許容時間 Tr以上となるロット (基 板 P)とが混在する可能性がある。その場合、制御装置 CONTは、接液時間 Taを管 理し、各基板 Pの露光完了毎に、接液時間 Taが許容時間 Trを越えたカゝ否かを判断 する。
[0076] ステップ SA5において、基板 Pが液浸領域 AR2の液体 LQと接触してからの接液時 間 Taが許容時間 Trを越えたと判断した場合、制御装置 CONTは、液体回収機構 2 0を使って、液体 LQの一部が基板 P上に残留するように、すなわち基板 Pが濡れた 状態を維持するように、基板 P上の液浸領域 AR2を形成して ヽる液体 LQを部分的 に回収する (ステップ SA6)。ここで、基板 Pが濡れた状態を維持することにより、液体 LQ回収後に残留した液体が基板 P上で直ちに乾燥してウォーターマークが形成さ れることが防止される。少なくとも後述するステップ SA9またはステップ SA17におけ る処理までは、基板 P上に残留した液体が乾燥してウォーターマークを形成しな 、程 度に、基板 P上に残留しておくのが望ましい。 [0077] 制御装置 CONTは、ステップ SA6にお 、て、液体回収機構 20を使って、基板 P上 の液体 LQを回収した後、第 2搬送アーム H2を使って、基板 Pを基板ホルダ PHよりァ ンロードする。第 2搬送アーム H2は、基板ホルダ PH力も基板 Pを濡れたままアンロー ドする (ステップ SA7)。
[0078] 図 7に示すように、第 2搬送アーム H2は、濡れた状態の基板 Pを搬送する。制御装 置 CONTは、第 2搬送アーム H2を使って、液体除去システム 90での液体除去作業 を行わずに、基板 Pを濡れたままインターフェース部 IFを介してコータ 'デベロツバ装 置 CZD— SYSへ搬送する (ステップ SA8)。なお、制御装置 CONTは、濡れた状態 の基板 Pを第 2搬送アーム H2から第 4搬送アーム H4に渡し、第 4搬送アーム H4によ つて、インターフェース部 IFを介してコータ ·デベロツバ装置 CZD— SYSまで搬送す るようにしてもょ 、。露光後の液体 LQが付着して 、る基板 Pを第 2搬送アーム H2 (又 は第 4搬送アーム H4)で搬送している最中、基板 Pから液体 LQが落下する可能性が あるが、その落下した液体 LQは樋部材 61 (又は 64)で回収することができる。落下し た液体 LQを樋部材 61で回収することで、搬送経路の周囲に液体 LQが飛散する等 の不都合を防止できる。
[0079] ここで、基板 Pを基板ホルダ PHよりアンロードした後、制御装置 CONTは、露光処 理後の基板 Pの表面を撮像装置 80によって観測することで表面情報を取得するよう にしてもよい。制御装置 CONTは、撮像装置 80の撮像結果と、ステップ SA1で求め た基準表面情報とに基づいて、基板 P上に液体 LQが付着していること (基板 Pが濡 れていること)を確認することができる。基板 Pの表面に液体 LQが付着しているときの 撮像状態と、付着していないときの撮像状態とは互いに異なるので、制御装置 CON Tは、ステップ SA1で求めた露光処理前の基板 Pの基準表面情報と、露光処理後の 基板 Pの表面情報とを比較することにより、液体 LQが付着してる力否か、すなわち基 板 Pが濡れているカゝ否かを観測することができる。何らかの原因で、基板 Pが濡れて V、な 、場合には、基板 Pに液体 LQを供給可能な液体供給装置を例えば搬送系 Hの 搬送経路上に設けておき、その液体供給装置を使って基板 Pに液体 LQを例えば吹 き付けるように供給することによって、基板 Pを濡らすことができる。
[0080] なお、制御装置 CONTは、フォーカス'レべリング系 30を使って、基板ホルダ PHか らアンロードされる前の基板 Pが濡れて ヽることを確認することもできる。基板 Pの表面 に液体 LQが付着しているときのフォーカス'レベリング系 30の受光部 32の受光状態 と、付着していないときの受光状態とは互いに異なるので、制御装置 CONTは、受光 部 32の受光結果に基づ ヽて、基板 Pが濡れて!/ヽることを確認することができる。
[0081] そして、基板ホルダ PH力も搬出された基板 Pは、コータ 'デベロツバ装置 CZD— S YSの洗浄装置 100に搬送され、洗浄装置 100は、搬送された基板 Pの洗浄処理を 行う(ステップ SA9)。なお上述したように、洗浄装置 100は露光装置 EX— SYSに設 けられていてもよい。
[0082] 図 8は、洗浄装置 100を示す図である。図 8において、洗浄装置 100は、基板 Pの 下面(基材 1の下面 1B)の中央部を保持するホルダ 101と、ホルダ 101に接続する軸 部 103と、基板 Pを保持したホルダ 101を軸部 103を介して回転する回転機構 102と 、液体の飛散を防止するためにホルダ 101に保持された基板 Pの周囲を囲むように 設けられたリング状部材 104と、基板 P上に洗浄液 LQ'を供給する供給部材 105とを 備えている。本実施形態においては、洗浄液 LQ'と、液浸領域 AR2の液体 LQとは 同じ液体 (純水)である。ホルダ 101の上面にはバキューム装置の一部を構成する真 空吸着孔が設けられており、ホルダ 101は基板 Pの下面中央部を吸着保持する。回 転機構 102は、モータ等のァクチユエータを含んでおり、ホルダ 101に接続された軸 103を回転することで、ホルダ 101に保持された基板 Pを θ Z方向に回転する。供給 部材 105は、ホルダ 101に保持された基板 Pの上方に配置されており、洗浄液 LQ, を基板 Pの上方より、基板 Pの上面に供給する。また、供給部材 105は、不図示の駆 動機構により、 X軸、 Y軸、 Z軸、 0 X、 0 Y、及び 0 Z方向に移動可能となっている。 すなわち、供給部材 105は、ホルダ 101に保持された基板 Pに対して相対的に移動 可能となっている。洗浄装置 100は、供給部材 105を基板 Pに対して相対的に移動 することにより、基板 Pに対して洗浄液 LQ'を供給する方向や、供給部材 105と基板 Pとの距離等を調整することができる。洗浄装置 100は、ホルダ 101に保持された基 板 Pに、供給部材 105より洗浄液 LQ'を供給し、基板 Pを洗浄液 LQ'で洗浄する。本 実施形態においては、洗浄装置 100は、回転機構 102によってホルダ 101に保持さ れた基板 Pを、図中、 θ Z方向に回転しながら、ホルダ 101に保持された基板 Pに対 して供給部材 105を相対的に移動しつつ、供給部材 105より洗浄液 LQ'を連続的に 供給する。これにより、基板 Pの上面の広い領域に洗浄液 LQ'が供給される。したが つて、洗浄装置 100は、基板 Pの広い領域を洗浄液 LQ'で洗浄することができる。ま た、ホルダ 101に保持された基板 Pの周囲にはリング状部材 104が設けられているの で、リング状部材 104によって第 2液体 LQ2の飛散を防止することができる。
[0083] 洗浄装置 100にお 、て洗浄処理を施された基板 Pは、例えば、洗浄液 LQ'の供給 を停止して軸 103を回転することにより、洗浄液 LQ'を除去した後、コータ 'デベロッ パ本体 CZDに搬送され、現像処理を施される (ステップ SA10)。基板 Pはウォータ 一マークの発生を抑制されているので、現像欠陥を引き起こすことなぐ良好に現像 処理される。
[0084] このように、許容時間 Trを越えてしまった基板 Pを濡れたまま洗浄装置 100まで搬 送することで、ウォーターマークの発生を抑制することができる。そして、基板 Pを濡れ たまま洗浄装置 100に搬送して洗浄処理を行 、、ウォーターマークの原因となる不純 物を含む液体 LQを洗い流してしまうので、基板 P上にウォーターマークが形成される ことを抑帘 Uすることができる。
