WO2006051028A1 - Optischer sensor zur detektion von feuchtigkeit auf einer scheibe eines kraftfahrzeugs - Google Patents

Optischer sensor zur detektion von feuchtigkeit auf einer scheibe eines kraftfahrzeugs Download PDF

Info

Publication number
WO2006051028A1
WO2006051028A1 PCT/EP2005/055174 EP2005055174W WO2006051028A1 WO 2006051028 A1 WO2006051028 A1 WO 2006051028A1 EP 2005055174 W EP2005055174 W EP 2005055174W WO 2006051028 A1 WO2006051028 A1 WO 2006051028A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmitter
receiver
transparent
waveguide
light
Prior art date
Application number
PCT/EP2005/055174
Other languages
English (en)
French (fr)
Inventor
Frank Wolf
Vladislav Matusevich
Manfred Tettweiler
Richard Kowarschik
Karim Haroud
Andreas Pack
Original Assignee
Robert Bosch Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch Gmbh filed Critical Robert Bosch Gmbh
Priority to JP2007540622A priority Critical patent/JP2008524557A/ja
Priority to EP05797247A priority patent/EP1812785A1/de
Priority to US11/667,510 priority patent/US20080212101A1/en
Priority to BRPI0506380-9A priority patent/BRPI0506380A/pt
Publication of WO2006051028A1 publication Critical patent/WO2006051028A1/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60SSERVICING, CLEANING, REPAIRING, SUPPORTING, LIFTING, OR MANOEUVRING OF VEHICLES, NOT OTHERWISE PROVIDED FOR
    • B60S1/00Cleaning of vehicles
    • B60S1/02Cleaning windscreens, windows or optical devices
    • B60S1/04Wipers or the like, e.g. scrapers
    • B60S1/06Wipers or the like, e.g. scrapers characterised by the drive
    • B60S1/08Wipers or the like, e.g. scrapers characterised by the drive electrically driven
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/10009Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets
    • B32B17/10036Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the number, the constitution or treatment of glass sheets comprising two outer glass sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B17/00Layered products essentially comprising sheet glass, or glass, slag, or like fibres
    • B32B17/06Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material
    • B32B17/10Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin
    • B32B17/10005Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing
    • B32B17/1055Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer
    • B32B17/10761Layered products essentially comprising sheet glass, or glass, slag, or like fibres comprising glass as the main or only constituent of a layer, next to another layer of a specific material of synthetic resin laminated safety glass or glazing characterized by the resin layer, i.e. interlayer containing vinyl acetal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60SSERVICING, CLEANING, REPAIRING, SUPPORTING, LIFTING, OR MANOEUVRING OF VEHICLES, NOT OTHERWISE PROVIDED FOR
    • B60S1/00Cleaning of vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60SSERVICING, CLEANING, REPAIRING, SUPPORTING, LIFTING, OR MANOEUVRING OF VEHICLES, NOT OTHERWISE PROVIDED FOR
    • B60S1/00Cleaning of vehicles
    • B60S1/02Cleaning windscreens, windows or optical devices
    • B60S1/04Wipers or the like, e.g. scrapers
    • B60S1/06Wipers or the like, e.g. scrapers characterised by the drive
    • B60S1/08Wipers or the like, e.g. scrapers characterised by the drive electrically driven
    • B60S1/0818Wipers or the like, e.g. scrapers characterised by the drive electrically driven including control systems responsive to external conditions, e.g. by detection of moisture, dirt or the like
    • B60S1/0822Wipers or the like, e.g. scrapers characterised by the drive electrically driven including control systems responsive to external conditions, e.g. by detection of moisture, dirt or the like characterized by the arrangement or type of detection means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60SSERVICING, CLEANING, REPAIRING, SUPPORTING, LIFTING, OR MANOEUVRING OF VEHICLES, NOT OTHERWISE PROVIDED FOR
    • B60S1/00Cleaning of vehicles
    • B60S1/02Cleaning windscreens, windows or optical devices
    • B60S1/04Wipers or the like, e.g. scrapers
    • B60S1/06Wipers or the like, e.g. scrapers characterised by the drive
    • B60S1/08Wipers or the like, e.g. scrapers characterised by the drive electrically driven
    • B60S1/0818Wipers or the like, e.g. scrapers characterised by the drive electrically driven including control systems responsive to external conditions, e.g. by detection of moisture, dirt or the like
    • B60S1/0822Wipers or the like, e.g. scrapers characterised by the drive electrically driven including control systems responsive to external conditions, e.g. by detection of moisture, dirt or the like characterized by the arrangement or type of detection means
    • B60S1/0833Optical rain sensor
    • B60S1/084Optical rain sensor including a hologram
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/55Specular reflectivity
    • G01N21/552Attenuated total reflection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60SSERVICING, CLEANING, REPAIRING, SUPPORTING, LIFTING, OR MANOEUVRING OF VEHICLES, NOT OTHERWISE PROVIDED FOR
    • B60S1/00Cleaning of vehicles
    • B60S1/02Cleaning windscreens, windows or optical devices
    • B60S1/04Wipers or the like, e.g. scrapers
    • B60S1/06Wipers or the like, e.g. scrapers characterised by the drive
    • B60S1/08Wipers or the like, e.g. scrapers characterised by the drive electrically driven
    • B60S1/0818Wipers or the like, e.g. scrapers characterised by the drive electrically driven including control systems responsive to external conditions, e.g. by detection of moisture, dirt or the like
    • B60S1/0822Wipers or the like, e.g. scrapers characterised by the drive electrically driven including control systems responsive to external conditions, e.g. by detection of moisture, dirt or the like characterized by the arrangement or type of detection means
    • B60S1/0874Wipers or the like, e.g. scrapers characterised by the drive electrically driven including control systems responsive to external conditions, e.g. by detection of moisture, dirt or the like characterized by the arrangement or type of detection means characterized by the position of the sensor on the windshield
    • B60S1/0877Wipers or the like, e.g. scrapers characterised by the drive electrically driven including control systems responsive to external conditions, e.g. by detection of moisture, dirt or the like characterized by the arrangement or type of detection means characterized by the position of the sensor on the windshield at least part of the sensor being positioned between layers of the windshield

