WO2006059389A1 - 光波長変換光源 - Google Patents

光波長変換光源 Download PDF

Info

Publication number
WO2006059389A1
WO2006059389A1 PCT/JP2004/018003 JP2004018003W WO2006059389A1 WO 2006059389 A1 WO2006059389 A1 WO 2006059389A1 JP 2004018003 W JP2004018003 W JP 2004018003W WO 2006059389 A1 WO2006059389 A1 WO 2006059389A1
Authority
WO
WIPO (PCT)
Prior art keywords
wavelength conversion
semiconductor laser
laser diode
diode element
light source
Prior art date
Application number
PCT/JP2004/018003
Other languages
English (en)
French (fr)
Inventor
Kiyohide Sakai
Yasuharu Koyata
Masao Imaki
Kouhei Teramoto
Shigenori Shibue
Original Assignee
Mitsubishi Denki Kabushiki Kaisha
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Denki Kabushiki Kaisha filed Critical Mitsubishi Denki Kabushiki Kaisha
Priority to US11/791,233 priority Critical patent/US7605973B2/en
Priority to PCT/JP2004/018003 priority patent/WO2006059389A1/ja
Priority to JP2006546557A priority patent/JP4907357B2/ja
Publication of WO2006059389A1 publication Critical patent/WO2006059389A1/ja

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/353Frequency conversion, i.e. wherein a light beam is generated with frequency components different from those of the incident light beams
    • G02F1/3544Particular phase matching techniques
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/14External cavity lasers
    • H01S5/146External cavity lasers using a fiber as external cavity
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/353Frequency conversion, i.e. wherein a light beam is generated with frequency components different from those of the incident light beams
    • G02F1/3544Particular phase matching techniques
    • G02F1/3548Quasi phase matching [QPM], e.g. using a periodic domain inverted structure
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/30Constructional arrangements not provided for in groups G02F1/00 - G02F7/00 grating
    • G02F2201/307Reflective grating, i.e. Bragg grating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/14External cavity lasers
    • H01S5/141External cavity lasers using a wavelength selective device, e.g. a grating or etalon

