WO2006048003A1 - Procede et dispositif pour realiser la cuisson acceleree de pieces moulees ceramiques poreuses - Google Patents

Procede et dispositif pour realiser la cuisson acceleree de pieces moulees ceramiques poreuses Download PDF

Info

Publication number
WO2006048003A1
WO2006048003A1 PCT/DE2005/001971 DE2005001971W WO2006048003A1 WO 2006048003 A1 WO2006048003 A1 WO 2006048003A1 DE 2005001971 W DE2005001971 W DE 2005001971W WO 2006048003 A1 WO2006048003 A1 WO 2006048003A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow
temperature
heat transfer
hot gas
flow path
Prior art date
Application number
PCT/DE2005/001971
Other languages
German (de)
English (en)
Inventor
Bernd Geismar
Original Assignee
Ctb Ceramic Technology Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ctb Ceramic Technology Gmbh filed Critical Ctb Ceramic Technology Gmbh
Publication of WO2006048003A1 publication Critical patent/WO2006048003A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B17/00Furnaces of a kind not covered by any preceding group
    • F27B17/0016Chamber type furnaces
    • F27B17/0041Chamber type furnaces specially adapted for burning bricks or pottery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27BFURNACES, KILNS, OVENS, OR RETORTS IN GENERAL; OPEN SINTERING OR LIKE APPARATUS
    • F27B17/00Furnaces of a kind not covered by any preceding group
    • F27B17/0016Chamber type furnaces
    • F27B17/0041Chamber type furnaces specially adapted for burning bricks or pottery
    • F27B17/0075Heating devices therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D19/00Arrangements of controlling devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D21/00Arrangements of monitoring devices; Arrangements of safety devices
    • F27D21/0014Devices for monitoring temperature
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6583Oxygen containing atmosphere, e.g. with changing oxygen pressures
    • C04B2235/6584Oxygen containing atmosphere, e.g. with changing oxygen pressures at an oxygen percentage below that of air
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6586Processes characterised by the flow of gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D19/00Arrangements of controlling devices
    • F27D2019/0006Monitoring the characteristics (composition, quantities, temperature, pressure) of at least one of the gases of the kiln atmosphere and using it as a controlling value
    • F27D2019/0012Monitoring the composition of the atmosphere or of one of their components