Definitions

  • Optical sensor for detecting moisture on a window of a motor vehicle
  • the invention relates to an optical sensor for detecting moisture on a window of a motor vehicle, having a radiation-emitting transmitter, a receiver and at least one light-conducting element, wherein the radiation to a in the light path between transmitter and receiver ange ⁇ arranged detection area on the Disk is steerable.
  • optical sensor is known, for example, from DE 102 29 239 A1.
  • Optical sensors of this type are known in many variations and are used in motor vehicles as so-called rain sensors, which can be used in particular for the (automatic) control of windshield wiper systems.
  • the light-conducting elements may be formed, for example, as a coupling element, retroreflector or as a light-guiding element, in particular waveguides.
  • the known sensors typically, but not universally, operate on the principle of total reflection.
  • This detection method which is predominantly used in today's rain sensors, is initially based on the fact that light in a waveguide can propagate by total reflection, as is known, since the reflection medium, ie the cladding or the surrounding waveguide, has a lower refractive index than the waveguide core having.
  • As the sides of the disc thereby reflect that by means of a coupling agent, for example a prism, under ei ⁇ nem sufficiently large angle (> 42 °) in the waveguide a
  • the total light brought is large, since the light beam angle at dry interface is large enough to prevent splitting into a reflective and a transmitting light beam.
  • the boundary of the medium changed from 42 ° to 60 ° for the medium transition changed from 42 ° to 60 °, so that now a large proportion of the - with respect to Function as a rain sensor with an angle between 42 ° and 60 ° coupled light emerges over this drop.
  • the moisture-dependent decreasing photoconductivity of the channel is measured at the decoupling point (again prism or the like) by means of photodiodes or phototransistors.
  • the non-transparent parts of the rain sensor may not disturb the driver's field of vision and on the other hand the detection range of the sensor must be mounted in a region of the windscreen which is cleaned by the windshield wiper system, sensor designs have now been developed in which an additional, on or waveguide formed in the disk for Ü bridging the distance between the detection area and the remaining parts of the rain sensor, or for bridging the non-wiper cleaned areas of the windshield, is used.
  • a rain sensor in which the additional waveguide is formed in an intermediate layer of a laminated glass pane. At a suitable point, the light is coupled out of the waveguide to the outside of the pane, where it is totally reflected and coupled back into the internal waveguide, so that moisture present in the detection area on the outside of the pane is present in the desired manner Weakening of the light beam by partial decoupling leads, which can then be evaluated in a known manner. It is also known to form a guide element and / or the decoupling element as a hologram, whereby these photoconductive elements are transparent to the driver of the motor vehicle and thus do not limit his field of vision. The present invention is based on the object, the generic sensor so educate that - without impairing the field of view of the driver - in particular a greater range of variation of the sensor shape and the Sensorauf- construction is given.
  • the transmitter and / or the receiver are transparent and integrated into the disc.
  • the transparent optical elements can be - without affecting the driver's perspective - implement differently constructed sensor designs in which the external expenses are significantly reduced.
  • the sensors according to the invention can be used for the detection of
  • the transparent optical elements can in particular be integrated into the adhesive intermediate layer of a laminated glass pane.
  • the above-described methods of total reflection and / or scattered radiation detection can be used as detection principles.
  • the transmitter and the receiver are arranged side by side on the disc and a light-conducting element is designed as a collimating optics to direct the radiation from the transmitter, via the detection area, into the receiver.
  • This sensor can be implanted with great variability and little effort with respect to its parts arranged inside and outside the disk.
  • the transmitter and the receiver are designed as a transparent transmitter / receiver system and arranged one above the other in the wiper ⁇ cleaned wiper field of the disc, the transmitter between the receiver and each provided for detection side of the disc is.
  • the light-guiding element is designed as a collimating optic in order to direct the radiation from the transmitter, via the detection area and through the transparent transmitter, into the receiver.
  • either the outside or the inside of the pane can be provided for detection.
  • a further advantageous variant is a Two-sided detection in a simple manner possible in that in addition to the first transparent optical elements (transmitter, receiver, light-conducting elements), which are provided for Detekti ⁇ on a first side of the disc, second transparent optical elements are integrated into the disc, the Detection are provided on a second, opposite side of the disc.
  • the first and second optical elements are mirror-symmetrical with respect to a plane extending parallel to the detection sides of the disk.
  • embodiments with an additional waveguide are also possible within the scope of this proposed solution.
  • the light-conducting element is formed on a part of the light path between the transmitter and receiver as a waveguide integrated into the disc, and that the waveguide has a coupling element to couple the coming of the detection of the disc radiation in the Wel ⁇ lenleiter.
  • a further light-conducting element can be provided in order to direct the radiation directly from the transmitter to the detection area, without a waveguide, the further light-guiding element being designed as a collimating optic.
  • the waveguide has a glass film as the core and a cladding layer made of Teflon, and if the waveguide is arranged in or on the adhesive interlayer of a laminated glass pane.
  • the transparent optical elements can also be integrated directly in or on the PVB interlayer or at another suitable location in the pane.
  • FIGS. 5 to 10 in the same representation, different variants of the sensor according to the invention with additional waveguide,
  • FIG. 11 shows a variant of the embodiments without and FIG. 12 shows a variant of the embodiments with additional waveguide.
  • FIGS. 1 to 12 a detail of a motor vehicle known per se is shown.
  • PVB polyvinyl butyral