Definitions

  • the present invention relates to an optical wavelength conversion light source used for an illumination device, a printing device, a display device, an optical memory device, and the like.
  • a semiconductor laser diode element oscillates in a wide band from infrared to blue-violet by changing the composition and structure of a semiconductor crystal.
  • the composition of the compound semiconductor is good in crystallinity, the actual wavelength band that can oscillate is limited, and blue and green ones with good chromaticity have been developed. On the way.
  • the fundamental wave emitted from the semiconductor laser diode element is phase-matched with a harmonic by a nonlinear optical crystal having a periodically poled structure (hereinafter referred to as a wavelength conversion element) to convert the wavelength.
  • a wavelength conversion element a nonlinear optical crystal having a periodically poled structure
  • a conventional wavelength conversion light source it is composed of a semiconductor laser diode element having a highly reflective film and an antireflection film on both end faces, and a polarization-maintaining optical fiber having a Bragg diffraction grating in the core part.
  • a resonator is composed of the highly reflective film and the Bragg diffraction grating, and the semiconductor laser oscillates as a stable single-mode hybrid laser having a narrow line width. Wavelength conversion is described.
  • the semiconductor laser diode element may be a gain medium that is not important to be a laser.
  • examples of using a polarization-preserving type optical fiber as an optical fiber and those having a waveguide in a wavelength conversion element are also described.
  • Patent Document 1 Japanese Patent Publication No. 11 509933 (Page 6-12, Figure 1, Figure 2, Figure 3)
  • the wavelength conversion light source that also has a nonlinear optical element force, however, has problems such as a narrow allowable temperature range for satisfying the phase matching condition.
  • the wavelength conversion light source disclosed in JP-T-11-509933 is composed of a highly reflective film on the back surface of a semiconductor laser diode element and a Bragg diffraction grating disposed in the core of the optical fiber.
  • a single-mode fundamental wave with a narrow line width is oscillated by the external resonance and the wavelength of the fundamental wave is converted by the wavelength conversion element.
  • Such a narrow-line-width single-mode fundamental wavelength converter is disclosed in detail in, for example, Applied Physics Letter (Vol. 83, No. 18, pp. 3659-3661, 2003).
  • the wavelength of single longitudinal mode light emitted from the substrate is converted by a nonlinear optical crystal having a periodically poled structure.
  • the allowable temperature at which the wavelength conversion efficiency is half of the peak value has a problem that high-precision temperature control is required, which is as narrow as 2.3 ° C at full width at half maximum.
  • the present invention has been made in view of the above points, and an object of the present invention is to provide a wavelength conversion light source capable of widening an allowable temperature range and having a high wavelength conversion efficiency and a simple configuration.
  • a wavelength conversion light source includes a semiconductor laser diode element provided with an antireflection film, a lens disposed opposite to the semiconductor laser diode element, and a Bragg diffraction
  • An optical fiber having a grating disposed in a core; and a wavelength conversion element made of a nonlinear optical crystal that receives light from the semiconductor laser diode element, wherein the semiconductor laser diode element oscillates in a multi-longitudinal mode.
  • a wavelength conversion light source includes a semiconductor laser diode element provided with a low reflection film, a lens disposed facing the semiconductor laser diode element, and a Bragg diffraction grating as a core.
  • An optical fiber disposed in the optical fiber; and a wavelength conversion element made of a nonlinear optical crystal that receives light from the semiconductor laser diode element, wherein the semiconductor laser diode element oscillates in a coherent collapse mode.
  • a wavelength conversion light source includes a semiconductor laser diode element provided with an antireflection film, a lens disposed opposite to the semiconductor laser diode element, and a low reflection film on a light incident surface. And an optical fiber with a Bragg diffraction grating disposed on the core. And a wavelength conversion element made of a nonlinear optical crystal that receives the light of the semiconductor laser diode element, wherein the semiconductor laser diode element oscillates in a coherent collapse mode.
  • the semiconductor laser diode device the optical fiber in which the Bragg diffraction grating is disposed in the core, and the wavelength conversion element made of the nonlinear optical crystal that receives the light of the semiconductor laser diode device are provided. Since the semiconductor laser diode element oscillates in multi-longitudinal mode or coherent collapse mode, the allowable temperature range that satisfies the phase matching condition of the wavelength conversion element can be expanded, and it is stable against environmental conditions.
  • a wavelength conversion light source can be provided.
  • FIG. 1 is a configuration diagram of a wavelength conversion light source according to Embodiment 1 of the present invention.
  • FIG. 2 is a configuration diagram of a wavelength conversion light source according to Embodiment 2 of the present invention.
  • FIG. 3 is a diagram showing a second harmonic output characteristic with respect to a fundamental wave input according to Embodiment 2 of the present invention.
  • FIG. 4 is a diagram showing output characteristics of second harmonics with respect to temperature of a wavelength conversion element according to Embodiment 2 of the present invention.
  • FIG. 5 is a configuration diagram of a wavelength conversion light source according to Embodiment 3 of the present invention.
  • FIG. 6 is a configuration diagram of a wavelength conversion light source according to a fifth embodiment of the present invention.
  • the wavelength conversion light source according to the embodiment of the present invention is used for a light source disposed in, for example, an illumination device, a printing device, a display device, or an optical memory device.
  • the wavelength width for phase matching of a wavelength conversion element of a lithium niobate having a wavelength of 900-lOOOnm band and a length of 10 mm is very narrow, about 0.1 nm.
  • the longitudinal mode interval ⁇ ⁇ of the semiconductor laser diode having a Fabry-Perot resonator is determined by the equation (1) when the resonator interval L, the refractive index n, and the wavelength are set, for example, a wavelength of 980 nm and a length 900 m, refractive index n is 3.2 force, etc.
  • the effective refractive index n force will be about 4.5 from S4.
  • a multi-longitudinal mode semiconductor laser diode element is hardly used as a fundamental light source, and a single longitudinal mode has been implemented as disclosed in JP-A-11-509933.
  • a single longitudinal mode such as an external resonator using a semiconductor laser diode element and a diffraction grating, a DFB (Distributed Feedback) structure, and a DBR (Distributed Bragg grating Reflector) structure.
  • DFB Distributed Feedback
  • DBR distributed Bragg grating Reflector
  • Embodiment 1 of the present invention enables multi-longitudinal mode oscillation by the above-described semiconductor laser diode element and stabilizes the operation against changes in environmental temperature and mechanical fluctuations.
  • FIG. 1 is a configuration diagram of a wavelength conversion light source according to Embodiment 1 of the present invention.
  • the wavelength conversion light source shown in FIG. 1 includes a semiconductor laser diode element 1 having a highly reflective film 2 deposited on the back surface and an antireflection film 3 deposited on the front surface, and a semiconductor laser diode element 1 disposed opposite to the semiconductor laser diode element 1.
  • One lens 4 and a black diffraction grating 6 are disposed in the core, and the polarization plane maintaining light that is emitted from the semiconductor laser diode element 1 is optically coupled through the lens 4.
  • a wavelength comprising: a conventional optical fiber 5; a second lens 7 for converging the diffused light from the optical fiber 5; and a nonlinear optical crystal that receives light output from the optical fiber 5 via the second lens 7.
  • Reference numeral 9 denotes a ray trajectory.
  • the highly reflective film 2 and the Bragg diffraction grating 6 constitute a Fabry-Perot resonator.
