WO2006053733A1 - Verfahren und vorrichtung zur vollhydrierung eines kohlenwasserstoffstromes - Google Patents

Verfahren und vorrichtung zur vollhydrierung eines kohlenwasserstoffstromes Download PDF

Info

Publication number
WO2006053733A1
WO2006053733A1 PCT/EP2005/012284 EP2005012284W WO2006053733A1 WO 2006053733 A1 WO2006053733 A1 WO 2006053733A1 EP 2005012284 W EP2005012284 W EP 2005012284W WO 2006053733 A1 WO2006053733 A1 WO 2006053733A1
Authority
WO
WIPO (PCT)
Prior art keywords
hydrogenation
hydrogen
complete hydrogenation
dehydrogenation
stream
Prior art date
Application number
PCT/EP2005/012284
Other languages
English (en)
French (fr)
Inventor
Falk Simon
Sven Crone
Götz-Peter SCHINDLER
Peter Matthias Fritz
Heinz BÖLT
Original Assignee
Basf Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Aktiengesellschaft filed Critical Basf Aktiengesellschaft
Priority to MX2007005043A priority Critical patent/MX2007005043A/es
Priority to EP05813743A priority patent/EP1814834A1/de
Priority to JP2007541781A priority patent/JP2008520603A/ja
Priority to AU2005305996A priority patent/AU2005305996A1/en
Priority to EA200700910A priority patent/EA012015B1/ru
Priority to US11/719,726 priority patent/US20080281140A1/en
Priority to CA002586321A priority patent/CA2586321A1/en
Priority to BRPI0518311-1A priority patent/BRPI0518311A2/pt
Publication of WO2006053733A1 publication Critical patent/WO2006053733A1/de
Priority to NO20072284A priority patent/NO20072284L/no

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/32Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with formation of free hydrogen
    • C07C5/327Formation of non-aromatic carbon-to-carbon double bonds only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/0006Controlling or regulating processes
    • B01J19/002Avoiding undesirable reactions or side-effects, e.g. avoiding explosions, or improving the yield by suppressing side-reactions
    • B01J19/0026Avoiding carbon deposits
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/32Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with formation of free hydrogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/32Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by dehydrogenation with formation of free hydrogen
    • C07C5/327Formation of non-aromatic carbon-to-carbon double bonds only
    • C07C5/333Catalytic processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2208/00Processes carried out in the presence of solid particles; Reactors therefor
    • B01J2208/00008Controlling the process
    • B01J2208/00654Controlling the process by measures relating to the particulate material
    • B01J2208/00707Fouling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2219/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J2219/00002Chemical plants
    • B01J2219/00004Scale aspects
    • B01J2219/00006Large-scale industrial plants

