WO2006059402A1 - 金属ガラスセパレータの製造方法 - Google Patents

金属ガラスセパレータの製造方法 Download PDF

Info

Publication number
WO2006059402A1
WO2006059402A1 PCT/JP2004/018516 JP2004018516W WO2006059402A1 WO 2006059402 A1 WO2006059402 A1 WO 2006059402A1 JP 2004018516 W JP2004018516 W JP 2004018516W WO 2006059402 A1 WO2006059402 A1 WO 2006059402A1
Authority
WO
WIPO (PCT)
Prior art keywords
separator
metal
metal glass
glass sheet
sheet
Prior art date
Application number
PCT/JP2004/018516
Other languages
English (en)
French (fr)
Inventor
Akihisa Inoue
Hisamichi Kimura
Zhang Tao
Hideki Onishi
Original Assignee
Dynax Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dynax Corporation filed Critical Dynax Corporation
Priority to PCT/JP2004/018516 priority Critical patent/WO2006059402A1/ja
Publication of WO2006059402A1 publication Critical patent/WO2006059402A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0236Glass; Ceramics; Cermets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/0258Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant
    • H01M8/0263Collectors; Separators, e.g. bipolar separators; Interconnectors characterised by the configuration of channels, e.g. by the flow field of the reactant or coolant having meandering or serpentine paths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention belongs to the technical field of a manufacturing method for a separate separator incorporated in a polymer electrolyte fuel cell. Background art
  • a polymer electrolyte fuel cell (hereinafter referred to as “fuel cell”) is a device that generates electricity by supplying a reactive gas (hydrogen / oxygen) to an electrode made of a polymer electrolyte membrane.
  • FIG. 2 is a perspective view of cell C, which is the smallest unit constituting the fuel cell.
  • the cell C of the fuel cell has two electrodes E 1 and E 2 (anode and force sword) composed of a catalyst layer and a porous support layer, an electrolyte D inserted between the electrodes E 1 and E 2, and an electrode E. 1, consisting of a separate evening 100 located outside E 2.
  • an actual fuel cell is typically a stack of tens to hundreds of cells C stacked in series.
  • FIG. 3 is a front view of a conventional separator 100 used in a fuel cell.
  • a large number of grooves 1 2 0 having a width and a depth of about 0.5 to 2 mm are provided on both surfaces of the plate-shaped separator 100. 0 functions as a reaction gas flow path and a discharge path of water generated by the reaction.
  • the above-described separator 100 is not only a partition plate between the cells C, but also an adjacent electrode E 1 (or It is provided to supply reactive gas to E 2) and to discharge water generated by the reaction to the outside.
  • Separator evening 100 also plays a role in transmitting electricity generated in cell C to the outside.
  • the fuel cell separator 100 has a high gas shielding property so that the reaction gas supplied to the electrodes E 1 and E 2 (anode side, power sword side) is not mixed, It has excellent corrosion resistance and oxidation resistance so as not to be corroded by gas, is lightweight, has conductivity, and has the strength to withstand the load of each stacked cell C. Required.
  • isotropic carbon has been used as a material for a separator 100 that satisfies the above characteristics.
  • the mechanical strength and formability were limited when the separator was made thinner. Therefore, the development of a separator overnight with a metal base material that is excellent in mechanical strength and formability even if the separator evening is made thinner is now underway.
  • the first point is the low corrosion resistance derived from the characteristics of metals.
  • water is present in the reaction of the fuel cell, but metal has a problem that it is easily corroded in an atmosphere containing water.
  • the second point is high contact resistance (low conductivity) derived from the characteristics of metals. Since a passive layer is formed on the metal surface, the contact resistance is higher than that of carbon materials, and when the current is applied to such a metal separator, the voltage drop becomes large and the performance of the fuel cell may be reduced. There is.