  • the reflectance of the antireflection film 3 deposited on the front surface is controlled to be 0.1% or less, and the laser oscillation in a single unit is suppressed to function as a gain medium.
  • the reflectivity of the highly reflective film 2 is set to 90%
  • the reflectivity of the Bragg diffraction grating 6 is set to 5 to 10% to form a Fabry-Perot resonator, and the light extraction efficiency is improved.
  • the distance between the semiconductor laser diode element 1 and the Bragg diffraction grating 6 is set so that a plurality of longitudinal modes are included in the allowable wavelength width that satisfies the phase matching condition of the wavelength conversion element 8. .
  • the ratio of wavelength conversion efficiency between the single mode and the multiple longitudinal mode can be approximated to 2-1ZN, and it is better to have many longitudinal modes.
  • the number of longitudinal modes is extremely small, there is a problem that a light output change due to a mode hop phenomenon described in Japanese Patent Laid-Open No. 2001-242500 occurs.
  • the full width at half maximum of the reflection band of the Bragg diffraction grating 6 is set to 0.3 nm so that a large number of longitudinal modes are allowed.
  • the coherent collapse mode of the semiconductor laser diode element 1 is used as a method for generating many longitudinal modes that are phase-matched within the narrow allowable wavelength width of the wavelength conversion element 8. It has long been known that this coherent collapse mode can be oscillated by the semiconductor laser diode element 1 and the Bragg diffraction grating 6 formed in the optical fiber section 5. However, since the relative intensity noise is large, it cannot be used as a signal light source. [0026] However, Giles et al. Show that it can be used as a pump light source for erbium-doped optical fiber amplifiers for optical fiber communication in IEEE Photonics Technology Letter, Vol.6, pp.907-909 etc. It came to be.
  • FIG. 2 is a configuration diagram of a wavelength conversion light source according to Embodiment 2 of the present invention.
  • the wavelength conversion light source according to Embodiment 2 shown in FIG. 2 is almost the same as FIG. 1 except that a low reflection film 10 is deposited instead of the antireflection film 3 on the front surface of the semiconductor laser diode element 1.
  • the length of the first resonator composed of the high reflection film 2 and the low reflection film 10 is L1
  • the length of the second resonator composed of the low reflection film 10 and the Bragg diffraction grating 6 As L2.
  • the output light 9 from the front side is optically coupled to the polarization-preserving optical fiber 5 whose incident surface is obliquely polished to prevent near-end reflection through the first lens 4 and coupled.
  • An efficiency of 70% was obtained.
  • the core portion of the optical fiber 5 is irradiated with ultraviolet rays through a phase mask (not shown), so that the peak reflectivity and the full width at half maximum of the reflection band are 5% and 0.4 nm, respectively.
  • a resonator length L2 composed of the low reflection film 10 and the Bragg diffraction grating 6 is 1.5 m longer than the coherent length.
  • the wavelength conversion element 8 was input.
  • Fig. 3 shows the experimental results and the calculation results of only the second harmonic component of the spectrum having an envelope with a spectrum width of 0.3 nm (shown as experimental values and calculated values in Fig. 3). . Since the experimental values and the calculated values are almost the same, the wavelength conversion by the sum frequency is considered to be very small. This is because the phase of the longitudinal mode is disturbed by the reflected return light from the Bragg diffraction grating 6 arranged at a position longer than the coherent length with respect to the coherent collapsible mode force Fabry-Perot resonator.
  • phase of each spectrum of angular frequency ⁇ - ⁇ ⁇ and angular frequency ⁇ + ⁇ ⁇ included in the phase fluctuates randomly, even if each sum frequency is integrated in the optical axis direction, the phase component is random. It is considered that the sum frequency does not increase. For this reason, the effect of improving controllability with little local fluctuation of the conversion efficiency was confirmed.
  • the reflection wavelength band of the Bragg diffraction grating 6 provided in the optical fiber 5 is adjusted.
  • the allowable temperature range that satisfies the phase matching conditions of the wavelength conversion element can be expanded.
  • the longitudinal mode interval when the element alone oscillates as a Fabry-Perot laser is 0.08 nm. is there.
  • the full width at half maximum of the spectrum envelope is 0.3 nm, and three Fabry-Perot modes are inherently included in the calculation. it seems to do.
  • the light output of the coherent collapse mode is achieved.
  • the improvement of the linearity of the force-current characteristic has been known in the past, and is described, for example, in JP-A-9-283847.
  • the allowable wavelength width of the phase matching of the wavelength conversion element 8 having a wavelength of 980 nm and a length of 10 mm is as narrow as 0.1 nm, so that there are a plurality of coherent collapse modes within the spectrum.
  • FIG. 5 is a configuration diagram of a wavelength conversion light source according to Embodiment 3 of the present invention.
  • the same parts as those in the first or second embodiment shown in FIG. 1 or 2 are denoted by the same reference numerals, and the description thereof is omitted.
  • a low reflection film 10 is provided on the light incident surface of the optical fine 5 in which the black diffraction grating 6 is provided in the core, and the semiconductor laser diode element. 1 is the same as Embodiment 1 shown in FIG. 1 except that it oscillates in a coherent collapse mode.
  • the coupling optical system is designed to be long. By doing so, it is possible to increase the length L1 of the first resonator. Therefore, the interval between the Fabry-Perot modes can be narrowed, and a plurality of Fabry-Perot modes are included in the reflection band of the Bragg diffraction grating 6 optimized for the allowable wavelength width of the phase matching condition of the wavelength conversion element 8. Can be arranged, and a coherent collapse mode with a narrow line width and less optical output current characteristics can be obtained. Further, the semiconductor laser diode element 1 can be miniaturized and a low-cost one can be configured.
  • the low-reflection film 10 is used on the light incident surface of the optical fiber 5, but a reflection measure such as oblique polishing is provided at the incident portion of the optical fiber 5, and A second Bragg diffraction grating with low reflectivity may be placed in the vicinity of the core, and the reflection bandwidth of the second Bragg diffraction grating is the reflection bandwidth of the first Bragg diffraction grating 6. Needless to say, an effect similar to that described above can be obtained.
  • the semiconductor laser diode element 1 has a single transverse mode optical waveguide, and the maximum optical output of the continuous wave is about 1 W, which is the limit of optical damage on the end face. Therefore, there was a problem in increasing the output. Therefore, it is conceivable to use a flare type semiconductor laser diode element in which the active layer and the optical waveguide spread along the light traveling direction. If a flare type semiconductor laser diode element is used, the maximum output of the fundamental wave can be increased to 3 W or more, and the same effect as in the above embodiment can be obtained.
  • the wavelength conversion element 8 is a wavelength conversion element that is phase-matched by a quasi-phase matching method using a periodically poled structure, but the phase matching method is refractive index wavelength dispersion.
  • the phase matching method is refractive index wavelength dispersion.
  • a method using a birefringence may be used.
  • the wavelength converting element 8 is a Balta type that uses spatial light.
  • the optical waveguide that propagates the light of the semiconductor laser diode element 1 as a waveguide mode is used. Since the luminance of the fundamental wave that can be provided can be maintained high, the efficiency of wavelength conversion to the second harmonic is improved.
  • the allowable temperature range that satisfies the phase matching condition of the wavelength conversion element can be expanded, and a wavelength conversion light source that is stable with respect to environmental conditions can be provided.
  • the light source is suitable for use as a light source disposed in an illumination device, a printing device, a display device, or an optical memory device.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Semiconductor Lasers (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