Definitions

  • the invention relates to a process for the complete hydrogenation of Kohlenwasserstoff ⁇ stream to Dehydrierreaktor of plants for the production of alkenes by catalytic dehydrogenation of light alkanes and an apparatus for performing the method.
  • Alkenes such as propylene and isobutene were mainly used as by-products in processes such as e.g. produced by ethylene production in the Steam Cracker.
  • certain alkene / ethylene ratios can not be exceeded.
  • this limit is for example about 0.65. Since in recent decades, for example, As the market for propylene developed more strongly than the ethylene market, new methods of large-scale production of this substance had to be found in order to meet rising demand.
  • dehydrogenation i. E. the elimination of hydrogen is formed, in an economical way e.g. from propane propene and from isobutane isobutene is produced.
  • coke deactivates the catalyst in the dehydrogenation reactor over time and must be reactivated by burnout.
  • olefins particularly strongly unsaturated components (for example acetylenes and diolefins) contribute to coke formation, which are located in the hydrocarbon stream to the dehydrogenation reactor (fresh propane together with recycled material).
  • Another negative aspect is a reduction in propylene yield by reducing the selectivity of the dehydrogenation reaction by the unsaturated moieties in said hydrocarbon stream. For this reason, in the o.g.
  • this object is achieved in that a complete hydrogenation of all unsaturated components is carried out in the entire hydrocarbon stream flowing to the dehydrogenation reactor.
  • the complete hydrogenation of the hydrocarbon stream to the dehydrogenation reactor is preferably carried out after the separation stage (1) and before the preheating (2) in the gas phase.
  • the hydrocarbon stream is material before it is passed over a suitable catalyst.
  • the exothermic hydrogenation reaction proceeds in such a way that, when it enters the preheating stage, almost exclusively alkane and excess hydrogen are present in the hydrocarbon stream.
  • the full hydrogenation is inventively i. a. not under stoichiometric conditions, but in excess of hydrogen. This ensures that the hydrogenation, even without a regulation of the amount of hydrogen, at any time can run completely under changing operating conditions. If the content of unsaturated components in the hydrocarbon stream increases, the energy released in the hydrogenation increases. Since the hydrocarbon stream must be preheated to reaction temperature anyway, this effect is not disadvantageous.
  • the energy released in the exothermic full hydrogenation can be used directly for preheating the hydrocarbon stream to the dehydrogenation reactor (3). This reduces the energy requirement in the preheating stage (2) of the system. For this reason, the hydrocarbon stream is expediently not cooled at the outlet of the hydrogenation reactor, but the hydrogenation is preferably carried out under adiabatic conditions. This ensures that almost all the energy released is kept in the material flow.
  • the invention furthermore relates to a device for hydrogenating the hydrocarbon stream to the dehydrogenation reactor of plants for alkene production by catalytic dehydrogenation of light alkanes.
  • this object is achieved according to the invention in that - preferably after the separation stage (1) and before the preheating stage (2) - a device is arranged in which the entire hydrocarbon stream flowing to the dehydrogenation reactor is completely hydrogenated in it is subjected to unsaturated unsaturated components.
  • the device for complete hydrogenation of the hydrocarbon stream is preferably provided with a hydrogen feed which makes it possible to adjust the hydrogen stream so that the hydrogenation is carried out under all operating conditions with an excess of hydrogen, in extreme cases under stoichiometric conditions, but never with hydrogen deficiency .
  • the hydrogenation reactor is expediently designed as an adiabatic reactor, ie, the reactor is not equipped with a device which dissipates the energy released during the endothermic reaction. Rather, the reactor is expediently provided with a thermal insulation, which ensures that the released energy remains almost completely in the hydrocarbon stream.
  • the hydrogenation energy contributes a part for preheating the reactant stream to the reaction temperature necessary for the dehydrogenation. Because it compares with the prior art of

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

Gegenstand der Erfindung ist ein Verfahren zur Hydrierung von Stoffströmen in Anlagen zur Produktion von Alkenen durch katalytische Dehydrierung von leichten Alkanen sowie eine Vorrichtung zur Durchführung des Verfahrens. Der gesamte Kohlenwasserstoffstrom zum Dehydrierreaktor, bestehend aus frischem und recycliertem Alkan, wird noch vor dem Dehydrierreaktor einer vollständigen Hydrierung aller in ihm enthaltener ungesättigter Kohlenwasserstoffe unterzogen. Dadurch wird die Koksbildung im Dehydrierreaktor drastisch vermindert. Der Energieaufwand für die Vorwärmung des Eduktstromes auf Reaktionstemperatur wird reduziert, da die bei der exothermen Hydrierung freigesetzte Energie nahezu vollständig im Kohlenwasserstoffstrom verbleibt.

