WO2006062042A1 - 超音波観測装置 - Google Patents

超音波観測装置 Download PDF

Info

Publication number
WO2006062042A1
WO2006062042A1 PCT/JP2005/022198 JP2005022198W WO2006062042A1 WO 2006062042 A1 WO2006062042 A1 WO 2006062042A1 JP 2005022198 W JP2005022198 W JP 2005022198W WO 2006062042 A1 WO2006062042 A1 WO 2006062042A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
ultrasonic
observation apparatus
timing
signal
Prior art date
Application number
PCT/JP2005/022198
Other languages
English (en)
French (fr)
Inventor
Kazuhiro Misono
Original Assignee
Olympus Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Corporation filed Critical Olympus Corporation
Priority to EP05811349A priority Critical patent/EP1825816B1/en
Priority to DE602005022227T priority patent/DE602005022227D1/de
Publication of WO2006062042A1 publication Critical patent/WO2006062042A1/ja
Priority to US11/810,084 priority patent/US7905839B2/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52023Details of receivers
    • G01S7/52025Details of receivers for pulse systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/12Diagnosis using ultrasonic, sonic or infrasonic waves in body cavities or body tracts, e.g. by using catheters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/0207Driving circuits
    • B06B1/0215Driving circuits for generating pulses, e.g. bursts of oscillations, envelopes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/8934Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a dynamic transducer configuration
    • G01S15/8938Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a dynamic transducer configuration using transducers mounted for mechanical movement in two dimensions
    • G01S15/894Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a dynamic transducer configuration using transducers mounted for mechanical movement in two dimensions by rotation about a single axis