  • Japanese Patent Publication No. 10-2 2 8 9 14 discloses a technique in which stainless steel is used as a base material for a separate evening and the surface thereof is plated with gold (second conventional technique). According to this technique, gold having excellent corrosion resistance and electrical conductivity is applied to the surface of the base material, so that the corrosion resistance is improved by the characteristics of the gold and the contact resistance can be reduced.
  • the first conventional technology has a problem that the separator becomes corroded during use because the separator becomes an oxidizing atmosphere during the reaction of generating electric power.
  • the second conventional technology is expensive because it uses gold plating. Have the problem.
  • the base material is made of metal, so the strength can be maintained even if the thickness of the separate evening is reduced.
  • the conductive particles are formed by fusing, so that the conductive particles are not easily peeled off and are formed into a porous layer. Therefore, when pressed with being laminated with an anode or a cathode, the anode Alternatively, the contact area of the force sword is increased and the contact resistance to the electrode is reduced.
  • the fuel cell separator is excellent in corrosion resistance.
  • a metal glass sheet is placed in a mold provided with groove-shaped irregularities, the metal glass sheet and the mold are heated to between the glass transition temperature and the crystallization temperature, and the metal is heated by hot pressing.
  • FIG. 1 is an explanatory view of a method for producing a metallic glass separator according to the present invention.
  • FIG. 2 is a perspective view of a cell which is the smallest unit constituting the fuel cell.
  • Figure 3 is a front view of a separate evening used for fuel cells.
  • the method for producing a metallic glass separate according to the present invention includes the following steps.
  • Step 1 The metal glass sheet 10 is placed in a mold 20 provided with groove-shaped irregularities in the chamber 30.
  • Step 2 Between the glass transition temperature and the crystallization temperature, metal glass sheet 10 and gold Heat the mold 20.
  • Step 3 Grooves are formed in the metallic glass sheet 10 by hot pressing.
  • the heating and molding be performed in an inert atmosphere. This is achieved by filling the chain bar 30 with an inert gas. Further, the thickness of the metal glass sheet 10 is preferably 50 to 2500 zm.
  • separators for polymer electrolyte fuel cells that are made of stainless steel and those that are made of stainless steel with gold plating. Therefore, there is a problem that it is corroded during use, and there is a problem that the cost will be increased if gold plating is applied.
  • the metal glass separator according to the present invention can suppress corrosion because the metal glass theoretically has no crystal grain boundary that is the starting point of oxidation. It is also superior in strength and electrical conductivity to currently used carbon materials. Further, since the number of processes can be reduced as compared with the case of using a carbon material, the manufacturing cost can be reduced.
  • the metal glass sheet can be directly provided with a groove, it is relatively inexpensive and simple to use a metal glass separator that has superior corrosion resistance, strength, and conductivity compared to a separator made of a conventional carbon material. Can be manufactured.
  • the maximum sheet area 500 mm ⁇ 500 mm
  • the maximum groove height 1.0 mm
  • the maximum thickness of the metal glass sheet 2500 This is advantageous in that the processable dimensions can be made relatively large.
  • the metal glass is superior in corrosion resistance, strength, and conductivity than a separator made of a conventional carbon material. A separate evening can be manufactured relatively inexpensively and easily.
  • the maximum sheet area 50 O mm ⁇ 50 O mm
  • the maximum groove height 1. O mm
  • the maximum thickness of the metal glass sheet 25 O / xm. Therefore, the processable dimensions can be made relatively large.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Fuel Cell (AREA)