 波長変換素子の位相整合条件を満足する許容温度範囲を広くする。  反射防止膜3が施された半導体レーザダイオード素子1と、半導体レーザダイオード素子1に対向して配置されたレンズ4と、ブラッグ回折格子6がコアに配設された光ファイバ5と、半導体レーザダイオード素子1の光を入射する非線形光学結晶からなる波長変換素子8を備え、半導体レーザダイオード素子1は、コヒーレントコラプスモードで発振する。

Description

明 細 書
光波長変換光源
技術分野
[0001] この発明は、照明装置、印刷装置、ディスプレイ装置、光メモリ装置などに使用され る光波長変換光源に関するものである。
背景技術
[0002] 半導体レーザダイオード素子は半導体結晶の組成と構造を変えることで、赤外から 青紫に至る広い帯域で発振する。しかし、化合物半導体の結晶性の良い組成で無け れば長寿命や良い特性が得られないことから、実際に発振できる波長帯は限られて おり、色度の良い青色や緑色のものは開発途上である。また、青色や緑色の波長帯 域では W級の大出力のものが得られる見込みは得られておらず、高輝度が必要とさ れるレーザディスプレイなどの応用に適したものがない。そこで、現実的な方法として 、半導体レーザダイオード素子から出射する基本波を、周期分極反転構造を有する 非線形光学結晶(以後、波長変換素子という)により高調波と位相整合して波長を変 換する波長変換光源が注目され、その研究開発が続けられて 、る。
[0003] 従来の波長変換光源として、高反射膜と反射防止膜とを両端面に施した半導体レ 一ザダイオード素子と、コア部にブラッグ回折格子を配した偏波面保存光ファイバと で構成されたものがある (例えば、特許文献 1参照)。この特許文献では、その高反射 膜とブラッグ回折格子とで共振器を構成し、前記半導体レーザが狭線幅の安定単一 モードハイブリッドレーザとして発振すること、このレーザの基本波を波長変換素子で 波長変換することが記載されている。また、半導体レーザダイオード素子はレーザで あることは重要ではなぐ利得媒体であればよいことが記載されている。さらに、光ファ ィバとして偏波面保存型のものを使用する例や波長変換素子に導波路を備えるもの も記載されている。
[0004] 特許文献 1 :特表平 11 509933号公報 (第 6— 12頁、図 1、図 2、図 3)
発明の開示
発明が解決しょうとする課題 [0005] し力しながら、非線形光学素子力もなる波長変換光源において、位相整合条件を 満足させるための許容温度範囲が狭いなどの課題があった。
[0006] 例えば、特表平 11 - 509933号公報に示された波長変換光源は、半導体レーザダ ィオード素子の背面の高反射膜と、光ファイバのコア内に配設されたブラッグ回折格 子により構成された外部共振にて狭線幅の単一モードの基本波を発振させ、その基 本波を波長変換素子で波長変換するものである。このような狭線幅の単一モードの 基本波を波長変換するものは、例えば、 Applied Physics Letter (Vol.83, No.18, pp. 3659-3661,2003)に詳しく開示されおり、固体レーザから出射する単一縦モードの光 を周期分極反転構造を有する非線形光学結晶で波長変換して!/ヽる。その波長変換 効率がピーク値の半分となる許容温度は、半値全幅で高々 2. 3°Cと非常に狭ぐ高 精度の温度制御が必要とされるという課題があった。
[0007] この発明は上記のような点に鑑みてなされたもので、許容温度幅を広げると共に、 波長変換効率が高ぐかつ簡単に構成できる波長変換光源を提供することを目的と する。
課題を解決するための手段
[0008] 上記目的を達成するために、この発明に係る波長変換光源は、反射防止膜が施さ れた半導体レーザダイオード素子と、前記半導体レーザダイオード素子に対向して 配置されたレンズと、ブラッグ回折格子がコアに配設された光ファイバと、前記半導体 レーザダイオード素子の光を入射する非線形光学結晶からなる波長変換素子とを備 え、前記半導体レーザダイオード素子は、多縦モードで発振することを特徴とする。
[0009] また、他の発明に係る波長変換光源は、低反射膜が施された半導体レーザダイォ ード素子と、前記半導体レーザダイオード素子に対向して配置されたレンズと、ブラッ グ回折格子がコア内に配設された光ファイバと、前記半導体レーザダイオード素子の 光を入射する非線形光学結晶からなる波長変換素子とを備え、前記半導体レーザダ ィオード素子は、コヒーレントコラプスモードで発振することを特徴とする。
[0010] さらに他の発明に係る波長変換光源は、反射防止膜が施された半導体レーザダイ オード素子と、前記半導体レーザダイオード素子に対向して配置されたレンズと、低 反射膜が光入射面に配設され、かつブラッグ回折格子がコアに配設された光フアイ バと、前記半導体レーザダイオード素子の光を入射する非線形光学結晶からなる波 長変換素子とを備え、前記半導体レーザダイオード素子は、コヒーレントコラプスモー ドで発振することを特徴とする。
発明の効果
[0011] この発明によれば、半導体レーザダイオード素子と、ブラッグ回折格子がコアに配 設された光ファイバと、半導体レーザダイオード素子の光を入射する非線形光学結 晶からなる波長変換素子を備え、半導体レーザダイオード素子が多縦モードまたは コヒーレントコラプスモードで発振するようにしたので、波長変換素子の位相整合条 件を満足する許容温度範囲を拡大することができ、また、環境条件に対して安定な 波長変換光源を提供することが可能となる。
図面の簡単な説明
[0012] [図 1]この発明の実施の形態 1に係る波長変換光源の構成図である。
[図 2]この発明の実施の形態 2に係る波長変換光源の構成図である。
[図 3]この発明の実施の形態 2に係る基本波入力に対する 2次高調波出力特性を示 す図である。
[図 4]この発明の実施の形態 2に係る波長変換素子の温度に対する 2次高調波の出 力特性を示す図である。
[図 5]この発明の実施の形態 3に係る波長変換光源の構成図である。
[図 6]この発明の実施の形態 5に係る波長変換光源の構成図である。
発明を実施するための最良の形態
[0013] 以下に添付図面を参照して、この発明に係る波長変換光源の好適な実施の形態を 詳細に説明する。この発明の実施の形態に係る波長変換光源は、例えば、照明装置 内、印刷装置内、ディスプレイ装置内、光メモリ装置内に配置された光源に使用され るものである。
[0014] 実施の形態 1.
まず、光学結晶を用いた 2次高調波発生による波長変換の動作力 説明する。結 晶に基本波を入射すると、その電界に誘起されて線形の分極が生じる。ところが、非 対称中心を持つ光学結晶にレーザ光など強い電界を入力した場合、 3階のテンソル をもつ電気感受率が無視できなくなり、角周波数 ωの基本波に対し角周波数 2 ωと 角周波数 0の誘電分極が生じる現象があり、前者が 2次高調波発生、後者が光整流 と呼ばれる。
[0015] この非線形分極によって発生する 2次高調波発生の効率を上げるためには、基本 波と 2次高調波の位相整合条件を満足させる必要があり、屈折率波長分散特性や常 光線と異常光線に対する屈折率差を利用する方法など幾つかの方法が知られてい る。その中で、非線形光学結晶の自発分極の方向を 180° 交互に反転する擬似位 相整合法は、交番の周期によって任意の動作波長を選べる、また非線形定数の大き な結晶軸を選択できるなどの特徴があり、この周期分極反転構造に光導波路を形成 して 2次高調波を効率よく発生させる目的で、最近、盛んに研究されている。