Definitions

  • the present invention relates to an ultrasonic observation apparatus that generates a transmission pulse suitable for exciting an ultrasonic transducer.
  • an ultrasonic observation apparatus is connected to an ultrasonic endoscope or an ultrasonic probe and used for the depth of a lesion, substantial diagnosis of an organ, and the like.
  • An ultrasonic transducer is built in the tip of the ultrasonic endoscope or ultrasonic probe. By applying an electrical drive pulse transmitted from the ultrasonic observation device to the ultrasonic transducer, this ultrasonic transducer is installed. It is converted into an acoustic ultrasonic pulse by the ultrasonic transducer and irradiated to the body tissue.
  • this ultrasonic vibrator uses a PZT (two-component piezoelectric ceramic Pb (Ti, Zr) 03) vibrator or a composite piezoelectric element, and a driving method suitable for the ultrasonic vibrator has been adopted. .
  • PZT two-component piezoelectric ceramic Pb (Ti, Zr) 03
  • the conventional PZT resonator has a specific bandwidth of about 70%.
  • about three waves of no-les having a time width of the center frequency are used.
  • the above-described composite piezoelectric element has a very wide relative bandwidth with respect to the conventional PZT vibrator and has 100% or more.
  • the frequency band of the transmission pulse in which the frequency bandwidth of the composite piezoelectric element is wider than the frequency bandwidth of the transmission noise has become highly dependent on the ultrasonic image.
  • THI tissue Harmonic Imaging
  • the harmonic signal generated in the body and extracted and imaged is called THI.
  • the ultrasonic observation apparatus has problems specific to medical devices.
  • Ultrasound endoscopes or ultrasound probes must be inserted into the human body, and in order to ensure safety to humans from that perspective, standards for electrical safety such as leakage current and withstand voltage are required. It is necessary to satisfy.
  • an ultrasonic endoscope or ultrasonic probe is electrically connected to a circuit, for example, a transmission circuit portion. It was necessary to form a patient circuit that floats from the primary circuit (commercial power supply) of the observation device and the secondary circuit (including the device housing) that operates the inside of the device.
  • the ultrasonic observation apparatus needs to suppress the amount of noise (radiated electromagnetic field noise) radiated outside the apparatus to a specified value or less while providing the patient circuit.
  • noise radiated electromagnetic field noise
  • the radiated electromagnetic field noise is a regulation for preventing a device used in a medical institution from adversely affecting, for example, pacemaker power.
  • FIG. 7 is a timing chart showing a process in which a transmission waveform is created.
  • An ultrasonic endoscope is provided with a single ultrasonic transducer at the distal end of the endoscope.
  • the ultrasonic transducer is rotated around the axis of the endoscope insertion portion by rotating rotational driving power, and the ultrasonic scanning is performed by this rotational scanning.
  • a synchronization signal (A-phase trigger) is transmitted from the ultrasonic endoscope to the ultrasonic observation apparatus in synchronization with the rotation of the ultrasonic transducer.
  • the A-phase trigger generates, for example, 512 pulses while the ultrasonic transducer rotates once in the radial direction.
  • the ultrasonic observation device applies a transmission signal (transmission pulse) synchronized with 512 pulses to the ultrasonic vibrator, acquires a reception echo at that time, and generates one image.
  • a transmission signal transmission pulse
  • the transmission pulse of two burst waves is output using the A phase trigger as a synchronization signal.
  • FIG. 7 shows a process for outputting two burst waves.
  • a pulse with a fixed pulse width is generated using the A-phase trigger in Fig. 7 as a synchronization signal.
  • the created pulses are sequentially delayed as shown in FIG. 7 by delay elements (hereinafter simply referred to as “delays”) D1 to D8 having eight delay lines.
  • the first wave of the composite pulse P1 is generated by the delays Dl and D2.
  • Delay D5 and D6 generate the second wave of composite pulse P1.
  • One wave day of composite pulse P2 is generated by delays D3 and D4.
  • Delay D7 and D8 generate the second wave of composite pulse P2.
  • the transmission pulse output of two burst waves can be obtained.
  • a burst wave output is obtained from synthesized pulses PI and P2
  • a switched waveform is synthesized by a field effect transistor (FET) using a transformer.
  • the output amplitude of this burst wave is about 200Vp_p.
  • a programmable delay line is used to feed back the delayed pulse to the input side and delay again.
  • This technique is certainly effective in reducing the delay line.
  • the above circuit was capable of handling only the generation of relatively slow pulses. For example, when creating a 4-wave burst with a half-wavelength of 16 ns (about 30 MHz), assume that eight programmer delay lines are used.
  • Holding the output pulse with the timing controller, reading the delay data from the delay data generator, and setting the data in the programmable delay line is difficult at the current device operation speed.
  • FPGA Field Programmable Gate Array
  • the timing of this pulse width adjustment is a level of 1 to several ns, and the master clock of the FPGA needs to be about 1 GHz to 300 MHz.
  • the present invention has been made in view of the above-described problems, and has a waveform corresponding to the characteristics of the ultrasonic transducer and the like, can reduce the generation of radiated electromagnetic noise, and can reduce the force cost.
  • An object of the present invention is to provide an ultrasonic observation apparatus capable of generating a transmission signal to be transmitted.
  • the present invention is an ultrasonic observation apparatus that is connected to an ultrasonic probe that is inserted into a body cavity, and that outputs a pulsed transmission signal to an ultrasonic transducer built in the ultrasonic probe.
  • a timing generation circuit provided in the secondary circuit for generating a timing signal for generating the transmission signal
  • An insulating circuit that insulates the timing signal from the secondary circuit and transmits it to the patient circuit, and a transmission signal generator that is provided in the patient circuit and generates the transmission signal in synchronization with the input timing signal Circuit,
  • a timing generation circuit that handles high-speed timing signals is provided in a secondary circuit whose ground is connected to the casing of the ultrasonic observation apparatus, and the ground of the secondary circuit is included in the casing. By being connected, the generation of noise in the secondary circuit is suppressed.
  • a transmission signal generation circuit for generating a transmission signal is provided in the patient circuit, and the timing signal generated in the secondary circuit is transmitted through the insulation circuit, thereby suppressing the current value required in the patient circuit.
  • electromagnetic radiation noise is suppressed and the size of the patient circuit is reduced, so that the ultrasonic observation apparatus can be reduced in size and cost.
  • FIG. 1 is a configuration diagram showing the overall configuration of an ultrasonic diagnostic apparatus provided with Embodiment 1 of the present invention.
  • FIG. 2 is a timing chart showing the operation of the first embodiment.
  • FIG. 3 is a configuration diagram showing the overall configuration of an ultrasonic diagnostic apparatus provided with Embodiment 2 of the present invention.
  • FIG. 4 is a timing chart showing the operation of the second embodiment.
  • FIG. 5 is a configuration diagram showing the overall configuration of an ultrasonic diagnostic apparatus including Example 3 of the present invention.
  • FIG. 6 is a timing chart showing the operation of the third embodiment.
  • FIG. 7 is a timing chart showing a process of creating a transmission waveform in the preceding example.
  • FIG. 1 shows an ultrasonic diagnostic apparatus including Example 1 of the present invention.
  • An ultrasonic diagnostic apparatus 1 including the first embodiment of the present invention shown in FIG. 1 includes an ultrasonic endoscope (abbreviated as an ultrasonic scope) 2 inserted into a body cavity, and the ultrasonic scope 2 is detachable.
  • the drive pulse (or transmission pulse) that is connected and drives the ultrasonic transducer 3 built in the ultrasonic scope 2 is generated, and the signal processing is performed on the received ultrasonic signal.
  • a sonic endoscope observation apparatus (hereinafter simply referred to as an observation apparatus) 4 and a monitor 5 for displaying a video signal generated by the observation apparatus 4 are provided.
  • the ultrasonic scope 2 has an elongated insertion part 6 to be inserted into a body cavity, and an ultrasonic transducer 3 for transmitting and receiving ultrasonic waves is disposed at a distal end part 7 of the insertion part 6.
  • the distal end portion 7 is provided with illumination means and an observation optical system (not shown) so that optical observation can be performed.
  • Figure 1 shows only the ultrasonic probe part.
  • the ultrasonic transducer 3 disposed in the distal end portion 7 is attached to the distal end of the flexible shaft 8 passed through the insertion portion 6.
  • the rear end of the flexible shaft 8 is connected to a rotation drive unit 11 provided in a grip 9 provided at the rear end of the insertion portion 6.
  • the rotation drive unit 11 includes a motor (not shown), and the rotation force is transmitted to the ultrasonic transducer 3 through the flexible shaft 8 by the rotation of the motor.
  • the ultrasonic transducer 3 is rotated along with the rotation of the motor. Rotates.
  • the ultrasonic transducer 3 is connected to the rotor side contact of the slip ring 13 in the grip 9 via, for example, a coaxial cable 12a inserted into the flexible shaft 8, and this rotor side contact is the stator of the slip ring. Connected via coaxial cable 12b connected to side contact Connected to the contact of This connector 14 is detachably connected to the observation device 4.
  • a position detection unit 15 that detects the rotation angle of a rotary coder or the like or detects the position of the rotation amount is provided, for example, on the rotation shaft of the motor of the rotation drive unit 11 in the grip unit 9.
  • the connector 14 is provided with a scope detection unit 16 for detecting frequency information of the ultrasonic transducers 3 incorporated in each ultrasonic scope 2 and writing timing information for imaging.
  • the scope detection unit 16 may generate an identification signal or store an identification signal according to each scope, or may be one in which an identification resistor is connected to a contact pin of a connector. Then, by connecting the connector 14 to the observation device 4, the ultrasonic transducer 3 is connected to the ultrasonic pulse generation unit 17 and the ultrasonic image generation unit 18 in the observation device 4, and the rotation drive unit 11, The position detection unit 15 and the scope detection unit 16 are connected to a first controller 19 in the observation device 4.
  • the ultrasonic transducer 3 of the ultrasonic scope 2 is connected to a transmission circuit 22 and a preamplifier 23 as a transmission signal generation circuit via a branch unit 20 belonging to the patient circuit 21 in the observation apparatus 4.
  • the transmission circuit 22 includes a pulsed transmission signal that drives the ultrasonic transducer 3, that is, a pulse generation circuit 24 that generates a transmission pulse, a pulse driver 25 that drives the pulse generation circuit 24, and a secondary circuit described later.
  • a first isolation circuit 27a that insulates and transmits the timing signal from 26.
  • the first insulation circuit 27 a is connected to an insulation circuit driver 28 belonging to the secondary circuit 26, and the insulation circuit driver 28 is connected to a timing generation circuit 29 belonging to the secondary circuit 26.
  • the timing generation circuit 29 is connected to the memory 30 and the second controller 31.
  • the first controller 19 is connected to the second controller 31 via a second insulation circuit 27b that insulates and transmits the output signal.
