WO2006043656A1 - 微粒子堆積装置及び微粒子堆積方法 - Google Patents

微粒子堆積装置及び微粒子堆積方法 Download PDF

Info

Publication number
WO2006043656A1
WO2006043656A1 PCT/JP2005/019377 JP2005019377W WO2006043656A1 WO 2006043656 A1 WO2006043656 A1 WO 2006043656A1 JP 2005019377 W JP2005019377 W JP 2005019377W WO 2006043656 A1 WO2006043656 A1 WO 2006043656A1
Authority
WO
WIPO (PCT)
Prior art keywords
fine particle
fine particles
fine
raw material
film
Prior art date
Application number
PCT/JP2005/019377
Other languages
English (en)
French (fr)
Inventor
Satoshi Kobayashi
Yuki Tani
Original Assignee
Hoya Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoya Corporation filed Critical Hoya Corporation
Priority to EP05795475A priority Critical patent/EP1811553A4/en
Priority to JP2006520456A priority patent/JP4467568B2/ja
Priority to US11/665,735 priority patent/US7829154B2/en
Publication of WO2006043656A1 publication Critical patent/WO2006043656A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/0012Apparatus for achieving spraying before discharge from the apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B5/00Electrostatic spraying apparatus; Spraying apparatus with means for charging the spray electrically; Apparatus for spraying liquids or other fluent materials by other electric means
    • B05B5/08Plant for applying liquids or other fluent materials to objects
    • B05B5/087Arrangements of electrodes, e.g. of charging, shielding, collecting electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B5/00Electrostatic spraying apparatus; Spraying apparatus with means for charging the spray electrically; Apparatus for spraying liquids or other fluent materials by other electric means
    • B05B5/025Discharge apparatus, e.g. electrostatic spray guns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/02Processes for applying liquids or other fluent materials performed by spraying
    • B05D1/04Processes for applying liquids or other fluent materials performed by spraying involving the use of an electrostatic field
    • B05D1/06Applying particulate materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/04Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to gases
    • B05D3/0493Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by exposure to gases using vacuum