  • the light source and the transmitter 1 and the receiver 2 of the sensor are each made transparent and integrated side by side in the PVB layer 5.
  • two light-guiding elements, each designed as a collimating optic 3, which are assigned to the transmitter 1 and the receiver 2 in each case or are arranged in their vicinity, can be seen, such that the radiation 11 from the transmitter 1 through the divider 4 passes through to the Detection region 12 is guided on the outer side 6 of the disc, um ⁇ deflected at the detection area 12 and further, again by the dividing disk 4 through, is directed into the receiver 2.
  • the collimating optics 3 can each consist of one or more optical elements with reflective, refractive or diffractive properties.
  • the collimating optics 3 modifies or deflects the wave front of the radiation 11 in the usual way in such a way that the radiation 11 is optimally detected at the detection area 12. that can.
  • detection methods the weakening of the radiation 11 by disturbing the given at dry interface 6 total reflection, scattered radiation detection or a combined method in question.
  • the radiation 11 can also be directed by the collimating optics 3 and / or other measures here, as in the following exemplary embodiments, in such a way that it interacts with the detection area 12 several times.
  • the transmitter 1 and the receiver 2 can, on the one hand, on the one hand, due to their transparency, be arranged at any point of the pane provided for the detection area 12 without disturbing the field of vision of the driver.
  • the sensor should not be triggered by moisture or contaminants, which are typically present outside the wiping field of the windscreen wipers under appropriate conditions;
  • the detection area 12 or the transmitter 1 and the receiver 2 can and should therefore be arranged in the region of the wiper-cleaned wiping field of the disk.
  • the transmitter 1 and the receiver 2 can typically be arranged at a distance of only a few millimeters.
  • the electrical connection with the evaluation electronics or the power supply takes place with only a few micrometers thick, practically invisible wires, which lead from the transmitter 1 or receiver 2 to the periphery of the pane and optionally further to the wafer-external, further sensor parts.
  • FIG. 3 shows an exemplary embodiment in which the transmitter 1 and the receiver 2 are arranged one above the other as a layer structure, so that the light beam 11 emitted by the transmitter 1 and relayed via a collimating optic 3 is reflected back or scattered back at the interface 6, passes through the transparent transmitter layer 1 and is trapped in the underlying transparent receiver layer 2.
  • FIGS. 1 and 3 each have an embodiment in FIGS. 2 and 4, in which the detection is not limited to a selectable side of the pane, but is simultaneously possible on the outside 6 and the inside 7 of the pane.
  • a compact design which is favorable in terms of manufacture can be achieved in that the first and second optical elements are designed essentially mirror-symmetrically with respect to a plane extending parallel to the detection sides of the disk.
  • FIGS. 5 to 10 show exemplary embodiments in which the radiation 11 is conducted on a substantial part of the light path between the transmitter 1 and the receiver 2 in a waveguide 8 which is arranged in or on the PVB layer 5.
  • Figures 5 to 7 relate to variants in which the transmitter 1 and the receiver 2 are both transparent, while the Figures 8 to 10 refer to Vari ⁇ antennas with a non-transparent receiver 2.
  • the receiver may also be transparent and the transmitter nontransparent.
  • the waveguide 8 makes it possible to position the transparent transmitter / receivers 1 and 2, or only the transparent transmitter 1, either in the region or outside the region of the wiper-cleaned wiping field of the wafer since ultimately only the detection means rich 12 must be positioned in the wiping field.
  • the radiation 11 initially propagates in the first section of the waveguide 8 until it is decoupled to the detection area 12 by means of a decoupling element 9 at a decoupling point selected with regard to the desired detection area 12.
  • the light beam 11 is reflected at the glass-air interface or, when the outside 6 is wetted with moisture, at the glass-water interface or scattered on the water droplets that may be present and is deflected in such a way
  • the second section reaches the waveguide 8, which is formed at the corresponding Ein ⁇ coupling point by means of a coupling element 9 such aus ⁇ that the radiation 11 is forwarded in the second section of the waveguide 8.
  • the coupling elements 9 may be formed, for example, as a holographic grid. As shown in FIG. 6, the coupling elements 9 can also be 'doubled', in particular in the indicated mirror-symmetrical manner, in order to enable double-sided detection on the pane.
  • the transmitter 1 and the receiver 2 can, as can be seen in particular in FIGS. 5 and 6, be integrated directly into the waveguide 8 or into the two waveguide sections. You can, however, cf. the two-sided detection according to FIG. 7 can also be arranged outside the waveguide 8, whereby, as shown, in each case a collimating optical system 3 can be provided.
  • FIGS. 8 to 10 illustrate variants with regard to the arrangement and design of the transmitter 1 or of the receiver 2.
  • a transparent transmitter 1 can be combined according to Figure 8 with a non-transparent receiver 2, the latter being to be arranged on the periphery of the disc. On the one hand, on the one hand, it does not disturb the driver's field of vision, on the other hand, dirty edge areas of the windscreen are penetrated by the right
  • FIG. 9 Another possibility is shown in FIG. 9 and is based on a further coupling element 9 with which the radiation 11 is coupled out to an external receiver 2 in the interior of the motor vehicle.
  • the transmitter may not be transparent and the receiver may be transparent.
  • the waveguide 8 can advantageously have a glass film as the core and a cladding layer of Teflon, and be arranged in or on the adhesive intermediate layer 5 of a laminated glass pane.
  • a glass film as the core and a cladding layer of Teflon
  • Teflon Teflon
  • the direct integration of the layered transparent transmitter 1 and receiver 2 in the PVB layer 5 is fundamentally possible.
  • the indirect integration with the aid of a polymer film 10, which is integrated in or on the adhesive interlayer 5 of a laminated glass pane is technically easier to carry out.
  • the transparent transmitter 1, or the transparent transmitter 1 and the transparent receiver 2 are formed in the polymer film 10.
  • the transparent layer structures 1 and 2 can then be advantageously produced initially in the polymer film 10 and this can later be integrated into the PVB layer 5.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Joining Of Glass To Other Materials (AREA)