Abstract

比較的安価に、且つ、簡便に、耐腐食性、強度、導電性に優れた金属ガラスセパレータを製造するために、金属ガラスシート10を、チェインバー30内の溝形状の凹凸が設けられた金型20内に配置し、ガラス遷移温度と結晶化温度の間まで、金属ガラスシート10及び金型20を加熱し、ホットプレスにより、金属ガラスシート10に溝を成形することで、耐腐食性.強度.導電性に優れた金属ガラスセパレータを、比較的安価に、且つ、簡便に製造することができる。ホットプレスを用いて、金属ガラスシートに溝を形成することで、金属ガラスセパレータの大量生産が可能になることから、セパレータの製造コストを小さくすることができる。また、シート面積、溝の高さ、シート厚さ等の加工寸法を比較的大きくとることができる。

Description

明細書
金属ガラスセパレー夕の製造方法 技術分野
本発明は、 固体高分子型燃料電池のセルに組込まれるセパレ一夕の製造方法の 技術分野に属する。 背景技術
固体高分子型燃料電池 (以下、 「燃料電池」 と呼ぶ。) は、 高分子電解質膜から なる電極に、 反応ガス (水素 ·酸素) を供給して発電する装置である。
図 2は、 燃料電池を構成する最小ュニットであるセル Cの斜視図である。
燃料電池のセル Cは、 触媒層と多孔質支持層からなる 2つの電極 E 1, E 2 (アノード、 及び力ソード)、 電極 E l, E 2間に挿入される電解質 D、 及び電 極 E 1 , E 2の外側に配置されたセパレー夕 1 0 0からなる。
上記構成のセル Cでは、 1つにつき 1 V弱の電圧しか得られないので、 実際の 燃料電池としては、 通常、 数十〜数百のセル Cを直列に積層したものが使用され ている。
図 3は、 燃料電池に使用される従来のセパレ一夕 1 0 0の正面図である。
プレート状のセパレ一夕 1 0 0の両面に、 図 3に示すように、 幅、 及び深さが 0 . 5〜2 mm程度の多数の溝 1 2 0が設けられており、 この溝 1 2 0は、 反応 ガスの流路、 及び反応によって発生した水の排出路として機能する。
多数のセル Cが積層されてなる燃料電池において、 上記のセパレ一夕 1 0 0は、 各セル C間の仕切り板としてだけでなく、 溝 1 2 0を介して隣合う電極 E 1 (又 は E 2 ) に反応ガスを供給したり、 反応に伴って発生した水を外部に排出するた めに設けられている。
また、 セパレー夕 1 0 0は、 セル Cで発生した電気を外部に伝達するための役 割も果たしている。
従って、 燃料電池のセパレー夕 1 0 0としては、 電極 E l , E 2 (アノード側、 力ソード側) に供給される反応ガスが混合しないようにガス遮蔽性が高く、 反応 ガスによって腐食されることがないように耐蝕性 ·耐酸化性に優れ、 軽量で、 且 つ、 導電性を有し、 さらに、 積層した各セル Cの荷重に耐え得る強度を具えてい ることが要求される。
また、 燃料電池を小型化するためには、 セパレ一夕 1 0 0をできるだけ薄くす る必要がある。
上記特性を満たすセパレー夕 1 0 0の材料として、 従来から、 等方性カーボン が使用されている。 しかし、 より小型で高出力の燃料電池を開発するためには、 セパレー夕を薄くすると機械的強度及び成形性に限界があった。 そこで、 現在で は、 セパレー夕を薄くしても機械強度、 成形性に優れた、 金属を母材とするセパ レ一夕の開発が進められている。
ところが、 金属を母材とするセパレ一夕を用いる場合には、 以下の 2点が問題 となる。 第 1点は、 金属の特性に由来する耐食性の低さである。 一般的な燃料電 池においては、 燃料電池の反応下においては水が存在するが、 金属はこのように 水を含む雰囲気下では腐食されやすいという問題がある。
第 2点は、 金属の特性に由来する高い接触抵抗 (低い導電性) が挙げられる。 金属表面には不働態層が形成されるためカーボン材料に比べて接触抵抗が高く、 そのような金属セパレー夕に通電された場合には電圧降下が大きくなり、 燃料電 池の性能低下を招くおそれがある。
このような問題に対して、 例えば、 セパレ一夕に用いる母材の金属にステンレ ス鋼を用い、 その表面をサンドブラスト等により粗面化する技術がある (第 1の 従来技術)。 この技術によると、 母材の金属にステンレス鋼が用いられるので耐 食性に優れるとともに、 母材表面の粗面化により接触抵抗が低下する。 また、 特 開平 1 0— 2 2 8 9 1 4号公報には、 セパレー夕の母材にステンレス鋼を用い、 その表面に金メッキを施す技術が開示されている (第 2の従来技術)。 この技術 によれば、 耐食性、 導電性に優れた金が母材表面にメツキされるので、 金の特性 により耐食性が向上するとともに、 接触抵抗を低減することができる。
しかし、 第 1の従来技術は、 電力を発生する反応中にセパレー夕が酸化雰囲気 となるため、 使用中に腐食されてしまうという問題がある。
また、 第 2の従来技術は、 金メッキを用いることからコスト高になってしまう という問題を有する。
そこで、 ステンレス鋼からなる母材の表面に、 アモルファス金属からなる導電 性粒子を物理蒸着法により積層させて、 厚さ 1〜5 0 mの多孔質層を形成する ことで、 耐食性 ·導電性を向上させた燃料電池用セパレ一夕が、 特開 2 0 0 1— 3 2 5 9 6 6号公報に開示されている。