  • the preamplifier 23 that amplifies the echo signal received by the ultrasonic transducer 3 is connected to the ultrasonic image generation circuit 32 belonging to the secondary circuit 26 via a third insulation circuit 27c that insulates and transmits the signal.
  • the ultrasonic image generated by the ultrasonic image generation circuit 32 The image signal is output to the monitor 5, and an ultrasonic tomographic image is displayed on the display surface of the monitor 5.
  • Each circuit belonging to the patient circuit 21 and each circuit belonging to the secondary circuit 26 are supplied with power from the power supply circuit 33, that is, patient circuit power and secondary circuit power.
  • the metal device housing 34 of the observation device 4 is directly connected to the ground (abbreviated as GND) of the secondary circuit 26, whereas the GND of the patient circuit 21 has a high withstand voltage. It is connected to the device casing 34 via a capacitor 36.
  • GND ground
  • the GND of the patient circuit 21 is insulated (floating) in a direct current (DC) manner with respect to the device housing 34, and becomes conductive with a small impedance at a high frequency with a frequency sufficiently higher than the alternating current of the commercial power supply. It is in a close state.
  • the device casing 34 is connected to the ground (earth).
  • the timing generation circuit 29 generates a high-speed timing signal necessary for generating a transmission pulse, and outputs it to the first insulation circuit 27a via the insulation circuit driver 28. As will be described later, the timing generation circuit 29 generates a pair of positive and negative pulses as a timing signal corresponding to the generation of the bipolar pulse by the pulse generation circuit 24 to generate two systems of insulating circuit drivers. Output to the first insulation circuit 27a via 28.
  • the two systems of the insulating circuit driver 28 include a resistor 41a, a buffer 42a, a resistor 43a, a resistor 41b, a buffer 42b, and a resistor 43b.
  • the output signals of the buffers 42a and 42b are output to the pulse driver 25 through the pulse transformers 44a and 44b constituting the first insulating circuit 27a.
  • This pulse driver 25 is also provided in two systems, and is composed of a resistor 45a, a capacitor 46a, a resistor 47a, a buffer 48a, a resistor 45b, a capacitor 46b, a resistor 47b, and a buffer 48b. Output signals from the buffers 48a and 48b of the pulse driver 25 are output to the pulse generation circuit 24.
  • This pulse generation circuit 24 includes a power FET 49a that switches the power supply voltage Vcc from ON to OFF with a positive output pulse (positive pulse) and a power supply voltage + Vcc with a negative output pulse (negative pulse).
  • Power FET 49b that switches from OFF to ON, and transformer 50 composed of a pulse transformer, etc., to which the output signals of these two power FETs 49a and 49b are applied to the primary power line, respectively.
  • a pair of pulses is generated as a timing signal that is necessary for generating a transmission pulse in the secondary circuit 26 and increases current consumption. Then, the signal is transmitted to the pulse driver 25 side provided in the patient circuit 21 through the insulating circuit 27a. Furthermore, the pulse generator circuit 24 is configured to generate positive and negative transmission pulses, reducing the circuit configuration scale of the patient circuit 21 and reducing the current consumption, effectively generating noise (radiated electromagnetic field noise).
  • the special teaching is that it has a structure that can be easily controlled.
  • the ultrasonic transducer 3 built in the ultrasonic scope 2 transmits and receives ultrasonic waves.
  • the transmission frequency of the frequency and the number of pulses appropriately corresponding to the frequency characteristics to be performed can be easily generated (in contrast, the previous example uses a delay line to measure the number of pulses). Etc.).
  • the frequency detection and imaging of the ultrasonic transducer 3 in the connected ultrasonic scope 2 is performed by the scope detection unit 16 built in the ultrasonic scope 2. It is possible to detect information such as the write timing information at the time of reading.
  • the first controller 19 connected to the scope detector 16 transmits the above information to the second controller 31 via the insulation circuit 27b.
  • the second controller 31 instructs the timing generation circuit 29 to specify the address of the memory 30 that stores the waveform generation data for generating the transmission node that drives the ultrasonic transducer 3.
  • the start switch (freeze release signal) is input to the first controller 19 by operating a console (not shown) or the scope switch of the ultrasonic scope 2
  • the first controller 19 A drive signal is sent to the motor in the rotation drive unit 11, and the motor rotates. With this rotation of the motor, the ultrasonic transducer 3 in the ultrasonic scope 2 starts rotating as shown by the arrow in FIG.
  • position information (A phase and Z phase signals) of the ultrasonic transducer 3 is obtained by the position detector 15 provided in the ultrasonic scope 2.
  • the A-phase signal and the Z-phase signal that is the reference pulse that is output once per rotation are input to the first controller 19, and after waveform shaping, are input to the second controller 31 through the insulation circuit 27 b. .
  • the A phase and Z phase signals are transmitted to the timing generation circuit 29 by the second controller 31 and simultaneously transmitted as timing signals to the ultrasonic image generation circuit 32.
  • the ultrasonic image generation circuit 32 performs image processing for generating an ultrasonic tomographic image from the echo signal in synchronization with this timing signal.
  • the timing generation circuit 29 the basic pulse of the transmission pulse waveform before synthesis is used as the timing signal for generating the transmission pulse to be transmitted to the pulse generation circuit 24 by the information from the scope detection unit 16 and the A phase signal. (Core pulse) is generated.
  • the timing generation circuit 29 is basically composed of a field 'programmable gate array (abbreviated as FPGA). This FPGA uses a synchronous clock with a frequency of about 320 MHz.
  • the basic resolution time resolution as the timing pulse generated from the pulse generation circuit 24 can be reduced to about 3 ns.
  • the core voltage consumed inside the FPGA and the current consumption of the IO power used by the external interface increase.
  • both the core power and IO power consumed by the FPGA are class 2A.
  • the current consumption is about 100mA, whereas in the case of FPGA, the current consumption is about 40 times.
  • the timing signal generated by the timing generation circuit 29 is transmitted to the insulation circuit driver 28.
  • the timing signal passes through each buffer 42a and 42b of the isolation circuit driver 28, and then the next stage isolation. Applied to the primary winding side of each pulse transformer 44a, 44b of the circuit 27a, and the signal is transmitted to the secondary winding belonging to the patient circuit 21 isolated from the secondary circuit 26 on the primary winding side. , Output to the driver 25.
  • the output signal of the insulation circuit driver 28 is a high frequency signal having a frequency of several MHz, and is transmitted to the pulse driver 25 through the pulse transformers 44a and 44b.
  • the pulse transformers 44a and 44b insulate the insulating circuit driver 28 on the secondary circuit 26 side from the pulse driver 25 belonging to the patient circuit 21.
  • the DC withstand voltage between the secondary circuit 26 and the patient circuit 21 by the pulse transformers 44a, 44b, etc. is about 4000V, and the transmission circuit 22 belonging to the patient circuit 21 is floating from the secondary circuit 26.
  • the pulse driver 25 amplifies and shapes the transmitted pulse signal, and outputs it to the pulse generation circuit 24 from the output terminals of the buffers 48a and 48b.
  • the pulse generation circuit 24 includes a positive drive FET 49a, a negative drive FET 49b, and a transformer 50.
  • the pulse generation circuit 24 is applied to the primary winding of the output balance 50 of both FETs 49a and 49b in a relatively opposite phase.
  • the next winding is synthesized to have a bipolar output.
  • the bipolar transmission pulse synthesized by the transformer 50 is transmitted through the ultrasonic vibrator 3 accommodated in the distal end portion 7 of the insertion portion 6 through the coaxial cable 12a in the ultrasonic scope 2 described above. Will be driven.
  • the transmission circuit 22 belonging to the patient circuit 21 is connected to GND by a device housing 34 and a high-voltage capacitor 36, and is set to a state close to the same potential as the device housing 34 in terms of high frequency.
  • the operation of the timing generation circuit 29, the memory 30, etc. will be described in detail with reference to FIG.
  • the A phase signal is detected by the position detector 15 of the ultrasonic scope 2. This A-phase signal is shaped and transmitted to the timing generation circuit 29 as an A-phase trigger shown in FIG.
  • the timing generation circuit 29 is composed of, for example, an FPGA, and a clock when the FPGA operates is shown in FIG. 2B, and its frequency is about 320 MHz.
  • the timing generation circuit 29 stores the positive polarity memory data for waveform generation and the negative polarity memory data from the memory 30 in the memories M 1 and M 2 in the FPGA based on the signal from the scope detection unit 16. . Then, the timing generation circuit 29, as shown in FIG. 2 (C) and FIG. 2 (D), stores the memory data stored in the memory Ml and the memory M2, respectively, for the positive and negative pulses for generating the transmission noise.
  • the negative pulse is sequentially output as a pair of pulses to the buffers 42a and 42b of the insulation circuit driver 28 with a short time difference at a predetermined timing from the A phase trigger.
  • the pulse signals output to the buffers 42a and 42b are transmitted to the subsequent stage in two systems (for transmission pulse generation) and applied to the FETs 49a and 49b of the pulse generation circuit 24.
  • the transformer 50 force of the pulse generation circuit 24 generates a bipolar waveform transmission pulse as shown in FIG. 2E, and the ultrasonic transducer 3 is driven by this transmission pulse.
  • the timing generation circuit 29 generates the next positive pulse and negative pulse at the predetermined timing of the A-phase trigger force.
  • the pulses for negative and negative pulses generate the next transmission pulse in the pulse generation circuit 24.
  • the ultrasonic vibrator 3 transmits ultrasonic waves in a radial manner while the insertion shaft is rotated by performing ultrasonic vibration (ultrasonic excitation) for a short time in a pulse-like manner by applying a transmission pulse, and performs radial running.
  • the ultrasonic wave is transmitted to the inner side of the wall surface in the body cavity where the distal end portion 7 is in contact, reflected at the portion where the acoustic impedance is changed, and the reflected ultrasonic wave is received by the ultrasonic transducer 3. And converted into an electrical signal to become an ultrasonic echo signal (echo signal)
  • This echo signal is switched immediately after transmission of a transmission pulse to be transmitted radially.
  • the echo signal is input from the branch unit 20 to the preamplifier 23, amplified, and then passed through the insulation circuit 27c to generate an ultrasonic image belonging to the second path 26. Input to circuit 32.
  • the ultrasonic image generation circuit 32 includes an AZD conversion circuit and a memory, A / D converts each echo signal when it is transmitted radially, and stores the echo data in the memory. Then, for example, echo data for one frame from a radial raft that has been rotated once is subjected to a conversion process for display on the monitor 5 by a digital scan converter (DSC). Is displayed.
  • DSC digital scan converter
  • the data in memory 30 was connected by setting it to the desired value.
  • a pulse waveform and a pulse length with an optimum frequency can be output to the ultrasonic transducer 3.
  • the timing generation circuit 29 operates with a very fast clock and the current consumption increases.