[0085] ステップ SA5において、基板 Pが液浸領域 AR2の液体 LQと接触してからの接液時 間 Taが許容時間 Trを越えていないと判断した場合、制御装置 CONTは、液体回収 機構 20を使って、基板ホルダ PHに保持されて 、る基板 P上の液浸領域 AR2の液体 LQを十分に取り去る(ステップ SA11)。
[0086] 制御装置 CONTは、液体回収機構 20を使って基板 P上の液体 LQを十分に取り去 つた後、第 2搬送アーム H2を使って、基板 Pを基板ホルダ PHよりアンロードする (ス テツプ SA12)。
[0087] ここで、「基板 P上力も液浸領域 AR2を取り去る」とは、上述のように、液体回収機構 20を使って基板 P上力 液体 LQを回収することに加えて、液体回収機構 20を用い ずに例えば基板 Pを傾けて重力作用等による液体 LQの動きだけで基板 P上力 液 体を移動することも含む。あるいは、基板 P上から他の物体上に液浸領域 AR2を移 動させる場合も含む。例えば基板ステージ PSTを移動して、基板 P上力も基板ステー ジ PST (上面 47)上へ液浸領域 AR2を移動する場合や、図 10に示すように、基板 P 上に形成された液浸領域 AR2を計測ステージ PST2上に移動させることも含む。す なわち、「基板 P上力も液浸領域 AR2を取り去る」ために、任意の方法及びそれの方 法を実施する任意の機構を用いることができる。ここで、計測ステージ PST2は基板 P を保持しな!ヽステージであって、例えば特開昭 57— 117238号公報に開示されて ヽ るような照度ムラセンサゃ特開平 11 16816号公報に開示されているような照射量 センサ (照度センサ)等の露光処理に関する計測処理を行う各種計測器を搭載して いる。基板ステージ PST1と計測ステージ PST2とが互いに近接又は接触した状態で XY方向に一緒に移動することで、投影光学系 PLの像面側に形成された液浸領域 A R2を基板ステージ PST1上と計測ステージ PST2上との間で移動させることができる
[0088] 基板 Pを基板ホルダ PHよりアンロードした後、制御装置 CONTは、露光処理後の 基板 Pの表面を撮像装置 80によって観測することで表面情報を取得する (ステップ S A13)。そして、制御装置 CONTは、撮像装置 80の撮像結果と、ステップ SA1で求 めた基準表面情報とに基づ 、て、基板 P上に液体 LQが付着して 、な 、ことを確認 ( 付着している力否かを判断)する(ステップ SA14)。すなわち、基板ホルダ PH力 基 板 Pをアンロードする前に、液体回収機構 20を使って基板 P上の液体 LQを除去する 動作を行った場合でも、基板 P上に液体 LQが残留する可能性があるため、制御装 置 CONTは、撮像装置 80の撮像情報に基づいて、基板 P上に液体 LQが付着 (残 留)している力否かを判断する。なお、この場合においても、制御装置 CONTは、フ オーカス 'レベリング系 30を使って、基板ホルダ PHからアンロードされる前の基板 P に、液体 LQが付着して ヽるか否かを確認することができる。
[0089] ステップ SA14にお 、て、基板 P上に液体 LQが付着して 、な 、と判断した場合、制 御装置 CONTは、第 2搬送アーム H2を使って、液体 LQが付着していない基板 Pを 、インターフェース部 IFを介してコータ 'デベロッパ装置 CZD— SYSへ搬送する(ス テツプ SA15)。なお、制御装置 CONTは、液体 LQが付着していない(濡れていない )基板 Pを第 2搬送アーム H2から第 3搬送アーム H3に渡し、第 3搬送アーム H3によ つてインターフェース部 IFを介してコータ ·デベロツバ装置 CZD— SYSまで搬送す るようにしてもょ 、。コータ'デベロツバ装置 CZD— SYSまで搬送された基板 Pは、 現像処理を施される(ステップ SA10)。
[0090] 一方、ステップ SA14にお 、て、基板 P上に液体 LQが付着して 、ると判断した場合 、制御装置 CONTは、タイマー 7の計測結果に基づいて、計測開始時点 T力 の経
0 過時間が予め定められた許容時間 Trを越えた力否か、すなわち基板 Pが液浸領域 AR2の液体 LQと接触してからの接液時間 Taが許容時間 Trを越えたカゝ否かを判断 する(ステップ SA16)。
[0091] この場合、接液時間 Taは、計測開始時点 T力 液浸領域 AR2を取り去る動作を
0
行った (完了した)時点までの時間と、基板 P上力 液浸領域 AR2を取り去る動作を 行った後に基板 P上に液体 LQが残留している時間とを含んでいる。ステップ SA14 において、制御装置 CONTは、基板 P上から液浸領域 AR2を取り去った後に基板 P 上に液体 LQが残留して ヽる時間を含む接液時間 Taに応じて、基板 P上に残留して V、る液体 LQの除去を行うか否かを判断する。
[0092] ステップ SA16にお 、て、接液時間 Taが許容時間 Trを越えて ヽな 、判断した場合 、制御装置 CONTは、基板 P上に残留している液体 LQの除去動作を、液体除去シ ステム 90を使って実行する(ステップ S A17)。
[0093] 図 9は、液体除去システム 90を示す図である。液体除去システム 90は、基板ホルダ PH力 アンロードされた後の基板 P上の液体 LQの除去動作を行うものであって、基 板 Pを保持可能な保持テーブル 91と、保持テーブル 91を収容するカバー部材 92と 、保持テーブル 91に保持された基板 Pに気体を吹き付ける吹付ノズル 93とを備えて いる。カバー部材 92には、第 1、第 2開口 94、 95が形成されており、第 1、第 2開口 9 4、 95のそれぞれには、シャツタ 94A、 95Aが設けられている。液浸露光後の基板 P を保持した第 2搬送アーム H2は、保持テーブル 91を収容したカバー部材 92の内部 に、第 1開口 94より進入する。このとき制御装置 CONTはシャツタ 94Aを駆動して第 1開口 94を開放している。一方、第 2開口 95はシャツタ 95Aにより閉じられている。そ して、不図示の吹付ノズルが基板 Pの裏面に気体を吹き付けて、その基板 Pの裏面 に付着している液体を除去する。次いで、第 2搬送アーム H2は基板 Pを保持テープ ル 91に渡す。保持テーブル 91は渡された基板 Pを真空吸着保持する。カバー部材 92内部には、液体除去システム 90の一部を構成する吹付ノズル 93が配置されてお り、吹付ノズル 93には流路 96を介して気体供給系 97が接続されている。流路 96〖こ は、基板 Pに対して吹き付ける気体中の異物(ゴミやオイルミスト)を除去するフィルタ が設けられている。そして、気体供給系 97が駆動することにより、流路 96を介して吹 付ノズル 93より所定の気体が基板 Pの表面に吹き付けられ、基板 Pの表面に付着し ている液体 LQは吹き付けられた気体によって飛ばされて除去される。カバー部材 92 には、液体回収部 99が回収管 98を介して接続されている。回収管 98にはその回収 管 98の流路を開閉するバルブ 98Bが設けられている。基板 Pから飛ばされた液体 L Qはカバー部材 92に接続されている液体回収部 99により回収される。液体回収部 9 9はカバー部材 92内部の気体を飛散した液体 LQとともに吸引することで、基板 Pか ら飛ばされた液体 LQを回収する。ここで、液体回収部 99は、カバー部材 92内部の 気体及び飛散した液体 LQの吸引動作を継続的に行う。これにより、カバー部材 92 の内壁や底などカバー部材 92内部に液体 LQが留まらないので、カバー部材 92内 部の湿度が大きく変動することはない。また、シャツタ 94A、 95Aが開放されたときに も、カバー部材 92内の湿った気体がカバー部材 92の外へ流れ出ることもない。