このセパレ一夕は、 母材が金属からなるので、 セパレー夕の厚みを薄くしても 強度を保つことができる。 また、 導電性粒子が融着されて形成されることにより、 導電性粒子が剥離しにくい上、 多孔質層とされているので、 アノード又はカソー ドと積層して押圧された場合には、 アノード又は力ソードの接触面積が増大し、 電極に対する接触抵抗が低減される。
また、 母材表面に形成された多孔質層を構成する材質の少なくとも一部にァモ ルファス金属を含むので、 前記燃料電池用セパレー夕は耐食性にも優れている。
発明の開示
本発明は溝形状の凹凸が設けられた金型内に、 金属ガラスシートを配置し、 ガラス遷移温度と結晶化温度の間まで前記金属ガラスシート及び前記金型を 加熱し、 ホットプレスにより前記金属ガラスシートに溝を成形することを特 徴とする、 金属ガラスセパレー夕の製造方法。
そして不活性雰囲気中で加熱 ·成形がなされる、 請求項 1の金属ガラスセパ レー夕の製造方法である。
図面の簡単な説明
図 1は本発明の金属ガラスセパレー夕の製造方法の説明図である。
図 2は燃料電池を構成する最小ュニットであるセルの斜視図である。
図 3は燃料電池に使用されるセパレー夕の正面図である。
発明を実施するための最良の形態
本発明の金属ガラスセパレ一夕の製造方法を、 図 1に基づいて説明する。
本発明の金属ガラスセパレ一夕の製造方法は、 以下の工程からなる。
(工程 1 ) 金属ガラスシート 1 0を、 チェインバ一3 0内の溝形状の凹凸が設け られた金型 2 0内に配置する。
(工程 2 ) ガラス遷移温度と結晶化温度の間まで、 金属ガラスシート 1 0及び金 型 2 0を加熱する。
(工程 3 ) ホットプレスにより、 金属ガラスシート 1 0に溝を成形する。
ところで、 金属ガラスシート 1 0にセパレー夕に必要な凹凸の溝形状を形成す るには、 金属ガラスシート 1 0及び金型 2 0をガラス遷移温度と結晶化温度の間 の温度まで加熱する必要がある。 これは、 金属ガラスシート 1 0の温度がガラス 遷移温度以下であると十分な延性が得られず、 結晶化温度以上であると結晶化が 起こり、 金属ガラス (過冷却による液体状態の金属) ではなく一般の多結晶金属 となり、 結晶間の結晶粒界が腐食の起点となり、 セパレー夕に必要な耐食性が得 られないためである。
ここで、 表面の酸化を防ぐため、 加熱 ·成形は、 不活性雰囲気中でなされるこ とが好ましい。 これは、 チェインバー 3 0内を不活性ガスで充填することで実現 される。 また、 金属ガラスシート 1 0の厚さは、 5 0〜2 5 0 z mであることが 望ましい。
従来、 固体高分子型燃料電池のセパレー夕として、 ステンレス鋼からなるもの やステンレス鋼に金メツキをしてなるものがあるが、 ステンレス鋼の場合、 電力 を発生する反応中にセパレー夕が酸化雰囲気となるため、 使用中に腐食されてし まうという問題があり、 また、 金メッキを施すと今度はコスト高になってしまう という問題がある。
本発明の金属ガラスセパレー夕は、 金属ガラスが理論的には酸化の開始点とな る結晶粒界がないことから、 腐食を抑えることができる。 また、 強度や電気伝導 性についても現在使われているカーボン系の材料よりも優れている。 また、 カー ボン材料を用いた場合より、 工程を少なくすることができることから、 製造コス トを抑えることができる。
本発明の金属ガラスセパレー夕の製造方法によれば、 以下の比較的大きいサイ ズの加工が可能となることが確認された。
金属ガラスシ一ト最大面積: 5 0 O mm X 5 0 O mm
溝の最大高さ: 1 . O mm
金属ガラスシ一卜の最大厚さ: 2 5 0 m
以上説明したように、 本発明によれば、 ホットプレスという簡便な方法により 金属ガラスシートに直接溝を設けることができることから、 従来のカーボン材料 からなるセパレー夕よりも、 耐腐食性、 強度、 導電性に優れた金属ガラスセパレ 一夕を、 比較的安価に、 且つ、 簡便に製造することができる。
また、 ホットプレスを用いることで、 金属ガラスセパレ一夕の大量生産が可能 になることから、 金属ガラスセパレー夕の製造コストを小さくすることができる。 そして、 本発明の製造方法によれば、 シート最大面積: 5 0 0 mm X 5 0 0 m m、 溝の最大高さ : 1 . 0 mm、 金属ガラスシートの最大厚さ : 2 5 0 の加 ェが可能であり、 加工可能寸法を比較的大きくとることができるという効果を奏 する。
産業上の利用可能性
本発明によれば、 ホットプレスという簡便な方法により、 金属ガラスシートに 直接溝を設けることができることから、 従来のカーボン材料からなるセパレータ よりも、 耐腐食性、 強度、 導電性に優れた金属ガラスセパレー夕を、 比較的安価 に、 且つ、 簡便に製造することができる。
また、 ホットプレスを用いて、 金属ガラスシートに溝を形成することで、 金属 ガラスセパレー夕の大量生産が可能になることから、 金属ガラスセパレー夕の製 造コストを小さくすることができる。
また、 本発明の製造方法によれば、 シート最大面積: 5 0 O mmX 5 0 O mm, 溝の最大高さ : 1 . O mm、 金属ガラスシートの最大厚さ: 2 5 O /x mの加工が 可能であり、 加工可能寸法を比較的大きくとることができる。

