WO2006046610A1 - 磁気メモリ - Google Patents

磁気メモリ Download PDF

Info

Publication number
WO2006046610A1
WO2006046610A1 PCT/JP2005/019706 JP2005019706W WO2006046610A1 WO 2006046610 A1 WO2006046610 A1 WO 2006046610A1 JP 2005019706 W JP2005019706 W JP 2005019706W WO 2006046610 A1 WO2006046610 A1 WO 2006046610A1
Authority
WO
WIPO (PCT)
Prior art keywords
wiring
magnetic
layer
write
magnetic field
Prior art date
Application number
PCT/JP2005/019706
Other languages
English (en)
French (fr)
Inventor
Takashi Asatani
Original Assignee
Tdk Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tdk Corporation filed Critical Tdk Corporation
Publication of WO2006046610A1 publication Critical patent/WO2006046610A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/14Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using thin-film elements
    • G11C11/15Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using thin-film elements using multiple magnetic layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B61/00Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices
    • H10B61/20Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices comprising components having three or more electrodes, e.g. transistors
    • H10B61/22Magnetic memory devices, e.g. magnetoresistive RAM [MRAM] devices comprising components having three or more electrodes, e.g. transistors of the field-effect transistor [FET] type

Definitions

  • the present invention relates to a magnetic memory that stores data in a magnetoresistive effect element.
  • MRAM Magnetic Random Access Memory
  • DRAM Dynamic Random Access Memory
  • SRAM Static RAM
  • An example of such an MRAM is a magnetic memory described in Patent Document 1, for example.
  • this magnetic memory is connected to a tunnel magnetoresistive (TMR) element, a wiring (cell bit line) for passing a write current to the TMR element, and a cell bit line.
  • TMR tunnel magnetoresistive
  • the TMR element includes a first magnetic layer (magnetic layer) whose magnetic field direction is changed by an external magnetic field, a second magnetic layer whose magnetic field direction is fixed, a first magnetic layer, and a first magnetic layer.
  • a nonmagnetic insulating layer sandwiched between two magnetic layers, and the magnetic direction of the first magnetic layer is controlled to be parallel or antiparallel to the magnetic direction of the second magnetic layer. It is an element that stores binary data.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2004-153182
  • Patent Document 1 has the following problems. In other words, if wiring is formed on both sides and side surfaces of the TMR element as in Patent Document 1, the manufacturing process becomes complicated. Therefore, there is a risk of increasing manufacturing costs and inferior yield.
  • the present invention has been made in view of the above problems, and can reduce the write current.
  • An object of the present invention is to provide a magnetic memory with a simple manufacturing process.
  • a magnetic memory includes a plurality of storage areas, and each of the plurality of storage areas includes one or more magnetosensitive layers whose magnetization directions are changed by an external magnetic field.
  • a plurality of magnetoresistive elements and a write wiring that provides an external magnetic field to the magnetosensitive layer by a write current, and the plurality of write wirings are arranged so that the write wiring passes a plurality of times on one surface of the magnetosensitive layer
  • Wiring portions are arranged for each magnetoresistive element, and the plurality of wiring portions are arranged on one surface of the magnetosensitive layer so that the write currents are in the same direction. It is characterized by.
  • the write wiring has a plurality of wiring portions arranged on one surface of the magnetosensitive layer so that the write currents are directed in the same direction, so that the write wiring flows. Since the write current passes through the magnetosensitive layer a plurality of times in the same direction, an external magnetic field can be provided to the magnetosensitive layer multiple times. Therefore, when it is necessary to provide a predetermined external magnetic field to the magnetosensitive layer, the necessary external magnetic field can be generated with a smaller write current.
  • a plurality of wiring portions of the write wiring are arranged along one surface instead of both surfaces of the magnetosensitive layer, so that the manufacturing process can be simplified.
  • the magnetic memory is provided so that each of the plurality of storage areas includes at least a pair of open end portions facing each other through a gap having a predetermined length and surrounds a plurality of wiring portions of the write wiring.
  • the magnetoresistive effect element may be arranged such that the pair of side surfaces of the magnetoresistive effect element are opposed to or in contact with the pair of open ends of the magnetic yoke, respectively.
  • the magnetic memory has a plurality of storage areas. This further includes a magnetic yoke provided so as to continuously surround a plurality of wiring portions of the write wiring, and the magnetosensitive layer of the magnetoresistive effect element is constituted by a part of the magnetic yoke. It is good.
  • the external magnetic field from the plurality of wiring portions of the write wiring can be efficiently applied to the magnetosensitive layer, so that the write current can be further reduced. Even when one wiring part of the plurality of wiring parts of the write wiring is relatively separated from the magnetoresistive effect element, the external magnetic field from the wiring part is felt in the same way as the external magnetic field from other wiring parts. It can be efficiently applied to the magnetic layer.
  • the magnetic memory has a plurality of magnetoresistive elements arranged in parallel in a direction intersecting the thickness direction of the magnetosensitive layer, and the write wiring includes a plurality of magnetic areas.
  • the magnetoresistive element may be arranged spirally on one surface side of the magnetosensitive layer of the resistance effect element. Thereby, the write wiring can be efficiently arranged along each magnetoresistive element.
  • the write current can be reduced and the manufacturing process can be simplified.
  • FIG. 1 is a conceptual diagram showing the overall configuration of a magnetic memory.
  • FIG. 2 is a plan view showing a configuration in the vicinity of a TMR element included in each storage area.
  • FIG. 3 is a side cross-sectional view taken along the line I I shown in FIG.
  • FIG. 4 is a side sectional view taken along line II-II shown in FIG.
  • FIG. 5 is a diagram showing a cross-sectional configuration when the storage area is cut along the row direction.
  • FIG. 6 is a diagram showing a cross section when the storage area is cut along line III-III in FIG.
  • FIG. 7 is a view showing a cross section when the storage area is cut along line IV-IV in FIG.
  • FIG. 8 is a diagram for explaining the operation of the TMR element and its surroundings.
  • (A) shows an element at the time of writing, and (b) shows an element at the time of reading.
  • FIG. 9 is a diagram for explaining the operation of the TMR element and its surroundings.
  • (A) shows the element at the time of writing, and (b) shows the element at the time of reading.
  • FIG. 10 is a diagram showing the manufacturing process of the magnetic material layer, (a) shows a part of the manufacturing process of the magnetic memory 1 according to the present embodiment, and (b) shows the V shown in (a). —Shows a side cross-section along line V.
  • FIG. 11 is a diagram showing the manufacturing process of the magnetic material layer, (a) is a plan view showing the formed TMR elements 4a and 4b, and (b) is a VI-VI line shown in (a).
  • FIG. 11 is a diagram showing the manufacturing process of the magnetic material layer, (a) is a plan view showing the formed TMR elements 4a and 4b, and (b) is a VI-VI line shown in (a).
  • FIG. 12 is a diagram showing a production process of a magnetic material layer.
  • FIG. 13 is a diagram showing the manufacturing process of the magnetic material layer, (a) is a plan view showing the formed opposing yoke 5b, and (b) is along the line VII-VII shown in (a).
  • FIG. 14 is a diagram showing the manufacturing process of the magnetic material layer, (a) is a plan view showing the formed readout wirings 33a and 33b, and (b) is (a FIG. 6 is a side cross-sectional view taken along line VIII-VIII shown in FIG.
  • FIG. 15 is a diagram showing the manufacturing process of the magnetic material layer, (a) is a plan view showing the formed insulating layer 24b and lower layer wiring 3 lb, and (b) is an IX shown in (a). — A side sectional view along line IX.
  • FIG. 16 is a diagram showing the manufacturing process of the magnetic material layer, (a) is a plan view showing the formed insulating layer 24c and upper layer wiring 31a, and (b) is an X— It is side surface sectional drawing along a X-ray.
  • FIG. 17 is a diagram showing a process of manufacturing a magnetic material layer.
  • FIG. 18 is a diagram showing a process of manufacturing a magnetic material layer.
  • FIG. 19 is a diagram showing the manufacturing process of the magnetic material layer
  • (a) is a plan view showing the formed beam yoke 5d
  • (b) is along the line XI-XI shown in (a).
  • FIG. 20 is a diagram showing a manufacturing process of the magnetic material layer.
  • FIG. 21 is a plan view showing a peripheral configuration of a TMR element in a first modification.
  • FIG. 22 is a side cross-sectional view along the line XII-XII shown in FIG.
  • FIG. 23 is a view showing the shape of a magnetic yoke according to a second modification.
  • FIG. 24 is a view showing the shape of a magnetic yoke according to a third modification.
  • FIG. 1 is a conceptual diagram showing the overall configuration of the magnetic memory 1 according to the present embodiment.
  • the magnetic memory 1 includes a storage unit 2, a bit selection circuit 11, a word selection circuit 12, bit wirings 13a to 13c, a word wiring 14, and a ground wiring 15.
  • the storage unit 2 includes a plurality of storage areas 3.
  • the plurality of storage areas 3 are arranged in a two-dimensional form having m rows and n columns (m and n are integers of 2 or more).
  • Each of the plurality of storage areas 3 includes two TMR elements 4a and 4b, one write wiring 31, a write transistor 32, read wirings 33a and 33b, and a read transistor 34.
  • the TMR elements 4a and 4b are magnetoresistive elements including a magnetosensitive layer whose magnetization direction is changed by an external magnetic field. Specifically, the TMR elements 4a and 4b are sandwiched between a first magnetic layer which is a magnetosensitive layer, a second magnetic layer whose magnetic field direction is fixed, and the first magnetic layer and the second magnetic layer. And a nonmagnetic insulating layer.
  • the TMR elements 4a and 4b are arranged along the write wiring 31 so that the magnetization direction of the first magnetic layer is changed by receiving an external magnetic field generated by a write current flowing through the write wiring 31.
  • the magnetic field direction of the first magnetic layer changes due to the write current
  • the magnetic field direction of the first magnetic layer and the magnetic field direction of the second magnetic layer The resistance value between the first magnetic layer and the second magnetic layer changes according to the relationship.
  • the write wiring 31 is a wiring for providing an external magnetic field to the first magnetic layer of each of the TMR elements 4a and 4b by a write current.
  • the write wiring 31 has wiring portions 31c and 31d along one surface of the TMR element 4a, and wiring portions 3le and 3 If along one surface of the TMR element 4b.
  • the write wiring 31 is arranged spirally (coiled) on the TMR elements 4a and 4b, and the wiring portions 31c to 31f are connected to the wiring portions 31c, 31e, 31d in the extending direction of the write wiring 31. , And 31f.
  • One end of the write wiring 31 is electrically connected to the bit wiring 13a.
  • the other end of the write wiring 31 is electrically connected to the source or drain of the write transistor 32.
  • the write transistor 32 is a write switch means for controlling conduction of a write current in the write wiring 31.
  • one of a drain and a source is electrically connected to the write wiring 31, and the other is electrically connected to the bit wiring 13b.
  • the gate of the write transistor 32 is electrically connected to the word line 14.
  • the read wirings 33a and 33b are wirings for supplying a read current to the TMR elements 4a and 4b, respectively. Specifically, one end of the read wiring 33a is electrically connected to the bit wiring 13c, and the other end of the read wiring 33a is electrically connected to the first magnetic layer side of the TMR element 4a. Further, one end of the read wiring 33b is electrically connected to the bit wiring 13a, and the other end of the read wiring 33b is electrically connected to the first magnetic layer side of the TMR element 4b.
  • the read transistor 34 is a read switch means for controlling the conduction of the read current in the read wirings 33a and 33b.
  • One of the source and the drain of the read transistor 34 is electrically connected to the second magnetic layer side of the TMR elements 4a and 4b, and the other of the source and the drain is electrically connected to the ground wiring 15. Further, the gate of the read transistor 34 is electrically connected to the word line 14.
  • the first magnetic layer side (second magnetic layer side) of the TMR elements 4a and 4b means the side of the first magnetic layer or the side of the second magnetic layer with respect to the nonmagnetic insulating layer. , Another on the first magnetic layer (second magnetic layer) The case where a layer intervenes is included.
  • the bit wirings 13 a to 13 c are arranged corresponding to the respective columns of the storage area 3.
  • the bit wiring 13a is electrically connected to one end of the write wiring 31 included in each storage region 3 of the corresponding column.
  • the bit wiring 13a of this embodiment is also electrically connected to one end of the read wiring 33b included in each storage area 3 of the corresponding column.
  • the bit wiring 13b is electrically connected to the drain or source of the write transistor 32 included in each storage region 3 in the corresponding column.
  • the bit wiring 13c is electrically connected to one end of the read wiring 33a included in each storage area 3 of the corresponding column.
  • the node wiring 14 is arranged corresponding to each row of the storage area 3, and is electrically connected to the gate that is the control terminal of the write transistor 32 and the read transistor 34 included in the storage area 3 of the corresponding row. It is connected to the.
  • the bit selection circuit 11 has a function of providing a positive or negative write current to the write wiring 31 of each storage area 3 and a function of providing a read current to the read wirings 33a and 33b of each storage area 3.
  • the bit selection circuit 11 includes an address decoder circuit that selects a column corresponding to the address in accordance with an address designated at the time of data writing or data reading inside or outside the magnetic memory 1.
  • a positive or negative write current is supplied between the bit wiring 13a and the bit wiring 13b corresponding to the selected column, and at the time of data reading, the bit wiring 13 corresponding to the selected column is supplied. and a current drive circuit for supplying a read current to a or 13c.
  • the word selection circuit 12 selects a row corresponding to the address according to the address designated at the time of data writing or data reading, and the word corresponding to the selected row.
  • the wiring 14 has a function of providing a control voltage.
  • the magnetic memory 1 having the above configuration operates as follows. That is, when an address (i row j column Zl ⁇ i ⁇ m, l ⁇ j ⁇ n) for writing data from the inside or outside of the magnetic memory 1 is specified, the bit selection circuit 11 and the word selection circuit 12 are respectively Select the appropriate j column and i row. In the write transistor 32 in the storage area 3 included in the i row selected by the word selection circuit 12, the control voltage is applied to the gate, and the write current becomes conductive. In addition, in the storage area 3 included in the j column selected by the bit selection circuit 11 In this case, a positive or negative voltage corresponding to data is applied between the bit wiring 13a and the bit wiring 13b.
  • a write current is generated in the write wiring 31 via the write transistor 32.
  • the magnetic field direction of the first magnetic layer of each of the TMR elements 4a and 4b is reversed by the magnetic field due to the write current. In this way, binary data is written to the storage area 3 of the designated address (i row j column).
  • the bit selection circuit 11 and the word selection circuit 12 select the corresponding one column and k row, respectively.
  • the control voltage is applied to the gate, and the read current becomes conductive. Further, the read current is sequentially supplied from the bit selection circuit 11 to the bit wirings 13 a and 13 c corresponding to one column selected by the bit selection circuit 11. Then, in the storage area 3 included in both the one column selected by the bit selection circuit 11 and the k rows selected by the word selection circuit 12, the read current from the read wiring 33a (33b) is supplied to the TMR element 4a.
  • FIG. 2 is a plan view showing a configuration in the vicinity of the TMR elements 4a and 4b that each storage area 3 has.
  • FIG. 3 is a side cross-sectional view taken along line II shown in FIG. Referring to FIGS. 2 and 3, each storage area 3 includes TMR elements 4a and 4b, a magnetic yoke 5, a write wiring 31, and read wirings 33a and 33b. Note that these structures and the surrounding wiring are all occupied by an insulating region 24 (see FIG. 3) made of an insulating material. In FIG. 2, the insulating region 24 is not shown.
  • the write wiring 31 includes the TMR element 4a and the write wiring 31 so that the write wiring 31 passes a plurality of times (twice in the present embodiment) on one surface of each of the TMR elements 4a and 4b.
  • One side of 4b has a spiral shape (coiled shape) wound twice!
  • the write wiring 31 is made of a conductive metal and includes an upper layer wiring 31a and a lower layer wiring 3 lb.
  • the upper layer wiring 3 la and the lower layer wiring 3 lb are formed in a substantially annular shape with a part thereof opened when viewed from the thickness direction of the storage area 3 and arranged so as to overlap each other when viewed from the thickness direction. Yes.
  • a part of each of the upper layer wiring 3 la and the lower layer wiring 3 lb is disposed along the upper surface of the TMR element 4a, and another part of each of the upper layer wiring 3 la and the lower layer wiring 3 lb is disposed of the TMR element 4b. Arranged along the top surface.
  • one end of the upper layer wiring 31a is electrically connected to the electrode 17d through the vertical wiring 16f, and the other end of the upper layer wiring 3la is connected to the lower layer wiring through the vertical wiring 3lg. Electrically connected to one end of 3 lb.
  • the other end of the lower layer wiring 31b is electrically connected to the electrode 17c through the vertical wiring 16j.
  • FIG. 4 is a side sectional view taken along line II-II shown in FIG.
  • each of the TMR elements 4a and 4b includes a first magnetic layer 41, a nonmagnetic insulating layer 42, a second magnetic layer 43, and an antiferromagnetic layer 44 stacked in this order.
  • the TMR elements 4a and 4b are arranged side by side in a direction intersecting the thickness direction of the first magnetic layer 41.
  • the first magnetic layer 41 is a magnetosensitive layer in the present embodiment, and the magnetic field direction is changed by an external magnetic field from the write wiring 31, and binary data can be recorded.
  • a ferromagnetic material such as Co, CoFe, NiFe, NiFeCo, CoPt can be used.
  • the magnetic field direction is fixed by the antiferromagnetic layer 44.
  • the magnetic field direction of the second magnetic layer 43 is stabilized by exchange coupling at the joint surface between the antiferromagnetic layer 44 and the second magnetic layer 43.
  • the magnetic axis easy axis direction of the second magnetic layer 43 is set along the magnetic axis easy axis direction of the first magnetic layer 41.
  • a ferromagnetic material such as Co, CoFe, NiFe, NiFeCo, CoPt can be used.
  • IrMn, PtMn, FeMn, PtPdMn, NiO, or any combination of these materials can be used.