[0094] 液体除去システム 90によって基板 P上の液体 LQを除去した後、制御装置 CONT は、第 3搬送アーム H3を使って、基板 Pを液体除去システム 90より搬出する。第 3搬 送アーム H3は、保持テーブル 91を収容したカバー部材 92の内部に、第 2開口 95よ り進入する。このとき制御装置 CONTはシャツタ 95Aを駆動して第 2開口 95を開放し ている。一方、第 1開口 94はシャツタ 94Aにより閉じられている。そして、第 3搬送ァ ーム H3は保持テーブル 91より搬出し、カバー部材 92の外側に出す。
[0095] 制御装置 CONTは、液体除去システム 90において液体除去処理を施された基板 Pを、第 3搬送アーム H3を使って、インターフェース部 IFを介してコータ 'デベロツバ 装置 CZD— SYSに搬送する (ステップ SA15)。搬送された基板 Pは、コータ 'デべ ロッパ本体 CZDによって現像処理を施される(ステップ SA10)。
[0096] ここで、制御装置 CONTは、液体除去システム 90で液体除去処理を施された基板 Pをインターフェース部 IFに搬送する前に、撮像装置 80を使って、液体除去処理後 の基板 Pの表面情報を取得することができる。制御装置 CONTは、撮像装置 80の撮 像結果と、ステップ SA1で求めた基準表面情報とに基づいて、基板 P上から液体 LQ が完全に除去されたカゝ否かを判断することができる。そして、液体 LQが付着している と判断し、許容時間 Trを未だ越えていないと判断した場合には、制御装置 CONTは 、液体除去システム 90による基板 P上の液体除去動作を再び実行することができる。
[0097] 一方、ステップ SA16にお 、て、接液時間 Taが許容時間 Trを越えたと判断した場 合、制御装置 CONTは、液体除去システム 90による液体除去動作を行わずに、濡 れた状態の基板 Pをインターフェース部 IFを介してコータ ·デベロツバ装置 CZD— S YSに搬送する (ステップ SA18)。搬送された基板 Pは、洗浄装置 100で洗浄処理を 施された後(ステップ SA9)、コータ 'デベロッパ本体 CZDによって現像処理を施さ れる(ステップ SA10)。
[0098] なお、ステップ SA5にお!/、て、制御装置 CONTは、それまでの接液時間 Taに、ス テツプ SA11での液体除去に要する時間などをカ卩えて、許容時間 Trを越える力否か を判断するのが望ましい。同様に、ステップ SA16において、制御装置 CONTは、液 体除去システム 90で液体の除去動作を開始するまでの時間も加味して、許容時間を 超えるカゝ否かを判断するのが望ま ヽ。
[0099] また、上述の実施形態において撮像装置 80を省略することもできる。すなわち、図 6 (A)及び(B)のフローチャートにおいて、ステップ SA1及びステップ SA13、 SA14 、 SA16〜SA18を省略して、基板 Pを基板ステージ PSTからアンロードした後に、ィ ンターフェース部 IFを介してコータ ·デベロツバ装置 CZD— SYSに搬送して、直ち に現像処理を行なうようにしてもょ ヽ。
[0100] また、液体回収機構 20による液体 LQの回収だけでは不十分と思われる場合には 、基板ステージ PSTからアンロードした基板 Pを液体除去システム 90に搬送するよう にしてもよい。図 11は、基板ステージ PSTからアンロードした基板 Pを液体除去シス テム 90へ搬送する一例を示すフローチャートである。なお、図 11のフローチャートに ぉ 、ても、撮像装置 80を省略した動作を示して 、る。
[0101] 制御装置 CONTは、第 1搬送アーム HIにより基板 Pを基板ホルダ PHにロードする とともに、基板ホルダ PHに保持された基板 P上に液体 LQの液浸領域 AR2を形成す るために液体供給機構 10による液体 LQの供給動作と液体回収機構 20による液体 LQの回収動作を開始する。そして制御装置 CONTは、基板 Pと液浸領域 AR2を形 成するために液体 LQとが接触した時点を計測開始時点 Tとして、タイマー 7による
0
時間計測を開始する (ステップ SB1)。
[0102] 基板 Ρ上に液体 LQの液浸領域 AR2が形成された後、制御装置 CONTは基板 Ρの 液浸露光を開始する (ステップ SB2)。各ショット領域のそれぞれに対する液浸露光 処理が終了した後 (ステップ SB3)、制御装置 CONTは、液浸供給機構 10による基 板 P上への液体供給を停止するとともに、液体回収機構 20を使って、基板 P上から液 浸領域 AR2の液体 LQを取り去る(ステップ SB4)。
[0103] この場合、液浸領域 AR2を基板 P上カゝら基板ステージ PST上などの他の物体上に 移動するだけでもよい。
[0104] 次に制御装置 CONTは、タイマー 7の計測結果に基づ 、て、基板 Pを基板ステー ジ PST (基板ホルダ PH)力もアンロードして、液体除去システム 90へ搬送し、液体除 去動作を開始するまでの経過時間が許容時間 Trを超えるカゝ否かを判断する (ステツ プ SB5)。ここで、制御装置 CONTは、液体除去システム 90へ搬送し、液体除去動 作を開始するまでの時間を接液時間 Taの一部としてステップ SB5における判断を行 なっている。これは、液体回収機構 20で基板 P上の液体を取り去っても、一部の液体 LQが基板 P上に残留している可能性があり、液体除去システム 90で液体除去作業 を行なうまでは液体 LQが基板 Pに接触して 、る可能性があるからである。ステップ S B5において、接液時間 Taが許容時間 Trを超えてしまうと判断した場合には、制御 装置 CONTは、第 2搬送アーム H2を使って基板 Pを基板ホルダ PHよりアンロードす る (ステップ SB6)。第 2搬送アーム H2は、液体除去システム 90での液体除去作業を 行なわずに、基板 Pをインターフェース部 IFを介してコータ 'デベロツバ装置 CZD— SYSの洗浄装置 100に搬送する(ステップ SB7)。コータ 'デベロツバ装置 CZD— S YSは、洗浄装置 100に搬送された基板 Pに付着している可能性のある不純物を含 む液体 LQを上述と同様にして洗い流した後(ステップ SB8)に、コータ 'デベロッパ本 体 CZDに洗浄後の基板 Pを搬送し、現像処理を施す (ステップ SB9)。
[0105] またステップ SB5にお 、て、接液時間 Taが許容時間 Trを超えな 、と判断した場合 には、制御装置 CONTは、第 2搬送アーム H2を使って、基板 Pを基板ホルダ PHか らアンロードするとともに (ステップ SB10)、液体除去システムに搬送して、上述と同 様にして基板 Pの液体除去動作を実行する (ステップ SB11)。液体除去システム 90 により基板 P上の液体を除去した後、制御装置 CONTは第 3搬送アーム H3を使って 、基板 Pを液体除去システム 90から搬出する。第 3搬送システム H3は、液体除去処 理された基板 Pを、インターフェース部 IFを介してコータ ·デベロツバ装置 CZD - SY Sに搬送する(ステップ SB 12)。コータ'デベロツバ装置 CZD— SYSに搬送された 基板 Pは、洗浄装置 100での洗浄処理を行なわずに、現像処理が施される (ステップ SB9)。