Claims

請求の範囲
溝形状の凹凸が設けられた金型内に、 金属ガラスシートを配置し、 ガラス遷移温度と結晶化温度の間まで前記金属ガラスシート及び前記金型を 加熱し、 ホットプレスにより前記金属ガラスシートに溝を成形することを特 徴とする、
金属ガラスセパレー夕の製造方法。 '
不活性雰囲気中で加熱 '成形がなされる、 請求項 1の金属ガラスセパレ一夕 の製造方法。
前記金属ガラスシートの厚さが 5 0〜2 5 0 mである、 請求項 1又は 2の 金属ガラスセパレー夕の製造方法。
PCT/JP2004/018516 2004-12-03 2004-12-03 金属ガラスセパレータの製造方法 WO2006059402A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2004/018516 WO2006059402A1 (ja) 2004-12-03 2004-12-03 金属ガラスセパレータの製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2004/018516 WO2006059402A1 (ja) 2004-12-03 2004-12-03 金属ガラスセパレータの製造方法

Publications (1)

Publication Number Publication Date
WO2006059402A1 true WO2006059402A1 (ja) 2006-06-08

Family

ID=36564845

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/018516 WO2006059402A1 (ja) 2004-12-03 2004-12-03 金属ガラスセパレータの製造方法

Country Status (1)

Country Link
WO (1) WO2006059402A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130074313A1 (en) * 2007-08-20 2013-03-28 California Institute Of Technology Multilayered Cellular Metallic Glass Structures and Methods of Preparing the Same
US9556054B2 (en) 2013-07-26 2017-01-31 Corning Incorporated Corrugated sheet, method of manufacture thereof, and mold therefor
US20210328233A1 (en) * 2020-04-21 2021-10-21 Hamilton Sundstrand Corporation Bulk metallic glass interconnect for high power density fuel cell