  • the timing generation circuit 29 is provided in the secondary circuit 26, and its GND is connected to the device housing 34 of the observation device 4. Therefore, radiated electromagnetic field noise can be made extremely small.
  • this embodiment has the following effects.
  • the configuration scale of the patient circuit can be reduced, and the size of the observation apparatus body can be reduced. Become.
  • FIG. 1 shows the overall configuration of an ultrasonic diagnostic apparatus 1 equipped with Example 2.
  • the ultrasonic diagnostic apparatus 1 shown in FIG. 3 is the same as the ultrasonic diagnostic apparatus 1 shown in FIG. 1 except that the pulse driver 25 constituting the transmission circuit 22 adjusts the timing of the positive pulse and the negative pulse (depending on the delay time).
  • An adjustment circuit 51 is provided.
  • the other end of the capacitor 46a connected in series to one end of the secondary winding of the pulse transformer 44a is grounded via a resistor 52a and buffered via a variable delay 53a with a variable delay amount. Connected to 48a input.
  • the other end of the capacitor 46b connected in series to one end of the secondary winding of the pulse transformer 44b is grounded via the resistor 52b, and the input of the buffer 48b via the variable delay 53b with variable delay amount. Connected to the end.
  • the timing adjustment circuit 51 may be provided between the force insulation circuit 27 a and the pulse driver 25, which is shown in the configuration in which the timing adjustment circuit 51 is provided in the pulse driver 25.
  • the path from the timing generation circuit 29 to the pulse generation circuit 24 is adapted to cope with the case where the delay amount of the positive and negative pulses is different. .
  • the delay amount between the positive pulse and the negative pulse is different from FIG. 4 (C) to FIG. 4 (E), and an unintended transmission pulse (output) cannot be obtained.
  • an appropriate transmission noise can be obtained as shown in FIG. 4).
  • the timing generation circuit 29 composed of the FPGA is synchronized with the clock in FIG. 4 (B) using the A phase trigger in FIG. Read memory data and memory data for negative electrode and store them in memory Ml and M2 in FPGA. Then, using the A-phase trigger as a synchronization signal, it reads out from the memories Ml and M2 at a predetermined timing as shown in FIGS. Output negative pulse.
  • the insulating circuit driver 28 applies the positive pulse and the negative pulse to the pulse driver 25 through the insulating circuit 27a, and the pulse driver 25 transmits the transmitted positive pulse and negative pulse. It is transmitted to the pulse generation circuit 24.
  • the timing of the positive pulse and the negative pulse may be shifted due to the influence of the path from the force generation circuit 29 to the pulse generation circuit 24 where the output of the transmission pulse is generated by the noise generation circuit 24. . If there is a difference in the delay amount in the propagation path between the two systems so that the delay amount of the positive pulse is large and the negative pulse delay amount is small, the output of the waveform shown in Fig. 4 (E) (transmission pulse) ) And the intended waveform cannot be obtained.
  • the delay amount of the positive and negative pulses is adjusted by the timing adjustment circuit 51 so that the transmission pulse as the output of the pulse generation circuit 24 has the waveform shown in FIG.
  • the positive pulse is delayed by dl by a variable delay 53a as shown in Fig. 4 (H)
  • the negative pulse is delayed by a variable delay 53b as shown in Fig. 4 (1).
  • delaying by d2 it is possible to obtain a transmission pulse having a desired waveform.
  • the timing generation circuit 29 with large current consumption is provided in the secondary circuit 26, and the propagation delay until the propagation from the timing generation circuit 29 to the patient circuit 21 is different between the two systems. Even so, the timing adjustment circuit 51 can appropriately correct the difference in propagation delay.
  • the timing adjustment circuit 51 does not require a large delay amount, and thus can be realized with a very small circuit.
  • the power consumption is hardly changed, the radiation electromagnetic field noise is not increased.
  • the case where the delay amount of the positive pulse and the negative pulse is different in the path from the timing generation circuit 29 to the pulse generation circuit 24 is also supported. It has an effect that can be done.
  • FIG. 5 shows an overall configuration of an ultrasonic diagnostic apparatus including the third embodiment.
  • This ultrasonic diagnostic apparatus 1 is the same as the ultrasonic diagnostic apparatus 1 of the first embodiment, and the timing generation circuit 29 generates two timing signals as in the first embodiment.
  • a DAC circuit 61 is connected to convert the digital signal into an analog signal, that is, D / A conversion.
  • the output signal of the DAC circuit 61 is input to the isolation circuit driver 28 together with the second system side signal output from the timing generation circuit 29.
  • the amplifier 62 is connected to the output terminal on the first system side in the insulation circuit 27a, for example, via the capacitor 46a.
  • the output terminal of the amplifier 62 is connected to the matching resistor 63, and is connected to the ultrasonic transducer 3 of the ultrasonic scope 2 via the branch unit 20, and the transmission output from the amplifier 62 is performed.
  • the ultrasonic transducer 3 is driven by the noise.
  • the other output signal of the timing generation circuit 29 is input to the bias circuit 64 provided in the patient circuit 21 via the isolation circuit driver 28 and the isolation circuit 27a.
  • the bias circuit 64 is configured using, for example, a buffer circuit 65, and an output signal of the bias circuit 64 is connected to a bias terminal that controls the amplification operation of the amplifier 62.
  • the bias circuit 64 normally applies an “L” level signal to the bias terminal so that the amplifier 62 does not perform an amplification operation. During the period in which the transmission signal is generated, the bias circuit 64 generates a noise signal.
  • the terminal is set to a state where an “H '” level signal is applied to the terminal for amplification operation, that is, the other output signal (second signal) output from the timing generation circuit 29 constitutes the transmission circuit 22.
  • the control signal controls the operation of the amplifier 62.
  • the ultrasonic transducer 3 has less harmonic components and a waveform transmission pulse.
  • Transmission signal can be generated. Therefore, the timing generation circuit 29 In this system, a signal having a transmission pulse waveform is sent to the transmission circuit 22 side, and in the other system, a control signal for operating the amplifier 62 of the transmission circuit 22 is transmitted during a period in which the transmission pulse is generated. .
  • the power supply circuit 33 has a function of a positive / negative bipolar patient circuit power supply (in Examples 1 and 2, it has a function of only a positive (unipolar) patient circuit power supply). .
  • the power supply circuit 33 has a function of outputting a positive / negative bipolar signal even through a secondary circuit power supply (in Examples 1 and 2, it has a function of only a positive (single polarity) secondary circuit power supply. ).
  • the transmission pulse is obtained by synchronizing with the A-phase trigger.
  • 6A shows a phase A trigger
  • the timing generation circuit 29 is composed of an FPGA operating with a clock of about 320 MHz shown in FIG.
  • This FPGA reads the memory data stored in the memory 30.
  • the force S was 1-bit data content, and in this embodiment, for example, 8-bit data content is used.
  • the memory data once read from the memory 30 is output in 8 bits in synchronization with the clock after a predetermined time has elapsed since the A phase trigger.
  • the 8-bit memory data output from the FPGA can be generated in an arbitrary waveform by the DAC circuit 61 as shown in the DAC output of FIG.
  • the FPGA (timing generation circuit 29) generates a bias circuit output as a control signal (of the amplifier 62) output to the bias circuit 64 as shown in FIG. 6D as the other output.
  • the data is read from the memory 30 and is generated by the timing generation circuit 29.
  • the DAC output and the bias circuit output are applied to the amplifier 62 in the patient circuit 21 via the isolation circuit driver 28 and the isolation circuit 27a.
  • this amplifier 62 is almost OFF when no bias circuit output (output level is zero or “L” level) is applied, and no amplification operation is performed.
  • the bias circuit output shown in FIG. 6D is given from the bias circuit 64, a bias current flows through the amplifier 62, the amplifier 62 is enabled, and an amplification operation is performed.
  • the DAC output shown in FIG. 6C is applied to the amplifier 62.
  • the amplifier 62 linearly amplifies the signal input through the DAC circuit 61 to an amplitude of about 200 Vpp.
  • the amplified transmission output is applied to the ultrasonic transducer 3 of the ultrasonic scope 2 as a transmission pulse, and ultrasonic waves are excited.
  • the transmission pulse shown in FIG. 6 (E) is a drive signal applied to the ultrasonic transducer 3, and can be made a transmission waveform with its harmonics suppressed by several + dB with respect to the pulse waveform of the fundamental wave.
  • the broadband ultrasonic transducer 3 even when the broadband ultrasonic transducer 3 is used, it is possible to greatly reduce the harmonic component of the transmission waveform.
  • the harmonic component of the received signal returned from the subject can be efficiently received by the broadband transducer 3 to be used as an echo signal, which greatly improves the sensitivity for generating THI images. To do.
  • processing for generating an ultrasonic image based on the fundamental wave is performed in the ultrasonic image generation circuit 32 on the echo signal received by the ultrasonic transducer 3.
  • processing for generating an ultrasonic image based on the fundamental wave is performed in the ultrasonic image generation circuit 32 on the echo signal received by the ultrasonic transducer 3.
  • the signal components of the second or third harmonics of the fundamental wave in the echo signal it is possible to obtain an ultrasound image that suppresses side lobes and has good azimuth resolution. You can also do it.
  • the transmission circuit 22 can be configured with the minimum necessary power consumption by controlling the operation of the amplifier 62 by the bias circuit 64 to be OFF and OFF.
  • the circuit scale can be reduced, and accordingly, the circuit scale of the observation apparatus 4 can be reduced and the size and cost can be reduced.
  • the present embodiment has the effects of the first embodiment, and further has a pulse waveform (corresponding appropriately to the characteristics of the ultrasonic transducer 3 built in the ultrasonic scope 2 connected to the observation device 4 (In other words, it is possible to generate a transmission pulse having an arbitrarily close pulse waveform.
  • the present embodiment makes it possible to suppress harmonics as the waveform of the transmission pulse, there is also an effect that it is possible to improve the sensitivity of THI.
  • weighting can be performed with a window function such as Gaussian, which can contribute to suppression of side lobes and improvement of resolution.
  • connection to the apparatus housing 34 may be turned off during a period during which transmission failure occurs, and may be set to 0 N during a period during which processing for the echo signal after the transmission pulse is output.
  • the GND of the patient circuit 21 is conducted at high frequency by the impedance of the capacitor 36, and the GND of the patient circuit 21 is also connected by another capacitor. Conduct at high frequency. It is also possible to reduce the intrusion of external force noise during ultrasonic image generation during signal processing for echo signals, and to generate an ultrasonic image with good S / N.
  • the generation of radiated electromagnetic noise that reduces the circuit scale can be reduced, and an arbitrary waveform suitable for driving an ultrasonic transducer (a waveform with fewer restrictions). )) A transmission signal can be generated.