Definitions

  • the invention relates to a method for accelerated burning of porous ceramic moldings having a small diameter open-pore passageway structure, in a gas, oil or electrically heated kiln, wherein the moldings are exposed to a hot gas flow of predetermined temperature and atmosphere within the combustion chamber, wherein the heating and Firing temperature is adjusted by controlling the heating power.
  • the invention further relates to a device for accelerated burning of porous ceramic moldings having a small diameter open-pore passageway structure, with a perpendicular to a belonging to a ceramic furnace arranged combustion chamber, at least one firmly anchored in the combustion chamber ring support for vertical Auflagerung at least one ceramic molding, one with the
  • Combustion chamber in fluid communication channel to
  • Burning shaft a gas or oil burner or electric
  • Heating register for generating the hot gases and a channel connected to the combustion chamber for discharging the hot gases.
  • the ceramic moldings are on shelves that are carried by a mobile base in the oven. Two thermocouples are introduced into the molded body, by means of which the temperature is determined. The moldings are completely surrounded by plates, on which the flames of the burners are directed for heating the moldings. In order for the hot gases reach the moldings, holes in the plates and vent passages are introduced into the shelves. With a vent fan at the outer end of the vent passage is achieved that the firing atmosphere flows through the interior of the moldings.
  • the latter are slowly heated to 600 0 C. Due to the insulating properties of porous Molded parts can cause thermal stress in the event of too rapid heating, which leads to crack formation in the molded parts. For very large moldings, therefore, the heating rate, for example 1 to 25 0 C, must be kept very small in order to avoid cracking.
  • the desired ceramic moldings are then heated to a firing temperature of 1300 to 1600 0 C.
  • the firing temperature is then maintained for several hours to equalize the temperature in the molding and to form the ceramic properties.
  • This is followed by the cooling of the molding to below 150 0 C by introducing cold air at a cooling rate of up to 300 ° C / h.
  • the entire process is thus extremely time and energy intensive and of relatively low productivity.
  • This known method of combustion is characterized in that the heat transfer to the molded part takes place substantially from outside to inside, so that the heat transfer to the outer heat transfer surface of the molded part remains limited and only low heating rates are possible.
  • the present invention seeks to significantly improve the firing of porous ceramic moldings by increasing the heating rates while avoiding cracking and significantly shorten the burning time by harnessing the internal heat transfer surface of the moldings.
  • the solution according to the invention is characterized in that the hot gases are forced to pass through the inner Strör ⁇ ungswege of the molding, whereby a heat transfer from the interior to the outside of the molding takes place and it succeeds, the inner heat transfer surface, which is many times greater compared to the outer heat transfer surface is to use.
  • the incoming hot gas stream is divided by the passage structure present in the molded body, in particular honeycomb channels, into a multiplicity of partial streams and directed into the channels.
  • the partial flows are distributed evenly over the passage cross section. There is a convective heat transfer from the hot gas to the material of the molding uniformly distributed over the cross section.
  • the positive guidance of the hot gas flow is released.
  • the molding is flowed through by the hot gas both inside and outside flows around. There is a heat transfer from outside to inside and from inside to outside.
  • the outer and inner heat transfer surface is used.
  • the targeted controlled combination of convective heat transfer with the thermal radiation achieves a significant acceleration of the firing process with simultaneous elimination of the tendency of the molded bodies to crack.
  • FIG. 2 is a schematic diagram of the device according to the invention with mainly convective heat transfer
  • FIG. 3 is a schematic diagram of the device according to the invention in heat transfer in the radiation area
  • FIG. 5 shows a flow chart for the sequence of the method according to the invention.
  • Fig. 1 shows a combustion arrangement according to the prior art, in which the kiln 1, for example catalyst support, are placed on shelves 2.
  • the shelves 2 are supported by a mobile base 3.
  • the average temperature rise rate is 50 ° C / h, so that the firing temperature of, for example, 1400 0 C is reached in 28 hours.
  • the temperature is passed through burner 4 on the desired temperature increased.
  • the burners are laid in the opposite side walls 5 of the kiln 6.
  • the side walls of the shelves 2 are planked with flame breaker plates 7 made of refractory material and the top and bottom of the shelf with shelves 8 occupied. So that the combustion atmosphere can reach the interior of the shelf, there are holes 9 in the shelves 8 at the catalyst supports 1 facing sections.
  • the hot gases enter the interior of the catalyst support 1 and at the same time flush around the outer surface of the catalyst support 1.
  • a vent passage 10 which is formed in the base 3 and in the bottom of the furnace 6, and arranged at the end of the vent passage bleed fan 11, the furnace atmosphere is conveyed through the moldings. After reaching the firing temperature of 1400 0 C, this is maintained for 2 hours and then cooled at a rate of 150 ° C / h. For the entire firing process thus a total time of approximately 40 hours.
  • Fig. 2 and Fig.3 show the basic structure of the device according to the invention with a chimney draft-like combustion chamber 12 of a combustion chamber shown only hinted 6.