[0106] 以上のように、図 11のフローチャートの動作においては、接液時間 Taが所定の許 容時間 Trを超える前に、液体除去システム 90で液体除去処理を開始できる判断し た場合には、液体除去システム 90で汚染物が混入した液体が付着して ヽる可能性 のある基板 Pの液体除去処理を行なうようにして 、るので、ウォーターマークが発生 するのを防止することができる。また、液体除去処理を開始する前に、接液時間 Taが 許容時間 Trを超えてしまうと判断した場合には、基板 Pを直ちに洗浄装置 100に搬 送して、汚染物が混入した液体が付着して ヽる可能性のある基板 Pの洗浄処理を行 なうので、図 6 (A)及び (B)で示した動作例と同様に、ウォーターマークの発生を防 止することができる。
[0107] ところで、基板 Pの液浸露光中(ステップ SA3)に、何らかの原因で露光動作を停止 すべきエラーが発生することがある。そのようなエラーが発生した場合 (エラー信号が 検知された場合)、制御装置 CONTは、その基板 Pを基板ステージ PSTよりアンロー ドし、所定の退避位置に退避する処理を行う場合がある。制御装置 CONTは、エラ 一が発生した基板 Pの接液時間 Taが所定の許容時間 Trを超えな 、場合には、液体 回収機構 20による液体回収処理と液体除去システム 90による液体除去処理の少な くとも一方を行なってから、エラーが発生した基板 Pを所定の退避位置へ搬送する。 一方、エラーが発生した基板 Pの接液時間 Taが所定の許容時間 Trを超えてしまう場 合には、エラーが発生した基板 Pを直ちに洗浄装置 100へ搬送して、洗浄処理を行 なった後に、所定の退避位置へ搬送する。このようにすることで、エラーが発生した基 板 Pのウォーターマークの発生を防止することができる。
[0108] 上述の実施形態においては、制御装置 CONTは、予め定められた許容時間 Trに 応じて、基板 Pが液浸領域 AR2の液体 LQと接触して力ゝらの接液時間 Taを管理しつ つ、露光処理及び搬送処理を含む各種処理を行っているが、基板 P上から液浸領域 AR2を取り去って力 の時間 Tbを管理しつつ、各種処理を行うようにしてもよい。ここ で、「基板 P上力も液浸領域 AR2を取り去る」とは、上述のように、液体回収機構 20を 使って基板 P上力も液体 LQを回収することにカ卩えて、液体回収機構 20を用いずに 例えば基板 Pを傾けて重力作用等による液体 LQの動きだけで基板 P上力 液体を 移動することも含む。あるいは、基板 P上から他の物体上に液浸領域 AR2を移動さ せる場合も含む。例えば基板ステージ PSTを移動して、基板 P上力も基板ステージ P ST上へ液浸領域 AR2を移動する場合、あるいは、図 10に示すように、基板 P上に形 成された液浸領域 AR2を計測ステージ PST2上に移動させることも含む。すなわち、 「基板 P上力も液浸領域 AR2を取り去る」ために、任意の方法及びそれの方法を実施 する任意の機構を用いることができる。ここで、計測ステージ PST2は基板 Pを保持し ないステージであって、例えば特開昭 57— 117238号公報に開示されているような 照度ムラセンサゃ特開平 11— 16816号公報に開示されているような照射量センサ( 照度センサ)等の露光処理に関する計測処理を行う各種計測器を搭載して!/、る。基 板ステージ PST1と計測ステージ PST2とが互 、に近接又は接触した状態で XY方 向に一緒に移動することで、投影光学系 PLの像面側に形成された液浸領域 AR2を 基板ステージ PST1上と計測ステージ PST2上との間で移動させることができる。 基板 P上力も液浸領域 AR2を取り去った後の状態には、基板 P上に液体 LQが残 留して 、る状態が含まれる (基板 P上力 液浸領域 AR2を移動または除去しても、基 板 P上に液体 LQ力 例えば液滴状に、残留していることもあり得る)。その残留した液 体 LQが基板 P上で乾燥する前に、液体除去システム 90で液体除去作業が完了す れば、ウォーターマークの発生を防止することができる。したがって、基板 P上から液 浸領域 AR2を取り去る動作を行った (完了した)時点を計測開始時点 Tとして、計測 開始時点 T力 の経過時間、すなわち基板 P上力も液浸領域 AR2を取り去つてから 液体除去システム 90で液体除去処理を開始するまでの時間 Tbが予め定められた許 容時間 Tr'を超えるか否かを判断し、基板 P上力も液浸領域 AR2を取り去って力もの 時間 Tbが許容時間 Tr 'を越えな ヽと判断された場合には、基板 P上に残留した液体 LQの除去処理を実行することで、ウォーターマークの発生をより確実に防止できる。
[0110] また、基板 P上力も液浸領域 AR2を取り去つてからの時間 Tbが許容時間 Tr,を超 えると判断された場合には、液体除去システム 90で液体除去処理を行なわずに、直 ちに基板 Pを洗浄装置 100へ搬送し、洗浄処理することで、ウォーターマークの発生 を防止することができる。
[0111] 基板 P上力も液浸領域 AR2を取り去った後、基板ステージ PSTから基板 Pをアン口 ードし、液体除去システム 90で液体除去処理を開始するまでの時間はほぼ一定とみ なすことができるが、基板 P上の液体 LQの残留量や分布は、基板 Pの表面状態によ つても異なるため、許容時間 Tr'は基板毎、あるいはロット毎に変更する必要がある。 例えば、基板 Pの表面における液体 LQの接触角(動的接触角含む)が小さい場合に は、基板上 P上に液体 LQが大量に残留し、濡れ拡がってしまう。そのように残留した 大量の液体 LQが乾燥するまでの時間は長くなるので、許容時間 Tr'も長めに設定 することができる。逆に、基板 Pの表面における液体 LQの接触角が大きい(例えば 1 00° 以上の)場合には、基板 P上に液体 LQが小さな滴となって残留する程度である 。そのように残留した少量の液体が乾燥するまでの時間は非常に短いので、許容時 間 Tr'も短く設定しなければならない。あるいは後述するように、接触角を液体と基板 の表面を形成する材料の組合わせを適宜選択することで許容時間を調整することも できる。また、図 2に示した基板 Pのように、基板 Pの周縁部の膜が除去されている場 合には、基板 Pの中央付近に微小の滴が残り、周縁部に大量の液体が残留 (付着) する可能性もある。この場合には、残留した液体が乾燥するまでの時間が短いと思わ れる基板 Pの中央付近の表面状態に合わせて許容時間 Tr'を設定する必要がある。 基板 Pの表面状態と基板 P上に残留した液体が乾燥するまでの時間は、実験ゃシミ ユレーシヨンによって予め求めておくことができるので、制御装置 CONTに、基板 Pの 表面状態から許容時間 Tr'を決定するためのテーブルや関数を記憶しておき、次に 露光される基板 Pの情報 (基板 P表面における液体 LQとの接触角や膜の有無など) を予め取得することで、次に露光される基板 Pに対する許容時間 Tr'を決定すること ができる。
[0112] このように、基板 P上力 液浸領域 AR2を取り去つてからの経過時間 Tbが所定の 許容時間 Tr'を超える前に液体除去システム 90で液体除去処理を行ない、経過時 間 Tbが所定時間 Tr'を超えてしまう場合には、液体除去処理を行なわずに、基板 P に付着して 、る可能性のある汚染された液体を洗浄処理してしまうので、ウォーター マークの発生を防止することができる。
[0113] また、基板 Pの露光中にエラーが発生した場合には、制御装置 CONTは、エラー が発生した基板 P上力 液浸領域 AR2を取り去って力 の経過時間 Tbが所定の許 容時間 Tr'を超えない場合には、液体除去システム 90による液体除去処理を行なつ てから、エラーが発生した基板 Pを所定の退避位置へ搬送し、経過時間 Tbが許容時 間 Tr,を超えてしまう場合には、エラーが発生した基板 Pを直ちに洗浄装置 100へ搬 送して、洗浄処理を行なった後に、所定の退避位置へ搬送する。このよう〖こすること で、エラーが発生した基板 Pのウォーターマークの発生を防止することができる。