Abstract

 体腔内に挿入される超音波プローブには超音波振動子が内蔵され、この超音波プローブが接続される超音波観測装置は、パルス状の送信信号を出力する。この超音波観測装置の筐体は、2次回路のグラウンドが接続され、かつ患者回路のグランドとは直流的に絶縁されている。2次回路には、送信信号を生成するためのタイミング信号を発生するタイミング発生回路が設けてある。このタイミング信号は絶縁回路により2次回路から患者回路に絶縁して伝送される。この患者回路には、入力されるタイミング信号に同期して送信信号を発生する送信信号発生回路が設けてある。

Description

明 細 書
超音波観測装置
技術分野
[0001] 本発明は、超音波振動子を励振するのに適した送信パルスを発生する超音波観測 装置に関する。
背景技術
[0002] 近年、超音波観測装置は、超音波内視鏡或いは超音波プローブと接続して病変の 深達度、臓器の実質診断等に用いられている。
この超音波内視鏡或いは超音波プローブの先端には、超音波振動子が内蔵され ており、超音波観測装置から送信される電気的な駆動パルスを超音波振動子に印加 することによって、この超音波振動子によって音響的な超音波パルスに変換され、体 内組織に照射される。
体内からはその反射波が返ってくるため、それを超音波振動子で電気的信号に変 換し、信号処理を行って超音波断層像として表示するような仕組みになっている。 従来、この超音波振動子には、 PZT (2成分系圧電セラミックス Pb (Ti, Zr) 03 )振 動子や複合圧電素子が使用され、超音波振動子に適した駆動方法が採用されてい る。
[0003] 例えば、従来の PZT振動子は、比帯域幅が 70%程度であり、この PZT振動子を効 率良く使用するためには、中心周波数の時間幅を持つノ^レスを 3波程度のバースト 波(連続波)で駆動してレ、る。
上記複合圧電素子は、従来の PZT振動子に対して、比帯域幅が非常に広く 100 %以上を有する。
このような超音波振動子を使用する場合、複合圧電素子の周波数帯域幅が、送信 ノ ルスの周波数帯域幅より広ぐ送信パルスの周波数帯域が、超音波画像に大きく 依存するようになってきた。
例えば、近年、 THI (Tissue Harmonic Imaging)が方位方向の分解能を改善 する手法として、注目されている。 [0004] この技術は、超音波振動子から基本波の超音波信号を体内に送信すると、体内の 伝播経路で基本波が歪み、 2次、 3次の高調波が発生する。
上記体内で発生した、高調波の信号を取り出し、画像化したものを、 THIと呼んで いる。
THIを行う上で重要なことは、体内に基本波のみを送波させる技術、及び体内で発 生した高調波を受信する技術である。このことは、超音波振動子は比帯域幅が広い 必要があり、超音波の基本波を発生させる超音波送信回路は、高調波を発生させな い構成が必要となる。
また、超音波観測装置は、医療器特有の課題がある。
超音波内視鏡或いは超音波プローブは、人間の体内に挿入する必要があり、その 観点で人への安全を確保するために、漏れ電流、及び耐電圧等の電気安全性に関 する規格を満たす必要がある。
[0005] 上記漏れ電流、耐電圧の規格を満たすために、従来の超音波観測装置では、超 音波内視鏡或いは超音波プローブが電気的に接続される回路、例えば送信回路部 分を超音波観測装置の 1次回路 (商用電源)、本装置内部を動作させる 2次回路 (装 置筐体を含む)からフローティングさせる患者回路を形成する必要があった。
上記超音波観測装置は、上記患者回路を設けながら、装置外部に放射するノイズ (放射電磁界ノイズ)の量を規定値以下に抑える必要があった。
上記放射電磁界ノイズは、医療機関で使用する機器に対して、例えばペースメー 力等に悪影響を及ぼさなレ、ようにする為の規制である。
上記放射電磁界ノイズを減らすには、上記患者回路に出来るだけ電流を流さない ようにする必要があった。
[0006] 放射電磁界ノイズを減らすには、回路電流を減らすことにより、回路内に形成される 電流ループを出来るだけ小さくし、放射電磁界ノイズを弱くすることが有効になる。 上記回路が 2次回路のように、装置筐体に接地することが、可能であれば、接地点 を多くとることが可能となり、電流ループの値が小さくなり、放射電磁界ノイズを減らす ことが可能となる。
し力 ながら、装置筐体に接地できない患者回路では、比較的に電流ループの値 が大きくなつてしまう。
患者回路で放射電磁界ノイズを減らすには、回路に使用する電流を小さくすること 力 効果的であり、従来の装置でも回路電流を増やさないようにしていた。
[0007] 回路電流を制限せず、 2次回路のグランド (GND)である装置筐体で患者回路を遮 蔽する手段もあるが、装置自体が大きくなつてしまう問題がある。
次に、図 7を用いて、 日本国特開 2002— 315749号公報の先行例を説明する。 図 7は、送信波形が作成される過程を示すタイミングチャートである。
超音波内視鏡は、その内視鏡先端に単一の超音波振動子が設けられている。 その超音波振動子は、回転する回転駆動動力により内視鏡挿入部の軸を中心とし て、回転され、この回転走査により超音波のラジアル走査を行う。
ラジアル走査を行う場合、超音波振動子の回転に同期して、同期信号 (A相トリガ) が超音波内視鏡から超音波観測装置に伝達される。
[0008] 上記 A相トリガは、上記超音波振動子がラジアル方向に 1回転する間に、例えば 51 2パルス発生する。
超音波観測装置は、 512パルスに同期した送信信号 (送信パルス)を超音波振動 子に与え、その際の受信エコーを獲得し、 1枚の画像を生成する。
この先行例では、 A相トリガを同期信号として、 2波のバースト波の送信パルスを出 力する。
[0009] 2波のバースト波を出力する為の過程が図 7に示されている。
図 7の A相トリガを同期信号として、一定パルス幅のパルスが生成される。 作成されたパルスは、 8個のディレイラインによるディレイ素子(以下、単にディレイと 略記) D1〜D8によって、図 7に示すタイミングのように順次遅延が与えられる。
[0010] ディレイ Dl , D2で合成パルス P1の 1波目が生成される。
ディレイ D5, D6で合成パルス P1の 2波目が生成される。
ディレイ D3, D4で合成パルス P2の 1波日が生成される。
ディレイ D7, D8で合成パルス P2の 2波目が生成される。
ディレイ卜 D1〜D8により生成された合成パルス P1及び合成パルス P2を反転して 加算して合成することにより、 2波のバースト波の送信パルスの出力が得られる。 合成パルス PI及び P2からバースト波の出力を得る場合、電界効果形トランジスタ( FET)により、スイッチングした波形をトランスを用いて合成する。このバースト波の出 力の振幅は、およそ 200Vp_p程度である。
[0011] し力 ながら図 7の先行例の場合には、上記のように例えば 2波のバースト波を得る だけでも、 8個のディレイラインが必要となっていた。
さらに、送信回路により感度を向上させる、あるいは 2次高調波を抑制する目的によ り、バースト波数を増やすにはさらに多くのディレイラインが必要となる。
また、バースト波数を増やす手段として上記日本国特開 2002— 315749号公報に 開示されているように、プログラマブルディレイラインを使用し、一度ディレイさせたパ ルスをフィードバックして入力側に戻し、再度ディレイラインの設定値を変更して任意 のパルス長を発生させる技術がある。
この技術は、確かにディレイラインを減らす上では有効である。
[0012] し力 ながら、上記回路は比較的遅いパルスの発生にしか対応できな力 た。例え ば、半波長 16ns (約 30MHz)の 4波バーストを製作する場合、 8個のプログラマブノレ ディレイラインを使用したとする。
8ケのディレイラインで 2波のバースト波が生成できるので、その間の時間は、 16ns X 4 = 64nsである。
タイミングコントローラで出力パルスを保持し、ディレイデータ生成部からディレイデ ータを読み出し、プログラマブルディレイラインにデータをセットするには、現在のデ ノイス動作スピードでは困難である。
またディレイラインを最低 8個程度使用する必要があり、コスト的にも高価である。上 記ディレイラインの代替として、パルス発生のタイミング生成に FPGA (Field Progra mable Gate Array)の使用が考えられる。
[0013] このパルス幅調整のタイミングは、 1〜数 nsレベルであり、 FPGAのマスタークロック は、 lGHz〜300MHz程度が必要となる。
このような FPGAを使用するには、消費電力的に大電流が必要となり、従来例に記 した通り、患者回路の放射電磁界ノイズ抑制としては、非常にノイズが増大する構成 となる欠点がある。 [0014] 本発明は、上述した問題に鑑みてなされたものであり、超音波振動子の特性等に 対応した波形で、かつ放射電磁界ノイズの発生を小さくでき、し力 コスト低減を可能 とする送信信号を発生できる超音波観測装置を提供することを目的とする。
発明の開示
課題を解決するための手段
[0015] 本発明は、体腔内に挿入される超音波プローブが接続され、該超音波プローブに 内蔵された超音波振動子にパルス状の送信信号を出力する超音波観測装置であつ て、
前記超音波観測装置の筐体にグランドが接続された 2次回路と、
前記筐体とグランドが直流的に絶縁された患者回路と、
前記 2次回路に設けられ、前記送信信号を生成するためのタイミング信号を発生す るタイミング発生回路と、
前記 2次回路から前記タイミング信号を絶縁して前記患者回路に伝送する絶縁回 路と、 前記患者回路に設けられ、入力される前記タイミング信号に同期して前記送 信信号を発生する送信信号発生回路と、
を具備することを特徴とする。
[0016] 上記構成のように、高速なタイミング信号を扱うタイミング発生回路を、そのグランド が超音波観測装置の筐体に接続された 2次回路内に設け、 2次回路のグランドが筐 体に接続されることで、 2次回路内でのノイズの発生を抑制する。
また、患者回路に、送信信号を発生する送信信号発生回路を設け、 2次回路で発 生したタイミング信号を絶縁回路を介して伝送することにより、患者回路で必要となる 電流の値を抑制することにより、電磁界放射ノイズを抑制すると共に、患者回路の規 模も小さくして、超音波観測装置も小型化及びコスト低減を可能にしている。
図面の簡単な説明
[0017] [図 1]図 1は本発明の実施例 1を備えた超音波診断装置の全体構成を示す構成図。
[図 2]図 2は実施例 1の動作を示すタイミングチヤ一ト。
[図 3]図 3は本発明の実施例 2を備えた超音波診断装置の全体構成を示す構成図。
[図 4]図 4は実施例 2の動作を示すタイミングチャート。 [図 5]図 5は本発明の実施例 3を備えた超音波診断装置の全体構成を示す構成図。
[図 6]図 6は実施例 3の動作を示すタイミングチャート。
[図 7]図 7は先行例における送信波形が作成される過程を示すタイミングチャート。 発明を実施するための最良の形態
[0018] 以下、図面を参照して本発明の実施例を説明する。
[0019] (実施例 1)
図 1及び図 2を参照して本発明の実施例 1を説明する。図 1は、本発明の実施例 1 を備えた超音波診断装置を示す。
図 1に示す本発明の実施例 1を備えた超音波診断装置 1は、体腔内に挿入される 超音波内視鏡 (超音波スコープと略記) 2と、この超音波スコープ 2が着脱自在に接 続され、超音波スコープ 2に内蔵された超音波振動子 3を駆動する駆動パルス(或い は送信パルス)を生成すると共に、受信した超音波信号に対する信号処理を行う実 施例 1の超音波内視鏡用観測装置 (以下、単に観測装置と略記) 4と、この観測装置 4により生成された映像信号を表示するモニタ 5とを有する。
超音波スコープ 2は、体腔内に挿入される細長の揷入部 6を有し、この揷入部 6の 先端部 7には、超音波を送受信する超音波振動子 3が配置されている。
[0020] なお、超音波スコープ 2の場合には、先端部 7には、図示しない照明手段及び観察 光学系が設けられて、光学的に観察することも行えるようになつている。図 1では超音 波プローブ部分のみを示してレ、る。
この先端部 7内に配置された超音波振動子 3は、揷入部 6内を揷通されたフレキシ ブルシャフト 8の先端に取り付けられている。このフレキシブルシャフト 8の後端は、挿 入部 6の後端に設けた把持部 9内に設けた回転駆動部 11に接続されてレ、る。
この回転駆動部 11には、図示しないモータが内蔵され、このモータの回転により、 その回転力がフレキシブルシャフト 8を介して超音波振動子 3に伝達され、モータの 回転と共に、超音波振動子 3が回転する。
超音波振動子 3は、例えばフレキシブルシャフト 8内に挿通された同軸ケーブル 12 aを介して把持部 9内のスリップリング 13のロータ側接点に接続され、このロータ側接 点は、スリップリングのステータ側接点に接続された同軸ケーブル 12bを介してコネク タ 14の接点に接続されている。このコネクタ 14は、観測装置 4に着脱自在に接続さ れる。
[0021] また、把持部 9内における回転駆動部 11の例えばモータの回転軸には、ロータリエ ンコーダ等の回転角を位置検出或いは回転量の位置検出をする位置検出部 15が 設けてある。また、コネクタ 14には、各超音波スコープ 2に内蔵された超音波振動子 3の周波数情報、画像化する際の書き出しタイミング情報を検出するためのスコープ 検出部 16が設けてある。
なお、スコープ検出部 16は、各スコープに応じて識別信号を発生したり、識別信号 を記憶したものでも良いし、コネクタの接点ピンに識別用抵抗を接続したもの等でも 良い。 そして、コネクタ 14を観測装置 4に接続することにより、超音波振動子 3は、 観測装置 4内の超音波パルス生成部 17と、超音波画像生成部 18に接続され、また 回転駆動部 11、位置検出部 15及びスコープ検出部 16は、観測装置 4内の第 1コン トローラ 19に接続される。