  • the vertically ascending arranged combustion chamber 12 is downstream with a horizontally extending channel 13 for supplying the hot hot gases into the combustion chamber 12 and upstream connected to a horizontally extending channel 14 for discharging the hot gases.
  • an annular support 16 of metal or other suitable temperature-resistant material is fixedly mounted, the Support plane is arranged perpendicular to the flow direction of the hot gases in the combustion chamber 12 and allows a free passage of the hot gases.
  • the cross-section of the combustion chamber 12 is dimensioned so that the hot gases can flow through the combustion chamber 12 at a flow rate of about 5 to 20 m / s.
  • a refractory honeycomb disc 17 of about 25 mm thickness the outer diameter of the inner diameter of the support 16 is sized slightly larger.
  • honeycomb discs 17 and 18 correspond to the material and the shape of the burning material 1 to be fired, for example alumina.
  • the kiln 1 to be fired is then vertically stacked onto the green honeycomb disk 18 with its end faces, so that a molding column of up to 5 kiln parts is produced whose internal flow paths 19 (honeycomb channels) lie in the flow direction of the incoming volumetric flow of the hot gases (see FIG. 4) ).
  • a plurality of molded part columns may be arranged one above the other like a pile.
  • This arrangement ensures on the one hand the dimensional stability of the stacked burning material and on the other hand, the uniform passage of the hot gases through the inner flow paths 19 of the combustible material 1, without generating turbulence.
  • Each support 16 are two shut-off 20, for example, valve gate, associated with the closed state Flow cross section of the rawsteinzugierin combustion chamber 12 exclusively on the free passage cross section DF of the inner flow paths 19 in the end face of the combustible limit.
  • the slides sit upstream upstream of the respective support 16 and are in a cassette 21, which penetrate the wall 15 of the combustion chamber 12.
  • the front plate ends of the slide surround the cylindrical outer jacket of the directly on the green honeycomb disc 18 standing Brenngut 1, so that only the frontally free passage cross-section DF is available for the passage of the hot gas stream.
  • the plates of the slide are made of a suitable refractory material and are actuated via a push linkage 22 each by separate drives 23, which in turn are connected to a control unit 24 and are controlled jointly by the latter. Between link 22 and drive 23 is in each case a displacement sensor 25 which detects the displacement of the plates.
  • the gas burner 4 is supplied via control valves 26, a corresponding amount of natural gas, liquid gas o. The like. For generating a corresponding amount of hot gas.
  • an oxygen-poor hot gas stream with ⁇ 8% oxygen is produced, which enters the combustion chamber 12 via the channel 13 at an inflow velocity of approximately 5 to 20 m / s, where the combustible material 1 flows uniformly through and around the combustion chamber 12 through the channel 14 leaves.
  • Hot gas determined by respective sensors 28 and 29 The sensor 27, the encoder 25 and the sensors 28 and 29, respectively, pass the signals to the control unit 24, which processes the signals after their digitization and the control valves
  • Fig. 5 illustrates the principle of the method according to the invention, with the porous moldings with axially extending to the cylinder axis passage structure in honeycomb form, hereinafter called honeycomb body or kiln, are to be accelerated.
  • ⁇ Q ⁇ abs ⁇ A ü ⁇ ⁇ t ⁇ (T gas -T mat ),
  • a 0 outer transfer surface (shell surface of the firing material), Ai inner transfer surface (honeycomb surface of the honeycomb channels), t heating time T gas mean temperature of the gas T mat mean temperature of the material of the firing material.
  • the amount of heat transferred mainly depends on the geometry of the honeycomb body and above all on the utilization of the available heat transfer surfaces.
  • the honeycomb body in this example has an outer diameter of 100 mm, a height of 200 mm and has 950 honeycomb channels.
  • the outer heat transfer surface of such a body is about 785 cm 2 and its inner heat transfer surface about 50 times the outer surface. Does this increase?
  • the heated hot gas stream V g flows through the channel 13 into the combustion chamber 12. All valves 19 arranged one above the other are closed, ie only the passage cross-section DF of the porous combustion material 1 is available for flowing through with hot gas.
  • the hot gas stream is when hitting the front side of the combustible material 1 through the honeycomb channels of the honeycomb discs in a variety of Single streams A 1111 A n separated, which enter the formed by the honeycomb channels inner flow paths 19 of the combustible material 1.
  • the hot gas flow is equalized and the individual streams flow depending on the honeycomb size at about 0.5 to 10 m / s through the flow channels 18, where they release the heat in the surrounding material.
  • the control unit 24 triggers a command to the drives 23, which move the plates of the slide 19 in its open position.
  • An outer flow path S for the oncoming hot gas flow V 9 along the circumference of the lateral surface of the combustion material 1 is released, so that the combustible material can be flowed around by an additionally divided gas flow B.
  • the flow along the inner honeycomb channels in the kiln 1 is continued.
  • the temperature of the hot gas stream is increased at a rate of 250 to 750 ° C / h until the firing temperature necessary for the formation of the ceramic is reached.
  • heat transfer by radiation from the hot gas to the honeycomb body 1 occurs both from outside to inside and from inside to outside.
  • a programmable logic controller PLC is present, in which the entire program of the combustion regime is stored and ultimately controls the process.
  • PLC programmable logic controller