Definitions

  • the present invention relates to a fine particle deposition apparatus for depositing fine particles on a substrate or the like in the production of an inorganic film such as a semiconductor film, magnetic film or optical film in which fine particles such as quantum dots and magnetic particles are uniformly dispersed or deposited, and
  • the present invention relates to a fine particle deposit manufacturing method and a light emitting element manufacturing method.
  • Quantum dot-dispersed light emitting devices include self-organized quantum dot formation using the Stranski-Kmstnow mode (for example, Patent Document 1), lithographic and etching methods (for example, Patent Document 2), and self-assembled quantum dots using surface treatment agents. It is manufactured by a method such as a dot forming method (for example, Patent Document 3).
  • Non-Patent Document 1 a method for producing a photoluminescence light-emitting material by dispersing quantum dots having CdSe nanocrystal (NCs) force in an amorphous or polycrystalline ZnSe matrix by ES-OMCVD is known.
  • ZnSe is a material with a wider band gap than CdSe, and is above and below the conduction band edge and valence band edge energy level forces CdSe, respectively, so a small CdSe crystal is surrounded by a ZnSe matrix.
  • it plays the role of increasing the emission recombination efficiency of electrons and holes in the CdSe crystal.
  • Patent Document 1 Japanese Patent Laid-Open No. 05-62896
  • Patent Document 2 Japanese Patent Laid-Open No. 07-30151
  • Patent Document 3 Japanese Patent Laid-Open No. 11 354843
  • Non-Patent Document l Appl. Phys. Lett., Vol. 65, No. 22, 1994, p2795- 279 7
  • Non-Patent Document 1 describes a light-emitting material that emits light resulting from transition between Is-Is quantization levels of CdSe with respect to irradiated light. Since the emission wavelength is determined according to the size of NCs, the NCs of Non-Patent Document 1 have a broad emission spectrum because aggregation occurs and NCs sizes vary.
  • CdSe NCs and ZnSe matrix are formed by OMCVD. Specifically, a solution in which NCs of CdSe is dispersed in a mixed solvent of toluene and acetonitrile is introduced into the reactor by electrospray (ES), and H Se and dieth in which hydrogen is introduced as a carrier gas.
  • ES electrospray
  • Non-Patent Document 1 the observed light emission is photoluminescence, which is another light emission phenomenon that is different from the emission mechanism luminescence required for a light emitting diode. Compared to the effect on electoric luminescence, the crystallinity of the amorphous or polycrystalline ZnSe matrix located around CdSe has little effect on light emission. ZnSe in Non-Patent Document 1 plays a role of surrounding the CdSe and constituting the energy well wall of the CdSe quantum dot, and the composition and crystallinity of ZnSe itself have little effect on the luminous efficiency of CdSe.
  • the ZnSeZCdSe film formed by the method described in Non-Patent Document 1 contains impurities such as hydrogen derived from the carrier gas and carbon derived from the ZnSe raw material, but the photoluminescence of Non-Patent Document 1 is not contained in the CdSe crystal. It is observed at high intensity because it is generated by carrier pair generation and pair annihilation at.
  • Non-Patent Document 1 when Non-Patent Document 1 is applied to the production of a light emitting diode, there is a problem that the movement of carriers is prevented by the presence of impurities (C, H, etc.) mixed in the ZnSe matrix. By inhibiting the movement of carriers, the light emission efficiency is remarkably lowered, the electrical conductivity is controlled, and desired characteristics cannot be obtained.
  • impurities C, H, etc.
  • Non-Patent Document 1 describes that N or P derived from TOP (hydrocarbon side chain located around C dSe) was not detected by the Auger electron spectrometer, Detection limit of Auger electron spectrometer
  • these impurities are required to be 0.01% or less because of the light emission mechanism that carriers must move.
  • the CdSe and ZnSe quantum well structures are destroyed by the interdiffusion of constituent elements, etc., which can be considered as a technique to increase the substrate temperature (for example, 400 ° C or higher) to desorb alkyl chains, etc.
  • the CVD method is not suitable for electoric luminescence because it requires high film formation temperature and heat treatment after film formation.
  • the present invention has been made under such a technical background, and fine particles of a desired size are uniformly dispersed in a single crystal, polycrystal or amorphous homogeneous inorganic film free from impurities. It is an object of the present invention to provide a fine particle deposition apparatus, a fine particle deposit production method, and a light emitting device capable of producing the fine particle dispersed film. Another object of the present invention is to provide a fine particle deposition apparatus for depositing fine particles having a desired size on a deposition target, and a fine particle deposit manufacturing method using the same.
  • the first means is:
  • a fine particle deposition apparatus for depositing the fine particles on an object to be deposited using a solution in which the fine particles are dispersed in a solvent as a raw material
  • a decompression chamber having an exhaust port for creating a decompressed atmosphere inside, a decompression chamber capable of introducing the raw material ejected from the solution supply device into the interior through a jet nozzle;
  • a film forming chamber having an exhaust port for making the inside a higher degree of vacuum than that of the decompression chamber, and a material discharged from the decompression chamber can be introduced into the interior through a skimmer nozzle, Among these raw materials, a film forming chamber equipped with a separation device for selecting only fine particles having a specific mass-to-charge ratio and depositing them on an object to be deposited, It is a fine particle deposition apparatus characterized by having.
  • the second means is
  • a lens device for converging the raw material charged by the charging device, and only fine particles having a specific mass-to-charge ratio by applying an electric field or a magnetic field to the raw material converged by the lens device.
  • the particulate deposition apparatus according to the first means comprising a separation device that advances in the direction of the deposition target and deposits on the deposition target.
  • the third means is
  • the charging device is a fine particle deposition device acting on the first or second means, wherein the charging device is a voltage applying device for setting the solution supply device to a predetermined potential.
  • the fourth means is
  • the charging device is a discharge voltage application device that applies a discharge voltage between the jet nozzle and a skimmer nozzle in order to make the inside of the decompression chamber a discharge region.
  • This is a fine particle deposition apparatus that can be used for any one of the means.
  • the fifth means is
  • the particle deposition apparatus acting on any one of the first to fourth means, wherein the separation apparatus is an electrostatic energy separation apparatus which is an orbital deflection energy separation apparatus using an electric field generating means.
  • the sixth means is
  • the separation device is an electromagnetic field type mass separation device which is an orbital deflection mass separation device using magnetic field generation means or orthogonal electromagnetic field generation means. This is a fine particle deposition apparatus.
  • the seventh means is
  • the separation apparatus is a high-frequency multipole mass separation apparatus, and is a fine particle deposition apparatus that works on any one of the first to fourth means.
  • the eighth means is
  • a fine particle depositing unit that works on any one of the first to seventh means, comprising a fine particle speed reducing device that decelerates the fine particles traveling toward the deposition target from the separation device. It is a product device.
  • the ninth means is
  • An eighth aspect of the fine particle deposition apparatus is characterized by having a fine particle converging apparatus for converging the fine particles decelerated by the fine particle decelerating apparatus and depositing them on the deposition target.
  • the tenth means is
  • the film formation chamber is divided into an ion optical region in which the separation device is disposed and a high vacuum region in which the deposition body is disposed, and these regions include an aperture through which fine particles pass. It is partitioned by a partition wall, provided with an exhaust device for setting each region to a desired degree of vacuum, and the degree of vacuum in the high vacuum region is maintained higher than the degree of vacuum in the ion optical region.
  • This is a fine particle deposition device that works on any one of the first to ninth means.
  • the eleventh means is
  • a semiconductor fine particle deposit characterized by using a solution in which semiconductor fine particles are dispersed in a solvent and depositing the semiconductor fine particles on an object to be deposited using the fine particle deposition apparatus according to any one of the first to tenth means. It is a manufacturing method.
  • a capillary is used as a solution supply device, and the solution is ejected as a fine droplet flow into an atmospheric pressure atmosphere from the tip of the one of the capillaries, and the tip of the one of the capillaries is brought to a predetermined potential.
  • This is a method for producing a fine particle deposit that works on the twelfth means characterized by charging fine droplets ejected from the liquid.
  • the 14th means is
  • the charging step is a step of setting the inside of the decompression chamber as a discharge region and allowing the raw material to pass through the decompression chamber.
  • raw material means that the raw material is charged and ionized as droplets, the raw material is fragmented (fine particles, solvents, ligands, and a collection of these, which are the target of deposition, these It contains everything that originates from the raw materials, such as those that are charged (ionized). Further, by using semiconductor fine particles as the fine particles and simultaneously using a semiconductor matrix that forms quantum dots with the semiconductor fine particles, a light emitting element can be formed. Moreover, the fine particle dispersion film and the manufacturing method thereof as an aspect of other means have the following configurations.
  • the raw material for forming the inorganic film in the film formation chamber, the fine particles obtained by the solvent removal step and the side chain removal step, and the raw material of the inorganic film are simultaneously coated. Supplying the film on a film formation substrate to form an inorganic film in which the fine particles are dispersed;
  • a process for producing a fine particle dispersion film comprising:
  • the side chain removal step includes
  • a solution discharger having a voltage application means and capable of discharging a solution from one end of the tip.
  • a film forming chamber that communicates with the reduced pressure and has a higher degree of vacuum than the reduced pressure chamber
  • the film forming chamber has a substrate holding means and a magnetic field generating means.
  • the manufacturing method of the present invention is applied to a quantum dot dispersion type light emitting diode. That is, when the manufacturing method according to the present invention is used to disperse quantum dots as fine particles in an inorganic material film having simultaneous bipolar material strength to form a light emitting active layer, the quantum dots are included in the matrix of the light emitting layer. Since the dots exist as nanocrystals, it is possible to produce a light emitting diode in which quantum dots as three-dimensional quantum wells are formed.
  • the fine particles are 1.5 to 7.Onm-sized nanocrystals, and the side chains are composed of hydrocarbon compounds of about C5 to C30 (may contain 0, N, P, etc.).
  • the fine particles may be nanocrystals having a single compositional force, or may be nanocrystals having a core-shell structure as shown in FIG.
  • a quantum dot material for example, CdSe, InP, etc.
  • a material similar to the inorganic film material for example, ZnSe, ZnS, etc.
  • the material of the inorganic film is a material with a wider gap than the material of the core part, which is a quantum dot, but it is mainly the inorganic film part that realizes the three-dimensional quantum well, and therefore the shell part is a few.
  • An atomic thin film may be used.
  • the hydrocarbon side chains located around the fine particles are adsorbed by relatively weak bonds such as coordination bonds rather than strong bonds such as covalent bonds. ing.
  • relatively weak bonds such as coordination bonds rather than strong bonds such as covalent bonds.
  • the desired emission color cannot be obtained by changing the diameter of the quantum dots.
  • the quantum dots are dispersed in a wide gap semiconductor so as to exhibit three-dimensional quantum well characteristics.
  • the low-gap semiconductors quantum dots
  • the wave function of carriers in the quantum dot fine particles ooze out and overlap each other, and quantum confinement does not occur, so that a quantum well is not formed. Therefore, it is preferable because only a characteristic as a mixture of “narrow gap semiconductor + wide gap semiconductor” (simple mixed polycrystal) can be obtained, and a desired emission color with low luminous efficiency cannot be obtained.
  • Carriers can move through an inorganic film (matrix) in which quantum dots are dispersed
  • the electrons from the electron injection electrode and the holes from the hole injection electrode will move and cannot recombine in the quantum dot, and light emission will not be obtained. End up.
  • the presence of impurities in the inorganic film for example, when a solution in which fine particles coordinated with hydrocarbon side chains are dispersed in an organic solvent is used) "Solvent” and "hydrocarbon chain”).
  • the present invention makes it possible to produce a quantum dot-dispersed light emitting diode that satisfies the above requirements.
  • an example of an apparatus used in the present invention will be described.
  • FIG. 1 An example of the apparatus used in the present invention is shown in FIG.
  • a fine particle dispersion solution 1 in which fine particles in which hydrocarbon side chains are coordinated is dispersed in an organic solvent is sent to the capillary 3 by the microsyringe pump 2 and is released from the first tip 3a of the firefly.
  • a predetermined voltage can be applied to the capillary 3 by the voltage applying means 3b.
  • the fine particle dispersion discharged from the leading end 3a of the carriage is introduced into the decompression chamber 4 through the jet nozzle 4a provided at the upstream end of the decompression chamber 4, and further upstream of the film forming chamber 5.
  • the film is introduced into the film forming chamber 5 through a skimmer nozzle 5a provided at the tip.
  • the decompression chamber 14 and the deposition chamber 1 5 can be set to different degrees of vacuum by a vacuum pump 4d, a high vacuum pump 5d, or the like.
  • the upstream side force also has an electrostatic lens 6, a magnetic field generating means 7, and a holding means 8 a for holding the substrate 8, and the reference axis is coaxially extended with the capillary 3. It is provided to match.
  • the “ionization process (charging process)” in the method for producing a fine particle dispersed film which is one embodiment of the present invention will be described.
  • the fine particles in the solution used as a raw material must be fragmented and ionized (charged) as much as possible in the solution before being introduced into the separation apparatus. That is, the “raw material” is charged and fragmented before reaching the deposition target, and may take various states.
  • the droplet discharged from the first tip 3a as the solution supply device is ionized by the voltage applied to the capillary 3, and is discharged as a charged droplet toward the jet nozzle 4a.
  • the tip of the tip is 3 a is preferably arranged at approximately atmospheric pressure.
  • the solvent removal step it is possible to adopt a method of increasing the range of the charged droplets at atmospheric pressure by increasing the distance between the capillary tip 3a and the jet nozzle 4a. Furthermore, it is also possible to employ a method of introducing a heated gas at the tip of the cabinet as the solvent removal step. In this case, a method of simply setting the surroundings to a heated gas atmosphere may be used, or a method of providing a heated gas line in the same axis as the capillary, or a method of providing a heater for this.
  • a solvent removal step it is possible to adopt a method of introducing a nebulizer gas at the tip of a cab. In this case, it is possible to simply introduce a nebulizer gas near the tip of one of the capillaries, or to provide a nebulizer gas line coaxial with the capillaries around the capillaries. Further, as an ionization process or a solvent removal process, it is possible to apply a high frequency ultrasonic wave to the tip of the first beam. As a result, the effect of assisting the formation of microdroplets and the effect of promoting the evaporation of the solvent can be obtained.
  • Efficient charging process is provided through particle bombardment, ogee process by interaction with radicals, electron bombardment, ionization process by ultraviolet rays. It is also possible to install the charging device in a decompression chamber that is not in the solution supply device as will be described later (FIG. 10). In this case, the process in which the raw material passes through the decompression chamber 1 corresponds to the charging process. Of course, it may be used in combination with voltage application to the first beam. It is preferable because it will further promote fragmentation.
  • kinetic energy preferably 1 to 1 OeV
  • a method of rushing to the above-described film-formed substrate on the same axis with high speed has been found.
  • rapid acceleration of charged droplets can be effective by setting the degree of vacuum to “capillary and reduced pressure chamber”. This is because the charged droplets are accelerated rapidly by applying a high voltage at the same time that the charged droplets are in a high vacuum state.
  • the collision energy between the charged droplets thus accelerated and the deposition substrate surface can break the (coordination) bond between the fine particles and the side chain, and the side chain is completed on the substrate surface. It was possible to completely remove it. Since this method does not require high-temperature treatment, it is very effective in that the side chain that does not destroy the characteristics of the fine particles as quantum dots can be removed.
  • heating the surface of the deposition substrate 8 in advance (about 100 ° C to 250 ° C) promotes sublimation of residues (side chains) generated on the surface of the substrate at the same time as the collision. Thus, side chains can be removed.
  • the substrate must be heated to a temperature that does not destroy the light emission characteristics of the quantum dots.
  • the molecular weight of the solvent is very small compared to the molecular weight of the fine particles and side chains.
  • components derived from the solvent that are not removed in the solvent removal step described in (2) but pass through the decompression chamber 1 and reach the deposition substrate surface of the deposition chamber 1 are formed. It was possible to remove it by means of magnetic field generation means 7 as a separation device arranged in front of the membrane substrate. That is, since the ionized solvent molecular ion has a very small molecular weight compared to other molecular ions, it is affected by the magnetic field generated by the magnetic field generating means 7 and its traveling trajectory. The road is warped and the surface of the deposition target substrate 8 cannot be reached. This process made it possible to remove the solvent.
  • a fine particle dispersion film in which fine particles are uniformly dispersed, and a fine particle deposit in which fine particles are deposited on a substrate with a simple configuration that does not require complicated manufacturing processes and manufacturing apparatuses.
  • the method of the present invention is excellent in the removal performance of impurities such as carbon compounds, phosphorus and nitrogen derived from raw materials, and enables contamination free. Further, there is no clear crystal interface between the obtained fine particles, and it is possible to produce a fine particle dispersed film having a low defect density that becomes a carrier scattering factor, a non-radiation center or a quenching center.
  • FIG. 1 is a cross-sectional view of a light emitting diode having a fine particle dispersion film according to an embodiment of the present invention.
  • the light-emitting diode shown in FIG. 1 includes a glass substrate 10, a hole injection electrode layer 12 (material: p-type (N-doped or Cu-doped) ZnSe film, film thickness: 100 to 10,000 nm, light-emitting layer 14 (main material: ZnSe, ZnS, ZnSSe, etc., film thickness: 1.5 ⁇ : LOOOnm), electron injection electrode layer 18 (material: ZnS ⁇ ZnO, ZnSe, etc., film thickness: 100-10000nm), metal electrode (material: Au ⁇ Pt ⁇ Cr ⁇ ) Al, In, Ga, or the like, or an alloy or laminated film thereof, film thickness: 20 to: LOOnm), passivation film (role of protection film, not shown).
  • a hole injection electrode layer 12 material: p-type (
  • ITO 100 to 500 nm
  • ZnSe Cl (a film in which ZnSe is doped with C1 is shown) as an electron injection electrode layer 12
  • flux Zn: 2-4 X 10 _7 Torr, Se: 5-8 X 10 _7 Torr
  • rate 0.5-2 ⁇ Zhr
  • substrate temperature 230 ° C or less
  • material ZnCl: Powder, A1: pellet
  • a ZnSe film of 1.5 to: LOOOnm (here, a stack of 5 nm, 10 nm, and 5 nm, totaling 20 nm) was formed as the light emitting layer 14 by the MBE method. Specifically, flux (Zn: 2 to 4 X 10 _7 Torr Se: 5 to 8 X 10 _7 Torr), rate (0.5 to 2 1117111 :), substrate temperature (150 to 300, but emission characteristics of quantum dots ) And background pressure (1 X 10 _8 Torr or more and 1 X 10_ 7 or less).
  • the light emitting layer 14 when the light emitting layer 14 having a predetermined film thickness (about 5 m) is formed, the supply of the ZnSe material is stopped, and the quantum dots 16 and the matrix layer 14 ′ (described later) are introduced. Starting, a quantum dot-dispersed light emitting layer 14a (film thickness: about lOnm) was formed. The formation of the quantum dot-dispersed light emitting layer 14a will be described in detail later. After the quantum dot-dispersed light emitting layer 14a having a predetermined thickness was formed, supply of the quantum dots 16 and the matrix layer 14 '(described later) was terminated, and the light emitting layer 14 was formed again (film thickness: about 5 nm).
  • a ZnSe: Cu film (a film in which Cu is doped in ZnSe is shown. The same applies hereinafter.)
  • a film (here, 300 nm) is formed. Formed by MBE method.
  • flux (Zn: 1 to 2 X 10 _7 Torr, Se: 1 X 10 " 6 Torr, Cu: desired temperature (about 1 X 10 _8 Torr), rate (0.5 to 2 mZhr), substrate temperature (about 240 ° C), carried out with a material (Zn, Se, Cu all 6N), the background pressure (1 X 10 _11 Torr over 5 X 1 0 _9 Torr or less), and further, as shown in FIG. 1, Au metal electrodes
  • the light emitting diode of the present invention was formed by forming 30 nm.
  • the light emission characteristics of the obtained light emitting diode are shown in FIG. Emission is mostly dominated by the emission color from the quantum dots, and emission at a single wavelength (535 nm) was observed. Energy efficiency is 1%, the luminance was 200cdZm 2.
  • the quantum dot-dispersed light emitting layer 14a was formed using the apparatus shown in FIG. First, here The solution supply speed by the syringe pump was set to 3.3 lZmin. In the case of the KILLARY 3, there are micrometers (not shown) in the X, Y, and ⁇ directions, allowing fine adjustment of the position of the first tip 3a.
  • the tip end 3a of the beam is disposed at a distance of 0 to 50 mm from the jet nozzle 4a. It should be noted that the atmospheric pressure is almost between the tip 3a and the jet nozzle 4a. In this case, the one with the inner diameter of the tip 3a of the girder is 20 m.
  • the pressure in the vacuum chamber one 4, LTorr, the pressure in the deposition chamber one 5 was less 1 X 10 _ 6 Torr.
  • the center positions of the jet nozzle 4a, which is the entrance of the decompression chamber 4, and the skimmer nozzle 5a, which is the entrance of the film formation chamber 5, are the same, and the distance between the jet nozzle 4a and the skimmer nozzle is 1 to : Set between LOmm. Note that the position of the above-described one tip 3a of the stabilizer is adjusted so as to coincide with the center position of the jet nozzle 4a and the skimmer nozzle 5a.
  • the substrate holding means 8a includes a heating means, and can heat the deposition target substrate 8.
  • the substrate temperature was set to 230 ° C. If the substrate temperature is too high, the crystal of the quantum dots becomes amorphous or the quantum well structure itself is destroyed by mutual diffusion between the quantum well and the matrix. In addition, if the substrate temperature is too low, components due to the solvent and side chains tend to remain when fine particles collide with the substrate, which is not preferable.
  • the magnetic field generating means 7 has a role of removing components having a low molecular weight (for example, solvent molecular ions and side chain molecular ions) before the fine particles released by the tip force of the first beam reach the deposition target substrate. (Mass separation function)!
  • both the quantum dots and the matrix (light emitting layer) as a raw material, a solution in which fine particles coordinated with hydrocarbon side chains were dispersed in an organic solvent was used.
  • both the quantum dots and the light-emitting layer are nanocrystals with the structure shown in Fig. 5 (hydrocarbon compounds (including N, P, etc.) with a diameter of 1.5 to 7. Onm and side chains of about C5 to C30).
  • the quantum dot material has a core-shell structure and is composed of CdSe in the core and ZnSe in the shell.
  • the light emitting layer material was made of ZnSe.
  • the quantum dot concentration was 0.01 to 0.5 mgZml, and a solution having a volume ratio of CdSe to ZnSe of 5:95 was used.
  • the volume ratio in the solution is determined from the volume ratio of the quantum dots to be dispersed, but the volume ratio of CdSe should be 100 ppm to 30% to ensure a sufficient potential barrier width of the quantum well. Is preferable from the viewpoint of the formation of quantization levels of electrons and holes.
  • the applied voltage is selected from 100V to 10kV (preferably 200 to 350V), but here it is set to 330V.
  • the ion beam was focused using the electric field type ion lens 6.
  • a Weinzel lens was used as the electric field type ion lens 6.
  • the electric field type ion lens 6 is composed of three cylindrical electrodes 6a, 6b, 6c having the same diameter, and each is installed in a coaxial array structure.
  • the voltage to be applied is appropriately determined depending on the type (size, molecular weight, etc.) of the fine particles. Needless to focus the fine particles, it is also effective to focus light ions such as solvent molecular ions so that they can be efficiently removed in a subsequent process (for example, magnetic field generating means).
  • 6 kV was applied to the electric field type ion lens 6a on the skimmer side
  • lkV was applied to the intermediate electric field type ion lens 6b.
  • the potential of the skimmer nozzle 5a was set to be equal to or lower than that of the jet nozzle 4a.
  • a droplet is formed by the microsyringe 2 at the tip 1a of the capillary, and in this state, a voltage is applied to the tip of the tip 3a to generate a charged droplet by the ion of the droplet. It was discharged to the jet nozzle 4a. At this time, the voltage was 1.9 kV.
  • the pA meter confirmed that the ion current density value indicated by the Faraday cup was 0.15 nAZcm 2 .
  • the charged droplets released in the atmosphere are jet noses.
  • the film After entering the decompression chamber 14 from the laser 4a, the film enters the deposition chamber 15 from the skimmer nozzle 5a and reaches the deposition target substrate surface 8.
  • the charged droplets can remove the solvent and side chain-derived components before colliding with the surface of the film formation substrate 8.
  • the apparatus of the present invention makes it possible to accelerate the movement of charged droplets when they pass through the jet nozzle 3a and the skimmer nozzle 4a after being discharged from the first tip 3a. In the case of collision with the surface of the substrate, it is possible to collide and desorb components derived from the solvent and side chains, and it is possible to leave only fine particles on the substrate surface.
  • the light emitting layer 14 of the present invention is classified into the following two modes in terms of configuration (see FIGS. 2 and 3).
  • quantum dots 16 materials: CdSe, Cd SeZZnS (means CdSe with shell that also has ZnS force. The same applies hereinafter.), Etc., diameter: 15 ⁇ 60 A
  • Light-emitting layer 14a film thickness: 1.5 to: LOOOnm
  • the light-emitting layer 14a in the dispersed portion has a sandwich structure sandwiched between materials of the light-emitting layer (here, ZnSe).
  • ZnSe materials of the light-emitting layer
  • the electrons and carriers injected from each electrode layer move in the light emitting layer material, associate with the quantum dots 16 in the light emitting layer 14a in the dispersed portion, and emit light, so the carriers from the light emitting layer material to the matrix material It is necessary to move smoothly.
  • both layers are preferably made of the same material or a material having the same crystal structure (such as ZnSe and ZnS).
  • the light emitting layer of this embodiment is preferable from the viewpoint of obtaining a flat morphology. This is because a light emitting layer that generates uniform light emitting surface intensity can be obtained.
  • a quantum dot material is supplied in a process including an “ionization process, a solvent removal process, and a side chain removal process” while supplying another system (MBE method, IBD method, etc.) force matrix material.
  • Light emitting layer material strength From the viewpoint of smooth carrier movement to matrix material, matrix It is preferable to supply the glass material in the same manner as the light emitting layer material. This is because crystallinity continuity is easily realized.
  • This method is preferable from the viewpoint of macro morphology. This is because a densely filled voidless film is easily realized.
  • the matrix material also includes the “ionization process, solvent removal process, and side chain removal process”. It is a method of supplying in a process.
  • the matrix material can be a “solution in which fine particles coordinated with hydrocarbon side chains are dispersed in an organic solvent”.
  • a solution in which both forces are dispersed may be used, or a solution that is dispersed separately may be used.
  • the method of using a solution that is dispersed together in the same solution does not require the complexity of the apparatus.
  • the matrix material and the quantum dot material are prepared in a predetermined ratio in advance. It is preferable in that the light emitting layer 14a can be formed in a dispersed portion having a uniform composition.
  • This method is preferable from the viewpoint of reducing interdiffusion between different materials. This is because the discontinuity of the band edge energy between the narrow-gap semiconductor Z wide-gap semiconductor can be easily secured, but is easily realized.
  • This method is preferable from the viewpoints of both merits described above. This is because a defect-free quantum well structure is easily realized.
  • quantum dots 16 material: CdSe, CdSeZZnS, etc., diameter: 15 to 60 A
  • the entire light emitting layer 14 (film thickness: 1.5 to: LOOnm) corresponds to the fine particle dispersed film of the present invention.
  • electrons and carriers injected from each electrode layer move through the light emitting layer material, associate at the quantum dots 16 and emit light.
  • the light emitting layer of this embodiment is preferable from the viewpoint of the recombination probability of carriers. This is because a light emitting layer with high light emission efficiency can be obtained.
  • MBE method supplying the light emitting layer material from another system
  • IBD method supplying the quantum dot material in the processes including the “ionization process, solvent removal process, and side chain removal process”.
  • This method is preferable from the viewpoint of a good morphology. This is because a densely filled voidless film is easily realized.