[0022] 超音波スコープ 2の超音波振動子 3は、観測装置 4内の患者回路 21に属する分岐 部 20を介して送信信号発生回路としての送信回路 22及びプリアンプ 23に接続され る。 送信回路 22は、超音波振動子 3を駆動するパルス状の送信信号、つまり送信 パルスを発生するパルス発生回路 24と、このパルス発生回路 24をドライブするパル スドライバ 25と、後述する 2次回路 26からのタイミング信号を絶縁して伝達する第 1の 絶縁回路 27aとを有する。
この第 1の絶縁回路 27aは、 2次回路 26に属する絶縁回路ドライバ 28に接続され、 この絶縁回路ドライバ 28は、 2次回路 26に属するタイミング発生回路 29に接続され ている。
このタイミング発生回路 29は、メモリ 30及び第 2コントローラ 31に接続されている。
[0023] また、第 1コントローラ 19は、その出力信号を絶縁して伝達する第 2の絶縁回路 27b を介して第 2コントローラ 31に接続されてレ、る。
また、超音波振動子 3で受信したエコー信号を増幅するプリアンプ 23は、絶縁して 信号を伝達する第 3の絶縁回路 27cを介して 2次回路 26に属する超音波画像生成 回路 32に接続され、この超音波画像生成回路 32により生成された超音波画像の映 像信号は、モニタ 5に出力され、モニタ 5の表示面に超音波断層像が表示される。 また、患者回路 21に属する各回路と、 2次回路 26に属する各回路には、電源回路 33からそれぞれの電源、つまり患者回路電源及び 2次回路電源が供給される。
[0024] また、この観測装置 4の金属製の装置筐体 34は、 2次回路 26のグランド(GNDと略 記)が直接接続され、これに対して患者回路 21の GNDは、高耐圧のコンデンサ 36 を介して装置筐体 34に接続されている。このように、患者回路 21の GNDは、装置筐 体 34に対して、直流(DC)的に絶縁 (フローティング)され、商用電源の交流より十分 に高い周波数の高周波的には小さいインピーダンスで導通に近い状態にしている。 この装置筐体 34は、大地(アース)に接続される。
上記タイミング発生回路 29は、送信パルスの発生に必要な高速なタイミング信号を 発生し、絶縁回路ドライバ 28を介して第 1の絶縁回路 27aに出力する。後述するよう にタイミング発生回路 29は、パルス発生回路 24がバイポーラパルスを生成するのに 対応してタイミング信号として、対となる正極用ノルスと負極用パルスとを生成して 2 系統の絶縁回路ドライバ 28を介して第 1の絶縁回路 27aに出力する。
[0025] 2系統の絶縁回路ドライバ 28は、抵抗 41a、バッファ 42a、抵抗 43aと、抵抗 41b、 ノくッファ 42b、抵抗 43bとにより構成されている。また、各バッファ 42a、 42bの出力信 号は、第 1の絶縁回路 27aを構成するパルストランス 44a、 44bを経てパルスドライバ 25に出力される。
このパルスドライバ 25も 2系統設けられており、抵抗 45a、コンデンサ 46a、抵抗 47 a、バッファ 48aと、抵抗 45b、コンデンサ 46b、抵抗 47b、バッファ 48bと力らなる。 このパルスドライバ 25の各バッファ 48a、 48bからの出力信号は、パルス発生回路 2 4に出力される。
[0026] このパルス発生回路 24は、電源電圧 Vccを正の出力パルス(正極用パルス)で〇F Fから ONにスイッチングするパワー FET49aと、電源電圧 +Vccを負の出力パルス( 負極用パルス)で OFFから ONにスイッチングするパワー FET49bと、これら 2つのパ ヮー FET49a、 49bの出力信号がそれぞれ 1次卷線に印加されるパルストランス等に より構成されるトランス 50とからなり、このトランス 50の 2次卷線に誘起されて合成され るバイポーラ波形の送信ノ ルスを生成し、この送信パルスを超音波振動子 3に印加 する構成にしている。
このように 2つの FET49a、 49bを駆動してトランス 50に出力する構成にすることに よって、観測装置 4から出力される送信パルスを零ボルトを中心とした正負バイポーラ の送信信号を発生するようにしてレ、る。
このような構成の本実施例においては、 2次回路 26において送信パルスの発生に 必要で消費電流が大きくなるタイミング信号として、対のパルスを発生し、対のパルス を 2系統の絶縁回路ドライバ 28,絶縁回路 27aを経て患者回路 21に設けたパルスド ライバ 25側に伝送する。さらにパルス発生回路 24において正負の両極性の送信パ ルスを生成する構成にして、患者回路 21の回路構成規模を低減化し、かつ低消費 電流にして、ノイズ (放射電磁界ノイズ)の発生を有効に抑制できる構成にしているこ とが特 ί教となっている。
[0027] また、観測装置 4に接続される超音波スコープ 2を、スコープ検出部 16を用いて検 出することにより、その超音波スコープ 2に内蔵された超音波振動子 3が超音波送受 を行う周波数特性等に適切に対応した周波数及びパルス数の送信ノ^レスを簡単に 生成できるようにしてレ、る(これに対して、先行例ではディレイラインを用いてレ、るため ノ ルス数等が制約される)。
次に、本実施例による各部の動作を説明する。
上記超音波スコープ 2を観測装置 4に接続すると、上記超音波スコープ 2に内蔵さ れているスコープ検出部 16より、接続された超音波スコープ 2内の超音波振動子 3の 周波数情報、画像化する際の書き出しタイミング情報等の情報を検出することができ る。
スコープ検出部 16に接続された第 1コントローラ 19は、上記の情報を絶縁回路 27 bを経由して第 2コントローラ 31に伝達する。
[0028] 第 2コントローラ 31は、タイミング発生回路 29に対して、超音波振動子 3を駆動する 送信ノ^レスを生成するための波形発生データを格納するメモリ 30のアドレスを指示 する。
図示しない操作卓或いは超音波スコープ 2のスコープスィッチを操作して走查開始 信号 (フリーズ解除信号)が第 1コントローラ 19に入力されると、第 1コント口一ラ 19は 回転駆動部 11内のモータに駆動信号を送り、そのモータが回転する。このモータの 回転により、超音波スコープ 2内の超音波振動子 3が揷入軸に対して図 1の矢印で示 すように回転を始める。
[0029] 超音波振動子 3が回転すると、超音波スコープ 2内に設けてある位置検出部 15に より超音波振動子 3の位置情報 (A相、 Z相信号)が得られる。上記 A相及び 1回転に 1回出力される基準パルスとなる Z相信号は、第 1コントローラ 19に入力され、波形整 形された後、絶縁回路 27bを通り、第 2コントローラ 31に入力される。
上記 A相、 Z相信号は、第 2コントローラ 31によりタイミング発生回路 29に伝達され、 同時に超音波画像生成回路 32のタイミング信号として伝達される。超音波画像生成 回路 32は、このタイミング信号に同期してエコー信号から超音波断層像を生成する 画像処理を行う。
[0030] 上記タイミング発生回路 29では、上述したスコープ検出部 16からの情報及び、 A 相信号によりパルス発生回路 24に送信する送信パルス生成用のタイミング信号とし て合成前の送信パルス波形の基本パルス(コアパルス)を生成する。このタイミング発 生回路 29は、基本的にはフィールド 'プログラマブル ·ゲートアレイ(FPGAと略記)で 構成されている。そして、この FPGAは、 320MHz程度の周波数の同期クロックを使 用する。
320MHz程度のクロックを使用することにより、パルス発生回路 24から発生するタ イミングパルスとしての基本ノ^レスの時間分解能を 3ns程度にすることが可能となる。 上記したように、 FPGAの動作速度を速くすると、 FPGA内部で消費するコア電圧 、及び外部インターフェースで使用する IO電源の消費電流が増大する。
[0031] 選定使用する FPGAのデバイスにも依存するが、 FPGAが消費するコア電源、 IO 電源は、ともに 2Aクラスとなる。
先行例のディレイラインを使用すれば、消費電流は 100mA程度であり、それに対 して FPGAの場合には、およそ 40倍の電流消費量になる。
上記タイミング発生回路 29で発生したタイミング信号は、絶縁回路ドライバ 28に伝 達される。
タイミング信号は、絶縁回路ドライバ 28の各バッファ 42a、 42bを経て、次段の絶縁 回路 27aの各パルストランス 44a、 44bの 1次卷線側に印加され、この 1次卷線側の 2 次回路 26から絶縁された患者回路 21に属する 2次側卷線にその信号が伝達され、 ノ^レスドライバ 25に出力される。絶縁回路ドライバ 28の出力信号は、数 MHzの周波 数的に高い高周波信号であり、パルストランス 44a、 44bを経てパルスドライバ 25に 伝達される。
[0032] このようにパルストランス 44a、 44bは、 2次回路 26側の絶縁回路ドライバ 28と患者 回路 21に属するパルスドライバ 25とを絶縁している。このパルストランス 44a、 44b等 による 2次回路 26と患者回路 21間の直流的絶縁耐圧は約 4000Vであり、患者回路 21に属する送信回路 22を 2次回路 26からフローティングしている。 パルスドライ バ 25は、伝達されたパルス信号を増幅及び整形して、バッファ 48a、 48bの出力端か らパルス発生回路 24に出力する。
パルス発生回路 24は、正極駆動用 FET49a及び負極駆動用 FET49bと、トランス 50とによって構成され、両 FET49a、 49bの出力カ讣ランス 50の 1次卷線に相対的に 逆位相で印加され、 2次卷線にはバイポーラ出力となるように合成される。
[0033] 上記トランス 50により合成されたバイポーラの送信パルスは、前述した超音波スコ ープ 2内の同軸ケーブル 12a等を経て挿入部 6の先端部 7内に収納された超音波振 動子 3を駆動することになる。
上記患者回路 21に属する送信回路 22は、装置筐体 34と高耐圧のコンデンサ 36 により GNDに接続され、高周波的には装置筐体 34と同電位に近い状態に設定され る。 次に図 2を用いて、タイミング発生回路 29、メモリ 30等の動作を詳細に説明す る。 上述したように、超音波スコープ 2の位置検出部 15により A相信号が検出される 。この A相信号は、整形されて、図 2 (A)に示す A相トリガとしてタイミング発生回路 29 に伝達される。
[0034] タイミング発生回路 29は、例えば FPGAで構成され、 FPGAが動作する際のクロッ クを図 2 (B)に示し、その周波数は、約 320MHzである。
このタイミング発生回路 29は、スコープ検出部 16の信号をもとに、メモリ 30から波 形発生用の正極用のメモリデータ及び、負極用のメモリデータを FPGA内のメモリ M 1, M2にストアする。 そして、このタイミング発生回路 29は、図 2 (C)及び図 2 (D)に示すようにメモリ Ml 、メモリ M2にそれぞれ格納したメモリデータを、送信ノ ルスを生成するための正極用 ノ ルス及び負極用パルスを対となるパルスとして、 A相トリガから所定のタイミングで、 絶縁回路ドライバ 28のバッファ 42a、 42bに、短い時間差で順次出力する。
[0035] 各バッファ 42a、 42bに出力されたパルスの信号は、上述のように 2系統で(送信パ ルス生成に関して、その)後段側に伝達され、パルス発生回路 24の FET49a、 49b に印加され、パルス発生回路 24のトランス 50力 図 2 (E)に示すようにバイポーラ波 形の送信パルスを発生し、この送信パルスにより超音波振動子 3を駆動することにな る。
そして、短い所定時間が経過して次の A相トリガが発生すると、タイミング発生回路 29は、その A相トリガ力 所定のタイミングで、次の正極用パルス、負極用パルスを発 生し、この正極用パルス、負極用パルスはパルス発生回路 24において、次の送信パ ルスを発生する。
超音波振動子 3は、送信パルスの印加によりパルス的に短い時間、超音波振動 (超 音波励振)して超音波を、挿入軸が回転されながら順次放射状に送信し、ラジアル走 查する。この場合、超音波は、先端部 7が当接された体腔内の壁面内部側に送信さ れ、音響インピーダンスが変化している部分で反射され、その反射超音波が超音波 振動子 3で受信され、電気信号に変換されて超音波エコー信号 (エコー信号)となる
[0036] このエコー信号は、放射状に送信させる送信パルスの送信直後に切り替えられる 分岐部 20からプリアンプ 23に入力され、増幅された後、絶縁回路 27cを経て 2次回 路 26に属する超音波画像生成回路 32に入力される。
超音波画像生成回路 32は、 AZD変換回路及びメモリを内蔵し、放射状に送信さ れた際の各エコー信号を A/D変換してそのエコーデータをメモリに格納する。そし て、例えば 1回転したラジアル走查による 1フレーム分のエコーデータは、デジタルス キャンコンバータ(DSC)によりモニタ 5で表示するための変換処理が行われた後、モ ニタ 5で超音波断層像が表示される。
上述したように、メモリ 30内のデータを所望の値にセットすることにより、接続された 超音波振動子 3に最適な周波数のパルス波形及びパルス長が出力可能である。
[0037] つまり、図 2では 2波のバイポーラ波形の送信パルスの例を示している力 メモリ 30 内のデータを変更することにより、 3波以上のバイポーラ波形の送信パルスを生成可 能であるし、またそのパルス波形の周波数の値も変更可能である。
上記タイミング発生回路 29は、非常に速いクロックで動作し、消費電流は増大する 力 タイミング発生回路 29は、 2次回路 26内に設けてあり、その GNDを観測装置 4の 装置筐体 34に接続しているため、放射電磁界ノイズを、非常に小さくすることが可能 となる。
また、患者回路 21に属する送信回路 22を装置筐体 34に対して高耐圧のコンデン サ 36で高周波的に導通させて GND電位に安定化させることにより、さらに放射電磁 界ノイズを減らすことが可能となる。
[0038] 上記構成のように、消費電力の大きレ、タイミング発生回路 29を 2次回路 26内に設 けることにより、任意の周波数の送信ノ ルス及びパルス数 (パルス長)で発生可能と なり、放射電磁界ノイズを増やすことなぐ観測装置 4の大きさを小さくすることが可能 となる。
まとめると、本実施例は、以下の効果を有する。
回路規模を縮小しながら、任意の周波数及びパルス数 (パルス長)の送信出力を得 ること力 Sできる。