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Tunnel Furnaces (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Abstract

La présente invention concerne un procédé et un dispositif pour réaliser la cuisson accélérée de pièces moulées céramiques poreuses comprenant une structure de transition à pores ouverts de petit diamètre. L'invention a pour objet d'améliorer de façon prépondérante le processus de cuisson de pièces moulées céramiques poreuses, par augmentation des vitesses de chauffage en évitant la formation de fissures, et de limiter significativement le temps de cuisson en exploitant la surface interne de transfert de chaleur des pièces moulées. A cet effet: dans la pièce moulée s'effectue tout d'abord un transfert de chaleur de l'intérieur vers l'extérieur de la pièce moulée, à une température (T1) caractéristique de la transition thermique convective, par séparation du flux de gaz chaud total (V<SUB>g</SUB>) en une pluralité de flux partiels (A<SUB>1</SUB> A<SUB>n</SUB>), introduction de ces flux partiels (A<SUB>1</SUB> A<SUB>n</SUB>) dans des voies de circulation internes (19) de la pièce moulée, et parcours uniforme de ces voies de circulation avec des rapports de circulation approximativement contants, en évitant les turbulence dans la voie de circulation, le transfert de chaleur de l'intérieur vers l'extérieur se poursuivant jusqu'à ce que la température (T2) atteinte en raison du rayonnement thermique des gaz chaud, dépasse la température (T1) atteinte en raison de la transition thermique convective; puis de chaleur supplémentaire est introduite sous la forme d'un rayonnement thermique de l'extérieur vers l'intérieur et de l'intérieur vers l'extérieur de la pièce moulée, avec conservation des rapports de circulation, en exposant simultanément la pièce moulée aux flux partiels (A<SUB>1</SUB> A<SUB>n-1</SUB>) le long des voies de circulation internes (19), et à un autre flux partiel (B) qui se sépare du flux de gaz chaud, le long d'une voie de circulation externe (S) à la température (T2) caractéristique du rayonnement thermique.
PCT/DE2005/001971 2004-11-03 2005-11-02 Procede et dispositif pour realiser la cuisson acceleree de pieces moulees ceramiques poreuses WO2006048003A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE200410053624 DE102004053624B4 (de) 2004-11-03 2004-11-03 Verfahren und Vorrichtung zum beschleunigten Brennen von porösen Keramikformteilen
DE102004053624.4 2004-11-03

Publications (1)

Publication Number Publication Date
WO2006048003A1 true WO2006048003A1 (fr) 2006-05-11

Family

ID=35788695

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2005/001971 WO2006048003A1 (fr) 2004-11-03 2005-11-02 Procede et dispositif pour realiser la cuisson acceleree de pieces moulees ceramiques poreuses

Country Status (2)

Country Link
DE (1) DE102004053624B4 (fr)
WO (1) WO2006048003A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1832827A1 (fr) * 2006-03-08 2007-09-12 Ibiden Co., Ltd. Dispositif de refroidissement, four de calcination, méthode de refroidissement et procédé de fabrication d'une structure céramique à nid d'abeille
US8163062B2 (en) 2009-07-21 2012-04-24 Linde Aktiengesellschaft Method for operating a hearth furnace

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4826439B2 (ja) * 2006-11-15 2011-11-30 株式会社デンソー セラミックハニカム成形体の焼成方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0362400A1 (fr) * 1988-02-25 1990-04-11 Ngk Insulators, Ltd. Methode de cuisson d'une structure ceramique a nid d'abeilles
US4927577A (en) * 1987-02-27 1990-05-22 Ngk Insulators, Ltd. Process for firing ceramic honeycomb structural bodies
US5256347A (en) * 1988-02-25 1993-10-26 Ngk Insulators, Ltd. Method of firing ceramic honeycomb structure

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3342142A1 (de) * 1983-11-22 1985-05-30 Dennert, Frank, 8609 Bischberg Vorrichtung zum waermebehandeln von poroesen keramischen formkoerpern sowie verfahren zum betrieb dieser vorrichtung
JPH0647499B2 (ja) * 1990-03-28 1994-06-22 日本碍子株式会社 セラミックス製品の焼成方法
DE19723692C2 (de) * 1996-06-05 2000-11-23 Eisenmann Kg Maschbau Verfahren zum Brennen von Ziegeln in einem Rollen-Brennofen sowie Brennofen zur Verfahrensdurchführung