  • the quantum dot material is supplied in a process including the “ionization process, solvent removal process, and side chain removal process”
  • the light emitting layer material is similarly subjected to the “ionization process, solvent removal process, and side chain removal process”. It is the method of supplying in the process including.
  • the luminescent layer material can be a solution in which fine particles with hydrocarbon side chains coordinated are dispersed in an organic solvent.
  • a solution in which the layer materials are dispersed together may be used, or a solution in which the layer materials are dispersed separately may be used.
  • the method of using a solution that is dispersed together in the same solution does not require any complicated device, and furthermore, the light-emitting layer material and the quantum dot material are mixed in a predetermined ratio in advance to achieve a uniform This is preferable in that the light emitting layer 14a can be formed in a dispersed portion having a proper composition.
  • This method is preferable from the viewpoint of reducing interdiffusion between different materials. This is because the discontinuity of the band edge energy between the narrow-gap semiconductor Z wide-gap semiconductor can be easily secured, but is easily realized.
  • This method is preferable from the viewpoints of both merits described above. This is because a defect-free quantum well structure is easily realized.
  • FIG. 7 is a diagram showing an outline of the apparatus used in Example 1.
  • the apparatus shown in FIG. 7 is connected to the fine particle deposition apparatus shown in FIG. 4 with an ultra-high vacuum film forming chamber 9 via a load lock chamber 9a. It is a thing.
  • the ultra-high vacuum film forming chamber 9 can be brought into an ultra-high vacuum by an ultra-high vacuum pump 9d, and the film-forming raw material evaporating from the evaporation source 9b installed therein is held in the substrate holding means 9a. It is deposited on the deposition substrate 8.
  • the evaporation source 9b is also installed in the film forming chamber 15 of the particle deposition apparatus shown in FIG. 4, and deposits the evaporation material on the substrate 8 together with the deposition of the particles as necessary. Therefore, the substrate 8 on which fine particles have been deposited in the film formation chamber 15 is transferred into the ultra-high vacuum film formation chamber 9 through the load lock chamber 9a, and necessary film formation is performed. The substrate 8 on which the film is formed in the vacuum film forming chamber 9 is reversely transferred into the film forming chamber 15 to deposit fine particles as required.
  • the substrate 8 a glass substrate coated with ITO was used.
  • the ITO film-coated glass substrate was ultrasonically cleaned with pure water, acetone, and pure water, then acid-etched, then rinsed with pure water, dried by nitrogen blowing, and set on the substrate holding means 8a. .
  • each K cell has a separate shutter for blocking the beam.
  • the axes of the molecular beam and the ion beam are respectively directed to the central axis of the substrate 8 mounted face-down in the film forming chamber 15. Further, although not shown, a main shutter that blocks all the beams is provided between each beam and the substrate 8 in the vicinity of the substrate 8. During film formation, the substrate is heated and rotated.
  • the electron injection electrode layer 12 was formed in the ultra-high vacuum film forming chamber 9. This is because the ultra-high vacuum film formation chamber 9 has a higher ultimate vacuum than the film formation chamber 15.
  • ZnSe CI (a film in which ZnSe is doped with C1 is shown. Same. ) A film was formed by the MBE method. Specifically, flux (Zn: 2-4 X 10 _7 Torr, Se: 5-8 X 10 " 7 Torr), rate (0.5-2 ⁇ m / hr), substrate temperature (230 ° C or less), material (ZnCl: powder, A1: pellet).
  • a ZnSe film was formed as a part of the light emitting layer 14 (1.5-: LOOnm) in the ultra-high vacuum film forming chamber 9. Specifically, flux (Zn: 2 to 4 X 10 " 7 Torr Se: 5 to 8 X 10" 7 Torr) ⁇ rate (0.5 to 2 / ⁇ ⁇ :), substrate temperature (150 to 300 ° C) ), it was carried out in the background pressure (l X 10 _1 ° Torr or 1 X 10- 9 or less).
  • the supply of the ZnSe material is stopped, and the substrate is moved into the film forming chamber 5 through the load lock chamber 9a. did.
  • quantum dot dispersion (0.5mgZmL) flux Zn: 0.5 ⁇ l X 10 " 7 Torr Se: 1-3X 10 _7 Torr ion current: 1.5nA
  • rate 0.1 ⁇ 0 6 ⁇ m / hr
  • substrate temperature 150-300 ° C
  • background pressure (1 X 10 _8 Torr or more, 1 X 10 17 or less
  • a predetermined film thickness about 5 nm
  • the substrate 8 was transferred to the ultra-high vacuum film forming chamber 9 through the load lock chamber 9a, and a part of the light emitting layer 14 and the hole injection electrode layer 18 were formed.
  • a ZnSe film having a thickness of about 5 nm was formed as a part of the light-emitting layer 14. Specifically, flux (Zn: 2 to 4 X 10 _7 Torr Se: 5 to 8 X 10 _7 Torr), rate (0.5 to mZhr), substrate temperature (150 to 280 ° C, but quantum dot emission characteristics but a temperature not destroyed), was carried out in the background pressure (1 X 10 _ 1C) 1 X 10_ 9 inclusive Torr).
  • a ZnSe: Cu film (100-10,000nm ZnSe: Cu doped film; hereinafter the same applies) is formed by MBE method. Formed. Specifically, the flux (Zn: 1 ⁇ 2 X 10 _7 Torr , Se: 1 X 10 _6 Torr, Cu: Nozomu Tokoro temperature (about 1 X 10 _8 Torr), Rate (0. 5 ⁇ 2 ⁇ m / hr) (about 240 ° C) substrate temperature, material (Zn, Se, Cu all 6N), the background pressure (1 X 10 _11 Torr over 5 X 10 _9 Torr or less )
  • the film other than the quantum dot dispersed portion was a columnar polycrystalline body oriented in the c-axis.
  • the quantum dot dispersion part no clear crystal interface is observed, and the structure is like a polycrystal composed of microcrystallites, and the quantum dots are uniformly dispersed in the matrix. confirmed.
  • the average distance between the centers of the quantum dots is approximately twice the diameter of the quantum dots.
  • FIG. 8 is a diagram showing an outline of the fine particle deposition apparatus used in the second embodiment.
  • a substrate in which a ZnSe light emitting layer lOnm was formed on the same substrate (glass substrate with an ITO film) as in Example 1 was used.
  • a capillary having a syringe pump was used as the solution supply device.
  • the microsyringe pump 2 extrudes the fine particle dispersion solution 1 in the cylindrical main body 2b by the piston 2a, sends it to the capillary 3 through the tube 2c, and discharges it from the first tip 3a.
  • the capillary 3 has a voltage applying means 3b. Therefore, a predetermined voltage can be applied.
  • the solution supply rate by the microsyringe pump 2 is 0.5-4 lZmin (preferably 1-2 / ⁇ ⁇ ).
  • the capillary 3 has micrometers in the X, ⁇ , and ⁇ directions, so that the position of the tip 3a of the cavity can be finely adjusted.
  • the force using the above-described configuration as a capillary is defined as a solution delivery device that exposes the surface of the solution by capillary action or wetting phenomenon.
  • the fine particle dispersion discharged from the leading end 3a of the first carrier is introduced into the decompression chamber 4 through the jet nozzle 4a provided at the upstream end of the decompression chamber 4, and further flows upstream of the deposition chamber 5. It is introduced into the film forming chamber 15 through a skimmer nozzle 5a provided at the side tip.
  • the distance between the tip 3a of the carriage 3 and the jet nozzle 4a is set to 0 to 50mm, preferably 4 to LOmm. In this embodiment, the distance is set to 8 mm.
  • the pressure between the tip of the capillary and the jet nozzle is almost atmospheric pressure.
  • a capillary tip 3a with an inner diameter of 20 ⁇ m was used.
  • the center positions of the jet nozzle 4a and the skimmer nozzle 5a coincide with each other, and the distance between the jet nozzle 4a and the skimmer nozzle 5a is appropriately set between 1 and LOmm (in this embodiment, 3 mm).
  • a predetermined voltage can be applied to the jet nozzle 4a and the skimmer nozzle 5a by voltage applying means 4c and 5c, respectively.
  • the film forming chamber 5 is composed of an ion optical system region 51 and a high vacuum region 52.
  • the ion optical system region 51 and the high vacuum region 52 are partitioned by a partition wall 5e having an opening 5b, and their reference axes (center axes in the direction in which the fine particles travel) are orthogonal to each other. Particles can move through the opening 5b. In this example, the diameter of the opening 5b was 20 mm.
  • the decompression chamber 4, the ion optics region 51, and the high vacuum region 52 are exhausted through the exhaust ports 4d, 51d, and 52d so as to maintain an appropriate degree of vacuum by a vacuum pump (not shown). It has become.
  • a vacuum pump not shown.
  • differential evacuation means is used for evacuation.
  • the pressure has a relationship of “capillary tip (atmospheric pressure)> decompression chamber 1> ion optical system region> high vacuum region”.
  • the internal pressure of the decompression chamber is ⁇ : the internal pressure of the ion optical system is 1 X 10 " 5 Torr, and the internal pressure of the high vacuum is about 1 X 10 _6 Torr.
  • an electric field type ion lens 6 as a lens device and an energy separation device 71 as a separation device are provided on the coaxial extension of the jet nozzle 4a and the skimmer nozzle 5a.
  • the electrolytic ion lens 6 is an Einzel lens composed of three cylindrical electrodes 6a, 6b, 6c. A voltage can be applied to the cylindrical electrodes 6a and 6b by voltage applying means 6d and 6e. The cylindrical electrode 6c is set to ground potential.
  • the electric field type ion lens 6 has a function of focusing the ion beam.
  • the electric field type ion lens 6 functions as long as at least one, but as in this embodiment, it is composed of three cylindrical electrodes 6a, 6b, 6c having the same diameter, and each is arranged in a coaxial array. It is preferably installed in the structure.
  • the voltage to be applied is appropriately determined depending on the type (size, molecular weight, etc.) of the fine particles. Needless to focus fine particles, it is also effective to focus light ions such as solvent molecule ions so that they can be efficiently removed in subsequent processes (for example, magnetic field generation means, energy separation means, etc.). is there.
  • the energy separator 71 is used as the separator.
  • the energy separation device 71 includes a first electrode plate 71a set at a ground potential and a second electrode plate 71b arranged in parallel with a predetermined distance from the first electrode plate 71a.
  • the first electrode plate 71a is provided with an entrance hole 71c and an exit hole 71d.
  • the incident hole 71c is on the coaxial extension of the jet nozzle 4a and the skimmer nozzle 5a.
  • the second electrode plate 7 lb is set to a predetermined potential by the voltage applying means 71e.
  • the energy separation device 71 bends the ion beam incident on the incident hole 71c to a predetermined angle and has a desired energy.
  • the fine particles to be classified are classified and emitted from the emission hole 71d.
  • the angle of bending is preferably 90 degrees because the highest resolution can be obtained.
  • the energy separation device 71 is configured so that a component having a small mass number (for example, a solvent molecular ion or a side chain molecular ion) or a flying fine particle is emitted before the fine particle emitted from the tip 3a of the capillary reaches the deposition target substrate 8. It also has a role (mass and energy separation function) to remove the agglomerates of organic molecules that also serve as materials for solvents, solvents, and side chains.
  • the energy separation device 71 is a separation mechanism using electrostatic deflection.
  • the deflection voltage is proportional to the kinetic energy of the charged particles. Therefore, the kinetic energy of charged particles can be separated by the deflection voltage.
  • the apparatus shown in FIG. 8 uses a parallel plate electrode structure.
  • One electrode 71a has two openings, one is an entrance hole 71c and the other is an exit hole 71d.
  • the electrode 7 lb which does not have an opening, has a voltage V to decelerate charged particles V (+ V if the charged particles are positive ions,
  • the charged particle beam is oblique from the entrance hole.
  • the charged particles that enter the electrode and enter the electrode are repelled and emitted from the exit hole when the particle has a specific value (energy value) determined by the kinetic energy of the particle.
  • the energy value is determined by the distance between the electrodes, the distance between the holes, and the voltage. Therefore, by classifying these parameters, the classified energy value can be determined.
  • the current density is determined by the diameter of the beam, the voltage applied to the beam, the flow rate of the solution, the viscosity of the solution, the volatility, the surface tension, the polarity, the pH (electric conductivity), the characteristics of the solute, etc.
  • Desired ions can be classified by changing the parameters. As will be described later, the speed of ions classified by the energy separation means is dominated by the free jet, so the speed is constant regardless of the ion species. Thereby, a desired mass-to-charge ratio (ion energy) can be selected. Although not shown, the intensity (density) of the desired charged particle beam emitted from the emission hole was confirmed by measuring the ion current with a Faraday cup.
  • the capillary 3 by the voltage applying means 3b is used.
  • the quantum dot dispersion film 14a having a predetermined film thickness (about 5 nm) was formed, the main shutter (not shown) in front of the substrate was closed to stop the supply of ZnSe material.
  • the above-described Capillary 3 and its counter electrode can form an electric field between the solution supply device and the vacuum chamber, and are so-called electro spray devices. it can.
  • the fluid flow containing ions discharged from the electrospray can be said to form a free jet when introduced into the jet nozzle 4a.
  • the ion species generated by this electrospray ride on a free jet of gas and be introduced into the vacuum, but at that time (free jet fly (mean free path))
  • ⁇ D orifice diameter
  • the flow velocity is generally determined by changing the enthalpy that the gas had before expansion into translational energy by an adiabatic process.
  • the mean free path of air also diatomic molecules such as nitrogen and oxygen
  • a free jet can be formed by introducing it into a vacuum through an orifice of several hundred meters.
  • the value is about 10 3 [mZs].
  • the applied electric field (10 6 [VZ m] or so) to be subjected to electrospray at high pressure side of the orifice are about lO mZs] and 10 2 [m / s], respectively.
  • the electrostatic potential is the same in the initial state and the final state, and therefore, acceleration / deceleration due to the electric field does not occur during this period. Therefore, the ions entering the energy separation mechanism have a device configuration that gives almost the same velocity regardless of the type.
  • the present invention is not limited to this embodiment, and it is possible to calibrate the energy separation mechanism in consideration of the energy added in the mechanism by inserting an additional acceleration mechanism in the ion beam path.
  • V Voltage that decelerates charged particles
  • V can be analyzed by V.
  • this equipment Separating the energy means separating the mass-to-charge ratio mZq (mass Z charge).
  • a decelerating electrode 52c as a decelerating device for decelerating the charged particle beam and depositing it on the substrate 8 is provided.
  • the exit hole 71d of the energy separation device 71—the opening 5b of the partition wall 5a, the converging electrodes 52a, 52b, and the deceleration electrode 52c are each provided on a coaxial extension.
  • FIG. 9 shows the substrate holder 52g, the converging electrode 52b, and the deceleration electrode 52c. As shown in FIG.
  • the converging electrode 52b and the deceleration electrode 52c are both ring-shaped aperture electrodes.
  • the opening diameters of the focusing electrodes 52a and 52b are 25.4 mm and 33 mm, respectively.
  • the deceleration electrode 52c is formed with a substantially truncated cone opening, and a substrate holder 52g is formed at the top of the truncated cone opening.
  • the opening angle of the truncated cone is about 135 degrees.
  • the focusing electrodes 52a and 52b have a function of suppressing beam divergence due to Coulomb repulsion between ions when positive (negative) ions are decelerated.
  • a negative electrode (positive) is an open electrode, which is an electrode 52a which is a shield electrode which is a ground electrode having an outer diameter of about 120 mm and an inner diameter of about 25 mm, and an electrode having an outer diameter of about 120 mm and an inner diameter of about 33 mm. 52b. These are arranged in parallel with an interval of 20 mm, and form a parallel equipotential surface in the vicinity of the substrate 8 together with the deceleration electrode 52c.
  • the plate thickness of the electrode was 2 mm.
  • the configuration of the apparatus of the present invention includes a speed reducer. This is the first time the inventor of the present application has discovered the configuration of the apparatus of the present invention that uses a solvent in which fine particles are dispersed as a raw material and obtains only a target having a specific mass-to-charge ratio by a separation apparatus. This is the structure obtained by the problem. As a result of diligent research, the inventor of the present application wants to make the energetic ions have a high energy state in order to introduce an ion beam into the separation mechanism. As a result, it was found that fine particles do not adhere to the substrate. That is, it has been found that the energy of the fine particles as the deposit needs to be increased until just before the substrate, but the energy needs to be decreased when the substrate is deposited.
  • the deceleration electrode 52c plays a role of adjusting the kinetic energy of positive (negative) ions of flying ions to a value suitable for deposition.
  • a few eV to a few hundred eV Low-energy ion beams are likely to diverge due to the spatial electric field effect and cannot be transported over long distances. Therefore, we want to transport with high energy during long-distance transportation.
  • the mass number of the cluster is about 10 1 Gamu
  • acceleration / separation 'deposition is possible as one ion cluster, and the speed at this time is estimated to be about 500 to 5000 mZsec.
  • a positive (negative) voltage is applied to the deceleration electrode 52c (for example, 1 to 8 kV), and an equipotential surface parallel to the substrate 8 and its vicinity is formed.
  • a deceleration voltage is selected such that the kinetic energy per atom contained in the ion is 1 eV to: LeV.
  • the nanocrystal ions reach the substrate and are large enough to cause inelastic deposition, and the crystal is deformed and fixed in the process of dissipating the kinetic energy it had during flight.
  • Select a value that is small enough to avoid heat generation. In this embodiment, they are installed in parallel at a distance of about 20 mm from the focusing electrode 52b.
  • the electrode has an outer diameter of about 120 mm and has a taper of about 135 degrees from the substrate holding part of about 33 mm to the vicinity of the outer diameter part of 90 mm.
  • An electric field perpendicular to the film substrate is formed, and a film with high in-plane uniformity can be formed.
  • a speed reducer is required immediately before the substrate to be deposited.
  • a small amount of fine particles are deposited on the surface of the substrate. Therefore, the fine particles are decelerated by the charge on the substrate surface. In this case, it is not necessary to provide a speed reduction device in the device itself (the surface of the film formation substrate becomes the “speed reduction device” of the present invention).
  • the substrate holder 52g can heat the deposition target substrate by including a heating means.
  • the substrate temperature was set to 100 ° C. If the substrate temperature is too high, the nanocrystals will become amorphous, or the quantum well structure itself will break due to interdiffusion between the quantum well and the matrix, causing the nanocrystals to not function as quantum dots and emit light. Since the characteristics are deteriorated, it is not preferable.
  • this device can take out fine particles of a desired mass from a mixed solution containing a mixture of multiple types of fine particles. It is. For example, it is possible to form a laminated film of different kinds of fine particles by changing the voltage of the separating means using a single mixed solution. In addition, as fine particles handled here,
  • both the quantum dots and the matrix a solution in which fine particles coordinated with hydrocarbon side chains were dispersed in an organic solvent was used as a raw material.
  • both of the quantum dots and the light emitting layer are nanocrystals having the structure shown in FIG. 5 (diameter: 1.5 to 7.
  • side chain hydrocarbon-based compound (including N, P, etc.) of about C5 to C30.
  • a silicon compound in which Z or carbon is replaced with silicon about Si5 to Si30
  • one fine particle weighs about 1 X 10 " 2 ° g to l X 10 _ 17 g.
  • Quantum dots The material used was a core-shell structure with CdSe in the core part, ZnS in the shell part, InP in the core part, and ZnSe force in the shell part.
  • the concentration of quantum dots is 0.01 to 0.5 mgZml.
  • a mixed dispersion was used.
  • CdSe and ZnSe or InP and ZnSe solutions with a volume ratio of 5:95 were used. The volume ratio in the solution is determined from the volume ratio of the quantum dots to be dispersed.
  • the volume ratio of CdSe should be 100 ppm to 30%. Ensuring sufficient quantum well potential barrier width, and thus The point power of electron and hole quantization level formation is preferred.
  • a solution in which fine particles are dispersed in a solution can be used as a feedstock, and it is not necessary to have so high a solubility as long as it does not aggregate in the solution. . If it is such a solution, a side chain is unnecessary.
  • the fine particles can exist in the solution without aggregating even if there is no side chain.
  • the solution can be adjusted by using a polar solvent as the solvent. In either case, the molecular weight of the solvent becomes difficult to classify when approximate to the mass of the fine particles, so it must be selected according to the fine particles.
  • a fine particle dispersion film can be formed using a solution raw material, the fine particles are not limited to quantum dots. Any fine particles dispersed in a solution can be applied as a magnetic material or an optical material.
  • the applied voltage is selected from OV to 10 kV (preferably 200 to 350 V), but here it is set to 330 V.
  • FIG. 10 is a diagram showing a state in which a glow discharge is generated between the jet nozzle 4a and the skimmer nozzle 5a.
  • a droplet is formed by the micro syringe 2 at the tip 1a of the capillary, and in this state, a voltage is applied to the tip 3a of the capillary to generate a charged droplet by the ion of the droplet.
  • the voltage was set to 1.3 to 2.5 kV.
  • the ion beam was focused using the electric field type ion lens 6.
  • E1: —6 ⁇ : L lkV was applied to the electric field type ion lens 6a on the skimmer side
  • E2: +0 to 5.5 kV was applied to the intermediate electric field type ion lens 6b.
  • a potential equal to or lower than that of the jet nozzle 4a was applied to the skimmer nozzle 5a.
  • the charged droplets released in the atmosphere enter the decompression chamber 1 from the jet nozzle 4a, and then the ion optical system in the film formation chamber 5 from the skimmer nozzle 5a. It enters the region 51, is narrowed when passing through the electric field type ion lens 6, enters the incident hole 71c of the energy separation device 71, is bent 90 degrees in the energy separation device 71, and passes through the emission hole 71d and the opening 5b of the partition wall 5a. Then, the film enters the high vacuum region 52 in the film forming chamber 1 and is molded by the converging electrodes 52a and 52b and the deceleration electrode 52c and arrives at the surface of the film formation substrate 8.
  • Nanocrystal and cobalt platinum alloy nanocrystal hexane A magnetic recording medium was formed using the dispersion solution as a ferromagnetic nanocrystal deposit material. These cobalt nanocrystals and conoletoplatinum alloy nanocrystals are: Hexane and chloroplatinum (PtC14) were used as raw materials.
  • Cobalt nanocrystals and cobalt platinum alloy nanocrystals stably dispersed in hexane under normal temperature and pressure using lauric acid as a surface coordination molecule both have a bottom diameter of 2 to 10 nm and a length of 30 nm. Cylindrical shape with ⁇ 100 nm, and the standard deviation of size is 0.5 nm or less. The concentration of nanocrystals in the dispersion was 0.02 to 20 nmolZml.
  • the size of the material dispersion liquid crystal: bottom diameter X length 2 nm ⁇ 30 nm, 2 nm ⁇ 50 nm, 5 nm ⁇ 50 nm, lOnm ⁇ lOOnm) from the capillary tip 3a to the present invention
  • the sample was introduced into a production apparatus, set to the same apparatus parameters as in the previous example, and the cobalt nanocrystal and the cobalt platinum alloy nanocrystal were deposited on a borosilicate glass substrate maintained at 100 to 300 ° C.
  • an air core coil (electromagnetic stone) with a diameter of 130 mm and a length of 100 mm is placed on the ion beam trajectory so that a perpendicular magnetic field (500 to 5000 Gauss) can be applied to the substrate surface, and a direct current is applied. Deposition was performed. Regardless of the concentration of the dispersion, a single layer having an area occupation ratio of 20 to 90% was formed on the substrate surface in proportion to the deposition time.
  • the semiconductor microcrystals used in Example 2 were simultaneously deposited on the substrate by being mixed or simultaneously supplied to the ferromagnetic nanocrystal dispersion solution of the production apparatus of the present invention. It was confirmed by transmission electron microscope image observation that individual magnetic nanocrystals could form isolated magnetic domains by the paramagnetic semiconductor fine particles stably supporting the ferromagnetic nanocrystals. The same effect can be obtained by overcoating the paramagnetic material after the deposition of the ferromagnetic nanocrystals, or by co-evaporation and sputtering of the paramagnetic material during the nanocrystal deposition.
  • the paramagnetic material for classifying the magnetic domains may be any of metals and oxides thereof, semiconductor semiconductors and oxides thereof, organic resins, and silicone resins.
  • the ferromagnetic deposited film shown in this example is made of a ferromagnetic fine crystal having a small size distribution with a very small standard deviation in advance, and is oriented in the vertical direction on a desired substrate while maintaining its structure. Each crystal is completely isolated and each nanocrystal forms one magnetic domain and functions as a 1-bit information record carrier. According to the apparatus of the present invention, further improvement in recording density can be expected.
  • FIG. 11 is a diagram showing a schematic configuration of the fine particle deposition apparatus used in the fourth embodiment. This example is based on the particulate deposition equipment used in Example 2 above (see Fig. 8). As shown in FIG. 11, instead of the single separation device 71, the electromagnetic field type mass separation device 72 is the same as in Example 2 except that an electromagnetic field type mass separation device 72 is used. 72 will be described, and other description will be omitted. In FIG. 11, an electromagnetic field type mass separation device 72 forms a magnetic field H in a direction orthogonal to the traveling direction of the particle beam.
  • the electromagnetic field type mass separation device 72 of this embodiment is a method of deflecting charged particles using a part of cyclotron motion (circular motion in which charged particles moving in a magnetic field receive force). Is used. In electromagnetic deflection, the amount of deflection of charged particles depends on the mass-to-charge ratio, and the larger the mass, the more difficult it is to bend, so it is mainly used for deflecting ions and electrons with a small mass. In this embodiment, it is used for the purpose of removing particularly light components (solvent molecules, gas molecules, etc.) other than fine particles.
  • the function of energy separation by the sector magnet which is effective in this embodiment is as follows.
  • the trajectory radius is determined according to the magnitude of the momentum. If the acceleration voltage is the same, there is a one-to-one correspondence between ion momentum and mass, so mass separation can be performed using this difference in orbital radii.
  • Ions enter a magnetic field H [esu] perpendicular to the direction of motion, and draw an arc trajectory with radius r.
  • the centrifugal force mv 2 Zr and the magnetic force Hzv are balanced.
  • V is constant for each ion in the beam, so r can be made constant by changing H with constant H or changing V with constant V.
  • m, z rH, v
  • the mass can be separated by changing the deflection radius when the magnetic field is constant, or by changing the magnetic field when the deflection radius is constant.
  • FIG. 12 is a diagram showing a schematic configuration of a fine particle deposition apparatus used in the fifth embodiment.
  • a high-frequency multipole mass separator 73 is used as shown in FIG. Since this is the same as that of the second embodiment, a high-frequency multipole (here, quadrupole) mass separator 73 will be described below with reference to FIG. 12, and other description will be omitted.
  • a high-frequency multipole (here, quadrupole) mass separator 73 will be described below with reference to FIG. 12, and other description will be omitted.
  • the high-frequency quadrupole mass separator 73 has quadrupole separation electrodes 73a, 73b, 73c, and 73d in front of the partition wall 5a that partitions the ion optical system region 51 and the high vacuum region 52. Is. These four electrodes 73a, 73b, 73c, 73d are arranged in such a way that a pair of electrodes 73a, 73b are opposed to the upper and lower sides in the figure, and the other pair of electrodes 73c, 73d are perpendicular to the paper surface in the figure.
  • a cylindrical body having a quadrangular cross section is formed by four electrodes, and particle beams pass through the cylindrical body.
  • the present invention relates to a fine particle deposition apparatus and a fine particle deposition device for depositing fine particles on a substrate or the like in the production of an inorganic film such as a semiconductor film, a magnetic film or an optical film in which fine particles such as nanocrystals and magnetic particles are uniformly dispersed.
  • an inorganic film such as a semiconductor film, a magnetic film or an optical film in which fine particles such as nanocrystals and magnetic particles are uniformly dispersed.
  • certain candy can be used as a method for producing a light emitting device.
  • FIG. 1 is a cross-sectional view showing a light emitting diode according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view showing a fine particle dispersed film (light emitting layer 14 in FIG. 1) according to an embodiment of the present invention.
  • FIG. 3 is a cross-sectional view showing a fine particle dispersed film (light emitting layer 14 in FIG. 1) according to an embodiment of the present invention.
  • FIG. 4 is a schematic view showing a fine particle dispersed film manufacturing apparatus according to an embodiment of the present invention.
  • FIG. 5 is a schematic view showing a fine particle material used in one embodiment of the present invention.
  • FIG. 6 shows the light emission characteristics of the element prepared in one embodiment of the present invention.
  • FIG. 7 is a schematic view showing the fine particle dispersed film production apparatus used in Example 1.
  • FIG. 8 is a schematic view showing a fine particle deposition apparatus used in Example 2.
  • FIG. 9 is a partially enlarged view of the fine particle deposition apparatus used in Example 2.
  • FIG. 10 is a partially enlarged view of the fine particle deposition apparatus used in Example 2.
  • FIG. 11 is a schematic view showing the fine particle deposition apparatus used in Example 4.
  • FIG. 12 is a schematic view showing the fine particle deposition apparatus used in Example 5.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electroluminescent Light Sources (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Manufacturing Optical Record Carriers (AREA)
  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