[0039] また、超音波スコープ 2が接続される患者回路 21の消費電流を減らすことが可能と なり、患者回路 21に属する超音波スコープ 2がアンテナとなって放射電磁界ノイズを 発生することを低減することが可能である。
また、先行例における患者回路に設けていたタイミング発生回路を 2次回路に設け るようにすることにより、患者回路の構成規模を縮小可能となり、観測装置本体の大き さを縮小することが可能となる。
また、従来では、多量に使用したディレイラインを使用する必要がなぐコストの削減 が可能となる。
[0040] (実施例 2)
次に図 3及び図 4を参照して、本発明の実施例 2を説明する。図 3は本発明の実施 例 2を備えた超音波診断装置 1の全体構成を示す。図 3に示す超音波診断装置 1は 、図 1の超音波診断装置 1において、送信回路 22を構成するパルスドライバ 25に、 正極用パルスと負極用パルスの(ディレイ時間による)タイミング調整を行うタイミング 調整回路 51を設けている。
具体的には、パルストランス 44aの 2次卷線の一端に直列に接続されたコンデンサ 46aの他端は、抵抗 52aを介して接地されると共に、ディレイ量が可変な可変ディレイ 53aを介してバッファ 48aの入力端に接続される。
また、パルストランス 44bの 2次卷線の一端に直列に接続されたコンデンサ 46bの 他端は、抵抗 52bを介して接地されると共に、ディレイ量が可変な可変ディレイ 53bを 介してバッファ 48bの入力端に接続される。
[0041] その他は、実施例 1と同様の構成であり、同様の構成部分に関しては、その説明を 省略する。
なお、図 3ではパルスドライバ 25内にタイミング調整回路 51を設けた構成で示して いる力 絶縁回路 27aとパルスドライバ 25との間にタイミング調整回路 51を設けるよう にしても良い。
本実施例では、タイミング発生回路 29からパルス発生回路 24に至るまでの経路に ぉレ、て、正極用ノ ルスと負極用ノ ルスのディレイ量が異なる場合にも対応できるよう にしたものである。
次に本実施例の動作の詳細を図 4を参照して説明する。
[0042] なお、図 4では、図 4 (C)から図 4 (E)までは、正極用パルスと負極用パルスのディレ ィ量が異なり、意図しない送信パルス(出力)が得られない場合を示しており、このよう な場合にもタイミング調整回路 51を設けることにより、図 4 )に示すように適切な送 信ノ ルスが得られることになる。
実施例 1と同様に図 4 (A)の A相トリガを同期信号として、 FPGAで構成されたタイミ ング発生回路 29は、図 4 (B)のクロックに同期して、メモリ 30内の正極用メモリデータ と負極用のメモリデータを読み出して、 FPGA内のメモリ Ml、 M2内に格納する。 そして、上記 A相トリガを同期信号として、所定のタイミングで図 4 (C)及び図 4 (D) に示すようにメモリ Ml、 M2から読み出し、絶縁回路ドライバ 28側に正極用ノルス、 負極用パルスを出力する。
[0043] 上記絶縁回路ドライバ 28は、絶縁回路 27aを介して、パルスドライバ 25に上記正極 用パルス、負極用パルスを印加し、パルスドライバ 25は、伝達された正極用パルス、 負極用ノ ルスをパルス発生回路 24に伝達する。そして、ノ ルス発生回路 24により送 信パルスの出力が生成される力 タイミング発生回路 29からパルス発生回路 24に至 る経路の影響で、正極用パルス、負極用パルスのタイミングがずれる可能性がある。 仮に正極用パルスのディレイ量が大きぐ負極用パルスのディレイ量が小さいように 2つの系統での伝播経路でディレイ量に差が生じると、図 4 (E)に示した波形の出力( 送信パルス)になり、意図した波形が得られなくなる。
本実施例は、このような場合の不具合を解消できるようにしている。上記したように、 正極用ノ ルスと負極用ノ ルスの伝播経路でディレイ量の差が生じる場合、以下の手 順で補正を行う。
[0044] タイミング発生回路 29からパルス発生回路 24の間で伝播遅延が生じる場合には、 図 4 (F)、図 4 (G)に示すメモリ Ml,、メモリ M2 'のようにメモリ Ml、 M2の出カタイミ ングを補正する(正極用パルス及び負極用パルスの発生(出力)のタイミングを早くな るよう設定する)。
次に、パルス発生回路 24の出力としての送信パルスが図 4ひ)の波形になるように、 正極用ノ ルス、負極用ノ ルスのディレイ量をタイミング調整回路 51により調節する。 例えば正極用パルスに対しては、図 4 (H)に示すように可変ディレイ 53aにより dlだ けディレイさせ、また負極用パルスに対しては、図 4 (1)に示すように可変ディレイ 53b により d2だけディレイさせることで所望とする波形の送信パルスを得ることが可能とな る。
[0045] 上記構成にすることにより、消費電流の大きいタイミング発生回路 29を 2次回路 26 に設け、タイミング発生回路 29から患者回路 21までに伝播するまでの伝播遅延が 2 系統で異なる状態が発生したとしても、タイミング調整回路 51により、その伝播遅延 の差を適切に補正することが可能となる。
また、タイミング調整回路 51は、大きなディレイ量は必要ないため、非常に小型な 回路で実現可能である。 また消費電力もほとんど変わらない為、放射電磁界ノイズを増やすこともない。 本実施例によれば、実施例 1の効果を有すると共に、タイミング発生回路 29からパ ルス発生回路 24に至るまでの経路において、正極用パルスと負極用パルスのディレ ィ量が異なる場合にも対応できる効果を有する。
[0046] (実施例 3)
次に図 5及び図 6を参照して本発明の実施例 3を説明する。図 5は、実施例 3を備え た超音波診断装置の全体構成を示す。
この超音波診断装置 1は、実施例 1の超音波診断装置 1において、タイミング発生 回路 29は、実施例 1同様に 2系統のタイミング信号を発生するが、その一方となる第 1系統側には、デジタル信号をアナログ信号、つまり D/A変換する DAC回路 61が 接続されている。この DAC回路 61の出力信号は、タイミング発生回路 29から出力さ れる第 2系統側の信号と共に、絶縁回路ドライバ 28に入力される。
また、本実施例においては、絶縁回路 27aにおける第 1系統側の出力端には、例 えばコンデンサ 46aを介して増幅器 62が接続されている。
[0047] この増幅器 62の出力端は、整合用抵抗 63に接続されると共に、分岐部 20を介し て超音波スコープ 2の超音波振動子 3に接続され、この増幅器 62から出力される送 信ノ ルスにより超音波振動子 3を駆動する。
一方、タイミング発生回路 29の他方の出力信号は、絶縁回路ドライバ 28、絶縁回 路 27aを経て、患者回路 21内に設けたバイアス回路 64に入力される。このバイアス 回路 64は、例えばバッファ回路 65を用いて構成され、このバイアス回路 64の出力信 号は、増幅器 62の増幅動作を制御するバイアス端子に接続されている。
そして、バイアス回路 64は、通常はバイアス端子に" L"レベルの信号を印加して増 幅器 62が増幅動作を行わない状態に設定しており、送信信号を発生する期間には 、ノ ィァス端子に" H' 'レベルの信号を印加して増幅動作を行わせる状態に設定する 。つまり、タイミング発生回路 29が出力する他方の出力信号 (第 2の信号)は、送信回 路 22を構成する増幅器 62の動作を制御する制御信号となる。
[0048] 本実施例では、超音波振動子 3に対して、高調波成分が少なレ、波形の送信パルス
(送信信号)を生成可能な構成にしている。このため、タイミング発生回路 29は、一方 の系統で、送信パルス波形の信号を送信回路 22側に送り、他方の系統で、送信パ ルスを発生させる期間に、送信回路 22の増幅器 62を動作させる制御信号を送信す るようにしている。
なお、本実施例においては、電源回路 33は、正負バイポーラの患者回路電源の機 能を有している(実施例 1及び 2では正極性(単極性)の患者回路電源のみの機能を 有する)。また、この電源回路 33は、 2次回路電源に介しても正負バイポーラで出力 する機能を有している(実施例 1及び 2では正極性(単極性)の 2次回路電源のみの 機能を有する)。
[0049] 次に図 6を参照して本実施例の動作を説明する。
上述した実施例 1の場合と同様に、 A相トリガにて、同期をとり送信パルスを得る構 成となっている。図 6 (A)は A相トリガを示し、タイミング発生回路 29は、実施例 1と同 様に図 6 (B)に示す 320MHz程度のクロックで動作する FPGAからなる。
この FPGAは、メモリ 30内にストアされているメモリデータを読み込む。 実施例 1では、 1ビットのデータ内容であった力 S、本実施例では、例えば 8ビットのデ ータ内容となっている。
この FPGAは、一旦、読み込まれたメモリ 30のメモリデータは、 A相トリガから所定 時間経過後のクロックに同期して 8ビットで出力される。
この FPGAから出力された 8ビットのメモリデータは、 DAC回路 61により、図 6 (C) の DAC出力に示すように、振幅も任意の波形で発生可能となる。
[0050] 同時にこの FPGA (タイミング発生回路 29)は、他方の出力として、図 6 (D)に示す ようにバイアス回路 64に出力する (増幅器 62の)制御信号としてのバイアス回路出力 を発生する。
この発生方法としては、例えばメモリ 30からそのデータを読み込み、タイミング発生 回路 29で発生させる。
上記 DAC出力とバイアス回路出力が、絶縁回路ドライバ 28、絶縁回路 27aを経由 して患者回路 21における増幅器 62に印加される。
この増幅器 62では、通常は、バイアス回路出力(出力レベルがゼロ或いは" L"レべ ル)が印加されない状態では、ほとんど OFF状態となっており、増幅動作を行わない 。 上記バイアス回路 64より、図 6 (D)に示すバイアス回路出力が与えられると、増幅 器 62にバイアス電流が流れ、増幅器 62はィネーブル状態となり、増幅動作を行う。
[0051] 上述したように、ノ ィァス回路出力を先行する制御信号として、増幅器 62に与えた 後、図 6 (C)に示す DAC出力を増幅器 62に印加する。
増幅器 62では、 DAC回路 61を経て入力された信号をおよそ 200Vpp程度の振幅 に線形増幅する。
上記増幅された送信出力は、送信パルスとして超音波スコープ 2の超音波振動子 3 に印加され、超音波が励振される。
図 6 (E)の送信パルスが超音波振動子 3に印加される駆動信号であり、基本波のパ ルス波形に対して、その高調波が数 + dB抑制された、送信波形にできる。
つまり、本実施例によれば、広帯域な超音波振動子 3を使用する場合においても、 送信波形の高調波成分を大幅に低減することが可能となる。
また、被検体から帰ってきた受信信号の高調波成分は、広帯域振動子 3で効率良 く受信してエコー信号とすることが可能であり、 THIの画像を生成する上では非常に 感度が向上する。
[0052] 従って、本実施例によれば、超音波振動子 3により受信して得たエコー信号に対し て、超音波画像生成回路 32内において、基本波による超音波画像を生成する処理 を行うことができると共に、さらにエコー信号における基本波の 2次或いは 3次の高調 波の信号成分を抽出して画像化することにより、サイドローブを抑制し、方位分解能 が良好な超音波画像を得ることもできることになる。
また、本実施例においては、バイアス回路 64による増幅器 62の動作の〇N、 OFF 制御を行うことによって、必要最低限の消費電力で送信回路 22を構成することが可 能であり患者回路 21の回路規模を小さくすることが可能となり、これに伴って観測装 置 4の回路規模も小さぐ小型化及び低コスト化を実現できる。
また、消費電流を抑えることから、放射ノイズ抑制にも繋がる。
[0053] 本実施例は、実施例 1の効果を有すると共に、さらに観測装置 4に接続される超音 波スコープ 2に内蔵された超音波振動子 3の特性等に適切に対応したパルス波形( 換言すると、任意に近いパルス波形)の送信パルスを生成することができる。 また、本実施例は、送信パルスの波形として高調波を抑制可能としたので、 THIの 感度を向上させることが可能となる効果もある。
また、ガウシアン等の窓関数で重み付けを行うことが可能であり、サイドローブの抑 制、分解能の向上に寄与することが可能となる。
なお、上述の説明において、超音波スコープ 2の場合で説明したが、揷入部 6の先 端部 7に光学的な観察手段を有しないで、超音波振動子 3のみが設けられた超音波 プローブの場合にも適用できる。
[0054] なお、上述した各実施例において、例えばコンデンサ 36の他にさらにもう 1っコン デンサ及びこのコンデンサと直列に接続され、装置筐体 34への接続を ON/OFF するスィッチを設け、例えば送信ノ^レスを発生する期間には装置筐体 34への接続を OFFにし、送信パルスを出力後におけるエコー信号に対する処理を行う期間には〇 Nにするようにしても良い。
つまり、送信パルスを出力後におけるエコー信号に対する処理を行う期間には、コ ンデンサ 36によるインピーダンスで患者回路 21の GNDを高周波的に導通させると 共に、もう 1つのコンデサによっても患者回路 21の GNDを高周波的に導通させる。 そして、エコー信号に対する信号処理時における超音波画像生成時における外部 力 のノイズの侵入を低減して、 S/Nの良い超音波画像を生成できるようにしても良 レ、。
[0055] 上述したように本発明によれば、回路規模を小さぐ放射電磁界ノイズの発生を小さ くできると共に、超音波振動子を駆動するのに適した任意波形(波形の制約が少な レ、)送信信号を生成できる。
産業上の利用可能性
[0056] 体腔内に挿入される挿入部の先端に超音波振動子を設けた超音波プローブ又は 超音波スコープが接続され、超音波振動子を駆動する送信信号を生成する場合、 2 次回路において電流消費量が大きぐ送信信号の生成に必要となる基本波形のパ ルスを発生し、このノ^レスを絶縁回路を介して伝送し、患者回路に設けたパルス発生 回路により合成する等して送信信号を生成する構成にすることにより、ノイズを抑制し て各種の超音波振動子に広く適用できる。