[0016] この周期分極反転構造で基本波を 2次高調波に変換する現象は、モード結合理論 で解析でき、例えば、栖原らが Journal of Quantum Electronics, Vol. 26, pp.
1265-1276にその変換効率の計算方法を詳細に示している。その計算方法によれば 、例えば、波長 900— lOOOnm帯、長さ 10mmのリチウムナイオベートの波長変換素 子が位相整合する波長幅は 0. lnm程度と大変に狭くなることが分力る。
[0017] 一方、フアブリペロー共振器を有する半導体レーザダイオードの縦モード間隔 Δ λ は、共振器間隔 L、屈折率 n、波長えとすると、式(1)で決定され、例えば、波長 980 nm、長さ 900 m、屈折率 nが 3. 2力ら 3. 5の縦モード間隔は、半導体レーザダイ
e
オードの構造にもよるが実効屈折率 n力 S4から 4. 5程度になることから 0. 13nm程度
g
となり、波長変換素子における位相整合の許容波長幅内に複数の縦モードを入れる ことが難しいことが分かる。
[0018] [数 1]
Figure imgf000005_0001
ム ' n gノ L
Figure imgf000005_0002
[0019] 従って、基本波光源として多縦モードの半導体レーザダイオード素子は殆ど利用さ れず、特表平 11—509933号公報に示されたように単一縦モードィ匕が実施されてき た。なお、単一縦モードを得る構成は、半導体レーザダイオード素子と回折格子を利 用した外部共振器によるもの、 DFB (Distributed Feedback)構造によるもの、 DBR ( Distributed Bragg grating Reflector)構造によるものなど、多彩な報告例がある。
[0020] 一方、長 、共振器のガスレーザや、チタンサフアイャレーザなどで基本波を作った ときには、この波長変換素子の位相整合条件を満足する狭い許容波長幅の中に多く の縦モードの基本波が入射する。この場合は、基本波の角周波数 ωの縦モードは角 周波数 2 ωの 2次高調波に変換され、同時に角周波数 ω— δ ωと角周波数 ω + δ ω の縦モードは角周波数 2 ωの和周波として位相整合する(なお、 δ ωは基本波の縦 モード間隔を示す)。従って、位相整合条件を満足する多縦モードの基本波の変換 効率は、単一波長による 2次高調波の変換効率よりも最大 2倍の変換効率が得られ ることが知られている。
[0021] この現象は、理論的には Helmfrid等が Journal of Optical Society America B, Vol.8, pp.2326- 2329で、実験的には Qu等が Physical Review, Vol.47, pp.3259- 3263で報 告している。しかし、上記のような大型のレーザ装置は適用範囲が限られ、また、ファ ィバレーザなどで構成することは可能ではあるものの、実用性の高 、半導体レーザダ ィオード素子では構成しにくいため、あまり注目されて来な力つた。なお、特開 2001 —242500号公報に示される外部共振器を構成する方法があるものの、光学長が長 いために環境温度の変化や機械的な変動に対して動作が不安定になりやすぐ安 定動作させるためには構造が複雑となり実用的ではな力つた。
[0022] この発明の実施の形態 1は、上述の半導体レーザダイオード素子による多縦モード 発振を可能とし、かつ環境温度の変化や機械的な変動に対しても動作を安定させた ものである。図 1は、この発明の実施の形態 1に係る波長変換光源の構成図である。 図 1に示す波長変換光源は、裏面に高反射膜 2が蒸着され、前面に反射防止膜 3が 蒸着された半導体レーザダイオード素子 1と、前記半導体レーザダイオード素子 1と 対向して配置された第一のレンズ 4と、コアにブラック回折格子 6が配設され、半導体 レーザダイオード素子 1からの出射光がレンズ 4を介して光学的に結合する偏波面保 存型の光ファイバ 5と、前記光ファイバ 5からの拡散光を収束させる第二のレンズ 7と、 前記光ファイバ 5から光出力を第二のレンズ 7を介して入射する非線形光学結晶から なる波長変換素子 8とを備えている。なお、 9は光線軌跡であり、図中で高反射膜 2と ブラッグ回折格子 6とでフアブリペロー共振器を構成している。
[0023] 次に、動作について説明する。半導体レーザダイオード素子 1は、前面に蒸着され た反射防止膜 3の反射率が 0. 1%以下に制御されており、単体でのレーザ発振を抑 圧して、利得媒体として機能させている。また、高反射膜 2の反射率を 90%、ブラッグ 回折格子 6の反射率を 5— 10%にしてフアブリペロー共振器を構成すると共に、光の 取り出し効率を改善している。なお、半導体レーザダイオード素子 1とブラッグ回折格 子 6との距離は、波長変換素子 8の位相整合条件を満足する許容波長幅の中に複 数本の縦モードが入るように設定して 、る。
[0024] この縦モードを N本とすると、単一モードと多縦モードとの波長変換効率の比は 2— 1ZNと近似することができ、多くの縦モードが入ったほうが良い。特に、縦モードの 本数が極端に少ない場合は、特開 2001— 242500号公報に説明のあるモードホッ プ現象による光出力変化が発生するなどの課題がある。ここでは、波長変換効率を 維持しながら許容温度幅が拡大する目的で、ブラッグ回折格子 6の反射帯域の半値 全幅を 0. 3nmとして、多数の縦モードが許容されるようにしている。前述の Helmfrid 等の計算で予想されるとおり、位相整合条件を満足する許容温度の半値全幅が約 2 倍となり、格別の効果が得られた。なお、モード分配雑音で知られる縦モードの不安 定性と非対称性があり、 Helmfrid等の計算による和周波成分は力なり小さい状態であ つた o
[0025] 実施の形態 2.
次に、実施の形態 2では、この波長変換素子 8の狭い許容波長幅の中に位相整合 する多くの縦モードを発生する方法として、半導体レーザダイオード素子 1のコヒーレ ントコラプスモードを利用する。このコヒーレントコラプスモードは、半導体レーザダイ オード素子 1と光ファイバ部 5に構成したブラッグ回折格子 6とで発振できることはかな り古くから知られており、一時は波長可変光源用に研究されたが実用にはならず、相 対強度雑音が大きいため信号光源には使用できないことから殆ど利用されな力つた [0026] ところが、 Giles等が、 IEEE Photonics Technology Letter, Vol.6, pp.907- 909等で光 ファイバ通信用のエルビウム添加光ファイバ増幅器用のポンプ光源として使用できる ことを示すに至って、広く活用されるようになった。また、その光源の構成は、 Ventrudo等が Electronics Letters, vol.30, pp.2147- 2149により詳しく解説している。し かし、このコヒーレントコラプスモードは、それぞれのスペクトラムの線幅は 10— 50G Hzに拡大することが知られており、実際にそのようなスペクトラムが多数重なり合った 基本波が波長変換素子で位相整合して効率よく変換できる力否かは公知文献が見 当たらず、また不明な点が多い。
[0027] 図 2は、この発明の実施の形態 2に係る波長変換光源の構成図である。図 2に示す 実施の形態 2において、図 1に示す実施の形態 1と同一部分は同一符号を付してそ の説明は省略する。図 2に示す実施の形態 2に係る波長変換光源において、半導体 レーザダイオード素子 1の前面に反射防止膜 3の代わりに低反射膜 10が蒸着されて いる他は図 1とほぼ同一である。図中において、高反射膜 2と低反射膜 10とで構成す る第一の共振器の長さを L1、低反射膜 10とブラッグ回折格子 6とで構成する第二の 共振器の長さを L2として 、る。