  不純物の混入が無く(均質で)、所望のサイズの微粒子のみが堆積された微粒子堆積物を提供することを目的とする。  微粒子が溶媒中に分散してなる溶液をキャピラリー先端から微細液滴流として噴出させるとともに、噴出される微細液滴を帯電させる。この液滴流をジェットノズルを通じて減圧チャンバー内に導入して自由噴流にする。減圧チャンバー内を進行する自由噴流を、高真空に維持された成膜チャンバーに設けられたスキマーノズルを通じて内部に導入して帯電微粒子流にする。次いで、エネルギー分離装置により、帯電微粒子流中の微粒子のうち、特定のエネルギーを有する微粒子のみを選別して内部に配置した被堆積体上に堆積させる。  

Description

明 細 書
微粒子堆積装置、微粒子堆積方法並びに発光素子の製造方法 技術分野
[0001] 本発明は、量子ドットや磁性粒子等の微粒子が均一に分散または堆積した半導体 膜や磁性膜若しくは光学膜等の無機膜製造の際に基板等に微粒子を堆積させる微 粒子堆積装置及び微粒子堆積物製造方法並びに発光素子の製造方法に関する。 背景技術
[0002] 従来、半導体発光素子として、 pn型発光素子、 pin型発光素子、量子ドット分散型 発光素子 (量子井戸、量子細線等を含む)等があり、このうち量子ドット分散型発光素 子が低次元構造の点から注目されている。量子ドット分散型発光素子は、 Stranski —Kmstnowモードによる自己組織型量子ドット形成法 (例えば特許文献 1)、リソグ ラフィ法 ·エッチング法 (例えば特許文献 2)、表面処理剤を用いた自己組織化量子ド ット形成法 (例えば特許文献 3)等の方法で製造されて!ヽる。
[0003] 一方、 ES— OMCVD法により、 CdSeナノ結晶(NCs)力 なる量子ドットを、ァモ ルファス又は多結晶の ZnSeマトリクス中へ分散させて、フォトルミネッセンス発光材料 を製造する方法が知られている(非特許文献 1)。ここで ZnSeは、バンドギャップが C dSeより広い材料であり、かつ伝導帯端及び価電子帯端エネルギーレベル力 CdS eのそれらよりそれぞれ上及び下にあるため、微小な CdSe結晶を ZnSeマトリックスで 囲む構造とすることにより、 CdSe結晶内での電子 ·正孔の発光再結合効率発光を増 大させる役割を果たして 、る。
[0004] 特許文献 1 :特開平 05— 62896
特許文献 2:特開平 07— 30151
特許文献 3:特開平 11 354843
非特許文献 l :Appl. Phys. Lett. , Vol. 65, No. 22, 1994, p2795- 279 7
発明の開示
発明が解決しょうとする課題 [0005] 特許文献 1〜3等に記載されている方法は、その製造方法が複雑であること、量子 ドットのサイズの制御が困難であること、その製造方法の特性上、量子ドットとマトリツ タスの材料とが限定されること、得られた量子ドットの発光効率が高くないこと、などの 点で問題であり、実用化されるに至って!/、な!/、。
[0006] また、非特許文献 1には、照射された光に対して、 CdSeの Is— Is量子化準位間遷 移に起因する光を発する発光材料が記載されて 、る。その発光波長は NCsのサイズ に応じて決定するため、非特許文献 1の NCsは、凝集が起こり NCsサイズが多様ィ匕 しているため、その発光スペクトルはブロード化している。 非特許文献 1では、 CdSe の NCsや、 ZnSeマトリクスの形成を、 OMCVD法で行っている。具体的には、トルェ ンとァセトニトリルの混合溶媒に CdSeの NCsが分散した溶液を、エレクトロスプレー( ES)法により反応器内に導入し、水素をキャリアガスとして導入した H Se及び dieth
2
yl—Znと反応させることにより、 ZnSeZCdSeフィルムを形成している。
[0007] ここで、非特許文献 1では、観測されて 、る発光はフォトルミネッセンスであり、発光 ダイオードに要求されるエレクト口ルミネッセンスとは発生メカニズム自体が異なる別 の発光現象である。エレクト口ルミネッセンスに対する影響に比べて CdSeの周囲に 位置するアモルファス又は多結晶の ZnSeマトリクスの結晶性が、発光に及ぼす影響 は少ない。非特許文献 1における ZnSeは、 CdSeを囲んで位置して CdSe量子ドット のエネルギー井戸壁を構成する役割を果たしており、 ZnSe自体の組成や結晶性は 、 CdSeの発光効率には殆ど影響しない。非特許文献 1に記載の方法で形成された ZnSeZCdSeフィルムには、キャリアガス由来の水素や、 ZnSe原料由来の炭素など の不純物が混入してしまうが、非特許文献 1のフォトルミネッセンスは CdSe結晶内で のキャリア対生成及び対消滅で生じるため、高強度で観測されている。
[0008] 一方、非特許文献 1を発光ダイオードの製造に適応した場合、 ZnSeマトリクス中に 混入した不純物(C、 Hなど)の存在により、キャリアの移動が阻止されてしまう問題が ある。キャリアの移動が阻害されることにより、発光効率が著しく低下し、電気伝導性 が制御されてしまい、所望の特性が得られない。ここで、非特許文献 1には、 TOP (C dSeの周囲に位置する炭化水素系側鎖)に由来する Nや Pがォージェ電子分光装置 により検出されな力つた旨が記載されているが、オージ 電子分光装置の検出限界 は 0. 1%である一方、エレクト口ルミネッセンスにおいては、キャリアが移動する必要 があるという発光機構から、これらの不純物は 0. 01%以下であることが必要である。 これを達成するためには、基板温度を上げて (例えば 400°C以上)アルキル鎖等を脱 離させる手法が考えられる力 構成元素の相互拡散などにより CdSeと ZnSeの量子 井戸構造の破壊が生じてしまい、所望の発光強度が得られなくなり、また量子化準位 間遷移による答の発光波長も所望の値とは異なるものとなってしまう。そもそも CVD 法は、高い成膜温度や、成膜後の熱処理が必要であるため、エレクト口ルミネッセン スには適していない。
[0009] 本発明は、このような技術的背景のもとでなされたものであり、不純物のない単結晶 や多結晶若しくはアモルファスの均質な無機膜中に、所望のサイズの微粒子が均一 に分散された微粒子分散膜を製造できる微粒子堆積装置、微粒子堆積物製造方法 及び発光素子を提供することを目的とする。また、本発明は、所望のサイズの微粒子 を被堆積体上に堆積するための微粒子堆積装置、およびこれを用いた微粒子堆積 物製造方法を提供することを目的とする。
課題を解決するための手段
[0010] 上述の課題を解決するための手段として、第 1の手段は、
微粒子が溶媒中に分散してなる溶液を原料に用いて、被堆積体上に前記微粒子 を堆積するための微粒子堆積装置であって、
前記原料を供給する溶液供給装置と、
前記原料を帯電させる帯電装置と、
内部を減圧雰囲気にするための排気口を備えた減圧チャンバ一であって、前記溶 液供給装置から噴出される原料をジェットノズルを通じて内部に導入可能な減圧チヤ ンバーと、
内部を前記減圧チャンバ一より高い真空度にするための排気口を備えた成膜チヤ ンバーであって、前記減圧チャンバ一内から排出される原料をスキマーノズルを通じ て内部に導入可能であると共に、この原料のうち、特定の質量電荷比を有する微粒 子のみを選別して内部に配置した被堆積体上に堆積させる分離装置を備えた成膜 チャンバ一と、 を有することを特徴とする微粒子堆積装置である。
第 2の手段は、
前記成膜チャンバ一内には、前記帯電装置により帯電した原料を収束させるレンズ 装置と、このレンズ装置によって収束された原料に電界若しくは磁界を印カロして特定 の質量電荷比を有する微粒子のみを前記被堆積体の方向に進行させて被堆積体上 に堆積させる分離装置を有することを特徴とする第 1の手段にかかる微粒子堆積装 置である。
第 3の手段は、
前記帯電装置が、前記溶液供給装置を所定電位にするための電圧印加装置であ ることを特徴とする第 1又は第 2の手段に力かる微粒子堆積装置である。
第 4の手段は、
前記帯電装置が、前記減圧チャンバ一内を放電領域にするために、前記ジェットノ ズルとスキマーノズルとの間に放電電圧を印加する放電電圧印加装置であることを 特徴とする第 1乃至第 3のいずれかの手段に力かる微粒子堆積装置である。
第 5の手段は、
前記分離装置が、電界発生手段を用いた軌道偏向エネルギー分離装置である静 電型エネルギー分離装置であることを特徴とする第 1乃至第 4のいずれかの手段に 力かる微粒子堆積装置である。
第 6の手段は、
前記分離装置が、磁界発生手段又は直交電磁界発生手段を用いた軌道偏向質量 分離装置である電磁場型質量分離装置であることを特徴とする第 1乃至第 4のいず れかの手段に力かる微粒子堆積装置である。
第 7の手段は、
前記分離装置が、高周波多重極型質量分離装置であることを特徴とする第 1乃至 第 4のいずれかの手段に力かる微粒子堆積装置である。
第 8の手段は、
前記分離装置から前記被堆積体に向けて進行する微粒子を減速させる微粒子減 速装置を有することを特徴とする第 1乃至第 7のいずれかの手段に力かる微粒子堆 積装置である。
第 9の手段は、
前記微粒子減速装置によって減速された微粒子を収束して前記被堆積体上に堆 積させる微粒子収束装置を有することを特徴とする第 8の手段に力かる微粒子堆積 装置である。
第 10の手段は、
前記成膜チャンバ一は、前記分離装置が配置されるイオン光学領域と、前記被堆 積体が配置される高真空領域とに区分され、これらの領域は、微粒子を通過させるァ パーチヤーを備えた隔壁によって仕切られており、それぞれの領域を目的の真空度 にする排気装置が設けられ、高真空領域の真空度がイオン光学領域の真空度よりも 高真空に維持されることを特徴とする第 1乃至第 9のいずれかの手段に力かる微粒子 堆積装置である。
第 11の手段は、
半導体微粒子が溶媒中に分散してなる溶液を用い、第 1乃至第 10のいずれかの 手段にかかる微粒子堆積装置を用いて半導体微粒子を被堆積体に堆積させること を特徴とする半導体微粒子堆積物製造方法である。
第 12の手段は、
微粒子が溶媒中に分散してなる溶液を原料に用いて、被堆積体上に前記微粒子 を堆積するための微粒子堆積物製造方法であって、
溶液供給装置から前記原料を噴出し、前記原料を帯電させる帯電工程と、 原料を、内部が減圧雰囲気にされた減圧チャンバ一に設けられたジェットノズルを通 じて内部に導入する工程と、
前記減圧チャンバ一内を進行する噴流を、内部を前記減圧チャンバ一より高い真 空度に保持された成膜チャンバ一に設けられたスキマーノズルを通じて内部に導入 する工程と、
前記原料から、特定の質量電荷比を有する微粒子のみを選別して内部に配置した 被堆積体上に堆積させる分離工程と、
を有することを特徴とする微粒子堆積物製造方法である。 第 13の手段は、
前記帯電工程は、溶液供給装置としてキヤピラリーを用い、前記キヤビラリ一先端か ら大気圧雰囲気中に前記溶液を微細液滴流として噴出させるとともに、前記キヤビラ リーを所定電位にすることで前記キヤビラリ一先端から噴出される微細液滴を帯電さ せるものである特徴とする第 12の手段に力かる微粒子堆積物製造方法である。 第 14の手段は、
前記帯電工程は、前記減圧チャンバ一内を放電領域とし、前記減圧チャンバ一内 に前記原料を通過させる工程であることを特徴とする第 12又は第 13の手段にかかる 微粒子堆積物製造方法である。
ここで「原料」とは、原料が液滴となり帯電'イオンィ匕したもの、原料がフラグメンテ一 シヨンしたもの (堆積目的物である微粒子、溶媒、配位子、およびこれらがまとまった もの、これらが帯電'イオンィ匕したもの)等、原料に起因する全てのものを含有するも のである。また、微粒子として半導体微粒子を用い、同時にその半導体微粒子と共に 量子ドットを形成する半導体マトリックスを用いることで、発光素子を形成可能である。 また、他の手段の態様としての微粒子分散膜およびその製造方法は、以下の構成 を有する。
(構成 1)
炭化水素系の側鎖が配位した直径 1〜: LOnmの微粒子が有機溶媒中に分散して なる溶液を、イオン化処理して、帯電液滴を生成するイオン化工程と、
前記帯電液滴を成膜チャンバ一内に導入する工程と、
前記帯電液滴から溶媒成分を除去する溶媒除去工程と、
前記帯電液滴から側鎖を除去して前記微粒子を得る側鎖除去工程と、
前記成膜チャンバ一内に、無機膜を形成するための原料を供給する工程と、 前記溶媒除去工程および前記側鎖除去工程により得られた前記微粒子と、前記無 機膜の原料を、同時に被成膜基板上に供給して、前記微粒子が分散した無機膜を 形成する工程と、
を有することを特徴とする微粒子分散膜の製造方法。
(構成 2) 前記イオンィ匕工程は、前記溶液を大気圧中で電圧を印加することにより行う工程を 含むことを特徴とする構成 1に記載の微粒子分散膜の製造方法。
[0012] (構成 3)
前記側鎖除去工程は、前記帯電液滴が前記被成膜基板表面と衝突する工程を含 むことを特徴とする構成 1又は 2に記載の微粒子分散膜の製造方法。
[0013] (構成 4)
前記側鎖除去工程は、前記帯電液滴を前記成膜チャンバ一内で電圧を印加する 工程を含むことを特徴とする構成 1乃至 3いずれかに記載の微粒子分散膜の製造方 法。
[0014] (構成 5)
前記帯電液滴は、前記成膜チャンバ一に導入される前に、前記成膜チャンバ一よ り真空度の低い減圧チャンバ一に供給されることを特徴とする構成 1乃至 4いずれか に記載の微粒子分散膜の製造方法。
[0015] (構成 6)
前記側鎖除去工程は、
前記帯電液滴を、前記減圧チャンバ一内で電圧を印加し、さらに、前記減圧チャン バー内の印加より低電圧にて前記成膜チャンバ一内で印加する工程を含むことを特 徴とする構成 5に記載の微粒子分散膜の製造方法。
[0016] (構成 7)
前記無機膜の原料は、炭化水素系の側鎖が配位した微粒子として有機溶媒中に 分散されていることを特徴とする構成 1乃至 6いずれかに記載の微粒子分散膜の製 造方法。
[0017] (構成 8)
前記微粒子が量子ドットであり、前記微粒子分散膜が発光層であり、前記微粒子分 散膜が発光ダイオードにおける発光層であることを特徴とする構成 1乃至 7いずれか に記載の微粒子分散膜の製造方法。
[0018] (構成 9)
電圧印加手段を具備し、かつキヤビラリ一先端カゝら溶液を排出可能な溶液排出手 段と、前記キヤビラリ一と離れて位置し、かつ前記キヤビラリ一先端力 排出された溶 液を注入可能な開口部を有する電圧印加可能な減圧チャンバ一と、
前記減圧と連通し、かつ前記減圧チャンバ一より高真空度からなる成膜チャンバ一 と、
を具備し、
前記成膜チャンバ一は、基板保持手段と、磁界発生手段とを有することを特徴とす る成膜装置。
[0019] 上述の手段においては、所望の微粒子が均一分散した無機膜を形成する際に、前 記微粒子の原料として、炭化水素系の側鎖が配位した微粒子が有機溶媒に分散し た溶液を用いた場合においても、無機膜中に前記溶液中の溶媒および側鎖起因の 成分を取り込むことなぐ微粒子のみを分散又は堆積させることが可能である。
さらに、このような溶液を用いることで、溶液中の微粒子と同一の大きさの微粒子を 無機膜中に分散させることが可能であるので、あらかじめ溶液を準備することで、従 来の手法では実現できな力つた数 nmの微粒子を、再現性良く無機膜中に分散させ ることが可能となる。この効果を顕著に得る形態として、本発明の製造方法を、量子ド ット分散型発光ダイオードに適応した場合が上げられる。すなわち、本発明の製造方 法を用いて、微粒子としての量子ドットを、同時二極性を有する材料力も成る無機材 質膜に分散し、発光活性層とした場合、発光層のマトリクス中に、量子ドットがナノ結 晶のまま存在して ヽるので、三次元量子井戸としての量子ドットが形成された発光ダ ィオードを製造することが可能である。
[0020] 本発明で用いる「炭化水素系の側鎖が配位した微粒子が有機溶媒に分散してなる 溶液」の一例を、図 5を用いて説明する。微粒子は 1. 5〜7. Onmのサイズのナノ結 晶、側鎖は C5〜C30程度の炭化水素系化合物 (0、 N、 P等を含んでも良い)からな る。ここで、微粒子は単一の組成力もなるナノ結晶であっても良いし、図 5のような cor e— shell構造を有するナノ結晶であっても良い。 core— shell構造の場合、 core部 分に量子ドット材料 (例えば CdSe、 InPなど)を採用し、 shell部分に無機膜材料と同 等の材料 (例えば ZnSe、 ZnSなど)を採用することで、微粒子が無機膜中にさらに分 散しやすく(微粒子が無機膜中に親和しやすく)することが可能となり、また、量子ドッ トの三次元量子井戸特性を実現しやすくすることが可能となるので好ま 、。この場 合、無機膜材料は、量子ドットである core部分の材料よりもワイドギャップの材料が用 いられるが、三次元量子井戸を実現するのは主として無機膜部分であり、よって shell 部分は数原子程度の薄膜でも良い。量子ドットの三次元量子井戸特性を実現するた めには、量子ドットと無機膜材料との間に、キャリア移動を阻害するような成分 (溶媒、 側鎖等)が存在しな 、ことが必要である。ここで微粒子 (core - shell構造を含む)の 周囲に囲むように位置する炭化水素系の側鎖は、共有結合のような強い結合ではな ぐ配位結合のような比較的弱い結合で吸着している。微粒子を炭化水素系の側鎖 で囲むことにより、微粒子同士の合体を防止し、微粒子は所望のサイズのまま有機溶 媒中に分散させることができる。
量子ドット分散型発光ダイオードに求められる要件として、次の要件が挙げられる。 a)量子ドットの径が変化することなく分散されていること
本要件を満たさない場合、量子ドットの径が変化することにより、所望の発光色が得 られなくなってしまうので好ましくな ヽ。
b)量子ドットが、三次元量子井戸特性を示すように、ワイドギャップ半導体内に分散 されていること
本要件を満たさない例として、量子ドットけローギャップ半導体)同士が十分な距 離を隔てて分散されていない場合が挙げられる。このような場合、量子ドット微粒子中 のキャリアの波動関数が染み出し、互いに重なり合い、量子の閉じ込めが生じないた め、量子井戸が形成されない。そのため、単なる「ナローギャップ半導体 +ワイドギヤ ップ半導体」の混合物 (単なる混合多結晶体)としての特性しか得られず、発光効率 は低ぐ所望の発光色も得られな 、ので好ましくな 、。
c)キャリア (電子'ホール)が、量子ドットが分散されている無機膜 (マトリックス)中を 移動可能であること
本要件を満たさない場合、電子注入電極からの電子と、正孔注入電極からのホー ルが、移動して量子ドット中で再結合することが出来ないことになり、発光が得られな くなつてしまう。本要件を満たさない例として、無機膜中の不純物の存在 (例えば、炭 化水素系の側鎖が配位した微粒子が有機溶媒に分散してなる溶液を用いた場合の 「溶媒」や「炭化水素鎖」など)が挙げられる。
d)量子ドットの発光特性が破壊されて 、な 、こと
本要件を満たさない場合、発光特性が得られない。本要件を満たさない例として、 量子ドット材料の熱破壊 (製造過程での高温処理による結晶性の変化)などが挙げら れる。
[0022] 本発明は、上記の要件を満たした量子ドット分散型発光ダイオードを製造すること を可能としたものである。以下、本発明で用いる装置の一例を説明する。
(1)装置について
本発明で用いる装置の一例を図 4に示す。炭化水素系の側鎖が配位した微粒子が 有機溶媒中に分散してなる微粒子分散溶液 1は、マイクロシリンジポンプ 2によって、 キヤピラリー 3へ送られ、キヤビラリ一先端 3aから放出される。なお、キヤピラリー 3には 、電圧印加手段 3bによって所定の電圧が印加可能となって 、る。
キヤビラリ一先端 3aから放出された微粒子分散液は、減圧チャンバ一 4の上流側先 端部に設けられたジェットノズル 4aを通じて減圧チャンバ一 4内に導入され、さらに、 成膜チャンバ一 5の上流側先端部に設けられたスキマーノズル 5aを通じて成膜チヤ ンバー 5内に導入される。減圧チャンバ一 4と成膜チャンバ一 5とは、それぞれは真空 ポンプ 4dや高真空ポンプ 5d等により、所定の異なる真空度にすることが可能となつ ている。また、成膜チャンバ一 5内には、上流側力も順に、静電レンズ 6、磁界発生手 段 7及び基板 8を保持する保持手段 8aが、キヤピラリー 3と同軸延長上にそれらの基 準軸が一致するように設けられて 、る。
[0023] (2)イオン化工程 (帯電工程)につ!/ヽて