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4927577A (en) * 1987-02-27 1990-05-22 Ngk Insulators, Ltd. Process for firing ceramic honeycomb structural bodies
EP0362400A1 (fr) * 1988-02-25 1990-04-11 Ngk Insulators, Ltd. Methode de cuisson d'une structure ceramique a nid d'abeilles
US5256347A (en) * 1988-02-25 1993-10-26 Ngk Insulators, Ltd. Method of firing ceramic honeycomb structure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1832827A1 (fr) * 2006-03-08 2007-09-12 Ibiden Co., Ltd. Dispositif de refroidissement, four de calcination, méthode de refroidissement et procédé de fabrication d'une structure céramique à nid d'abeille
US8163062B2 (en) 2009-07-21 2012-04-24 Linde Aktiengesellschaft Method for operating a hearth furnace

Also Published As

Publication number Publication date
DE102004053624B4 (de) 2008-03-06
DE102004053624A1 (de) 2006-05-04

Similar Documents

Publication Publication Date Title
EP2240553A2 (fr) Canaux à air régulables pour l&#39;amenée d&#39;air de combustion supplémentaire dans la zone des canaux à gaz de fumées de fours à chambre de cokéfaction
EP2452651A1 (fr) four dentaire avec récipient suscepteur
WO2006048003A1 (fr) Procede et dispositif pour realiser la cuisson acceleree de pieces moulees ceramiques poreuses
DE3107270C2 (fr)
CN112179130A (zh) 一种高温均匀性的钟罩炉
DE102007047583B4 (de) Wärmespeichersystem
DE102009042311A1 (de) Verfahren zum Betrieb eines Tunnelofens und Tunnelofen zum Brennen von Ziegeln
EP1165722A1 (fr) Procede de reparation a chaud des carneaux de chauffage d&#39;une batterie de fours a coke
DE2029840C3 (de) Herdwagenofen mit Rauchgasumwälzung
DE102006017354B4 (de) Verfahren und Vorrichtung zur Herstellung eines Glasrohr - oder Glasstabprofils
EP2501659B1 (fr) Four à chambre destiné à la fabrication de plaques de mousse de verre ou de corps moulés en mousse de verre
DE102008012663A1 (de) Verfahren zur Herstellung von Backwaren und Steingutbackofen zur Durchführung des Verfahrens
CH695870A5 (de) Optimierung der Pechdampfverbrennung in einem Brennofen für Kohlenstoffelektroden.
DE10332071A1 (de) Verfahren zum kombinierten Entbindern und Sintern von Formteilen
DE4324077B4 (de) Verfahren zur Simulation des Verbrennungsablaufes von Brenngut im &#34;Overfeed&#34;-Prinzip auf dem Feuerungsrost einer Verbrennungsanlage und Verbrennungsofen für das Verfahren
DE3510754C2 (fr)
DE892738C (de) Regenerativkoksofen und Verfahren zu seinem Betriebe
DE960847C (de) Verfahren und Vorrichtung zur rekuperativen Erhitzung von unter UEberdruck stehenden Gasen
DE347675C (de) Doppelkanalofen zum Brennen keramischer Waren u. dgl.
AT78184B (de) Kanalmuffelofen zum Brennen keramischer Gegenstände und zum Glühen von Metallen, chemischen und anderen Stoffen.
DE102009049678B3 (de) Durchlaufofen für eine Hochtemperaturerwärmung vereinzelter metallischer Elemente oder eines metallischen Strangs
DE1508478C (de) Tunnelofen zum Nachbrennen von kera mischem Behandlungsgut
DE102004038247B3 (de) Vorrichtung und Verfahren zur Erwärmung von Strangpresswerkzeugen vor dem Einbau in eine Strangpresse
DE30230C (de) Neuerung in der Einrichtung zum Schmauchen bei kontinuirlichen Brennöfen
AT399759B (de) Heizung mit wärmespeicher

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KN KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
122 Ep: pct application non-entry in european phase

Ref document number: 05815594

Country of ref document: EP

Kind code of ref document: A1