[0114] なお、経過時間 Tbが所定時間 Tr'を超えてしまうと判断して、液体除去システム 90 での液体除去処理を行なわずに、洗浄装置 100へ基板 Pを搬送する場合、洗浄装 置 100へ搬送される前に、基板 P上に残留して 、る液体が乾燥してしまう可能性があ る場合には、基板 Pをアンロードする前、あるいは基板 Pの搬送の途中で、基板 P上 に液体 LQを供給するようにしてもよい。なお、上述の実施形態において液体除去シ ステム 90は、露光装置 EX—SYS内に配置されている力 インターフェース部 IF、あ るいはコータ'デベロツバ装置 CZD— SYS内に配置してもよ!/、。
[0115] 上述の実施形態においては、基板 Pの接液時間 Ta、及び Z又は基板 P上から液浸 領域を取り去つてからの経過時間 Tbを管理して、基板 Pでのウォーターマークの発 生を防止するようにしているが、このような時間管理を行なわずに、基板ステージ PS Tから基板 Pを濡れた状態でアンロードして、直ちに、コータ 'デベロツバ装置 CZD - SYSの洗浄装置 100へ搬送するようにしてもょ 、。
[0116] 上記実施形態では、接液時間 Taが許容時間 Trを超えて ヽるかを判断して各種の 処理を行っていた力 許容時間 Trに基づいて接液時間 Ta、すなわち液浸状態を維 持している時間を設定することができる。特に、液体 LQ及び基板 Pの材料 (特に液体 LQと接する膜の材料)ごとに接液時間 Taを設定することができる。こうすることで、液 浸露光の露光特性に影響を及ぼすと考えられる液体と基板との接触による影響を最 小限にして最適な液浸露光を実現することができる。そのような液体 LQ及び基板 P の材料ごとに設定された接液時間 Taは予め露光装置の制御装置または記憶装置に 記憶させてもよい。
本実施形態の場合には、基板 Pを濡れた状態で搬送するので、液体回収機構 20 を省略することもできる。また、洗浄装置 100へ基板 Pを搬送するまでに基板 Pが乾 燥しないような適量の液体が基板 P上に残留するように液体回収機構 20での回収動 作を行なうようにしてもよい。また、液体回収機構 20による液体回収を行って、基板 P 上力ゝら液浸領域 AR2を取り去っても、洗浄装置 100へ基板 Pを搬送するまでに基板 Pが乾燥しないような適量の液体が基板 P上に残留するように基板 Pの表面に所定の 処理を施してもよい。例えば、基板 P表面における液体 LQの接触角(動的接触角含 む)が小さくなるように基板 Pの表面に所定の膜を形成することができる。接触角は、 液体 LQと基板 Pの表面 (液体と接触する面)を形成する材料の組合わせで決定され るので、それらを予め選定することで、液体 LQの基板上での残留のし易さや基板と 液体 LQが接触する接液時間の許容範囲を制御することができる。すなわち、本発明 では、基板上から液浸領域を取り去った後に基板上に液体が残留するように基板の 液体に対する接触角を設定することで、基板上に液体の付着跡 (ウォーターマーク) が形成されることを抑制できる。なお、上述の実施形態においては、基板 Pでのゥォ 一ターマークの発生を防止するために、基板 pの接液時間 Ta、及び Z又は基板 P上 力 液浸領域を取り去って力もの経過時間 Tbを管理して 、るが、基板 Pの接液時間 Ta、及び Z又は基板 P上力 液浸領域を取り去って力 の経過時間 Tbの管理は、こ の目的に限られない。例えば、基板 Pと液体 LQとの接触時間が許容時間を超えてし まうと基板 Pの感光材 3の改質が起こり、現像後に基板 P上にパターン形成されるべき パターンの線幅に異常が生じることがある。基板 P上に形成されるパターンの線幅の エラーはデバイス欠陥となる可能性がある。したがって、基板上に形成されるパター ンの線幅変化を考慮して接液時間 Ta、及び Z又は経過時間 Tbの許容時間 Trを設 定するようにしてもよい。この場合、接液時間 Taが許容時間 Trを超えてしまった場合 には、パターンの線幅エラーが生じないように、コータ 'デベロツバ装置 C/D— SYS で液浸露光後の基板 Pに対して行われる加熱処理の条件 (加熱温度、加熱時間など )を調整することができる。また、接液時間 Taが許容時間 Trを超えてしまうことが予め わ力つている場合には、ノターンの線幅エラーが生じないように、液浸露光中の基板 Pに対するドーズ量を調整してもよ 、。
[0118] 上述したように、本実施形態における液体 LQは純水を用いている。純水は、半導 体製造工場等で容易に大量に入手できるとともに、基板 P上のフォトレジストや光学 素子 (レンズ)等に対する悪影響がない利点がある。また、純水は環境に対する悪影 響がないとともに、不純物の含有量が極めて低いため、基板 Pの表面、及び投影光 学系 PLの先端面に設けられている光学素子の表面を洗浄する作用も期待できる。 なお工場等力 供給される純水の純度が低 、場合には、露光装置が超純水製造器 を持つようにしてもよい。
[0119] そして、波長が 193nm程度の露光光 ELに対する純水(水)の屈折率 nはほぼ 1. 4 4と言われており、露光光 ELの光源として ArFエキシマレーザ光(波長 193nm)を用 いた場合、基板 P上では lZn、すなわち約 134nmに短波長化されて高い解像度が 得られる。更に、焦点深度は空気中に比べて約 n倍、すなわち約 1. 44倍に拡大され るため、空気中で使用する場合と同程度の焦点深度が確保できればよい場合には、 投影光学系 PLの開口数をより増カロさせることができ、この点でも解像度が向上する。
[0120] 本実施形態では、投影光学系 PLの先端に光学素子 LSIが取り付けられており、こ のレンズにより投影光学系 PLの光学特性、例えば収差 (球面収差、コマ収差等)の 調整を行うことができる。なお、投影光学系 PLの先端に取り付ける光学素子としては 、投影光学系 PLの光学特性の調整に用いる光学プレートであってもよい。あるいは 露光光 ELを透過可能な平行平面板であってもよ ヽ。
[0121] なお、液体 LQの流れによって生じる投影光学系 PLの先端の光学素子と基板 Pと の間の圧力が大きい場合には、その光学素子を交換可能とするのではなぐその圧 力によって光学素子が動かな 、ように堅固に固定してもよ 、。
[0122] なお、本実施形態では、投影光学系 PLと基板 P表面との間は液体 LQで満たされ ている構成であるが、例えば基板 Pの表面に平行平面板力もなるカバーガラスを取り 付けた状態で液体 LQを満たす構成であってもよ ヽ。
[0123] また、上述の実施形態の投影光学系は、先端の光学素子の像面側の光路空間を 液体で満たしているが、国際公開第 2004Z019128号パンフレットに開示されてい るように、先端の光学素子のマスク側の光路空間も液体で満たす投影光学系を採用 することちでさる。
[0124] なお、本実施形態の液体 LQは水である力 水以外の液体であってもよ 、、例えば 、露光光 ELの光源が Fレーザである場合、この Fレーザ光は水を透過しないので、
2 2
液体 LQとしては Fレーザ光を透過可能な例えば、過フッ化ポリエーテル (PFPE)や
2
フッ素系オイル等のフッ素系流体であってもよい。この場合、液体 LQと接触する部分 には、例えばフッ素を含む極性の小さ!ヽ分子構造の物質で薄膜を形成することで親 液化処理する。また、液体 LQとしては、その他にも、露光光 ELに対する透過性があ つてできるだけ屈折率が高ぐ投影光学系 PLや基板 P表面に塗布されているフオトレ ジストに対して安定なもの(例えばセダー油)を用いることも可能である。この場合も表 面処理は用いる液体 LQの極性に応じて行われる。液体 LQとして、種々の流体、例 えば、超臨界流体を用いることも可能である。