  • the nonmagnetic insulating layer 42 is a layer made of a nonmagnetic and insulating material. Since the nonmagnetic insulating layer 42 is interposed between the first magnetic layer 41 and the second magnetic layer 43, a tunnel magnetoresistive effect (TMR) is generated between the first magnetic layer 41 and the second magnetic layer 43. Occurs. That is, between the first magnetic layer 41 and the second magnetic layer 43, the magnetic direction of the first magnetic layer 41 and the magnetic field of the second magnetic layer 43 are between. Electrical resistance is generated according to the relative relationship (parallel or antiparallel) with the direction.
  • the material of the nonmagnetic insulating layer 42 is preferably a metal oxide or nitride such as Al, Zn, or Mg.
  • a third layer is provided via a nonmagnetic metal layer or a synthetic AF (antiferromagnetic) layer instead of the antiferromagnetic layer 44.
  • a magnetic layer may be provided.
  • the third magnetic layer forms antiferromagnetic coupling with the second magnetic layer 43, so that the magnetic field direction of the second magnetic layer 43 can be further stabilized.
  • the influence of the static magnetic field from the second magnetic layer 43 to the first magnetic layer 41 can be prevented, the magnetic reversal of the first magnetic layer 41 can be facilitated.
  • the material of the third magnetic layer is not particularly limited, but it is preferable to use a ferromagnetic material such as Co, CoFe, NiFe, NiFeCo, CoPt alone or in combination. Further, as the material of the nonmagnetic metal layer provided between the second magnetic layer 43 and the third magnetic layer, Ru, Rh, Ir, Cu, Ag and the like are suitable. The thickness of the nonmagnetic metal layer is preferably 2 nm or less in order to obtain strong antiferromagnetic coupling between the second magnetic layer 43 and the third magnetic layer.
  • Read wirings 33a and 33b are provided on the first magnetic layer 41 of the TMR elements 4a and 4b, respectively.
  • the read wirings 33a and 33b are made of conductive metal and are electrically connected to the first magnetic layer 41 of the TMR elements 4a and 4b, respectively.
  • the antiferromagnetic layer 44 of the TMR element 4a is provided on the electrode 35a and is electrically connected to the electrode 35a.
  • the antiferromagnetic layer 44 of the TMR element 4b is provided on the electrode 35b and is electrically connected to the electrode 35b.
  • a wiring portion 31d of the lower layer wiring 31b is disposed on the readout wiring 33a, and a wiring portion 31c of the upper layer wiring 31a is further disposed thereon. These wiring portions 31c and 31d are along one surface 41a of the first magnetic layer 41 of the TMR element 4a. In these wiring portions 31c and 31d, the write currents 31 are arranged in a spiral so that the write currents are directed in the same direction on the one surface 41a of the first magnetic layer 41 of the TMR element 4a. It becomes. In addition, the wiring portion 31f of the lower layer wiring 31b is provided on the readout wiring 33b. A wiring portion 31e of the upper layer wiring 31a is further provided thereon.
  • These wiring portions 31e and 31f are along one surface 41a of the first magnetic layer 41 of the TMR element 4b. Also in these wiring portions 31e and 31f, the write currents 31 are arranged in a spiral, so that the write currents are in the same direction on the one surface 41a of the first magnetic layer 41 of the TMR element 4b. Note that the direction of the write current in the wiring portions 31c and 31d and the direction of the write current in the wiring portions 3le and 3 If are opposite to each other.
  • the magnetic yoke 5 is a ferromagnetic member that covers the periphery of each of the wiring portions 31c to 31f and efficiently provides a magnetic field generated by a write current to the TMR elements 4a and 4b.
  • the magnetic yoke 5 includes two pairs of open ends facing each other through a gap of a predetermined length, surrounds the wiring portions 3 lc and 3 Id at once, and surrounds the wiring portions 3 le and 3 If at once. It is arranged like this.
  • the magnetic yoke 5 of the present embodiment is composed of two pairs of opposing yokes 5b, three pillar yokes 5c, and a beam yoke 5d.
  • the two pairs of opposing yokes 5b each have an end face 5a as an open end.
  • the pair of end faces 5a oppose each other via a gap of a predetermined length along the easy axis of magnetization of the first magnetic layer 41 of the TMR element 4a.
  • the pair of side surfaces 4c are opposed to the pair of end surfaces 5a, respectively, and the magnetic axis easy axis direction of the first magnetic layer 41 is the direction in which the pair of end surfaces 5a are arranged. It is arranged along.
  • the other pair of end faces 5a oppose each other through a gap of a predetermined length along the easy axis of magnetization of the first magnetic layer 41 of the TMR element 4b.
  • the TMR element 4b has a pair of side surfaces 4d each having the other side.
  • the first magnetic layer 41 is arranged so that it faces the pair of end faces 5a and the direction of easy magnetization of the first magnetic layer 41 is along the direction in which the other pair of end faces 5a are arranged.
  • the beam yoke 5d is provided over the wiring portion 31c and the upper force wiring portion 31e along the surface of the upper layer wiring 31a opposite to the surface facing the TMR elements 4a and 4b.
  • One of the three pillar yokes 5c is provided between the wiring portions 31c and 31d and the wiring portions 31e and 31f.
  • One end of the pillar yoke 5c is connected to the beam yoke 5d, and the other end is connected to one opposing yoke 5b in each of the two pairs of opposing yokes 5b.
  • the other one of the three pillar yokes 5c is provided along the side surface opposite to the surface facing the wiring portions 31e and 31f among the pair of side surfaces of the wiring portions 31c and 31d.
  • One end of the pillar yoke 5c is connected to the beam yoke 5d, and the other end is connected to one opposing yoke 5b in one of the two pairs of opposing yokes 5b.
  • the remaining one of the three pillar yokes 5c is provided along the side surface opposite to the surface facing the wiring portions 31c and 31d among the pair of side surfaces of the wiring portions 31e and 31f.
  • One end of the leaf yoke 5c is connected to the beam yoke 5d, and the other end is connected to one opposing yoke 5b in the other of the two opposing yokes 5b.
  • the three pillar yokes 5c connect the beam yoke 5d and the two pairs of opposing yokes 5b with the above configuration.
  • the magnetic yoke 5 As a material constituting the magnetic yoke 5, for example, a metal containing at least one element among Ni, Fe, and Co is suitable.
  • the magnetic yoke 5 is formed so that its easy axis direction is along the easy axis direction of the first magnetic layer 41 of the TMR elements 4a and 4b.
  • the cross-sectional area of the magnetic yoke 5 in the plane orthogonal to the circumferential direction of each of the wiring portions 31c to 31f of the write wiring 31 is the smallest on the two pairs of end faces 5a.
  • the sectional area of the opposing yoke 5b is the smallest. More preferably, it is preferable that the opposing yoke 5b becomes thinner as it approaches the end face 5a.
  • the material of the insulating region 24 for example, SiO t, or other insulating material can be used.
  • FIG. 5 to 7 are side cross-sectional views showing the configuration of each storage area 3.
  • Figure 5 shows storage A cross-sectional configuration when the region 3 is cut along the row direction is shown.
  • FIG. 6 shows a cross section of the storage area 3 taken along line III-III in FIG.
  • FIG. 7 shows a cross section of the storage area 3 taken along the line IV-IV in FIG.
  • the storage region 3 (storage unit 2) is formed by sequentially laminating a semiconductor layer 6, a wiring layer 7, and a magnetic material layer 8.
  • the semiconductor layer 6 is a layer in which a semiconductor device such as a transistor is formed while maintaining the mechanical strength of the entire storage unit 2 including the semiconductor substrate 21.
  • the magnetic material layer 8 is a layer on which a component made of a magnetic material such as the TMR elements 4a and 4b and the magnetic yoke 5 described above is formed. Note that the write wiring 31, the read wirings 33a and 33b, the electrodes 35a and 35b, and the insulating region 24 shown in FIGS. 2 to 4 are also included in the magnetic material layer 8.
  • the wiring layer 7 is provided between the semiconductor layer 6 and the magnetic material layer 8.
  • the wiring layer 7 wirings that penetrate the storage areas 3 such as the bit wirings 13 a to 13 c and the word wiring 14 are formed.
  • the wiring layer 7 includes TMR elements 4a and 4b formed in the magnetic material layer 8, write wiring 31, read wiring 33a and 33b, semiconductor devices such as transistors formed in the semiconductor layer 6, and bit wiring. Wiring for electrically connecting 13a to 13c and the word wiring 14 to each other is formed.
  • the semiconductor layer 6 includes a semiconductor substrate 21, an insulating region 22, a write transistor 32, and a read transistor 34.
  • the semiconductor substrate 21 also has Si substrate power, for example, and is doped with p-type or n-type impurities.
  • the insulating region 22 is formed on the semiconductor substrate 21 in a region other than the write transistor 32 and the read transistor 34, and electrically isolates the write transistor 32 and the read transistor 34.
  • the insulating region 22 is made of an insulating material such as SiO.
  • the write transistor 32 includes a drain region 32 a and a source region 32 c, a gate electrode 32 b, and a part of the semiconductor substrate 21, which are opposite in conductivity type to the semiconductor substrate 21.
  • the drain region 32a and the source region 32c are formed, for example, in the vicinity of the surface of the Si substrate by being doped with an impurity having a conductivity type opposite to that of the semiconductor substrate 21.
  • a semiconductor substrate 21 is interposed between the drain region 32a and the source region 32c, and a gate electrode 32b is disposed on the semiconductor substrate 21.
  • the read transistor 34 includes a drain region 34 a and a source region 34 c, a gate electrode 34 b, and a part of the semiconductor substrate 21, which are opposite in conductivity type to the semiconductor substrate 21.
  • the drain region 34a and the source region 34c are formed, for example, in the vicinity of the surface of the Si substrate by doping an impurity having a conductivity type opposite to that of the semiconductor substrate 21.
  • a semiconductor substrate 21 is interposed between the drain region 34a and the source region 34c, and a gate electrode 34b is disposed on the semiconductor substrate 21.
  • the wiring layer 7 includes an insulating region 23, bit wirings 13a to 13c, a word wiring 14, a ground wiring 15, and a plurality of vertical wirings and horizontal wirings. Note that, in the wiring layer 7, all regions other than each wiring are occupied by the insulating region 23.
  • SiO 2 can be used in the same manner as the insulating region 22 of the semiconductor layer 6.
  • An insulating material such as 2 can be used.
  • w can be used as the material for the vertical wiring
  • A1 can be used as the material for the horizontal wiring.
  • the electrode 17c to which one end of the write wiring 31 (lower layer wiring 31b) of the magnetic material layer 8 is electrically connected, is electrically connected to the vertical wirings 16g to 16i and the horizontal wirings 18c and 18d.
  • the vertical wiring 16i is in ohmic contact with the drain region 32a of the write transistor 32.
  • the horizontal wiring 18e is electrically connected to the bit wiring 13a (see FIG. 5) through a wiring (not shown).
  • the horizontal wiring 18f is electrically connected to the vertical wiring 16m, and the vertical wiring 16m is in ohmic contact with the source region 32c of the writing transistor 32.
  • the horizontal wiring 18f is electrically connected to the bit wiring 13b (see FIG. 5) by a wiring (not shown).
  • a part of the word line 14 serves as a gate electrode 32 b of the write transistor 32. That is, the gate electrode 32b shown in FIG. 6 is configured by a part of the node wiring 14 extending in the row direction of the storage region 3. With this configuration, the word wiring 14 is Are electrically connected to the control terminal (gate electrode 32b) of the write transistor 32.
  • the electrodes 35a and 35b electrically connected to the second magnetic layer 43 side of the TMR elements 4a and 4b are respectively connected to the vertical wirings 16c and 16p of the wiring layer 7 respectively. It is electrically connected to the horizontal wiring 18a.
  • the horizontal wiring 18a is electrically connected to the vertical wiring 16e via the vertical wiring 16d and the horizontal wiring 18b, and the vertical wiring 16e is in ohmic contact with the drain region 34a of the reading transistor 34.
  • the ground wiring 15 is electrically connected to the vertical wiring 16q, and the vertical wiring 16q is ohmically joined to the source region 34c of the read transistor 34.
  • a part of the word line 14 serves as the gate electrode 34b of the read transistor 34. That is, the gate electrode 34b shown in FIG. 7 is constituted by a part of the word line 14 extending in the row direction of the storage region 3. With such a configuration, the word line 14 is electrically connected to the control terminal (gate electrode 34b) of the read transistor 34.
  • the read wiring 33a electrically connected to the first magnetic layer 41 side of the TMR element 4a extends in the row direction of the storage region 3, and is magnetically
  • the material layer 8 is electrically connected to the electrode 17a via the vertical wiring 16a!
  • the electrode 17a is electrically connected to the bit wiring 13c via the vertical wiring 16b of the wiring layer 7.
  • the readout wiring 33b (see FIG. 7) electrically connected to the first magnetic layer 41 side of the TMR element 4b in the magnetic material layer 8 extends in the row direction of the storage area 3 like the readout wiring 33a. It is electrically connected to the bit wiring 13a of the wiring layer 7 by a wiring (not shown).
  • a magnetic field ⁇ is generated in the circumferential direction of the portions 31c and 31d, and the wiring portions 31e and 31f
  • Magnetic field ⁇ is the wiring part 31c
  • the magnetic fields ⁇ and ⁇ do not disturb each other.
  • the sectional area of the opposing yoke 5b is the smallest, so that the magnetic field ⁇ and the magnetic field ⁇ formed inside the magnetic yoke 5
  • the magnetic flux density is highest in the opposing yoke 5b.
  • the magnetic field ⁇ (external magnetic field) is efficiently provided to the first magnetic layer 41 of the TMR element 4a.
  • the magnetic field direction Ba of the second magnetic layer 43 of the TMR element 4a is antiferromagnetic.
  • the magnetic field direction Aa of the magnetic layer 41 and the magnetic field direction Ba of the second magnetic layer 43 are in the same direction, that is, in a parallel state. In addition, if a magnetic field ⁇ is generated around the wiring portions 31 e and 3 If,
  • the magnetic field confinement action of the yoke 5 causes the magnetic field ⁇ (external to the first magnetic layer 41 of the TMR element 4b
  • the magnetic field direction Ab of the first magnetic layer 41 of the TMR element 4b is in the same direction as the magnetic field ⁇ , that is, the magnetic field 41 of the first magnetic layer 41 of the TMR element 4a.
  • the direction is the opposite of Aa.
  • the magnetic field direction of the second magnetic layer 43 of the TMR element 4b Bb force
  • the magnetic field direction Bb of the second magnetic layer 43 are opposite to each other, that is, in an antiparallel state.
  • a change in potential difference between 33b) and the electrode 35a (35b) is detected. This makes it possible to determine whether the magnetic field directions of the TMR elements 4a and 4b are parallel and antiparallel. For example, when the magnetic field direction Aa of the first magnetic layer 41 of the TMR element 4a is parallel to the magnetic field direction Ba of the second magnetic layer 43, Due to the tunnel magnetoresistance effect (TMR) in the nonmagnetic insulating layer 42, the resistance value between the first magnetic layer 41 and the second magnetic layer 43 becomes relatively small. Therefore, for example, when the read current I ra is constant, the potential difference between the read wiring 33a and the electrode 35a becomes relatively small, so that the magnetic field direction of the TMR element 4a is in a parallel state.
  • TMR tunnel magnetoresistance effect
  • the tunnel magnetoresistance effect (TMR) in the nonmagnetic insulating layer 42 As a result, the resistance value between the first magnetic layer 41 and the second magnetic layer 43 becomes relatively large. Therefore, if the magnetic field direction of the TMR element 4b is detected by the same method as that of the TMR element 4a and the magnetic field direction of the TMR element 4b is in the antiparallel state, binary data is stored in the corresponding storage area 3. It can be determined that 0 is written as
  • a magnetic field ⁇ that is opposite to the magnetic field ⁇ is generated in the circumferential direction of the wiring portions 31c and 31d.
  • the circumferential direction of the wiring portions 31e and 31f is opposite to the magnetic field ⁇ (that is, the magnetic field ⁇
  • the magnetic field ⁇ is a magnetic field provided around the wiring portions 3 le and 3 If.
  • a closed path is formed through the gap 5 and the gap between the pair of end faces 5a.
  • the magnetic flux density is highest in the opposing yoke 5b.
  • the magnetic field ⁇ (external magnetic field) is efficiently provided to the first magnetic layer 41 of the TMR element 4a.
  • the magnetization direction Ba of the second magnetic layer 43 of the TMR element 4a is the magnetic field ⁇
  • the magnetic field direction Aa of the first magnetic layer 41 and the magnetic field direction Ba of the second magnetic layer 43 are antiparallel to each other. Further, when the magnetic field ⁇ is generated around the wiring portions 3 le and 3 If, the magnetic field confinement action of the magnetic yoke 5 causes the first magnetic field of the TMR element 4b.
  • the magnetic layer ⁇ (external magnetic field) is efficiently provided to the conductive layer 41.
  • TMR tunnel magnetic field
  • the magnetic field direction Ab of the first magnetic layer 41 of the element 4b is the same direction as the magnetic field ⁇ , that is, the TMR element.
  • the first magnetic layer 41 of 4a faces in the direction opposite to the magnetic field direction Aa.
  • the magnetization direction Bb of the second magnetic layer 43 of the TMR element 4b is in the same direction as the magnetization direction Ba of the second magnetic layer 43 of the TMR element 4a, so the magnetization direction of the first magnetic layer 41 of the TMR element 4b Ab
  • the magnetization direction Bb of the second magnetic layer 43 are parallel to each other.
  • the write wirings 31 are connected to each other with a write current I (I wl w
  • the external magnetic field can be provided multiple times (in this embodiment, twice) to the first magnetic layer 41 of the TMR element 4a. Accordingly, a predetermined external magnetic field ⁇ ( ⁇ ) is applied to the first magnetic field of the TMR element 4a.
  • a partial magnetic field ⁇ ( ⁇ ) can be generated.
  • the write wiring 31 is connected to each other.
  • a plurality of wiring portions 31e and 31f are provided on the wl w2 surface 41a of the first magnetic layer 41 of the TMR element 4b so that the write current I (I) is in the same direction.
  • the write current I (I) flowing through the write wiring 31 moves several times in the same direction on the first magnetic layer 41 (wl w2
  • the embodiment since it passes twice, multiple times (in actuality) the first magnetic layer 41 of the TMR element 4b
  • the embodiment can provide twice as much external magnetic field. Therefore, the specified external magnetic field ⁇ ( ⁇ )
  • the necessary external magnetic field ⁇ ( ⁇ ) can be generated with (I).
  • the two wiring portions 31c and 31d (or 31e and 31f) of the write wiring 31 are disposed on one surface 41a of the first magnetic layer 41 of the TMR element 4a (4b).
  • three or more wiring portions of the write wiring 31 may be disposed on one surface of the first magnetic layer.
  • the plurality of wiring portions 31c to 31f of the write wiring 31 are arranged along one surface 41a of the first magnetic layer 41 of the TMR elements 4a and 4b. Yes.
  • the manufacturing process can be simplified as compared with the magnetic memory of Patent Document 1 described above.