Description

Verfahren und Vorrichtung zur Vollhydrierung eines Kohlenwasserstoffstromes
Beschreibung
Gegenstand der Erfindung ist ein Verfahren zur Vollhydrierung des Kohlenwasserstoff¬ stromes zum Dehydrierreaktor von Anlagen zur Produktion von Alkenen durch katalyti- sche Dehydrierung von leichten Alkanen sowie eine Vorrichtung zur Durchführung des Verfahrens.
Alkene wie Propylen und Isobuten wurden bis vor einigen Jahrzehnten hauptsächlich als Nebenprodukte in Prozessen wie z.B. der Ethylenproduktion im Steam Cracker erzeugt. Hierbei können bestimmte Alken/Ethylen-Verhältnisse jedoch nicht überschrit¬ ten werden. Für Propylen liegt dieser Grenzwert beispielsweise bei ca. 0,65. Da sich in den letzten Jahrzehnten z.B. der Markt für Propylen stärker als der Ethylenmarkt ent- wickelte, mussten, um den steigenden Bedarf decken zu können, neue Methoden zur großtechnischen Produktion dieses Stoffes gefunden werden. Neben der Alkengewin¬ nung aus Raffineriecrackgas hat sich als bedeutendes Verfahren die Dehydrierung, d.h. die Abspaltung von Wasserstoff herausgebildet, bei der auf wirtschaftliche Weise z.B. aus Propan Propen und aus Isobutan Isobuten erzeugt wird.
In den letzten Jahren wurden mehrere Verfahren für die industrielle Dehydrierung leich¬ ter Alkane entwickelt und teilweise großtechnisch umgesetzt. Zu nennen sind hier die Prozesse UOP Oleflex, Lummus Catofin, Linde PDH, Snamprogetti/Yarsintez FBD sowie Phillips STAR.
Bei allen Unterschieden haben die o. g. Verfahren ein gemeinsames Grundprinzip, wie es für den Fall der Propandehydrierung anhand der Figur erläutert werden soll, das aber auch für die Dehydrierung anderer Alkane Gültigkeit besitzt:
Der Einsatz aus frischem Propan wird zuerst in einer C3/C4-Trennstufe (1) von schwe¬ ren Bestandteilen (C4 +), wie sie stets als Verunreinigungen vorhanden sind, gereinigt und - nach einer Vorwärmung (2) auf Reaktionstemperatur - einem Reaktor (3) zuge¬ führt, in welchem die katalytisch unterstützte, endotherme Dehydrierreaktion abläuft. Aus thermodynamischen und verfahrenstechnischen Gründen verlassen zwischen 50 und 70% des Propans den Reaktor ohne chemische Veränderung (Konversion). Auch besitzt keines der Verfahren eine 100%ige Selektivität, d.h. aus den an den chemi¬ schen Reaktionen teilnehmenden Propanmolekülen entstehen neben dem gewünsch¬ ten Produkt Propylen (C3Hs → C3H6 + H2) zu einem Teil (< 20%) auch andere Substan¬ zen. Zu nennen sind hier CH4 und C2H4, die durch Crackreaktionen gebildet werden, Acetylene und Diolefine (vorwiegend Methylacetylen und Propadien), die durch Zwei¬ fachdehydrierung entstehen und Grünöl, bei dem es sich um eine Mischung aus ver¬ schieden langen Oligomeren handelt. In mehreren Verfahrensschritten (4) wird dieses Stoffgemisch in Fraktionen getrennt. Die leichten Anteile (C2"), Grünöl sowie Propylen werden aus dem Prozess ausgeschleust; das Propan wird recycliert und vor der C3/C4- Trennstufe (1) mit dem frisch zugeführten Propan gemischt.
