WO2006059410A1 - 車両用空調装置 - Google Patents

車両用空調装置 Download PDF

Info

Publication number
WO2006059410A1
WO2006059410A1 PCT/JP2005/013285 JP2005013285W WO2006059410A1 WO 2006059410 A1 WO2006059410 A1 WO 2006059410A1 JP 2005013285 W JP2005013285 W JP 2005013285W WO 2006059410 A1 WO2006059410 A1 WO 2006059410A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
vehicle
heat exchanger
cooling water
exhaust
Prior art date
Application number
PCT/JP2005/013285
Other languages
English (en)
French (fr)
Inventor
Masakuni Ishikawa
Nobuhiko Suzuki
Original Assignee
Valeo Thermal Systems Japan Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Thermal Systems Japan Corporation filed Critical Valeo Thermal Systems Japan Corporation
Publication of WO2006059410A1 publication Critical patent/WO2006059410A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/02Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant
    • B60H1/14Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant otherwise than from cooling liquid of the plant, e.g. heat from the grease oil, the brakes, the transmission unit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00357Air-conditioning arrangements specially adapted for particular vehicles
    • B60H1/00385Air-conditioning arrangements specially adapted for particular vehicles for vehicles having an electrical drive, e.g. hybrid or fuel cell
    • B60H1/00392Air-conditioning arrangements specially adapted for particular vehicles for vehicles having an electrical drive, e.g. hybrid or fuel cell for electric vehicles having only electric drive means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/02Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant
    • B60H1/14Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant otherwise than from cooling liquid of the plant, e.g. heat from the grease oil, the brakes, the transmission unit
    • B60H1/143Heating, cooling or ventilating [HVAC] devices the heat being derived from the propulsion plant otherwise than from cooling liquid of the plant, e.g. heat from the grease oil, the brakes, the transmission unit the heat being derived from cooling an electric component, e.g. electric motors, electric circuits, fuel cells or batteries