[0028] 前述の通り、コヒーレントコラプスモードの基本波を波長変換する変換効率につい ては不明な点が多いことから、発明人らは実験と計算値とを比較することとした。実験 系は図 2に示すとおりであり、波長 980nm、共振器長 L1が 1. 8mmの半導体レーザ ダイオード素子 1の裏面に反射率 90%の高反射膜 2を、前面に反射率 0. 5%の低 反射膜 10を蒸着し、フアブリペロー型のレーザ共振器を構成した。
[0029] 次に、前面からの出力光 9が第一のレンズ 4を介し、近端反射を防止するため入射 面を斜め研磨した偏波面保存型の光ファイバ 5と光学的に結合させ、結合効率 70% を得た。この光ファイバ 5のコア部には位相マスク(図示せず)を介しては紫外線を照 射することでピーク反射率と反射帯域の半値全幅がそれぞれ 5%、 0. 4nmのブラッ グ回折格子 6が設けられており、かつ、低反射膜 10とブラッグ回折格子 6とで構成さ れる共振器長 L2をコヒーレント長よりも長い 1. 5mとして 、る。
[0030] その結果、コヒーレントコラプスモードのスペクトラム全体の包絡線の半値全幅が 0. 3nmとなる波長 980nmの基本波光源が完成し、この基本波を第二のレンズ 7を介し て長さ 10mmの 5%酸化マグネシウム添加リチウムナイオベートに波長 980nmに対 応する周期分極反転構造を形成した波長変換素子 8に入力した。
[0031] 図 3は、その実験結果、並びに、スぺクラム幅 0. 3nmを包絡線するスペクトラムの 2 次高調波成分のみの計算結果 (図 3に実験値及び計算値と表示した)を示す。実験 値と計算値はほぼ一致していることから、和周波による波長変換は非常に少ないと考 えられる。これは、コヒーレントコラプスモード力 フアブリペロー共振器に対してコヒー レント長よりも長い位置に配置されたブラッグ回折格子 6からの反射戻り光で縦モード の位相に擾乱を与えているものであり、基本波に含まれる角周波数 ω—δ ωと角周 波数 ω + δ ωの夫々のスペクトラムの位相がランダムに変動し、夫々の和周波を光 軸方向に積分しても位相成分のランダム性のために和周波が増加しな 、ものと考え られる。そのため、変換効率の局所的な変動が少なく制御性が改善するという効果が 確認された。
[0032] さらに、図 4に示す波長変換効率の温度特性を測定では、許容温度整合幅が 5°C
Figure imgf000009_0001
、う格別の効果が確認された。
[0033] 従って、外部反射に対する基本波のスペクトラムや光強度の変化が少ないコヒーレ ントコラプスモードの特徴に加えて、光ファイバ 5内に備えられたブラッグ回折格子 6 の反射波長帯を調整することで基本波のスペクトラムの包絡線を適宜に設計すること により、波長変換素子の位相整合条件を満足する許容温度幅を拡大することが可能 である。更に、半導体レーザダイオード素子 1とブラッグ回折格子 6を有する光フアイ ノ ¾と波長変換素子 8とを組合せることで、簡単で実用的な構成を提供できる。
[0034] 実施の形態 3.
ところで、上述の実施の形態 2においては、半導体レーザダイオード 1の共振器長 L 1を 1. 8mmとしたので、素子単体でフアブリペローレーザとして発振させたときの縦 モード間隔は 0. 08nmである。ブラッグ回折格子 6を利用して複合共振器を構成し、 コヒーレントコラプスモードを発振させた場合のスペクトラムの包絡線の半値全幅は 0 . 3nmであり、計算上は 3本のフアブリペローモードが内在していると考えられる。この ように複数のフアブリペローモードを利用することでコヒーレントコラプスモードの光出 力電流特性の直線性が改善することは以前力も知られており、例えば、特開平 9— 28 3847号公報等にも記載がある。
[0035] しかし、波長変換効率を向上させようとすると、波長 980nm、長さ 10mmの波長変 換素子 8の位相整合の許容波長幅は 0. lnmと狭いので、コヒーレントコラプスモード のスペクトラム内に複数のフアブリペローモードを入れるためには半導体レーザダイ オード素子 1の共振器長 L1を著しく長くする必要があり、実際には困難か、可能であ つても不要なコストが発生する課題が新たに発生する。そこで、短い半導体レーザダ ィオード素子を利用し、フアブリペローモードの間隔を狭める実用的な構造が必要で ある。
[0036] 図 5は、この発明の実施の形態 3に係る波長変換光源の構成図である。図 5におい て、図 1または図 2に示す実施の形態 1または 2と同一部分は同一符号を付してその 説明は省略する。図 5に示す実施の形態 3に係る波長変換光源において、コアには ブラック回折格子 6が配設された光ファイノ 5の光入射面には低反射膜 10が配設さ れ、半導体レーザダイオード素子 1は、コヒーレントコラプスモードで発振する以外は 、図 1に示す実施の形態 1と同様である。
[0037] この実施の形態 3によれば、図 5に示すとおり、第一の共振器は、高反射膜 2と低反 射膜 10との間で構成されるので、結合光学系を長く設計することで第一の共振器の 長さ L1を長くすることが可能である。従って、フアブリペローモードの間隔を狭くする ことができ、波長変換素子 8の位相整合条件の許容波長幅に合わせて最適化された ブラッグ回折格子 6の反射帯域の中に複数のフアブリペローモードを配置することが 可能となり、狭線幅、かつ光出力電流特性のキンクの少ないコヒーレントコラプスモー ドが得られる。また、半導体レーザダイオード素子 1を小型化でき、コストの安いもの が構成できる。
[0038] 実施の形態 4.
上述した実施の形態 3においては、光ファイバ 5の光入射面に低反射膜 10を使用 したものを示したが、光ファイバ 5の入射部に、斜め研磨などの反射対策を設けると 共に、その付近のコア部に低反射率の第 2のブラッグ回折格子を配置してもよぐこ の第 2のブラッグ回折格子の反射帯域幅は第一のブラッグ回折格子 6の反射帯域幅 よりも広くするのが良ぐ上述のものと同様の効果が得られることは云うまでもない。
[0039] 実施の形態 5.
以上、上述した実施の形態 1一 4において、半導体レーザダイオード素子 1は、単 一横モードの光導波路を有するものであり、連続波の最大光出力は 1W程度が端面 の光損傷の限度となっており、高出力化には課題があった。そこで、光の進行方向に 沿って活性層及び光導波路が広がったフレア型の半導体レーザダイオード素子を利 用することが考えられる。フレア型の半導体レーザダイオード素子を使用すれば、基 本波の最大出力を 3W以上に増加させることができ、かつ前記の実施の形態と同様 の効果を奏する。
[0040] なお、上記実施の形態 1一 5において、波長変換素子 8として、周期分極反転構造 による擬似位相整合法で位相整合する波長変換素子を示したが、位相整合の方法 は屈折率波長分散と複屈折率を利用した方法でも良い。
[0041] また、上記実施の形態 1一 5において、波長変換素子 8は空間光を利用するバルタ 型のものを示した力 半導体レーザダイオード素子 1の光を導波モードとして伝播す る光導波路を備えても良ぐ基本波の輝度を高く維持できるため、 2次高調波への波 長変換効率が向上する。
産業上の利用可能性
[0042] この発明によれば、波長変換素子の位相整合条件を満足する許容温度範囲を拡 大することができ、また、環境条件に対して安定な波長変換光源を提供することが可 能となり、例えば、照明装置内、印刷装置内、ディスプレイ装置内、光メモリ装置内に 配置された光源として用いて好適なものとなる。