Durch die Ablagerang von Koks wird der Katalysator im Dehydrierreaktor im Laufe der Zeit deaktiviert und muss durch Ausbrennen wieder aktiviert werden. Je geringer die sich ablagernde Koksmenge ist, desto geringer ist auch der Aufwand für die Aktivie¬ rung. Besonders tragen zur Koksbildung - neben Olefinen - stark ungesättigte Kompo¬ nenten (z.B. Acetylene und Diolefine) bei, die sich im Kohlenwasserstoffstrom zum Dehydrierreaktor (frisches Propan zusammen mit Recyclat) befinden. Ein weiterer ne- gativer Aspekt ist eine Verringerung der Propylenausbeute durch die Verminderung der Selektivität der Dehydrierreaktion durch die ungesättigten Komponenten in besagtem Kohlenwasserstoffstrom. Aus diesem Grund werden in den o.g. Verfahren vor der Pro¬ panrückführung die Acetylene und Diolefine durch selektive Hydrierung in Propylen oder durch Vollhydrierung zu Propan umgewandelt. Die Hydriervorrichtungen sind da- bei an unterschiedlichen Stellen in die Anlage integriert. Beispielsweise wird in einer Ausgestaltung des Oleflex-Verfahrens eine selektive Hydrierung im flüssigen Produkt¬ strom hinter dem Dehydrierreaktor (5) durchgeführt, während in einer anderen Ausges¬ taltung das Propan-Recyclat einer Vollhydrierung (6) unterzogen wird. Beim Linde- PDH-Verfahren erfolgt eine selektive Hydrierung im Sumpf des C3-Splitters, d.h. eben- falls in der Flüssigphase (6), unmittelbar vor der Propanrückführung.
Bei der Anwendung der oben beschriebenen Methoden zur selektiven Hydrierung be¬ finden sich geringe Mengen an Propylen im Propan-Recyclat und damit auch im Koh¬ lenwasserstoffstrom zum Dehydrierreaktor. Zusammen mit den ungesättigten Kompo- nenten, die im frischen Einsatz enthalten sein können, führt dieses Propylen immer noch zu den o.g. negativen Erscheinungen und damit zu einer Verminderung der Wirt¬ schaftlichkeit der Verfahren.
Der vorliegenden Erfindung liegt daher die Aufgabe zugrunde, ein Verfahren der ein- gangs genannten Art sowie eine Vorrichtung zur Durchführung des Verfahrens so aus¬ zugestalten, dass sämtliche ungesättigte Komponenten im Kohlenwasserstoffstrom zum Dehydrierreaktor von Anlagen zur Dehydrierung leichter Alkane auf wirtschaftliche Weise entfernt werden.
Diese Aufgabe wird verfahrensseitig erfindungsgemäß dadurch gelöst, dass im gesam¬ ten, dem Dehydrierreaktor zufließenden Kohlenwasserstoffstrom eine vollständige Hydrierung aller ungesättigten Komponenten durchgeführt wird.
Mit Bezug auf das in der Figur veranschaulichte Grundprinzip wird die vollständige Hydrierung des Kohlenwasserstoffstromes zum Dehydrierreaktor (frisches und recyc- liertes Alkan) bevorzugt nach der Trennstufe (1) und vor der Vorwärmung (2) in der Gasphase durchgeführt. Zu diesem Zweck wird dem Kohlenwasserstoffstrom Wasser- stoff zugemischt, bevor er über einen geeigneten Katalysator geführt wird. Im Katalysa¬ torbett läuft die exotherme Hydrierreaktion so ab, dass sich bei seinem Eintritt in die Vorwärmstufe nahezu ausschließlich Alkan und überschüssiger Wasserstoff im Koh¬ lenwasserstoffstrom befinden.