Definitions

  • the present invention relates to an air conditioner mounted on an automobile or the like, and in particular, an automobile (hybrid vehicle) that uses both an engine and an electric motor as a driving source for traveling, and an automobile that stops an engine when the vehicle is stopped (idling stop vehicle). ), A technology suitably used in an automobile (electric vehicle, fuel cell vehicle, etc.) using only an electric motor.
  • a heat pump cycle is used for generating warm air and cold air in an air conditioner.
  • This heat pump cycle switches the flow of refrigerant into indoor heat exchange and outdoor heat exchange between heating and cooling.
  • the indoor heat exchanger to be exchanged is a condenser, and the outdoor heat exchange to exchange heat with the outside air is made to function as an evaporator.
  • an outdoor heat exchanger is used as a condenser and an indoor heat exchanger is used as an evaporator regardless of whether it is air-conditioned.
  • a radiator that dissipates engine cooling water downstream of the evaporator in the ventilation direction of the evaporator is placed, and the ratio of air passing through the evaporator and radiator is adjusted by an air mix door, etc. The blowout air of the temperature of is generated.
  • This heating device includes a radiator that uses engine cooling water as a heat source, an engine-driven water pump that uses the engine as a driving source to circulate cooling water between the engine, heat radiator, and radiator, and the cooling water is lower than a predetermined temperature. If the cooling water is lower than the specified temperature, the bypass flow path for bypassing the radiator, the electric water pump that circulates the cooling water between the engine, radiator, and radiator using the electric motor as the drive source.
  • the cooling water allows the flow of bypassing the radiator, and when the cooling water circulates between the engine and the radiator by the electric water pump, the cooling water flowing out from the outlet of the radiator passes through the bypass flow path of the radiator.
  • a radiator that dissipates engine cooling water is disposed downstream of the indoor heat exchanger in the ventilation direction, and an exhaust heat exchanger for absorbing heat is disposed at the exhaust port of the vehicle interior.
  • An air-conditioning apparatus that uses an indoor heat exchanger as heating-assisting heat exchange during heating is disclosed (see Patent Document 2), and heating is performed using the heat of the vehicle interior air exhausted thereby. It is said that the performance can be improved.
  • Patent Document 1 JP 2000-71749 A
  • Patent Document 2 JP-A-6-135221
  • the efficiency of the engine is high, so there are cases in which the engine displacement is lower than that of a normal engine vehicle, so that a sufficient amount of heat cannot often be secured.
  • the air heat inside the vehicle is released as it is to the outside air, resulting in a loss of ventilation, reducing the efficiency of the air conditioner and increasing the fuel consumption (both cooling and heating).
  • the cooling water in the engine is used for heating, the temperature of the cooling water decreases, and the exhaust gas may increase when the engine is restarted. This is a problem because it impairs the reduction of exhaust gas, which is the original purpose of hybrid vehicles.
  • the cooling water itself does not exist in an electric vehicle, a mechanism for securing or generating another heat source is required. Furthermore, a heat pump cycle was used.
  • the outdoor heat exchange functions as an evaporator during heating, frost formation may occur in the outdoor heat exchange depending on conditions such as the outside air temperature and humidity, and the heating function may be impaired.
  • the present invention improves the heating efficiency by utilizing the heat of the exhausted vehicle interior air, maintains a good heating performance even in a vehicle that tends to lack a heat source, and has a cooling performance.
  • the aim is to improve the air conditioning system, to prevent an increase in exhaust gas when the engine is restarted, and to ensure comfort when using air conditioning.
  • a vehicle air conditioner includes a compressor 101 that compresses a refrigerant, and an outdoor heat exchanger that exchanges heat between the compressed refrigerant and outside air, as shown in FIG.
  • the refrigerant bypass means is a mechanism that changes the order in which the refrigerant passes through the equipment connected to the cycle based on the air conditioning operation mode, weather conditions, etc. (consisting of a branch pipe, various valves, various sensors, a control computer, etc. Is).
  • the evaporator is not used as an auxiliary radiator, it is possible to maintain the comfort that the windshield etc. will not be clouded by evaporation of the condensate when switching from cooling to heating. Since the device can function, dehumidification heating is possible.
  • the refrigerant bypass means 110 and 111 are configured so that the compressor 101 ⁇ the inter-medium heat exchanger 103 ⁇ the pressure reducing unit during heating. It is preferable that a circulation path comprising means 104 ⁇ the exhaust heat exchange 106 ⁇ the compressor 101 is formed (Claim 2).
  • the inter-medium heat exchange 103 functions as a condenser, and the heat of the refrigerant is conducted to the other heat exchange medium. Heat is dissipated by the heater radiator 107. Further, since the exhaust heat exchanger 106 functions as an evaporator, heat can be absorbed from the air inside the vehicle that is hotter than the outside air, so that COP can be improved.
  • the other heat exchange medium is preferably cooling water for cooling the engine (claim 3).
  • a cooling medium such as a motor, an inverter, a battery, and a fuel cell can also be used.
  • the vehicle air conditioner according to the present invention is a vehicle air conditioner that uses a refrigerant circulation cycle in which a refrigerant circulates and a cooling water circulation cycle in which a cooling water for cooling the engine circulates.
  • a compressor that compresses the refrigerant
  • an outdoor heat exchanger that exchanges heat between the compressed refrigerant and the outside air
  • a decompression unit that depressurizes the condensed refrigerant
  • an evaporation that exchanges heat between the decompressed refrigerant and the air blown into the vehicle
  • a radiator for the heater that radiates heat in the air blown into the vehicle, the upstream end in the ventilation direction communicates with the outside and the interior of the vehicle, and the downstream end communicates with the interior of the vehicle.
  • This configuration is used for a vehicle having both a refrigerant circulation cycle and a cooling water circulation cycle, and mainly has a low engine heat generation, such as a hybrid vehicle and an idling stop vehicle, as compared with a normal engine traveling vehicle. (It can also be applied to ordinary engine vehicles), and at least a compressor, an outdoor heat exchanger, a decompression means, an evaporator, and an exhaust heat exchanger are connected to the refrigerant circulation cycle for cooling.
  • a radiator for the heater is connected to the water circulation cycle (usually configured to include the engine, radiator, etc.).
  • Exhaust heat exchange is to absorb heat (evaporation) or dissipate heat (condensation and supercooling) in the air outside the exhaust gas exhaust.
  • refrigerant after depressurization flows, it functions as an evaporator. It functions as a heat exchanger ⁇ that generates a subcool when the refrigerant flows.
  • the air inside the vehicle (vehicle interior) discharged outside the vehicle is changed.
  • Thermal energy (potential) can be effectively used to improve the efficiency of heating and cooling.
  • the air inside the vehicle is hotter than the outside air in the winter and colder than the outside air in the summer due to the heating and cooling that are already in operation.
  • the refrigerant bypass means is configured to allow the refrigerant after decompression to flow into the exhaust heat exchanger during heating! ⁇ (Claim 5).
  • the exhaust heat exchanger functions as an evaporator. That is, the refrigerant after decompression absorbs the aerodynamic force in the exhaust duct that is higher in temperature than the outside air. As a result, frost formation can be prevented and the COP can be improved compared to the case where heat is absorbed from the outside air. wear.
  • the refrigerant bypass means is configured to cause the refrigerant before decompression to flow into the exhaust heat exchanger during cooling. (Claim 6).
  • the exhaust heat exchange ⁇ functions as a heat exchange ⁇ for generating a subcool. That is, the refrigerant before decompression is supercooled by the air in the exhaust duct, which is cooler than the outside air. Thereby, COP can be improved.
  • claims 4 to 6 are preferably as follows. As shown in FIG. 6, in the refrigerant circulation cycle 2, the inter-medium heat exchanger 11 is disposed between the compressor 10 and the outdoor heat exchanger 12, and the outdoor heat exchanger 12 and the exhaust gas are exhausted. A first decompression means 14 is disposed between the heat exchanger 15 and a second decompression means 16 is disposed between the exhaust heat exchanger 15 and the evaporator 17 to bypass the outdoor heat exchange. A first refrigerant bypass means 20, a second refrigerant bypass means 21 for bypassing the first decompression means 14, a second refrigerant bypass means 22 for bypassing the second decompression means 16 and the evaporator 17.
  • the cooling water circulation cycle 3 includes the engine 30, a radiator 32 that cools the cooling water, a pump 3 la, 31b that flows the cooling water, the radiator 33 for the heater, and the heat exchange between the media. It is preferable to have a device 11 Section 7).
  • the cooling water bypass means includes three-way valves 34a to 34f, check valves 35, open / close valves 36a and 36b, piping, a control computer, and the like.
  • the cycle can be maintained in an efficient state by appropriately switching between the refrigerant bypass means and the coolant bypass means based on the air-conditioning operation mode, weather conditions, and the like. For example, if the amount of heat of the cooling water as the heat source for the heater radiator 33 is insufficient for the heating requirement! / Flow, both the refrigerant and the cooling water should flow into the inter-medium heat exchanger 11. As a result, the heat of the high-temperature and high-pressure refrigerant pumped from the compressor 10 can be conducted to the cooling water, whereby the heating function can be maintained well. In addition, when the heating request is made, the refrigerant after depressurization flows into the exhaust heat exchanger 15 (see FIG.
  • the exhaust heat exchanger 15 can function as an evaporator, and when the cooling request is made, before the depressurization is performed.
  • the refrigerant By flowing into the exhaust heat exchanger 15 (see Fig. 17), it is possible to give a subcool to the refrigerant.
  • the cooling water bypass means It is preferable to configure a circuit including the inter-medium heat exchanger 11, the heater radiator 33, and the pump 31b (Claim 8).
  • the cooling water temperature with little engine load and operation becomes difficult to increase. Cannot be secured.
  • the refrigerant circulation cycle 2 the refrigerant flows in the order of the compressor 10 ⁇ the heat exchanger 11 between the medium ⁇ the first decompression means 14 ⁇ the exhaust heat exchange 15 ⁇ the compressor 10.
  • the exhaust heat exchanger 15 functions as an evaporator, thereby preventing frost formation and improving COP.
  • the coolant is warmed by the heat of the refrigerant in the inter-medium heat exchanger 11, the amount of heat that the coolant is insufficient can be saved.
  • the refrigerant is stored in the compressor 10 ⁇ intermediate heat exchanger 11 ⁇ outdoor heat exchanger 12 ⁇ exhaust heat exchanger 15 ⁇ second decompression means 16 ⁇ evaporator 17 ⁇ compression. It flows in the order of machine 10.
  • the exhaust heat exchange functions as a heat exchange that gives a subcool.
  • COP can be improved.
  • the first refrigerant bypass means 20 When there is a request for heating and dehumidification and the amount of heat of the cooling water is insufficient (see FIG. 11), in the refrigerant circulation cycle 2, the first refrigerant bypass means 20 The outdoor heat exchanger 12 is bypassed, and in the cooling water circulation cycle 3, a circuit including the medium heat exchanger 11, the heater radiator 33, and the pump 3 lb is provided by the cooling water bypass means. It is preferred to compose U, (Claim 11).
  • the refrigerant circulation cycle 2 the refrigerant is stored in the compressor 10 ⁇ the heat exchanger 11 between mediums ⁇ the first pressure reducing means 14 ⁇ the exhaust heat exchanger 15 ⁇ the second pressure reducing means 16 ⁇ the evaporator 17 ⁇
  • the compressor flows in the order of 10.
  • the exhaust heat exchange functions as the first evaporator and the normal evaporator 17 functions as the second evaporator, so that frost formation and condensation can be prevented and COP can be improved.
  • the refrigerant capacity can be compensated for the lack of heat of the cooling water.
  • the second refrigerant bypass 21 means in the refrigerant circulation cycle 2
  • the first pressure reducing means 14 is bypassed, and in the cooling water circulation cycle 3, a circuit that bypasses the inter-medium heat exchange 11 is configured by the cooling water bypass means U ⁇ (Claim 12) .
  • the refrigerant is stored in the compressor 10 ⁇ intermediate heat exchanger 11 ⁇ outdoor heat exchanger 12 ⁇ exhaust heat exchanger 15 ⁇ second decompression means 16 ⁇ evaporator 17 ⁇ compression. It flows in the order of machine 10.
  • the air mix door 55 provided in the exhaust duct 5 is opened and a subcool is applied by the exhaust heat exchange 15. Thereby, the dehumidifying action in the evaporator 17 is increased.
  • the refrigerant is overheated, so it is preferable to close the air mix door 55.
  • claims 4 to 12 can be suitably used in a hybrid vehicle in which the temperature of the cooling water tends to be insufficient, that is, a vehicle using the engine and the electric motor as a travel drive source ( Claim 13).
  • a hybrid vehicle in which the temperature of the cooling water tends to be insufficient
  • a vehicle using the engine and the electric motor as a travel drive source Claim 13
  • engine stop states such as known idle stop vehicles are effective for many automobiles in general.
  • the power that increases the amount of exhaust gas when the cooling water temperature decreases such as when the engine is restarted.
  • the minimum temperature of the cooling water when the exhaust gas increases is set and this temperature is set.
  • the temperature is less than or equal to the degree, it is possible to prevent problems such as an increase in exhaust gas by heating in the heat exchange between the media.
  • the refrigerant circulation cycle 2 includes an internal heat exchanger 39 for exchanging heat between the refrigerant on the outlet side of the exhaust heat exchanger 15 and the refrigerant on the inlet side of the compressor 10. (Claim 15). This can further improve the COP.
  • the vehicle air conditioner includes a compressor 201 that compresses the refrigerant, an outdoor heat exchanger 202 that exchanges heat between the compressed refrigerant and the outside air, and a post-compression Heat exchanger 203 for the heater that exchanges heat with the air blown into the vehicle, depressurization means 204 that depressurizes the refrigerant, evaporator 205 that exchanges heat with the air blown into the vehicle after the decompression, An exhaust heat exchanger 206 that exchanges heat between the refrigerant and air discharged from the vehicle interior, and refrigerant bypass means 210 and 211 that change the circulation path of the refrigerant based on predetermined conditions are provided (claims). 16).
  • the refrigerant bypass means during heating, as shown in FIG. 35, the compressor 201 ⁇ the heat exchanger 203 for the heater ⁇ the decompression unit.
  • Means 204 ⁇ the exhaust heat exchanger 206 ⁇ the compressor 201 constitutes a circulation path (Claim 17).
  • the exhaust heat exchanger 206 functions as an evaporator and can also absorb the aerodynamic force of the vehicle interior that is higher than the outside air, so that the heating performance can be improved.
  • the refrigerant bypass means is configured such that the compressor 201 ⁇ the heater heat exchanger 2 as shown in FIG.
  • the vehicle air conditioner according to the present invention is a vehicle air conditioner that uses a refrigerant circulation cycle in which a refrigerant circulates.
  • the vehicle air conditioner compresses the refrigerant, and exchanges heat between the compressed refrigerant and the outside air. Heat exchange, heat exchange of the compressed refrigerant with the air blown into the vehicle, heat exchanger for heater, decompression means for decompressing the refrigerant, heat exchange of the decompressed refrigerant with the air blown into the vehicle
  • the evaporator, the upstream end in the ventilation direction communicates with the outside and the interior of the vehicle, the downstream end communicates with the interior of the vehicle, and the evaporator and the heat exchanger for the heater are installed inside.
  • An exhaust duct that communicates with the outside of the vehicle and has a downstream end communicating with the outside of the vehicle, an exhaust heat exchanger that exchanges heat between the refrigerant and the air in the exhaust duct, and a refrigerant flow path based on predetermined conditions Change It is those configured by including a refrigerant bypass means (claim 19).
  • This configuration is particularly preferably used in vehicles that do not have a cooling water circulation cycle, that is, electric vehicles that use only an electric motor, fuel cell vehicles, and the like (ordinary engine traveling vehicles, hybrid vehicles).
  • the exhaust heat exchanger shelf absorbs heat (evaporates) or dissipates heat (condensates and supercools) in the air outside the exhaust duct. It functions as an evaporator when refrigerant after decompression flows in, and functions as a heat exchanger that generates a subcool when refrigerant before decompression flows.
  • the air inside the vehicle (vehicle interior) discharged outside the vehicle Thermal energy (potential) can be effectively used to improve the efficiency of heating and cooling.
  • the refrigerant bypass means is configured to allow the refrigerant after depressurization to flow into the exhaust heat exchanger during heating! (Claim 20), and preferably the refrigerant before depressurization flows into the exhaust heat exchanger during cooling U (Claim 21).
  • the exhaust heat exchanger functions as an evaporator, so that frost formation and condensation can be prevented, and COP can be improved as compared with the case where heat is absorbed from outside air. Also, during cooling, the exhaust heat exchange functions as a heat exchange for subcool generation, so that the COP can be improved.
  • the specific configurations of the above claims 19 to 21 are preferably as follows.
  • the heater heat exchanger is disposed between the compressor 55 and the outdoor heat exchanger, and the heater heat exchanger and the outdoor heat exchanger 58
  • a third decompression means 57 is disposed between the exhaust heat exchanger 59 and the evaporator 61
  • a fourth decompression means 60 is disposed between the exhaust heat exchanger 59 and the evaporator 61 and bypasses the third decompression means 57.
  • the high-temperature and high-pressure refrigerant discharged from the compressor 55 flows directly to the heat exchanger for the heater 56, and the refrigerant distribution path is appropriately changed by the refrigerant binos means 65, 66, and 67. By doing so, suitable control can be performed according to various situations.
  • the fifth refrigerant binos means 66 bypasses the outdoor heat exchange 58 and the sixth refrigerant bar.
  • the bypass means 67 bypasses the fourth decompression means 60 and the evaporator 61 (claim 23).
  • the refrigerant is the compressor 55 ⁇ heater heat exchanger 56 ⁇ third decompression means 57 ⁇ exhaust heat. It flows in the order of exchanger 59 ⁇ compressor 55.
  • the exhaust heat exchanger 59 functions as an evaporator, and the refrigerant absorbs heat from the warm air in the exhaust duct 52. Therefore, the COP is improved compared to the case where heat is absorbed from the outside air, and the effect of preventing frost formation and condensation is achieved. can get.
  • the refrigerant flows in the order of the compressor 55 ⁇ heater heat exchanger 56 ⁇ third decompression means 57 ⁇ exhaust heat exchanger 59 ⁇ fourth decompression means 60 ⁇ evaporator 61 ⁇ compressor 55. .
  • the exhaust heat exchange functions as the first evaporator
  • the evaporator 61 disposed in the intake duct 4 functions as the second evaporator, thereby preventing frost and condensation and improving COP. It is possible to dehumidify the air blown in the intake duct 4.
  • the fourth refrigerant bypass means 65 bins the third decompression means 57 (claim 25).
  • the refrigerant flows in the order of compressor 55 ⁇ heater heat exchanger 56 ⁇ outdoor heat exchanger 58 ⁇ exhaust heat exchanger 59 ⁇ fourth decompression means 60 ⁇ evaporator 61 ⁇ compressor 55. .
  • the exhaust heat exchange ⁇ 59 functions as a heat exchange ⁇ giving a subcool. This can improve COP.
  • the refrigerant is CO
  • the refrigerant on the outlet side of the exhaust heat exchanger is
  • an upstream end of the exhaust duct communicates with the inside and outside of the vehicle, and the air flowing into the intake duct
  • the outside air is flowing into the suction duct by the inside / outside air switching means, the inside air flows into the exhaust duct, and the suction side inside / outside air switching means Therefore, when only the inside air is flowing into the suction duct, it is preferable that the outside air is controlled to flow into the exhaust duct (claim 28).
  • the exhaust duct is provided with a blower for promoting air flow, and the blower is placed in the exhaust duct by the exhaust-side inside / outside air switching means. It is preferable to drive when outside air is introduced (claim 29).
  • the exhaust heat exchanger further includes a dew condensation preventing unit that prevents dew condensation (claim 30).
  • the dew condensation preventing unit is configured to determine a dew point temperature estimating unit that estimates a dew point temperature of air around the exhaust heat exchanger, and the temperature of the exhaust heat exchanger is set to the temperature of the exhaust heat exchanger. It is preferable to provide exhaust heat exchanger temperature adjusting means for maintaining the temperature higher than the estimated dew point temperature (claim 31). As a method for estimating the dew point temperature, it is preferable to calculate the number of passengers, the amount of outside air introduced into the vehicle, and the like as parameters.