Claims

請求の範囲
[1] 体腔内に挿入される超音波プローブが接続され、該超音波プローブに内蔵された 超音波振動子にパルス状の送信信号を出力する超音波観測装置であって、 前記超音波観測装置の筐体にグランドが接続された 2次回路と、
前記筐体とグランドが直流的に絶縁された患者回路と、
前記 2次回路に設けられ、前記送信信号を生成するためのタイミング信号を発生す るタイミング発生回路と、
前記 2次回路から前記タイミング信号を絶縁して前記患者回路に伝送する絶縁回 路と、 前記患者回路に設けられ、入力される前記タイミング信号に同期して前記送 信信号を発生する送信信号発生回路と、
を具備することを特徴とする超音波観測装置。
[2] 前記タイミング信号発生回路は、前記送信信号を生成するために対となるタイミン グパルスを発生することを特徴とする請求項 1に記載の超音波観測装置。
[3] 前記絶縁回路は、前記タイミング信号を伝送するために第 1及び第 2の絶縁回路を 有することを特徴とする請求項 1に記載の超音波観測装置。
[4] 前記絶縁回路は、前記対となるタイミングパルスを伝送するために第 1及び第 2の 絶縁回路を有することを特徴とする請求項 2に記載の超音波観測装置。
[5] 前記対となるタイミングパルスにおける少なくとも一方のタイミングノ ルスの伝搬時 間を調整可能とする調整回路を有することを特徴とする請求項 2に記載の超音波観 測装置。
[6] 前記調整回路は、前記患者回路内に設けられることを特徴とする請求項 5に記載 の超音波観測装置。
[7] 前記送信信号発生回路は、前記絶縁回路を経て入力される前記タイミング信号か らバイポーラ波形の前記送信信号を発生することを特徴とする請求項 1に記載の超 音波観測装置。
[8] 前記送信信号発生回路は、前記第 1及び第 2の絶縁回路を経て入力される前記対 のタイミングパルスからバイポーラ波形の前記送信信号を発生することを特徴とする 請求項 4に記載の超音波観測装置。
[9] 前記送信信号発生回路は、前記対のタイミングパルスをそれぞれスイッチングする 対のスイッチング素子を有することを特徴とする請求項 8に記載の超音波観測装置。
[10] 前記送信信号発生回路は、前記対のスィッチング素子の出力信号を合成して前記 バイポーラ波形の前記送信信号を生成するトランスを有することを特徴とする請求項
9に記載の超音波観測装置。
[11] 前記患者回路は、そのグランドがコンデンサを介して前記筐体に接続されることを 特徴とする請求項 1に記載の超音波観測装置。
[12] さらに前記超音波観測装置に接続される前記超音波プローブから前記超音波振 動子に関する情報を検出する情報検出手段を有することを特徴とする請求項 1に記 載の超音波観測装置。
[13] さらに前記情報により前記タイミング発生回路で発生するタイミング信号を制御する 制御回路を有することを特徴とする請求項 12に記載の超音波観測装置。
[14] 前記タイミング信号発生回路は、前記タイミング信号として複数種類のパルス波形 を発生するためのパルスデータを格納するメモリ手段を有することを特徴とする請求 項 1に記載の超音波観測装置。
[15] 前記タイミング信号発生回路は、フィールド 'プログラマブル'ゲートアレイにより構 成されることを特徴とする請求項 1に記載の超音波観測装置。
[16] 前記タイミング信号発生回路は、前記タイミング信号として、前記送信信号に対応し た波形の第 1の信号と、前記第 1の信号が入力される前記送信信号発生回路の動作 を制御する第 2の信号とを発生することを特徴とする請求項 1に記載の超音波観測装 置。
[17] 前記絶縁回路は、前記第 1の信号と、前記第 2の信号とを前記患者回路に伝送す る 2系統の絶縁回路からなることを特徴とする請求項 16に記載の超音波観測装置。
[18] 前記タイミング信号発生回路は、複数のデジタル信号から前記第 1の信号を生成 するデジタルアナログ変換回路を有することを特徴とする請求項 16に記載の超音波 観測装置。
[19] 前記送信信号発生回路は、前記第 1の信号を増幅して前記送信信号を発生する 増幅回路を有することを特徴とする請求項 16に記載の超音波観測装置。 前記増幅回路は、前記第 2の信号の印加により増幅機能が制御されることを特徴と する請求項 19に記載の超音波観測装置。
PCT/JP2005/022198 2004-12-06 2005-12-02 超音波観測装置 WO2006062042A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP05811349A EP1825816B1 (en) 2004-12-06 2005-12-02 Ultrasonic observation apparatus
DE602005022227T DE602005022227D1 (de) 2004-12-06 2005-12-02 Ultraschallbeobachtungsgerät
US11/810,084 US7905839B2 (en) 2004-12-06 2007-06-04 Ultrasonic observation apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-353426 2004-12-06
JP2004353426A JP4642450B2 (ja) 2004-12-06 2004-12-06 超音波観測装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US11/810,084 Continuation US7905839B2 (en) 2004-12-06 2007-06-04 Ultrasonic observation apparatus

Publications (1)

Publication Number Publication Date
WO2006062042A1 true WO2006062042A1 (ja) 2006-06-15

Family

ID=36577871

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/022198 WO2006062042A1 (ja) 2004-12-06 2005-12-02 超音波観測装置

Country Status (5)

Country Link
US (1) US7905839B2 (ja)
EP (1) EP1825816B1 (ja)
JP (1) JP4642450B2 (ja)
DE (1) DE602005022227D1 (ja)
WO (1) WO2006062042A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008073137A (ja) * 2006-09-20 2008-04-03 Aloka Co Ltd 超音波診断装置及び超音波プローブ
JPWO2020245959A1 (ja) * 2019-06-05 2020-12-10

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5138249B2 (ja) * 2007-03-26 2013-02-06 株式会社日立メディコ 超音波診断装置
JP2008253524A (ja) * 2007-04-04 2008-10-23 Olympus Medical Systems Corp 超音波観測システム
US8864675B2 (en) 2007-06-28 2014-10-21 W. L. Gore & Associates, Inc. Catheter
WO2009006335A1 (en) * 2007-06-28 2009-01-08 Gore Enterprise Holdings, Inc. Improved catheter
US8852112B2 (en) 2007-06-28 2014-10-07 W. L. Gore & Associates, Inc. Catheter with deflectable imaging device and bendable electrical conductor
US20100238278A1 (en) * 2009-01-27 2010-09-23 Tokendo Videoendoscopy system
US9162255B1 (en) * 2010-01-13 2015-10-20 Fujifilm Sonosite, Inc. Tunable ultrasound transmitter
US9155140B2 (en) * 2012-06-07 2015-10-06 Gabriel Yavor Optical waveform generator
JP6272745B2 (ja) 2014-10-27 2018-01-31 ソニー・オリンパスメディカルソリューションズ株式会社 医療機器用基板および医療機器
JP6666367B2 (ja) * 2018-01-04 2020-03-13 ソニー・オリンパスメディカルソリューションズ株式会社 医療機器用基板および医療機器
JP2019150466A (ja) * 2018-03-06 2019-09-12 ソニー・オリンパスメディカルソリューションズ株式会社 医療機器
CN111867480A (zh) * 2018-03-15 2020-10-30 皇家飞利浦有限公司 可变管腔内超声发射脉冲生成和控制设备、系统和方法
CN108553125B (zh) * 2018-05-23 2024-01-26 深圳市德力凯医疗设备股份有限公司 一种超声经颅多普勒采集装置及系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61103436A (ja) * 1984-10-26 1986-05-21 オリンパス光学工業株式会社 超音波内視鏡装置
US4674515A (en) 1984-10-26 1987-06-23 Olympus Optical Co., Ltd. Ultrasonic endoscope
JPH11276484A (ja) * 1998-03-26 1999-10-12 Terumo Corp 体腔内超音波診断装置
JP2000296128A (ja) * 1999-04-16 2000-10-24 Ge Yokogawa Medical Systems Ltd 超音波発生装置制御方法、超音波発生装置および超音波撮像装置
JP2002315748A (ja) * 2001-04-24 2002-10-29 Matsushita Electric Ind Co Ltd 超音波診断装置用送信回路

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1366879A (fr) * 1963-06-04 1964-07-17 Générateur d'ultra-sons
JPH0399644A (ja) * 1989-09-14 1991-04-24 Toshiba Corp 超音波診断装置
US5209235A (en) * 1991-09-13 1993-05-11 Cardiovascular Imaging Systems, Inc. Ultrasonic imaging catheter assembly and method for identification of the same
US7343195B2 (en) * 1999-05-18 2008-03-11 Mediguide Ltd. Method and apparatus for real time quantitative three-dimensional image reconstruction of a moving organ and intra-body navigation
US6645148B2 (en) * 2001-03-20 2003-11-11 Vermon Ultrasonic probe including pointing devices for remotely controlling functions of an associated imaging system
JP2002315749A (ja) * 2001-04-24 2002-10-29 Olympus Optical Co Ltd 超音波駆動回路
JP4216647B2 (ja) * 2003-05-29 2009-01-28 古野電気株式会社 超音波送信装置、超音波送受信装置、および探知装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61103436A (ja) * 1984-10-26 1986-05-21 オリンパス光学工業株式会社 超音波内視鏡装置
US4674515A (en) 1984-10-26 1987-06-23 Olympus Optical Co., Ltd. Ultrasonic endoscope
JPH11276484A (ja) * 1998-03-26 1999-10-12 Terumo Corp 体腔内超音波診断装置
JP2000296128A (ja) * 1999-04-16 2000-10-24 Ge Yokogawa Medical Systems Ltd 超音波発生装置制御方法、超音波発生装置および超音波撮像装置
JP2002315748A (ja) * 2001-04-24 2002-10-29 Matsushita Electric Ind Co Ltd 超音波診断装置用送信回路

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1825816A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008073137A (ja) * 2006-09-20 2008-04-03 Aloka Co Ltd 超音波診断装置及び超音波プローブ
JPWO2020245959A1 (ja) * 2019-06-05 2020-12-10
JP7289352B2 (ja) 2019-06-05 2023-06-09 オリンパス株式会社 駆動装置

Also Published As

Publication number Publication date
EP1825816A1 (en) 2007-08-29
JP2006158598A (ja) 2006-06-22
JP4642450B2 (ja) 2011-03-02
DE602005022227D1 (de) 2010-08-19
US7905839B2 (en) 2011-03-15
US20080009744A1 (en) 2008-01-10
EP1825816A4 (en) 2009-01-21
EP1825816B1 (en) 2010-07-07

Similar Documents

Publication Publication Date Title
WO2006062042A1 (ja) 超音波観測装置
JP4917699B2 (ja) 超音波診断装置
JP5087722B2 (ja) 超音波観測装置
US7883466B2 (en) Ultrasonic probe apparatus and ultrasonic diagnostic apparatus
JP2002530174A (ja) コードレス走査ヘッド伝送システムを用いた超音波診断撮像
JP2001516075A (ja) 超音波フェーズドアレーの駆動方式および集束超音波ビーム発生および指向方式
JPH09522A (ja) 超音波プローブ及び超音波診断装置
JP5459975B2 (ja) 超音波診断装置
US7115094B2 (en) Ultrasonic probe, ultrasonic imaging apparatus and ultrasonic imaging method
JPH08628A (ja) 超音波断層装置
JP3730823B2 (ja) 超音波振動子駆動回路
JP4429701B2 (ja) 超音波観測装置
JP2849131B2 (ja) 超音波診断医用カプセル
KR100413779B1 (ko) 초음파 진단 장치
JP2000023979A (ja) 超音波診断装置
JP2000005169A (ja) 超音波送受信回路および超音波送受信回路を備えた超音波診断装置
US20210204905A1 (en) Ultrasound diagnostic apparatus and pulse signal transmitter
JP3062313B2 (ja) 超音波診断装置
JP2002315749A (ja) 超音波駆動回路
JP2001346798A (ja) 超音波駆動回路
JP2003290227A (ja) 超音波診断装置及び超音波プローブ
JPS5911302B2 (ja) 超音波映像装置およびその動作方法
JP2004188171A (ja) 超音波診断装置
JP2005185566A (ja) 超音波診断装置
KR20090078624A (ko) 단일 변환소자를 이용한 초음파 진단 장치

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 11810084

Country of ref document: US

Ref document number: 2005811349

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWP Wipo information: published in national office

Ref document number: 2005811349

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 11810084

Country of ref document: US