Vorzugsweise wird die Vollhydrierung erfindungsgemäß i. a. nicht unter stöchiometri- schen Bedingungen, sondern bei Wasserstoffüberschuss durchgeführt. Dadurch wird erreicht, dass die Hydrierung, auch ohne eine Regelung der Wasserstoff menge, bei wechselnden Betriebsbedingungen jederzeit vollständig ablaufen kann. Steigt der Ge- halt an ungesättigten Komponenten im Kohlenwasserstoffstrom an, erhöht sich die bei der Hydrierung freigesetzte Energie. Da der Kohlenwasserstoffstrom ohnehin bis auf Reaktionstemperatur vorgewärmt werden muss, ist dieser Effekt nicht von Nachteil.
Überschüssiger Wasserstoff wird nicht aus dem Kohlenwasserstoffstrom entfernt. Ein Absinken des Gehalts an ungesättigten Komponenten hat daher eine stärkere Wasser¬ stoffverdünnung des Kohlenwasserstoffstromes zur Folge, was jedoch zu einer höhe¬ ren Selektivität und zur Unterdrückung der Grünölbildung führt. Darüber hinaus verlän¬ gert der Wasserstoffüberschuss die Laufzeit des Hydrierreaktors.
Die bei der exothermen Vollhydrierung frei werdende Energie kann direkt zur Vorwär¬ mung des Kohlenwasserstoffstroms zum Dehydrierreaktor (3) genutzt werden. Damit sinkt der Energiebedarf in der Vorwärmstufe (2) der Anlage. Aus diesem Grund wird der Kohlenwasserstoffstrom am Ausgang des Hydrierreaktors zweckmäßigerweise nicht gekühlt, vielmehr wird die Hydrierung bevorzugt unter adiabatischen Bedingungen durchgeführt. Dadurch wird erreicht, dass nahezu die gesamte freigesetzte Energie im Stoffstrom gehalten wird.
Die Erfindung betrifft ferner eine Vorrichtung zur Hydrierung des Kohlenwasserstoffstro¬ mes zum Dehydrierreaktor von Anlagen zur Alkenproduktion durch katalytische Dehyd- rierung von leichten Alkanen.
Vorrichtungsseitig wird die gestellte Aufgabe erfindungsgemäß dadurch gelöst, dass - bevorzugt nach der Trennstufe (1) und vor der Vorwärmstufe (2) - eine Einrichtung an¬ geordnet ist, in welcher der gesamte, dem Dehydrierreaktor zufließende Kohlenwasser- stoffstrom einer vollständigen Hydrierung aller in ihm enthaltener ungesättigter Kompo¬ nenten unterzogen wird.
Vorzugweise ist die Einrichtung zur vollständigen Hydrierung des Kohlenwasserstoff¬ stromes mit einer Wasserstoffzuführung versehen, die es ermöglicht, den Wasserstoff- ström so einzustellen, dass die Hydrierung unter allen Betriebsbedingungen bei Wasser¬ stoffüberschuss, im Extremfall unter stöchiometrischen Bedingungen, jedoch nie bei Wasserstoffmangel durchgeführt wird. Der Hydrierreaktor ist zweckmäßig als Adiabatreaktor ausgeführt, d.h., der Reaktor ist nicht mit einer Einrichtung ausgestattet, die die während der endothermen Reaktion frei¬ werdende Energie abführt. Vielmehr ist der Reaktor sinnvollerweise mit einer Wärmeiso- lierung versehen, die dafür sorgt, dass die freiwerdende Energie nahezu vollständig im Kohlenwasserstoffstrom verbleibt. Die Hydrierenergie trägt einen Teil zur Vorwärmung des Eduktstromes auf die zur Dehydrierung notwendige Reaktionstemperatur bei. Weil dadurch im Vergleich mit dem Stand der Technik der
Energiebedarf in der eigentlichen Vorwärmstufe geringer ist, kann diese kleiner und preisgünstiger ausgeführt werden.
Auf Reaktoren zur Selektivhydrierung oder zur Vollhydrierung des Recyclats, wie sie z.B. in großtechnischen Anlagen zur Propandehydrierung Stand der Technik sind, kann durch den Einsatz der erfindungsgemäßen Vorrichtung verzichtet werden.