  • the heat energy (potential) of the air in the vehicle that has been exhausted conventionally is effectively used for the heat absorption or heat dissipation of the refrigerant.
  • the air conditioning performance such as can be improved.
  • the engine coolant temperature does not rise during the season, the engine coolant can be heated by starting the air conditioner.
  • the cooling water temperature can be maintained at a temperature higher than the set temperature, and an increase in exhaust gas when the engine is restarted can be prevented.
  • FIG. 1 is a diagram showing a configuration of a vehicle air conditioner according to a first embodiment.
  • FIG. 2 is a diagram showing a cycle configuration during heating in Example 1.
  • FIG. 3 is a diagram showing a cycle configuration during cooling in Example 1.
  • FIG. 4 is a diagram showing a cycle configuration during dehumidifying heating in Example 1.
  • Example 1 (a) is a flowchart showing control for preventing condensation or frost formation on the exhaust heat exchanger, and (b) shows condensation on the exhaust heat exchanger in various situations. It is the data map which calculated
  • FIG. 6 is a diagram illustrating a basic configuration of a vehicle air conditioner according to a second embodiment.
  • FIG. 7 is a diagram showing a cycle configuration when there is a heating request, the amount of heat of cooling water is insufficient, a dehumidification request is not made, and outside air is introduced in the configuration of Example 2.
  • Fig. 8 is a diagram showing a cycle configuration when there is a heating request, the amount of heat of cooling water is insufficient, no dehumidification request, and the inside air circulation in the configuration of the second embodiment.
  • FIG. 9 is a diagram showing a cycle configuration when heating is requested, the amount of heat of cooling water is satisfied, no dehumidification is requested, and outside air is introduced in the configuration of Example 2.
  • FIG. 10 is a diagram showing a cycle configuration when there is a heating request, the amount of heat of cooling water is sufficient, there is no dehumidification request, and the inside air is circulated in the configuration of Example 2.
  • FIG. 11 is a diagram showing a cycle configuration when there is a heating request, a heat quantity of cooling water is insufficient, there is a dehumidification request, and outside air is introduced in the configuration of Example 2.
  • FIG. 12 is a diagram showing a cycle configuration when there is a heating request, the amount of heat of cooling water is insufficient, there is a dehumidification request and the inside air is circulated in the configuration of Example 2.
  • FIG. 13 is a diagram showing a cycle configuration when there is a heating request, the amount of heat of cooling water is sufficient, a dehumidification request is received, and outside air is introduced in the configuration of Example 2.
  • FIG. 14 is a diagram showing a cycle configuration when there is a heating request, the amount of heat of cooling water is sufficient, a dehumidification request is received, and the inside air is circulated in the configuration of Example 2.
  • FIG. 15 is a diagram showing a cycle configuration when there is a cooling request and a dehumidification request and outside air is introduced in the configuration of Example 2.
  • FIG. 16 is a diagram showing a cycle configuration when there is a cooling request and a dehumidification request in the configuration of Example 2 and the inside air is circulated.
  • FIG. 17 is a diagram showing a cycle configuration when cooling is requested and outside air is introduced in the configuration of Example 2.
  • FIG. 18 is a diagram showing a cycle configuration when there is a cooling request and the inside air is circulated in the configuration of Example 2.
  • FIG. 19 is a diagram showing a cycle configuration when the engine is stopped and heating is requested, the amount of heat of cooling water is insufficient, the dehumidification request is not made, and outside air is introduced in the configuration of Example 2.
  • FIG. 20 is a diagram showing a cycle configuration when the engine is stopped, heating is requested, the amount of heat of cooling water is insufficient, the dehumidification request is not made, and the inside air is circulated in the configuration of Example 2.
  • FIG. 21 is a diagram showing a cycle configuration when an engine is stopped and heating is requested, the amount of heat of cooling water is satisfied, a dehumidification request is not made, and outside air is introduced in the configuration of Example 2.
  • FIG. 22 is a diagram showing a cycle configuration when the engine is stopped and heating is requested, the amount of heat of cooling water is insufficient, the dehumidification request is not made, and the inside air is circulated in the configuration of Example 2.
  • FIG. 23 is a diagram showing a cycle configuration when an engine is stopped and heating is requested, the amount of heat of cooling water is insufficient, a dehumidifying request is requested, and outside air is introduced in the configuration of Example 2.
  • FIG. 24 is a diagram showing a cycle configuration when the engine is stopped and heating is requested, the amount of heat of cooling water is insufficient, the dehumidification is requested, and the inside air is circulated in the configuration of Example 2.
  • FIG. 25 is a diagram showing a cycle configuration when the engine is stopped and heating is requested, the amount of heat of cooling water is satisfied, the dehumidification is requested, and outside air is introduced in the configuration of Example 2. is there.
  • FIG. 26 is a diagram showing a cycle configuration when the engine is stopped and heating is requested, the amount of heat of cooling water is satisfied, the dehumidification is requested, and the inside air is circulated in the configuration of Example 2.
  • FIG. 27 is a diagram showing a cycle configuration when an engine is stopped and cooling is requested, the amount of heat of cooling water is satisfied, dehumidification is requested, and outside air is introduced in the configuration of Example 2.
  • FIG. 28 is a diagram showing a cycle configuration when the engine is stopped and cooling is requested, the amount of heat of the cooling water is satisfied, the dehumidification is requested, and the inside air is circulated in the configuration of the second embodiment.
  • FIG. 29 is a diagram showing a cycle configuration when the engine is stopped, the cooling is requested, and the outside air is introduced in the configuration of the second embodiment.
  • FIG. 30 is a diagram showing a cycle configuration when the engine is stopped, a cooling request is made, and the inside air is circulated in the configuration of the second embodiment.
  • FIG. 31 is a diagram showing a cycle configuration when the engine is driven, heating is requested, outside air is introduced, and the temperature is equal to or less than a set minimum coolant temperature in the configuration of the second embodiment.
  • FIG. 32 is a diagram showing a cycle configuration when the engine is driven, heating is requested, outside air is introduced, and the temperature is below a set minimum cooling water temperature in the configuration of the second embodiment.
  • FIG. 33 A diagram showing a basic configuration of a vehicle air conditioner according to Embodiment 3.
  • FIG. 34 is a diagram showing a configuration of a vehicle air conditioner according to a fourth embodiment.
  • FIG. 35 is a diagram showing a cycle configuration during heating in Example 4.
  • FIG. 36 is a diagram showing a cycle configuration during cooling in Example 4.
  • FIG. 37 is a diagram showing a cycle configuration during dehumidifying heating in Example 4.
  • FIG. 38 (a) and (b) are diagrams showing the nomination of the refrigerant binose means in the fourth embodiment, and (c) is a diagram showing the noration of the decompression means in the fourth embodiment.
  • FIG. 39 is a diagram illustrating a basic configuration of a vehicle air conditioner according to a fifth embodiment.
  • FIG. 40 A diagram showing a cycle configuration when there is a heating request and no dehumidification request and outside air is introduced in the configuration of Example 5.
  • FIG. 41 is a diagram showing a cycle configuration when there is a heating request and no dehumidification request and the inside air is circulated in the configuration of Example 5.
  • FIG. 42 is a diagram showing a cycle configuration when there is a heating request and a dehumidification request and outside air is introduced in the configuration of Example 5.
  • FIG. 43 is a diagram showing a cycle configuration when there is a heating request and a dehumidification request and the inside air is circulated in the configuration of Example 5.
  • FIG. 44 is a diagram showing a cycle configuration when there is a cooling request and a dehumidification request and outside air is introduced in the configuration of Example 5.
  • FIG. 45 is a diagram showing a cycle configuration when there is a cooling request and a dehumidification request and the inside air is circulated in the configuration of Example 5.
  • FIG. 46 is a diagram showing a cycle configuration when cooling is requested and outside air is introduced in the configuration of Example 5.
  • FIG. 47 is a diagram showing a cycle configuration when there is a cooling request and the inside air is introduced in the configuration of Example 5.
  • First refrigerant bypass means 21 Second refrigerant bypass means
  • a vehicle air conditioner 100 includes a compressor 101 that compresses a refrigerant, an outdoor heat exchanger 102 that exchanges heat between the compressed refrigerant and outside air, and Medium-to-medium heat exchanger 103 for heat exchange with cooling water, decompression means 10 for decompressing the condensed refrigerant 10 4.
  • Evaporator 105 that exchanges heat between the decompressed refrigerant and the air blown into the vehicle 105
  • Exhaust heat exchanger 106 that exchanges heat between the decompressed refrigerant and the air discharged from the vehicle, and blows the cooling water into the vehicle It comprises a radiator 107 for a heater that exchanges heat with the air, three-way valves 110 and 111 as a refrigerant bypass means, and a check valve 112.
  • FIG. 2 shows a cycle state during heating.
  • a refrigerant circulation circuit consisting of compressor 101 ⁇ intermediate heat exchanger 103 ⁇ decompression means 104 ⁇ exhaust heat exchanger 106 ⁇ compressor 101 is formed, and the refrigerant It condenses in the heat exchanger 103 and evaporates in the exhaust heat exchanger 106.
  • the cooling water is warmed by the refrigerant heat in the inter-medium heat exchanger 103 and dissipated in the air blown out into the vehicle in the heater radiator 107, thereby enabling heating.
  • the refrigerant absorbs heat from the air exhausted from the inside of the vehicle to the outside of the vehicle in the exhaust heat exchange 106, the refrigerant becomes more efficient than the heat absorbed from the cold air outside the vehicle, and the heating performance is improved.
  • cooling water temperature is equal to or higher than a predetermined value during heating, it is preferable to stop the cycle operation. This is because it is not necessary to use refrigerant heat as a heat source for heating.
  • FIG. 3 shows a cycle state during cooling.
  • a refrigerant circulation circuit consisting of compressor 101 ⁇ outdoor heat exchanger 102 ⁇ decompression means 104 ⁇ evaporator 105 ⁇ compressor 101 is formed, and the refrigerant condenses in heat exchanger 102 and evaporates in evaporator 105. .
  • FIG. 4 shows a cycle state during dehumidifying heating.
  • a refrigerant circulation circuit consisting of the compressor 101 ⁇ the medium heat exchanger 103 ⁇ the pressure reducing means 104 ⁇ the evaporator 105 is formed, and the refrigerant condenses in the medium heat exchanger 103 and evaporates in the evaporator 105.
  • This makes it possible to simultaneously function the heater radiator 107 having a heating action and the evaporator 105 having a dehumidifying action.
  • the cooling water temperature is equal to or higher than a predetermined value, it is preferable to use a cycle during cooling.
  • FIGS. 1 to 4 descriptions of a radiator for cooling the cooling water, a pump for flowing the cooling water, and the like are omitted.
  • the compressor 101 is controlled so that condensation or frost formation does not occur in the exhaust heat exchange 106.
  • various parameters are detected or input (step 150), and the target evaporation temperature Te of the exhaust heat exchanger 106 is calculated based on these parameters (step 150).
  • a control signal S for changing the discharge amount of the compressor 101 is calculated (step 152), and this signal S is output to the compressor 101 (step 153).
  • the condensation of the exhaust heat exchanger 106 is controlled by controlling the compressor 101 so that the surface temperature of the exhaust heat exchange 106 does not fall below the target evaporator temperature Te (except in the case of a short time). Or frost formation can be prevented.
  • the parameters in step 150 are preferably the outside air temperature, the number of passengers, the outside air introduction amount, and the like.
  • Figure 5 (b) shows the experimental values obtained by changing the number of passengers, the amount of outside air introduced, etc., assuming various situations, and the minimum temperature that does not cause condensation in the exhaust heat exchanger 106 in each situation. It is the data map which calculated
  • a vehicle air conditioner 1 according to the present embodiment shown in FIGS. 6 to 33 is used in an automobile (hybrid vehicle) using an engine and an electric motor as a driving source for traveling, and has a refrigerant circulation cycle 2, It has a cooling water circulation cycle 3, an intake duct 4, and an exhaust duct 5.
  • Refrigerant circulation cycle 2 is a compressor 10 that pumps refrigerant as a heat exchange medium in the direction of the arrow in the figure, followed by heat storage tanks in order of the upstream force in the refrigerant circulation direction. ”) 11, outdoor heat exchanger 12, check valve 13, first decompression means 14, exhaust heat exchanger 15, second decompression means 16, evaporator 17, accumulator 18 are connected by piping, and outdoor heat exchanger
  • These refrigerant bypass means 20, 21, and 22 are composed of electromagnetic on-off valves and piping, and these on-off valves are controlled by a predetermined ECU.
  • Cooling water circulation cycle 3 is a cycle in which cooling water, which is a heat exchange medium for cooling engine 30, circulates.
  • Engine 30 mechanical pump 31a, electric pump 31b, radiator 32, heater radiator 33 , Three-way valve 34a, 34b, 34c, 34d, 34e, 34f, check valve 35, open
  • the valve closing 36a, 36b is configured by pipe connection.
  • the three-way valves 34a to 34f, the check valve 35, the electromagnetic on-off valves 36a and 36b, the piping, and the ECU that controls them constitute cooling water bypass means that constitute a plurality of patterns of circuits, and this refrigerant bypass means Is controlled based on the sensors 37a, 37b, 37d that detect the temperature of the cooling water, the operation mode of the air conditioner, and the like.
  • 37c is a PCT heater as an auxiliary electric heater used in extreme cold.
  • the intake duct 4 has an opening 40 communicating with the outside of the vehicle and an opening 41 communicating with the inside of the vehicle at the upstream end in the ventilation direction, and an opening 42 communicating with the inside of the vehicle at the downstream end.
  • the intake side inside / outside air switching means 43 for adjusting the opening degree of the openings 40 and 41 is disposed, and the blown air blown into the vehicle flows through the intake duct 4.
  • a blower 44, an evaporator 17, and a heater radiator 33 are arranged in this order from the upstream side in the ventilation direction, and the amount of ventilation to the evaporator 17 and the heater radiator 33 is adjusted.
  • Air mix doors 45a and 45b are arranged.
  • the exhaust duct 5 has an opening 50 communicating with the inside of the vehicle at the upstream end in the ventilation direction, an opening 51 communicating with the outside of the vehicle, and an opening 52 communicating with the outside of the vehicle at the downstream end. Further, exhaust side inside / outside air switching means 53 for adjusting the opening degree of the openings 50 and 51 is arranged.
  • This exhaust duct 5 is a force mainly for exhausting the air inside the vehicle to the outside of the vehicle. In this embodiment, only the inside air flows into the intake duct 4 by the intake side inside / outside air switching means 43. When the inside air is circulated, the outside air is controlled to flow into the exhaust duct 5.
  • a blower 54 and an exhaust heat exchanger 15 are arranged in order from the upstream side in the ventilation direction, and an air mix door 55 for adjusting the amount of ventilation to the exhaust heat exchanger 15 is provided. Has been placed.
  • FIG. 7 shows a state when the vehicle air conditioner 1 configured as described above has a heating request, the amount of heat of the cooling water is insufficient, a dehumidification request is not made, and outside air is introduced.
  • An example of this is when the engine 30 is running low, i.e., noro-no-ro operation due to traffic jams, waiting for a long signal, stop-and-go, etc. In such a situation, the coolant temperature rises. Therefore, the amount of heat required for heating is insufficient.
  • Heating request, dehumidification request, heat quantity of cooling water, and cooling request described later are the air conditioning set temperature, vehicle It shows the calculation results by the ECU based on the inside temperature, outside air temperature, humidity, cooling water temperature, etc., the control signals output based on these, and the operation by the user.
  • the temperature of the cooling water becomes lower than the condensation temperature of the refrigerant, it is determined that the amount of heat of the cooling water is insufficient.
  • the outdoor heat exchange 12 is bypassed by the first refrigerant bypass means 20, and the second decompression means 16 and the evaporator 17 are bypassed by the third refrigerant bypass means 22. Is done.
  • the coolant bypass means (three-way valve 34a to 34f, check valve 35, open / close valve 36a, 36b, etc.), circuit 3a comprising the engine 30, mechanical pump 31a, heat storage tank 11, heat And a circuit 3b comprising an electric pump 3 lb.
  • the opening 40 communicating with the outside of the vehicle is opened by the intake-side inside / outside air switching means 41, and the air mix door 45a is closed (the amount of ventilation to the adjacent equipment is minimized) State), the air mix door 45b is in an open state (a state in which the amount of ventilation to the adjacent equipment is the largest).
  • the opening 50 communicating with the vehicle interior is opened by the exhaust side inside / outside air switching means 51, the blower 54 is stopped, and the air mix door 55 is opened.
  • the blower 44 in the intake duct 4 is always driven when the air conditioner is in operation.
  • the high-temperature and high-pressure refrigerant pumped from the compressor 10 is subjected to heat exchange with low-temperature cooling water in the heat storage tank 11 and then depressurized by the first decompression means 14. Then, it evaporates in the exhaust heat exchanger 15, is separated into gas and liquid in the accumulator 18, and returns to the compressor 10. Further, in the cooling water circulation cycle 3, the cooling water circulating in the circuit 3a is circulated without flowing into the radiator 32 until reaching a predetermined temperature, and the cooling water circulating in the circuit 3b heats the refrigerant in the heat storage tank 11. After being absorbed, it flows into the heat radiator 33 for the heater and dissipates heat to the blown air in the intake duct 4.
  • the exhaust heat exchange 15 functions as an evaporator, and the refrigerant absorbs heat from the warm interior air flowing in the exhaust duct 5, so there is no need to worry about frost formation.
  • COP is better than if you do.
  • the cooling water is heated by the refrigerant in the heat storage tank 11, it is possible to supplement the heat quantity due to the lack of cooling water.
  • FIG. 8 shows that there is a heating request, the amount of heat of the cooling water is insufficient, no dehumidification request is made, and the inside air circulation (the state shown in FIG. 7 is different from the inside air circulation only). If you want to) It is.
  • the opening 41 is opened by the intake-side inside / outside air switching means 43, and the opening 51 is opened by the exhaust-side inside / outside air switching means 53, so that the blower 54 in the exhaust duct 5 operates.
  • Other configurations and operations are the same as those in FIG. As described above, when the outside air is circulated in the exhaust duct 5, the air blower 54 is operated so that a large amount of air is supplied to the exhaust heat exchanger 15 so that heat exchange can be performed satisfactorily.
  • FIG. 9 shows a case where there is a heating request, the amount of heat of the cooling water is sufficient, no dehumidification request is made, and outside air is introduced.
  • the compressor 10 in the refrigerant circulation cycle 2 is stopped, and in the cooling water circulation cycle 3, the circuit 31c including the engine 30, the mechanical pump 31a, and the radiator 32, the engine 30, the mechanical pump 31a, the heater radiator 33, and the electric pump A circuit 31d consisting of 3 lb is constructed.
  • FIG. 10 is different from FIG. 9 only in that there is a heating request, the amount of heat of the cooling water is sufficient, and there is no dehumidification request and the inside air circulation (the state shown in FIG. 9 is the inside air circulation). In this case).
  • the opening 41 is opened by the intake-side inside / outside air switching means 43 and the opening 51 is opened by the exhaust-side inside / outside air switching means 53.
  • Other configurations and operations are the same as those in FIG.
  • FIG. 11 shows that there is a request for heating, the amount of heat of the cooling water is insufficient, there is a request for dehumidification, and when the outside air is introduced (the only difference is that there is a request for dehumidification from the state shown in FIG. If you do).
  • the outdoor heat exchange 12 is bypassed by the first refrigerant bypass means 20.
  • the air mix door 45a is in a half-open state.
  • Other configurations and operations are the same as those in FIG.
  • the refrigerant that has exchanged heat in the heat storage tank 11 is decompressed by the first decompression means 14, evaporated in the exhaust heat exchanger 15, and further decompressed by the second decompression means 16. Evaporates in the evaporator 17.
  • the exhaust heat exchanger 15 and the evaporator 17 both function as an evaporator, the blown air can be dehumidified by the evaporator 17.
  • FIG. 12 shows that there is a request for heating, the amount of heat of the cooling water is insufficient, there is a request for dehumidification, and the inside air circulation is different (the state shown in FIG. 11 is different from the inside air circulation only). If you do).