Claims

請求の範囲
[1] 反射防止膜が施された半導体レーザダイオード素子と、
前記半導体レーザダイオード素子に対向して配置されたレンズと、
ブラッグ回折格子がコアに配設された光ファイバと、
前記半導体レーザダイオード素子の光を入射する非線形光学結晶からなる波長変 換素子と
を備え、
前記半導体レーザダイオード素子は、多縦モードで発振する
ことを特徴とする波長変換光源。
[2] 低反射膜が施された半導体レーザダイオード素子と、
前記半導体レーザダイオード素子に対向して配置されたレンズと、
ブラッグ回折格子がコア内に配設された光ファイバと、
前記半導体レーザダイオード素子の光を入射する非線形光学結晶からなる波長変 換素子と
を備え、
前記半導体レーザダイオード素子は、コヒーレントコラプスモードで発振する ことを特徴とする波長変換光源。
[3] 反射防止膜が施された半導体レーザダイオード素子と、
前記半導体レーザダイオード素子に対向して配置されたレンズと、
低反射膜が光入射面に配設され、かつブラッグ回折格子がコアに配設された光フ アイバと、
前記半導体レーザダイオード素子の光を入射する非線形光学結晶からなる波長変 換素子と
を備え、
前記半導体レーザダイオード素子は、コヒーレントコラプスモードで発振する ことを特徴とする波長変換光源。
[4] 請求項 1から 3のいずれ力 1項に記載の波長変換光源において、
前記半導体レーザダイオード素子は、フレア型の半導体レーザダイオード素子であ る
ことを特徴とする波長変換光源。
[5] 請求項 1から 3のいずれ力 1項に記載の波長変換光源において、
前記光ファイバは、偏波面保存型の光ファイバである
ことを特徴とする波長変換光源。
[6] 請求項 1から 3のいずれ力 1項に記載の波長変換光源において、
前記波長変換素子は、擬似位相整合する周期分極反転構造を有する ことを特徴とする波長変換光源。
[7] 請求項 1から 3のいずれ力 1項に記載の波長変換光源において、
前記波長変換素子は、少なくとも前記半導体レーザダイオード素子の光を導波モ ードとして伝播する光導波路を有する
ことを特徴とする波長変換光源。
PCT/JP2004/018003 2004-12-03 2004-12-03 光波長変換光源 WO2006059389A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US11/791,233 US7605973B2 (en) 2004-12-03 2004-12-03 Optical wavelength conversion light source
PCT/JP2004/018003 WO2006059389A1 (ja) 2004-12-03 2004-12-03 光波長変換光源
JP2006546557A JP4907357B2 (ja) 2004-12-03 2004-12-03 光波長変換光源

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2004/018003 WO2006059389A1 (ja) 2004-12-03 2004-12-03 光波長変換光源

Publications (1)

Publication Number Publication Date
WO2006059389A1 true WO2006059389A1 (ja) 2006-06-08

Family

ID=36564833

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2004/018003 WO2006059389A1 (ja) 2004-12-03 2004-12-03 光波長変換光源

Country Status (3)

Country Link
US (1) US7605973B2 (ja)
JP (1) JP4907357B2 (ja)
WO (1) WO2006059389A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010093211A (ja) * 2008-10-10 2010-04-22 Ricoh Co Ltd 波長変換レーザ装置
JP2013190517A (ja) * 2012-03-13 2013-09-26 Ngk Insulators Ltd 高調波発生装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201111834A (en) * 2009-08-31 2011-04-01 Epicrystals Oy Stabilized light source
JP5646312B2 (ja) * 2010-04-02 2014-12-24 三菱電機株式会社 粒子線照射装置及び粒子線治療装置
US8498507B2 (en) * 2011-05-13 2013-07-30 Kestrel Labs, Inc. Anti-reflective launch optics for laser to fiber coupling in a photoplethysmograpic device