Claims

Patentansprüche
1. Verfahren zur Vollhydrierung des Stoffstromes zum Dehydrierreaktor von Anlagen zur Produktion von Alkenen durch katalytische Dehydrierung von leichten Alka- nen, dadurch gekennzeichnet, dass im gesamten, dem Dehydrierreaktor zuflie¬ ßenden Kohlenwasserstoffstrom eine vollständige Hydrierung aller ungesättigten Komponenten durchgeführt wird.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass die vollständige Hy- drierung unter allen Betriebsbedingungen bei Wasserstoffüberschuss, im Extrem¬ fall unter stöchiometrischen Bedingungen, jedoch nie bei Wasserstoffmangel durchgeführt wird.
3. Verfahren nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass die vollständige Hydrierung in der Gasphase durchgeführt wird.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die bei der exothermen Hydrierreaktion freigesetzte Energie weitgehend im hydrierten Stoffstrom gehalten und zu dessen teilweiser Vorwärmung auf Dehydrierreak- tionstemperatur genutzt wird.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass als Alkan Propan eingesetzt und Propylen als Produkt erzeugt wird.
6. Vorrichtung zur Hydrierung des Stoffstromes zum Dehydrierreaktor von Anlagen zur Alkenproduktion durch katalytische Dehydrierung von leichten Alkanen, da¬ durch gekennzeichnet, dass vor dem Dehydrierreaktor eine Einrichtung angeord¬ net ist, in welcher der gesamte, dem Dehydrierreaktor zufließenden Kohlenwas¬ serstoffstrom einer vollständigen Hydrierung aller in ihm enthaltener ungesättigter Komponenten unterzogen wird.
7. Vorrichtung nach Anspruch 6, dadurch gekennzeichnet, dass die Einrichtung zur vollständigen Hydrierung eine mengeneinstellbare Wasserstoffzuführung besitzt, die so eingestellt wird, dass auch bei wechselnden Betriebsbedingungen die voll- ständige Hydrierung bei Wasserstoffüberschuss oder unter stöchiometrischen
Bedingungen, jedoch nie bei Wasserstoffmangel durchgeführt wird.
8. Vorrichtung nach einem der Ansprüche 6 oder 7, dadurch gekennzeichnet, dass die Einrichtung zur vollständigen Hydrierung als Adiabatreaktor ausgestaltet ist.
9. Vorrichtung nach einem der Ansprüche 6 bis 8, dadurch gekennzeichnet, dass die Einrichtung zur vollständigen Hydrierung für eine Behandlung eines gasförmigen Stoffstroms ausgelegt ist.
PCT/EP2005/012284 2004-11-19 2005-11-16 Verfahren und vorrichtung zur vollhydrierung eines kohlenwasserstoffstromes WO2006053733A1 (de)

Priority Applications (9)

Application Number Priority Date Filing Date Title
MX2007005043A MX2007005043A (es) 2004-11-19 2005-11-16 Procedimiento y dispositivo para la hidrogenacion completa de una corriente de hidrocarburo.
EP05813743A EP1814834A1 (de) 2004-11-19 2005-11-16 Verfahren und vorrichtung zur vollhydrierung eines kohlenwasserstoffstromes
JP2007541781A JP2008520603A (ja) 2004-11-19 2005-11-16 炭化水素流を完全に水素化するための方法及び装置
AU2005305996A AU2005305996A1 (en) 2004-11-19 2005-11-16 Method and device for completely hydrogenating a hydrocarbon flow
EA200700910A EA012015B1 (ru) 2004-11-19 2005-11-16 Способ каталитического дегидрирования легких алканов
US11/719,726 US20080281140A1 (en) 2004-11-19 2005-11-16 Method and Device for Completely Hydrogenating a Hydrocarbon Flow
CA002586321A CA2586321A1 (en) 2004-11-19 2005-11-16 Method and device for completely hydrogenating a hydrocarbon flow
BRPI0518311-1A BRPI0518311A2 (pt) 2004-11-19 2005-11-16 processo para hidrogenar completamente a corrente para o reator de desidrogenaÇço de instalaÇÕes para a produÇço de alquilenos por desidrogenaÇço catalÍtica de alcanos leves, e, aparelho para a higrogenaÇço da corrente para o reator de desidrogenaÇço de instalaÇÕes para a produÇço de alquileno por desidrogenaÇço catalÍtica de alcanos leves
NO20072284A NO20072284L (no) 2004-11-19 2007-05-03 Fremgangsmate og apparatur for fullstendig hydrogenering av en hydrokarbonstrom

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004055826A DE102004055826A1 (de) 2004-11-19 2004-11-19 Verfahren und Vorrichtung zur Vollhydrierung eines Kohlenwasserstoffstromes
DE102004055826.4 2004-11-19

Publications (1)

Publication Number Publication Date
WO2006053733A1 true WO2006053733A1 (de) 2006-05-26

Family

ID=35945143

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2005/012284 WO2006053733A1 (de) 2004-11-19 2005-11-16 Verfahren und vorrichtung zur vollhydrierung eines kohlenwasserstoffstromes

Country Status (14)