Abstract

Bei einem optischen Sensor zur Detektion von Feuchtigkeit auf einer Scheibe eines Kraftfahrzeugs, bei dem die Lichtstrahlung (11) zu einem in der Lichtstrecke zwischen Sender (1) und Empfänger (2) angeordneten Detektionsbereich (12) auf der Scheibe lenkbar ist, wird vorgeschlagen, dass der Sender (1), und/oder der Empfänger (2) transparent ausgebildet und in die Scheibe integriert sind. Dadurch können die transparenten optischen Elemente (1, 2, 3, 8, 9) im Bereich eines wischerge- reinigten Wischfeldes der Scheibe angeordnet sein.

Description

Optischer Sensor zur Detektion von Feuchtigkeit auf einer Scheibe eines Kraftfahrzeugs
Stand der Technik
Die Erfindung betrifft einen optischen Sensor zur Detektion von Feuchtigkeit auf einer Scheibe eines Kraftfahrzeugs, mit einem Strahlung abgebenden Sender, einem Empfänger und min¬ destens einem lichtleitenden Element, wobei die Strahlung zu einem in der Lichtstrecke zwischen Sender und Empfänger ange¬ ordneten Detektionsbereich auf der Scheibe lenkbar ist.
Ein derartiger optischer Sensor ist beispielsweise aus der DE 102 29 239 Al bekannt. Optische Sensoren dieser Art sind in vielen Variationen bekannt und werden in Kraftfahrzeugen als so genannte Regensensoren eingesetzt, die insbesondere zur (automatischen) Steuerung von Scheibenwischer-Anlagen dienen können. Die lichtleitenden Elemente können beispielsweise als Koppelelement, Retroreflektor oder als lichtführendes EIe- ment, insbesondere Wellenleiter, ausgebildet sein.
Die bekannten Sensoren arbeiten typischerweise, aber nicht universell nach dem Prinzip der Totalreflexion. Diese bei heutigen Regensensoren überwiegend eingesetzte Detektions- methode beruht zunächst darauf, dass sich Licht in einem Wel¬ lenleiter bekanntlich deshalb durch Totalreflexion ausbreiten kann, da das Reflektionsmedium, also der Mantel bzw. die Um¬ gebung des Wellenleiters, einen niedrigeren Brechungsindex als der Wellenleiterkern aufweist. Die Begrenzungsflächen, z. B. die Seiten der Scheibe, reflektieren dabei das mit Hilfe eines Koppelmittels, beispielsweise eines Prismas, unter ei¬ nem ausreichend großen Winkel (>42°) in den Wellenleiter ein- gebrachte Licht zunächst total, da der Lichtstrahlwinkel bei trockener Grenzfläche groß genug ist, um eine Aufspaltung in ein reflektierendes und ein transmittierendes Lichtbündel zu verhindern. Benetzt nun ein Regentropfen den Lichtkanal, so gilt für den (dadurch von Glas/Luft zu Glas/Wasser) geänder¬ ten Medienübergang ein von 42° auf 60° vergrößerter Grenzwin¬ kel, so dass nun ein großer Anteil des — mit Hinblick auf die Funktion als Regensensor mit einem Winkel zwischen 42° und 60° eingekoppelten — Lichts über diesen Tropfen austritt. Die feuchtigkeitsabhängig nachlassende Lichtleitfähigkeit des Ka¬ nals wird an der Auskoppelstelle (wieder Prisma oder Ähnli¬ ches) mit Hilfe von Fotodioden oder Fototransistoren gemes¬ sen.
Anstatt wie beim Detektionsprinzip Totalreflexion die Abnahme eines definierten Grundsignals als Nutzsignal auszuwerten, ist es auch möglich, die bei Einstrahlung von Licht an den Tropfen gestreute bzw. reflektierte Strahlung als Nutzsignal zur Detektion von Feuchtigkeit auf einer Scheibe zu verwen- den. Möglich sind auch Kombinationen von Totalreflexion mit
Streustrahldetektion. Beispielsweise ist aus der DE 43 29 188 Al ein Sensor bekannt, bei dem sich das Licht in der Scheibe totalreflektierend ausbreitet. Bei Benetzung tritt ein Teil des Lichts aus der Scheibe aus, wird jedoch an den Tropfen zurückgestreut und tritt zur Scheibeninnenseite hin aus, wo es durch einen Empfänger verwertet werden kann.
Viele der bekannten Regensensoren setzen direkt die Kfz- Frontscheibe, bzw. einen sich oft nur über wenige Zentimeter erstreckenden Detektionsbereich der Frontscheibe, deren Be¬ netzung mit Regentropfen oder sonstigen Feuchtigkeitstropfen detektiert werden soll, als Wellenleiter ein. Das von einem Sender ausgestrahlte Licht wird mittels geeigneter Koppelmit¬ tel, beispielsweise Prismen oder holographische Koppelfolien, von der Innenseite der Frontscheibe her in die Scheibe ein- und wieder ausgekoppelt. Da einerseits die nicht durchsichti¬ gen Teile des Regensensors (Sender/Empfänger, Gehäuse, Aus- Werteelektronik) nicht das Blickfeld des Fahrers stören dür¬ fen und andererseits der Detektionsbereich des Sensors in ei¬ nem Bereich der Frontscheibe angebracht sein muss, der durch die Scheibenwischanlage gereinigt wird, sind inzwischen auch Sensorausführungen entwickelt worden, bei denen ein zusätzli¬ cher, auf oder in der Scheibe gebildeter Wellenleiter zur Ü- berbrückung der Distanz zwischen dem Detektionsbereich und den übrigen Teilen des Regensensors, bzw. zur Überbrückung der nicht wischergereinigten Bereiche der Frontscheibe, dient.
Aus der oben genannten gattungsgemäßen DE 102 29 239 Al ist ein Regensensor bekannt, bei dem der zusätzliche Wellenleiter in einer Zwischenschicht einer Verbundglasscheibe ausgebildet ist. An einer geeigneten Stelle wird das Licht aus dem Wel¬ lenleiter zur Außenseite der Scheibe hin ausgekoppelt, dort totalreflektiert und wieder in den innenliegenden Wellenlei¬ ter eingekoppelt, so dass im Detektionsbereich auf der Außen¬ seite der Scheibe vorhandene Feuchtigkeit in gewünschter Wei- se zur Schwächung des Lichtstrahls durch Teilauskopplung führt, die dann in bekannter Weise ausgewertet werden kann. Dabei ist es auch bekannt, ein Führungselement und/oder das Auskoppelelement als Hologramm auszubilden, wodurch diese lichtleitenden Elemente für den Fahrer des Kraftfahrzeugs transparent sind und somit sein Sichtfeld nicht einschränken. Der vorliegenden Erfindung liegt die Aufgabe zugrunde, den gattungsgemäßen Sensor so weiterzubilden, dass — ohne Beein¬ trächtigung des Blickfeldes des Fahrers — insbesondere eine größere Variationsbreite der Sensorform bzw. des Sensorauf- baus gegeben ist.
Diese Aufgabe wird erfindungsgemäß mit den Merkmalen des An¬ spruchs 1 gelöst.
Bei dem Lösungsvorschlag gemäß Anspruch 1 sind der Sender und/oder der Empfänger transparent ausgebildet und in die Scheibe integriert. Durch die erfindungsgemässe Kombination und Anordnung der transparenten optischen Elemente lassen sich — ohne Beeinträchtigung der Sicht des Fahrers — unter¬ schiedlich aufgebaute Sensorausführungen implementieren, bei denen der scheibenexterne Aufwand deutlich reduziert ist. Die erfindungsgemäßen Sensoren lassen sich zur Detektion von
Feuchtigkeit auf der Außenseite und/oder der Innenseite der Scheibe, also als Regen- und/oder Kondensatsensor einsetzen und sie sind — bei hoher optischer Präzision — kostengünstig herstellbar. Die transparenten optischen Elemente können ins- besondere in die klebende Zwischenschicht einer Verbundglas¬ scheibe integriert werden. Als Detektionsprinzipien sind grundsätzlich die oben beschriebenen Methoden der Totalrefle¬ xion und/oder der Streustrahlungsdetektion einsetzbar.