  • a method for manufacturing the magnetic material layer 8 of the magnetic memory 1 will be described later.
  • the magnetic field directions Aa and Ab of the first magnetic layer 41 are reduced with a small write current I (I).
  • the write transistor 32 that controls conduction can be reduced in size, and the increase in the size of the magnetic memory 1 due to the arrangement of the write transistor 32 for each storage area 3 can be suppressed. Therefore, the configuration in which only one write wiring 31 is provided in each storage area 3 and the write current I (I) is controlled by the write transistor 32 is realized by the small magnetic memory 1 as in this embodiment.
  • magnetic fields ⁇ to ⁇ can be provided only to the TMR elements 4a and 4b in the storage area 3 where data is to be written, and erroneous writing to other storage areas 3 can be prevented.
  • each of the plurality of storage areas 3 includes a magnetic yoke 5, and the magnetic yoke 5 includes at least one pair (two pairs in the present embodiment) of end surfaces 5a, and writing It is preferable that the plurality of wiring portions 3 lc and 3 Id of the wiring 31 are collectively surrounded and the plurality of wiring portions 3 le and 31 f are collectively surrounded.
  • the TMR elements 4a and 4b are arranged so that the pair of side surfaces 4c face the end surface 5a of the magnetic yoke 5, respectively. It is preferable that As a result, the external magnetic field ⁇ ( ⁇ ) from the plurality of wiring portions 31c and 3 Id is efficiently applied to the first magnetic layer 41 of the TMR element 4a, and the plurality of wiring portions
  • the external magnetic field ⁇ ( ⁇ ) from the components 31e and 31f is efficiently applied to the first magnetic layer 41 of the TMR element 4b.
  • the wiring portions 31c and 3le are disposed above the wiring portions 3Id and 3 3, the wiring portions 31c and 31e are the first magnetic elements of the TMR elements 4a and 4b. Tier 4 1 force Relatively separated.
  • each of the storage areas 3 has the magnetic yoke 5 surrounding each wiring portion 3 lc to 3 If as in the present embodiment, so that the magnetic field from the relatively separated wiring portions 31 c and 31 e It can be applied to TMR elements 4a and 4b with the same strength as the magnetic field from 31d and 31f.
  • the TMR element when each of the plurality of storage regions 3 includes the plurality of TMR elements 4a and 4b, the TMR element extends in a direction intersecting the thickness direction of the first magnetic layer 41. 4a and 4b are arranged side by side, and the write wiring 31 is preferably spirally disposed on the one surface 41a side of the first magnetic layer 41 of the plurality of TMR elements 4a and 4b. As a result, the write wiring 31 can be efficiently arranged along the TMR elements 4a and 4b.
  • the magnetic axis of the magnetic yoke 5 is preferably along the direction of the magnetic axis of the first magnetic layer 41 of the TMR elements 4a and 4b.
  • the cross-sectional area of the magnetic yoke 5 in the cross section orthogonal to the circumferential direction of the wiring portions 31c to 31f of the write wiring 31 is preferably the smallest in the end face 5a.
  • FIG. 10- (a) is a plan view showing a part of the manufacturing process of the magnetic memory 1 according to the present embodiment
  • FIG. 10- (b) is a cross-sectional view of V-V shown in FIG. 10- (a). It is side surface sectional drawing along a line.
  • the electrode 35a is formed on the vertical wiring 16c of the wiring layer 7, and the electrode 35b is formed on the vertical wiring 16p.
  • the electrodes 17a-17d Formed on wirings 16b, 16r, 16g, and 16k, respectively.
  • the positions of the vertical wirings 16c, 16b, and 16g of the wiring layer 7 and the positions of the vertical wirings 16p, 16r, and 16k are in line symmetry with each other. Each vertical wiring is placed in the.
  • a Ta underlayer, an IrMn layer, a CoFe layer, and an A1 layer are sequentially formed by a high vacuum (UHV) DC sputtering apparatus.
  • UHV high vacuum
  • oxygen is oxidized in the A1 layer by oxygen plasma to form a tunnel insulating layer (that is, the layer that becomes the nonmagnetic insulating layer 42 shown in FIG. 4), and then C.
  • An Fe layer and a Ta protective layer are formed.
  • TMR elements 4a and 4b are formed on the electrodes 35a and 35b, respectively, by ion milling as shown in FIGS. 11 (a) and 11- (b).
  • Fig. 11 (a) is a plan view showing the formed TMR elements 4a and 4b
  • Fig. 11 (b) is a side cross-sectional view along the VI-VI line shown in Fig. 11 (a). is there.
  • the CVD device is used, for example, to form T with Si (OC H).
  • FIG. 12 is a side sectional view showing the formed resist mask 71.
  • the resist mask 71 is formed so as to have an opening corresponding to the planar shape of the opposing yoke 5b.
  • a NiFe film 68 is formed by a sputtering apparatus, and then the resist mask 71 is removed.
  • FIGS. 13 (a) and 13 (b) are a plan view showing the formed opposing yoke 5b
  • FIG. 13 (b) is a side sectional view taken along the line VII-VII shown in FIG. 13- (a).
  • FIGS. 14 (a) and 14 (b) read wirings 33a and 33b are formed.
  • FIG. 14 (a) is a plan view showing the formed readout wirings 33a and 33b
  • FIG. 14- (b) is a side sectional view taken along line VIII-VIII shown in FIG. 14- (a).
  • the readout wiring 33a is formed so that one end thereof is in contact with the upper surface of the TMR element 4a, and the other end is formed so as to be electrically connected to the vertical wiring 16r via the vertical wiring and the electrode.
  • the readout wiring 33b is formed so that one end thereof is in contact with the upper surface of the TMR element 4b and the other end is electrically connected to the vertical wiring 16b through the vertical wiring and the electrode.
  • Fig. 15- (a) is a plan view showing the formed insulating layer 24b and lower layer wiring 3 lb.
  • Fig. 15- (b) is a side view along the line IX-IX shown in Fig. 15- (a). It is sectional drawing.
  • the insulating layer 24b is formed by depositing the same material as the insulating layer 24a on the readout wirings 33a and 33b, on the insulating layer 24a, and on the opposing yoke 5b by the CVD method.
  • a resist mask having an opening having the same shape as the planar shape of the lower layer wiring 31b is insulated.
  • a resist mask having an opening having the same shape as the planar shape of the lower layer wiring 31b is insulated.
  • Form on layer 24b immerse the whole in a tub, and form 3 lb of lower layer wiring by plating using the plating base film as an electrode.
  • one end of the lower layer wiring 3 lb is electrically connected to the vertical wiring 16g through the vertical wiring and the electrode.
  • the lower layer wiring 3 lb is formed in a substantially annular shape that passes over the TMR elements 4a and 4b and the other end is open. Note that the resist mask and the underlayer film used in the plating process are removed by ion milling or the like after the formation of the lower layer wiring 31b.
  • Fig. 16 (a) is a plan view showing the formed insulating layer 24c and upper layer wiring 3la
  • Fig. 16 (b) is a side view along the line XX shown in Fig. 16 (a). It is sectional drawing.
  • the insulating layer 24c is formed by depositing the same material as the insulating layer 24a on the lower wiring 31b and the insulating layer 24b by the CVD method.
  • the upper layer wiring 31a is formed by the same method as the method of forming the lower layer wiring 31b.
  • the upper layer wiring 31a is electrically connected to the vertical wiring 16k through the vertical wiring and the electrode. Further, the upper layer wiring 31a is overlapped on the lower layer wiring 31b, and is formed in a substantially annular shape so as to pass over the TMR elements 4a and 4b and to be connected to the lower layer wiring 3lb through the vertical wiring 3lg. like this Thus, the spiral write wiring 31 including the upper layer wiring 3 la and the lower layer wiring 3 lb is completed.
  • FIG. 17 is a side sectional view showing the formed insulating layer 24d and resist mask 72.
  • the insulating layer 24d made of the same material as the insulating layer 24a is formed on the upper wiring 3la and the insulating layer 24c by the CVD method.
  • a resist mask 72 is selectively formed on the insulating layer 24d.
  • the resist mask 72 is formed in a region slightly wider than the upper surfaces of the upper layer wiring 31a and the lower layer wiring 31b.
  • the portions of the insulating layers 24b to 24d that are not covered with the resist mask 72 are removed by RIE or the like to expose the counter yoke 5b, and then the resist mask 72 is removed (see FIG. 18).
  • FIG. 19- (a) is a plan view showing the formed beam yoke 5d
  • FIG. 19- (b) is a side cross-sectional view along the line X ⁇ XI shown in FIG. 19- (a).
  • a resist mask 73 is selectively formed on the insulating layer 24a.
  • a resist mask 73 is formed so as not to cover the opposing yoke 5b and the upper layer wiring 3la.
  • the pillar yoke 5c and the beam yoke 5d are formed by sputtering, for example, in a region where the resist mask 73 is not provided.
  • the magnetic yoke 5 including the two pairs of opposing yokes 5b, the three pillar yokes 5c, and the beam yoke 5d is formed.
  • the resist mask 73 is removed, and an insulating layer 24e made of the same material as the insulating layer 24a is formed on the insulating layer 24a and the magnetic yoke 5 by the CVD method.
  • the insulating region 24 is formed, and the magnetic material layer 8 is completed.
  • the wiring portions 31c to 31f of the write wiring 31 are arranged only on the upper surface side of the TMR elements 4a and 4b.
  • the write wiring 31 can be formed by an extremely simple process as shown in FIGS. If three or more wiring portions are provided along the TMR elements 4a and 4b in the write wiring, the steps shown in FIGS. 15 and 16 may be repeated as necessary. [0072] (First modification)
  • FIG. 21 is a plan view showing the peripheral configuration of the TMR element 4 in this modification.
  • FIG. 22 is a side sectional view taken along line XII-XII shown in FIG. Referring to FIGS. 21 and 22, in this modification, each storage area has one TMR element 4.
  • the TMR element 4 includes a first magnetic layer 41, a nonmagnetic insulating layer 42, a second magnetic layer 43, and an antiferromagnetic layer 44, similarly to the TMR elements 4a and 4b of the above embodiment.
  • the surface of the TMR element 4 on the first magnetic layer 41 side is electrically connected to the readout wiring 33, and the surface on the second magnetic layer 43 side is electrically connected to the electrode 35.
  • the write wiring 36 of this modification example is configured to include an upper layer wiring 36a and a lower layer wiring 36b.
  • the upper layer wiring 36a is formed in a substantially annular shape with a part thereof opened as viewed from the thickness direction of the storage area, and one wiring portion 36d is formed on one surface 41a of the TMR element 4.
  • the lower layer wiring 36b is formed so as to overlap with a part of the upper layer wiring 36a when viewed from the thickness direction of the storage area, and one wiring portion 36e thereof is along one surface 41a of the TMR element 4. .
  • one end of the upper layer wiring 36a and one end of the lower layer wiring 36b are electrically connected to each other via the force vertical wiring 36c so that the directions of the write currents in the wiring portions 36d and 36e are the same.
  • the magnetic yoke 50 of this modification also has a substantially annular strength having a pair of open end portions facing each other through a gap of a predetermined length, and surrounds the wiring portions 36d and 36e of the write wiring 36. It is arranged so that.
  • the magnetic yoke 50 includes a pair of opposing yokes 50b, a pair of pillar yokes 50c, and a beam yoke 50d.
  • the pair of opposing yokes 50b has a pair of end surfaces 50a as a pair of open ends. The pair of end surfaces 50a oppose each other via a gap having a predetermined length along the easy axis of magnetization of the first magnetic layer 41 of the TMR element 4.
  • the TMR element 4 is disposed such that the pair of side surfaces face the pair of end surfaces 5a. Further, the beam yoke 50d is provided along a surface opposite to the surface facing the TMR element 4 in the wiring portion 36d.
  • the pair of pillar yokes 50c are provided along the side surfaces of the wiring portions 36d and 36e. One end of each of the pair of opposing yokes 50b on the side different from the end surface 50a, Connects both ends of the 50d. With the above configuration, the opposing yoke 50b, the pillar yoke 50c, and the beam yoke 50d surround the wiring portions 36d and 36e.
  • each storage area has one TMR element 4 as in this modification.
  • the structure which has may be sufficient.
  • a write current flowing through the write wiring 36 flows on the first magnetic layer 41. Since it passes a plurality of times in the same direction (twice in the present modification), an external magnetic field can be provided multiple times (twice in this modification) to the first magnetic layer 41 of the TMR element 4. Therefore, when it is necessary to provide a predetermined external magnetic field to the first magnetic layer 41, the necessary external magnetic field can be generated with a smaller write current.
  • FIG. 23 is a cross-sectional view showing the shape of a magnetic yoke 51 according to this modification.
  • the magnetic yoke 51 according to this modification may be provided instead of the magnetic yoke 5 of the above-described embodiment, and the same effect as or more than that of the magnetic memory 1 of the above-described embodiment can be obtained.
  • the magnetic yoke 51 of the present modification includes two pairs of opposing yokes 51b, three pillar yokes 51c, and a beam yoke 5Id.
  • the structures and shapes of the pillar yoke 51c and the beam yoke 5Id are the same as the structures and shapes of the pillar yoke 5c and the beam yoke 5d of the magnetic yoke 5 described above (see FIG. 4).
  • one pair of opposing yokes 51b has their end faces 51a in contact with the side surfaces of the first magnetic layer 41 among the side surfaces 4c of the TMR element 4a.
  • the end face 51a of the other pair of opposing yokes 51b of the two pairs of opposing yokes 51b is in contact with the side face of the first magnetic layer 41 of the side face 4d of the TMR element 4b. Even if the magnetic yoke 51 has such a shape, the magnetic field generated in the magnetic yoke 51 by the write current can be provided more efficiently to the first magnetic layer 41 of each of the TMR elements 4a and 4b.
  • the read current flowing between the first magnetic layer 41 and the second magnetic layer 43 is preferably transmitted via the nonmagnetic insulating layer 42.
  • the end face 51a of the magnetic yoke 51 is preferably not in contact with the nonmagnetic insulating layer 42 and is in contact with the second magnetic layer 43. Must not be.
  • FIG. 24 is a cross-sectional view showing the shape of a magnetic yoke 52 according to this modification.
  • the magnetic yoke 52 according to this modification may be provided instead of the magnetic yoke 5 of the above-described embodiment, and the same effect as or more than that of the magnetic memory 1 of the above-described embodiment can be obtained.
  • the magnetic yoke 52 is formed of a substantially annular body, and includes a first beam yoke 52b, three pillar yokes 52c, and a second beam yoke 52d.
  • the first beam yoke 52b is arranged between the read wirings 33a and 33b and the two nonmagnetic insulating layers 42 so as to also serve as the first magnetic layer of the TMR elements 4e and 4f.
  • One end of the first beam yoke 52b is connected to one of the three pillar yokes 52c, and the other end of the first beam yoke 52b is connected to the other one of the three pillar yokes 52c.
  • the central portion of the beam yoke 52b (that is, the portion between the TMR elements 4e and 4f) is connected to the remaining one of the three pillar yokes 52c.
  • the beam yoke 52d is provided on the surface of the upper layer wiring 31a opposite to the TMR elements 4e, 4f.
  • One of the three pillar yokes 52c is provided between the wiring portions 31c and 31d and the wiring portions 31e and 31f, and includes a central portion of the first beam yoke 52b and a central portion of the second beam yoke 52d. Are connected.
  • the other one of the three pillar yokes 52c is provided along the side surfaces of the wiring portions 31c and 31d, and connects one end of the first beam yoke 52b and one end of the second beam yoke 52d! /
  • the remaining one of the three pillar yokes 52c is provided along the side surfaces of the wiring portions 31e and 31f, and connects the other end of the first beam yoke 52b and the other end of the second beam yoke 52d.
  • the first beam yoke 52b, the three pillar yokes 52c, and the second beam yoke 52d completely (continuously) surround the outer periphery of the wiring portions 31c to 31f of the write wiring 31.
  • the first magnetic layers of the TMR elements 4 e and 4 f are each constituted by a part of the magnetic yoke 52 (first beam yoke 52 b). Accordingly, the magnetic field generated in the magnetic yoke 52 by the write current can be provided more efficiently to the first magnetic layers of the TMR elements 4e and 4f.
  • the magnetic memory according to the present invention is not limited to the above-described embodiment, and can be variously modified.
  • the TMR element is used as the magnetoresistive effect element in the above embodiment, a GMR element using a giant magneto-resistive (GMR) effect may be used.
  • GMR giant magneto-resistive
  • the GMR effect is a phenomenon in which the resistance value of the ferromagnetic layer in the direction orthogonal to the stacking direction changes depending on the angle formed by the magnetic directions of the two ferromagnetic layers sandwiching the nonmagnetic layer. That is, in the GMR element, when the magnetization directions of the two ferromagnetic layers are parallel to each other, the resistance value of the ferromagnetic layer is minimized, and the magnetic directions of the two ferromagnetic layers are antiparallel to each other. In this case, the resistance value of the ferromagnetic layer is maximized.
  • the TMR element and GMR element have a pseudo-spin valve type that uses the difference in coercive force between the two ferromagnetic layers to perform reading and Z reading, and the magnetic direction of one ferromagnetic layer is antiferromagnetic.
  • Data reading in the GMR element is performed by detecting changes in the resistance value of the ferromagnetic layer in the direction perpendicular to the stacking direction.
  • Data writing in the GMR element is performed by reversing the magnetic field direction of one ferromagnetic layer by a magnetic field generated by a write current.
  • the magnetic yoke of the above embodiment is integrally formed in the circumferential direction of the write wiring from one end surface to the other end surface.
  • the shape of the magnetic yoke may be, for example, a shape having one or more gaps (gap) in the circumferential direction and divided into a plurality of portions.
  • the force provided with the transistors as the write switch means and the read switch means. These switch means may apply various means having a function of cutting off the current and conducting Z as necessary. it can.
  • an external magnetic field is applied to the magnetoresistive effect element by a single write wiring in each storage area.
  • an external magnetic field is applied to the magnetoresistive effect element by a plurality of write wirings. May be given.
  • a first write wiring extending along the row direction of the memory portion and a second write wiring extending along the column direction are provided, and the magnetoresistive resistor is located at a position where the first and second write wirings intersect.
  • the configuration of the present invention can be applied even to a magnetic memory having a configuration in which an effect element is arranged. In this case, writing is performed by applying a combined magnetic field from the first and second write wirings to the magnetoresistive element.
  • the write current flowing through the first write wiring passes a plurality of times on one surface of the magnetosensitive layer.
  • the first write wiring is arranged so as to do so.
  • the second write wiring is arranged so that the write current flowing through the second write wiring passes through one surface of the magnetosensitive layer a plurality of times. .
  • the present invention can be used in a magnetic memory that stores data in a magnetoresistive element.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Computer Hardware Design (AREA)
  • Mram Or Spin Memory Techniques (AREA)
  • Hall/Mr Elements (AREA)
  • Semiconductor Memories (AREA)