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5990366A (ja) * 1982-11-15 1984-05-24 Hitachi Ltd 硫酸電解液型燃料電池
JPS63277736A (ja) * 1987-05-07 1988-11-15 Mitsubishi Metal Corp りん酸型燃料電池用セパレ−タ−
JPH10102223A (ja) * 1996-09-26 1998-04-21 Akihisa Inoue Fe系非晶質合金
JP2000050923A (ja) * 1998-08-05 2000-02-22 Akihisa Inoue 装身具とその製造方法
JP2001303218A (ja) * 2000-04-20 2001-10-31 Japan Science & Technology Corp 高耐蝕性・高強度Fe−Cr基バルクアモルファス合金
JP2004273314A (ja) * 2003-03-10 2004-09-30 Daido Steel Co Ltd 燃料電池用金属セパレータ、燃料電池用金属セパレータの製造方法及び燃料電池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5990366A (ja) * 1982-11-15 1984-05-24 Hitachi Ltd 硫酸電解液型燃料電池
JPS63277736A (ja) * 1987-05-07 1988-11-15 Mitsubishi Metal Corp りん酸型燃料電池用セパレ−タ−
JPH10102223A (ja) * 1996-09-26 1998-04-21 Akihisa Inoue Fe系非晶質合金
JP2000050923A (ja) * 1998-08-05 2000-02-22 Akihisa Inoue 装身具とその製造方法
JP2001303218A (ja) * 2000-04-20 2001-10-31 Japan Science & Technology Corp 高耐蝕性・高強度Fe−Cr基バルクアモルファス合金
JP2004273314A (ja) * 2003-03-10 2004-09-30 Daido Steel Co Ltd 燃料電池用金属セパレータ、燃料電池用金属セパレータの製造方法及び燃料電池

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130074313A1 (en) * 2007-08-20 2013-03-28 California Institute Of Technology Multilayered Cellular Metallic Glass Structures and Methods of Preparing the Same
US8813339B2 (en) * 2007-08-20 2014-08-26 California Institute Of Technology Multilayered cellular metallic glass structures and methods of preparing the same
US9556054B2 (en) 2013-07-26 2017-01-31 Corning Incorporated Corrugated sheet, method of manufacture thereof, and mold therefor
US20210328233A1 (en) * 2020-04-21 2021-10-21 Hamilton Sundstrand Corporation Bulk metallic glass interconnect for high power density fuel cell

Similar Documents

Publication Publication Date Title
JP5639003B2 (ja) 導電体及びデバイス
JP6863129B2 (ja) 燃料電池用セパレータの製造方法
US20020187379A1 (en) Separator used for fuel cell, method for manufacturing the separator, and the fuel cell
WO2003105254A1 (en) ULTRA-LOW LOADINGS OF Au FOR STAINLESS STEEL BIPOLAR PLATES
KR101107862B1 (ko) 연료 전지의 금속 세퍼레이터용 합금 피막, 그 제조 방법 및 스퍼터링용 타겟재, 및 금속 세퍼레이터 및 연료 전지
US8334078B2 (en) Fuel cell separator and method for producing the same
KR100429685B1 (ko) 소형 고분자 전해질 연료전지용 다공성 가스분배판, 및 이를 포함하여 제조된 분리판
JP2001357862A (ja) バイポーラプレートおよび固体高分子型燃料電池
JP4041308B2 (ja) 燃料電池用セパレータ
JP4133323B2 (ja) 燃料電池用プレスセパレータ
WO2006059402A1 (ja) 金属ガラスセパレータの製造方法
JP2001325966A (ja) 燃料電池用セパレータおよび燃料電池
WO2008056958A1 (en) Solid oxide fuel cell
WO2005056858A1 (ja) 金属ガラス合金
WO2003028134A1 (fr) Separateur de pile a combustible et preparation correspondante
JP2003249237A (ja) 燃料電池用の金属セパレータの製造方法
JP4545129B2 (ja) 燃料電池用セパレータの製造方法
KR101400364B1 (ko) 폴리카보네이트 분리판을 이용한 연료전지용 스택
KR101178527B1 (ko) 고체 산화물 연료 전지용 분리판과 분리판 제조방법 및 분리판을 포함하는 연료 전지
JP2005166396A (ja) 金属ガラスセパレータの製造方法
WO2008038858A1 (en) Metallic separator for fuel cell and method of fabricating the same
JP3967118B2 (ja) 燃料電池用金属製セパレータの製造方法
JP2005294102A (ja) 金属ガラスセパレータの製造方法
JP3913053B2 (ja) 燃料電池用金属製セパレータの製造方法
US20240039011A1 (en) Hybrid fabrication method for fuel cell flow fields

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 04822488

Country of ref document: EP

Kind code of ref document: A1