本発明の一態様である微粒子分散膜の製造方法における「イオンィ匕工程 (帯電工 程)」について説明する。原料として用いる溶液中の微粒子は、少なくとも分離装置に 導入される前に、溶液中力ものフラグメンテーションおよびイオンィ匕(帯電)される必 要がある。すなわち、「原料」は、被堆積体に到達するまでの間に、帯電'フラグメンテ ーシヨンされ、様々な状態を取り得る可能性がある。溶液供給装置としてのキヤビラリ 一先端 3aから放出される液滴は、キヤピラリー 3に印加された電圧によってイオン化さ れ、帯電液滴としてジェットノズル 4aに向力つて放出される。なお、キヤビラリ一先端 3 aは、ほぼ大気圧に配設されることが好ましい。大気圧であれば、キヤビラリ一先端か ら放出された帯電液滴中の溶媒成分が、ジェットノズル 4aへ到達前に蒸発する効果 (溶媒除去工程としての効果)が得られるからである。また、溶媒除去工程として、キヤ ピラリー先端 3aとジェットノズル 4aとの距離を大きくして、大気圧での帯電液滴の飛程 を大きくする方法を採用することも可能である。さらに、溶媒除去工程として、キヤビラ リー先端に加熱ガスを導入する方法を採用することも可能である。この場合、単に周 囲を加熱ガス雰囲気とする方法でも良いし、キヤビラリ一の周囲に、キヤピラリーと同 軸の加熱ガスラインを設ける方法でも良ぐこれにヒーターを具備する方法でも良 、。 また、溶媒除去工程として、キヤビラリ一先端にネブライザ一ガスを導入する方法を採 用することも可能である。この場合、単にキヤビラリ一先端付近にネブライザ一ガスを 導入する方法でも良いし、キヤビラリ一の周囲に、キヤピラリーと同軸のネブライザ一 ガスラインを設ける方法でも良い。また、イオンィ匕工程や溶媒除去工程として、さらに キヤビラリ一先端に高周波数超音波を印加可能としても良い。これにより、微小液滴 の形成を補助する効果や、溶媒の蒸発を促進する効果が得られる。なお、溶液の種 類やキヤビラリ一への電圧印加条件、キヤビラリ一先端の雰囲気等を制御して、ィォ ン化工程中に側鎖除去工程の効果を兼ねるようにすることも可能である。あるいは、「 原料」がキヤビラリ一力もジェットノズルに至るまでの飛程に所謂プルームを形成する 領域において、放電用の電極あるいはアンテナを設け、高電圧を印加、放電を生じ させることで飛行中の「原料」の帯電を行うことも可能である。このとき、放電用の電極 あるいはアンテナには直流、交流あるいは高周波の印加が可能であり、アーク放電 等による飛行中の「原料」への電子衝撃、グロ一放電、プラズマ生成、コロナ放電等 による荷電粒子衝撃、ラジカルとの相互作用によるォージェ過程、または電子衝撃、 紫外線による電離過程等を経て、効率的な帯電プロセスが供される。なお、帯電装 置として、後述のように溶液供給装置ではなぐ減圧チャンバ一に設けることも可能で ある(図 10)。この場合、原料が減圧チャンバ一を通過する工程が、帯電工程に相当 する。もちろん、キヤビラリ一への電圧印加と併用しても良い。併用することで、さらに フラグメンテーションが促進されるので好まし 、。
(3)側鎖除去工程ついて 本発明の一態様である微粒子分散膜の製造方法における「側鎖除去工程」につ 、 て説明する。イオン化工程により形成された帯電液滴は、ジェットノズル 4aから減圧 チャンバ一 4内へ導入され、後にスキマーノズル 5aから成膜チャンバ一 5内へ導入さ れる。上述のように、ジェットノズル 4aおよびスキマーノズル 5aにはそれぞれ電圧印 加手段 4c, 5cが具備されている。本発明では、印加電圧が「ジェットノズル〉スキマ 一ノズル」となるように印加することで、キヤビラリ一先端 3aから放出された帯電液滴 の急激加速を実現し、急速加速により、帯電液滴に運動エネルギー (好ましくは 1〜1 OeV)を付与されることになり、これにより上述の同軸上の被成膜基板へ向力つて高 速で突進する方法を見出した。さらに本発明では、帯電液滴の急激加速は、真空度 を「キヤピラリーく減圧チャンバ一」とすることで効果が得られることを見出した。これ は、帯電液滴が真空度の高い状態になると同時に高電圧が印加されることで、帯電 液滴が急激加速されることによる。
このように急激加速された帯電液滴と被成膜基板表面との衝突エネルギーにより、 微粒子と側鎖との (配位)結合を切断することが可能であり、基板表面にて側鎖を完 全に除去することが可能となった。この方法は、高温処理を不要とするため、量子ドッ トとしての微粒子の特性を破壊することなぐ側鎖を除去可能な点で、非常に有効で ある。
なお、予め被成膜基板 8の表面を加熱(100°C〜250°C程度)しておくことで、衝突 と同時に、基板表面に生じた残渣 (側鎖)の昇華を促進し、さらに効果的に側鎖を除 去することが可能となる。ただし、基板の加熱は、量子ドットの発光特性を破壊しない 温度とする必要がある。
(4)溶媒除去工程について
溶媒の分子量は、微粒子や側鎖の分子量に比べて非常に小さい。これを利用して 、(2)で述べた溶媒除去工程で除去されず、さらに減圧チャンバ一を通り抜け、成膜 チャンバ一の被成膜基板表面まで到達してしまう溶媒起因の成分を、被成膜基板の 手前に配設された、分離装置としての磁界発生手段 7により除去することを可能とし た。すなわち、イオン化された溶媒分子イオンは、他の分子イオンに比べて分子量が 非常に小さいので、磁界発生手段 7により生じた磁界の影響を受けて、その進行軌 道を反らされ、被成膜基板 8の表面へ到達出来なくなる。本工程により、溶媒除去を 可能とした。
発明の効果
[0026] 本発明によれば、製造工程や製造装置の複雑化の必要が無ぐ簡単な構成で、微 粒子が均一に分散した微粒子分散膜、および微粒子が基板上に堆積した微粒子堆 積物を製造することが可能である。また、本発明の方法は、原料に由来する炭素化 合物、燐、窒素などの不純物の除去性能に優れており、コンタミネーシヨン'フリーを 可能とするものである。さらに、得られた微粒子間には明確な結晶界面が存在せず、 キャリア散乱要因、無輻射中心あるいは消光中心となる欠陥密度が低い微粒子分散 膜を製造することが可能である。さらに、本発明の方法によれば、異種材料間での相 互拡散が生じないため、三次元量子井戸である量子ドット構造の根幹である三次元 ポテンシャル井戸を形成する為のナローギャップ半導体 Zワイドギャップ半導体間で のバンド端エネルギーの不連続性が容易に確保できるため、微粒子として (量子ドット
)量子井戸となるナローギャップ半導体微粒子あるいはマトリックスとなるワイドギャップ 半導体微粒子を用いることで、キャリア輸送性に優れ、発光効率の高い量子ドット分 散発光層を製造することが可能である。
発明を実施するための最良の形態
[0027] 以下に、図面を参照しながら、本発明の実施の形態について説明する。ただし、以 下の説明は、あくまでも本発明の例示にすぎず、以下の記載によって本発明の技術 的範囲が限定されるものではない。
[0028] 図 1は、本発明の実施の一形態に係る微粒子分散膜を有する発光ダイオードの断 面図である。図 1に示す発光ダイオードは、ガラス基板 10、正孔注入電極層 12 (材 料: p型(Nドープ又は Cuドープ) ZnSe膜、膜厚: 100〜10000nm、発光層 14 (主 材料: ZnSe、 ZnS、 ZnSSe等、膜厚: 1. 5〜: LOOOnm)、電子注入電極層 18 (材料: ZnSゝ ZnO、 ZnSe等、膜厚: 100〜10000nm)、金属電極(材料: Auゝ Ptゝ Crゝ Al、 In、 Ga等、又はこれらの合金または積層膜、膜厚: 20〜: LOOnm)、パッシベーシヨン 膜 (保護膜の役割。図示せず)からなる。
[0029] 図 1に示す発光ダイオードの製造方法について説明する。まず、ガラス基板 10上 に、透明電極として ITO (100〜500nm)、電子注入電極層 12として、 ZnSe : Cl (Zn Se中に C1をドープした膜を示す。以下、同様。)膜を、 MBE法により形成した。詳しく は、フラックス(Zn: 2〜4 X 10_7Torr、 Se : 5〜8 X 10_7Torr)、レート(0. 5〜2 πι Zhr)、基板温度(230°C以下)、材料 (ZnCl:粉末、 A1:ペレット)で行った。
次に、電子注入電極層 12上に、発光層 14として 1. 5〜: LOOOnmの ZnSe膜(ここ では 5nm、 10nm、 5nmの積層で、合計 20nmとした)を、 MBE法により形成した。 詳しくは、フラックス(Zn: 2〜4 X 10_7Torr Se : 5〜8 X 10_7Torr)、レート(0. 5〜 2 1117111:)、基板温度(150〜300で、ただし量子ドットの発光特性が破壊されない 温度)、背景圧力(1 X 10_8Torr以上 1 X 10_7以下)で行った。ここで、発光層 14の 形成中、所定の膜厚(5m程度)の発光層 14を形成した時点で、 ZnSe材料の供給を 止め、量子ドット 16及びマトリクス層 14' (後述)材料の導入を開始して、量子ドット分 散発光層 14a (膜厚: lOnm程度)を形成した。量子ドット分散発光層 14aの形成に関 しては、後述にて詳細に説明する。所定膜厚の量子ドット分散発光層 14aを形成後、 量子ドット 16及びマトリクス層 14' (後述)材料の供給を終了して、再び発光層 14の 形成 (膜厚: 5nm程度)を行った。
次に、発光層 14上に、正孔注入電極層 18として、 100〜10000nmの ZnSe : Cu ( ZnSe中に Cuをドープした膜を示す。以下、同様。)膜 (ここでは 300nmとした)を、 MBE法によって形成した。詳しくは、フラックス(Zn: 1〜2 X 10_7Torr、 Se : 1 X 10" 6Torr、 Cu:所望の温度(l X 10_8Torr程度)、レート(0. 5〜2 mZhr)、基板温度 (240°C程度)、材料 (Zn、 Se、 Cuすべて 6N)、背景圧力(1 X 10_11Torr以上 5 X 1 0_9Torr以下)で行い、さらに、図 1のように、金属電極として Auを 30nm形成して、 本発明の発光ダイオードを形成した。
得られた発光ダイオードの発光特性を図 6に示す。発光は、ほぼ量子ドットからの発 光色が支配しており、単一波長(535nm)の発光が観察された。エネルギー効率は 1 %、輝度は 200cdZm2であった。
次に、量子ドット分散発光層 14aの形成方法について詳細に説明する。
(1)使用装置
量子ドット分散発光層 14aの形成は、図 4に示す装置を用いて行った。先ず、ここで は、シリンジポンプによる溶液供給速度は、 3. 3 lZminに設定した。なお、キヤビラ リー 3には、 X、 Y、 Ζ方向にマイクロメーターがついており(図示せず)、キヤビラリ一先 端 3aの位置の微調整が可能となっている。キヤビラリ一先端 3aは、ジェットノズル 4aと 0〜50mmの距離に配置されている。なお、キヤビラリ一先端 3aとジェットノズル 4aと の間は、ほぼ大気圧となっている。なお、ここでは、キヤビラリ一先端 3aの内径が 20 mのものを用いた。
[0031] また、減圧チャンバ一 4内の圧力を、 lTorr、成膜チャンバ一 5内の圧力を、 1 X 10 _6Torr以下とした。減圧チャンバ一 4の入り口であるジェットノズル 4aと、成膜チャン バー 5の入り口であるスキマーノズル 5aとの中心位置は一致しており、ジェットノズル 4aとスキマーノズルとの間の距離は、 1〜: LOmmの間で設定されている。なお、前述 のキヤビラリ一先端 3aは、ジェットノズル 4aとスキマーノズル 5aとの中心位置と合致す るように位置を調整する。さらに、図示しないが、基板保持手段 8aは、加熱手段を具 備しており、被成膜基板 8を加熱することが可能である。ここでは、基板温度を 230°C に設定した。基板温度が高すぎると、量子ドットの結晶がアモルファス化したり、量子 井戸およびマトリックス間での相互拡散によって生じる量子井戸構造自体の破壊が 生じること〖こより、発光特性を劣化してしまうので好ましくない。また、基板温度が低す ぎると、微粒子等が基板に衝突した際に、溶媒や側鎖に起因する成分が残留しやす くなるため、好ましくない。
[0032] 磁界発生手段 7は、キヤビラリ一先端力 放出された微粒子等が被成膜基板に到 達する前に、分子量の小さい成分 (例えば、溶媒分子イオンや側鎖分子イオン)を除 去する役割 (質量分離機能)を有して!/ヽる。
[0033] (2)溶液の準備
量子ドット及びマトリクス (発光層)ともに、原料として、炭化水素系の側鎖が配位し た微粒子が有機溶媒中に分散してなる溶液を用いた。詳しくは、量子ドット及び発光 層ともに、図 5に示す構造のナノ結晶(直径: 1. 5〜7. Onm、側鎖: C5〜C30程度 の炭化水素系(N、 P等を含む)化合物)を用いた。量子ドット材料は、 core— shell構 造を有し、 core部分に CdSe、 shell部分に ZnSeから成るものを用いた。発光層材料 は、 ZnSeから成るものを用いた。これらのナノ結晶力 トルエンとアセトンの混合溶液 に分散されて ヽる溶液を用いた。
なお、量子ドットの濃度は 0. 01〜0. 5mgZmlであり、 CdSeと ZnSeの体積比率 が 5 : 95の溶液を用いた。溶液中の体積比率は、分散させる量子ドットの体積比から 決定されるが、 CdSeの体積比率は、 100ppm〜30%とすることが、十分な量子井戸 のポテンシャルバリア幅の確保、ひ!、ては電子及び正孔の量子化準位形成の点から 好ましい。
[0034] (3)微粒子分散膜の形成
まず、ジェットノズル 4aとスキマーノズル 5aの開口部が詰まっていないことを確認し 、上記ジェットノズルとスキマーノズルの中心位置が一致していることを確認した。キヤ ピラリー 3とスキマーノズル 5aとのアースをとり、ジェットノズル 4aにイオンカ卩速用の電 源をつないだ。ここで、印加電圧は 100V〜10kV (好ましくは 200〜350V)から選 択するが、ここでは 330Vとして設定した。
さらに、電界型イオンレンズ 6を使用してイオンビームを収束させた。ここでは電界 型イオンレンズ 6としてァインツェルレンズを用いた。ここで、電界型イオンレンズ 6は 同一の径を持つ 3個の円筒形電極 6a, 6b, 6cから構成され、各々コアキシャルな配 列構造に設置されて 、る。 3つの電界型イオンレンズに印加する電圧を制御すること により、イオンビームの収束電極の役割を果たす。印加する電圧は、微粒子の種類( サイズ、分子量など)により適宜決定される。微粒子を収束させることは勿論であるが 、溶媒分子イオンなどの軽いイオンを収束させて、後工程 (例えば、磁界発生手段な ど)で効率良く除去可能とすることも有効である。ここでは、スキマー側の電界型ィォ ンレンズ 6aに 6kV、中間の電界型イオンレンズ 6bに lkVを印加した。なお、スキ マーノズル 5aの電位は、ジェットノズル 4aと等電位かそれ以下の電位とした。
[0035] キヤビラリ一先端 3aに、マイクロシリンジ 2により液滴を形成し、この状態でキヤビラリ 一先端 3aに電圧を印加して液滴のイオンィ匕により帯電液滴を生じさせて、キヤビラリ 一先端からジェットノズル 4aへ放出させた。このとき、電圧は 1. 9kVとした。また、 pA メーターでファラデーカップの指示するイオン電流密度値が 0. 15nAZcm2であるこ とを確認した。
[0036] 本実施の形態の製造装置によると、大気中で放出された帯電液滴は、ジェットノズ ル 4aから減圧チャンバ一 4内へ入った後、スキマーノズル 5aから成膜チャンバ一 5内 へ入り、被成膜基板表面 8へ到達する。本発明の装置により、帯電液滴は、被成膜 基板 8の表面に衝突する迄に溶媒や側鎖起因の成分を除去することが可能となる。 さらに本発明の装置により、帯電液滴は、キヤビラリ一先端 3aから放出後、ジェットノ ズル 3aゃスキマーノズル 4aを通過する際に、その移動速度の加速を促進を可能とし 、その結果、基板 8の表面との衝突の際に、溶媒や側鎖起因の成分の衝突脱離が可 能となり、基板表面には微粒子のみを残留させることが可能となる。
[0037] ここで、本発明の発光層 14としては、構成上、次の 2態様に分類される(図 2、図 3 参照)。
(I)発光層の一部に、量子ドットが分散されている態様 (図 2)
図 2に示すように、発光層 14の膜厚方向の一部に、量子ドット 16 (材料: CdSe、 Cd SeZZnS (ZnS力もなる shell付 CdSeを意味する。以下、同様。)等、直径: 15〜60 A)が、マトリクス材料 14 '中に分散されて!、る。この分散部分の発光層 14a (膜厚: 1 . 5〜: LOOOnm)力 本発明の一態様である微粒子分散膜に相当する。
本態様は、分散部分の発光層 14aが、発光層の材料 (ここでは ZnSe)に挟まれた サンドイッチ構造となっている。各電極層から注入された電子及びキャリアが、発光層 材料中を移動して、分散部分の発光層 14a中の量子ドット 16で会合し、発光するた め、発光層材料からマトリクス材料へのキャリアの移動がスムーズに行われる必要が ある。この点から、両層は、同材料か同結晶構造を有する材料 (ZnSeと ZnS等)とす ることが好ましい。
本態様の発光層は、平坦なモフォロジーを得られる観点力 好ましい。これにより、 一様な発光面強度を生じる発光層が得られるからである。
[0038] 本態様を実施するための製造方法として、次の方法が挙げられる。
(I) 1
量子ドット材料を、「イオンィ匕工程、溶媒除去工程、側鎖除去工程」を含む工程で供 給しながら、別の系統 (MBE法、 IBD法など)力 マトリクス材料を供給する方法であ る。
発光層材料力 マトリクス材料へのキャリア移動をスムーズにする観点から、マトリク ス材料を、発光層材料と同様の方法で供給することが好ましい。これにより、結晶性 の連続性が実現されやすくなるからである。
マクロなモフォロジ一の観点から、本方法が好ましい。これにより、密に充填された ボイドレスな膜が実現されやすくなるからである。
(I) 2
量子ドット材料を、「イオンィ匕工程、溶媒除去工程、側鎖除去工程」を含む工程で供 給しながら、マトリクス材料も同様に、「イオンィ匕工程、溶媒除去工程、側鎖除去工程 」を含む工程で供給する方法である。
この場合、量子ドット材料と同様に、マトリクス材料も、「炭化水素系の側鎖が配位し た微粒子が有機溶媒に分散してなる溶液」を用いることが出来るが、量子ドット材料と マトリクス材料力 共に分散されている溶液を用いても良いし、別々に分散されている 溶液をそれぞれ用いても良 、。同一の溶液中に共に分散されて 、る溶液を用いる方 法は、装置の複雑化の必要が無ぐさらに、マトリクス材料と量子ドット材料をあらかじ め所定の割合で調合しておくことで、均一な組成の分散部分の発光層 14aを形成で きる点、で好まし 、。
異種材料間での相互拡散の低減の観点から、本方法が好ましい。これにより、ナロ 一ギャップ半導体 Zワイドギャップ半導体間でのバンド端エネルギーの不連続性が 容易に確保できるが実現されやすくなるからである。
(I) 3
上記両方の方法を同時に採用する方法である。
上述両メリットの観点から、本方法が好ましい。これにより、無欠陥の量子井戸構造 が実現されやすくなるからである。
(Π)発光層の全体に、量子ドットが分散されている態様(図 3)
図 3に示すように、発光層 14全体に量子ドット 16 (材料: CdSe、 CdSeZZnS等、 直径: 15〜60 A)が、発光層材料中に分散されて!ヽる。発光層 14全体 (膜厚:1. 5 〜: LOOnm)が、本発明の微粒子分散膜に相当する。本態様では、各電極層から注 入された電子及びキャリアが、発光層材料中を移動して量子ドット 16で会合し、発光 する。 本態様の発光層は、キャリアの再結合確率の観点から好ましい。これにより、高発 光効率の発光層が得られるからである。
[0040] 本態様を実施するための製造方法として、次の方法が挙げられる。
(II) 1
量子ドット材料を、「イオンィ匕工程、溶媒除去工程、側鎖除去工程」を含む工程で供 給しながら、別の系統 (MBE法、 IBD法など)力 発光層材料を供給する方法である マクロなモフォロジ一の観点から、本方法が好ましい。これにより、密に充填された ボイドレスな膜が実現されやすくなるからである。
[0041] (II) - 2
量子ドット材料を、「イオンィ匕工程、溶媒除去工程、側鎖除去工程」を含む工程で供 給しながら、発光層材料も同様に、「イオンィ匕工程、溶媒除去工程、側鎖除去工程」 を含む工程で供給する方法である。
この場合、量子ドット材料と同様に、発光層材料も、「炭化水素系の側鎖が配位した 微粒子が有機溶媒に分散してなる溶液」を用いることが出来るが、量子ドット材料と発 光層材料が、共に分散されている溶液を用いても良いし、別々に分散されている溶 液をそれぞれ用いても良 、。同一の溶液中に共に分散されて 、る溶液を用いる方法 は、装置の複雑化の必要が無ぐさらに、発光層材料と量子ドット材料をあらかじめ所 定の割合で調合しておくことで、均一な組成の分散部分の発光層 14aを形成できる 点で好ましい。
異種材料間での相互拡散の低減の観点から、本方法が好ましい。これにより、ナロ 一ギャップ半導体 Zワイドギャップ半導体間でのバンド端エネルギーの不連続性が 容易に確保できるが実現されやすくなるからである。
[0042] (II) - 3
上記両方の方法を同時に採用する方法である。
上述両メリットの観点から、本方法が好ましい。これにより、無欠陥の量子井戸構造 が実現されやすくなるからである。
実施例 [0043] (実施例 1)
以下、上述の (I)—1に示した製造方法を用いて発光ダイオード(図 1)を製造する 場合を実施例 1として説明する。図 7は実施例 1で用いる装置の概要を示す図である 図 7に示される装置は、図 4に示した微粒子堆積装置に、ロードロック室 9aを介して 超高真空成膜室 9を接続したものである。超高真空成膜室 9は、超高真空ポンプ 9d によって内部を超高真空にすることができ、内部に設置された蒸発源 9bから蒸発す る成膜原料を基板保持手段 9aに保持された被成膜基板 8に堆積させるものである。 なお、蒸発源 9bは図 4に示される微粒子堆積装置の成膜チャンバ一 5内にも設置さ れ、必要に応じて微粒子の堆積と併せて蒸発原料を基板 8に堆積させる。したがって 、成膜チャンバ一 5内で微粒子の堆積等を行った基板 8を、ロードロック室 9aを介し て超高真空成膜室 9内に移送し、必要な成膜を行い、また、超高真空成膜室 9で成 膜を行った基板 8を逆に成膜チャンバ一 5内に移送して微粒子の堆積を行う処理等 を必要に応じて行うものである。