[0125] なお、上記各実施形態の基板 Pとしては、半導体デバイス製造用の半導体ウェハ のみならず、ディスプレイデバイス用のガラス基板や、薄膜磁気ヘッド用のセラミック ウェハ、あるいは露光装置で用いられるマスクまたはレチクルの原版 (合成石英、シリ コンウェハ)等が適用される。
[0126] 露光装置 EXとしては、マスク Mと基板 Pとを同期移動してマスク Mのパターンを走 查露光するステップ ·アンド'スキャン方式の走査型露光装置 (スキャニングステツパ) の他に、マスク Mと基板 Pとを静止した状態でマスク Mのパターンを一括露光し、基 板 Pを順次ステップ移動させるステップ ·アンド ·リピート方式の投影露光装置 (ステツ ノ )にも適用することができる。
[0127] また、露光装置 EXとしては、第 1パターンと基板 Pとをほぼ静止した状態で第 1バタ ーンの縮小像を投影光学系 (例えば 1Z8縮小倍率で反射素子を含まな 、屈折型投 影光学系)を用 、て基板 P上に一括露光する方式の露光装置にも適用できる。この 場合、更にその後に、第 2パターンと基板 Pとをほぼ静止した状態で第 2パターンの 縮小像をその投影光学系を用いて、第 1パターンと部分的に重ねて基板 P上に一括 露光するスティツチ方式の一括露光装置にも適用できる。また、ステイッチ方式の露 光装置としては、基板 P上で少なくとも 2つのパターンを部分的に重ねて転写し、基 板 Pを順次移動させるステップ 'アンド'ステイッチ方式の露光装置にも適用できる。ま た、上記実施形態では投影光学系 PLを備えた露光装置を例に挙げて説明してきた 力 投影光学系 PLを用いない露光装置及び露光方法に本発明を適用することがで きる。
[0128] また、本発明は、ツインステージ型の露光装置にも適用できる。ツインステージ型の 露光装置の構造及び露光動作は、例えば特開平 10— 163099号及び特開平 10— 214783号(対応米国特許 6, 341, 007、 6, 400, 441、 6, 549, 269及び 6, 590 ,634)、特表 2000— 505958号(対応米国特許 5, 969, 441)あるいは米国特許 6 , 208, 407に開示されており、本国際出願で指定または選択された国の法令で許 容される限りにお 、て、それらの開示を援用して本文の記載の一部とする。
[0129] 更に、特開平 11— 135400号公報に開示されているように、基板を保持する基板 ステージと基準マークが形成された基準部材ゃ各種の光電センサを搭載した計測ス テージとを備えた露光装置にも本発明を適用することができる。
[0130] また、上述の実施形態においては、投影光学系 PLと基板 Pとの間に局所的に液体 を満たす露光装置を採用しているが、本発明は、特開平 6— 124873号公報、特開 平 10— 303114号公報及び米国特許第 5, 825, 043号に開示されているような、露 光対象の基板表面全体を液体に浸けた状態で基板の露光を行う液浸露光装置にも 適用可能である。そのような液浸露光装置の構造及び露光動作は、米国特許第 5, 8 25, 043号に詳細に記載されており、本国際出願で指定または選択された国の法令 で許容される限りにおいて、この米国特許の記載内容を援用して本文の記載の一部 とする。
[0131] 露光装置 EXの種類としては、基板 Pに半導体素子パターンを露光する半導体素 子製造用の露光装置に限られず、液晶表示素子製造用又はディスプレイ製造用の 露光装置や、薄膜磁気ヘッド、撮像素子 (CCD)あるいはレチクル又はマスクなどを 製造するための露光装置などにも広く適用できる。
[0132] 基板ステージ PSTやマスクステージ MSTにリニアモータを用いる場合は、エアベア リングを用いたエア浮上型およびローレンツ力またはリアクタンス力を用いた磁気浮 上型のどちらを用いてもよい。また、各ステージ PST、 MSTは、ガイドに沿って移動 するタイプでもよぐガイドを設けないガイドレスタイプであってもよい。ステージにリニ ァモータを用 \ヽた f列 ίま、米国特許 5, 623, 853及び 5, 528, 118【こ開示されており 、それぞれ本国際出願で指定または選択された国の法令で許容される限りにおいて 、これらの文献の記載内容を援用して本文の記載の一部とする。
[0133] 各ステージ PST、 MSTの駆動機構としては、二次元に磁石を配置した磁石ュ-ッ トと、二次元にコイルを配置した電機子ユニットとを対向させ電磁力により各ステージ PST、 MSTを駆動する平面モータを用いてもよい。この場合、磁石ユニットと電機子 ユニットとのいずれか一方をステージ PST、 MSTに接続し、磁石ユニットと電機子ュ ニットとの他方をステージ PST、 MSTの移動面側に設ければよ!、。
[0134] 基板ステージ PSTの移動により発生する反力は、投影光学系 PLに伝わらないよう に、特開平 8— 166475号公報(米国特許 5, 528, 118)に記載されているように、フ レーム部材を用いて機械的に床 (大地)に逃がしてもよい。本国際出願で指定または 選択された国の法令で許容される限りにおいて、米国特許 5, 528, 118の記載内容 を援用して本文の記載の一部とする。
[0135] マスクステージ MSTの移動により発生する反力は、投影光学系 PLに伝わらないよ うに、特開平 8— 330224号公報 (米国特許第 5, 874, 820)に記載されているように 、フレーム部材を用いて機械的に床 (大地)に逃がしてもよい。本国際出願で指定ま たは選択された国の法令で許容される限りにおいて、米国特許第 5, 874, 820の開 示を援用して本文の記載の一部とする。
[0136] 以上のように、本願実施形態の露光装置 EXは、本願請求の範囲に挙げられた各 構成要素を含む各種サブシステムを、所定の機械的精度、電気的精度、光学的精 度を保つように、組み立てることで製造される。これら各種精度を確保するために、こ の組み立ての前後には、各種光学系については光学的精度を達成するための調整 、各種機械系については機械的精度を達成するための調整、各種電気系について は電気的精度を達成するための調整が行われる。各種サブシステムから露光装置へ の組み立て工程は、各種サブシステム相互の、機械的接続、電気回路の配線接続、 気圧回路の配管接続等が含まれる。この各種サブシステムから露光装置への組み立 て工程の前に、各サブシステム個々の組み立て工程があることはいうまでもない。各 種サブシステムの露光装置への組み立て工程が終了したら、総合調整が行われ、露 光装置全体としての各種精度が確保される。なお、露光装置の製造は温度およびク リーン度等が管理されたクリーンルームで行うことが望ましい。
半導体デバイス等のマイクロデバイスは、図 12に示すように、マイクロデバイスの機 能 ·性能設計を行うステップ 201、この設計ステップに基づいたマスク(レチクル)を製 作するステップ 202、デバイスの基材である基板を製造するステップ 203、前述した 実施形態の露光装置 EXによりマスクのパターンを基板に露光し、露光した基板を現 像する基板処理 (露光処理ステップ) 204、デバイス組み立てステップ (ダイシングェ 程、ボンディング工程、ノ ッケージ工程などの加工プロセスを含む) 205、検査ステツ プ 206等を経て製造される。なお、基板処理ステップ 204には、図 6 (A)及び (B)及 び図 11で説明した処理工程が含まれる。