Bei einer besonders bevorzugten Variante dieser Lösung sind der Sender und der Empfänger nebeneinander auf der Scheibe angeordnet und ein lichtleitende Element ist als kollimieren- de Optik ausgebildet, um die Strahlung vom Sender, via Detek- tionsbereich, in den Empfänger zu lenken. Dieser Sensor kann bezüglich seiner innerhalb und außerhalb der Scheibe angeord¬ neten Teile mit großer Variabilität und geringem Aufwand imp¬ lementiert werden.
Bei einer anderen, besonders platzsparenden Variante sind der Sender und der Empfänger als transparentes Sender/Empfänger- System ausgebildet und übereinander im Bereich eines wischer¬ gereinigten Wischfeldes der Scheibe angeordnet, wobei der Sender zwischen dem Empfänger und der jeweils zur Detektion vorgesehenen Seite der Scheibe angeordnet ist. Gleichzeitig ist das lichtleitende Element als kollimierende Optik ausge¬ bildet, um die Strahlung vom Sender, via Detektionsbereich und durch den transparenten Sender hindurch, in den Empfänger zu lenken.
Bei den genannten Varianten kann wahlweise die Außenseite o- der die Innenseite der Scheibe zur Detektion vorgesehen wer¬ den. Gemäß einer weiteren vorteilhaften Variante ist eine beidseitige Detektion auf einfache Weise dadurch möglich, dass zusätzlich zu ersten transparenten optischen Elementen (Sender, Empfänger, lichtleitende Elemente) , die zur Detekti¬ on auf einer ersten Seite der Scheibe vorgesehen sind, zweite transparente optische Elemente in die Scheibe integriert sind, die zur Detektion auf einer zweiten, gegenüberliegenden Seite der Scheibe vorgesehen sind. Dabei sind die ersten und zweiten optischen Elemente spiegelsymmetrisch bezüglich einer parallel zu den Detektionsseiten der Scheibe verlaufenden Ebene ausgebildet.
Alternativ zu den bisher genannten Variationen sind im Rahmen dieses Lösungsvorschlags auch Ausführungen mit einem zusätz¬ lichen Wellenleiter möglich. Dies eröffnet zunächst die Mög- lichkeit, dass der Sender und der Empfänger wahlweise im Be¬ reich oder außerhalb des Bereichs eines wischergereinigten Wischfeldes der Scheibe angeordnet sind. Gleichzeitig wird vorgeschlagen, dass das lichtleitende Element auf einem Teil der Lichtstrecke zwischen Sender und Empfänger als in die Scheibe integrierter Wellenleiter ausgebildet ist, und dass der Wellenleiter ein Einkoppelelement aufweist, um die vom Detektionsbereich der Scheibe kommende Strahlung in den Wel¬ lenleiter einzukoppeln.
In einer Weiterbildung dieser Variante wird vorgeschlagen, dass jeweils mindestens ein Teil der Lichtstrecke zwischen dem Sender und einer Auskoppelstelle, an der die Strahlung zum Detektionsbereich hin ausgekoppelt wird, und zwischen ei¬ ner Einkoppelstelle für die vom Detektionsbereich kommende Strahlung und dem Empfänger als Wellenleiter ausgebildet ist, wobei der Wellenleiter an der Auskoppelstelle ein Auskoppel¬ element und an der Einkoppelstelle das Einkoppelelement auf¬ weist. Mit Bezug auf den 'vor' und 'hinter' dem Detektionsbe¬ reich liegenden Wellenleiterbereich kann gegebenenfalls auch von einem 'zweiteiligen' Wellenleiter bzw. von 'zwei' Wellen¬ leitern gesprochen werden. Dabei ist es auch vorteilhaft, entweder den Sender und den Empfänger in den Wellenleiter zu integrieren, oder die Strahlung jeweils mittels eines weite¬ ren lichtleitenden Elements in den Wellenleiter ein- bzw. auskoppeln, wobei die weiteren lichtleitenden Elemente je¬ weils als kollimierende Optik ausgebildet sind.
Im Übrigen ist es nicht unbedingt erforderlich, 'vor' dem De- tektionsbereich einen Wellenleiterbereich vorzusehen. Statt¬ dessen kann ein weiteres lichtleitendes Element vorgesehen sein, um die Strahlung direkt, ohne Wellenleiter, vom Sender zum Detektionsbereich zu lenken, wobei das weitere lichtlei¬ tende Element als kollimierende Optik ausgebildet ist.
Bei allen Ausführungen mit zusätzlichem Wellenleiter ist es vorteilhaft, wenn der Wellenleiter einen Glasfilm als Kern und eine Mantelschicht aus Teflon aufweist, und wenn der Wel¬ lenleiter in oder auf der klebenden Zwischenschicht einer Verbundglasscheibe angeordnet ist.
Von besonderem Vorteil bei allen Varianten der Erfindung ist es, eine Polymerfolie vorzusehen, die in oder auf der kleben¬ den Zwischenschicht einer Verbundglasscheibe integriert ist, und den transparenten Sender, oder den transparenten Sender und den transparenten Empfänger, in der Polymerfolie auszu¬ bilden. Grundsätzlich können die transparenten optischen EIe- mente jedoch auch direkt in oder auf der PVB-Zwischenschicht oder an anderer geeigneter Stelle in der Scheibe integriert sein.
Ausführungsbeispiele der Erfindung sind nachstehend anhand der Zeichnung näher erläutert. Es zeigen:
Figur 1 bis 4 einen Schnitt durch die Frontscheibe eines Kraftfahrzeugs mit einer schematischen Teilansicht des erfin¬ dungsgemäßen Sensors in verschiedenen Varianten ohne zusätz- liehen Wellenleiter, Figur 5 bis 10, in gleicher Darstellung, verschiedene Varian¬ ten des erfindungsgemäßen Sensors mit zusätzlichem Wellenlei¬ ter,
Figur 11 eine Variante der Ausführungsformen ohne und Figur 12 eine Variante der Ausführungsformen mit zusätzlichem Wel¬ lenleiter.
In den Ausführungsbeispielen gemäß den Figuren 1 bis 12 ist jeweils ein Ausschnitt einer an sich bekannter Kfz-
Frontscheibe aus Verbundglas mit den Teilscheiben 4 und der üblicherweise aus Polyvinylbutyral (PVB) bestehenden kleben¬ den Zwischenschicht 5 dargestellt.
In Figur 1 sind die Lichtquelle bzw. der Sender 1 und der Empfänger 2 des Sensors jeweils transparent ausgeführt und nebeneinander in der PVB-Schicht 5 integriert. Erkennbar sind außerdem zwei jeweils als kollimierende Optik 3 ausgebildete lichtführende Elemente, die dem Sender 1 und dem Empfänger 2 jeweils in der Weise zugeordnet bzw. die derart in ihrer Nähe angeordnet sind, dass die Strahlung 11 vom Sender 1 durch die Teilscheibe 4 hindurch bis zum Detektionsbereich 12 auf der Außenseite 6 der Scheibe gelenkt, am Detektionsbereich 12 um¬ gelenkt und weiter, nochmals durch die Teilscheibe 4 hin- durch, in den Empfänger 2 gelenkt wird. Die kollimierende Op¬ tik 3 kann jeweils aus einem oder mehreren optischen Elemen¬ ten mit reflektiven, refraktiven oder diffraktiven Eigen¬ schaften bestehen. Diese Elemente 3 können, bei Anordnung di¬ rekt in der PVB-Schicht 5, mit bekannten holografischen Me- thoden oder, bei Anordnung auf einer Polymerfolie 10, wie weiter unten im Zusammenhang mit Figur 11 beschrieben, durch mechanische Strukturierung oder mittels Laser, erzeugt wer¬ den. Dies gilt auch bei den folgenden Ausführungsbeispielen.
Die kollimierende Optik 3 modifiziert bzw. lenkt die Wellen¬ front der Strahlung 11 in üblicher Weise derart um, dass die Strahlung 11 am Detektionsbereich 12 optimal detektiert wer- den kann. Als Detektionsmethoden kommen die Schwächung der Strahlung 11 durch Störung der bei trockener Grenzfläche 6 gegebenen Totalreflexion, Streustrahlungsdetektion oder eine kombinierte Methode in Frage. Die Strahlung 11 kann durch die kollimierende Optik 3 und/oder andere Maßnahmen hier wie in den folgenden Ausführungsbeispielen auch so gelenkt werden, dass sie mehrmals mit dem Detektionsbereich 12 wechselwirkt.