  • the opening 41 is opened by the intake-side inside / outside air switching means 43, and the opening 51 is opened by the exhaust-side inside / outside air switching means 53, so that the blower 54 in the exhaust duct 5 operates.
  • Other configurations and operations are the same as those in FIG.
  • FIG. 13 shows a case where there is a heating request, the amount of heat of cooling water is sufficient, there is a request for dehumidification, and outside air is introduced.
  • the compressor 10 is driven, and the first pressure reducing means 14 is bypassed by the second nopass means 21.
  • the air mix door 45a is opened.
  • the air mix door 55 is closed, and the blower 54 is stopped.
  • Other configurations and operations are the same as in the case of FIG.
  • the refrigerant pressure-fed from the compressor 10 passes through the heat storage tank 11, condenses in the outdoor heat exchange l 2 and the exhaust heat exchange, and is decompressed by the second decompression means 16. And evaporates in the evaporator 17.
  • dehumidification by the evaporator 17 ⁇ and heating by the heat of the cooling water can be performed, so that dehumidification heating can be performed.
  • FIG. 14 shows that there is a heating request, the amount of heat of cooling water is sufficient, there is a request for dehumidification, and the inside air circulation is different (only the state shown in FIG. 13 is the inside air circulation). If you do).
  • the opening 41 is opened by the intake-side inside / outside air switching means 43 in the intake duct 4, and the opening 51 is opened by the exhaust-side inside / outside air switching means 53 in the exhaust duct 5.
  • Other configurations and operations are the same as those in FIG.
  • FIG. 15 shows a case where there is a cooling and dehumidification request and outside air is introduced.
  • the air mix door 45a is in an open state
  • the air mix door 45b is in a half-open state.
  • the air mix door 55 is opened in the exhaust duct 5.
  • Other configurations and operations are the same as those in FIG.
  • FIG. 16 shows a state when there is a cooling and dehumidification request and the inside air is circulated.
  • the opening 41 is opened by the intake side inside / outside air switching means 43 in the suction duct 4.
  • the opening 51 is opened by the exhaust side inside / outside air switching means in the exhaust duct, and the blower 54 is driven.
  • the Other configurations and operations are the same as those in FIG.
  • FIG. 17 shows a cooling request and the introduction of outside air.
  • the first decompression means 14 is bypassed by the second bypass means 21 in the refrigerant circulation cycle 2.
  • a circuit 3c including the engine 30, the mechanical pump 31a, and the radiator 32 is configured.
  • the air mix door 45a is opened and the air mix door 45b is closed.
  • the refrigerant is heat-exchanged by the outdoor heat exchanger 12, and then flows into the exhaust heat exchanger and is further cooled by the air in the exhaust duct 5, that is, the cooled air in the vehicle, thereby providing a subcool. .
  • COP can be improved.
  • FIG. 18 shows a state when there is a cooling request and the inside air circulation is different (when only the point relating to the inside air circulation is different from the state shown in FIG. 17).
  • the opening 41 is opened by the intake side inside / outside air switching means 43 in the suction duct 4.
  • the opening 51 is opened by the exhaust side inside / outside air switching means 53, the blower 54 is activated, and the air mix door 55 is opened.
  • the air volume and wind speed to the exhaust heat exchanger 15 can be controlled regardless of the vehicle speed, so that the subcool performance is improved and the COP is improved.
  • Other configurations and operations are the same as those in FIG. 17, and the engine may be either in an operating state or a stopped state as in FIG. 17.
  • FIGS. 6 to 18 are when the engine 30 is driven.
  • FIG. 19 shows that the engine is stopped (running only by the motor, at the time of idling stop accompanying stoppage), there is a heating request, the heat quantity of the cooling water is insufficient, and dehumidification This is a state when there is no request and when outside air is introduced.
  • the outdoor heat exchange is bypassed by the first bypass means 20, and the second decompression means 16 and the evaporator 17 are bypassed by the third bypass means 22.
  • a circuit 3e including an electric pump 31b, a heat storage tank 11, and a heater radiator 33 is configured.
  • the opening 40 is opened by the intake side inside / outside air switching means 43, the air mix door 45a is closed, and the air mix door 45b is opened.
  • the opening 50 is opened by the exhaust side inside / outside air switching means 53, the blower 54 is stopped, and the air mix door 55 is opened.
  • the heat of the refrigerant is conducted to the cooling water in the heat storage tank 11, so that it is possible to compensate for the shortage of the amount of heat of the cooling water accompanying the engine stop.
  • frosting does not occur because the exhaust heat exchange functions as an evaporator.
  • the exhaust gas can be reduced when the engine 30 is restarted, so that the temperature of the cooling water in the engine 30 does not excessively decrease.
  • FIG. 20 shows that the engine is stopped (during idle stop, etc.), heating is requested, the amount of heat of cooling water is insufficient, dehumidification is not requested, and the inside air is circulated ( This is a state in the case where the state according to FIG. At this time, in the intake duct 4, the opening 41 is opened by the intake-side inside / outside air switching means 43. Further, in the exhaust duct 5, the opening 51 is opened by the exhaust side inside / outside switching means 53, and the blower 54 is activated. Other configurations are the same as those in FIG.
  • FIG. 21 shows a state where the engine is stopped, heating is requested, the amount of cooling water is sufficient, dehumidification is not requested, and outside air is introduced.
  • the drive of the compressor 10 is stopped.
  • a circuit 3f including the electric pump 31b, the radiator 32, and the heater radiator 33 is configured.
  • Other configurations are the same as those in FIG.
  • FIG. 22 shows that the engine is stopped, heating is requested, the amount of heat of cooling water is sufficient, dehumidification is not requested, and the inside air is circulated (as shown in FIG. 21). This is a situation in which only the point of the internal air circulation is different).
  • the opening 41 is opened by the inside air side inside / outside air switching means 43 in the intake duct 4.
  • the opening 50 is closed by the exhaust side inside / outside air switching means 53, and the blower 54 is stopped.
  • FIG. 23 shows a state in which the engine is stopped, heating is requested, the amount of heat of the cooling water is insufficient, dehumidification is requested, and outside air is introduced.
  • a circuit 3e including the electric pump 3b, the heat storage tank 11, and the heater radiator 33 is formed.
  • Other configurations are the same as those in FIG.
  • the mechanical pump 3la stops when the engine 30 stops, and both the exhaust heat exchanger 15 and the evaporator 17 function as evaporators as in the case of Fig. 11 described above. To do.
  • FIG. 24 shows that the engine is stopped, heating is requested, the amount of heat of cooling water is insufficient, dehumidification is requested, and the inside air is circulated (the state shown in FIG. 23). And the case where only the point of the internal air circulation is different).
  • the opening 41 is opened by the inside air side inside / outside air switching means 43 in the intake duct 4.
  • the opening 53 is opened by the outside air side inside / outside air switching means 53, and the blower 54 is activated.
  • Other configurations and operations are the same as those in FIG.
  • FIG. 25 shows a state in which the engine is stopped, heating is requested, the amount of cooling water is sufficient, dehumidification is requested, and outside air is introduced.
  • a circuit 3f including the electric pump 31b, the radiator 32, and the radiator 33 is configured.
  • Other configurations are the same as those in FIG.
  • FIG. 26 shows that the engine is stopped, heating is requested, the amount of heat of cooling water is sufficient, dehumidification is requested, and the inside air is circulated (the state shown in FIG. 25). And the case where only the point of the internal air circulation is different).
  • the opening 41 is opened by the intake side inside / outside air switching means 43 in the intake duct 4.
  • the opening 51 is opened by the exhaust side inside / outside air switching means 53, and the blower 54 is operated.
  • Other configurations are the same as those in FIG.
  • FIG. 27 shows a state in which the engine is stopped (during idling stop, etc.), there is a cooling request, there is a dehumidification request, and outside air is introduced.
  • cooling water circulation cycle 3 it consists of electric pump 31b, radiator 32, and radiator 33 for heater.
  • Circuit 3f is configured. Other configurations are the same as those in FIG.
  • FIG. 28 shows that the engine is stopped (during idle stop, etc.), there is a cooling request, there is a dehumidification request, and the inside air circulation (the state shown in FIG. 27 and the inside air circulation are the points). Only when they differ).
  • the opening 41 is opened by the intake side inside / outside air switching means 43 in the intake duct 4.
  • the opening 51 is opened by the exhaust side inside / outside air switching means 53, and the blower 54 is activated.
  • Other configurations are the same as those in FIG.
  • FIG. 29 shows a state where the engine is stopped and there is a cooling request and the outside air is circulated. At this time, in the coolant circulation cycle 3, the mechanical pump 31a is stopped along with the stop of the engine 30, and the electric pump 3 lb is also stopped. Other configurations are the same as those in FIG.
  • FIG. 30 is different from FIG. 30 only in that the engine is stopped (during idling stop, etc.), the cooling is requested, and the inside air circulation (the state shown in FIG. 29 and the engine are stopped). State).
  • the opening 41 is opened by the intake side inside / outside air switching means 43.
  • the opening 51 is opened by the exhaust-side inside / outside air switching means 53, and the blower 54 is activated.
  • Other configurations are the same as those in FIG.
  • FIG. 31 shows a case where the engine is stopped, there is a heating request, outside air is introduced, and the set temperature is equal to or lower than the set cooling water temperature.
  • the minimum temperature of the cooling water is a value set so that the amount of exhaust gas increase does not exceed the allowable range.
  • the outdoor heat exchanger 12 is bypassed by the first binous means 20, and the second decompression means 16 and the evaporator 17 are bypassed by the third bypass means 22.
  • the mechanical pump 31a, the engine 30, the heat storage tank 11, the heater radiator 33, and the downstream side of the heat storage tank 11 and the upstream side of the second pump 31b are connected to the check valve 35 and the open / close valve.
  • 36b is placed to bypass the radiator 33 for the heater.
  • a circuit 3g comprising the flow path 39 to be formed is configured.
  • the opening 40 is opened by the intake side inside / outside air switching means 43, the air mix door 45a is closed, and the air mix door 45b is opened.
  • the opening 50 is opened by the exhaust-side inside / outside air switching means 53, the blower 54 is stopped, and the air mix door 55 is opened.
  • the cooling water flowing out of the engine 30 absorbs the high-temperature and high-pressure refrigerant power heat in the heat storage tank 11, and flows into the heater radiator 33 to be taken into the intake duct. 4 radiates heat to the blown air in 4 and passes through the flow path 39 to the electric pump 31b and flows into the engine 30 again. As a result, the temperature of the cooling water in the engine 30 becomes high, so that an increase in exhaust gas when the engine 30 is restarted can be prevented. Further, by opening the flow path 39, since all the cooling water does not flow into the heater radiator 33, the cooling water temperature is likely to rise. This configuration effectively functions in a hybrid vehicle where the cooling water temperature is likely to be lowered if it is an idle stop vehicle.
  • the actions in the intake duct 4 and the exhaust duct 5 are as described above.
  • FIG. 32 shows only that the engine is stopped, heating is requested, the inside air is circulated, and the set cooling water is below the set temperature (the state shown in FIG. 31 and the inside air circulation). This is the state in the case of difference.
  • the opening 41 is opened by the intake-side inside / outside air switching means 43 in the intake duct 4.
  • the opening 51 is opened by the exhaust side inside / outside air switching means 53, and the blower 54 is activated.
  • Other configurations are the same as those in FIG.
  • the vehicle air conditioner 38 according to the present embodiment shown in FIG. 33 is a case where CO is used as the refrigerant in the second embodiment, and the outlet side of the exhaust heat exchanger 15 and the inlet side of the compressor 10 are used.
  • a vehicle air conditioner 200 includes a compressor 201 that compresses a refrigerant. , Outdoor heat exchanger 202 that exchanges heat between the compressed refrigerant and the outside air, heat exchanger 203 for heater that exchanges heat between the compressed refrigerant and air blown into the vehicle, decompression means 204 that decompresses the condensed refrigerant, and decompression An evaporator 205 that exchanges heat with the air that is blown out into the vehicle after the refrigerant, an exhaust heat exchanger 206 that exchanges heat between the refrigerant after decompression and the air discharged from the vehicle, three-way valves 210 and 211 as refrigerant bypass means, A check valve 212 is provided.
  • Fig. 35 shows a state during heating.
  • a refrigerant circulation circuit consisting of the compressor 201 ⁇ the heater heat exchanger 203 ⁇ the pressure reducing means 204 ⁇ the exhaust heat exchanger 206 ⁇ the compressor 201 is formed, and the refrigerant is used for the heater.
  • Heat is dissipated by heat exchange 203 and absorbed by exhaust heat exchanger 206.
  • the refrigerant absorbs heat from the air exhausted from the inside of the vehicle to the outside of the vehicle in the exhaust heat exchanger 206. Therefore, the refrigerant becomes more efficient than the heat absorbed from the cold air outside the vehicle, and heating performance is improved.
  • FIG. 36 shows a state during cooling.
  • a refrigerant circulation circuit consisting of the compressor 201 ⁇ the outdoor heat exchanger 202 ⁇ the decompression means 204 ⁇ the evaporator 205 ⁇ the compressor 201 is formed, and the refrigerant condenses in the outdoor heat exchanger 202, and the evaporator 205 Evaporate.
  • FIG. 37 shows a state during dehumidifying heating.
  • a refrigerant circulation circuit comprising a compressor 201 ⁇ heater heat exchanger 203 ⁇ pressure reducing means 204 ⁇ evaporator 205 is formed, and the refrigerant is condensed in the heat exchanger 203 for heater and evaporated in the evaporator 205.
  • the heat exchanger 203 for heater that performs the heating action and the evaporator 205 that performs the dehumidifying action can be simultaneously functioned.
  • FIG. 38 (a) two on-off valves 213, 214 are used instead of the three-way valve 211, and further, as shown in FIG. 38 (b), two on-off valves are used instead of the three-way valve 210.
  • the refrigerant bypass means can also be configured by using the two on-off valves 215 and 216.
  • dedicated decompression means 204a and 204b may be provided in the evaporator 205 and the exhaust heat exchanger 206, respectively (this is also applicable in the first embodiment). .
  • a container for gas-liquid separation provided on the high pressure side or Z and low pressure side, or a reservoir for storing Z and surplus refrigerant, an existing hot water heater, etc. are omitted.
  • the vehicle air conditioner 70 uses an electric motor for traveling. It is used for automobiles (electric cars, fuel cell cars, etc.) as a drive source, and has a refrigerant circulation cycle 71, an intake duct 4, and an exhaust duct 5.
  • the fourth bypass means 65 for bypassing the pressure reducing means 57, the fifth nopass means 66 for bypassing the outdoor heat exchange 58, the fourth decompression means 60, and the sixth nopass for binning the evaporator 61 It is provided with means 67.
  • the heater heat exchanger 56 receives the high-temperature and high-pressure refrigerant pumped from the compressor 55 and exchanges heat between this refrigerant and the blown-out air flowing through the intake duct 4.
  • the internal heat exchanger 63 exchanges heat between the refrigerant on the outlet side of the exhaust heat exchanger 59 and the refrigerant on the inlet side of the compressor 10.
  • the third to sixth bypass means 65, 66, 67 are constituted by electromagnetic open / close valves and pipes as in the second embodiment.
  • the intake duct 4 has the same configuration as that of the first embodiment, and the intake side inside / outside air switching means 43, the blower 44, the evaporator 61, the heater heat exchanger 56, the air mix door 45a, 45b is disposed, and an opening 40 communicating with the outside of the vehicle and an opening 41 communicating with the inside of the vehicle are formed at the upstream end, and an opening 42 communicating with the inside of the vehicle is formed at the downstream end.
  • the exhaust duct 5 has an exhaust side inside / outside air switching means 53, a blower 54, and an exhaust heat exchanger 59 disposed therein, and an upstream portion 50 that communicates with the inside of the vehicle, an opening portion 51 that communicates with the outside of the vehicle, and a downstream end. An opening 52 that communicates with the outside of the vehicle is formed.
  • FIG. 40 shows a state in the vehicle air conditioner 70 having the above-described configuration when there is a heating request and no dehumidification request and outside air is introduced.
  • the outdoor heat exchange 58 is bypassed by the second nopass means 66, and the fourth decompression means 60 and the evaporator 61 are bypassed by the third bypass means 67.
  • the intake-side inside / outside air switching means 41 opens the opening 40 communicating with the outside of the vehicle, opens the opening 41 communicating with the inside of the vehicle with a small opening, and closes the air mix door 45a.
  • the air mix door 45b is opened.
  • the exhaust side inside / outside air switching means 51 opens the opening 50 communicating with the inside of the vehicle, and the blower 54 stops. To do.
  • the exhaust heat exchanger 59 functions as an evaporator, the COP can be improved as compared with the case where heat is absorbed from outside air that does not form frost or condensation.
  • FIG. 41 shows a state in which there is a heating request, no dehumidification request is made, and the inside air circulation is different (a case where only the point relating to the inside air circulation is different from the state shown in FIG. 40).
  • the opening 41 is opened by the intake-side inside / outside air switching means 43.
  • the opening 51 is opened by the exhaust side inside / outside air switching means 53, and the blower 54 is activated.
  • Other configurations are the same as those in FIG. This increases the amount of ventilation to the exhaust heat exchanger 59 and promotes heat exchange.
  • FIG. 42 shows a state when there is a heating request and there is a dehumidification request and when outside air is introduced (when the only difference from the state according to FIG. 40 is that there is a dehumidification request).
  • the outdoor heat exchange 58 is binosed by the second binos means 66.
  • the air mix door 45a is in a half-open state.
  • Other configurations are the same as in FIG.
  • both the exhaust heat exchanger 59 and the evaporator 61 function as an evaporator, and the blown air passes through the evaporator 61 to perform dehumidification.
  • FIG. 43 shows a state in which there is a heating request, a dehumidification request, and the inside air circulation (when the inside air circulation is different from the state according to FIG. 42).
  • the opening 41 is opened by the intake-side inside / outside air switching means 43.
  • the opening 51 is opened by the exhaust side inside / outside air switching means 53, and the blower 54 is activated.
  • Other configurations are the same as those in FIG.
  • FIG. 44 shows a state when there is a cooling request and there is a dehumidification request and when outside air is introduced (when the only difference from the state shown in FIG. 42 is that there is a cooling request).
  • the fourth pressure reducing means 57 is bypassed by the first bypass means 65.
  • the intake-side inside / outside air switching means 41 opens the opening 40 communicating with the outside of the vehicle and opens the opening 41 communicating with the inside of the vehicle with a small opening, and the air mix door 45a is opened.
  • the air mix door 45b is in a half-open state.
  • the exhaust side inside / outside air switching means 51 has an opening 50 communicating with the inside of the vehicle. It opens and the blower 54 stops.
  • the refrigerant before condensation flows into the exhaust heat exchanger 59 and the exhaust heat exchanger 59 functions to give a subcool to the refrigerant, so that COP can be improved. Further, at this time, the already cooled vehicle interior air is circulating in the exhaust duct 5, so that the obtained subcool becomes large.
  • FIG. 45 shows a state in which there is a cooling request, there is a dehumidification request, and the inside air circulation is different from the state according to FIG. 44 only in the point of the inside air circulation.
  • the opening 41 is opened by the intake-side inside / outside air switching means 43.
  • the opening 51 is opened by the exhaust side inside / outside air switching means 53, and the blower 54 is activated.
  • Other configurations are the same as those in FIG.
  • FIG. 46 shows a state in which there is a cooling request and outside air is introduced (when it differs from the state in FIG. 46 only in that there is no dehumidification request). At this time, the air mix door 45b is closed in the intake duct 4. Other configurations are the same as those in FIG.
  • FIG. 47 shows a state in which there is a cooling request and the inside air circulation (when the state according to FIG. 46 is different only in the inside air circulation).
  • the opening 41 is opened by the intake side inside / outside air switching means 43.
  • the opening 51 is opened by the exhaust side inside / outside air switching means 53, and the blower 54 is operated.
  • Other configurations are the same as those in FIG.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Air-Conditioning For Vehicles (AREA)