Claims

請求の範囲
[1] 基板処理方法であって、
液体の液浸領域を基板上に形成し、前記液浸領域の液体を介して前記基板に露 光光を照射して前記基板を露光することと、
前記基板が前記液浸領域の液体と接触している接液時間を管理することを含む基 板処理方法。
[2] 前記接液時間が所定の許容時間を超えな 、ように、前記基板上の液体を除去する 請求項 1記載の基板処理方法。
[3] 前記基板上から液浸領域を取り去ることを更に含み、
前記接液時間は、前記基板上から液浸領域を取り去った後に前記基板上に液体 が残留している場合には、基板上に液体が残留している残留時間も含む請求項 2記 載の基板処理方法。
[4] 前記基板は、基材と該基材表面に形成された膜とを有し、
前記許容時間は、前記基板に関する情報に基づいて設定される請求項 2記載の基 板処理方法。
[5] 前記基材はシリコンカゝら形成されて ヽる請求項 4記載の基板処理方法。
[6] 前記許容時間は、前記基板上に液体の付着跡が形成されないように設定される請 求項 4記載の基板処理方法。
[7] 請求項 1に記載の基板処理方法を含む露光方法。
[8] 基板処理方法であって、
液体の液浸領域を基板上に形成し、前記液浸領域の液体を介して前記基板に露 光光を照射して前記基板を露光することと、
前記基板上から液浸領域を取り去ることと、
前記基板上力 液浸領域を取り去った後の時間を管理することを含む基板処理方 法。
[9] 前記基板上から液浸領域を取り去った後の時間が所定の許容時間を超える前に、 前記基板上に残留した液体を除去する請求項 8記載の基板処理方法。
[10] 前記基板は、基材と該基材表面に形成された膜とを有し、 前記許容時間は、前記基板に関する情報に基づいて設定される請求項 9記載の基 板処理方法。
[11] 前記基材はシリコンから形成されている請求項 10記載の基板処理方法。
[12] 前記許容時間は、前記基板上に液体の付着跡が形成されないように設定される請 求項 8記載の基板処理方法。
[13] 前記基板上力 液体を取り去った後の時間に応じて、前記基板上に残留している 液体の除去を行うか否かを判断する請求項 8〜12のいずれか一項記載の基板処理 方法。
[14] 請求項 8に記載の基板処理方法を含む露光方法。
[15] 基板処理方法であって、
液体の液浸領域を基板上に形成し、前記液浸領域の液体を介して前記基板に露 光光を照射して前記基板を露光することと、
前記基板上から液浸領域を取り去ることと、
前記基板上力 液浸領域を取り去った後に前記基板上に液体が残留するように、 前記基板の液体に対する接触角を設定することを含む基板処理方法。
[16] 前記基板上に液体の付着跡が形成されな!ヽように、前記接触角が設定される請求 項 15記載の基板処理方法。
[17] 前記液体と基板の液体と接する面の材料とを選定することで接触角を設定する請 求項 15記載の基板処理方法。
[18] 請求項 15に記載の基板処理方法を含む露光方法。
[19] 液体の液浸領域を基板上に形成し、前記液浸領域の液体を介して前記基板に露 光光を照射して前記基板を露光する露光装置であって、
前記基板を保持する基板ホルダと、
前記基板上の液体を除去する液体除去機構と、
前記基板が前記液浸領域の液体と接触している接液時間を管理する制御装置とを 備えた露光装置。
[20] 前記液体除去機構は、前記接液時間が所定の許容時間を超えな!/ヽように、前記基 板上の液体を除去する請求項 19記載の露光装置。
[21] 前記液体除去機構は、前記基板ホルダから前記基板を搬出した後に、前記基板上 の液体を除去する請求項 20記載の露光装置。
[22] 前記液体除去機構は、前記基板ホルダから前記基板を搬出する前に、前記基板 上の液体を除去する請求項 20記載の露光装置。
[23] 露光後の基板に現像処理を行う基板処理装置に接続され、
前記接液時間が所定の許容時間を越えた場合には、前記液体除去機構による液 体除去を行わずに、前記基板を前記基板処理装置へ搬送する請求項 19〜22のい ずれか一項記載の露光装置。
[24] 前記制御装置が、露光される基板及び使用する液体の少なくとも一方に応じて前 記接液時間を管理する請求項 19に記載の露光装置。
[25] さらに、露光される基板及び使用する液体の少なくとも一方に応じた前記接液時間 の情報を記憶した記憶装置を備える請求項 24に記載の露光装置。
[26] さらに、前記接液時間を計測するタイマーを備える請求項 19に記載の露光装置。
[27] 液体の液浸領域を基板上に形成し、前記液浸領域の液体を介して前記基板に露 光光を照射して前記基板を露光する露光装置であって、
前記基板を保持する基板ホルダと、
前記液浸領域を形成する液体と接触した基板を、前記基板ホルダから濡れたまま 搬送する搬送系とを備えた露光装置。
[28] 前記基板上力 液浸領域を取り去った後に、前記基板上に液体が残留するように、 前記基板の液体に対する接触角が設定されて!ヽる請求項 27記載の露光装置。
[29] 前記基板ホルダカゝら搬出された基板の洗浄を行う洗浄装置を更に備えた請求項 2
7記載の露光装置。
[30] 露光後の基板に現像処理を行う基板処理装置に接続され、
前記搬送系は、前記基板を濡れたまま前記基板処理装置へ搬送する請求項 27〜 29の 、ずれか一項記載の露光装置。
[31] 液体の液浸領域を基板上に形成し、前記液浸領域の液体を介して前記基板に露 光光を照射して前記基板を露光する露光装置であって、
前記基板を保持する基板ホルダと、 前記基板が前記液浸領域の液体と接触している接液時間を管理する制御装置とを 備えた露光装置。
[32] 前記制御装置は、前記接液時間に関する所定の許容時間を管理する請求項 31記 載の露光装置。
[33] 前記許容時間は、露光される基板及び使用する液体の少なくとも一方に応じて設 定される請求項 32に記載の露光装置。
[34] 前記許容時間の情報を記憶した記憶装置を備える請求項 33に記載の露光装置。
[35] さらに、前記接液時間を計測するタイマーを備える請求項 31に記載の露光装置。
[36] 請求項 19または請求項 27または請求項 31記載の露光装置を用いるデバイス製造 方法。
PCT/JP2005/022329 2004-12-06 2005-12-06 基板処理方法、露光方法、露光装置及びデバイス製造方法 WO2006062074A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US11/792,054 US20080137056A1 (en) 2004-12-06 2005-12-06 Method for Processing Substrate, Exposure Method, Exposure Apparatus, and Method for Producing Device
EP05814663A EP1833082A4 (en) 2004-12-06 2005-12-06 SUBSTRATE PROCESSING METHOD, EXPOSURE METHOD, EXPOSURE DEVICE AND METHOD FOR MANUFACTURING COMPONENTS

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-352958 2004-12-06
JP2004352958 2004-12-06

Publications (1)

Publication Number Publication Date
WO2006062074A1 true WO2006062074A1 (ja) 2006-06-15

Family

ID=36577901

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/022329 WO2006062074A1 (ja) 2004-12-06 2005-12-06 基板処理方法、露光方法、露光装置及びデバイス製造方法

Country Status (5)

Country Link
US (1) US20080137056A1 (ja)
EP (1) EP1833082A4 (ja)
KR (1) KR20070100865A (ja)
TW (1) TW200625026A (ja)
WO (1) WO2006062074A1 (ja)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070114718A (ko) * 2005-02-28 2007-12-04 가부시키가이샤 니콘 현미경용 어댑터 및 현미경 장치
WO2006118258A1 (ja) * 2005-04-28 2006-11-09 Nikon Corporation 露光方法及び露光装置、並びにデバイス製造方法
JP4654120B2 (ja) * 2005-12-08 2011-03-16 東京エレクトロン株式会社 塗布、現像装置及び塗布、現像方法並びにコンピュータプログラム
JP2009071193A (ja) * 2007-09-14 2009-04-02 Canon Inc 露光装置及びデバイスの製造方法
TWI383152B (zh) * 2009-04-03 2013-01-21 Mjc Probe Inc Detection device
NL2016982A (en) * 2015-07-16 2017-01-19 Asml Netherlands Bv An Inspection Substrate and an Inspection Method
SG11201804115UA (en) * 2015-11-20 2018-06-28 Asml Netherlands Bv Lithographic apparatus and method of operating a lithographic apparatus
NL2019071A (en) * 2016-07-07 2018-01-11 Asml Netherlands Bv An Inspection Substrate and an Inspection Method
JP7154995B2 (ja) * 2018-12-17 2022-10-18 株式会社Screenホールディングス 基板処理装置