Der Sender 1 und der Empfänger 2 können, einerseits, auf Grund ihrer Transparenz ohne Störung des Blickfeldes des Fah¬ rers an einer beliebigen, für den Detektionsbereich 12 vorge¬ sehenen Stelle der Scheibe angeordnet werden. Andererseits soll der Sensor nicht durch Feuchtigkeit oder Verunreinigun¬ gen, die — bei entsprechenden Verhältnissen — außerhalb des Wischfeldes der Scheibenwischer typischerweise vorhanden sind, ausgelöst werden; der Detektionsbereich 12 bzw. der Sender 1 und der Empfänger 2 können und sollen deshalb im Be¬ reich des wischergereinigten Wischfeldes der Scheibe angeord¬ net sein.
Der Sender 1 und der Empfänger 2 können typischerweise mit einem Abstand von nur wenigen Millimeter angeordnet werden. Die elektrische Verbindung mit der Auswerteelektronik bzw. der Stromversorgung erfolgt mit nur wenigen Mikrometer di- cken, praktisch unsichtbaren Drähten, die vom Sender 1 bzw. Empfänger 2 zur Peripherie der Scheibe und gegebenenfalls weiter zu den scheibenexternen, weiteren Sensorteilen führen.
Figur 3 zeigt ein Ausführungsbeispiel, bei dem der Sender 1 und der Empfänger 2 als Schichtstruktur übereinander angeord¬ net sind, so dass der vom Sender 1 emittierte und über eine kollimierende Optik 3 weitergelenkte Lichtstrahl 11 an der Grenzfläche 6 zurück reflektiert oder zurück gestreut wird, durch die transparente Senderschicht 1 hindurchtritt und in der darunter liegenden transparenten Empfängerschicht 2 auf¬ gefangen wird. Dadurch resultiert ein sehr kompakter Sensor¬ aufbau in der Scheibe. Den Figuren 1 und 3 ist in den Figuren 2 bzw. 4 je eine Aus¬ führungsform zugeordnet, in der die Detektion nicht auf eine wählbare Seite der Scheibe beschränkt, sondern gleichzeitig auf der Außenseite 6 und der Innenseite 7 der Scheibe möglich ist. Ein kompakter und herstellungstechnisch günstiger Aufbau lässt sich wie dargestellt dadurch erreichen, dass die ersten und zweiten optischen Elemente im Wesentlichen spiegelsymmet¬ risch bezüglich einer parallel zu den Detektionsseiten der Scheibe verlaufenden Ebene ausgebildet sind.
Die Figuren 5 bis 10 zeigen Ausführungsbeispiele, bei denen die Strahlung 11 auf einem wesentlichen Teil der Lichtstrecke zwischen Sender 1 und Empfänger 2 in einem Wellenleiter 8 ge- leitet wird, der in oder auf der PVB-Schicht 5 angeordnet ist. Dabei beziehen sich die Figuren 5 bis 7 auf Varianten, bei denen der Sender 1 und der Empfänger 2 beide transparent ausgebildet sind, während sich die Figuren 8 bis 10 auf Vari¬ anten mit einem nicht transparenten Empfänger 2 beziehen. Al- ternativ kann auch der Empfänger transparent und der Sender nichttransparent sein. Der Wellenleiter 8 ermöglicht es da¬ bei, die transparenten Sender/Empfänger 1 und 2, bzw. nur den transparenten Sender 1, jeweils wahlweise im Bereich oder au¬ ßerhalb des Bereichs des wischergereinigten Wischfeldes der Scheibe zu positionieren, da letztlich nur der Detektionsbe- reich 12 im Wischfeld positioniert werden muss.
Wie Figur 5 zeigt, breitet sich die Strahlung 11 zunächst im ersten Teilstück des Wellenleiters 8 aus, bis sie an einer im Hinblick auf den gewünschten Detektionsbereich 12 ausgewähl¬ ten Auskoppelstelle mittels eines Auskoppelelementes 9 zum Detektionsbereich 12 hin ausgekoppelt wird. An der Außenseite 6 der Scheibe wird der Lichtstrahl 11 an der Grenzfläche Glas-Luft oder, bei Benetzung der Außenseite 6 mit Feuchtig- keit, an der Grenzfläche Glas-Wasser reflektiert oder an den eventuell vorhandenen Wassertropfen gestreut und so umge¬ lenkt, dass der Lichtstrahl 11 danach das zweite Teilstück des Wellenleiters 8 erreicht, der an der entsprechenden Ein¬ koppelstelle mittels eines Einkoppelelements 9 derartig aus¬ gebildet ist, dass die Strahlung 11 im zweiten Teilstück des Wellenleiters 8 weitergeleitet wird. Die Koppelelemente 9 können beispielsweise als holografische Gitter ausgebildet sein. Wie in Figur 6 dargestellt, können die Koppelelemente 9 auch, insbesondere in der angedeuteten spiegelsymmetrischen Weise, 'verdoppelt' werden, um eine beidseitige Detektion auf der Scheibe zu ermöglichen.
Der Sender 1 und der Empfänger 2 können, wie insbesondere in Figur 5 und 6 ersichtlich, direkt in den Wellenleiter 8 bzw. in die beiden Wellenleiter-Teilstücke integriert sein. Sie können jedoch, vgl. die beidseitige Detektion gemäß Figur 7, auch außerhalb des Wellenleiters 8 angeordnet sein, wobei, wie dargestellt, jeweils eine kollimierende Optik 3 vorgese¬ hen werden kann.
Figuren 8 bis 10 verdeutlichen Varianten hinsichtlich der An- Ordnung und Ausbildung des Senders 1 bzw. des Empfängers 2.
Ein transparenter Sender 1 kann gemäß Figur 8 mit einem nicht transparenten Empfänger 2 kombiniert werden, wobei letzterer an der Peripherie der Scheibe anzuordnen ist. Dort stört er einerseits nicht das Sichtfeld des Fahrers, andererseits wer- den verschmutzte Randbereiche der Scheibe durch den rechten
Bereich des Wellenleiters 8 überbrückt. Eine weitere Möglich¬ keit ist in Figur 9 dargestellt und beruht auf einem weiteren Koppelelement 9, mit dem die Strahlung 11 zu einem externen Empfänger 2 im Innenraum des Kraftfahrzeugs hin ausgekoppelt wird. Alternativ kann auch der Sender nicht transparent und der Empfänger transparent sein.
Wie in Figur 10 dargestellt, besteht - im Übrigen auch bei Varianten mit transparentem Sender 1 und Empfänger 2 - die Möglichkeit, dass ein weiteres lichtleitendes Element vorge¬ sehen ist, um die Strahlung 11 in der Scheibe direkt, ohne Wellenleiter (teilstück) , vom Sender 1 zum Detektionsbereich 12 zu lenken, wobei das weitere lichtleitende Element als kollimierende Optik 3 ausgebildet ist.
Bei den Varianten gemäß Figuren 5 bis 10 kann der Wellenlei- ter 8 vorteilhaft einen Glasfilm als Kern und eine Mantel¬ schicht aus Teflon aufweist, und in oder auf der klebenden Zwischenschicht 5 einer Verbundglasscheibe angeordnet sein. Im Übrigen besteht auch bei den Varianten gemäß Figuren 8 bis 10 die Möglichkeit der Erweiterung auf beidseitige Detektion.
Die direkte Integration der schichtförmigen transparenten Sender 1 und Empfänger 2 in die PVB-Schicht 5 ist grundsätz¬ lich möglich. Technisch leichter durchführbar ist jedoch die mittelbare Integration mit Hilfe einer Polymerfolie 10, die in oder auf der klebenden Zwischenschicht 5 einer Verbund¬ glasscheibe integriert ist. Dabei sind der transparente Sen¬ der 1, oder der transparente Sender 1 und der transparente Empfänger 2, in der Polymerfolie 10 ausgebildet. Die transpa¬ renten Schichtstrukturen 1 und 2 können dann vorteilhaft zu- nächst in der Polymerfolie 10 erzeugt und diese kann später in die PVB-Schicht 5 integriert werden.