[0044] 基板 8としては、 ITOがコートされたガラス基板を用いた。 ITO膜付ガラス基板は純 水、アセトン、純水で超音波洗浄した後、酸ィ匕エッチングを行い、その後、純水でリン スし、窒素ブローにより乾燥させて、基板保持手段 8aにセットした。
成膜チャンバ一 5内に、蒸発源 9bとして、マトリクス材料の原料となる Znと Seを各ク ヌーセンセル(以下 Kセルという)に投入して設置した。図示しないが、各 Kセルには 、ビームを遮断するシャッターが個別に取り付けられている。微粒子堆積装置におい て、分子ビーム、イオンビームの軸は、成膜チャンバ一 5内でフェースダウンの向きに 取り付けられた基板 8の中心軸に、それぞれ向けられている。さらには、図示しないが 、各ビームと基板 8との間には、基板 8の近傍に、すべてのビームを遮断するメインの シャッターが設置されている。成膜中、基板は加熱し、回転させる。
[0045] 図 2における発光層 14を作成する前に、超高真空成膜室 9内において、電子注入 電極層 12を作成した。これは、成膜チャンバ一 5よりも、超高真空成膜室 9の方が、 到達真空度を高くしゃすいためである。
[0046] 電子注入電極層 12として、 ZnSe: CI (ZnSe中に C1をドープした膜を示す。以下、 同様。)膜を、 MBE法により形成した。詳しくは、フラックス (Zn: 2〜4 X 10_7Torr、 Se: 5〜8 X 10"7Torr)、レート(0. 5〜2 μ m/hr)、基板温度(230°C以下)、材料 (ZnCl:粉末、 A1:ペレット)で行った。
さらに、超高真空成膜室 9内で発光層 14 (1. 5〜: LOOnm)の一部として ZnSe膜を 开成した。詳しくは、フラックス(Zn: 2〜4 X 10"7Torr Se: 5〜8 X 10"7Torr)ゝレ 一ト(0. 5〜2 /ζ πιΖΐιι:)、基板温度(150〜300°C)、背景圧力(l X 10_1°Torr以上 1 X 10—9以下)で行った。ここで、所定の膜厚(5nm程度)の発光層 14の一部を形成 した時点で、 ZnSe材料の供給を止めて、ロードロック室 9aを介して、基板を成膜チヤ ンバー 5内に移動した。
[0047] 成膜チャンバ一 5内で、前述と同様にイオンィ匕工程の条件を整え、ファラデーカツ プでイオン電流によりビーム強度 (密度)を確認した後、量子ドット、 Zn、 Seの各ビー ムを開放し、最後に図示しない基板手前のメインシャッターを開けて量子ドット分散膜 14aを 10〜: LOOnm成膜した。詳しくは、量子ドット分散液 (0. 5mgZmL)フラックス( Zn: 0. 5~l X 10"7Torr Se : 1〜3 X 10_7Torrイオン電流: 1. 5nA)、レート(0. 1 〜0. 6 μ m/hr)、基板温度(150〜300°C)、背景圧力(1 X 10_8Torr以上 1 X 10 一7以下)で行った。ここで、所定の膜厚(5nm程度)の量子ドット分散膜 14aを形成し た時点で、図示しないメインのシャッターを閉め、 ZnSe材料の供給を止めた。
[0048] 再び、ロードロック室 9aを介して、超高真空成膜室 9に基板 8を移し、発光層 14の 一部と正孔注入電極層 18を作成した。
発光層 14の一部として 5nm程度の ZnSe膜を形成した。詳しくは、フラックス (Zn: 2 〜4 X 10_7Torr Se : 5〜8 X 10_7Torr)、レート(0. 5〜 mZhr)、基板温度(1 50〜280°C、ただし量子ドットの発光特性が破壊されない温度)、背景圧力(1 X 10 _ 1C)Torr以上 1 X 10_9以下)で行った。
さらに、正孔注入電極層 18として、 100〜10000nmの ZnSe : Cu (ZnSe中に Cu をドープした膜を示す。以下、同様。)膜 (ここでは 300nmとした)を、 MBE法によつ て形成した。詳しくは、フラックス(Zn: 1〜2 X 10_7Torr、 Se : 1 X 10_6Torr、 Cu:所 望の温度(1 X 10_8Torr程度)、レート(0. 5〜2 μ m/hr)、基板温度(240°C程度) 、材料 (Zn、 Se、 Cuすべて 6N)、背景圧力(1 X 10_11Torr以上 5 X 10_9Torr以下 )で行った。
その後、金属電極として Auを 20〜100nm形成して、本発明の発光ダイオードを形 成した。
[0049] 得られた発光ダイオードの断面を、 TEM (透過型電子顕微鏡)で観察した結果、量 子ドット分散部分以外の膜は、 c軸に配向した柱状の多結晶体となっていた。量子ド ット分散部分については、明確な結晶界面は観察されず、微結晶子で構成される多 結晶体のような構造で、量子ドットがマトリックスに均一に分散した膜となっているのが 確認された。なお、量子ドットの中心間の平均距離は、量子ドットの直径の約 2倍であ つた o
得られた発光ダイオードに、垂直方向に電圧をかけたところ、図 6と同様の発光特 性を示した。
[0050] なお、本実施例のガラス基板の代わりに、 ZnSe単結晶基板を用いて、量子ドット分 散膜以前の成膜をすベてェピタキシャル成長させて発光ダイオードを作成したところ 、効率、輝度について、ガラス基板の場合よりもさらに向上していることが確認された 。しかし、大面積ィ匕を考慮すると、単結晶基板を用いるのはあまり適しておらず、本実 施例のようにガラス基板を用いる方が実用化には適して 、ると考えられる。
[0051] (実施例 2)
以下、上述の (I)に示した製造方法を用いて発光ダイオード (図 1)を製造する場合 の量子ドット堆積例を実施例 2として説明する。本実施例では、量子ドットはマトリクス 材料に分散されずに、数 nmの量子ドット堆積層を有し、この層がマトリクス材料に挟 まれたサンドイッチ構造を有する発光ダイオードにおける量子ドット堆積層を製造した 。図 8は実施例 2に用いる微粒子堆積装置の概要を示す図である。また、被堆積基 板として、実施例 1と同様の基板 (ITO膜付きガラス基板)に ZnSe発光層 lOnmが形 成された基板を用いた。
本実施例では、溶液供給装置としてシリンジポンプを有するキヤピラリーを用いた。 図 8において、マイクロシリンジポンプ 2は、筒状本体部 2b内の微粒子分散溶液 1を ピストン 2aによって押出し、チューブ 2cを通じて、キヤピラリー 3へ送り、キヤビラリ一先 端 3aから放出するようになっている。なお、キヤピラリー 3には、電圧印加手段 3bによ つて所定の電圧が印加可能となっている。また、マイクロシリンジポンプ 2による溶液 供給速度は、 0. 5〜4 lZmin (好ましくは 1〜2 /ζ ΐΖπΰη)である。さらに、図示しな いが、キヤピラリー 3には、 X、 Υ、 Ζ方向にマイクロメーターがついており、キヤビラリ一 先端 3aの位置の微調整が可能となっている。なお、キヤビラリ一として上述のような構 成を用いた力 本発明においてキヤビラリ一は、毛管現象あるいは濡れ現象によって 前記溶液の表面を露出させる溶液送出器具として定義される。キヤビラリ一先端 3aか ら放出された微粒子分散液は、減圧チャンバ一 4の上流側先端部に設けられたジェ ットノズル 4aを通じて減圧チャンバ一 4内に導入され、さらに、成膜チャンバ一 5の上 流側先端部に設けられたスキマーノズル 5aを通じて成膜チャンバ一 5内に導入され るようになっている。キヤビラリ一先端 3aとジェットノズル 4aとの距離は 0〜50mm、好 ましくは、 4〜: LOmmに設定される。この実施例では 8mmの距離に設定されている。 なお、キヤピラリー先端—ジェットノズル間は、ほぼ大気圧となっている。また、キヤピ ラリー先端 3aの内径が 20 μ mであるものを用いた。ジェットノズル 4aと、スキマーノズ ル 5aとの中心位置は一致しており、ジェットノズル 4aとスキマーノズル 5aとの距離は、 1〜: LOmmの間で適宜設定される(この実施例では 3mmとした)。なお、ジェットノズ ル 4aとスキマーノズル 5aとには、それぞれ、電圧印加手段 4c, 5cによって所定の電 圧を印加できるようになって!/、る。
成膜チャンバ一 5は、イオン光学系領域 51と高真空領域 52とで構成されている。ィ オン光学系領域 51と高真空領域 52とは、開口 5bを有する隔壁 5eによって仕切られ 、その基準軸 (微粒子が進行する方向の中心軸)が互いに直交するようになって 、る 。開口部 5bを通じて粒子が移動可能となっている。本実施例では、開口部 5bの直径 を 20mmとした。減圧チャンバ一 4、イオン光学系領域 51及び高真空領域 52は、そ れぞれ、排気口 4d, 51d, 52dを通じて、図示しない真空ポンプにより適切な真空度 を維持するように排気されるようになっている。これらの排気には、例えば、差動排気 手段が用いられ、これにより、圧力は、「キヤピラリー先端 (大気圧) >減圧チャンバ一 >イオン光学系領域 >高真空領域」の関係となっている。ここでは、減圧チャンバ一 内圧力を ΙΤοπ:、イオン光学系領域内圧力を 1 X 10"5Torr,高真空領域内圧力を 1 X 10_6Torr程度とした。ここで、差動排気は、以下のようにして行っている。すなわち 、ジェットノズル 4&( φ 0. 5mm)からスキマーノズル 5a( φ 0. 7mm)に至る領域を 100 〜500[m3Zh]程度の排気速度のメカ-カルブースターポンプあるいはロータリーポ ンプによって排気し、大凡 1[ΤΟΠΓ]程度の真空状態に保持し、その後段に当たるィォ ン光学系領域 51を 300〜1000[LZs]程度のターボ分子ポンプ等によって排気する ことで、 10_4[TOTr]程度の真空状態に保持するようにする。さらに、イオン光学領域 5 1と高真空領域 52(成膜のための領域)間に直径 φ 20mm程度、厚さ数 mmのオリフ イスを設け、高真空領域を 1000〜2000[LZs]程度のターボ分子ポンプ等によって 排気することで、この領域を 10_6[Torr]程度の高真空状態に保持するようにする。
[0053] イオン光学系領域 51内には、ジェットノズル 4a及びスキマーノズル 5aの同軸延長 上に、レンズ装置としての電界型イオンレンズ 6と、分離装置としてのエネルギー分離 装置 71が設けられている。電解型イオンレンズ 6は、 3つの筒状電極 6a, 6b, 6cとか らなるアインツェルレンズである。筒状電極 6a, 6bには、電圧印加手段 6d, 6eによつ て電圧を印加できるようになつている。筒状電極 6cはアース電位にされる。電界型ィ オンレンズ 6は、イオンビームを収束させる機能を有する。ここで、電界型イオンレンズ 6は 1個以上であれば機能するが、本実施例のように、同一の径を持つ 3個の円筒形 電極 6a, 6b, 6cから構成され、各々コアキシャルな配列構造に設置されていることが 好ましい。 3個の電界型イオンレンズに印加する電圧を制御することにより、イオンビ ームの収束電極の役割を果たす。印加する電圧は、微粒子の種類 (サイズ、分子量 など)により適宜決定される。微粒子を収束させることは勿論であるが、溶媒分子ィォ ンなどの軽いイオンを収束させて、後工程 (例えば、磁界発生手段、エネルギー分離 手段など)で効率良く除去可能とすることも有効である。
[0054] また、本実施例では、分離装置としてエネルギー分離装置 71を用いて 、る。ェネル ギー分離装置 71は、アース電位に設定された第 1電極板 71aとこの第 1電極板 71a に対して所定の距離をおいて平行に配置された第 2電極板 71bとを有する。第 1電極 板 71aには、入射孔 71cと出射孔 71dとが設けられている。入射孔 71cは、上記のジ エツトノズル 4a及びスキマーノズル 5aの同軸延長上にある。また、第 2電極板 7 lbは、 電圧印加手段 71eによって所定の電位に設定される。エネルギー分離装置 71は、 入射孔 71cに入射したイオンビームを所定の角度に曲げて、所望のエネルギーを有 する微粒子を分級して出射孔 71dから出射させる。曲げる角度は 90度が最も高分解 能が得られるため好ましい。エネルギー分離装置 71は、キヤビラリ一先端 3aから放出 された微粒子等が被成膜基板 8に到達する前に、質量数の小さい成分 (例えば、溶 媒分子イオンや側鎖分子イオン)や飛来する微粒子や溶媒、側鎖の材料にもなる有 機分子の一緒になつた粒塊を除去する役割 (質量、エネルギー分離機能)を有して いる。
[0055] エネルギー分離装置 71は、静電偏向を利用した分離機構である。ある一定の静電 偏向量を得ようとするとき、荷電粒子の運動エネルギーに偏向電圧が比例する。よつ て、偏向電圧により荷電粒子の運動エネルギーを分離可能である。図 8の装置では、 平行平板電極構造のものを使用しており、一方の電極 71aには二つの開孔を有して おり、一方は入射孔 71c、他方は出射孔 71dである。開孔を有していない方の電極 7 lbには、荷電粒子を減速する電圧士 V (荷電粒子がプラスイオンの場合には +V、
d d マイナスイオンの場合には— v )を与える。まず、入射孔から荷電粒子ビームが斜め
d
に入射し、電極内に入った荷電粒子は、粒子の持っている運動エネルギーで決定さ れる特定の値 (エネルギー値)である場合に、反発されて出射孔から出射する。ここで エネルギー値は、電極間距離、開孔間距離、電圧によって決定されるため、これらの ノ ラメータを変動させることにより、分級した 、エネルギー値を決定可能である。
[0056] 一例として、電極間距離を 26. 5mm、開孔間距離を 53. Omm、電圧を 5kV〜8k Vとして、ビームを 90度曲げて分級することが可能である。また、所望の質量電荷比( イオンの質量 Z電荷量)に対応する電圧士 Vの値を与えられた際に得られるイオン
d
電流密度は、キヤビラリ一径、キヤビラリ一への印加電圧、溶液の流量、溶液の粘度、 揮発性、表面張力、極性、 pH (電気伝導度)、溶質の特性等により決定されるため、 これらのパラメータを可変させることにより所望のイオンを分級可能である。エネルギ 一分離手段で分級するイオンは、後述のように、自由噴流によって速度が支配的で あるため、イオン種に関わらず速度が一定となっている。これにより、所望の質量電荷 比 (イオンエネルギー)を選別することができる。また、図示していないが、出射孔から の所望の荷電粒子ビームの出射は、ファラデーカップによりイオン電流を測定するこ とで強度 (密度)を確認した。この実施例では、電圧印加手段 3bによるキヤピラリー 3 への印加電圧を 1. 9kV、電界型イオンレンズ 6aの電圧 Elを 8kV、電界型ィォ ンレンズ 6bの電圧 E2を 3kV、 エネルギー分離装置 71の電圧印加手段 71eによる 電極 7 lbへの印加電圧 Vdを 8kVとした。また、 Zn, Seのマトリックス材料を用いず、 微粒子のみを 1分子層に満たない量だけ、基板上に分散させる方法も試みた。ここで 、所定の膜厚(5nm程度)の量子ドット分散膜 14aを形成した時点で、図示しない基 板手前のメインのシャッターを閉め、 ZnSe材料の供給を止めた。
[0057] ここで、上記エネルギー分離装置 71の作用について、簡単に説明する。上述のキ ャピラリー 3およびその対向電極 (ここでは電圧印加可能なジェットノズル)は、溶液供 給装置と減圧チャンバ一との間に電界を形成可能であり、いわゆるエレクトロスプレ 一装置であるということができる。そして、このエレクトロスプレーより放出されたイオン を含む流体流は、ジェットノズル 4aに導入されるとき自由噴流を形成するということが できる。すなわち、このエレクトロスプレーにより生成したイオン種は気体の自由噴流 に乗って真空中に導入されることになるが、その時(自由噴流はえ(平均自由行程)
0
< D (オリフィスの口径)の粘性流領域でおこる。)、流れの速度は概ね、膨張前に気 体が持っていたェンタルピーが断熱的過程によって、全て並進エネルギーに変わる ことで決まる。空気 (窒素、酸素等の二原子分子も)の平均自由行程は大凡 10_7[m] であり、数百 mのオリフィスを介して真空中に導入することで自由噴流を形成できる
。このとき、自由噴流の速度 v[mZs]はオリフィスからの距離 x[m]の関数として、 v={3. 65(x/D)2/5-0. 82(x/D)"2/5K y kT/m}, T=T (Ρ /pf~y)/y ο ο
D:オリフィスの直径 [m] 5 X 10_4[m]
y:気体の比熱比 ^ l. 4
T:噴流の温度 [K]
T:導入される気体の温度 [K] 3 X 102[K]
0
Ρ :オリフィスの低圧側の圧力 [Pa] l X 102[Pa]
P:オリフィスの高圧側の圧力 [Pa] l X 105[Pa]
0
で表され、凡そ 103[mZs]程度の値である。
[0058] 混合物の場合、自由噴流中で主成分となる気体 (今回は空気)の速度とその他の 混合物はほぼ同じスピードで飛行することになる。よって重い成分はきわめて高い運 動エネルギーを持つことになる (実際には、オリフィスでの差圧 (押し圧)が大きいほど 、質量による速度の違いは小さくなり、さらに重い分子の速度分布は極めて鋭くなる。 また、多少の速度差、温度差と噴流の中心軸上に重いものが富むようになる力 ここ では無視出来る。 )o一方、この気体中 (粘性係数は約 2 X 10_5[Pa' s])での微粒子( 直径数 [nm])の電界移動度 η =v/E (Eは電界)は、 P 1 X 105[Pa]のとき凡そ η 10_5[m2/s 'V]程度、 P^ l X 102[Pa]のとき凡そ 7? 10_2[m2/s'V]程度の値 である。
したがって、オリフィスの高圧側でのエレクトロスプレーに供する印加電界 (106[VZ m]程度)、オリフィスの低圧側でのグロ一放電に供する印加電界 (104[VZm]程度)の 寄与による終端速度はそれぞれ、凡そ lO mZs]程度、 102[m/s]程度である。また 、エネルギー分離機構に至る以前のイオン光学系領域では、始状態と終状態で静電 ポテンシャルが同じであるので、この間で電界による加減速は生じない。したがって、 エネルギー分離機構に入射するイオンは、その種類にかかわらず、ほぼ同一の速度 を付与する装置構成となっている。当然、該実施例に限らず、イオンビームの経路中 に付加的な加速機構を挿入し、その機構中で付加されるエネルギーを考慮した、ェ ネルギー分離機構の校正も可能である。
エネルギー分離機構では、粒子が入射孔から入り、出射孔力 飛び出してきた時、
L= 2V /V - sin2 a
O d
である。ここで、
L:電極に設けた開孔間距離 (今回は 26. 5mm)
入射角度 (今回は 45度)
V:荷電粒子の加速電圧 (V =E Zq、 E :運動エネルギー、 q:電荷)
0 O m m
V:荷電粒子を減速する電圧
d
L、 ひは一定であるため、 Vは Vによって分析できる。
0 d
また、 V =E Zq
O m
E = (mv2) /2
m
より V = (mv2) /2q= (m/q) · (V 2Z2)であり、 vは先ほど述べたとおり、自由噴
0
流中では全てのイオンがほぼ同じ速度をもっと考えるため、この装置によって、エネ ルギーを分離するということは、質量電荷比 mZq (質量 Z電荷)を分離することにな る。
[0060] 高真空領域 52内には、被成膜基板 8を保持する基板ホルダー 52gと、この基板 8 に向力う荷電粒子線を収束させる収束装置としての収束電極 52bと、上記収束され た荷電粒子線を減速させて基板 8に堆積させる減速装置としての減速電極 52cとが 設けられている。エネルギー分離装置 71の出射孔 71d—隔壁 5aの開口 5b、収束電 極 52a, 52b、減速電極 52cは、それぞれ、同軸延長上に設けられている。図 9は基 板ホルダー 52gと収束電極 52bと減速電極 52cとを示す図である。図 9に示されるよう に、収束電極 52bと減速電極 52cとは、ともにリング状の開孔電極である。収束電極 5 2a, 52bの開口径は、それぞれ 25. 4mm, 33mmである。また、減速電極 52cは、 略円錐台形状の開口部が形成され、円錐台形状開口部の頂部に基板ホルダー 52g が形成されるようになっている。円錐台形状の円錐の開き角は約 135度である。
[0061] 収束電極 52a, 52bは,正(負)イオンの減速時に、イオン同士のクーロン斥力でビ ームが発散するのを抑制する機能を有する。この実施例では、負(正)電圧を印加さ れた開孔電極で外径約 120mm,内径約 25mmの接地電極であるシールド電極で ある電極 52aと、外径約 120mm、内径約 33mmの電極 52bとで形成されている。こ れらは、 20mmの間隔をあけて平行に設置されており、減速電極 52cとともに基板 8 の極近傍で、平行な等電位面を形成する。電極の板厚は 2mmとした。本発明の装 置の構成は、減速装置を有している。これは、原料として微粒子が分散された溶媒を 用い、かつ、特定の質量電荷比を有する目的物のみを分離装置により得るという、本 発明の装置の構成を検討するにあたり、本願発明者が初めて見出した課題によって 得られた構成である。本願発明者は鋭意研究の結果、分離機構にイオンビームを導 入するためには、飛来イオンはエネルギーを大きい状態としたい一方、エネルギーが 大きいまま基板に堆積させると、基板にめり込んだり跳ね返ったりしてしまい、基板に 微粒子が付着しないことを見出した。すなわち、堆積物である微粒子のエネルギーは 、基板直前までは大きくする必要があるが、基板堆積時にはエネルギーを小さくする 必要があることを見出した。そこで、減速電極 52cは、飛来するイオンの正 (負)イオン の運動エネルギーを堆積に適当な値に調整する役割を果たす。数 eV〜数百 eVの 低 、エネルギーのイオンビームは空間電界効果により発散しやす 、ので長距離輸送 することができない。したがって、長距離輸送中は高エネルギーで輸送したい。し力し 、飛来するイオンは、エネルギーが大きすぎると、基板にめり込んだり、跳ね返ったり するため、基板に付着しないため、基板直前で適当なエネルギーに減速する必要が あることがわ力つた。なお、本発明の装置では、クラスターの質量数として 101Gamu程 度のものでも、イオンクラスタ一として加速 ·分離'堆積が可能であり、この時の速度は 500〜5000mZsec程度であると推定される。