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0942832A (ja) * 1995-07-24 1997-02-14 Olympus Optical Co Ltd 加熱乾燥装置
JPH10116806A (ja) * 1996-10-14 1998-05-06 Nittetsu Semiconductor Kk 半導体ウエハの洗浄方法
WO1999049504A1 (fr) 1998-03-26 1999-09-30 Nikon Corporation Procede et systeme d'exposition par projection
JP2002134461A (ja) * 2000-10-25 2002-05-10 Sony Corp 乾燥方法
JP2003168668A (ja) * 2001-12-04 2003-06-13 Tokyo Electron Ltd 基板処理装置及び基板処理方法
JP2004101130A (ja) * 2002-09-12 2004-04-02 Sons Engineering Co Ltd 真空乾燥装置
JP2004119717A (ja) * 2002-09-26 2004-04-15 Dainippon Screen Mfg Co Ltd 基板処理方法および基板処理装置
WO2004053952A1 (ja) 2002-12-10 2004-06-24 Nikon Corporation 露光装置及びデバイス製造方法
WO2004053953A1 (ja) * 2002-12-10 2004-06-24 Nikon Corporation 露光装置及びデバイス製造方法
JP2004319724A (ja) * 2003-04-16 2004-11-11 Ses Co Ltd 半導体洗浄装置に於ける洗浄槽の構造
EP1519231A1 (en) 2003-09-29 2005-03-30 ASML Netherlands B.V. Lithographic apparatus and device manufacturing method
EP1814144A1 (en) 2004-10-26 2007-08-01 Nikon Corporation Substrate processing method, exposure apparatus and method for manufacturing device

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4346164A (en) * 1980-10-06 1982-08-24 Werner Tabarelli Photolithographic method for the manufacture of integrated circuits
JPS57153433A (en) * 1981-03-18 1982-09-22 Hitachi Ltd Manufacturing device for semiconductor
JP2753930B2 (ja) * 1992-11-27 1998-05-20 キヤノン株式会社 液浸式投影露光装置
US5528118A (en) * 1994-04-01 1996-06-18 Nikon Precision, Inc. Guideless stage with isolated reaction stage
US5874820A (en) * 1995-04-04 1999-02-23 Nikon Corporation Window frame-guided stage mechanism
US5623853A (en) * 1994-10-19 1997-04-29 Nikon Precision Inc. Precision motion stage with single guide beam and follower stage
JPH08316124A (ja) * 1995-05-19 1996-11-29 Hitachi Ltd 投影露光方法及び露光装置
US5825043A (en) * 1996-10-07 1998-10-20 Nikon Precision Inc. Focusing and tilting adjustment system for lithography aligner, manufacturing apparatus or inspection apparatus
ATE404906T1 (de) * 1996-11-28 2008-08-15 Nikon Corp Ausrichtvorrichtung und belichtungsverfahren
DE69717975T2 (de) * 1996-12-24 2003-05-28 Asml Netherlands Bv In zwei richtungen ausgewogenes positioniergerät, sowie lithographisches gerät mit einem solchen positioniergerät
US6208407B1 (en) * 1997-12-22 2001-03-27 Asm Lithography B.V. Method and apparatus for repetitively projecting a mask pattern on a substrate, using a time-saving height measurement
US7093375B2 (en) * 2002-09-30 2006-08-22 Lam Research Corporation Apparatus and method for utilizing a meniscus in substrate processing
CN101424881B (zh) * 2002-11-12 2011-11-30 Asml荷兰有限公司 光刻投射装置
US7070915B2 (en) * 2003-08-29 2006-07-04 Tokyo Electron Limited Method and system for drying a substrate
ATE509367T1 (de) * 2003-10-08 2011-05-15 Zao Nikon Co Ltd Belichtungsgerät, substrattrageverfahren, belichtungsverfahren und verfahren zur herstellung einer vorrichtung
US7678527B2 (en) * 2003-10-16 2010-03-16 Intel Corporation Methods and compositions for providing photoresist with improved properties for contacting liquids
US7403259B2 (en) * 2003-10-17 2008-07-22 Asml Netherlands B.V. Lithographic processing cell, lithographic apparatus, track and device manufacturing method
US7589818B2 (en) * 2003-12-23 2009-09-15 Asml Netherlands B.V. Lithographic apparatus, alignment apparatus, device manufacturing method, and a method of converting an apparatus
US7589822B2 (en) * 2004-02-02 2009-09-15 Nikon Corporation Stage drive method and stage unit, exposure apparatus, and device manufacturing method
US7616383B2 (en) * 2004-05-18 2009-11-10 Asml Netherlands B.V. Lithographic apparatus and device manufacturing method
EP1783821B1 (en) * 2004-06-09 2015-08-05 Nikon Corporation Exposure system and device production method
EP1783822A4 (en) * 2004-06-21 2009-07-15 Nikon Corp EXPOSURE DEVICE, EXPOSURE DEVICE ELEMENT CLEANING METHOD, EXPOSURE DEVICE MAINTENANCE METHOD, MAINTENANCE DEVICE, AND DEVICE MANUFACTURING METHOD

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0942832A (ja) * 1995-07-24 1997-02-14 Olympus Optical Co Ltd 加熱乾燥装置
JPH10116806A (ja) * 1996-10-14 1998-05-06 Nittetsu Semiconductor Kk 半導体ウエハの洗浄方法
WO1999049504A1 (fr) 1998-03-26 1999-09-30 Nikon Corporation Procede et systeme d'exposition par projection
JP2002134461A (ja) * 2000-10-25 2002-05-10 Sony Corp 乾燥方法
JP2003168668A (ja) * 2001-12-04 2003-06-13 Tokyo Electron Ltd 基板処理装置及び基板処理方法
JP2004101130A (ja) * 2002-09-12 2004-04-02 Sons Engineering Co Ltd 真空乾燥装置
JP2004119717A (ja) * 2002-09-26 2004-04-15 Dainippon Screen Mfg Co Ltd 基板処理方法および基板処理装置
WO2004053952A1 (ja) 2002-12-10 2004-06-24 Nikon Corporation 露光装置及びデバイス製造方法
WO2004053953A1 (ja) * 2002-12-10 2004-06-24 Nikon Corporation 露光装置及びデバイス製造方法
JP2004319724A (ja) * 2003-04-16 2004-11-11 Ses Co Ltd 半導体洗浄装置に於ける洗浄槽の構造
EP1519231A1 (en) 2003-09-29 2005-03-30 ASML Netherlands B.V. Lithographic apparatus and device manufacturing method
EP1814144A1 (en) 2004-10-26 2007-08-01 Nikon Corporation Substrate processing method, exposure apparatus and method for manufacturing device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1833082A4

Also Published As

Publication number Publication date
TW200625026A (en) 2006-07-16
US20080137056A1 (en) 2008-06-12
EP1833082A4 (en) 2010-03-24
KR20070100865A (ko) 2007-10-12
EP1833082A1 (en) 2007-09-12

Similar Documents

Publication Publication Date Title
JP4665712B2 (ja) 基板処理方法、露光装置及びデバイス製造方法
JP6278015B2 (ja) 液浸露光装置及びデバイス製造方法
US8034539B2 (en) Exposure apparatus and method for producing device
JP5079717B2 (ja) 基板搬送装置及び基板搬送方法、露光装置及び露光方法、デバイス製造装置及びデバイス製造方法
JP4784513B2 (ja) メンテナンス方法、メンテナンス機器、露光装置、及びデバイス製造方法
US7359034B2 (en) Exposure apparatus and device manufacturing method
US20070052942A1 (en) Substrate transport apparatus and method, exposure apparatus and exposure method, and device fabricating method
WO2006062074A1 (ja) 基板処理方法、露光方法、露光装置及びデバイス製造方法
JP2005277363A (ja) 露光装置及びデバイス製造方法
WO2007105645A1 (ja) 露光装置、メンテナンス方法、露光方法及びデバイス製造方法
JP2005101487A (ja) 露光装置及びデバイス製造方法、露光システム
JP2006190996A (ja) 基板処理方法、露光方法、露光装置及びデバイス製造方法
JP2007059929A (ja) 露光装置及び露光方法、並びにデバイス製造方法
WO2007139017A1 (ja) 液体回収部材、基板保持部材、露光装置、及びデバイス製造方法
WO2006041091A1 (ja) 露光装置のメンテナンス方法、露光装置、デバイス製造方法、液浸露光装置のメンテナンス用の液体回収部材

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020077004095

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 11792054

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2005814663

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 2005814663

Country of ref document: EP