Claims

Patentansprüche
1. Optischer Sensor zur Detektion von Feuchtigkeit auf einer Scheibe eines Kraftfahrzeugs, mit einem Sender (1), der eine Lichtstrahlung auf einen Empfänger (2) abgibt, wobei die Lichtstrahlung auf der Lichtstrecke zwischen Sender und Empfänger auf einen zwischen Sender und Empfänger an¬ geordneten Detektionsbereich auf der Scheibe lenkbar ist, dadurch gekennzeichnet , dass der Sender (1) und /oder der Empfänger (2) transpa¬ rent ausgebildet und in die Scheibe integriert sind.
2. Optischer Sensor nach Anspruch 1, dadurch gekennzeichnet,
- dass der Sender (1) und der Empfänger (2) nebeneinander angeordnet sind, und
- dass ein lichtleitende Element als transparente kolli- mierende Optik (3) ausgebildet ist, um die Lichtstrah¬ lung (11) vom Sender (1) via Detektionsbereich (12) auf den Empfänger (2) zu lenken.
3. Optischer Sensor nach Anspruch 1, dadurch gekennzeichnet,
- dass der Sender (1) und der Empfänger (2) übereinander angeordnet sind, wobei der Sender (1) sich zwischen dem Empfänger (2) und dem Detektionsbereich (12) der Schei- be befindet, und
- dass ein lichtleitende Element als transparente kolli- mierende Optik (3) ausgebildet ist, um die Lichtstrah¬ lung (11) vom Sender (1) via Detektionsbereich (12) und durch den transparenten Sender (1) hindurch auf den Empfänger (2) zu lenken.
4. Optischer Sender nach Anspruch 2 oder 3, dadurch gekenn¬ zeichnet, - dass zusätzlich zu ersten transparenten optischen Ele¬ menten (1, 2, 3, 8, 9), die zur Detektion auf einer ersten Seite der Scheibe vorgesehen sind, zweite trans¬ parente optische Elemente (1, 2, 3, 8, 9) in die Schei- be integriert sind, die zur Detektion auf einer zwei¬ ten, gegenüberliegenden Seite der Scheibe vorgesehen sind,
- und dass die ersten und zweiten transparenten optischen Elemente (1, 2, 3, 8, 9) spiegelsymmetrisch bezüglich einer parallel zu den Detektionsseiten (6, 7) der Scheibe verlaufenden Ebene ausgebildet sind.
5. Optischer Sensor nach Anspruch 1, dadurch gekennzeichnet,
- dass auf einem Teil der Lichtstrecke zwischen Sender (1) und Empfänger (2) ein in die Scheibe integrierter
Wellenleiter (8) als transparentes lichtleitendes Ele¬ ment ausgebildet ist,
- und dass der Wellenleiter (8) ein Einkoppelelement (9) aufweist, um die vom Detektionsbereich (12) der Scheibe kommende Lichtstrahlung (11) in den Wellenleiter (8) einzukoppeln.
6. Optischer Sensor nach Anspruch 5, dadurch gekennzeichnet,
- dass jeweils mindestens ein Teil der Lichtstrecke zwi- sehen dem Sender (1) und einer Auskoppelstelle, an der die Lichtstrahlung (11) zum Detektionsbereich (12) hin ausgekoppelt wird, und zwischen einer Einkoppelstelle für die vom Detektionsbereich (12) kommende Lichtstrah¬ lung (11) und dem Empfänger (2) als Wellenleiter (8) ausgebildet ist, wobei der Wellenleiter (8) an der Aus¬ koppelstelle ein Auskoppelelement (9) und an der Ein¬ koppelstelle das Einkoppelelement (9) aufweist, - und dass der Sender (1) und der Empfänger (2) in den Wellenleiter (8) integriert sind oder die Lichtstrah¬ lung (11) jeweils mittels eines weiteren lichtleitenden Elements in den Wellenleiter (8) ein- bzw. auskoppeln, wobei die weiteren lichtleitenden Elemente jeweils als transparente kollimierende Optik (3) ausgebildet sind.
7. Optischer Sensor nach Anspruch 5, dadurch gekennzeichnet, dass ein weiteres lichtleitendes Element vorgesehen ist, um die Lichtstrahlung (11) direkt vom Sender (1) zum De- tektionsbereich (12) zu lenken, wobei das weitere licht¬ leitende Element als transparente kollimierende Optik (3) ausgebildet ist.
8. Optischer Sensor nach einem der Ansprüche 5 bis 7, dadurch gekennzeichnet, dass der Wellenleiter (8) einen Glasfilm als Kern und eine Mantelschicht aus Teflon aufweist, und dass der Wellenleiter (8) in oder auf der klebenden Zwi¬ schenschicht (5) einer Verbundglasscheibe angeordnet ist.
9. Optischer Sensor nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet,
- dass eine Polymerfolie (10) vorgesehen ist, die in oder auf der klebenden Zwischenschicht (5) einer Verbund- glasscheibe integriert ist,
- und dass der transparente Sender (1) und / oder der transparente Empfänger (2), in der Polymerfolie (10) ausgebildet sind.
PCT/EP2005/055174 2004-11-11 2005-10-12 Optischer sensor zur detektion von feuchtigkeit auf einer scheibe eines kraftfahrzeugs WO2006051028A1 (de)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2007540622A JP2008524557A (ja) 2004-11-11 2005-10-12 自動車の窓ガラスの湿り気を検出するための光学式センサ
EP05797247A EP1812785A1 (de) 2004-11-11 2005-10-12 Optischer sensor zur detektion von feuchtigkeit auf einer scheibe eines kraftfahrzeugs
US11/667,510 US20080212101A1 (en) 2004-11-11 2005-10-12 Optical Sensor for Detecting Moisture on a Windshield of a Motor Vehicle
BRPI0506380-9A BRPI0506380A (pt) 2004-11-11 2005-10-12 sensor óptico para a detecção de umidade em um pára-brisa de um veìculo automotor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004054465.4 2004-11-11
DE102004054465A DE102004054465A1 (de) 2004-11-11 2004-11-11 Optischer Sensor zur Detektion von Feuchtigkeit auf einer Scheibe eines Kraftfahrzeugs

Publications (1)

Publication Number Publication Date
WO2006051028A1 true WO2006051028A1 (de) 2006-05-18

Family

ID=35457231

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2005/055174 WO2006051028A1 (de) 2004-11-11 2005-10-12 Optischer sensor zur detektion von feuchtigkeit auf einer scheibe eines kraftfahrzeugs

Country Status (8)

Country Link
US (1) US20080212101A1 (de)
EP (1) EP1812785A1 (de)
JP (1) JP2008524557A (de)
KR (1) KR20070084148A (de)
CN (1) CN101057133A (de)
BR (1) BRPI0506380A (de)
DE (1) DE102004054465A1 (de)
WO (1) WO2006051028A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9790376B2 (en) 2013-12-25 2017-10-17 Rohm And Haas Company Antimicrobial polymer emulsion with improved color stability
WO2022229584A1 (fr) * 2021-04-30 2022-11-03 Saint-Gobain Glass France Ensemble vitré comprenant un détecteur de buée

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4513681B2 (ja) * 2005-07-25 2010-07-28 株式会社デンソー 雨滴・結露検出装置
US8468642B2 (en) * 2008-03-13 2013-06-25 Mettler-Toledo Autochem, Inc. Window scraper for an optical instrument
DE102009017385A1 (de) * 2009-04-14 2010-10-21 GM Global Technology Operations, Inc., Detroit Verbundscheibenanordnung
US9561806B2 (en) * 2015-02-25 2017-02-07 Electro-Motive Diesel, Inc. Visibility control system and method for locomotive
ES2889583T3 (es) 2017-05-24 2022-01-12 Saint Gobain Lámina de vidrio compuesto y procedimiento para su producción
GB201714591D0 (en) * 2017-09-11 2017-10-25 Pilkington Group Ltd Mist sensor and glazing incorporating a mist sensor
JP2022501231A (ja) 2018-09-25 2022-01-06 サン−ゴバン グラス フランス 積層ガラスペイン及びその製造方法
JP7365422B2 (ja) * 2019-02-20 2023-10-19 サン-ゴバン グラス フランス 統合された光センサを有している複合ペイン
KR102663942B1 (ko) * 2019-02-21 2024-05-08 쌩-고벵 글래스 프랑스 통합된 광센서 및 홀로그램 광학 요소가 있는 복합 판유리
CN110346115B (zh) * 2019-06-13 2020-11-17 中国建材检验认证集团股份有限公司 汽车风挡玻璃试验区绘画装置及绘画方法
EP4021719A1 (de) 2019-08-26 2022-07-06 Saint-Gobain Glass France Verbundglasscheibe mit einem elektronischen funktionsmodul