Abstract

 磁気メモリ1が備える複数の記憶領域3のそれぞれは、外部磁界によって磁化方向が変化する第1磁性層41を含むTMR素子4a及び4bと、書き込み電流によって第1磁性層41に外部磁界を提供する書き込み配線31とを有する。そして、書き込み配線31は、TMR素子4aの一方の面41aに沿った複数の配線部分31c及び31dと、TMR素子4bの一方の面41aに沿った複数の配線部分31e及び31fとを有する。そして、配線部分31c及び31dは、TMR素子4aの一方の面41a上において互いに書き込み電流が同じ向きになるように配設されている。同様に、配線部分31e及び31fは、TMR素子4bの一方の面41a上において互いに書き込み電流が同じ向きになるように配設されている。

Description

明 細 書
磁気メモリ
技術分野
[0001] 本発明は、磁気抵抗効果素子にデータを記憶する磁気メモリに関するものである。
背景技術
[0002] 近年、コンピュータや通信機器等の情報処理装置に用いられる記憶デバイスとして 、 MRAM (Magnetic Random Access Memory)が注目されて 、る。 MRAMは、磁気 によってデータを記憶するので、揮発性メモリである DRAM (Dynamic Random Acce ss Memory)や SRAM (Static RAM)のように電源断によって情報が失われるといつ た不都合がない。また、従来のフラッシュ EEPROMやハードディスク装置のような不 揮発性記憶手段と比較して、アクセス速度、信頼性、消費電力等において非常に優 れている。従って、 MRAMは、 DRAMや SRAMなどの揮発性メモリの機能、及びフ ラッシュ EEPROMゃノ、ードディスク装置などの不揮発性記憶手段の機能をすベて 代替できる可能性を有している。現在、いつ、どこにいても情報処理を行うことができ る、 V、わゆるュビキタスコンピューティングを目指した情報機器の開発が急速に進め られている力 MRAMは、このような情報機器におけるキーデバイスとしての役割が 期待されている。
[0003] このような MRAMの一例として、例えば特許文献 1に記載された磁気メモリがある。
この磁気メモリは、各記憶領域 (メモリセル)毎に、トンネル磁気抵抗効果 (TMR: Tun neling Magneto-Resistive)素子と、 TMR素子に書き込み電流を流す配線(セルビット 線)と、セルビット線に接続されたトランジスタとを備える。ここで、 TMR素子とは、外 部磁界によって磁ィ匕方向が変化する第 1磁性層 (感磁層)と、磁ィ匕方向が固定された 第 2磁性層と、第 1磁性層と第 2磁性層との間に挟まれた非磁性絶縁層とを備え、第 1磁性層の磁ィ匕方向が第 2磁性層の磁ィ匕方向に対して平行または反平行に制御さ れることにより二値データを記憶する素子である。特許文献 1に記載された磁気メモリ では、セルビット線を TMR素子の例えば上面、側面、及び下面に沿って配設するこ とにより、小さな書き込み電流で大きな外部磁界を第 1磁性層に与えようとしている。 特許文献 1 :特開 2004— 153182号公報
発明の開示
発明が解決しょうとする課題
[0004] しカゝしながら、特許文献 1に開示された構成には、次の課題がある。すなわち、特許 文献 1のように TMR素子の両面及び側面に配線を形成すると、製造工程が複雑に なってしまう。従って、製造コストの上昇や歩留まりの悪ィ匕を招くおそれがある。
[0005] 本発明は、上記した問題点を鑑みてなされたものであり、書き込み電流を小さくでき
、且つ製造工程が簡易な磁気メモリを提供することを目的とする。
課題を解決するための手段
[0006] 上記した課題を解決するために、本発明による磁気メモリは、複数の記憶領域を備 え、複数の記憶領域のそれぞれは、外部磁界によって磁化方向が変化する感磁層 を含む一または複数の磁気抵抗効果素子と、書き込み電流によって感磁層に外部 磁界を提供する書き込み配線とを有し、書き込み配線が感磁層の一方の面上を複数 回通過するように、書き込み配線の複数の配線部分が各磁気抵抗効果素子毎に配 設されており、複数の配線部分は、感磁層の一方の面上において互いに書き込み電 流が同じ向きになるように配設されて 、ることを特徴とする。
[0007] 上記した磁気メモリでは、互いに書き込み電流が同じ向きになるように感磁層の一 方の面上に配設された複数の配線部分を書き込み配線が有することによって、書き 込み配線を流れる書き込み電流が感磁層上を同じ向きに複数回通過するので、感 磁層に複数倍の外部磁界を提供できる。従って、所定の外部磁界を感磁層に提供 する必要がある場合、より小さな書き込み電流で必要な外部磁界を発生させることが できる。また、この磁気メモリでは、書き込み配線の複数の配線部分が感磁層の両面 ではなく一方の面に沿って配設されているので、製造工程をより簡易にできる。
[0008] また、磁気メモリは、複数の記憶領域のそれぞれが、所定の長さの空隙を介して対 向する少なくとも一対の開放端部を含み書き込み配線の複数の配線部分を囲むよう に設けられた磁気ヨークを更に有し、磁気抵抗効果素子は、該磁気抵抗効果素子の 一対の側面が磁気ヨークの一対の開放端部とそれぞれ対向または接するように配置 されていることを特徴としてもよい。或いは、磁気メモリは、複数の記憶領域のそれぞ れは、書き込み配線の複数の配線部分を連続して囲むように設けられた磁気ヨーク を更に有し、磁気抵抗効果素子の感磁層は、磁気ヨークの一部によって構成されて いることを特徴としてもよい。これらにより、書き込み配線の複数の配線部分からの外 部磁界を感磁層に効率よく与えることができるので、書き込み電流を更に小さくできる 。また、書き込み配線の複数の配線部分のうち一配線部分が磁気抵抗効果素子から 比較的離れてしまう場合でも、該ー配線部分からの外部磁界を他の配線部分からの 外部磁界と同じように感磁層へ効率よく与えることができる。
[0009] また、磁気メモリは、複数の記憶領域のそれぞれが、感磁層の厚さ方向と交差する 方向に並設された複数の磁気抵抗効果素子を有し、書き込み配線は、複数の磁気 抵抗効果素子の感磁層の一方の面側に螺旋状に配設されていることを特徴としても よい。これにより、書き込み配線を各磁気抵抗効果素子に沿って効率的に配設する ことができる。
発明の効果
[0010] 本発明による磁気メモリによれば、書き込み電流を小さくでき、且つ製造工程を簡 易にできる。
図面の簡単な説明
[0011] [図 1]図 1は磁気メモリの全体構成を示す概念図である。
[図 2]図 2は各記憶領域が有する TMR素子付近の構成を示す平面図である。
[図 3]図 3は図 2に示す I I線に沿った側面断面図である。
[図 4]図 4は図 2に示す II II線に沿った側面断面図である
[図 5]図 5は記憶領域を行方向に沿って切断したときの断面構成を示す図である。
[図 6]図 6は記憶領域を図 5における III III線で切断したときの断面を示す図である。
[図 7]図 7は記憶領域を図 5における IV— IV線で切断したときの断面を示す図である
[図 8]図 8は TMR素子及びその周辺の動作について説明するための図であり、 (a) は書き込み時の素子を示し、 (b)は読み出し時の素子を示す。
[図 9]図 9は TMR素子及びその周辺の動作について説明するための図であり、 (a) は書き込み時の素子を示し、 (b)は読み出し時の素子を示す。 圆 10]図 10は磁性材料層の製造過程を示す図であり、(a)は、本実施形態による磁 気メモリ 1の製造工程の一部を示し、 (b)は(a)に示す V—V線に沿った側面断面を 示す。
圆 11]図 11は磁性材料層の製造過程を示す図であり、 (a)は形成された TMR素子 4a及び 4bを示す平面図であり、 (b)は (a)に示す VI— VI線に沿った側面断面図であ る。
[図 12]図 12は磁性材料層の製造過程を示す図である。
圆 13]図 13は磁性材料層の製造過程を示す図であり、 (a)は形成された対向ヨーク 5bを示す平面図であり、 (b)は(a)に示す VII— VII線に沿った側面断面図である 圆 14]図 14は磁性材料層の製造過程を示す図であり、 (a)は形成された読み出し配 線 33a及び 33bを示す平面図であり、 (b)は(a)に示す VIII— VIII線に沿った側面断 面図である。
圆 15]図 15は磁性材料層の製造過程を示す図であり、 (a)は形成された絶縁層 24b 及び下層配線 3 lbを示す平面図であり、 (b)は(a)に示す IX— IX線に沿った側面断 面図である。
圆 16]図 16は磁性材料層の製造過程を示す図であり、 (a)は形成された絶縁層 24c 及び上層配線 31aを示す平面図であり、 (b)は (a)に示す X—X線に沿った側面断面 図である。
[図 17]図 17は磁性材料層の製造過程を示す図である。
[図 18]図 18は磁性材料層の製造過程を示す図である。
圆 19]図 19は磁性材料層の製造過程を示す図であり、 (a)は形成されたビームョー ク 5dを示す平面図であり、 (b)は(a)に示す XI— XI線に沿った側面断面図である。 圆 20]図 20は磁性材料層の製造過程を示す図である。
[図 21]図 21は第 1変形例における TMR素子の周辺構成を示す平面図である。
[図 22]図 22は図 21に示す XII— XII線に沿った側面断面図である。
[図 23]図 23は第 2変形例に係る磁気ヨークの形状を示す図である。
[図 24]図 24は第 3変形例に係る磁気ヨークの形状を示す図である。
符号の説明 磁気メモリ 己' I思 p:[5
記憶領域
a, 4b TMR素子 磁気ヨークa
b 対向ヨークc ピラーヨークd ビームヨーク 半導体層
配線層
磁性材料層
1 ビット選択回路2 ワード選択回路3a〜13c ビット酉己線4 ワード配線
5 接地配線
1 半導体基板
2〜24 絶縁領域1 書き込み配線1a 上層配線
1b 下層配線
1c〜31f 配線部分2 書き込みトランジスタ2a ドレイン領域2b ゲート電極
2c ソース領域 a, 33b 読み出し配線 34 読み出しトランジスタ
34a ドレイン領域
34b ゲート電極
34c ソース領域
35a, 35b 電極
41 第 1磁性層
42 非磁性絶縁層
43 第 2磁性層
44 反強磁性層
発明を実施するための最良の形態
[0013] 以下、添付図面を参照しながら本発明による磁気メモリの実施の形態を詳細に説 明する。なお、図面の説明において同一の要素には同一の符号を付し、重複する説 明を省略する。
[0014] まず、本発明による磁気メモリの一実施形態の構成について説明する。図 1は、本 実施形態による磁気メモリ 1の全体構成を示す概念図である。磁気メモリ 1は、記憶部 2、ビット選択回路 11、ワード選択回路 12、ビット配線 13a〜13c、ワード配線 14、並 びに接地配線 15を備える。記憶部 2は、複数の記憶領域 3からなる。複数の記憶領 域 3は、 m行 n列 (m、 nは 2以上の整数)からなる二次元状に配列されている。複数の 記憶領域 3のそれぞれは、 2つの TMR素子 4a及び 4b、 1本の書き込み配線 31、書 き込みトランジスタ 32、読み出し配線 33a及び 33b、及び読み出しトランジスタ 34を 有する。
[0015] TMR素子 4a及び 4bは、外部磁界によって磁化方向が変化する感磁層を含む磁 気抵抗効果素子である。具体的には、 TMR素子 4a及び 4bは、感磁層である第 1磁 性層と、磁ィ匕方向が固定された第2磁性層と、第 1磁性層及び第 2磁性層に挟まれた 非磁性絶縁層とを含んで構成される。 TMR素子 4a及び 4bは、書き込み配線 31を流 れる書き込み電流により発生する外部磁界を受けて第 1磁性層の磁化方向が変化す るように、書き込み配線 31に沿って配置される。そして、書き込み電流によって第 1磁 性層の磁ィ匕方向が変化すると、第 1磁性層の磁ィ匕方向と第 2磁性層の磁ィ匕方向との 関係に応じて第 1磁性層と第 2磁性層との間の抵抗値が変化する。
[0016] 書き込み配線 31は、書き込み電流によって TMR素子 4a及び 4bそれぞれの第 1磁 性層に外部磁界を提供するための配線である。書き込み配線 31は、 TMR素子 4aの 一方の面に沿った配線部分 31c及び 31d、並びに TMR素子 4bの一方の面に沿つ た配線部分 3 le及び 3 Ifを有する。書き込み配線 31は TMR素子 4a及び 4b上にお いて螺旋状 (コイル状)に配設されており、各配線部分 31c〜31fは、書き込み配線 3 1の延在方向において配線部分 31c、 31e、 31d、及び 31fの順に並んでいる。書き 込み配線 31の一端は、ビット配線 13aに電気的に接続されている。書き込み配線 31 の他端は、書き込みトランジスタ 32のソースまたはドレインに電気的に接続されてい る。
[0017] 書き込みトランジスタ 32は、書き込み配線 31における書き込み電流の導通を制御 するための書き込みスィッチ手段である。書き込みトランジスタ 32は、ドレイン及びソ ースの一方が書き込み配線 31に電気的に接続されており、他方がビット配線 13bに 電気的に接続されている。書き込みトランジスタ 32のゲートは、ワード配線 14に電気 的に接続されている。
[0018] 読み出し配線 33a及び 33bは、それぞれ TMR素子 4a及び 4bに読み出し電流を流 すための配線である。具体的には、読み出し配線 33aの一端はビット配線 13cに電 気的に接続されており、読み出し配線 33aの他端は TMR素子 4aの第 1磁性層側に 電気的に接続されている。また、読み出し配線 33bの一端はビット配線 13aに電気的 に接続されており、読み出し配線 33bの他端は TMR素子 4bの第 1磁性層側に電気 的に接続されている。
[0019] 読み出しトランジスタ 34は、読み出し配線 33a及び 33bにおける読み出し電流の導 通を制御するための読み出しスィッチ手段である。読み出しトランジスタ 34のソース 及びドレインの一方は TMR素子 4a及び 4bの第 2磁性層側に電気的に接続されて おり、ソース及びドレインの他方は接地配線 15に電気的に接続されている。また、読 み出しトランジスタ 34のゲートは、ワード配線 14に電気的に接続されている。なお、 T MR素子 4a及び 4bの第 1磁性層側 (第 2磁性層側)とは、非磁性絶縁層に対して第 1 磁性層の側か或いは第 2磁性層の側カゝを意味し、第 1磁性層(第 2磁性層)上に別の 層が介在する場合を含むものとする。
[0020] ビット配線 13a〜13cは、記憶領域 3の各列に対応して配設されている。ビット配線 13aは、対応する列の記憶領域 3それぞれが有する書き込み配線 31の一端に電気 的に接続されている。さらに、本実施形態のビット配線 13aは、対応する列の記憶領 域 3それぞれが有する読み出し配線 33bの一端にも電気的に接続されている。ビット 配線 13bは、対応する列の記憶領域 3それぞれが有する書き込みトランジスタ 32のド レインまたはソースに電気的に接続されている。ビット配線 13cは、対応する列の記 憶領域 3それぞれが有する読み出し配線 33aの一端に電気的に接続されている。ヮ ード配線 14は、記憶領域 3の各行に対応して配設されており、対応する行の記憶領 域 3それぞれが有する書き込みトランジスタ 32及び読み出しトランジスタ 34の制御端 子であるゲートに電気的に接続されている。
[0021] ビット選択回路 11は、各記憶領域 3の書き込み配線 31に正または負の書き込み電 流を提供する機能と、各記憶領域 3の読み出し配線 33a及び 33bに読み出し電流を 提供する機能とを備える。具体的には、ビット選択回路 11は、磁気メモリ 1の内部また は外部力 データ書込時またはデータ読出時に指示されたアドレスに応じて、該アド レスに該当する列を選択するアドレスデコーダ回路と、データ書込時において、選択 した列に対応するビット配線 13aとビット配線 13bとの間に正または負の書き込み電 流を供給するとともに、データ読出時において、選択した列に対応するビット配線 13 aまたは 13cに読み出し電流を供給するカレントドライブ回路とを含んで構成されてい る。また、ワード選択回路 12は、磁気メモリ 1の内部または外部力もデータ書込時また はデータ読出時に指示されたアドレスに応じて、該アドレスに該当する行を選択し、 選択した行に対応するワード配線 14に制御電圧を提供する機能を備える。
[0022] 以上の構成を備える磁気メモリ 1は、次のように動作する。すなわち、磁気メモリ 1の 内部または外部からデータ書込みを行うアドレス (i行 j列 Zl≤i≤m、 l≤j≤n)が指 定されると、ビット選択回路 11及びワード選択回路 12がそれぞれ該当する j列及び i 行を選択する。ワード選択回路 12に選択された i行に含まれる記憶領域 3の書き込み トランジスタ 32においては、制御電圧がゲートに印加され、書き込み電流が導通可 能な状態となる。また、ビット選択回路 11に選択された j列に含まれる記憶領域 3にお いては、ビット配線 13aとビット配線 13bとの間に、データに応じた正または負の電圧 が印加される。そして、ビット選択回路 11に選択された j列及びワード選択回路 12に 選択された i行の双方に含まれる記憶領域 3においては、書き込みトランジスタ 32を 介して書き込み配線 31に書き込み電流が生じ、この書き込み電流による磁界によつ て TMR素子 4a及び 4bそれぞれの第 1磁性層の磁ィ匕方向が反転する。こうして、指 示されたアドレス (i行 j列)の記憶領域 3に二値データが書き込まれる。
[0023] また、磁気メモリ 1の内部または外部力もデータ読み出しを行うアドレス (k行 1列 Z1