Abstract

 排気される車内空気の熱を利用して暖房効率を向上させ、熱源の不足しがちな車両においても良好な暖房性能を維持できるようにする。冷媒を圧縮する圧縮機101、圧縮後の冷媒を外気と熱交換器させる室外熱交換器102、圧縮後の冷媒を他の熱交換媒体と熱交換させる媒体間熱交換器103、凝縮後の冷媒を減圧する減圧手段104、減圧後の冷媒を車内へ吹き出される空気と熱交換させる蒸発器105、減圧後の冷媒を車内から排出される空気と熱交換させる排気熱交換器106、前記他の熱交換媒体を車内へ吹き出される空気と熱交換させるヒータ用放熱器107、所定の条件に基づいて冷媒の循環経路を変更する冷媒バイパス手段110,111を具備して構成される。

Description

明 細 書
車両用空調装置
技術分野
[0001] 本発明は、自動車等に搭載される空調装置に関し、特に走行用駆動源としてェン ジンと電動モータの両方を用いる自動車 (ハイブリッド車)、停車時にエンジンを停止 させる自動車 (アイドリングストップ車)、電動モータのみを用いる自動車 (電気自動車 、燃料電池車等)において好適に用いられる技術に関するものである。
背景技術
[0002] 空調装置における暖気及び冷気の生成には、従来力 ヒートポンプサイクルが利用 されている。このヒートポンプサイクルは、室内熱交翻及び室外熱交^^へ冷媒が 流入する順序を暖房時と冷房時とで切り換えるものであり、暖房時においては、車内 (車室内)への吹出空気と熱交換する室内熱交換器を凝縮器とし、外気と熱交換する 室外熱交 を蒸発器として機能させる。
[0003] また、エンジンのみを走行用駆動源とする自動車に搭載される一般的な空調装置 においては、冷暖房時を問わず室外熱交換器を凝縮器、室内熱交換器を蒸発器と して機能させると共に、蒸発器の通風方向下流側にエンジンの冷却水を放熱させる 放熱器を配置し、これら蒸発器と放熱器とを通過する空気の割合をエアミックスドア 等により調節することにより、所望の温度の吹出空気を生成させている。
[0004] 車両用の暖房装置の従来技術として、次のようなものが開示されている。この暖房 装置は、エンジン冷却水を熱源とする放熱器と、エンジンを駆動源としエンジン、放 熱器、ラジェータとの間で冷却水を循環させるエンジン駆動ウォータポンプと、冷却 水が所定温度より低 、場合にラジェータをバイパスさせるバイパス流路と、電動モー タを駆動源としエンジン、放熱器、ラジェータとの間で冷却水を循環させる電動ゥォ ータポンプと、冷却水が所定温度より低 、場合に冷却水がラジェータをバイパスする 流れを許容すると共に電動ウォータポンプにより冷却水がエンジンと放熱器との間を 循環する際に放熱器の流出口より流出した冷却水がバイパス流路を経て放熱器の 流入口に流入するのを抑止する逆止弁とを有するものである(特許文献 1参照)。こ れにより、エンジン停止後も継続して行われる暖房運転に際して放熱器で熱交換さ れた冷却水は必ずエンジン内に設けられる冷却水路を通過するので、エンジンの余 熱を効率よく利用して暖房を行うことができるとされている。
[0005] また、他の従来技術として、室内熱交換器の通風方向下流側にエンジンの冷却水 を放熱させる放熱器を配置すると共に、車内空気の排出口に吸熱用の排気熱交換 器を配置する空調装置であって、暖房時において、室内熱交換器を暖房補助の熱 交 として用いる構成が開示されており(特許文献 2参照)、これにより排気される 車内空気の熱を利用して暖房性能を向上させることができるとされている。
特許文献 1 :特開 2000— 71749号公報
特許文献 2 :特開平 6— 135221号公報
発明の開示
発明が解決しょうとする課題
[0006] し力しながら、上記したように、エンジンの冷却水を熱源とする放熱器を備える空調 装置においては、室外熱交 を常に凝縮器として機能させるため着霜の心配はな いが、近年生産が急がれているハイブリッド車、電気自動車、アイドリングストップ車 等にこの構成を適用する場合、放熱器の熱源の不足が問題となる。ハイブリッド車及 びアイドリングストップ車においては、エンジンのみを走行用駆動源とする通常の自 動車に比べて、ノロノロ運転、信号待ち、ストップアンドゴ一時はエンジン負荷が少な ぐ冷却水の温度が上昇し難ぐ要求される暖房に対して十分な熱量を確保すること ができなくなる場合がある。特にノ、イブリツド車においては、エンジンの効率が良いた め通常のエンジン走行車より低い排気量のものを使用する場合があるので、更に十 分な熱量を確保することができないことが多い。また、外気導入時、車内空気熱をそ のまま外気へ放出するので、換気損失が生じるため空調装置の効率が低下し、燃費 が増加する(冷房、暖房共に)。また、エンジン内の冷却水を暖房に使用してしまうと 、冷却水の温度が低下し、エンジンを再起動した時に、排気ガスが増加する場合が ある。これは、ハイブリッド車本来の目的である排気ガスの低下を損なうため問題とな る。更に、電気自動車にあっては、この冷却水自体が存在しないため、他の熱源を確 保したり生成させたりする機構が必要となる。更にまた、ヒートポンプサイクルを用いた 空調装置においては、暖房時に室外熱交翻を蒸発器として機能させるため、外気 温度や湿度等の条件により室外熱交翻に着霜が発生し、暖房機能が損なわれる 場合があった。
[0007] また、上記特許文献 1に開示される発明によっても、上記したようなノ、イブリツド車、 アイドリングストップ車、特に電気自動車における熱源の不足は解消しきれず、これら の車両に搭載される空調装置の性能を良好に維持することは困難であった。また、 上記特許文献 2に開示される発明には、凝縮水が付着した蒸発器をそのまま暖房時 に補助用ヒータとして機能させることにより、凝縮水が蒸発してフロントガラス等を曇ら せてしまい、また暖房時に蒸発器を機能させることができないことにより、除湿暖房が できなくなる等の不具合がある。
[0008] そこで、本発明は、排気される車内空気の熱を利用することにより、暖房効率を向 上させ、熱源の不足しがちな車両においても良好な暖房性能を維持し、また冷房性 能においても改善を図り、更にエンジン再起動時における排気ガスの増加を防止し、 また空調使用時の快適性を確保することを課題とする。
課題を解決するための手段
[0009] 上記課題を解決するために、本発明にかかる車両用空調装置は、図 1に示すよう に、冷媒を圧縮する圧縮機 101、圧縮後の冷媒を外気と熱交換させる室外熱交換器 102、圧縮後の冷媒を他の熱交換媒体と熱交換させる媒体間熱交換器 103、冷媒を 減圧する減圧手段 104、減圧後の冷媒を車内へ吹き出される空気と熱交換させる蒸 発器 105、減圧後の冷媒を車内から排出される空気と熱交換させる排気熱交換器 1 06、前記他の熱交換媒体を車内へ吹き出される空気と熱交換させるヒータ用放熱器 107、所定の条件に基づいて冷媒の循環経路を変更する冷媒バイパス手段 110, 1 11を具備して構成されるものである(請求項 1)。
[0010] この構成によれば、排気される車内空気の熱を利用して暖房効率を向上させ、熱 源の不足しがちな車両においても良好な暖房性能を維持することができる。冷媒バイ パス手段は、空調運転モードや気象条件等に基づいて、サイクルに接続される機器 を冷媒が通過する順序を変更させる機構 (分岐管、各種弁、各種センサ、制御用コン ピュータ等により構成されるもの)である。また、上記特許文献 2記載の構成のように、 蒸発器を補助用の放熱器として利用することがないので、冷房から暖房に切り換えた 時に凝縮水の蒸発によりフロントガラス等が曇ることはなぐ快適性を維持することが でき、また暖房時にも蒸発器を機能させることができるので、除湿暖房が可能となる。
[0011] また、上記請求項 1記載の構成において、図 2に示すように、前記冷媒バイパス手 段 110, 111は、暖房時において、前記圧縮機 101→前記媒体間熱交換器 103→ 前記減圧手段 104→前記排気熱交 l06→前記圧縮機 101からなる循環経路を 構成するものであることが好まし 、 (請求項 2)。
[0012] これにより、媒体間熱交翻 103が凝縮器として機能し、この媒体間熱交翻 103 にお!、て冷媒の熱が他の熱交換媒体に伝導し、他の熱交換媒体の熱がヒータ用放 熱器 107によって放熱される。また、排気熱交翻 106が蒸発器として機能すること により、外気よりも高温の車内空気から吸熱することができるので、 COPを向上させる ことができる。
[0013] また、上記請求項 1又は 2記載の構成において、前記他の熱交換媒体は、エンジン を冷却するための冷却水であることが好ましい(請求項 3)。また、エンジン冷却水の 他に、モータ、インバータ、バッテリ、燃料電池等の冷却媒体を利用することもできる。
[0014] また、本発明にかかる車両用空調装置は、冷媒が循環する冷媒循環サイクルと、ェ ンジンを冷却するための冷却水が循環する冷却水循環サイクルとを利用する車両用 空調装置であって、冷媒を圧縮する圧縮機、圧縮後の冷媒を外気と熱交換させる室 外熱交換器、凝縮後の冷媒を減圧する減圧手段、減圧後の冷媒を車内へ吹き出さ れる空気と熱交換させる蒸発器、前記冷却水を車内へ吹き出される空気中で放熱さ せるヒータ用放熱器、通風方向上流端が車外及び車内に連通すると共に下流端が 車内と連通し、前記蒸発器及び前記ヒータ用放熱器が内部に設置される吸気ダクト、 通風方向上流端が少なくとも車内と連通すると共に下流端が車外と連通する排気ダ タト、前記排気ダクト内に設置され、前記冷媒と該排気ダクト内の空気とを熱交換させ る排気熱交^^、前記冷媒と前記冷却水とを熱交換させる媒体間熱交^^、前記冷 媒循環サイクルにお 、て、所定の条件に基づ 、て前記冷媒の流通経路を変更させ る冷媒バイパス手段、前記冷却水循環サイクルにおいて、所定の条件に基づいて前 記冷却水の流通経路を変更させる冷却水バイパス手段を具備して構成されるもので ある(請求項 4)。
[0015] この構成は、冷媒循環サイクル、冷却水循環サイクルの両方を有する車両にぉ 、 て用いられ、主にハイブリッド車、アイドリングストップ車等のエンジン発熱量が通常の エンジン走行車に比べて低い車両に適用されて好ましいものであり(通常のエンジン 走行車においても適用可能)、冷媒循環サイクルには、少なくとも圧縮機、室外熱交 ^,減圧手段、蒸発器、及び排気熱交換機が接続され、冷却水循環サイクル (通 常、エンジン、ラジェ一タ等を含んで構成されるもの)には、ヒータ用放熱器が接続さ れる。排気熱交翻は、排気ダ外内の空気中で冷媒を吸熱 (蒸発)又は放熱 (凝縮 、過冷却)させるものであり、減圧後の冷媒が流入された時には蒸発器として機能し、 減圧前の冷媒が流入された時にはサブクールを発生させる熱交^^として機能する 。そして、空調運転モードや気象条件等に基づいて、冷媒バイパス手段及び冷却水 ノ ィパス手段により冷媒及び冷却水の循環経路を適宜変更させることにより、車外に 排出される車内(車室内)の空気の熱エネルギー(ポテンシャル)を、暖房、冷房等の 効率向上のために有効に利用することが可能となる。
[0016] 通常、車内空気は、既に稼働している暖房 ·冷房等の作用により、冬季には外気よ りも高温であり、夏季には外気よりも低温であるため、冬季の暖房時においては、外 気中で冷媒の吸熱をさせるよりも、排気される車内空気中でさせる方が効率が良いと 共に着霜を防止することができ、また夏季の冷房時においては、外気中で冷媒を放 熱させるよりも、排気される車内空気中でさせる方が効率が良い。従って、冷媒バイ パス手段及び冷却水バイパス手段により、以下に示す様々な空調運転モード、気象 条件等に基づいて、冷媒及び冷却水の流通経路を適宜切り換えることで、熱源の不 足しがちなハイブリッド車、アイドリングストップ車等にぉ 、ても十分な暖房効果を得る ことができると共に、冷房時においても COPを向上させることができる。
[0017] 上記請求項 4記載の構成にぉ 、て、前記冷媒バイパス手段は、暖房時お!/、て、前 記排気熱交^^に減圧後の冷媒を流入させるものであることが好まし ヽ (請求項 5)。
[0018] これにより、暖房時には、排気熱交^^が蒸発器として機能する。即ち、減圧後の 冷媒が、外気よりも高温である排気ダクト内の空気力 吸熱する。これにより、着霜を 防止することができると共に、外気から吸熱する場合よりも COPを向上させることがで きる。
[0019] また、上記請求項 4又は 5記載の構成にぉ ヽて、前記冷媒バイパス手段は、冷房時 にお 、て、前記排気熱交^^に減圧前の冷媒を流入させるものであることが好まし い(請求項 6)。
[0020] これにより、冷房時には、排気熱交^^がサブクール生成用の熱交^^として機能 する。即ち、減圧前の冷媒が、外気よりも低温である排気ダクト内の空気により過冷却 される。これにより、 COPを向上させることができる。
[0021] また、上記請求項 4〜6の具体的構成としては、次のようなものが好ましい。図 6に示 すように、前記冷媒循環サイクル 2は、前記圧縮機 10と前記室外熱交換器 12との間 に前記媒体間熱交換器 11が配置され、前記室外熱交換器 12と前記排気熱交換器 15との間に第 1の減圧手段 14が配置され、前記排気熱交翻 15と前記蒸発器 17と の間に第 2の減圧手段 16が配置され、前記室外熱交 をバイパスさせる第 1の 冷媒バイパス手段 20、前記第 1の減圧手段 14をバイパスさせる第 2の冷媒バイパス 手段 21、前記第 2の減圧手段 16及び前記蒸発器 17をバイパスさせる第 3の冷媒バ ィパス手段 22を具備して構成され、前記冷却水循環サイクル 3は、前記エンジン 30、 前記冷却水を冷却させるラジェータ 32、前記冷却水を流動させるポンプ 3 la, 31b、 前記ヒータ用放熱器 33、前記媒体間熱交換器 11を具備して構成されることが好まし い(請求項 7)。尚、冷却水循環サイクル 3において、冷却水バイパス手段は、三方弁 34a〜f、逆止弁 35、開閉弁 36a, 36b、配管、制御用コンピュータ等により構成され るものである。
[0022] これにより、空調の運転モード、気象条件等に基づいて冷媒バイパス手段、冷却水 バイパス手段を適宜切り換えることにより、サイクルを効率的な状態に維持することが できる。例えば、ヒータ用放熱器 33の熱源としての冷却水の熱量が暖房要求に対し て不足して!/ヽる場合には、冷媒及び冷却水の両方を媒体間熱交換器 11に流入させ ることにより、圧縮機 10から圧送された高温高圧の冷媒の熱を冷却水に伝導させるこ とができ、これにより暖房機能を良好に維持することができる。また、暖房要求時に、 減圧後の冷媒を排気熱交換器 15に流入させることにより(図 7参照)、該排気熱交換 器 15を蒸発器として機能させることができると共に、冷房要求時に、減圧前の冷媒を 排気熱交翻15に流入させることにより(図 17参照)、冷媒にサブクールを与えるこ とがでさる。
[0023] 以下 (請求項 8〜12)に、上記請求項 7記載の構成における、前記冷媒バイパス手 段及び前記冷却水バイパス手段の有効な制御を挙げる。
[0024] 暖房要求があり、且つ前記冷却水の熱量が不足し、且つ除湿要求がない場合(図 7参照)には、前記冷媒循環サイクル 2において、前記第 1の冷媒バイパス手段 20〖こ より前記室外熱交換器 12をバイパスさせると共に、前記第 3の冷媒バイパス手段 22 により前記第 2の減圧手段 16及び前記蒸発器 17をバイパスさせ、前記冷却水循環 サイクル 3において、前記冷却水バイパス手段により、前記媒体間熱交換器 11、前 記ヒータ用放熱器 33、前記ポンプ 31bからなる回路を構成することが好ましい(請求 項 8)。
[0025] 例えば、渋滞によるノロノロ運転、信号待ちによる停止時間が長い時、ストップアンド ゴ一が多い時等には、エンジンの負荷や作動が少なぐ冷却水温度がなかなか上昇 し難くなり、暖房機能が確保できない。このような時、上記によれば、冷媒循環サイク ル 2において、冷媒は圧縮機 10→媒体間熱交換器 11→第 1の減圧手段 14→排気 熱交翻15→圧縮機 10の順に流れる。これにより、排気熱交翻15が蒸発器とし て機能するので、着霜の防止及び COPの向上が実現される。また、媒体間熱交換器 11において、冷媒の熱により冷却水が温められるので、冷却水の不足している熱量 をネ ΐうことができる。
[0026] また、暖房要求があり、且つ前記冷却水の熱量が充足し、且つ除湿要求がない場 合(図 9参照)には、前記冷媒循環サイクル 2において、前記圧縮機 10を停止し、前 記冷却水循環サイクル 3において、前記冷却水バイパス手段により、前記媒体間熱 交 11をバイパスする回路を構成することが好ま 、 (請求項 9)。
[0027] この時、冷媒循環サイクル 2の機能は停止する。このような場合には、冷媒から冷却 水に熱を与える必要はなぐまた吹出空気を乾燥させるために蒸発器 17を機能させ る必要もない。従って、圧縮機 10を停止させ、無駄なエネルギー消費を省くことが好 ましい。
[0028] また、冷房要求がある場合(図 14, 16参照)、前記冷媒循環サイクル 2において、 前記第 2の冷媒バイパス手段 21により、前記第 1の減圧手段 14をバイパスさせること が好ましい(請求項 10)。
[0029] この時、冷媒循環サイクル 2において、冷媒は、圧縮機 10→媒体間熱交換器 11→ 室外熱交換器 12→排気熱交換器 15→第 2の減圧手段 16→蒸発器 17→圧縮機 10 の順に流れる。これにより、排気熱交 がサブクールを与える熱交^^として機 能する。これにより、 COPを向上させることができる。
[0030] また、暖房及び除湿要求があり、且つ前記冷却水の熱量が不足している場合(図 1 1参照)には、前記冷媒循環サイクル 2において、前記第 1の冷媒バイパス手段 20〖こ より前記室外熱交換器 12をバイパスさせ、前記冷却水循環サイクル 3において、前 記冷却水バイパス手段により、前記媒体間熱交換器 11、前記ヒータ用放熱器 33、前 記ポンプ 3 lbを含む回路を構成することが好ま U、(請求項 11)。
[0031] この時、冷媒循環サイクル 2において、冷媒は、圧縮機 10→媒体間熱交換器 11→ 第 1の減圧手段 14→排気熱交換器 15→第 2の減圧手段 16→蒸発器 17→圧縮機 1 0の順に流れる。これにより、排気熱交 が第 1の蒸発器として、また通常の蒸 発器 17が第 2の蒸発器として機能するので、着霜及び結露の防止及び COPの向上 を実現することができると共に、吸気ダクト 4内の吹出空気の除湿が可能となる。また 、冷却水の不足した熱量を冷媒カも補うことができる。
[0032] また、暖房及び除湿要求があり、且つ前記冷却水の熱量が充足している場合(図 1 3参照)には、前記冷媒循環サイクル 2において、前記第 2の冷媒バイパス 21手段に より、前記第 1の減圧手段 14をバイパスさせ、前記冷却水循環サイクル 3において、 前記冷却水バイパス手段により、前記媒体間熱交翻 11をバイパスする回路を構成 することが好ま Uヽ(請求項 12)。
[0033] この時、冷媒循環サイクル 2において、冷媒は、圧縮機 10→媒体間熱交換器 11→ 室外熱交換器 12→排気熱交換器 15→第 2の減圧手段 16→蒸発器 17→圧縮機 10 の順に流れる。ここで、車室内温度が冷媒の温度より低い場合は、排気ダクト 5内に 設けられたエアミックスドア 55を開けて排気熱交翻15によりサブクールを与える。 これにより、蒸発器 17での除湿作用が大きくなる。また、車室内温度より冷媒の温度 が低い時は、冷媒を過熱してしまうので、エアミックスドア 55を閉じることが好ましい。 [0034] また、上記請求項 4〜 12記載の構成は、冷却水の温度が不足しがちなハイブリッド 車、即ち前記エンジン及び電動モータを走行用駆動源とする車両において好適に 用いることができる(請求項 13)。また、ハイブリッド車に限らず、公知のアイドルストツ プ車等のエンジン停止状態が多 ヽ自動車全般に有効である。
[0035] また、上記請求項 13記載の構成にぉ 、て、前記冷却水が設定された温度以下とな つた場合には、前記冷媒循環サイクルにおいて、前記圧縮機を駆動させ、前記冷却 水循環サイクルにお 、て、前記ラジェータをバイパスすると共に前記媒体間熱交換 器を含む回路を構成することが好まし ヽ (請求項 14)。
[0036] 冷却水温度が低くなると、エンジンの再起動時等に排気ガス量が増加する力 上記 構成のように、排気ガスが増加する時の冷却水の最低温度を設定しておき、この温 度以下となった場合に、媒体間熱交^^において温めることにより、排気ガスの増加 等の不具合を防止することができる。
[0037] また、上記請求項 4〜14記載の構成において、前記冷媒が COである場合には、
2
図 33に示すように、前記冷媒循環サイクル 2において、前記排気熱交換器 15の出口 側の冷媒と前記圧縮機 10の入口側の冷媒とを熱交換させる内部熱交換器 39を具 備することが好ましい(請求項 15)。これにより、更に COPを向上させることができる。
[0038] また、本発明にかかる車両用空調装置は、図 34に示すように、冷媒を圧縮する圧 縮機 201、圧縮後の冷媒を外気と熱交換させる室外熱交換器 202、圧縮後の冷媒を 車内へ吹き出される空気と熱交換させるヒータ用熱交換器 203、冷媒を減圧する減 圧手段 204、減圧後の冷媒を車内へ吹き出される空気と熱交換させる蒸発器 205、 減圧後の冷媒を車内から排出される空気と熱交換させる排気熱交換器 206、所定の 条件に基づいて冷媒の循環経路を変更する冷媒バイパス手段 210, 211を具備して 構成されるものである(請求項 16)。
[0039] これにより、エンジン冷却水等の他の熱交換媒体を用いることなぐ排気される車内 空気の熱エネルギーを暖房性能の向上に利用することができる。
[0040] また、上記請求項 16記載の構成にぉ 、て、前記冷媒バイパス手段は、暖房時にお いて、図 35に示すように、前記圧縮機 201→前記ヒータ用熱交換器 203→前記減圧 手段 204→前記排気熱交換器 206→前記圧縮機 201からなる循環経路を構成する ことが好ましい (請求項 17)。
[0041] これにより、排気熱交換器 206が蒸発器として機能し、外気よりも高温の車内空気 力も吸熱することができるので、暖房性能を向上させることができる。
[0042] また、上記請求項 16又は 17記載の構成において、前記冷媒バイパス手段は、除 湿暖房時において、図 36に示すように、前記圧縮機 201→前記ヒータ用熱交換器 2
03→前記減圧手段 204→前記蒸発器 205→前記圧縮機 201からなる循環経路を 構成することが好ま U、 (請求項 18)。
[0043] これにより、ヒータ用熱交換器 203と、除湿作用を有する蒸発器 205とを同時に機 能させることができるため、上記特許文献 2記載の構成では不可能であった除湿暖 房が可能となる。
[0044] また、本発明にかかる車両用空調装置は、冷媒が循環する冷媒循環サイクルを利 用する車両用空調装置であって、冷媒を圧縮する圧縮機、圧縮後の冷媒を外気と熱 交換させる室外熱交^^、圧縮後の冷媒を車内へ吹き出される空気と熱交換させる ヒータ用熱交換器、冷媒を減圧する減圧手段、減圧後の冷媒を車内へ吹き出される 空気と熱交換させる蒸発器、通風方向上流端が車外及び車内に連通すると共に下 流端が車内と連通し、前記蒸発器及び前記ヒータ用熱交換器が内部に設置される 吸気ダクト、通風方向上流端が少なくとも車内と連通すると共に下流端が車外と連通 する排気ダクト、前記排気ダクト内に設置され、前記冷媒と該排気ダクト内の空気とを 熱交換させる排気熱交 、所定の条件に基づいて冷媒の流通経路を変更させる 冷媒バイパス手段を具備して構成されるものである(請求項 19)。
[0045] この構成は、冷却水循環サイクルを有しな 、車両、即ち電動モータのみを用いる電 気自動車、燃料電池車等において特に好適に用いられるものであり(通常のェンジ ン走行車、ハイブリッド車等においても適用可能)、上記請求項 4〜18記載の構成と 同様に、排気熱交棚は、排気ダ外内の空気中で冷媒を吸熱 (蒸発)又は放熱 (凝 縮、過冷却)させるものであり、減圧後の冷媒が流入された時には蒸発器として機能 し、減圧前の冷媒が流入された時にはサブクールを発生させる熱交^^として機能 する。そして、空調運転モード、気象条件等に基づいて冷媒バイパス手段により冷媒 の循環経路を適宜変更させることにより、車外に排出される車内(車室内)の空気の 熱エネルギー(ポテンシャル)を、暖房、冷房等の効率向上のために有効に利用する ことが可能となる。
[0046] 上記請求項 19記載の構成にお 、て、前記冷媒バイパス手段は、暖房時お!/、て、 前記排気熱交^^に減圧後の冷媒を流入させるものであることが好ましく(請求項 2 0)、また冷房時において、前記排気熱交換器に減圧前の冷媒を流入させるものであ ることが好ま U、(請求項 21)。
[0047] これにより、暖房時には、排気熱交換器が蒸発器として機能するので、着霜及び結 露を防止することができると共に、外気から吸熱する場合よりも COPを向上させること ができる。また、冷房時には、排気熱交^^がサブクール生成用の熱交^^として 機能するので、 COPを向上させることができる。
[0048] また、上記請求項 19〜21の具体的構成としては、次のようなものが好ましい。図 39 に示すように、前記冷媒循環サイクル 71において、前記圧縮機 55と前記室外熱交 との間に、前記ヒータ用熱交 が配置され、前記ヒータ用熱交 と 前記室外熱交換器 58との間に、第 3の減圧手段 57が配置され、前記排気熱交換器 59と前記蒸発器 61との間に、第 4の減圧手段 60が配置され、前記第 3の減圧手段 5 7をバイパスさせる第 4の冷媒バイパス手段 65、前記室外熱交翻 58をバイパスさ せる第 5の冷媒バイパス手段 66、前記第 4の減圧手段 60及び前記蒸発器 61をバイ パスさせる第 6の冷媒バイパス手段 67を具備するものである(請求項 22)。