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3235590A1 (de) * 1982-09-25 1984-03-29 Fraunhofer Ges Forschung Vorrichtung zum optischen erfassen von fremdkoerpern
DE3528009A1 (de) * 1985-08-05 1987-02-05 Richter Hans Juergen Dr Selbsttaetig arbeitende vorrichtung zur kontrolle der durchsichtigkeit von scheiben
FR2619618A1 (fr) * 1987-07-31 1989-02-24 Veglia Borletti Srl Detecteur de la presence de gouttelettes d'eau sur la vitre d'un vehicule et appareil de commande d'essuie-glace incorporant un tel detecteur
WO2000015478A1 (de) * 1998-09-15 2000-03-23 Robert Bosch Gmbh Optischer sensor
EP0999104A2 (de) * 1998-11-02 2000-05-10 Central Glass Company, Limited Regensensor und Belichtungsystem für Hologram
WO2000069692A1 (fr) * 1999-05-18 2000-11-23 Valeo Climatisation Dispositif de detection d'un parametre associe a l'etat d'un vehicule, notamment automobile
WO2003012408A1 (en) * 2001-07-30 2003-02-13 Nippon Sheet Glass Co., Ltd. Optical condensation sensor and controller employing the same
WO2004002789A1 (de) * 2002-06-28 2004-01-08 Robert Bosch Gmbh Regensensor, insbesondere für ein kraftfahrzeug

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4652745A (en) * 1985-12-06 1987-03-24 Ford Motor Company Optical moisture sensor for a window or windshield
DE4142146C2 (de) * 1991-12-20 1994-05-19 Kostal Leopold Gmbh & Co Kg Sensoreinrichtung
DE4329608C1 (de) * 1993-09-02 1995-01-19 Kostal Leopold Gmbh & Co Kg Optoelektronische Sensoreinrichtung
US5661303A (en) * 1996-05-24 1997-08-26 Libbey-Owens-Ford Co. Compact moisture sensor with collimator lenses and prismatic coupler
JPH1137927A (ja) * 1997-07-22 1999-02-12 Nippon Sheet Glass Co Ltd レインセンサを備えた透明基板
JP2001180447A (ja) * 1999-12-28 2001-07-03 Nippon Sheet Glass Co Ltd 検出装置およびそれを用いたワイパー制御装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3235590A1 (de) * 1982-09-25 1984-03-29 Fraunhofer Ges Forschung Vorrichtung zum optischen erfassen von fremdkoerpern
DE3528009A1 (de) * 1985-08-05 1987-02-05 Richter Hans Juergen Dr Selbsttaetig arbeitende vorrichtung zur kontrolle der durchsichtigkeit von scheiben
FR2619618A1 (fr) * 1987-07-31 1989-02-24 Veglia Borletti Srl Detecteur de la presence de gouttelettes d'eau sur la vitre d'un vehicule et appareil de commande d'essuie-glace incorporant un tel detecteur
WO2000015478A1 (de) * 1998-09-15 2000-03-23 Robert Bosch Gmbh Optischer sensor
EP0999104A2 (de) * 1998-11-02 2000-05-10 Central Glass Company, Limited Regensensor und Belichtungsystem für Hologram
WO2000069692A1 (fr) * 1999-05-18 2000-11-23 Valeo Climatisation Dispositif de detection d'un parametre associe a l'etat d'un vehicule, notamment automobile
WO2003012408A1 (en) * 2001-07-30 2003-02-13 Nippon Sheet Glass Co., Ltd. Optical condensation sensor and controller employing the same
WO2004002789A1 (de) * 2002-06-28 2004-01-08 Robert Bosch Gmbh Regensensor, insbesondere für ein kraftfahrzeug
DE10229239A1 (de) 2002-06-28 2004-01-15 Robert Bosch Gmbh Regensensor, insbesondere für ein Kraftfahrzeug

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9790376B2 (en) 2013-12-25 2017-10-17 Rohm And Haas Company Antimicrobial polymer emulsion with improved color stability
WO2022229584A1 (fr) * 2021-04-30 2022-11-03 Saint-Gobain Glass France Ensemble vitré comprenant un détecteur de buée
FR3122495A1 (fr) * 2021-04-30 2022-11-04 Saint-Gobain Glass France Ensemble vitré comprenant un détecteur de buée

Also Published As

Publication number Publication date
DE102004054465A1 (de) 2006-05-24
KR20070084148A (ko) 2007-08-24
BRPI0506380A (pt) 2006-12-26
EP1812785A1 (de) 2007-08-01
US20080212101A1 (en) 2008-09-04
CN101057133A (zh) 2007-10-17
JP2008524557A (ja) 2008-07-10

Similar Documents

Publication Publication Date Title
WO2006051028A1 (de) Optischer sensor zur detektion von feuchtigkeit auf einer scheibe eines kraftfahrzeugs
EP2000373B1 (de) Optische Sensorvorrichtung zur Erfassung einer Benetzung und Verfahren zur Herstellung dieser Sensorvorrichtung
EP1784324B1 (de) Optoelektronische sensoreinrichtung für ein kraftfahrzeug
EP1812784A1 (de) Optischer sensor zur detektion von feuchtigkeit auf einer scheibe eines kraftfahrzeugs
EP0869043A1 (de) Sensoreinrichtung zur Erfassung des Benetzungs- und/oder Verschmutzungsgrades von Scheiben
WO2010118794A1 (de) Verbundscheibe mit integriertem regensensor
WO2009015988A1 (de) Vorrichtung zur bestimmung der reflexionseigenschaften einer grenzfläche
EP1685011B1 (de) Regensensor für glasscheiben, insbesondere für frontscheiben von kraftfahrzeugen
EP1519861B1 (de) Regensensor, insbesondere für ein kraftfahrzeug
EP0736426A1 (de) Autoglasscheibe für einen Regensensor
EP2259953B1 (de) Vorrichtung zur bestimmung der reflexionseigenschaften einer grenzfläche mit verbesserter fremdlichtunterdrückung
DE19821335A1 (de) Optoelektronische Sensoreinrichtung
EP1698532B1 (de) Optischer Sensor mit optimierter Sensitivität
EP2185917B1 (de) Optische regensensorvorrichtung für ein kraftfahrzeug
WO2004060730A1 (de) Regensensor insbesondere für ein kraftfahrzeug
DE102013211738A1 (de) Vorrichtung zur Feuchtigkeitserkennung
EP1705086B1 (de) Optoelektronische Sensoreinrichtung für ein Kraftfahrzeug
DE102013211735A1 (de) Vorrichtung zur Feuchtigkeitserkennung
WO2005082690A1 (de) Optoelektronische sensoreinrichtung
DE102009027147A1 (de) Fahrzeug-Verbundglasscheibe für einen Regensensor
DE102008044120A1 (de) Regensensor und Scheibe für einen Regensensor
DE102009002955A1 (de) Sensoreinheit für einen Regensensor sowie Regensensor
WO2004060729A1 (de) Regensensor, insbesondere für ein kraftfahrzeug
DE102013211739A1 (de) Vorrichtung zur Feuchtigkeitserkennung

Legal Events

Date Code Title Description
REEP Request for entry into the european phase

Ref document number: 2005797247

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2005797247

Country of ref document: EP

AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
ENP Entry into the national phase

Ref document number: PI0506380

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 200580038522.X

Country of ref document: CN

Ref document number: 2007540622

Country of ref document: JP

Ref document number: 2007/CHENP/2007

Country of ref document: IN

WWP Wipo information: published in national office

Ref document number: 2005797247

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 11667510

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 1020077010620

Country of ref document: KR