Country Link
US (1) US20080281140A1 (de)
EP (1) EP1814834A1 (de)
JP (1) JP2008520603A (de)
KR (1) KR20070089164A (de)
CN (1) CN101061084A (de)
AU (1) AU2005305996A1 (de)
BR (1) BRPI0518311A2 (de)
CA (1) CA2586321A1 (de)
DE (1) DE102004055826A1 (de)
EA (1) EA012015B1 (de)
MX (1) MX2007005043A (de)
NO (1) NO20072284L (de)
TW (1) TW200626536A (de)
WO (1) WO2006053733A1 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA3004332C (en) * 2015-11-04 2019-12-31 Exxonmobil Chemical Patents Inc. Processes and systems for converting hydrocarbons to cyclopentadiene
US10221110B2 (en) * 2016-12-08 2019-03-05 Evonik Degussa Gmbh Dehydrogenation of olefin-rich hydrocarbon mixtures
CN110937970B (zh) * 2018-09-21 2022-08-19 中国石化工程建设有限公司 一种制备丙烯的方法和系统
CN110903155B (zh) 2019-12-18 2020-09-08 四川润和催化新材料股份有限公司 一种低碳烷烃脱氢工艺的方法、装置和反应系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB546818A (en) * 1939-02-09 1942-07-31 Universal Oil Prod Co Process for converting normally gaseous hydrocarbons
US4393250A (en) * 1981-04-28 1983-07-12 Veba Oel Ag Process for producing alcohols and ethers
US4718986A (en) * 1983-07-28 1988-01-12 Snamprogetti, S.P.A. Process for producting high purity butene-1 with a low energy consumption
US20040158110A1 (en) * 2001-05-23 2004-08-12 Schweizer Albert E. Oxidative halogenation and optional dehydrogenation of c3+hydrocarbons
US20040199034A1 (en) * 2001-10-15 2004-10-07 Christian Walsdorff Method for dehydrogenating C2-C30-alkanes

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4663493A (en) * 1984-10-02 1987-05-05 Uop Inc. Process for the dehydrogenation of hydrocarbons
US6218589B1 (en) * 1997-05-13 2001-04-17 Uop Llc Method for improving the operation of a propane-propylene splitter

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB546818A (en) * 1939-02-09 1942-07-31 Universal Oil Prod Co Process for converting normally gaseous hydrocarbons
US4393250A (en) * 1981-04-28 1983-07-12 Veba Oel Ag Process for producing alcohols and ethers
US4718986A (en) * 1983-07-28 1988-01-12 Snamprogetti, S.P.A. Process for producting high purity butene-1 with a low energy consumption
US20040158110A1 (en) * 2001-05-23 2004-08-12 Schweizer Albert E. Oxidative halogenation and optional dehydrogenation of c3+hydrocarbons
US20040199034A1 (en) * 2001-10-15 2004-10-07 Christian Walsdorff Method for dehydrogenating C2-C30-alkanes

Also Published As

Publication number Publication date
TW200626536A (en) 2006-08-01
DE102004055826A1 (de) 2006-05-24
MX2007005043A (es) 2007-06-19
BRPI0518311A2 (pt) 2008-11-11
US20080281140A1 (en) 2008-11-13
AU2005305996A1 (en) 2006-05-26
NO20072284L (no) 2007-08-16
CA2586321A1 (en) 2006-05-26
EA200700910A1 (ru) 2007-12-28
JP2008520603A (ja) 2008-06-19
KR20070089164A (ko) 2007-08-30
CN101061084A (zh) 2007-10-24
EA012015B1 (ru) 2009-06-30
EP1814834A1 (de) 2007-08-08