[0049] この構成によれば、圧縮機 55から吐出された高温高圧の冷媒をそのままヒータ用 熱交^^ 56に流すと共に、冷媒バイノス手段 65, 66, 67により適宜冷媒の流通経 路を変更することにより、様々な状況に応じて好適な制御が可能となる。
[0050] 以下 (請求項 23〜26)に、上記請求項 22記載の構成において有効な制御を挙げ る。
[0051] 暖房要求があり、且つ除湿要求がない場合(図 40参照)には、前記第 5の冷媒バイ ノ ス手段 66により前記室外熱交翻 58をバイパスさせると共に、前記第 6の冷媒バ ィパス手段 67により前記第 4の減圧手段 60及び前記蒸発器 61をバイパスさせること が好ましい(請求項 23)。
[0052] この時、冷媒は、圧縮機 55→ヒータ用熱交換器 56→第 3の減圧手段 57→排気熱 交換器 59→圧縮機 55の順に流れる。これにより、排気熱交換器 59が蒸発器として 機能し、冷媒は排気ダクト 52内の暖かい空気から吸熱するため、外気から吸熱する 場合よりも COPが向上し、また着霜及び結露防止の効果が得られる。
[0053] また、暖房及び除湿要求である場合(図 42参照)には、前記第 5の冷媒バイパス手 段 66により前記室外熱交翻58をバイパスさせることが好ま Uヽ(請求項 24)。
[0054] この時、冷媒は、圧縮機 55→ヒータ用熱交換器 56→第 3の減圧手段 57→排気熱 交換器 59→第 4の減圧手段 60→蒸発器 61→圧縮機 55の順に流れる。これにより、 排気熱交 が第 1の蒸発器、吸気ダクト 4内に配置される蒸発器 61が第 2の蒸 発器として機能するので、着霜及び結露の防止及び COPの向上が実現され、吸気 ダクト 4内の吹出空気を除湿することが可能となる。
[0055] また、冷房要求がある場合(図 44参照)には、前記第 4の冷媒バイパス手段 65によ り前記第 3の減圧手段 57をバイノスさせることが好ま 、 (請求項 25)。
[0056] この時、冷媒は、圧縮機 55→ヒータ用熱交換器 56→室外熱交換器 58→排気熱交 換器 59→第 4の減圧手段 60→蒸発器 61→圧縮機 55の順に流れる。これにより、排 気熱交^^ 59がサブクールを与える熱交^^として機能する。これにより、 COPを 向上させることができる。
[0057] また、上記請求項 19〜25のいずれ力 1つに記載の構成においては、電動モータを 走行用駆動源とする車両にぉ 、て用いられることが好まし 、 (請求項 26)。
[0058] また、上記請求項 19〜26のいずれか 1つに記載の構成においては、前記冷媒が COであり、前記冷媒循環サイクルにおいて、前記排気熱交換器の出口側の冷媒と
2
前記圧縮機の入口側の冷媒とを熱交換させる内部熱交 を具備することが好まし い(請求項 27)。
[0059] また、上記請求項 4〜 15, 19〜27のいずれか 1つに記載の構成において、前記排 気ダクトの上流端は、車内及び車外と連通し、前記吸気ダクトへ流入する空気の内外 気比率を変化させる吸入側内外気切換手段、前記排気ダクトへ流入する空気の内 外気比率を変化させる排気側内外気切換手段を具備し、前記排気側内外気切換手 段は、前記吸入側内外気切換手段により前記吸入ダクトに外気が流入されている場 合には前記排気ダクト内に内気が流入するように、また前記吸入側内外気切換手段 により前記吸入ダクトに内気のみが流入されている場合には前記排気ダクト内に外 気が流入するように制御されることが好ま ヽ(請求項 28)。
[0060] この構成によれば、内気循環モードを選択した時には、前記排気ダクトに外気が流 通するので、内気が排出されてしまうことはない。
[0061] また、上記請求項 28記載の構成において、前記排気ダクトには、空気の流通を促 進させる送風機が内設され、前記送風機は、前記排気側内外気切換手段により前記 排気ダクト内に外気が流入されて 、る場合に駆動することが好ま ヽ (請求項 29)。
[0062] この構成によれば、排気ダクト内で外気が流通している時にその流通が促進され、 前記排気熱交^^における熱交換を促進させることができる。従来の一般的な自動 車においては、室外熱交 は車体の前方力 受ける風により熱交換され、車速が 上がるほどその風量が増加する構造となっている力 実際には、室外熱交^^の後 方にはラジェータ等の機器が配置されて 、るため、車速が上がっても風量はそれほ ど増加しない。本構成によれば、車速にかかわらず、十分な風量を確保することがで きる。
[0063] また、上記請求項 1〜29のいずれか 1つに記載の構成において、前記排気熱交換 器の結露を防止する結露防止手段を具備することが好ま 、 (請求項 30)。
[0064] 排気熱交換器の結露 (着霜を含む)を防止することによって、この排気熱交換器に おける吸熱又は放熱作用を良好に維持することができるので、暖房、冷房等の性能 向上をより確実に図ることができる。
[0065] また、上記請求項 30記載の構成にぉ 、て、前記結露防止手段は、前記排気熱交 周辺の空気の露点温度を推定する露点温度推定手段、前記排気熱交換器の 温度を前記推定された露点温度よりも高温に維持する排気熱交換器温度調節手段 を具備することが好ましい(請求項 31)。露点温度を推定する方法としては、乗員数、 車内への外気導入量等をパラメータとして計算することが好ましい。
発明の効果
[0066] 上記のように、本発明によれば、従来排気されて!、た車内空気の持つ熱エネルギ 一(ポテンシャル)が冷媒の吸熱又は放熱作用のために有効に利用され、暖房、冷 房等の空調性能を向上させることができる。また、エンジンを備える車両において、冬 季等にエンジン冷却水温度が上がらない時は、空調装置を起動させることにより、ェ ンジン冷却水を加熱することができる。これにより、冷却水温度を設定以上の温度に 保つことができ、エンジン再起動時の排気ガスの増加を防止することができる。 図面の簡単な説明
[図 1]実施例 1に係る車両用空調装置の構成を示す図である。
[図 2]実施例 1における暖房時のサイクル構成を示す図である。
[図 3]実施例 1における冷房時のサイクル構成を示す図である。
[図 4]実施例 1における除湿暖房時のサイクル構成を示す図である。
[図 5]実施例 1において、 (a)は排気熱交換器の結露又は着霜を防止するための制 御を示すフローチャートであり、 (b)は各種状況において排気熱交換器に結露等を 生じさせな 、下限温度 (露点温度)を求めたデータマップである。
[図 6]実施例 2に係る車両用空調装置の基本構成を示す図である。
[図 7]実施例 2の構成において、暖房要求があり、且つ冷却水の熱量が不足し、且つ 除湿要求がなぐ且つ外気導入時のサイクル構成を示す図である。
[図 8]実施例 2の構成において、暖房要求があり、且つ冷却水の熱量が不足し、且つ 除湿要求がなく、且つ内気循環時のサイクル構成を示す図である。
[図 9]実施例 2の構成において、暖房要求があり、且つ冷却水の熱量が充足し、且つ 除湿要求がなぐ且つ外気導入時のサイクル構成を示す図である。
[図 10]実施例 2の構成において、暖房要求があり、且つ冷却水の熱量が充足し、且 つ除湿要求がなく、且つ内気循環時のサイクル構成を示す図である。
[図 11]実施例 2の構成において、暖房要求があり、且つ冷却水の熱量が不足し、且 つ除湿要求があり、且つ外気導入時のサイクル構成を示す図である。
[図 12]実施例 2の構成において、暖房要求があり、且つ冷却水の熱量が不足し、且 つ除湿要求があり、且つ内気循環時のサイクル構成を示す図である。
[図 13]実施例 2の構成において、暖房要求があり、且つ冷却水の熱量が充足し、且 つ除湿要求があり、且つ外気導入時のサイクル構成を示す図である。
[図 14]実施例 2の構成において、暖房要求があり、且つ冷却水の熱量が充足し、且 つ除湿要求があり、且つ内気循環時のサイクル構成を示す図である。 圆 15]実施例 2の構成において、冷房要求があり、且つ除湿要求があり、且つ外気 導入時のサイクル構成を示す図である。
圆 16]実施例 2の構成において、冷房要求があり、且つ除湿要求があり、且つ内気 循環時のサイクル構成を示す図である。
[図 17]実施例 2の構成において、冷房要求があり、且つ外気導入時のサイクル構成 を示す図である。
[図 18]実施例 2の構成において、冷房要求があり、且つ内気循環時のサイクル構成 を示す図である。
[図 19]実施例 2の構成において、エンジン停止、且つ暖房要求があり、且つ冷却水 の熱量が不足し、且つ除湿要求がなぐ且つ外気導入時のサイクル構成を示す図で ある。
[図 20]実施例 2の構成において、エンジン停止、且つ暖房要求があり、且つ冷却水 の熱量が不足し、且つ除湿要求がなぐ且つ内気循環時のサイクル構成を示す図で ある。
[図 21]実施例 2の構成において、エンジン停止、且つ暖房要求があり、且つ冷却水 の熱量が充足し、且つ除湿要求がなぐ且つ外気導入時のサイクル構成を示す図で ある。
[図 22]実施例 2の構成において、エンジン停止、且つ暖房要求があり、且つ冷却水 の熱量が不足し、且つ除湿要求がなぐ且つ内気循環時のサイクル構成を示す図で ある。
[図 23]実施例 2の構成において、エンジン停止、且つ暖房要求があり、且つ冷却水 の熱量が不足し、且つ除湿要求があり、且つ外気導入時のサイクル構成を示す図で ある。
[図 24]実施例 2の構成において、エンジン停止、且つ暖房要求があり、且つ冷却水 の熱量が不足し、且つ除湿要求があり、且つ内気循環時のサイクル構成を示す図で ある。
[図 25]実施例 2の構成において、エンジン停止、且つ暖房要求があり、且つ冷却水 の熱量が充足し、且つ除湿要求があり、且つ外気導入時のサイクル構成を示す図で ある。
[図 26]実施例 2の構成において、エンジン停止、且つ暖房要求があり、且つ冷却水 の熱量が充足し、且つ除湿要求があり、且つ内気循環時のサイクル構成を示す図で ある。
[図 27]実施例 2の構成において、エンジン停止、且つ冷房要求があり、且つ冷却水 の熱量が充足し、且つ除湿要求があり、且つ外気導入時のサイクル構成を示す図で ある。
[図 28]実施例 2の構成において、エンジン停止、且つ冷房要求があり、且つ冷却水 の熱量が充足し、且つ除湿要求があり、且つ内気循環時のサイクル構成を示す図で ある。
圆 29]実施例 2の構成において、エンジン停止、且つ冷房要求があり、且つ外気導 入時のサイクル構成を示す図である。
[図 30]実施例 2の構成において、エンジン停止、且つ冷房要求があり、且つ内気循 環時のサイクル構成を示す図である。
圆 31]実施例 2の構成において、エンジン駆動、且つ暖房要求があり、且つ外気導 入、且つ設定された冷却水の最低温度以下の時のサイクル構成を示す図である。 圆 32]実施例 2の構成において、エンジン駆動、且つ暖房要求があり、且つ外気導 入、且つ設定された冷却水の最低温度以下時の時のサイクル構成を示す図である。 圆 33]実施例 3に係る車両用空調装置の基本構成を示す図である。
[図 34]実施例 4に係る車両用空調装置の構成を示す図である。
[図 35]実施例 4における暖房時のサイクル構成を示す図である。
[図 36]実施例 4における冷房時のサイクル構成を示す図である。
[図 37]実施例 4における除湿暖房時のサイクル構成を示す図である。
[図 38] (a)及び (b)は、実施例 4において冷媒バイノ ス手段のノリエーシヨンを示す 図であり、(c)は、実施例 4において減圧手段のノ リエーシヨンを示す図である。 圆 39]実施例 5に係る車両用空調装置の基本構成を示す図である。
圆 40]実施例 5の構成において、暖房要求があり、且つ除湿要求がなぐ且つ外気 導入時のサイクル構成を示す図である。 [図 41]実施例 5の構成において、暖房要求があり、且つ除湿要求がなぐ且つ内気 循環時のサイクル構成を示す図である。
[図 42]実施例 5の構成において、暖房要求があり、且つ除湿要求があり、且つ外気 導入時のサイクル構成を示す図である。
[図 43]実施例 5の構成において、暖房要求があり、且つ除湿要求があり、且つ内気 循環時のサイクル構成を示す図である。
[図 44]実施例 5の構成において、冷房要求があり、且つ除湿要求があり、且つ外気 導入時のサイクル構成を示す図である。
[図 45]実施例 5の構成において、冷房要求があり、且つ除湿要求があり、且つ内気 循環時のサイクル構成を示す図である。
[図 46]実施例 5の構成において、冷房要求があり、且つ外気導入時のサイクル構成 を示す図である。
[図 47]実施例 5の構成において、冷房要求があり、且つ内気導入時のサイクル構成 を示す図である。
符号の説明
1, 38, 70, 100, 200 車両用空調装置
2, 71 冷媒循環サイクル
3 冷却水循環サイクル
4 吸気ダクト
5 排気ダクト
10, 55, 101, 201 圧縮機
11, 103 媒体間熱交 (蓄熱タンク)
12, 102, 202 室外熱交^^
14 第 1の減圧手段
15, 59, 106, 206 排気熱交
16 第 2の減圧手段
17, 61, 102, 202 蒸発器
20 第 1の冷媒バイパス手段 21 第 2の冷媒バイパス手段
22 第 3の冷媒バイパス手段
30 エンジン
31a メカポンプ
31b 電動ポンプ
32 ラジェータ
33, 107 ヒータ用放熱器
56, 203 ヒータ用熱交^^
34a〜34f 三方弁 (冷却水バイパス手段)
35 逆止弁(冷却水バイパス手段)
36a, 36b 開閉弁 (冷却水バイパス手段)
39, 63 内部熱交換器
43 吸気側内外気切換手段
53 排気側内外気切換手段
44, 54 送風機
57 第 3の減圧手段
60 第 4の減圧手段
65 第 4の冷媒バイパス手段
66 第 5の冷媒バイパス手段
67 第 6の冷媒バイパス手段
104, 204 減圧手段
110, 111, 210, 211, 213〜216 ノ イノ ス¥
発明を実施するための最良の形態
[0069] 以下、添付した図面を参照して本発明の実施例を説明する。
実施例 1
[0070] 図 1に示す本実施例に係る車両用空調装置 100は、冷媒を圧縮する圧縮機 101、 圧縮後の冷媒を外気と熱交換させる室外熱交換器 102、圧縮後の冷媒をエンジンの 冷却水と熱交換させる媒体間熱交換器 103、凝縮後の冷媒を減圧する減圧手段 10 4、減圧後の冷媒を車内へ吹き出される空気と熱交換させる蒸発器 105、減圧後の 冷媒を車内から排出される空気と熱交換させる排気熱交換器 106、前記冷却水を車 内へ吹き出される空気と熱交換させるヒータ用放熱器 107、冷媒バイパス手段として の三方弁 110, 111、逆止弁 112を有して構成される。
[0071] 図 2は、暖房時におけるサイクルの状態を示している。この時、三方弁 110, 111の 切換えにより、圧縮機 101→媒体間熱交換器 103→減圧手段 104→排気熱交換器 106→圧縮機 101からなる冷媒の循環回路が形成され、冷媒は媒体間熱交換器 10 3で凝縮し、排気熱交換器 106で蒸発する。冷却水は媒体間熱交換器 103で冷媒 熱により温められ、ヒータ用放熱器 107において車内へ吹き出される空気中で放熱し 、これにより暖房が可能となる。この構成により、冷媒は排気熱交翻106において 車内から車外へ排気される空気から吸熱するので、車外の冷た 、空気から吸熱する よりも効率がよくなり、暖房性能が向上する。
[0072] また、暖房時であって冷却水温度が所定値以上である場合には、サイクルの運転 を停止することが好ましい。暖房の熱源として冷媒熱を利用する必要がないためであ る。
[0073] 図 3は、冷房時におけるサイクルの状態を示している。この時、圧縮機 101→室外 熱交換器 102→減圧手段 104→蒸発器 105→圧縮機 101からなる冷媒の循環回路 が形成され、冷媒は熱交換器 102で凝縮し、蒸発器 105で蒸発する。
[0074] 図 4は、除湿暖房時におけるサイクルの状態を示している。この時、圧縮機 101→ 媒体間熱交換器 103→減圧手段 104→蒸発器 105からなる冷媒の循環回路が形成 され、冷媒は媒体間熱交換器 103で凝縮し、蒸発器 105で蒸発する。これにより、暖 房作用を奏するヒータ用放熱器 107と、除湿作用を奏する蒸発器 105とを同時に機 能させることができる。また、冷却水温度が所定値以上である場合には、冷房時にお けるサイクルにすることが好ましい。尚、上記図 1〜4においては、冷却水を冷却する ラジェータ、冷却水を流動させるポンプ等の記載が省略されて 、る。
[0075] また、圧縮機 101は、排気熱交翻106に結露又は着霜が発生しないように制御 される。図 5 (a)に示すように、各種パラメータを検出又は入力し (ステップ 150)、これ らのパラメータに基づいて、排気熱交換器 106の目標蒸発温度 Teを演算し (ステップ 151)、この温度 Teに基づいて、圧縮機 101の吐出量を変化させる制御信号 Sを演 算し (ステップ 152)、この信号 Sを圧縮機 101に出力する (ステップ 153)。そして、排 気熱交 l06の表面温度が前記目標蒸発器温度 Te以下にならな 、ように (短時 間の場合を除く)、圧縮機 101を制御することにより、排気熱交換器 106の結露又は 着霜を防止することができる。尚、前記ステップ 150のパラメータとしては、外気温度 、乗員数、外気導入量等が好適である。図 5 (b)は、種々の状況を想定し、乗員数、 外気導入量等を変化させて得られた実験値であり、それぞれの状況において排気熱 交換器 106に結露等を生じさせない下限温度 (露点温度)を求めたデータマップで ある。このようなデータマップを前記目標蒸発温度 Teの演算時 (ステップ 151)に利用 することが好ましい。また、湿度センサや露点センサにより、排気熱交^^ 106の入 口空気 (車内空気)の露点を検出し、これを排気熱交換器 106の目標蒸発器温度 Te としてちよい。
実施例 2
[0076] 図 6〜図 33に示す本実施例に係る車両用空調装置 1は、エンジン及び電動モータ を走行用駆動源とする自動車 (ハイブリッド車)において用いられるものであり、冷媒 循環サイクル 2、冷却水循環サイクル 3、吸気ダクト 4、排気ダクト 5を有して構成され ている。
[0077] 冷媒循環サイクル 2は、熱交換媒体としての冷媒を図中矢印の方向に圧送する圧 縮機 10、以下冷媒循環方向上流側力 順に、蓄熱タンク (請求項中「媒体間熱交換 器」) 11、室外熱交換器 12、逆止弁 13、第 1の減圧手段 14、排気熱交換器 15、第 2 の減圧手段 16、蒸発器 17、アキュムレータ 18が配管接続され、室外熱交換器 12を バイパスさせる第丄の冷媒バイノス手段 20、第 1の減圧手段 14をバイパスさせる第 2 の冷媒バイノ ス手段 21、第 2の減圧手段 16及び蒸発器 17をバイパスさせる第 3の 冷媒バイパス手段 22を具備している。これら冷媒バイパス手段 20, 21, 22は、電磁 式開閉弁及び配管からなり、これら開閉弁は所定の ECUにより制御される。
[0078] 冷却水循環サイクル 3は、エンジン 30を冷却するための熱交換媒体である冷却水 が循環するサイクルであり、エンジン 30、メカポンプ 31a、電動ポンプ 31b、ラジェ一 タ 32、ヒータ用放熱器 33、三方弁 34a,34b, 34c, 34d, 34e, 34f、逆止弁 35、開 閉弁 36a, 36bが配管接続されて構成されている。三方弁 34a〜34f、逆止弁 35、電 磁式開閉弁 36a, 36b、配管、及びこれらを制御する ECUにより、複数のパターンの 回路を構成する冷却水バイパス手段が構成され、この冷媒バイパス手段は、冷却水 の温度を検出するセンサ 37a, 37b, 37d、空調装置の運転モード等に基づいて制 御される。また、 37cは極寒時に使用される補助電気暖房器としての PCTヒータであ る。
[0079] 吸気ダクト 4は、その通風方向上流端に車外と連通する開口部 40及び車内と連通 する開口部 41、下流端に車内と連通する開口部 42が形成され、この上流端部には 、開口部 40及び 41の開度を調節する吸気側内外気切換手段 43が配置されており、 この吸気ダクト 4内を車内へ吹き出される吹出空気が流通する。また、この吸気ダクト 4の内部には、送風機 44、蒸発器 17、ヒータ用放熱器 33が通風方向上流側から順 に配置され、更に蒸発器 17及びヒータ用放熱器 33への通風量を調節するエアミック スドア 45a, 45bが配置されている。
[0080] 排気ダクト 5は、その通風方向上流端に車内と連通する開口部 50及び車外と連通 する開口部 51、下流端に車外と連通する開口部 52が形成され、この上流端部には 、開口部 50及び 51の開度を調節する排気側内外気切換手段 53が配置されている 。この排気ダクト 5は、主に車内の空気を車外に排出するためのものである力 本実 施例においては、吸気側内外気切換手段 43により吸入ダクト 4に内気のみが流入さ れている場合(内気循環時)には、排気ダクト 5内に外気が流入するように制御される 。また、排気ダクト 5の内部には、送風機 54、排気熱交換器 15が通風方向上流側か ら順に配置され、この排気熱交^^ 15への通風量を調節するためのエアミックスドア 55が配置されている。
[0081] 図 7に示すのは、上記構成の車両用空調装置 1において、暖房要求があり、且つ 冷却水の熱量が不足しており、且つ除湿要求がなぐ且つ外気導入時における状態 である。この時の例として、エンジン 30の作動が少ない時、つまり渋滞によるノロノロ 運転、長い信号待ち、ストップアンドゴ一等の状況が挙げられ、このような状況におい ては、冷却水温度が上昇しに《なるため、暖房に必要な熱量が不足する。暖房要 求、除湿要求、冷却水の熱量、また後に説明する冷房要求は、空調の設定温度、車 内温度、外気温度、湿度、冷却水温度等に基づく ECUによる演算結果、及びこれら に基づいて出力される制御信号、また利用者による操作を表すものである。本実施 例においては、冷却水の温度が冷媒の凝縮温度より低くなつた時に、冷却水の熱量 が不足していると判定される。この時、冷媒循環サイクル 2において、第 1の冷媒バイ パス手段 20により室外熱交翻 12がバイパスされると共に、第 3の冷媒バイパス手 段 22により第 2の減圧手段 16及び蒸発器 17がバイパスされる。また、冷却水循環サ イタル 3において、冷却水バイパス手段(三方弁 34a〜34f、逆止弁 35、開閉弁 36a , 36b等)により、エンジン 30、メカポンプ 31aからなる回路 3aと、蓄熱タンク 11、ヒー タ用放熱器 33、電動ポンプ 3 lbからなる回路 3bとが構成される。
[0082] また、吸気ダクト 4内において、吸気側内外気切換手段 41により車外と連通する開 口部 40が開放し、エアミックスドア 45aが閉状態(隣接する機器への通風量が最も少 なくなる状態)、エアミックスドア 45bが開状態(隣接する機器への通風量が最も多く なる状態)となる。また、排気ダクト 5内において、排気側内外気切換手段 51により車 内と連通する開口部 50が開放し、送風機 54が停止し、エアミックスドア 55が開状態 となる。尚、吸気ダクト 4内の送風機 44は空調装置の作動時には常に駆動する。
[0083] 上記構成により、冷媒循環サイクル 2において、圧縮機 10から圧送された高温高圧 の冷媒は、蓄熱タンク 11内で低温の冷却水と熱交換された後第 1の減圧手段 14に より減圧され、排気熱交換器 15において蒸発し、アキュムレータ 18において気液分 離されて圧縮機 10に戻る。また、冷却水循環サイクル 3において、回路 3aを循環す る冷却水は、所定温度に達するまでラジェータ 32へ流入することなく循環され、回路 3bを循環する冷却水は、蓄熱タンク 11において冷媒の熱を吸収した後、ヒータ用放 熱器 33に流入し、吸気ダクト 4内の吹出空気に放熱する。
[0084] このように本構成においては、排気熱交翻15が蒸発器として機能し、冷媒が排 気ダクト 5内を流れる暖かい車内空気から吸熱するため、着霜する心配はなぐまた 外気から吸熱する場合よりも COPが向上する。また、蓄熱タンク 11において冷媒によ り冷却水が加熱されるので、冷却水の不足して!/、る熱量を補うことができる。
[0085] 図 8に示すのは、暖房要求があり、且つ冷却水の熱量が不足しており、且つ除湿要 求がなぐ且つ内気循環時(図 7に係る状態と内気循環である点のみ相違する場合) である。この時、吸気側内外気切換手段 43により開口部 41が開放すると共に、排気 側内外気切換手段 53により開口部 51が開放し、排気ダクト 5内の送風機 54が作動 する。その他の構成及び作用は、図 7と同様である。このように、排気ダクト 5内に外 気を流通させる時には、送風機 54を作動させることにより、排気熱交翻15に大量 の空気を供給し熱交換が良好に行われるようにする。
[0086] 図 9に示すのは、暖房要求があり、且つ冷却水の熱量が充足しており、且つ除湿要 求がなぐ且つ外気導入時である。この時、冷媒循環サイクル 2の圧縮機 10が停止し 、冷却水循環サイクル 3において、エンジン 30、メカポンプ 31a、ラジェータ 32からな る回路 31cと、エンジン 30、メカポンプ 31a、ヒータ用放熱器 33、電動ポンプ 3 lbから なる回路 31dとが構成される。
[0087] このように、冷却水に十分な熱量があり、且つ除湿が不要である場合には、吹出空 気の温度調節を放熱器 33側のエアミックスドア 45bのみによって行えば足り、これに より圧縮機 10を駆動するための動力を省くことができる。