[0062] 減速電極 52cには、正 (負)電圧が印加され (例えば l〜8kV)、基板 8上及びその 近傍に平行な等電位面を形成する。具体的には、イオンに含まれる原子一個当たり の運動エネルギーが 1 eV〜: LeVとなる様な減速電圧を選択する。いずれの場合も 、ナノ結晶イオンが基板に到達し、非弾性的な堆積現象を生じさせるのに十分大きく 、且つ、飛行時に有していた運動エネルギーが散逸する過程で、結晶を変形させ固 定してしまうような発熱を避ける為に十分小さな値として選択する。この実施例では、 収束電極 52bから約 20mmの距離に平行に設置されている。電極は外径約 120m mで、約 33mmの基板保持部分から、 90mmの外径部近傍まで約 135度のテーパ 一(お椀型)がついていることにより、空間電界効果を打ち消しており、被成膜基板に 垂直な電界が形成され、面内均一性の高い膜が形成可能となる。
なお、上述のように本発明では被堆積基板の直前に減速装置が必要であるが、絶 縁された基板の表面に堆積させる場合には、少量の微粒子が堆積することにより基 板表面に電荷が生じるため、基板表面の電荷により微粒子が減速される。この場合 には、装置自体に減速装置を設ける必要が無い (被成膜基板表面が、本発明の「減 速装置」となる)。
[0063] 基板ホルダー 52gは、加熱手段を具備することで、被成膜基板を加熱することが可 能である。ここでは、基板温度を 100°Cに設定した。基板温度が高すぎると、ナノ結 晶がアモルファス化したり、量子井戸およびマトリックス間での相互拡散によって生じ る量子井戸構造自体の破壊が生じることにより、ナノ結晶が量子ドットとして機能しな くなり発光特性を劣化してしまうので好ましくない。なお、この装置は、原理上、複数 の種類の微粒子が混在する混合溶液カゝら所望の質量の微粒子を取り出すことも可能 である。例えば、単一の混合溶液を用いて、分離手段の電圧を変化させることにより 、異種微粒子の積層膜を形成することも可能である。なお、ここで扱う微粒子としては
、非常に軽量の原子イオン(1 X 10_22g)から 1 X 10_18g程度の大重量イオンまで可 能である。
[0064] 溶液の準備
この実施例では、量子ドット及びマトリクス (発光層)ともに、原料として、炭化水素系 の側鎖が配位した微粒子が有機溶媒中に分散してなる溶液を用いた。詳しくは、量 子ドット及び発光層ともに、図 5に示す構造のナノ結晶(直径: 1. 5〜7. Onm、側鎖: C5〜C30程度の炭化水素系(N、 P等を含む)化合物及び Z又は炭素を珪素で置 換した形態のシリコーン系化合物 (Si5〜Si30程度)、微粒子 1個の重量は 1 X 10"2° g〜l X 10_ 17g程度)を用いた。量子ドット材料は、 core— shell構造を有し、 core部 分に CdSe、 shell部分に ZnSから成るものや、 core部分に InP、 shell部分に ZnSe 力 なるものを用いた。これらのナノ結晶が、トルエンまたはジェチルエーテルまたは クロ口ホルムまたはアセトンの混合溶液(例えば、クロ口ホルム:ジェチルエーテル:ト ルェン =6: 3: 1)に分散されている溶液を用いた。
[0065] なお、量子ドットの濃度は 0. 01〜0. 5mgZmlであり、この他に CdSe、 ZnSe、 In P、 ZnSe、 InGaP、 InGaAsP, ZnS、 ZnSSe、 GaN、 SiGe、 C (ダイヤモンド) 等の 混合分散液を用いた。 CdSeと ZnSeまたは InPと ZnSeについては、体積比率が 5 : 9 5の溶液を用いた。溶液中の体積比率は、分散させる量子ドットの体積比から決定さ れるが、 CdSeの体積比率は、 100ppm〜30%とすること力 十分な量子井戸のポテ ンシャルバリア幅の確保、ひ 、ては電子及び正孔の量子化準位形成の点力 好まし い。また、本実施例の装置によれば、溶液に微粒子が分散している溶液を供給原料 として用いることが可能であり、溶解度がそれほど高い必要は無ぐ溶液中で凝集し ない状態であれば良い。このような溶液であれば、側鎖は不要である。例えば、粘性 のある溶媒であれば、側鎖がなくとも微粒子は凝集せずに溶液中に存在できる。また 、微粒子が荷電粒子の場合には、溶媒として極性溶媒を用いることで溶液が調整可 能である。いずれの場合にも、溶媒の分子量は、微粒子の質量に近似すると分級が 困難となるため、微粒子に応じて選定する必要がある。なお、本発明の装置によれば 、溶液原料を用いて微粒子分散膜を形成可能であるが、微粒子としては量子ドットに 限定されない。溶液中に分散された微粒子であれば、磁性材料や光学材料等として も適用可能である。
[0066] 微粒子分散膜の形成
まず、ジェットノズル 4aとスキマーノズル 5aとの開口部が詰まっていないことを確認 し、ジェットノズル 4aとスキマーノズル 5aとの中心位置が一致して!/、ることを確認した。 キヤピラリー 3とスキマーノズル 4aとのアースをとり、ジェットノズル 4aにイオン力卩速用 の電源をつないだ。ここで、印加電圧は OV〜10kV (好ましくは 200〜350V)から選 択するが、ここでは 330Vとして設定した。この際、ジェットノズル 4aとスキマーノズル 5 aとの間で放電を生じさせる放電手段を設け、電圧を調節することで、ジェットノズル 4 aとスキマーノズル 5aとの間にグロ一放電を生じさせ、生じたプラズマ中にイオンを飛 行させることにより、さらに電離、フラグメンテーションを促進させることもできる。図 10 はジェットノズル 4aとスキマーノズル 5aとの間にグロ一放電を生じさせた状態を示す 図である。
[0067] プラズマの雰囲気として、不活性ガスを中心に数%〜50%以下の酸素あるいは水 素を用 ヽた混合気体を利用すると、ラジカルとイオンの反応によって微結晶に配位し た有機分子を除去できる。このとき、ジェットノズル 4aに印加する電源を定電流源とす ることで、安定したグロ一放電を生じさせることが出来る。ここで、放電電流密度は 0. 01〜lA/cm2とした。形成されたイオンシース 4eは、陰極であるスキマーノズル 5a のオリフィスを覆い、ジェットノズル 4aとスキマーノズル 5aとの双方のオリフィス間に継 続的なプラズマが生成維持され、プラズマ中の電子が、飛行するナノ結晶を含むィォ ンに衝突する。この電子衝撃によって、キヤビラリ一先端 3aから放出された帯電液滴 のフラグメンテーションが促進され、残留する溶媒分子、表面配位分子の解離を促進 する。さらに、ジェットノズル 4aとスキマーノズル 5aとの間には磁界を印加しプラズマ 中の電子のサイクロトロン運動を促進し、プラズマ密度の増加、延いては飛行するィ オンへの電子衝撃の単位時間当たりの回数を増大することも有効である。その結果、 溶媒、表面配位分子を含まずナノ結晶単独で構成されるイオンの比率が増加し、堆 積させ得るナノ結晶の収率が増加する。また、ノズルの高圧側から導入する気体種 は、水素等のみならずノヽロゲンあるいはハロゲンィ匕物等のエッチング性分子を用い た場合、ナノ結晶イオン表面をエッチングする、あるいは表面活性を付与する上で有 効である。
[0068] キヤビラリ一先端 3aに、マイクロシリンジ 2により液滴を形成し、この状態でキヤビラリ 一先端 3aに電圧を印加して液滴のイオンィ匕により帯電液滴を生じさせて、キヤビラリ 一先端 3aからノズルへ放出させた。このとき、電圧は 1. 3〜2. 5kVとした。さらに、電 界型イオンレンズ 6を使用してイオンビームを収束させた。ここでは、スキマー側の電 界型イオンレンズ 6aに E1 :— 6〜: L lkV、中間の電界型イオンレンズ 6bに E2 : +0〜 5. 5kVを印加した。なお、スキマーノズル 5aへは、ジェットノズル 4aと等電位かそれ 以下の電位を印加した。一実施形態として、エネルギー分離装置 71の電圧士 Vと電
d 界型イオンレンズ電圧 El、 E2の 3つの電圧を個別に走査して、電流のたくさん取れ る範囲でかつ士 Vの小さい値 (微粒子が凝集せず、独立に存在している可能性が高
d
くなる)となるように設定し、被成膜基板 8上に堆積させた。また、 pAメーターでファラ デーカップの指示するイオン電流密度値が 0. 10-0. 002nAZcm2であることを確 した 0
[0069] 本態様の製造装置によると、大気中で放出された帯電液滴は、ジェットノズル 4aか ら減圧チャンバ一内へ入った後、スキマーノズル 5aから成膜チャンバ一 5内のイオン 光学系領域 51に入り、電界型イオンレンズ 6を通過時に絞られ、エネルギー分離装 置 71の入射孔 71cに入り、エネルギー分離装置 71内で 90度曲げられて出射孔 71d および隔壁 5aの開口 5bを通過し、成膜チャンバ一内の高真空領域 52へ入り、収束 電極 52a, 52bと減速電極 52cで成型を受けて被成膜基板 8の表面へ到着する。本 実施例の装置により、特定の質量電荷比の微粒子のみを分離して被成膜基板表面 に堆積可能であるため、溶媒や側鎖起因の成分を完全に除去可能であり、非常に高 純度の微粒子堆積物を製造可能である。
[0070] (実施例 3)
本実施例では、図 8に示す装置を用いて、微粒子として、 Journal of Applied P hysics, 91, 1502 (2002)、 Journal of Applied Physics, 95, 4251 (2004) 等に開示される様な、コバルトナノ結晶、及びコバルト白金合金ナノ結晶のへキサン 分散溶液を強磁性体ナノ結晶堆積物材料として用い、磁気記録媒体の形成を行つ た。これらコバルトナノ結晶、及びコノ レト白金合金ナノ結晶は、塩ィ匕コバルト (CoCl 2)、ビス (2ェチル -へキシル-)スルホコハク酸、ラウリン酸 (C12H25COOH)、水素化 ホウ素ナトリウム (NaBH4)、イソオクタン、へキサン及び塩ィ匕白金 (PtC14)を原料に用 い生成した。ラウリン酸を表面配位分子として、常温常圧下においてへキサン中に安 定分散されたコバルトナノ結晶、及びコバルト白金合金ナノ結晶は、ともに結晶の底 面直径を 2〜10nmとし、長さを 30〜100nmとした円筒形であり、何れもサイズの標 準偏差は 0. 5nm以下である。分散液中のナノ結晶の濃度は 0. 02〜20nmolZml とした。
[0071] 実施例 2と同様に、該材料分散液けノ結晶のサイズ:底面直径 X長さ = 2nm X 30 nm, 2nm X 50nm, 5nm X 50nm, lOnm X lOOnm)をキヤピラリー先端 3aから本 発明製造装置に導入し、前実施例と同様の装置パラメーターに設定し、該コバルトナ ノ結晶、及びコバルト白金合金ナノ結晶を 100〜300°Cに保持したホウ珪酸ガラス基 板上に堆積した。ただし、基板表面に対して垂直の磁界 (500〜5000Gauss)を印加 できるように、イオンビーム軌道上に直径 130mm、長さ 100mmの空芯コイル (電磁 石)を配置し、直流電流を通電した状態で堆積を行った。何れの濃度の分散液を用 いた場合も、堆積時間に比例し、基板表面上に面積占有率 20〜90%の単一層を形 成できた。
[0072] さらに、実施例 2で用いたような半導体微結晶を本発明製造装置の強磁性体ナ ノ結晶分散溶液に混合あるいは同時供給することで、基板上に同時に堆積した。常 磁性体半導体微粒子が該強磁性ナノ結晶を安定支持することで、個々の強磁性体 ナノ結晶が孤立した磁区を形成出来たことが、透過型電子顕微鏡像観察によって確 認された。また、同様の効果は強磁性体ナノ結晶の堆積後に常磁性体をオーバーコ ートすることによって、あるいはナノ結晶の堆積中常磁性体の共蒸着、スパッタによつ ても得られる。ここで、磁区を区分する為の常磁性体は、金属及びその酸化物、半導 体半導体及びその酸化物、有機榭脂類、シリコーン榭脂類等の何れで有っても良い
[0073] 透過型電子顕微鏡像中で観測される堆積膜中のコバルト、白金あるいはコバルト 白金合金の (111)格子面間隔 (0. 205-0. 227nm)に相当するフリンジ像は基板に 対して垂直方向に配向しており、イオンビームの飛行過程中に印加した磁界によつ て、ナノ結晶の長辺を基板面に垂直に指向させたまま堆積出来ることが確認された。 この結果、底面の直径が 2nmの強磁性ナノ結晶を面積占有率 90%で堆積した場合 、長辺方向の結晶サイズにかかわらず、 120Gビット Z平方インチに相当する所謂「 垂直磁気記録媒体」を形成できた。一般には、単一磁区のサイズが小さくなり過ぎる と常温であっても記録磁界を保てない「熱ゆらぎ」現象が起き、これが記録密度向上 の妨げとなる力 本実施例で作製したコバルトあるいはコバルト白金合金ナノ結晶堆 積膜では、記録媒体面に対して垂直方向に円筒形ナノ結晶の長辺 (30〜: LOOnm)の 軸を配向させることによって、単一磁区当たりの磁気記録媒体面上の占有面積 (1ビ ット当たりの面積)を 3. 4nm2程度の極めて小さな値に止め、且つ単一磁区の体積を 大きく保つことが出来る。
[0074] また、従来、所謂垂直磁気記録媒体の製造には、磁区を分画するための常磁性材 料を予め強磁性材料とともに成膜し熱処理などで偏祈させる自己形成的な手法が用 いられたり、あるいはフォトリソグラフィ一等によって強制的に分画する所謂パターンド メディアの手法が用いられてきた。これらでは、個々の強磁性体結晶子が必ずしも孤 立しているわけではなぐ結晶子間の相互作用が強ぐ本来単一ビットの情報担体と なるべき結晶子同士が磁気的に結合して大きな磁区を形成したり、あるいはリソダラ フィ一で形成できるパターンのサイズの限界が大きぐ実用的な情報記録密度は 100 Gビット Z平方インチ程度にとどまつていた。しかし、本実施例に示す強磁性体堆積 膜は、予め極めて標準偏差の小さ ヽサイズ分布を有する強磁性体微結晶を材料とし 、その構造を保存したまま、所望の基板上に垂直方向に配向させ堆積したものであ るため、個々の結晶は完全に孤立し、各ナノ結晶が 1磁区を形成し、 1ビットの情報記 録担体として機能する。本発明の装置によれば、更なる記録密度の向上が期待でき る。
[0075] (実施例 4)
図 11は、実施例 4において用いる微粒子堆積装置の概略構成を示す図である。こ の実施例は、上述の実施例 2で用いた微粒子堆積装置 (図 8参照)〖こおけるエネルギ 一分離装置 71のかわりに、図 11に示されるように、電磁場型質量分離装置 72を用 いたほかは実施例 2と同一であるので、以下では、図 11を参照にしながら電磁場型 質量分離装置 72を説明し、他の説明は省略する。図 11において、電磁場型質量分 離装置 72は、微粒子線の進行方向に対して直交する方向に磁界 Hを形成するよう にしたものである。すなわち、イオン光学系領域 51は、 90度曲がった筒状部 5cによ つて、高真空領域 52に接続されている力 この筒状部 5cの外部に、一対の扇形磁石 72a, 72bを、相対向して配置したものである。これにより、磁界 Hを形成するようにし ている。本実施例の電磁場型質量分離装置 72は、サイクロトロン運動 (磁界中で運 動する荷電粒子が力を受けてする円運動)の一部を利用して荷電粒子の偏向を行う 方法である電磁偏向を利用したものである。電磁偏向では、荷電粒子の偏向量が質 量電荷比に依存し、質量が大きいほど曲がりにくいので、主に質量の小さなイオンや 電子の偏向に利用される。この実施例では、微粒子以外の特に軽い成分 (溶媒分子 、気体分子等)を除く目的で利用している。
この実施例に力かる扇形磁石によるエネルギー分離の作用は以下の通りである。 すなわち、一様な磁界中では、磁界の方向に直交する方向から入射するイオンの軌 道は加速電圧 (に相当する値、非相対論的に V=mv2Z2z)が同一の場合、イオンの 運動量の大きさに応じて軌道半径が決まる。 加速電圧が同一であればイオン運動 量と質量は一対一の対応関係があるから、この軌道半径の差を利用して質量分離を 行うことができる。
質量 m、電荷 zのイオンが電場で加速され、速度 v[cmZs]となるとき、電圧 Vによる 加速で与えられるイオンの運動エネルギーは mv2Z2 = zVである。
イオンは運動方向に垂直方向の磁場 H[esu]に入り、半径 rの円弧軌道を描く。ィォ ンの遠心力 mv2Zrと磁力 Hzvが釣り合うことで
mv , r=Hzv
m/z=r2H2/(2V)となる。
広く用いられている質量分離装置ではビーム中で各イオンは Vが一定であるので、 Hを一定にして Vを変える、もしくは Vを一定しにして Hを変えることで rを一定にでき る。 本実施例で示す装置 (図 8)では、ビーム中で各イオンの Vが一定であるので、 m, z=rH, v
であるから、磁場を一定にした場合、偏向半径を変化させることによって、あるいは 、偏向半径を一定にした場合、磁場を変化させることによって、質量を分離することが 出来る。
質量分離としてよく用いられる角度 90度のものについて考える。回転半径 Rの扇形 磁石があり、その外部の点 Aから加速電圧 Vによって加速されたイオンが磁石に入
0
射し、半径 Rの円軌道を描き 90度回転して出口に到達する。点 Aと磁石入り口までの 距離を Ll、磁石出口カゝらターゲットまでの距離を L2とする。このとき質量 mlのー価ィ オンが中心軌道を通過するように磁界が調節されて 、るものとする。
質量 mi+ A miのイオンの軌道は miの軌道と比べて
1/2 (R+L2) · ( A mi/mi)
の差が生じる。
(実施例 5)
図 12は実施例 5において用いる微粒子堆積装置の概略構成を示す図である。この 実施例は、上述の実施例 2で用いた微粒子堆積装置 (図 8参照)におけるエネルギー 分離装置 71のかわりに、図 12に示されるように、高周波多重極型質量分離装置 73 を用いたほかは実施例 2と同一であるので、以下では、図 12を参照にしながら高周 波多重極 (ここでは四重極)型質量分離装置 73を説明し、他の説明は省略する。図 1 2において、高周波四重極型質量分離装置 73は、イオン光学系領域 51と高真空領 域 52とを仕切る隔壁 5aの手前に四重極分離電極 73a、 73b、 73c、 73dを設けたもの である。これら 4つの電極 73a、 73b、 73c、 73dは、一対の電極 73a、 73bが、図中上 下に対向するように配置され、他の一対の電極 73c、 73dが図中紙面に直交する方 向に対向するように配置し、 4つの電極で断面四角形状の筒状体を形成するようにし 、この筒状体内を粒子線が通過するようにしたものである。そして、電極 73aと 73bに は、 + {U+Vcos( co T)}の高周波電界を、電極 73cと 73dとには、一 {U+Vcos( co T ) }の高周波電界をそれぞれ印加することにより、通過する粒子線のエネルギーに応じ て進行方向を変え、一定のエネルギーの粒子のみを直進させて基板 8に堆積させる ようにするものである。なお、この四重極分離電極による質量分離の原理は、いわゆ る四重極分離による質量分析に用いられている周知原理である (例えば、石川順三 著「荷電粒子ビーム工学」コロナ社発行 125頁等参照)。
産業上の利用可能性
[0078] 本発明は、ナノ結晶や磁性粒子等の微粒子が均一に分散した半導体膜や磁性膜 若しくは光学膜等の無機膜製造の際に、基板等に微粒子を堆積させる微粒子堆積 装置及び微粒子堆積膜製造方法として、ある!ヽは発光素子の製造方法として利用 することができる。
図面の簡単な説明
[0079] [図 1]本発明の実施の一形態に係る発光ダイオードを示す断面図である。
[図 2]本発明の実施の一形態に係る微粒子分散膜 (図 1における発光層 14)を示す 断面図である。
[図 3]本発明の実施の一形態に係る微粒子分散膜 (図 1における発光層 14)を示す 断面図である。
[図 4]本発明の実施の一形態に係る微粒子分散膜製造装置を示す概略図である。
[図 5]本発明の実施の一形態で用いた微粒子材料を示す模式図である。
[図 6]本発明の実施の一形態で作成した素子の発光特性である。
[図 7]実施例 1で用いた微粒子分散膜製造装置を示す概略図である。
[図 8]実施例 2で用いた微粒子堆積装置を示す概略図である。
[図 9]実施例 2で用いた微粒子堆積装置の部分拡大図である。
[図 10]実施例 2で用いた微粒子堆積装置の部分拡大図である。
[図 11]実施例 4で用いた微粒子堆積装置を示す概略図である。
[図 12]実施例 5で用いた微粒子堆積装置を示す概略図である。
符号の説明
[0080] 1 微粒子分散溶液
2 シリンジポンプ
3 キヤビラリ一
3a キヤビラリ一先端 減圧チャンバ一
a ジェットノス、ノレ
成膜チャンバ一
a スキマーノズル
電界型イオンレンズ 被成膜基板
0 基板 (ガラス基板)
2 n型電極 (電子注入電極)4 発光層
4a 量子ドット分散部分
6 量子ド、ッ卜
8 p型電極 (正孔注入電極)1 イオン光学系領域
2 高真空領域
1 ,72, 73 エネルギー分離装置