≤k≤m、 l≤l≤n)が指定されると、ビット選択回路 11及びワード選択回路 12がそ れぞれ該当する 1列及び k行を選択する。ワード選択回路 12に選択された k行に含ま れる記憶領域 3の読み出しトランジスタ 34においては、制御電圧がゲートに印加され 、読み出し電流が導通可能な状態となる。また、ビット選択回路 11に選択された 1列 に対応するビット配線 13a及び 13cには、ビット選択回路 11から読み出し電流が順次 供給される。そして、ビット選択回路 11に選択された 1列及びワード選択回路 12に選 択された k行の双方に含まれる記憶領域 3においては、読み出し配線 33a (33b)から の読み出し電流が、 TMR素子 4a (4b)及び読み出しトランジスタ 34を介して接地配 線 15へ流れる。そして、例えば TMR素子 4a及び 4bのそれぞれにおける電圧降下 量が判別されることにより、指示されたアドレス (k行 1列)の記憶領域 3に記憶された二 値データが読み出される。
[0024] ここで、本実施形態における記憶部 2の具体的な構成について詳細に説明する。
図 2は、各記憶領域 3が有する TMR素子 4a及び 4b付近の構成を示す平面図である 。また、図 3は、図 2に示す I—I線に沿った側面断面図である。図 2及び図 3を参照す ると、各記憶領域 3は、 TMR素子 4a及び 4b、磁気ヨーク 5、書き込み配線 31、読み 出し配線 33a及び 33bを有する。なお、これらの構成及び付随する配線の周囲は、 全て絶縁性材料カゝらなる絶縁領域 24 (図 3参照)によって占められている。図 2にお いては、絶縁領域 24の図示を省略している。
[0025] 図 2を参照すると、書き込み配線 31は、該書き込み配線 31が TMR素子 4a及び 4b それぞれの一方の面上を複数回 (本実施形態では 2回)通過するように、 TMR素子 4a及び 4bの一方の面側にぉ 、て 2重に巻かれた螺旋状 (コイル状)を呈して!/、る。具 体的には、書き込み配線 31は、導電性の金属からなり、上層配線 31a及び下層配線 3 lbを含んで構成されている。上層配線 3 la及び下層配線 3 lbは、記憶領域 3の厚 さ方向から見てその一部が開いた略環状に形成されており、厚さ方向から見て互い に重なるように配設されている。そして、上層配線 3 la及び下層配線 3 lbそれぞれの 一部は TMR素子 4aの上面に沿って配設されており、上層配線 3 la及び下層配線 3 lbそれぞれの他の一部は TMR素子 4bの上面に沿って配設されている。また、図 3 に示すように、上層配線 31aの一端は垂直配線 16fを介して電極 17dと電気的に接 続されており、上層配線 3 laの他端は垂直配線 3 lgを介して下層配線 3 lbの一端と 電気的に接続されている。下層配線 31bの他端は、垂直配線 16jを介して電極 17c に電気的に接続されている。
[0026] ここで、図 4は、図 2に示す II II線に沿った側面断面図である。図 4を参照すると、 TMR素子 4a及び 4bのそれぞれは、第 1磁性層 41、非磁性絶縁層 42、第 2磁性層 4 3、及び反強磁性層 44が順に積層されてなる。そして、 TMR素子 4a及び 4bは、第 1 磁性層 41の厚さ方向と交差する方向に並んで配設されている。第 1磁性層 41は本 実施形態における感磁層であり、書き込み配線 31からの外部磁界によって磁ィ匕方 向が変化し、二値データを記録することができる。第 1磁性層 41の材料としては、例 えば Co、 CoFe、 NiFe、 NiFeCo、 CoPtなどの強磁性材料を用いることができる。
[0027] また、第 2磁性層 43では、反強磁性層 44によって磁ィ匕方向が固定されている。す なわち、反強磁性層 44と第 2磁性層 43との接合面における交換結合によって、第 2 磁性層 43の磁ィ匕方向が安定化されている。第 2磁性層 43の磁ィ匕容易軸方向は、第 1磁性層 41の磁ィ匕容易軸方向に沿うように設定される。第 2磁性層 43の材料として は、例えば Co、 CoFe、 NiFe、 NiFeCo、 CoPtなどの強磁性材料を用いることがで きる。また、反強磁性層 44の材料としては、 IrMn、 PtMn、 FeMn、 PtPdMn、 NiO 、またはこれらのうち任意の組み合わせの材料を用いることができる。
[0028] 非磁性絶縁層 42は、非磁性且つ絶縁性の材料カゝらなる層である。第 1磁性層 41と 第 2磁性層 43との間に非磁性絶縁層 42が介在することにより、第 1磁性層 41と第 2 磁性層 43との間には、トンネル磁気抵抗効果 (TMR)が生じる。すなわち、第 1磁性 層 41と第 2磁性層 43との間には、第 1磁性層 41の磁ィ匕方向と第 2磁性層 43の磁ィ匕 方向との相対関係 (平行または反平行)に応じた電気抵抗が生じる。非磁性絶縁層 4 2の材料としては、例えば Al、 Zn、 Mgといった金属の酸ィ匕物または窒化物が好適で ある。
[0029] なお、第 2磁性層 43の磁ィ匕方向を安定ィ匕させる層として、反強磁性層 44に代えて 、非磁性金属層またはシンセティック AF (反強磁性)層を介して第 3磁性層を設けて も良い。この第 3磁性層が第 2磁性層 43と反強磁性結合を形成することにより、第 2 磁性層 43の磁ィ匕方向をさらに安定化させることができる。また、第 2磁性層 43から第 1磁性層 41への静磁界の影響を防止できるので、第 1磁性層 41の磁ィ匕反転を容易 にすることができる。このような第 3磁性層の材料としては特に制限はないが、例えば Co、 CoFe、 NiFe、 NiFeCo、 CoPtなどの強磁性材料を単独で、或いは複合させて 用いることが好ましい。また、第 2磁性層 43と第 3磁性層との間に設けられる非磁性 金属層の材料としては、 Ru、 Rh、 Ir、 Cu、 Agなどが好適である。なお、非磁性金属 層の厚さは、第 2磁性層 43と第 3磁性層との間に強い反強磁性結合を得るために 2n m以下であることが好ま U、。
[0030] TMR素子 4a及び 4bの第 1磁性層 41上には、読み出し配線 33a及び 33bがそれ ぞれ設けられている。読み出し配線 33a及び 33bは導電性の金属カゝらなり、 TMR素 子 4a及び 4bの第 1磁性層 41にそれぞれ電気的に接続されている。 TMR素子 4aの 反強磁性層 44は、電極 35a上に設けられており電極 35aと電気的に接続されている 。 TMR素子 4bの反強磁性層 44は、電極 35b上に設けられており電極 35bと電気的 に接続されている。この構成により、読み出し配線 33a (33b)と電極 35a (35b)との 間に読み出し電流が供給されると、この読み出し電流は TMR素子 4a (4b)を厚さ方 向に流れることとなる。
[0031] 読み出し配線 33a上には下層配線 31bの配線部分 31dが配設されており、その上 にはさらに上層配線 31aの配線部分 31cが配設されている。これらの配線部分 31c 及び 31dは、 TMR素子 4aの第 1磁性層 41の一方の面 41aに沿っている。これらの 配線部分 31c及び 31dにおいては、書き込み配線 31が螺旋状に配設されることによ つて、 TMR素子 4aの第 1磁性層 41の一方の面 41a上において書き込み電流が互 いに同じ向きとなる。また、読み出し配線 33b上には下層配線 31bの配線部分 31fが 配設されており、その上にはさらに上層配線 31aの配線部分 31eが配設されている。 これらの配線部分 31e及び 31fは、 TMR素子 4bの第 1磁性層 41の一方の面 41aに 沿っている。これらの配線部分 31e及び 31fにおいても、書き込み配線 31が螺旋状 に配設されることによって、 TMR素子 4bの第 1磁性層 41の一方の面 41a上におい て書き込み電流が互いに同じ向きとなる。なお、配線部分 31c及び 31dにおける書き 込み電流の向きと、配線部分 3 le及び 3 Ifにおける書き込み電流の向きとは、互いに 逆となる。
[0032] 読み出し配線 33a、配線部分 31c、及び配線部分 31dの間には間隙があいており 、絶縁領域 24により満たされることによって互いに絶縁されている。同様に、読み出 し配線 33b、配線部分 31e、及び配線部分 31fの間には間隙があいており、絶縁領 域 24により満たされることによって互いに絶縁されている。なお、 TMR素子 4aの第 1 磁性層 41の磁化容易軸方向は、配線部分 31 c及び 31 dの長手方向と交差する方向 (すなわち、書き込み電流の方向と交差する方向に沿うように設定される。同様に、 T MR素子 4bの第 1磁性層 41の磁ィ匕容易軸方向は、配線部分 31e及び 31fの長手方 向と交差する方向に沿うように設定される。
[0033] 磁気ヨーク 5は、各配線部分 31c〜31fの周囲を覆い、書き込み電流によって発生 する磁界を効率よく TMR素子 4a及び 4bへ提供するための強磁性部材である。磁気 ヨーク 5は、所定の長さの空隙を介して対向する二対の開放端部を含み、配線部分 3 lc及び 3 Idを一括して囲み、配線部分 3 le及び 3 Ifを一括して囲むように配設され ている。具体的には、本実施形態の磁気ヨーク 5は、二対の対向ヨーク 5bと、 3つのピ ラーヨーク 5cと、ビームヨーク 5dとによって構成されている。このうち、二対の対向ョー ク 5bは、開放端部としてそれぞれ端面 5aを有する。このうち一方の対の端面 5aは、 T MR素子 4aの第 1磁性層 41の磁化容易軸方向に沿って、所定の長さの空隙を介し て互いに対向している。そして、 TMR素子 4aは、その一対の側面 4cがそれぞれ一 方の対の端面 5aに対向するように、且つ第 1磁性層 41の磁ィ匕容易軸方向が一方の 対の端面 5aの並ぶ方向に沿うように配置される。また、他方の対の端面 5aは、 TMR 素子 4bの第 1磁性層 41の磁化容易軸方向に沿って、所定の長さの空隙を介して互 いに対向している。そして、 TMR素子 4bは、その一対の側面 4dがそれぞれ他方の 対の端面 5aに対向するように、且つ第 1磁性層 41の磁化容易軸方向が他方の対の 端面 5aの並ぶ方向に沿うように配置される。
[0034] ビームヨーク 5dは、上層配線 31aにおける TMR素子 4a及び 4bに対向する面とは 反対側の面に沿って、配線部分 31c上力 配線部分 31e上にわたって設けられてい る。また、 3つのピラーヨーク 5cのうち一つは、配線部分 31c及び 31dと配線部分 31e 及び 31fとの間に設けられている。このピラーヨーク 5cの一端はビームヨーク 5dに繋 力 ており、他端は二対の対向ヨーク 5bそれぞれにおける片方の対向ヨーク 5bに繋 がっている。 3つのピラーヨーク 5cのうち他の一つは、配線部分 31c及び 31dの一対 の側面のうち配線部分 31e及び 31fと対向する面とは反対側の側面に沿って設けら れている。このピラーヨーク 5cの一端はビームヨーク 5dに繋がっており、他端は二対 の対向ヨーク 5bのうち一方の対における片方の対向ヨーク 5bに繋がっている。 3つの ピラーヨーク 5cのうち残りの一つは、配線部分 31e及び 31fの一対の側面のうち配線 部分 31c及び 31dと対向する面とは反対側の側面に沿って設けられている。このビラ 一ヨーク 5cの一端はビームヨーク 5dに繋がっており、他端は二対の対向ヨーク 5bの うち他方の対における片方の対向ヨーク 5bに繋がって!/、る。 3つのピラーヨーク 5cは 、以上の構成によって、ビームヨーク 5dと二対の対向ヨーク 5bとを繋いでいる。
[0035] 磁気ヨーク 5を構成する材料としては、例えば Ni、 Fe、 Coのうち少なくとも一つの元 素を含む金属が好適である。また、磁気ヨーク 5は、その磁化容易軸方向が TMR素 子 4a及び 4bの第 1磁性層 41の磁ィ匕容易軸方向に沿うように形成されている。また、 書き込み配線 31の各配線部分 31c〜31fの周方向と直交する面における磁気ヨーク 5の断面積は、二対の端面 5aにおいて最も小さくなつている。具体的には、磁気ョー ク 5の対向ヨーク 5b、ピラーヨーク 5c、及びビームヨーク 5dのうち対向ヨーク 5bの断面 積が最も小さくなつている。そして、さらに好適には、対向ヨーク 5bが端面 5aに近づく ほど細くなつて 、ることが好まし 、。
[0036] なお、絶縁領域 24の材料としては、例えば SiO t 、つた絶縁性材料を用いることが
2
できる。
[0037] 続いて、前述した TMR素子 4a及び 4bを含む記憶領域 3の全体構成について説明 する。図 5〜図 7は、各記憶領域 3の構成を示す側面断面図である。図 5は、記憶領 域 3を行方向に沿って切断したときの断面構成を示している。図 6は、記憶領域 3を 図 5における III— III線で切断したときの断面を示している。図 7は、記憶領域 3を図 5 における IV— IV線で切断したときの断面を示している。
[0038] 図 5〜図 7を参照すると、記憶領域 3 (記憶部 2)は、半導体層 6、配線層 7、及び磁 性材料層 8が順に積層されてなる。半導体層 6は、半導体基板 21を含み記憶部 2全 体の機械的強度を維持するとともに、トランジスタ等の半導体デバイスが形成される 層である。磁性材料層 8は、前述した TMR素子 4a及び 4bや磁気ヨーク 5といった磁 性材料による構成物が形成される層である。なお、図 2〜図 4に示した書き込み配線 31、読み出し配線 33a及び 33b、電極 35a及び 35b、及び絶縁領域 24も、この磁性 材料層 8に含まれる。配線層 7は、半導体層 6と磁性材料層 8との間に設けられる。配 線層 7には、ビット配線 13a〜13c及びワード配線 14といった各記憶領域 3を貫く配 線が形成される。また、配線層 7には、磁性材料層 8に形成された TMR素子 4a及び 4b、書き込み配線 31、並びに読み出し配線 33a及び 33bと、半導体層 6に形成され たトランジスタなどの半導体デバイスと、ビット配線 13a〜13c及びワード配線 14とを、 互 ヽに電気的に接続するための配線が形成される。
[0039] まず、半導体層 6について説明する。半導体層 6は、半導体基板 21と、絶縁領域 2 2と、書き込みトランジスタ 32と、読み出しトランジスタ 34とを有する。半導体基板 21 は、例えば Si基板力もなり、 p型または n型の不純物がドープされている。絶縁領域 2 2は、半導体基板 21上にぉ 、て書き込みトランジスタ 32及び読み出しトランジスタ 34 以外の領域に形成されており、書き込みトランジスタ 32と読み出しトランジスタ 34とを 電気的に分離している。絶縁領域 22は、例えば SiOといった絶縁性材料カゝらなる。
2
[0040] 図 6を参照すると、書き込みトランジスタ 32は、半導体基板 21とは反対導電型のド レイン領域 32a及びソース領域 32c、ゲート電極 32b、並びに半導体基板 21の一部 によって構成されている。ドレイン領域 32a及びソース領域 32cは、例えば Si基板の 表面近傍に、半導体基板 21とは反対導電型の不純物がドープされて形成されてい る。ドレイン領域 32aとソース領域 32cとの間には半導体基板 21が介在しており、そ の半導体基板 21上にゲート電極 32bが配置されている。このような構成により、書き 込みトランジスタ 32では、ゲート電極 32bに電圧が印加されると、ドレイン領域 32a及 びソース領域 32cが互いに導通する。
[0041] 図 7を参照すると、読み出しトランジスタ 34は、半導体基板 21とは反対導電型のド レイン領域 34a及びソース領域 34c、ゲート電極 34b、並びに半導体基板 21の一部 によって構成されている。ドレイン領域 34a及びソース領域 34cは、例えば Si基板の 表面近傍に、半導体基板 21とは反対導電型の不純物がドープされて形成されてい る。ドレイン領域 34aとソース領域 34cとの間には半導体基板 21が介在しており、そ の半導体基板 21上にゲート電極 34bが配置されている。このような構成により、読み 出しトランジスタ 34では、ゲート電極 34bに電圧が印加されると、ドレイン領域 34a及 びソース領域 34cが互いに導通する。
[0042] 次に、配線層 7について説明する。配線層 7は、絶縁領域 23と、ビット配線 13a〜l 3cと、ワード配線 14と、接地配線 15と、複数の垂直配線及び水平配線とを有する。 なお、配線層 7においては、各配線以外の領域は、すべて絶縁領域 23によって占め られている。絶縁領域 23の材料としては、半導体層 6の絶縁領域 22と同様に、 SiO
2 といった絶縁性材料を用いることができる。また、垂直配線の材料としては例えば w を、水平配線の材料としては例えば A1を、それぞれ用いることができる。
[0043] 図 6を参照すると、磁性材料層 8の書き込み配線 31 (下層配線 31b)の一端が電気 的に接続された電極 17cは、垂直配線 16g〜16i及び水平配線 18c、 18dに電気的 に接続されており、垂直配線 16iは書き込みトランジスタ 32のドレイン領域 32aとォー ミック接合されている。また、書き込み配線 31 (上層配線 3 la)の他端が電気的に接 続された電極 17dは、垂直配線 16kを介して水平配線 18eに電気的に接続されてい る。なお、水平配線 18eは、図示しない配線を介してビット配線 13a (図 5参照)に電 気的に接続されている。
[0044] また、水平配線 18fは垂直配線 16mに電気的に接続されており、垂直配線 16mは 書き込みトランジスタ 32のソース領域 32cとォーミック接合されている。なお、水平配 線 18fは、図示しない配線によってビット配線 13b (図 5参照)に電気的に接続されて いる。また、ワード配線 14の一部は、書き込みトランジスタ 32のゲート電極 32bとなつ ている。すなわち、図 6に示すゲート電極 32bは、記憶領域 3の行方向に延びるヮー ド配線 14の一部によって構成されている。このような構成によって、ワード配線 14は 、書き込みトランジスタ 32の制御端子 (ゲート電極 32b)に電気的に接続される。