[0088] 図 10に示すのは、暖房要求があり、且つ冷却水の熱量が充足しており、且つ除湿 要求がなぐ且つ内気循環時(図 9に係る状態と内気循環である点のみ相違する場 合)である。この時、吸気側内外気切換手段 43により開口部 41が開放すると共に、 排気側内外気切換手段 53により開口部 51が開放する。その他の構成及び作用は、 図 9と同様である。
[0089] 図 11に示すのは、暖房要求があり、且つ冷却水の熱量が不足しており、且つ除湿 要求があり、且つ外気導入時(図 7に係る状態と除湿要求がある点のみ相違する場 合)である。この時、冷媒循環サイクル 2において、第 1の冷媒バイパス手段 20により 室外熱交 12がバイパスされる。また、吸気ダクト 4内において、エアミックスドア 4 5aが半開状態となる。その他の構成及び作用は、図 7と同様である。
[0090] 上記構成によれば、蓄熱タンク 11において熱交換された冷媒は、第 1の減圧手段 1 4により減圧され、排気熱交換器 15において蒸発し、更に第 2の減圧手段 16により 減圧され、蒸発器 17において蒸発する。このように、排気熱交換器 15及び蒸発器 1 7が共に蒸発器として作用するので、吹出空気を蒸発器 17により除湿することができ る。 [0091] 図 12に示すのは、暖房要求があり、且つ冷却水の熱量が不足しており、且つ除湿 要求があり、且つ内気循環時(図 11に係る状態と内気循環である点のみ相違する場 合)である。この時、吸気側内外気切換手段 43により開口部 41が開放すると共に、 排気側内外気切換手段 53により開口部 51が開放し、排気ダクト 5内の送風機 54が 作動する。その他の構成及び作用は、図 11と同様である。
[0092] 図 13に示すのは、暖房要求があり、且つ冷却水の熱量が充足しており、且つ除湿 要求があり、且つ外気導入時である。この時、冷媒循環サイクル 2において、圧縮機 1 0が駆動し、第 2のノ ィパス手段 21により第 1の減圧手段 14がバイパスされる。また、 吸気ダクト 4内において、エアミックスドア 45aが開状態となる。また、排気ダクト 5内に おいて、エアミックスドア 55が閉状態となり、送風機 54が停止する。その他の構成及 び作用は、図 9の場合と同様である。
[0093] この構成により、冷媒循環サイクル 2において、圧縮機 10から圧送された冷媒は、 蓄熱タンク 11を通過し、室外熱交 l2、排気熱交 において凝縮し、第 2の 減圧手段 16により減圧され、蒸発器 17において蒸発する。これにより、蒸発器 17〖こ よる除湿と冷却水の熱による加熱を行うことができるので、除湿暖房が可能となる。
[0094] 図 14に示すのは、暖房要求があり、且つ冷却水の熱量が充足しており、且つ除湿 要求があり、且つ内気循環時(図 13に係る状態と内気循環である点のみ相違する場 合)である。この時、吸気ダクト 4内において吸気側内外気切換手段 43により開口部 41が開放すると共に、排気ダクト 5内において排気側内外気切換手段 53により開口 部 51が開放する。その他の構成及び作用は、図 13の場合と同様である。
[0095] 図 15に示すのは、冷房及び除湿要求があり、且つ外気導入時である。この時、吸 入ダクト 4内において、エアミックスドア 45aが開状態、エアミックスドア 45bが半開状 態となる。また、排気ダクト 5内において、エアミックスドア 55が開状態となる。その他 の構成及び作用は、図 13の場合と同様である。
[0096] 図 16に示すのは、冷房及び除湿要求があり、且つ内気循環時における状態である
(図 15に係る状態と内気循環である点のみ相違する場合)である。この時、吸入ダクト 4内において吸気側内外気切換手段 43により開口部 41が開放する。また、排気ダク ト内において排気側内外気切換手段により開口部 51が開放し、送風機 54が駆動す る。その他の構成及び作用は、図 16と同様である。
[0097] 図 17に示すのは、冷房要求があり、且つ外気導入時である。この時、冷媒循環サイ クル 2において、第 2のバイパス手段 21により第 1の減圧手段 14がバイパスされる。ま た、冷却水循環サイクル 3において、エンジン 30、メカポンプ 31a、ラジェータ 32から 構成される回路 3cが構成される。また、吸気ダクト 4内において、エアミックスドア 45a が開状態となり、エアミックスドア 45bが閉状態となる。これにより、冷媒は室外熱交換 器 12により熱交換された後、排気熱交 に流入し、排気ダクト 5内の空気、即ち 車内の冷やされた空気により更に冷却されることによって、サブクールが与えられる。 これにより、 COPを向上させることができる。
[0098] 図 18に示すのは、冷房要求があり、且つ内気循環時(図 17に係る状態と内気循環 である点のみ相違する場合)における状態である。この時、吸入ダクト 4内において、 吸気側内外気切換手段 43により開口部 41が開放する。また、排気ダクト 5内におい て、排気側内外気切換手段 53により開口部 51が開放し、送風機 54が作動し、ェアミ ックスドア 55が開状態となる。この構成によれば、通常のエアコンシステムの凝縮器と は違い、排気熱交^^ 15への風量、風速を車速に関係なく制御できるので、サブク ール性能が高くなり COPが向上する。その他の構成及び作用は、図 17と同様であり 、また図 17と同様に、エンジンは作動、停止状態のどちらでもよい。
[0099] 以上、図 6〜図 18に示した構成は、エンジン 30の駆動時である。
[0100] 図 19に示すのは、エンジンが停止しており(モータのみによる走行時、停車に伴う アイドルストップ時)、且つ暖房要求があり、且つ冷却水の熱量が不足しており、且つ 除湿要求がなぐ且つ外気導入時における状態である。この時、冷媒循環サイクル 2 において、第 1のバイパス手段 20により室外熱交 がバイパスされると共に、第 3のバイパス手段 22により第 2の減圧手段 16及び蒸発器 17がノ ィパスされる。また、 冷却水循環サイクル 3において、電動ポンプ 31b、蓄熱タンク 11、ヒータ用放熱器 33 カゝらなる回路 3eが構成される。また、吸気ダクト 4内において、吸気側内外気切換手 段 43により開口部 40が開放し、エアミックスドア 45aが閉状態となり、エアミックスドア 45bが開状態となる。また、排気ダクト 5内において、排気側内外気切換手段 53によ り開口部 50が開放し、送風機 54が停止し、エアミックスドア 55が開状態となる。 [0101] 本構成によれば、冷媒循環サイクル 2において、冷媒は蓄熱タンク 11により熱交換 し、第 1の減圧手段 14により減圧され、排気熱交換器 15により蒸発し、圧縮機 10に 戻る。これにより、蓄熱タンク 11において冷媒の熱が冷却水へと伝導されるので、ェ ンジン停止に伴う冷却水の熱量不足を補うことができる。また、排気熱交 が蒸 発器として機能するので、着霜が生じない。更に、冷却水の熱を暖房に使用しないの で、エンジン 30内の冷却水温度が過度に下がることがなぐエンジン 30の再起動時 における排気ガスの低減を図ることができる。
[0102] 図 20に示すのは、エンジンが停止しており(アイドルストップ時等)、且つ暖房要求 があり、且つ冷却水の熱量が不足しており、且つ除湿要求がなぐ且つ内気循環時( 図 19に係る状態と内気循環である点のみ相違する場合)における状態である。この 時、吸気ダクト 4内において、吸気側内外気切換手段 43により開口部 41が開放する 。また、排気ダクト 5内において、排気側内外切換手段 53により開口部 51が開放し、 送風機 54が作動する。その他の構成は、上記図 19と同様である。
[0103] 図 21に示すのは、エンジンが停止しており、且つ暖房要求があり、且つ冷却水の 熱量が充足しており、且つ除湿要求がなぐ且つ外気導入時における状態である。こ の時、冷媒循環サイクル 2において、圧縮機 10の駆動が停止する。また、冷却水循 環サイクル 3において、電動ポンプ 31b、ラジェータ 32、ヒータ用放熱器 33からなる 回路 3fが構成される。その他の構成は、上記図 19と同様である。
[0104] 本構成のように、冷却水に十分な熱量がある場合には、圧縮機 10を停止させること により、無駄な電力消費を省くことができる。
[0105] 図 22に示すのは、エンジンが停止しており、且つ暖房要求があり、且つ冷却水の 熱量が充足しており、且つ除湿要求がなぐ且つ内気循環時(図 21に係る状態と内 気循環である点のみ相違する場合)における状態である。この時、吸気ダクト 4内に おいて、内気側内外気切換手段 43により開口部 41が開放する。また、排気ダクト 5 内において、排気側内外気切換手段 53により開口部 50が閉鎖し、送風機 54が停止 する。
[0106] 排気ダクト 5内へ車内空気が排出されないように車内と連通する開口部 50を閉鎖 する結果、車外と連津する開口部 51が開放し、この排気ダクト 5内に外気が流通する こととなるが、ここでは冷媒循環サイクル 2が停止しており排気熱交翻 15での熱交 換を行う必要がな 、ため、送風機 54を作動させな 、。
[0107] 図 23に示すのは、エンジンが停止しており、且つ暖房要求があり、且つ冷却水の 熱量が不足しており、且つ除湿要求があり、且つ外気導入時における状態である。こ の時、冷却水循環サイクル 3において、電動ポンプ 3b、蓄熱タンク 11、ヒータ用放熱 器 33からなる回路 3eを構成する。その他の構成は、上記図 11と同様である。
[0108] 本構成においては、エンジン 30の停止に伴いメカポンプ 3 laが停止し、また上述し た図 11の場合と同様に、排気熱交換器 15及び蒸発器 17の両方が蒸発器として機 能する。
[0109] 図 24に示すのは、エンジンが停止しており、且つ暖房要求があり、且つ冷却水の 熱量が不足しており、且つ除湿要求があり、且つ内気循環時(図 23に係る状態と内 気循環である点のみ相違する場合)における状態である。この時、吸気ダクト 4内に おいて、内気側内外気切換手段 43により開口部 41が開放する。また、排気ダクト 5 内において、外気側内外気切換手段 53により開口部 53が開放し、送風機 54が作動 する。その他の構成及び作用は、上記図 23と同様である。
[0110] 図 25に示すのは、エンジンが停止しており、且つ暖房要求があり、且つ冷却水の 熱量が充足しており、且つ除湿要求があり、且つ外気導入時における状態である。こ の時、冷却水循環サイクル 3において、電動ポンプ 31b、ラジェータ 32、放熱器 33か らなる回路 3fが構成される。その他の構成は、上記図 14と同様である。
[0111] 図 26に示すのは、エンジンが停止しており、且つ暖房要求があり、且つ冷却水の 熱量が充足しており、且つ除湿要求があり、且つ内気循環時(図 25に係る状態と内 気循環である点のみ相違する場合)における状態である。この時、吸気ダクト 4内に おいて、吸気側内外気切換手段 43により開口部 41が開放する。また、排気ダクト 5 内において、排気側内外気切換手段 53により開口部 51が開放し、送風機 54が作動 する。その他の構成は、上記図 25と同様である。
[0112] 図 27に示すのは、エンジンが停止しており(アイドルストップ時等)、且つ冷房要求 があり、且つ除湿要求があり、且つ外気導入における状態である。この時、冷却水循 環サイクル 3において、電動ポンプ 31b、ラジェータ 32、ヒータ用放熱器 33からなる 回路 3fが構成される。その他の構成は、上記図 15と同様である。
[0113] 図 28に示すのは、エンジンが停止しており(アイドルストップ時等)、且つ冷房要求 があり、且つ除湿要求があり、且つ内気循環(図 27に係る状態と内気循環である点 のみ相違する場合)における状態である。この時、吸気ダクト 4内において、吸気側内 外気切換手段 43により開口部 41が開放する。また、排気ダクト 5内において、排気 側内外気切換手段 53により開口部 51が開放し、送風機 54が作動する。その他の構 成は、上記図 27と同様である。
[0114] 図 29に示すのは、エンジンが停止しており、且つ冷房要求があり、且つ外気循環 時における状態である。この時、冷却水循環サイクル 3において、エンジン 30の停止 に伴いメカポンプ 31aが停止すると共に、電動ポンプ 3 lbも停止させる。その他の構 成は、上記図 17と同様である。
[0115] 図 30に示すのは、エンジンが停止しており(アイドルストップ時等)、且つ冷房要求 があり、且つ内気循環時(図 29に係る状態とエンジンが停止して 、る点のみ相違す る場合)における状態である。この時、吸気ダクト 4内において、吸気側内外気切換手 段 43により開口部 41が開放する。また、排気ダクト 5内において、排気側内外気切 換手段 53により開口部 51が開放し、送風機 54が作動する。その他の構成は、上記 図 29と同様である。
[0116] 図 31に示すのは、エンジンが停止しており、且つ暖房要求があり、且つ外気導入、 且つ設定された冷却水の設定温度以下の場合である。即ち、エンジン 30の停止状 態が長時間継続した後の再起動時等において、冷却水温度が過度に低下している ことにより、エンジン 30からの排気ガスの増加が予想される場合等を想定している。 冷却水の最低温度は、排気ガスの増加量が許容範囲を超えな 、ように設定される値 である。
[0117] この時、冷媒循環サイクル 2において、第 1のバイノ ス手段 20により室外熱交換器 1 2がバイパスされ、第 3のバイパス手段 22により第 2の減圧手段 16及び蒸発器 17が バイパスされる。また、冷却水循環サイクル 3において、メカポンプ 31a、エンジン 30、 蓄熱タンク 11、ヒータ用放熱器 33、及び、蓄熱タンク 11下流側と第 2のポンプ 31b上 流側とをつなぎ逆止弁 35及び開閉弁 36bが配置されヒータ用放熱器 33をバイパスさ せる流路 39とからなる回路 3gが構成される。また、吸気ダクト 4内において、吸気側 内外気切換手段 43により開口部 40を開放し、エアミックスドア 45aが閉状態となり、 エアミックスドア 45bが開状態となる。また、排気ダクト 5内において、排気側内外気切 換手段 53により開口部 50が開放し、送風機 54が停止し、エアミックスドア 55が開状 態となる。
[0118] 本構成によれば、冷却水循環サイクル 3において、エンジン 30から流出した冷却水 は、蓄熱タンク 11において高温高圧の冷媒力 熱を吸収し、ヒータ用放熱器 33へ流 入して吸気ダクト 4内の吹出空気に放熱すると共に流路 39を通り電動ポンプ 31bに 送られ、再びエンジン 30へ流入する。これにより、エンジン 30内の冷却水温が高くな るので、エンジン 30が再起動する際の排気ガスの増加を防止できる。また、流路 39 を開放することにより、全ての冷却水がヒータ用放熱器 33へ流入することがないため 、冷却水温度が上昇しやすくなる。本構成は、冷却水温度が低下しやすいハイブリツ ド車ゃアイドルストップ車において、効果的に機能する。尚、吸気ダクト 4及び排気ダ タト 5内の作用は、上述の通りである。
[0119] 図 32に示すのは、エンジンが停止しており、且つ暖房要求があり、且つ内気循環、 且つ設定された冷却水の設定温度以下(図 31に係る状態と内気循環である点のみ 相違する場合)における状態である。この時、吸気ダクト 4内において、吸気側内外気 切換手段 43により開口部 41が開放する。また、排気ダクト 5内において、排気側内 外気切換手段 53により開口部 51が開放し、送風機 54が作動する。その他の構成は 、上記図 31の場合と同様である。
実施例 3
[0120] 図 33に示す本実施例に係る車両用空調装置 38は、上記実施例 2において、冷媒 として COを用いた場合であり、排気熱交換器 15の出口側と圧縮機 10の入口側の
2
冷媒を熱交換させる内部熱交 を具備するものである。これにより、冷媒として COを用いた場合に、 COPを向上させることができる。また、上記した実施例 2と同様
2
の制御を適用することができる。
実施例 4
[0121] 図 34に示す本実施例に係る車両用空調装置 200は、冷媒を圧縮する圧縮機 201 、圧縮後の冷媒を外気と熱交換させる室外熱交換器 202、圧縮後の冷媒を車内へ 吹き出される空気と熱交換させるヒータ用熱交 203、凝縮後の冷媒を減圧する 減圧手段 204、減圧後の冷媒を車内へ吹き出される空気と熱交換させる蒸発器 205 、減圧後の冷媒を車内から排出される空気と熱交換させる排気熱交換器 206、冷媒 バイパス手段としての三方弁 210, 211、逆止弁 212を有して構成される。
[0122] 図 35は、暖房時の状態を示している。この時、三方弁 210, 211の切換えにより、 圧縮機 201→ヒータ用熱交換器 203→減圧手段 204→排気熱交換器 206→圧縮機 201からなる冷媒の循環回路が形成され、冷媒はヒータ用熱交 203で放熱し、 排気熱交換器 206で吸熱する。この構成により、冷媒は排気熱交換器 206において 車内から車外へ排出される空気から吸熱するので、車外の冷た 、空気から吸熱する よりも効率がよくなり、暖房性能が向上する。
[0123] 図 36は、冷房時の状態を示している。この時、圧縮機 201→室外熱交換器 202→ 減圧手段 204→蒸発器 205→圧縮機 201からなる冷媒の循環回路が形成され、冷 媒は室外熱交換器 202で凝縮し、蒸発器 205で蒸発する。
[0124] 図 37は、除湿暖房時の状態を示している。この時、圧縮機 201→ヒータ用熱交換 器 203→減圧手段 204→蒸発器 205からなる冷媒の循環回路が形成され、冷媒はヒ ータ用熱交換器 203で凝縮し、蒸発器 205で蒸発する。これにより、暖房作用を奏す るヒータ用熱交 203と、除湿作用を奏する蒸発器 205とを同時に機能させること ができる。
[0125] また、図 38 (a)に示すように、前記三方弁 211の替りに 2つの開閉弁 213, 214、更 に図 38 (b)に示すように、前記三方弁 210の替りに 2つの開閉弁 215, 216を用いる ことによつても、冷媒バイパス手段を構成することができる。また、図 38 (c)に示すよう に、蒸発器 205及び排気熱交換器 206にそれぞれ専用の減圧手段 204a, 204bを 設けても良い(このことは上記実施例 1においても適用可能である)。また、図中、高 圧側又は Z且つ低圧側に設けられる気液分離用又は Z且つ余剰冷媒を溜めるため の容器、既存の温水ヒータ等が省略されている。
実施例 5
[0126] 図 39〜図 47に示す本実施例に係る車両用空調装置 70は、電動モータを走行用 駆動源とする自動車 (電気自動車、燃料電池車等)にお 、て用いられるものであり、 冷媒循環サイクル 71、吸気ダクト 4、排気ダクト 5を有して構成される。
[0127] 冷媒循環サイクル 71は、冷媒として COが用いられ、圧縮機 55、ヒータ用熱交
2
56、第 3の減圧手段 57、室外熱交換器 58、排気熱交換器 59、第 4の減圧手段 60、 蒸発器 61、アキュムレータ 62、内部熱交翻 63が配管接続されると共に、第 3の減 圧手段 57をバイパスさせる第 4のバイパス手段 65、室外熱交翻 58をバイパスさせ る第 5のノ ィパス手段 66、第 4の減圧手段 60及び蒸発器 61をバイノ スさせる第 6の ノ ィパス手段 67を具備して構成されて ヽる。
[0128] ヒータ用熱交換器 56は、圧縮機 55から圧送された高温高圧の冷媒が流入され、こ の冷媒と吸気ダクト 4内を流通する吹出空気とを熱交換させるものである。内部熱交 換器 63は、排気熱交換器 59の出口側と圧縮機 10の入口側の冷媒を熱交換させる ものである。第 3〜6のバイパス手段 65, 66, 67は、上記実施例 2と同様に電磁式開 閉弁及び配管により構成されるものである。
[0129] 吸気ダクト 4は、上記実施例 1と同様の構成を有し、その内部に吸気側内外気切換 手段 43、送風機 44、蒸発器 61、ヒータ用熱交換器 56、エアミックスドア 45a, 45bが 配置され、その上流端に車外と連通する開口部 40及び車内と連通する開口部 41、 下流端に車内と連通する開口部 42が形成されている。排気ダクト 5は、その内部に 排気側内外気切換手段 53、送風機 54、排気熱交換器 59が配置され、その上流端 に車内と連通する開口部 50及び車外と連通する開口部 51、下流端に車外と連通す る開口部 52が形成されている。
[0130] 図 40に示すのは、上記構成の車両用空調装置 70において、暖房要求があり、且 つ除湿要求がなぐ且つ外気導入時における状態である。この時、冷媒循環サイクル 71において、第 2のノ ィパス手段 66により室外熱交翻 58がバイパスされ、第 3の バイパス手段 67により第 4の減圧手段 60及び蒸発器 61がバイパスされる。また、吸 気ダクト 4内において、吸気側内外気切換手段 41は車外と連通する開口部 40を開 放すると共に車内と連通する開口部 41を小さい開度で開放し、エアミックスドア 45a が閉状態となり、エアミックスドア 45bが開状態となる。また、排気ダクト 5内において、 排気側内外気切換手段 51は車内と連通する開口部 50を開放し、送風機 54が停止 する。
[0131] これにより、排気熱交 59が蒸発器として機能するので、着霜又は結露すること はなぐ外気から吸熱する場合よりも COPを向上させることができる。
[0132] 図 41に示すのは、暖房要求があり、且つ除湿要求がなぐ且つ内気循環時(図 40 に係る状態と内気循環である点のみ相違する場合)における状態である。この時、吸 気ダクト 4内において、吸気側内外気切換手段 43により開口部 41が開放する。また 、排気ダクト 5内において、排気側内外気切換手段 53により開口部 51が開放し、送 風機 54が作動する。その他の構成は、上記図 40と同様である。これにより、排気熱 交換器 59への通風量が増加し、熱交換が促進される。
[0133] 図 42に示すのは、暖房要求があり、且つ除湿要求があり、且つ外気導入時(図 40 に係る状態とは除湿要求がある点のみ相違する場合)における状態である。この時、 第 2のバイノ ス手段 66により室外熱交 58がバイノ スされる。また、吸気ダクト 4内 において、エアミックスドア 45aが半開状態となる。その他の構成は、上記図 40と同 様である。
[0134] これにより、排気熱交換器 59及び蒸発器 61の両方が蒸発器として機能し、また吹 出空気が蒸発器 61を通過することにより、除湿がなされる。
[0135] 図 43に示すのは、暖房要求があり、且つ除湿要求があり、且つ内気循環時(図 42 に係る状態とは内気循環である点のみ相違する場合)における状態である。この時、 吸気ダクト 4内において、吸気側内外気切換手段 43により開口部 41が開放する。ま た、排気ダクト 5内において、排気側内外気切換手段 53により開口部 51が開放し、 送風機 54が作動する。その他の構成は、上記図 42と同様である。
[0136] 図 44に示すのは、冷房要求があり、且つ除湿要求があり、且つ外気導入時(図 42 に係る状態とは冷房要求がある点のみ相違する場合)における状態である。この時、 冷媒循環サイクル 71において、第 1のバイパス手段 65により第 4の減圧手段 57がバ ィパスされる。また、吸気ダクト 4内において、吸気側内外気切換手段 41は車外と連 通する開口部 40を開放すると共に車内と連通する開口部 41を小さい開度で開放し 、エアミックスドア 45aが開状態となり、エアミックスドア 45bが半開状態となる。また、 排気ダクト 5内において、排気側内外気切換手段 51は車内と連通する開口部 50を 開放し、送風機 54が停止する。
[0137] これにより、排気熱交換器 59には凝縮後減圧前の冷媒が流入し、排気熱交換器 5 9は冷媒にサブクールを与える働きをするので、 COPを向上させることができる。また 、この時排気ダクト 5内には既に冷やされた車内空気が流通しているので、得られる サブクールは大きくなる。
[0138] 図 45に示すのは、冷房要求があり、且つ除湿要求があり、且つ内気循環(図 44に 係る状態とは内気循環である点のみ相違する場合)における状態である。この時、吸 気ダクト 4内において、吸気側内外気切換手段 43により開口部 41が開放する。また 、排気ダクト 5内において、排気側内外気切換手段 53により開口部 51が開放し、送 風機 54が作動する。その他の構成は、上記図 44と同様である。
[0139] 図 46に示すのは、冷房要求があり、且つ外気導入(図 46に係る状態とは除湿要求 がない点のみ相違する場合)における状態である。この時、吸気ダクト 4内において、 エアミックスドア 45bが閉状態となる。その他の構成は、上記図 46と同様である。
[0140] 図 47に示すのは、冷房要求があり、且つ内気循環(図 46に係る状態とは内気循環 である点のみ相違する場合)における状態である。この時、吸気ダクト 4内において、 吸気側内外気切換手段 43により開口部 41が開放する。また、排気ダクト 5内におい て、排気側内外気切換手段 53により開口部 51が開放し、送風機 54が作動する。そ の他の構成は、上記図 46と同様である。
産業上の利用可能性
[0141] 以上のように、本発明によれば、従来排気されて!、た車内空気の持つ熱エネルギ 一(ポテンシャル)を冷媒による吸熱又は冷媒からの放熱作用のために有効に利用 することによって着霜を防止し、 COPを向上させ、また暖房時における熱源の確保を 確実に行うことができるので、特に熱源の不足しがちなノ、イブリツド車、アイドルストツ プ車、電気自動車、燃料電池車等において信頼性の高い空調装置を提供すること ができる。