Similar Documents

Publication Publication Date Title
DE60122429T2 (de) Verfahren zur Hydrierung von Kohlenwasserstoffschnitten
DE112005003177B4 (de) Verfahren zur direkten Umwandlung einer Beschickung, die Olefine mit vier und/oder fünf Kohlenstoffatomen umfasst, zur Produktion von Propylen mit einer Koproduktion von Benzin
DE69803082T2 (de) Katalytischer umwandler und verfahren zur durchführung von stark exothermen reaktionen
DE102005048931A1 (de) Verfahren und Anlage zur Herstellung von C2-C4-Olefinen aus Methanol und/oder Dimethylether
DE10217863A1 (de) Verfahren und Vorrichtung zur Olefinherstellung
DE69713048T2 (de) Verfahren zur Herstellung von sehr reinem Isobuten, dass ein Reaktivdistillation Hydroisomerisierung, eine Distillation und eine Kohlenstoffgerüstisomerisierung kombiniert
DE102005015923B4 (de) Verfahren zur Herstellung von C2- bis C4-Olefinen aus einem Oxygenate und Wasserdampf enthaltenden Einsatzstrom
WO2006053733A1 (de) Verfahren und vorrichtung zur vollhydrierung eines kohlenwasserstoffstromes
DE69506203T2 (de) Selektive Hydrierung von einfach und mehrfach ungesättigten Kohlenwasserstoffen enthaltende Fraktionen
DE60209241T2 (de) Optimierung der wärmeabfuhr im gasphasenwirbelschichtverfahren
DE69507037T2 (de) Verfahren zum selektive hydrierung von vrackkohlenwasserstoffen
DE102013101577B4 (de) Verfahren und Anlage zur Herstellung von Olefinen aus Oxygenaten
EP3106450B1 (de) Verfahren und anlage zur rückgewinnung und nutzung höherer olefine bei der olefinsynthese aus oxygenaten
DE69711579T2 (de) Verfahren zur Herstellung von sehr reinem Isobuten, das eine Hydroisomerisierung in Reaktivdistillation und eine Kohlenstoffgerüstisomerisierung kombiniert
DE112017005411T5 (de) Neuartige prozessintegration eines pyrolyseschritts mit methan oder höheren kohlenwasserstoffen, um ethylen und methanol und/oder wasserstoff zu erzeugen
EP1357165A1 (de) Verfahren und Vorrichtung zur Olefinherstellung
DE69906375T2 (de) Verfahren zur herstellung von olefinen
EP2760809B1 (de) Verfahren und anlage zur herstellung von olefinen aus dimethylether
DE1543195A1 (de) Verfahren zur Herstellung von Benzol hoher Reinheit
DE10118248A1 (de) Verfahren zur Herstellung von hochreinem Wasserstoffgas mit einem Membranreaktor und einem Vorbehandlungschritt
WO2010066339A1 (de) Verfahren zum herstellen eines c3h6 und c2h4 enthaltenden produkts
DE1468566C3 (de) Verfahren zur Isolierung von aromatischen Kohlenwasserstoffen aus Gemischen, die Alkene und stärker ungesättigte Verbindungen enthalten
EP1285903B1 (de) Verfahren zur Herstellung von Paraffinen aus zyklische Kohlenwasserstoffe enthaltenden Einsatzstoffen
CN108863704A (zh) 脱除异丁烯中1,3-丁二烯的方法
DE1643120C3 (de) Verfahren zur Herstellung von vinylaromatischen Kohlenwasserstoffen durch katalytische Dehydrierung von alkylaromatischen Kohlenwasserstoffen

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: MX/a/2007/005043

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 2586321

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 2005813743

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11719726

Country of ref document: US

Ref document number: 2007541781

Country of ref document: JP

Ref document number: 200580039560.7

Country of ref document: CN

Ref document number: 2005305996

Country of ref document: AU

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2005305996

Country of ref document: AU

Date of ref document: 20051116

Kind code of ref document: A

WWP Wipo information: published in national office

Ref document number: 2005305996

Country of ref document: AU

WWE Wipo information: entry into national phase

Ref document number: DZP2007000358

Country of ref document: DZ

WWE Wipo information: entry into national phase

Ref document number: 1020077013500

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 200700910

Country of ref document: EA

WWP Wipo information: published in national office

Ref document number: 2005813743

Country of ref document: EP

ENP Entry into the national phase

Ref document number: PI0518311

Country of ref document: BR