[0045] また、図 7を参照すると、 TMR素子 4a及び 4bの第 2磁性層 43側にそれぞれ電気 的に接続された電極 35a及び 35bは、それぞれ配線層 7の垂直配線 16c及び 16pを 介して水平配線 18aに電気的に接続されている。水平配線 18aは、垂直配線 16d、 水平配線 18bを介して垂直配線 16eに電気的に接続されており、垂直配線 16eは読 み出しトランジスタ 34のドレイン領域 34aとォーミック接合されている。また、接地配線 15は垂直配線 16qに電気的に接続されており、垂直配線 16qは読み出しトランジス タ 34のソース領域 34cとォーミック接合されている。また、ワード配線 14の一部は、読 み出しトランジスタ 34のゲート電極 34bとなっている。すなわち、図 7に示すゲート電 極 34bは、記憶領域 3の行方向に延びるワード配線 14の一部によって構成されてい る。このような構成によって、ワード配線 14は、読み出しトランジスタ 34の制御端子( ゲート電極 34b)に電気的に接続される。
[0046] また、図 5を参照すると、磁性材料層 8において TMR素子 4aの第 1磁性層 41側に 電気的に接続された読み出し配線 33aは、記憶領域 3の行方向に延びており、磁性 材料層 8内部にお 、て垂直配線 16aを介して電極 17aに電気的に接続されて!、る。 そして、電極 17aは、配線層 7の垂直配線 16bを介してビット配線 13cに電気的に接 続されている。また、磁性材料層 8において TMR素子 4bの第 1磁性層 41側に電気 的に接続された読み出し配線 33b (図 7参照)は、読み出し配線 33aと同様に記憶領 域 3の行方向に延びており、図示しない配線によって配線層 7のビット配線 13aに電 気的に接続されている。
[0047] 以上の構成を有する記憶領域 3における TMR素子 4a及び 4b並びにその周辺の 動作について、図 8— (a)、 (b)及び図 9— (a)、 (b)を参照しながら説明する。まず、 図 8— (a)に示すように、書き込み配線 31に負の書き込み電流 I が流れると、配線
wl
部分 31c及び 31dの周方向に磁界 Φ が発生するとともに、配線部分 31e及び 31f
11
の周方向に磁界 Φ とは逆回りの磁界 Φ が発生する。磁界 Φ は、配線部分 31c
11 12 11
及び 31dの周囲に設けられた磁気ヨーク 5の内部、及び一対の端面 5a間の間隙を経 由する閉じた経路を形成する。同様に、磁界 Φ は、配線部分 3 le及び 3 Ifの周囲
12
に設けられた磁気ヨーク 5の内部、及び一対の端面 5a間の間隙を経由する閉じた経 路を形成する。このとき、配線部分 31c及び 31dと配線部分 31e及び 31fとの間に設 けられたピラーヨーク 5cにおいては、磁界 Φ の向きと磁界 Φ の向きとがー致する
11 12
ので、磁界 Φ 及び Φ は互いに妨げない。なお、本実施形態では、磁気ヨーク 5の
11 12
対向ヨーク 5b、ピラーヨーク 5c、及びビームヨーク 5dのうち対向ヨーク 5bの断面積が 最も小さくなつているので、磁気ヨーク 5内部に形成される磁界 Φ 及び磁界 Φ の
11 12 磁束密度は、対向ヨーク 5bにおいて最も大きくなる。
[0048] 配線部分 31c及び 3 Idの周囲に磁界 Φ が生じると、磁気ヨーク 5の磁界閉じ込め
11
作用によって TMR素子 4aの第 1磁性層 41に磁界 Φ (外部磁界)が効率よく提供さ
11
れる。この磁界 Φ によって、 TMR素子 4aの第 1磁性層 41の磁化方向 Aaは磁界 Φ
11
と同じ方向を向く。ここで、 TMR素子 4aの第 2磁性層 43の磁ィ匕方向 Baが、反強磁
11
性層 44との交換結合によって予め磁界 Φ と同じ方向を向いている場合には、第 1
11
磁性層 41の磁ィ匕方向 Aaと第 2磁性層 43の磁ィ匕方向 Baとが互いに同じ向き、すなわ ち平行状態となる。また、配線部分 31 e及び 3 Ifの周囲に磁界 Φ が生じると、磁気
12
ヨーク 5の磁界閉じ込め作用によって TMR素子 4bの第 1磁性層 41に磁界 Φ (外部
12 磁界)が効率よく提供される。この磁界 Φ
12によって、 TMR素子 4bの第 1磁性層 41 の磁ィ匕方向 Abは磁界 Φ と同じ方向、すなわち TMR素子 4aの第 1磁性層 41の磁
12
化方向 Aaとは逆の方向を向く。ここで、 TMR素子 4bの第 2磁性層 43の磁ィ匕方向 Bb 力 TMR素子 4aの第 2磁性層 43と同じ方向を向いている場合には、第 1磁性層 41 の磁ィ匕方向 Abと第 2磁性層 43の磁ィ匕方向 Bbとが互いに逆向き、すなわち反平行状 態となる。こうして、一方の TMR素子 4aの磁化方向が平行状態、且つ他方の TMR 素子 4bの磁ィ匕方向が反平行状態となることによって、記憶領域 3に二値データの一 方 (例えば 0)が書き込まれる。
[0049] 記憶領域 3に書き込まれた二値データを読み出す際には、図 8— (b)に示すように 、読み出し配線 33aと電極 35aとの間、及び読み出し配線 33bと電極 35bとの間にそ れぞれ読み出し電流 I及び I を流し、その電流値の変化または読み出し配線 33a (
ra rb
33b)と電極 35a (35b)との間の電位差の変化を検出する。これにより、 TMR素子 4a 及び 4bの磁ィ匕方向がそれぞれ平行カゝ反平行かが判別できる。例えば、 TMR素子 4 aの第 1磁性層 41の磁ィ匕方向 Aaが第 2磁性層 43の磁ィ匕方向 Baと平行である場合、 非磁性絶縁層 42におけるトンネル磁気抵抗効果 (TMR)によって、第 1磁性層 41と 第 2磁性層 43との間の抵抗値が比較的小さくなる。従って、例えば読み出し電流 I ra を一定とした場合には読み出し配線 33aと電極 35aとの間の電位差が比較的小さく なることから、 TMR素子 4aの磁ィ匕方向が平行状態であることがわかる。また、 TMR 素子 4bの第 1磁性層 41の磁ィ匕方向 Abが第 2磁性層 43の磁ィ匕方向 Bbと反平行であ る場合、非磁性絶縁層 42におけるトンネル磁気抵抗効果 (TMR)によって、第 1磁性 層 41と第 2磁性層 43との間の抵抗値が比較的大きくなる。従って、 TMR素子 4aと同 様の方法により TMR素子 4bの磁ィ匕方向を検出し、 TMR素子 4bの磁ィ匕方向が反平 行状態であれば、該当する記憶領域 3には二値データとして 0が書き込まれて 、ると 判定できる。
[0050] また、図 9 (a)に示すように、書き込み配線 31に正の書き込み電流 I が流れると w2
、配線部分 31c及び 31dの周方向に磁界 Φ とは逆回りの磁界 Φ が発生するととも
11 21
に、配線部分 31e及び 31fの周方向に磁界 Φ とは逆回り(すなわち、磁界 Φ に対
12 21 しても逆回り)の磁界 Φ
22が発生する。磁界 Φ
21は、配線部分 31c及び 31dの周囲に 設けられた磁気ヨーク 5の内部、及び一対の端面 5a間の間隙を経由する閉じた経路 を形成する。同様に、磁界 Φ は、配線部分 3 le及び 3 Ifの周囲に設けられた磁気ョ
22
ーク 5の内部、及び一対の端面 5a間の間隙を経由する閉じた経路を形成する。なお 、磁界 Φ 及び磁界 Φ の
11 12と同様に、磁界 Φ Φ
21及び磁界 22 磁束密度は対向ヨーク 5 bにおいて最も大きくなる。
[0051] 配線部分 31c及び 3 Idの周囲に磁界 Φ が生じると、磁気ヨーク 5の磁界閉じ込め
21
作用によって TMR素子 4aの第 1磁性層 41に磁界 Φ (外部磁界)が効率よく提供さ
21
れる。この磁界 Φ によって、 TMR素子 4aの第 1磁性層 41の磁化方向 Aaは磁界 Φ
21
と同じ方向を向く。ここで、 TMR素子 4aの第 2磁性層 43の磁化方向 Baが磁界 Φ
21 21 と逆の方向を向いている場合には、第 1磁性層 41の磁ィ匕方向 Aaと第 2磁性層 43の 磁ィ匕方向 Baとが互いに反平行状態となる。また、配線部分 3 le及び 3 Ifの周囲に磁 界 Φ が生じると、磁気ヨーク 5の磁界閉じ込め作用によって TMR素子 4bの第 1磁
22
性層 41に磁界 Φ (外部磁界)が効率よく提供される。この磁界 Φ によって、 TMR
22 22
素子 4bの第 1磁性層 41の磁ィ匕方向 Abは磁界 Φ と同じ方向、すなわち TMR素子 4aの第 1磁性層 41の磁ィ匕方向 Aaとは逆の方向を向く。 TMR素子 4bの第 2磁性層 4 3の磁化方向 Bbは TMR素子 4aの第 2磁性層 43の磁化方向 Baと同じ方向を向いて いるので、 TMR素子 4bの第 1磁性層 41の磁化方向 Abと第 2磁性層 43の磁化方向 Bbとは互い平行状態となる。こうして、一方の TMR素子 4aの磁ィ匕方向が反平行状 態、且つ他方の TMR素子 4bの磁ィ匕方向が平行状態となることによって、記憶領域 3 に二値データの他方 (例えば 1)が書き込まれる。
[0052] 図 9— (b)に示すように、 TMR素子 4aの第 1磁性層 41の磁ィ匕方向 Aaが第 2磁性 層 43の磁ィ匕方向 Baと反平行である場合、第 1磁性層 41と第 2磁性層 43との間の抵 抗値が比較的大きくなる。また、 TMR素子 4bの第 1磁性層 41の磁ィ匕方向 Abが第 2 磁性層 43の磁ィ匕方向 Bbと平行である場合、第 1磁性層 41と第 2磁性層 43との間の 抵抗値が比較的小さくなる。従って、 TMR素子 4a及び 4bにそれぞれ読み出し電流 I 及び I を流して TMR素子 4a及び 4bの磁化方向を検出し、 TMR素子 4aの磁化方 ra rb
向が反平行状態で且つ TMR素子 4bの磁ィ匕方向が平行状態であれば、データの読 み出し時に、該当する記憶領域 3には二値データとして 1が書き込まれていると判定 できる。
[0053] 以上に説明した、本実施形態による磁気メモリ 1が有する効果について説明する。
本実施形態による磁気メモリ 1では、書き込み配線 31が、互いに書き込み電流 I (I wl w
)が同じ向きになるように TMR素子 4aの第 1磁性層 41の一方の面 41a上に配設さ
2
れた複数の配線部分 31c及び 31dを有する。これにより、書き込み配線 31を流れる 書き込み電流 I (I )が第 1磁性層 41上を同じ向きに複数回 (本実施形態では 2回) wl w2
通過するので、 TMR素子 4aの第 1磁性層 41に複数倍 (本実施形態では 2倍)の外 部磁界を提供できる。従って、所定の外部磁界 Φ ( Φ )を TMR素子 4aの第 1磁性
11 21
層 41に提供する必要がある場合、より小さな書き込み電流 I (I )でもって必要な外 wl w2
部磁界 Φ ( Φ )を発生させることができる。これと同様に、書き込み配線 31は、互
11 21
いに書き込み電流 I (I )が同じ向きになるように TMR素子 4bの第 1磁性層 41の wl w2 一 方の面 41a上に配設された複数の配線部分 31e及び 31fを有する。これにより、書き 込み配線 31を流れる書き込み電流 I (I )が第 1磁性層 41上を同じ向きに複数回( wl w2
本実施形態では 2回)通過するので、 TMR素子 4bの第 1磁性層 41に複数倍 (本実 施形態では 2倍)の外部磁界を提供できる。従って、所定の外部磁界 Φ ( Φ )を丁
12 22
MR素子 4bの第 1磁性層 41に提供する必要がある場合、より小さな書き込み電流 I
wl
(I )でもって必要な外部磁界 Φ ( Φ )を発生させることができる。
w2 12 22
[0054] なお、本実施形態では書き込み配線 31の 2つの配線部分 31c及び 31d (または 31 e及び 31f)を TMR素子 4a (4b)の第 1磁性層 41の一方の面 41a上に配設している 力 本発明に係る磁気メモリにおいては、書き込み配線 31の 3つ以上の配線部分を 第 1磁性層の一方の面上に配設してもよい。これにより、 3倍以上の外部磁界を第 1 磁性層へ与えることができるので、所定の外部磁界を TMR素子の第 1磁性層 41〖こ 提供する必要がある場合、書き込み電流を更に小さくすることができる。
[0055] また、本実施形態による磁気メモリ 1では、書き込み配線 31の複数の配線部分 31c 〜31fが、 TMR素子 4a及び 4bの第 1磁性層 41の一方の面 41aに沿って配設されて いる。これにより、例えば先に述べた特許文献 1の磁気メモリと比較して、製造工程を より簡易にできる。なお、磁気メモリ 1の磁性材料層 8の製造方法について、後に説明 する。
[0056] また、本実施形態の磁気メモリ 1によれば、第 1磁性層 41の磁ィ匕方向 Aa、 Abを小 さな書き込み電流 I (I )
wl w2でもって反転できるので、書き込み電流 I (I )の
wl w2 導通を 制御する書き込みトランジスタ 32を小型化でき、各記憶領域 3毎に書き込みトランジ スタ 32を配置することによる磁気メモリ 1の大型化を抑えることができる。従って、本実 施形態のように各記憶領域 3に書き込み配線 31を一つのみ配設し、書き込みトラン ジスタ 32によって書き込み電流 I (I )を制御する構成を小型の磁気メモリ 1で実現
wl w2
できる。これにより、データを書き込もうとする記憶領域 3の TMR素子 4a、 4bに対して のみ磁界 Φ 〜Φ を提供し、他の記憶領域 3への誤書き込みを防止することができ
11 22
る。
[0057] また、本実施形態のように、複数の記憶領域 3のそれぞれが磁気ヨーク 5を有し、磁 気ヨーク 5は、少なくとも一対 (本実施形態では二対)の端面 5aを含み、書き込み配 線 31の複数の配線部分 3 lc及び 3 Idを一括して囲み、複数の配線部分 3 le及び 31 fを一括して囲むように設けられていることが好ましい。そして、 TMR素子 4a及び 4b は、それらの一対の側面 4cがそれぞれ磁気ヨーク 5の端面 5aと対向するように配置さ れていることが好ましい。これにより、複数の配線部分 31c及び 3 Idからの外部磁界 Φ ( Φ )を TMR素子 4aの第 1磁性層 41に効率よく与えるとともに、複数の配線部
11 21
分 31e及び 31fからの外部磁界 Φ ( Φ )を TMR素子 4bの第 1磁性層 41に効率よ
12 22
く与えることができるので、更に小さな書き込み電流 I (I )でもって TMR素子 4a及
wl w2
び 4bの第 1磁性層 41の磁ィ匕方向 Aa及び Abを反転できる。
[0058] また、本実施形態のように、配線部分 31c及び 3 leを配線部分 3 Id及び 3 Πよりも 上層へ配設する場合、配線部分 31c及び 31eが TMR素子 4a及び 4bの第 1磁性層 4 1力 比較的離れてしまう。しかし、本実施形態のように各配線部分 3 lc〜3 Ifを囲む 磁気ヨーク 5を記憶領域 3のそれぞれが有することによって、比較的離れた配線部分 31c及び 31eからの磁界を、他の配線部分 31d及び 31fからの磁界と同等の強度で TMR素子 4a及び 4bへ与えることができる。
[0059] また、本実施形態のように、複数の記憶領域 3のそれぞれが複数の TMR素子 4a及 び 4bを有する場合には、第 1磁性層 41の厚さ方向と交差する方向に TMR素子 4a 及び 4bが並設されるとともに、書き込み配線 31が、複数の TMR素子 4a及び 4bの第 1磁性層 41の一方の面 41a側に螺旋状に配設されることが好ましい。これにより、書 き込み配線 31を各 TMR素子 4a、 4bに沿って効率的に配設することができる。
[0060] また、本実施形態のように、磁気ヨーク 5の磁ィ匕容易軸方向は、 TMR素子 4a及び 4 bの第 1磁性層 41の磁ィ匕容易軸方向に沿っていることが好ましい。また、書き込み配 線 31の各配線部分 31c〜31fの周方向と直交する断面における磁気ヨーク 5の断面 積は、端面 5aにおいて最も小さいことが好ましい。これらにより、磁気ヨーク 5内部の 磁界 φ 〜φ を、 TMR素子 4a、 4bの第 1磁性層 41へ更に効率よく与えることがで
11 22
きる。
[0061] ここで、本実施形態による磁気メモリ 1の製造方法のうち、磁性材料層 8の製造方法 について図 10〜図 20を参照しながら説明する。
[0062] 図 10— (a)は、本実施形態による磁気メモリ 1の製造工程の一部を示す平面図で あり、図 10— (b)は、図 10— (a)に示す V—V線に沿った側面断面図である。まず、 図 10—(a)及び図 10— (b)に示すように、配線層 7の垂直配線 16c上に電極 35aを 形成し、垂直配線 16p上に電極 35bを形成する。同様に、電極 17a〜17dを、垂直 配線 16b、 16r、 16g、及び 16kの上にそれぞれ形成する。なお、前工程において配 線層 7を形成する際に、配線層 7の垂直配線 16c、 16b、及び 16gの位置と、垂直配 線 16p、 16r、及び 16kの位置とが互いに線対称となるように各垂直配線を配置して おく。
[0063] 続、て、 TMR素子 4a及び 4bを形成するために、高真空 (UHV) DCスパッタ装置 により、例えば、 Ta層下地層、 IrMn層、 CoFe層及び A1層を順次成膜する。その後 、酸素プラズマにより A1層の酸ィ匕を行い、トンネル絶縁層(すなわち、図 4に示した非 磁性絶縁層 42となる層)を形成した後、 C。Fe層及び Ta保護層を形成する。そして、 リソグラフィ装置により所定形状のレジストマスクを形成した後、図 11— (a)及び図 11 - (b)に示すようにイオンミリングにより電極 35a及び 35bそれぞれの上に TMR素子 4a及び 4bを形成する。図 11一(a)は、形成された TMR素子 4a及び 4bを示す平面 図であり、図 11— (b)は、図 11— (a)に示す VI— VI線に沿った側面断面図である。 T MR素子 4a及び 4bを形成した後、 CVD装置を用いて、例えば Si(OC H ) により T