Claims

請求の範囲
[1] 冷媒を圧縮する圧縮機、
圧縮後の冷媒を外気と熱交換器させる室外熱交換器、
圧縮後の冷媒を他の熱交換媒体と熱交換させる媒体間熱交換器、
冷媒を減圧する減圧手段、
減圧後の冷媒を車内へ吹き出される空気と熱交換させる蒸発器、
減圧後の冷媒を車内から排出される空気と熱交換させる排気熱交換器、 前記他の熱交換媒体を車内へ吹き出される空気と熱交換させるヒータ用放熱器、 所定の条件に基づいて冷媒の循環経路を変更する冷媒バイパス手段、 を具備して構成される車両用空調装置。
[2] 前記冷媒バイパス手段は、暖房時にお!、て、前記圧縮機→前記媒体間熱交換器
→前記減圧手段→前記排気熱交換器→前記圧縮機からなる循環経路を構成するこ とを特徴とする請求項 1記載の車両用空調装置。
[3] 前記他の熱交換媒体は、エンジンを冷却するための冷却水であることを特徴とする 請求項 1又は 2記載の車両用空調装置。
[4] 冷媒が循環する冷媒循環サイクルと、エンジンを冷却するための冷却水が循環す る冷却水循環サイクルとを利用する車両用空調装置であって、
冷媒を圧縮する圧縮機、
圧縮後の冷媒を外気と熱交換させる室外熱交換器、
冷媒を減圧する減圧手段、
減圧後の冷媒を車内へ吹き出される空気と熱交換させる蒸発器、
前記冷却水を車内へ吹き出される空気中で放熱させるヒータ用放熱器、 通風方向上流端が車外及び車内に連通すると共に下流端が車内と連通し、前記 蒸発器及び前記ヒータ用放熱器が内部に設置される吸気ダ外、
通風方向上流端が少なくとも車内と連通すると共に下流端が車外と連通する排気 ダクト、
前記排気ダクト内に設置され、前記冷媒と該排気ダクト内の空気とを熱交換させる 排気熱交換器、 前記冷媒と前記冷却水とを熱交換させる媒体間熱交^^、
前記冷媒循環サイクルにお!/、て、所定の条件に基づ!、て前記冷媒の流通経路を 変更させる冷媒バイパス手段、
前記冷却水循環サイクルにお 、て、所定の条件に基づ 、て前記冷却水の流通経 路を変更させる冷却水バイパス手段、
を具備することを特徴とする車両用空調装置。
[5] 前記冷媒バイパス手段は、
暖房時お ヽて、前記排気熱交換器に減圧後の冷媒を流入させることを特徴とする 請求項 4記載の車両用空調装置。
[6] 前記冷媒バイパス手段は、
冷房時にお ヽて、前記排気熱交換器に減圧前の冷媒を流入させることを特徴とす る請求項 4又は 5記載の車両用空調装置。
[7] 前記冷媒循環サイクルは、
前記圧縮機と前記室外熱交^^との間に前記媒体間熱交^^が配置され、 前記室外熱交換器と前記排気熱交換器との間に第 1の減圧手段が配置、 前記排気熱交^^と前記蒸発器との間に第 2の減圧手段が配置され、 前記室外熱交翻をバイパスさせる第 1の冷媒バイパス手段、
前記第 1の減圧手段をバイパスさせる第 2の冷媒バイパス手段、
前記第 2の減圧手段及び前記蒸発器をバイパスさせる第 3の冷媒バイパス手段、 を具備して構成され、
前記冷却水循環サイクルは、
前記エンジン、
前記冷却水を冷却させるラジェータ、
前記冷却水を流動させるポンプ、
前記ヒータ用放熱器、
前記媒体間熱交換器、
を具備して構成されることを特徴とする請求項 4〜6のいずれか 1つに記載の車両 用空調装置。
[8] 暖房要求があり、且つ前記冷却水の熱量が不足し、且つ除湿要求がない場合には 前記冷媒循環サイクルにお!/ヽて、前記第 1の冷媒バイパス手段により前記室外熱 交翻をバイパスさせると共に、前記第 3の冷媒バイパス手段により前記第 2の減圧 手段及び前記蒸発器をバイパスさせ、
前記冷却水循環サイクルにおいて、前記冷却水バイパス手段により、前記媒体間 熱交^^、前記ヒータ用放熱器、前記ポンプカゝらなる回路を構成することを特徴とす る請求項 7記載の車両用空調装置。
[9] 暖房要求があり、且つ前記冷却水の熱量が充足し、且つ除湿要求がない場合には 前記冷媒循環サイクルにおいて、前記圧縮機を停止し、
前記冷却水循環サイクルにおいて、前記冷却水バイパス手段により、前記媒体間 熱交^^をバイパスする回路を構成することを特徴とする請求項 7又は 8記載の車両 用空調装置。
[10] 冷房要求がある場合、
前記冷媒循環サイクルにおいて、前記第 2の冷媒バイパス手段により、前記第 1の 減圧手段をバイパスさせることを特徴とする請求項 7〜9のいずれか 1つに記載の車 両用空調装置。
[11] 暖房及び除湿要求があり、且つ前記冷却水の熱量が不足している場合には、 前記冷媒循環サイクルにお!/ヽて、前記第 1の冷媒バイパス手段により前記室外熱 交翻をバイパスさせ、
前記冷却水循環サイクルにおいて、前記冷却水バイパス手段により、前記媒体間 熱交^^、前記ヒータ用放熱器、前記ポンプカゝらなる回路を構成することを特徴とす る請求項 7〜: LOのいずれ力 1つに記載の車両用空調装置。
[12] 暖房及び除湿要求があり、且つ前記冷却水の熱量が充足している場合には、 前記冷媒循環サイクルにおいて、前記第 2の冷媒バイパス手段により、前記第 1の 減圧手段をバイパスさせ、
前記冷却水循環サイクルにおいて、前記冷却水バイパス手段により、前記媒体間 熱交 をバイパスする回路を構成することを特徴とする請求項 7〜11のいずれか
1つに記載の車両用空調装置。
[13] 前記エンジン及び電動モータを走行用駆動源とする車両において用いられることを 特徴とする請求項 8〜 12の 、ずれか 1つに記載の車両用空調装置。
[14] 前記冷却水が設定された温度以下となった場合には、
前記冷媒循環サイクルにお!/ヽて、前記圧縮機を駆動させ、
前記冷却水循環サイクルにお ヽて、前記ラジェータをバイパスすると共に前記媒体 間熱交 を含む回路を構成することを特徴とする請求項 13記載の車両用空調装 置。
[15] 前記冷媒が COであり、
2
前記冷媒循環サイクルにおいて、前記排気熱交換器の出口側の冷媒と前記圧縮 機の入口側の冷媒とを熱交換させる内部熱交換器を具備することを特徴とする請求 項 4〜14のいずれか 1つに記載の車両用空調装置。
[16] 冷媒を圧縮する圧縮機、
圧縮後の冷媒を外気と熱交換させる室外熱交換器、
圧縮後の冷媒を車内へ吹き出される空気と熱交換させるヒータ用熱交^^、 冷媒を減圧する減圧手段、
減圧後の冷媒を車内へ吹き出される空気と熱交換させる蒸発器、
減圧後の冷媒を車内から排出される空気と熱交換させる排気熱交換器、 所定の条件に基づいて冷媒の循環経路を変更する冷媒バイパス手段、 を具備して構成される車両用空調装置。
[17] 前記冷媒バイパス手段は、暖房時において、前記圧縮機→前記ヒータ用熱交換器 →前記減圧手段→前記排気熱交 前記圧縮機カゝらなる循環経路を構成するこ とを特徴とする請求項 16記載の車両用空調装置。
[18] 前記冷媒バイパス手段は、除湿暖房時にお!、て、前記圧縮機→前記ヒータ用熱交 前記減圧手段→前記蒸発器→前記圧縮機からなる循環経路を構成すること を特徴とする請求項 16又は 17記載の車両用空調装置。
[19] 冷媒が循環する冷媒循環サイクルを利用する車両用空調装置であって、 冷媒を圧縮する圧縮機、
圧縮後の冷媒を外気と熱交換させる室外熱交換器、
圧縮後の冷媒を車内へ吹き出される空気と熱交換させるヒータ用熱交^^、 冷媒を減圧する減圧手段、
減圧後の冷媒を車内へ吹き出される空気と熱交換させる蒸発器、
通風方向上流端が車外及び車内に連通すると共に下流端が車内と連通し、前記 蒸発器及び前記ヒータ用熱交^^が内部に設置される吸気ダ外、
通風方向上流端が少なくとも車内と連通すると共に下流端が車外と連通する排気 ダクト、
前記排気ダクト内に設置され、前記冷媒と該排気ダクト内の空気とを熱交換させる 排気熱交換器、
所定の条件に基づいて冷媒の流通経路を変更させる冷媒バイパス手段を具備して 構成される車両用空調装置。
[20] 前記冷媒バイパス手段は、
暖房時お ヽて、前記排気熱交換器に減圧後の冷媒を流入させることを特徴とする 請求項 19記載の車両用空調装置。
[21] 前記冷媒バイパス手段は、
冷房時にお ヽて、前記排気熱交換器に減圧前の冷媒を流入させることを特徴とす る請求項 19又は 20記載の車両用空調装置。
[22] 前記冷媒循環サイクルは、
前記圧縮機と前記室外熱交換器との間に前記ヒータ用熱交換器が配置され、 前記ヒータ用熱交換器と前記室外熱交換器との間に第 3の減圧手段が配置され、 前記排気熱交^^と前記蒸発器との間に第 4の減圧手段が配置され、 前記第 3の減圧手段をバイパスさせる第 4の冷媒バイパス手段、
前記室外熱交翻をバイパスさせる第 5の冷媒バイパス手段、
前記第 4の減圧手段及び前記蒸発器をバイパスさせる第 6の冷媒バイパス手段、 を具備することを特徴とする請求項 19〜21のいずれか 1つに記載の車両用空調装 置。
[23] 暖房要求があり、且つ除湿要求がない場合には、
前記第 5の冷媒バイパス手段により前記室外熱交翻をバイパスさせると共に、前 記第 6の冷媒バイパス手段により前記第 4の減圧手段及び前記蒸発器をバイパスさ せることを特徴とする請求項 22記載の車両用空調装置。
[24] 暖房及び除湿要求である場合には、
前記第 5の冷媒バイパス手段により前記室外熱交翻をバイパスさせることを特徴 とする請求項 22又は 23記載の車両用空調装置。
[25] 冷房要求がある場合には、
前記第 4の冷媒バイパス手段により前記第 3の減圧手段をバイパスさせることを特 徴とする請求項 22〜24のいずれか 1つに記載の車両用空調装置。
[26] 電動モータを走行用駆動源とする車両において用いられることを特徴とする請求項
19〜25のいずれか 1つに記載の車両用空調装置。
[27] 前記冷媒が COであり、
2
前記冷媒循環サイクルにおいて、前記排気熱交換器の出口側の冷媒と前記圧縮 機の入口側の冷媒とを熱交換させる内部熱交換器を具備することを特徴とする請求 項 19〜26のいずれか 1つに記載の車両用空調装置。
[28] 前記排気ダクトの上流端は、車内及び車外と連通し、
前記吸気ダクトへ流入する空気の内外気比率を変化させる吸入側内外気切換手 段、
前記排気ダクトへ流入する空気の内外気比率を変化させる排気側内外気切換手 段、
を具備し、
前記排気側内外気切換手段は、前記吸入側内外気切換手段により前記吸入ダクト に外気が流入されている場合には前記排気ダクト内に内気が流入するように、また前 記吸入側内外気切換手段により前記吸入ダクトに内気のみが流入されている場合に は前記排気ダクト内に外気が流入するように制御されることを特徴とする請求項 4〜1 5, 19〜27のいずれか 1つに記載の車両用空調装置。
[29] 前記排気ダクトには、空気の流通を促進させる送風機が内設され、 前記送風機は、前記排気側内外気切換手段により前記排気ダ外内に外気が流入 されている場合に駆動することを特徴とする請求項 28記載の車両用空調装置。
[30] 前記排気熱交換器の結露又は着霜を防止する結露防止手段を具備することを特 徴とする請求項 1〜29のいずれ 1つに記載の車両用空調装置。
[31] 前記結露防止手段は、
前記排気熱交換器周辺の空気の露点温度を推定する露点温度推定手段、 前記排気熱交換器の温度を前記推定された露点温度よりも高温に維持する排気 熱交換器温度調節手段、
を具備することを特徴とする請求項 30記載の車両用空調装置。
PCT/JP2005/013285 2004-12-02 2005-07-20 車両用空調装置 WO2006059410A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004-349463 2004-12-02
JP2004349463 2004-12-02
JP2005089791A JP2006182344A (ja) 2004-12-02 2005-03-25 車両用空調装置
JP2005-089791 2005-03-25

Publications (1)

Publication Number Publication Date
WO2006059410A1 true WO2006059410A1 (ja) 2006-06-08

Family

ID=36564851

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/013285 WO2006059410A1 (ja) 2004-12-02 2005-07-20 車両用空調装置

Country Status (2)

Country Link
JP (1) JP2006182344A (ja)
WO (1) WO2006059410A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5136881B2 (ja) * 2007-07-17 2013-02-06 株式会社ヴァレオジャパン 車両用空調装置
JP5186422B2 (ja) * 2008-12-02 2013-04-17 カルソニックカンセイ株式会社 車両用空気調和装置
DE102017109309A1 (de) 2017-05-02 2018-11-08 Hanon Systems Klimatisierungssystem eines Kraftfahrzeugs und Verfahren zum Betreiben des Klimatisierungssystems
KR102657254B1 (ko) * 2019-06-18 2024-04-16 한온시스템 주식회사 차량용 탁자형 공조장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0532031U (ja) * 1991-10-04 1993-04-27 カルソニツク株式会社 自動車用空気調和装置
JPH05294135A (ja) * 1992-04-23 1993-11-09 Calsonic Corp 電気自動車用空調機
JPH06135221A (ja) * 1992-10-27 1994-05-17 Nippondenso Co Ltd 空調装置
JP2004142646A (ja) * 2002-10-25 2004-05-20 Denso Corp 車両用空調装置
JP2004188995A (ja) * 2002-12-06 2004-07-08 Matsushita Electric Ind Co Ltd 空調装置及び空調方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6015218A (ja) * 1983-07-04 1985-01-25 Nippon Denso Co Ltd 自動車用空気調和装置
JP4576542B2 (ja) * 2003-04-18 2010-11-10 地方独立行政法人北海道立総合研究機構 換気排熱回収装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0532031U (ja) * 1991-10-04 1993-04-27 カルソニツク株式会社 自動車用空気調和装置
JPH05294135A (ja) * 1992-04-23 1993-11-09 Calsonic Corp 電気自動車用空調機
JPH06135221A (ja) * 1992-10-27 1994-05-17 Nippondenso Co Ltd 空調装置
JP2004142646A (ja) * 2002-10-25 2004-05-20 Denso Corp 車両用空調装置
JP2004188995A (ja) * 2002-12-06 2004-07-08 Matsushita Electric Ind Co Ltd 空調装置及び空調方法

Also Published As

Publication number Publication date
JP2006182344A (ja) 2006-07-13

Similar Documents

Publication Publication Date Title
CN105263732B (zh) 车辆用空调装置
JP5892774B2 (ja) 車両用ヒートポンプシステムの制御方法
JP6398764B2 (ja) 車両用熱管理システム
EP2418111B1 (en) Vehicular air conditioning system
JP6047314B2 (ja) 車両用空調装置
US10479170B2 (en) Air conditioner for vehicle
JP3952545B2 (ja) 車両用空調装置
JP6192435B2 (ja) 車両用空気調和装置
JP2007069733A (ja) 車両用空調装置を利用した発熱体冷却システム
US20120240604A1 (en) Heat pump system for vehicle
JP4285292B2 (ja) 車両用冷却システム
WO2013094144A1 (ja) 車両用空調装置
JP2004142551A (ja) 車両用空調装置
CN111546851A (zh) 用于机动车辆的热泵辅助冷却剂回路热交换器除霜系统
CN111591100B (zh) 一种车辆、车辆的空调系统及其控制方法
JP7280770B2 (ja) 車両用空気調和装置
JP5925048B2 (ja) 車両用空調装置及び車両
JP2004042759A (ja) 自動車用空気調和機
JP2012001141A (ja) 車両用空調装置
WO2006059410A1 (ja) 車両用空調装置
JP6875163B2 (ja) 空気調和装置
JP2009149288A (ja) 車両用空調装置
JP5142032B2 (ja) 車両用空調装置
CN213322561U (zh) 一种车辆及车辆的空调系统
JP2003136946A (ja) 車両用空調装置

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KM KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05762031

Country of ref document: EP

Kind code of ref document: A1