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03132628A (ja) * 1989-10-18 1991-06-06 Nec Corp 波長変換素子
JPH05173212A (ja) * 1991-12-20 1993-07-13 Sumitomo Electric Ind Ltd 光波長変換モジュール
JPH09283847A (ja) * 1996-04-08 1997-10-31 Sumitomo Electric Ind Ltd 半導体レーザモジュール
JPH11214802A (ja) * 1995-03-21 1999-08-06 Sdl Inc ファイバ回折格子安定化ダイオードレーザ
JP2000241842A (ja) * 1999-02-19 2000-09-08 Matsushita Electric Ind Co Ltd 光波長変換素子および短波長光発生装置
JP2001242500A (ja) * 2000-03-02 2001-09-07 Fuji Photo Film Co Ltd 光波長変換モジュール
JP2003512717A (ja) * 1999-02-11 2003-04-02 エスディーエル, インコーポレイテッド ファイバ格子−安定化半導体ポンプソース
JP2003273458A (ja) * 2002-01-29 2003-09-26 Osram Opto Semiconductors Gmbh ファイバライトガイドにビームを入力結合させる装置
JP2004157217A (ja) * 2002-11-05 2004-06-03 Fuji Photo Film Co Ltd 波長変換レーザ光源
JP2004177633A (ja) * 2002-11-27 2004-06-24 Noritsu Koki Co Ltd レーザ発生装置及び写真処理装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5485481A (en) 1994-06-28 1996-01-16 Seastar Optics Inc. Fibre-grating-stabilized diode laser
US5544271A (en) 1994-12-12 1996-08-06 Uniphase Corporation Nonlinear optical generator with index of refraction perturbed reflector arrangement
JPH09179155A (ja) 1995-12-26 1997-07-11 Fuji Photo Film Co Ltd 光波長変換装置
US5682398A (en) 1996-05-03 1997-10-28 Eastman Kodak Company Frequency conversion laser devices
US5761226A (en) 1996-05-29 1998-06-02 Eastman Kodak Company Frequency conversion laser devices
US20020136258A1 (en) * 2001-03-20 2002-09-26 Starodubov Dmitry S. Semiconductor laser pump locker incorporating multiple gratings
JP2002341195A (ja) * 2001-05-16 2002-11-27 Nec Corp 半導体レーザモジュール
US6693946B2 (en) * 2001-07-05 2004-02-17 Lucent Technologies Inc. Wavelength-tunable lasers
JP2003188469A (ja) 2001-12-19 2003-07-04 Noritsu Koki Co Ltd レーザー光源
JP2003270686A (ja) 2002-03-08 2003-09-25 Sei Tsunezo Ldファイバピグテール第二高調波出力レーザー共振器構造
US6996140B2 (en) * 2002-12-23 2006-02-07 Jds Uniphase Corporation Laser device for nonlinear conversion of light
US7103075B2 (en) * 2003-06-18 2006-09-05 Shimadzu Corporation Solid laser apparatus
GB2413697A (en) * 2004-04-27 2005-11-02 Bookham Technology Plc Uncooled semiconductor laser
US7693194B2 (en) * 2004-08-12 2010-04-06 Mitsubishi Electric Corporation Fundamental-wave light source and wavelength converter

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03132628A (ja) * 1989-10-18 1991-06-06 Nec Corp 波長変換素子
JPH05173212A (ja) * 1991-12-20 1993-07-13 Sumitomo Electric Ind Ltd 光波長変換モジュール
JPH11214802A (ja) * 1995-03-21 1999-08-06 Sdl Inc ファイバ回折格子安定化ダイオードレーザ
JPH09283847A (ja) * 1996-04-08 1997-10-31 Sumitomo Electric Ind Ltd 半導体レーザモジュール
JP2003512717A (ja) * 1999-02-11 2003-04-02 エスディーエル, インコーポレイテッド ファイバ格子−安定化半導体ポンプソース
JP2000241842A (ja) * 1999-02-19 2000-09-08 Matsushita Electric Ind Co Ltd 光波長変換素子および短波長光発生装置
JP2001242500A (ja) * 2000-03-02 2001-09-07 Fuji Photo Film Co Ltd 光波長変換モジュール
JP2003273458A (ja) * 2002-01-29 2003-09-26 Osram Opto Semiconductors Gmbh ファイバライトガイドにビームを入力結合させる装置
JP2004157217A (ja) * 2002-11-05 2004-06-03 Fuji Photo Film Co Ltd 波長変換レーザ光源
JP2004177633A (ja) * 2002-11-27 2004-06-24 Noritsu Koki Co Ltd レーザ発生装置及び写真処理装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010093211A (ja) * 2008-10-10 2010-04-22 Ricoh Co Ltd 波長変換レーザ装置
JP2013190517A (ja) * 2012-03-13 2013-09-26 Ngk Insulators Ltd 高調波発生装置

Also Published As

Publication number Publication date
JP4907357B2 (ja) 2012-03-28
US7605973B2 (en) 2009-10-20
JPWO2006059389A1 (ja) 2008-06-05
US20080049796A1 (en) 2008-02-28

Similar Documents

Publication Publication Date Title
US5640405A (en) Multi quasi phase matched interactions in a non-linear crystal
US7778291B2 (en) Wavelength converting laser device
US6996140B2 (en) Laser device for nonlinear conversion of light
US20080310465A1 (en) Method and Laser Device for Stabilized Frequency Doubling
JP2013526726A (ja) 複波長光システム
JP2011503843A (ja) 増大した光強度を有する、拡張キャビティ半導体レーザデバイス
JP2007173819A (ja) 高効率2次調和波生成の垂直外部共振器型の面発光レーザシステム
Beier et al. Second harmonic generation of the output of an AlGaAs diode oscillator amplifier system in critically phase matched LiB 3 O 5 and β-BaB 2 O 4
JPH0792513A (ja) 波長変換素子及びその使用方法
US6937780B2 (en) Multi-pass, arcuate bent waveguide, high power super luminescent diode
WO1996041234A1 (en) Improved external resonant frequency mixers based on degenerate and half-degenerate resonators
JP2020504333A (ja) シングル縦モードリングラマンレーザ
US5574818A (en) Compound waveguide lasers and optical parametric oscillators
JP4907357B2 (ja) 光波長変換光源
US20090161700A1 (en) Fiber laser
JP2001159766A (ja) パラメータ発振レーザ
JP3948775B2 (ja) 波長変換装置
JPH06132595A (ja) 第2次高調波光発生装置
JP4862960B2 (ja) 波長変換レーザ装置および画像表示装置
US20230128226A1 (en) Laser apparatus and method
JP2002229086A (ja) 波長変換装置
JP6018525B2 (ja) 波長変換素子および波長変換装置
Lin et al. 3-μm Continuous-wave singly resonant OPO
JP2005326521A (ja) 外部共振器型レーザ装置、およびそれを用いた波長変換装置
Lin et al. 3-µm Continuous-Wave Singly Resonant OPO

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006546557

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 11791233

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 04822479

Country of ref document: EP

Kind code of ref document: A1

WWP Wipo information: published in national office

Ref document number: 11791233

Country of ref document: US