2 5 4
MR素子 4a及び 4bの側面上並びに各電極 35a、 35b、及び 17a〜17dの上に SiO
2 絶縁層 24aを形成する。
[0064] 続いて、対向ヨーク 5bを形成するために、図 12に示すように所定形状のレジストマ スク 71をリソグラフィ装置を用いて形成する。図 12は、形成されたレジストマスク 71を 示す側面断面図である。このとき、レジストマスク 71を、対向ヨーク 5bの平面形状に 応じた開口を有するように形成する。そして、スパッタ装置により例えば NiFe膜 68を 成膜した後、レジストマスク 71を除去する。
[0065] 続いて、対向ヨーク 5bの形状に応じたレジストマスクを、 NiFe膜 68上、絶縁層 24a 上、及び TMR素子 4a、 4b上に形成し、イオンミリングにより NiFe膜 68を成形するこ とにより、図 13— (a)及び図 13— (b)に示すように二対の対向ヨーク 5bを形成する。 図 13— (a)は、形成された対向ヨーク 5bを示す平面図であり、図 13— (b)は、図 13 - (a)に示す VII— VII線に沿った側面断面図である。その後、レジストマスクを除去 する。
[0066] 続いて、図 14— (a)及び図 14— (b)に示すように、読み出し配線 33a及び 33bを形 成する。図 14— (a)は、形成された読み出し配線 33a及び 33bを示す平面図であり、 図 14— (b)は、図 14— (a)に示す VIII— VIII線に沿った側面断面図である。このとき 、読み出し配線 33aを、その一端が TMR素子 4aの上面に接するように形成するとと もに、その他端が垂直配線及び電極を介して垂直配線 16rに電気的に接続されるよ うに形成する。同様に、読み出し配線 33bを、その一端が TMR素子 4bの上面に接 するように形成するとともに、その他端が垂直配線及び電極を介して垂直配線 16bに 電気的に接続されるように形成する。
[0067] 続いて、図 15— (a)及び図 15— (b)に示すように、絶縁層 24b及び下層配線 3 lb を形成する。図 15— (a)は、形成された絶縁層 24b及び下層配線 3 lbを示す平面図 であり、図 15—(b)は、図 15— (a)に示す IX— IX線に沿った側面断面図である。この 工程では、まず、絶縁層 24bを、読み出し配線 33a及び 33b上、絶縁層 24a上、並び に対向ヨーク 5b上に、絶縁層 24aと同じ材料を CVD法により堆積することによって形 成する。そして、例えば Cuなどの導電性の良い材料力もなるめっき下地膜(図示せ ず)をスパッタリングにより絶縁層 24b上に形成した後、下層配線 31bの平面形状と 同じ形状の開口を有するレジストマスクを絶縁層 24b上に形成し、全体をめつき槽に 浸し、めっき下地膜を電極として利用しためっき処理によって下層配線 3 lbを形成す る。このとき、下層配線 3 lbの一端を垂直配線及び電極を介して垂直配線 16gに電 気的に接続する。また、下層配線 3 lbを、 TMR素子 4a及び 4bの上を通過し且つ他 端が開放されているような略環状に形成する。なお、めっき処理に用いたレジストマス ク及びめつき下地膜を、下層配線 31bの形成後にイオンミリング等により除去する。
[0068] 続いて、図 16— (a)及び図 16— (b)に示すように、絶縁層 24c及び上層配線 3 la を形成する。図 16— (a)は、形成された絶縁層 24c及び上層配線 3 laを示す平面図 であり、図 16— (b)は、図 16— (a)に示す X—X線に沿った側面断面図である。この 工程では、まず、絶縁層 24cを、下層配線 31b上及び絶縁層 24b上に、絶縁層 24a と同じ材料を CVD法により堆積することによって形成する。そして、下層配線 31bを 形成した方法と同様の方法によって、上層配線 31aを形成する。このとき、上層配線 31aの一端を垂直配線及び電極を介して垂直配線 16kに電気的に接続する。また、 上層配線 31aを下層配線 31b上に重ね、 TMR素子 4a及び 4bの上を通過し且つ他 端が垂直配線 3 lgを介して下層配線 3 lbに接続されるような略環状に形成する。こう して、上層配線 3 la及び下層配線 3 lbを含む螺旋状の書き込み配線 31が完成する
[0069] 続いて、図 17に示すように、絶縁層 24d及びレジストマスク 72を形成する。図 17は 、形成された絶縁層 24d及びレジストマスク 72を示す側面断面図である。この工程で は、絶縁層 24aと同じ材料カゝらなる絶縁層 24dを、 CVD法により上層配線 3 la上及 び絶縁層 24c上に形成する。そして、絶縁層 24d上に選択的にレジストマスク 72を形 成する。ここでは、 TMR素子 4a上、及び TMR素子 4b上の各領域において、上層配 線 31a及び下層配線 31bの上面よりもやや広い領域にレジストマスク 72を形成する。 そして、絶縁層 24b〜24dのうちレジストマスク 72に覆われていない部分を RIE等に より除去し、対向ヨーク 5bを露出させた後、レジストマスク 72を除去する(図 18参照)
[0070] 続いて、図 19— (a)及び図 19— (b)に示すように、ピラーヨーク 5c及びビームョー ク 5dを形成する。図 19— (a)は、形成されたビームヨーク 5dを示す平面図であり、図 19 - (b)は、図 19— (a)に示す X卜 XI線に沿った側面断面図である。この工程では 、まず、絶縁層 24a上にレジストマスク 73を選択的に形成する。このとき、対向ヨーク 5 b及び上層配線 3 laを覆わないようにレジストマスク 73を形成する。そして、レジストマ スク 73が設けられていない領域に、例えばスパッタリングによりピラーヨーク 5c及びビ ームヨーク 5dを形成する。こうして、二対の対向ヨーク 5b、 3つのピラーヨーク 5c、及 びビームヨーク 5dからなる磁気ヨーク 5が形成される。最後に、図 20に示すように、レ ジストマスク 73を除去し、絶縁層 24aと同じ材料カゝらなる絶縁層 24eを、絶縁層 24a 上及び磁気ヨーク 5上に CVD法により形成する。こうして、絶縁領域 24が形成され、 磁性材料層 8が完成する。
[0071] 以上に説明した製造方法から明らかなように、本実施形態による磁気メモリ 1では、 書き込み配線 31の各配線部分 31c〜31fを TMR素子 4a及び 4bの上面側のみに配 設することにより、図 15及び図 16に示したような極めて簡易な工程によって書き込み 配線 31を形成することができる。なお、書き込み配線のうち TMR素子 4a及び 4bに 沿った配線部分をそれぞれ 3つ以上設ける場合には、図 15及び図 16に示した工程 を必要なだけ繰り返すとよ 、。 [0072] (第 1の変形例)
[0073] ここで、本実施形態による磁気メモリ 1の第 1変形例について説明する。図 21は、本 変形例における TMR素子 4の周辺構成を示す平面図である。また、図 22は、図 21 に示す XII— XII線に沿った側面断面図である。図 21及び図 22を参照すると、本変形 例では、各記憶領域は一つの TMR素子 4を有する。 TMR素子 4は、上記実施形態 の TMR素子 4a及び 4bと同様に、第 1磁性層 41、非磁性絶縁層 42、第 2磁性層 43 、及び反強磁性層 44を有する。 TMR素子 4の第 1磁性層 41側の面は読み出し配線 33と電気的に接続されており、第 2磁性層 43側の面は電極 35と電気的に接続され ている。
[0074] また、本変形例の書き込み配線 36は、上層配線 36a及び下層配線 36bを含んで 構成されている。上層配線 36aは、図 21に示すように、記憶領域の厚さ方向から見 てその一部が開いた略環状に形成されており、その一配線部分 36dが TMR素子 4 の一方の面 41aに沿っている。また、下層配線 36bは、記憶領域の厚さ方向から見て 上層配線 36aの一部と重なるように形成されており、その一配線部分 36eが TMR素 子 4の一方の面 41aに沿っている。そして、配線部分 36d及び 36eにおける書き込み 電流の向きが互いに同じになるように、上層配線 36aの一端と下層配線 36bの一端と 力 垂直配線 36cを介して互いに電気的に接続されて 、る。
[0075] また、本変形例の磁気ヨーク 50は、所定の長さの空隙を介して対向する一対の開 放端部を有する略環状体力もなり、書き込み配線 36の配線部分 36d及び 36eを囲 むように配設されている。具体的には、磁気ヨーク 50は、一対の対向ヨーク 50bと、一 対のピラーヨーク 50cと、ビームヨーク 50dとによって構成されている。このうち、一対 の対向ヨーク 50bは、一対の開放端部として一対の端面 50aを有する。この一対の端 面 50aは、 TMR素子 4の第 1磁性層 41の磁化容易軸方向に沿って、所定の長さの 空隙を介して互いに対向している。そして、 TMR素子 4は、その一対の側面がそれ ぞれ一対の端面 5aに対向するように配置される。また、ビームヨーク 50dは、配線部 分 36dにおける TMR素子 4に対向する面とは反対側の面に沿って設けられている。 一対のピラーヨーク 50cは、配線部分 36d及び 36eの側面に沿って設けられており、 一対の対向ヨーク 50bそれぞれにおける端面 50aとは異なる側の一端と、ビームョー ク 50dの両端とを繋いでいる。以上の構成によって、対向ヨーク 50b、ピラーヨーク 50 c、及びビームヨーク 50dは、配線部分 36d及び 36eを囲んでいる。
[0076] 本発明に係る磁気メモリにおいては、上記実施形態のように各記憶領域が複数の TMR素子を有する構成以外にも、本変形例のように各記憶領域が一つの TMR素 子 4を有する構成でもよい。この一つの TMR素子 4の第 1磁性層 41の一方の面 41a に沿って複数の配線部分 36d及び 36eを配設することにより、書き込み配線 36を流 れる書き込み電流が第 1磁性層 41上を同じ向きに複数回 (本変形例では 2回)通過 するので、 TMR素子 4の第 1磁性層 41に複数倍 (本変形例では 2倍)の外部磁界を 提供できる。従って、所定の外部磁界を第 1磁性層 41に提供する必要がある場合、 より小さな書き込み電流によって必要な外部磁界を発生させることができる。
[0077] (第 2の変形例)
[0078] 続いて、本実施形態による磁気メモリ 1の第 2変形例について説明する。図 23は、 本変形例に係る磁気ヨーク 51の形状を示す断面図である。上記実施形態の磁気ョ ーク 5に代えて本変形例に係る磁気ョーク 51を設けてもよぐ上記実施形態の磁気メ モリ 1と同様或いはそれ以上の効果を得ることができる。
[0079] 図 23を参照すると、本変形例の磁気ヨーク 51は、二対の対向ヨーク 51b、 3つのピ ラーヨーク 51c、及びビームヨーク 5 Idを含んで構成されている。このうち、ピラーョー ク 51c及びビームヨーク 5 Idの構成及び形状は、既述した磁気ヨーク 5のピラーヨーク 5c及びビームヨーク 5dの構成及び形状(図 4参照)と同様である。二対の対向ヨーク 51bのうち一方の対の対向ヨーク 51bは、それらの端面 51aが TMR素子 4aの側面 4 cのうち第 1磁性層 41の側面と接している。また、二対の対向ヨーク 51bのうち他方の 対の対向ヨーク 51bは、それらの端面 51aが TMR素子 4bの側面 4dのうち第 1磁性 層 41の側面と接している。磁気ヨーク 51はこのような形状であってもよぐ書き込み電 流によって磁気ヨーク 51内部に生成される磁界を TMR素子 4a及び 4bそれぞれの 第 1磁性層 41へ更に効率よく提供することができる。なお、この変形例において、磁 気ヨーク 51が導電性を有する場合には、第 1磁性層 41と第 2磁性層 43との間に流れ る読み出し電流を非磁性絶縁層 42を介して好適に流すために、磁気ヨーク 51の端 面 51aは非磁性絶縁層 42には接していないことが好ましぐ第 2磁性層 43には接し ていてはならない。
[0080] (第 3の変形例)
[0081] 続いて、本実施形態による磁気メモリ 1の第 3変形例について説明する。図 24は、 本変形例に係る磁気ヨーク 52の形状を示す断面図である。上記実施形態の磁気ョ ーク 5に代えて本変形例に係る磁気ヨーク 52を設けてもよぐ上記実施形態の磁気メ モリ 1と同様或いはそれ以上の効果を得ることができる。
[0082] 図 24を参照すると、磁気ヨーク 52は、略環状体からなり、第 1のビームヨーク 52b、 3つのピラーヨーク 52c、及び第 2のビームヨーク 52dを含んで構成されている。このう ち、第 1のビームヨーク 52bは、 TMR素子 4e及び 4fの第 1磁性層を兼ねるように読み 出し配線 33a及び 33bと 2つの非磁性絶縁層 42との間に配置されている。そして、第 1のビームヨーク 52bの一端は 3つのピラーヨーク 52cのうち一つと繋がっており、第 1 のビームヨーク 52bの他端は 3つのピラーヨーク 52cのうち他の一つと繋がっており、 第 1のビームヨーク 52bの中央部分(すなわち、 TMR素子 4e及び 4fの間の部分)は 3つのピラーヨーク 52cのうち残りの一つと繋がっている。また、ビームヨーク 52dは、 上層配線 31aにおける TMR素子 4e、 4fとは反対側の面上に設けられている。 3つの ピラーヨーク 52cのうち一つは、配線部分 31c及び 31dと配線部分 31e及び 31fとの 間に設けられており、第 1のビームヨーク 52bの中央部分と第 2のビームヨーク 52dの 中央部分とを繋いでいる。 3つのピラーヨーク 52cのうち他の一つは、配線部分 31c 及び 31dの側面に沿って設けられており、第 1のビームヨーク 52bの一端と第 2のビ ームヨーク 52dの一端とを繋 、で!/、る。 3つのピラーヨーク 52cのうち残りの一つは、 配線部分 31e及び 31fの側面に沿って設けられており、第 1のビームヨーク 52bの他 端と第 2のビームヨーク 52dの他端とを繋いでいる。以上の構成によって、第 1のビー ムヨーク 52b、 3つのピラーヨーク 52c、及び第 2のビームヨーク 52dは、書き込み配線 31の配線部分 31c〜31fの外周を完全に(連続して)囲んでいる。また、 TMR素子 4 e及び 4fの第 1磁性層は、それぞれ磁気ヨーク 52の一部(第 1のビームヨーク 52b)に よって構成されることとなる。従って、書き込み電流によって磁気ヨーク 52内部に生成 される磁界を、 TMR素子 4e及び 4fの第 1磁性層へ更に効率よく提供することができ る。 [0083] 本発明による磁気メモリは、上記した実施形態に限られるものではなぐ他に様々な 変形が可能である。例えば、上記実施形態では磁気抵抗効果素子として TMR素子 を用いているが、巨大磁気抵抗(GMR: Giant magneto- Resistive)効果を利用した G MR素子を用いてもよい。 GMR効果とは、非磁性層を挟んだ 2つの強磁性層の磁ィ匕 方向のなす角度により、積層方向と直交する方向における強磁性層の抵抗値が変化 する現象である。すなわち、 GMR素子においては、 2つの強磁性層の磁化方向が互 いに平行である場合に強磁性層の抵抗値が最小となり、 2つの強磁性層の磁ィ匕方向 が互いに反平行である場合に強磁性層の抵抗値が最大となる。なお、 TMR素子や GMR素子には、 2つの強磁性層の保磁力の差を利用して書き込み Z読み出しを行 う疑似スピンバルブ型と、一方の強磁性層の磁ィ匕方向を反強磁性層との交換結合に より固定するスピンバルブ型とがある。また、 GMR素子におけるデータ読み出しは、 積層方向と直交する方向における強磁性層の抵抗値の変化を検出することにより行 われる。また、 GMR素子におけるデータ書き込みは、書き込み電流により生じる磁界 によって一方の強磁性層の磁ィ匕方向を反転させることにより行われる。
[0084] また、上記実施形態の磁気ヨークは、一方の端面から他方の端面まで書き込み配 線の周方向に一体に形成されている。磁気ヨークの形状としては、これ以外にも、例 えば周方向に 1つ以上のギャップ(間隙)を有し、複数の部分に分割されているような 形状であってもよい。また、上記実施形態では、書き込みスィッチ手段及び読込スィ ツチ手段としてトランジスタを備えている力 これらのスィッチ手段は、必要に応じて電 流を遮断 Z導通させる機能を有する様々な手段を適用することができる。
[0085] また、上記実施形態では、各記憶領域にお!、て一本の書き込み配線によって磁気 抵抗効果素子に外部磁界を与えているが、複数の書き込み配線によって磁気抵抗 効果素子に外部磁界を与えてもよい。例えば、記憶部の行方向に沿って延びる第 1 の書き込み配線と、列方向に沿って延びる第 2の書き込み配線とが設けられ、第 1及 び第 2の書き込み配線が交差する位置に磁気抵抗効果素子が配置された構成の磁 気メモリであっても、本発明の構成を適用できる。この場合、第 1及び第 2の書き込み 配線からの合成磁界を磁気抵抗効果素子に与えることにより書き込みを行う。そして 、第 1の書き込み配線を流れる書き込み電流が感磁層の一方の面上を複数回通過 するように第 1の書き込み配線を配設する。これにより、上記実施形態と同様の効果 を得ることができる。さらに好ましくは、第 2の書き込み配線についても同様に、第 2の 書き込み配線を流れる書き込み電流が感磁層の一方の面上を複数回通過するよう に第 2の書き込み配線を配設するとよ 、。
産業上の利用可能性
本発明は、磁気抵抗効果素子にデータを記憶する磁気メモリに利用することができ る。

Claims

請求の範囲
[1] 複数の記憶領域を備え、前記複数の記憶領域のそれぞれは、
外部磁界によって磁化方向が変化する感磁層を含む一または複数の磁気抵抗効 果素子と、
書き込み電流によって前記感磁層に前記外部磁界を提供する書き込み配線と を有し、
前記書き込み配線が前記感磁層の一方の面上を複数回通過するように、前記書き 込み配線の複数の配線部分が各磁気抵抗効果素子毎に配設されており、前記複数 の配線部分は、前記感磁層の前記一方の面上において互いに前記書き込み電流が 同じ向きになるように配設されていることを特徴とする、磁気メモリ。
[2] 前記複数の記憶領域のそれぞれは、所定の長さの空隙を介して対向する少なくと も一対の開放端部を含み前記書き込み配線の前記複数の配線部分を囲むように設 けられた磁気ヨークを更に有し、
前記磁気抵抗効果素子は、該磁気抵抗効果素子の一対の側面が前記磁気ヨーク の前記一対の開放端部とそれぞれ対向または接するように配置されていることを特 徴とする、請求項 1に記載の磁気メモリ。
[3] 前記複数の記憶領域のそれぞれは、前記書き込み配線の前記複数の配線部分を 連続して囲むように設けられた磁気ヨークを更に有し、
前記磁気抵抗効果素子の前記感磁層は、前記磁気ヨークの一部によって構成され て 、ることを特徴とする、請求項 1に記載の磁気メモリ。
[4] 前記複数の記憶領域のそれぞれは、前記感磁層の厚さ方向と交差する方向に並 設された複数の前記磁気抵抗効果素子を有し、
前記書き込み配線は、前記複数の磁気抵抗効果素子の前記感磁層の前記一方の 面側に螺旋状に配設されて 、ることを特徴とする、請求項 1に記載の磁気メモリ。
PCT/JP2005/019706 2004-10-26 2005-10-26 磁気メモリ WO2006046610A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004311401A JP2006128220A (ja) 2004-10-26 2004-10-26 磁気メモリ
JP2004-311401 2004-10-26

Publications (1)

Publication Number Publication Date
WO2006046610A1 true WO2006046610A1 (ja) 2006-05-04

Family

ID=36227852

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/019706 WO2006046610A1 (ja) 2004-10-26 2005-10-26 磁気メモリ

Country Status (2)

Country Link
JP (1) JP2006128220A (ja)
WO (1) WO2006046610A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109427965A (zh) * 2017-09-05 2019-03-05 Tdk株式会社 自旋流磁化旋转元件、自旋轨道转矩型磁阻效应元件

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5266630B2 (ja) * 2006-10-06 2013-08-21 Tdk株式会社 磁気メモリ

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002246568A (ja) * 2001-02-16 2002-08-30 Sony Corp 磁気メモリ装置およびその製造方法
WO2004066387A1 (ja) * 2003-01-24 2004-08-05 Tdk Corporation 磁気記憶セルおよび磁気メモリデバイスならびに磁気メモリデバイスの製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002246568A (ja) * 2001-02-16 2002-08-30 Sony Corp 磁気メモリ装置およびその製造方法
WO2004066387A1 (ja) * 2003-01-24 2004-08-05 Tdk Corporation 磁気記憶セルおよび磁気メモリデバイスならびに磁気メモリデバイスの製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109427965A (zh) * 2017-09-05 2019-03-05 Tdk株式会社 自旋流磁化旋转元件、自旋轨道转矩型磁阻效应元件
CN109427965B (zh) * 2017-09-05 2023-04-18 Tdk株式会社 自旋流磁化旋转元件、自旋轨道转矩型磁阻效应元件

Also Published As

Publication number Publication date
JP2006128220A (ja) 2006-05-18

Similar Documents

Publication Publication Date Title
US10418548B2 (en) Magnetic memory device
JP6316474B1 (ja) 磁気メモリ
US6807094B2 (en) Magnetic memory
US6956765B2 (en) Magneto-resistance effect element, magnetic memory and magnetic head
KR100533299B1 (ko) 자기 스위칭 소자 및 자기 메모리
JP5360599B2 (ja) 磁気抵抗効果素子及び磁気ランダムアクセスメモリ
KR100548997B1 (ko) 다층박막구조의 자유층을 갖는 자기터널 접합 구조체들 및이를 채택하는 자기 램 셀들
WO2008068967A1 (ja) 磁気ランダムアクセスメモリ及びその製造方法
JP2010114143A (ja) 半導体記憶装置および半導体記憶装置の製造方法
KR20030069055A (ko) 자기저항 효과 소자 및 자기 메모리 장치
JP2008147488A (ja) 磁気抵抗効果素子及びmram
JP5076387B2 (ja) 磁気記憶装置
JP4596230B2 (ja) 磁気メモリデバイスおよびその製造方法
US7683446B2 (en) Magnetic memory using spin injection flux reversal
WO2006059641A1 (ja) 磁気メモリ
WO2006046610A1 (ja) 磁気メモリ
US7414882B2 (en) Magnetic memory devices having rotationally offset magnetic storage elements therein
US20060279980A1 (en) Magnetic storage cell and magnetic memory device
JP5625380B2 (ja) 磁気抵抗記憶素子及び磁気ランダムアクセスメモリ
JP2004031640A (ja) 磁気メモリ装置
JP2009146995A (ja) 磁気記憶装置
JP4982945B2 (ja) 磁気メモリ
WO2006035943A1 (ja) 磁気メモリ
JP2008235659A (ja) ヨーク型磁気記憶装置の製造方法、ヨーク型磁気記憶装置
JP2006080387A (ja) 磁気メモリ

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BW BY BZ CA CH CN CO CR CU CZ DK DM DZ EC EE EG ES FI GB GD GE GM HR HU ID IL IN IS KE KG KM KP KZ LC LK LR LS LT LU LV LY MA MG MK MN MW MX MZ NA NG NI NZ OM PG PH PL PT RO RU SC SD SE SK SL SM SY TJ TM TN TR TT TZ UA US UZ VC VN YU ZA ZM

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SZ TZ UG ZM ZW AM AZ BY KG MD RU TJ TM AT BE BG CH CY DE DK EE ES FI FR GB GR HU IE IS IT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 05805320

Country of ref document: EP

Kind code of ref document: A1