Claims

請求の範囲
[1] 微粒子が溶媒中に分散してなる溶液を原料に用いて、被堆積体上に前記微粒子 を堆積するための微粒子堆積装置であって、
前記原料を供給する溶液供給装置と、
前記原料を帯電させる帯電装置と、
内部を減圧雰囲気にするための排気口を備えた減圧チャンバ一であって、前記溶 液供給装置から噴出される原料をジェットノズルを通じて内部に導入可能な減圧チヤ ンバーと、
内部を前記減圧チャンバ一より高い真空度にするための排気口を備えた成膜チヤ ンバーであって、前記減圧チャンバ一内から排出される原料をスキマーノズルを通じ て内部に導入可能であると共に、この原料のうち、特定の質量電荷比を有する微粒 子のみを選別して内部に配置した被堆積体上に堆積させる分離装置を備えた成膜 チャンバ一と、
を有することを特徴とする微粒子堆積装置。
[2] 前記成膜チャンバ一内には、前記帯電装置により帯電した原料を収束させるレンズ 装置と、このレンズ装置によって収束された原料に電界若しくは磁界を印カロして特定 の質量電荷比を有する微粒子のみを前記被堆積体の方向に進行させて被堆積体上 に堆積させる分離装置を有することを特徴とする請求項 1記載の微粒子堆積装置。
[3] 前記帯電装置が、前記溶液供給装置を所定電位にするための電圧印加装置であ ることを特徴とする請求項 1又は 2記載の微粒子堆積装置。
[4] 前記帯電装置が、前記減圧チャンバ一内を放電領域にするために、前記ジェットノ ズルとスキマーノズルとの間に放電電圧を印加する放電電圧印加装置であることを 特徴とする請求項 1乃至 3のいずれかに記載の微粒子堆積装置。
[5] 前記分離装置が、電界発生手段を用いた軌道偏向エネルギー分離装置である静 電型エネルギー分離装置であることを特徴とする請求項 1乃至 4のいずれかに記載 の微粒子堆積装置。
[6] 前記分離装置が、磁界発生手段又は直交電磁界発生手段を用いた軌道偏向質量 分離装置である電磁場型質量分離装置であることを特徴とする請求項 1乃至 4のい ずれかに記載の微粒子堆積装置。
[7] 前記分離装置が、高周波多重極型質量分離装置であることを特徴とする請求項 1 乃至 4の 、ずれかに記載の微粒子堆積装置。
[8] 前記分離装置から前記被堆積体に向けて進行する微粒子を減速させる微粒子減 速装置を有することを特徴とする請求項 1乃至 7のいずれかに記載の微粒子堆積装 置。
[9] 前記微粒子減速装置によって減速された微粒子を収束して前記被堆積体上に堆 積させる微粒子収束装置を有することを特徴とする請求項 8記載の微粒子堆積装置
[10] 前記成膜チャンバ一は、前記分離装置が配置されるイオン光学領域と、前記被堆 積体が配置される高真空領域とに区分され、これらの領域は、微粒子を通過させるァ パーチヤーを備えた隔壁によって仕切られており、それぞれの領域を目的の真空度 にする排気装置が設けられ、高真空領域の真空度がイオン光学領域の真空度よりも 高真空に維持されることを特徴とする請求項 1乃至 9のいずれかに記載の微粒子堆 積装置。
[11] 半導体微粒子が溶媒中に分散してなる溶液を用い、請求項 1乃至 10のいずれか に記載の微粒子堆積装置を用いて半導体微粒子を被堆積体に堆積させることを特 徴とする半導体微粒子堆積物製造方法。
[12] 微粒子が溶媒中に分散してなる溶液を原料に用いて、被堆積体上に前記微粒子 を堆積するための微粒子堆積物製造方法であって、
溶液供給装置から前記原料を噴出し、前記原料を帯電させる帯電工程と、 前記原料を、内部が減圧雰囲気にされた減圧チャンバ一に設けられたジェットノズ ルを通じて内部に導入する工程と、
前記減圧チャンバ一内を進行する噴流を、内部を前記減圧チャンバ一より高い真 空度に保持された成膜チャンバ一に設けられたスキマーノズルを通じて内部に導入 する工程と、
前記原料から、特定の質量電荷比を有する微粒子のみを選別して内部に配置した 被堆積体上に堆積させる分離工程と、 を有することを特徴とする微粒子堆積物製造方法。
[13] 前記帯電工程は、溶液供給装置としてキヤピラリーを用い、前記キヤビラリ一先端か ら大気圧雰囲気中に前記溶液を微細液滴流として噴出させるとともに、前記キヤビラ リーを所定電位にすることで前記キヤビラリ一先端から噴出される微細液滴を帯電さ せるものである特徴とする請求項 12記載の微粒子堆積物製造方法。
[14] 前記帯電工程は、前記減圧チャンバ一内を放電領域とし、前記減圧チャンバ一内 に前記原料を通過させる工程であることを特徴とする請求項 12又は 13記載の微粒 子堆積物製造方法。
PCT/JP2005/019377 2004-10-21 2005-10-21 微粒子堆積装置及び微粒子堆積方法 WO2006043656A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP05795475A EP1811553A4 (en) 2004-10-21 2005-10-21 APPARATUS AND METHOD FOR DEPOSITING FINE PARTICLES
JP2006520456A JP4467568B2 (ja) 2004-10-21 2005-10-21 微粒子堆積装置及び微粒子堆積物製造方法
US11/665,735 US7829154B2 (en) 2004-10-21 2005-10-21 Particle deposition apparatus, particle deposition method, and manufacturing method of light-emitting device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004-307226 2004-10-21
JP2004307226 2004-10-21

Publications (1)

Publication Number Publication Date
WO2006043656A1 true WO2006043656A1 (ja) 2006-04-27

Family

ID=36203069

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/019377 WO2006043656A1 (ja) 2004-10-21 2005-10-21 微粒子堆積装置及び微粒子堆積方法

Country Status (7)

Country Link
US (1) US7829154B2 (ja)
EP (1) EP1811553A4 (ja)
JP (1) JP4467568B2 (ja)
KR (1) KR100912627B1 (ja)
CN (1) CN100477134C (ja)
TW (1) TWI287255B (ja)
WO (1) WO2006043656A1 (ja)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007314825A (ja) * 2006-05-24 2007-12-06 Univ Of Miyazaki 被膜生成方法および被膜生成装置
WO2007142203A1 (ja) 2006-06-05 2007-12-13 Hoya Corporation 量子ドット発光型無機el素子
EP1970128A3 (de) * 2007-03-10 2010-02-17 Alexander Kuhn Verfahren und Einrichtung zur Herstellung einer Beschichtung
JP2012522335A (ja) * 2009-03-27 2012-09-20 ディーエイチ テクノロジーズ デベロップメント プライベート リミテッド 飛行源の加熱時間
JP2012230952A (ja) * 2011-04-25 2012-11-22 Nippon Telegr & Teleph Corp <Ntt> 注入方法
JP2015515361A (ja) * 2012-02-28 2015-05-28 ユニバーシティ オブ レスターUniversity Of Leicester 気相法と湿式化学法との組合せによる化学反応
JP2017203771A (ja) * 2016-05-12 2017-11-16 エフ・イ−・アイ・カンパニー ビームによって付着させた構造体へのナノオブジェクトの取付け
US10981184B2 (en) 2017-03-27 2021-04-20 Semes Co., Ltd. Coating apparatus and coating method
JP2022515785A (ja) * 2018-12-21 2022-02-22 ジェイ. ワグナー ゲーエムベーハー ポンプシステム
JP7455450B1 (ja) 2023-12-08 2024-03-26 株式会社ナノリューション 分離装置

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8261690B2 (en) * 2006-07-14 2012-09-11 Georgia Tech Research Corporation In-situ flux measurement devices, methods, and systems
US8502259B2 (en) 2008-01-11 2013-08-06 Industrial Technology Research Institute Light emitting device
JP5471035B2 (ja) * 2009-05-26 2014-04-16 ソニー株式会社 表示装置、表示装置の製造方法、および電子機器
TWI387138B (zh) * 2009-07-10 2013-02-21 Ind Tech Res Inst 磁性發光元件、磁性發光裝置以及氮化物半導體模板
CN102947010B (zh) * 2010-06-21 2015-11-25 Beneq有限公司 涂覆玻璃基板的设备及方法
DE102010034732A1 (de) * 2010-08-18 2012-02-23 Karlsruher Institut für Technologie Vorrichtung und Verfahren zur Bestimmung der Fragmentierungsenergie von Nanopartikel-Agglomeraten
JP5834357B2 (ja) * 2011-10-24 2015-12-16 新日鉄住金化学株式会社 有機エレクトロルミネッセンス素子及びその製造方法
US10586625B2 (en) 2012-05-14 2020-03-10 Asml Netherlands B.V. Vacuum chamber arrangement for charged particle beam generator
CN107359101B (zh) * 2012-05-14 2019-07-12 Asml荷兰有限公司 带电粒子射束产生器中的高电压屏蔽和冷却
US11348756B2 (en) 2012-05-14 2022-05-31 Asml Netherlands B.V. Aberration correction in charged particle system
TWI643328B (zh) * 2017-10-13 2018-12-01 英屬開曼群島商錼創科技股份有限公司 顯示裝置
CN109671732A (zh) * 2017-10-13 2019-04-23 英属开曼群岛商錼创科技股份有限公司 显示装置
JP2021514492A (ja) 2018-02-09 2021-06-10 ニーサー,ポール 濾過装置および方法
US11260330B2 (en) 2018-02-09 2022-03-01 Paul NEISER Filtration apparatus and method
CN108254950B (zh) * 2018-02-09 2021-01-08 京东方科技集团股份有限公司 一种量子点小球喷洒设备
CN112041724A (zh) 2018-02-15 2020-12-04 P·奈瑟 用于选择性透射对象的设备和方法
CN108645624B (zh) * 2018-05-11 2020-05-08 北京卫星环境工程研究所 基于磁偏转的电推进羽流沉积效应测量装置
CN108906363B (zh) * 2018-07-13 2023-08-01 金华职业技术学院 一种有机分子的真空沉积方法
CN109975623B (zh) * 2019-03-15 2020-12-18 江苏大学 一种静电雾化喷头荷质比测量系统及其测量方法
CN114082935B (zh) * 2021-11-17 2023-05-23 广东工业大学 一种纳米金属颗粒尺寸筛选装置及方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62169319A (ja) * 1985-10-04 1987-07-25 ザ ビーオーシー グループ 半導体薄膜を作製する電気流体力学的方法
JPH02189159A (ja) * 1989-01-17 1990-07-25 Nordson Kk エアロゾルの塗布方法
JPH0786164A (ja) * 1993-09-16 1995-03-31 Matsushita Electric Ind Co Ltd 微細構造材料の製造方法並びにその製造装置、および微細構造を有する発光素子
JPH11510314A (ja) * 1995-07-27 1999-09-07 アイシス・イノベーション・リミテッド 金属量子ドットの製造法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4559096A (en) * 1984-06-25 1985-12-17 The United States Of America As Represented By The United States Department Of Energy Method of precisely modifying predetermined surface layers of a workpiece by cluster ion impact therewith
JPS6422364U (ja) 1987-07-31 1989-02-06
US5015845A (en) * 1990-06-01 1991-05-14 Vestec Corporation Electrospray method for mass spectrometry
JPH0562896A (ja) 1991-02-12 1993-03-12 Daido Steel Co Ltd 半導体量子箱の製造方法
JPH0730151A (ja) 1993-07-14 1995-01-31 Matsushita Electric Ind Co Ltd 半導体発光素子およびその製造方法
JPH11354843A (ja) 1998-06-04 1999-12-24 Mitsubishi Cable Ind Ltd Iii族窒化物系量子ドット構造の製造方法およびその用途
JP2963993B1 (ja) * 1998-07-24 1999-10-18 工業技術院長 超微粒子成膜法
JP3840108B2 (ja) * 2001-12-27 2006-11-01 株式会社 Sen−Shi・アクセリス カンパニー イオンビーム処理方法及び処理装置
US6984832B2 (en) * 2004-04-15 2006-01-10 Axcelis Technologies, Inc. Beam angle control in a batch ion implantation system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62169319A (ja) * 1985-10-04 1987-07-25 ザ ビーオーシー グループ 半導体薄膜を作製する電気流体力学的方法
JPH02189159A (ja) * 1989-01-17 1990-07-25 Nordson Kk エアロゾルの塗布方法
JPH0786164A (ja) * 1993-09-16 1995-03-31 Matsushita Electric Ind Co Ltd 微細構造材料の製造方法並びにその製造装置、および微細構造を有する発光素子
JPH11510314A (ja) * 1995-07-27 1999-09-07 アイシス・イノベーション・リミテッド 金属量子ドットの製造法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1811553A4 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007314825A (ja) * 2006-05-24 2007-12-06 Univ Of Miyazaki 被膜生成方法および被膜生成装置
WO2007142203A1 (ja) 2006-06-05 2007-12-13 Hoya Corporation 量子ドット発光型無機el素子
JPWO2007142203A1 (ja) * 2006-06-05 2009-10-22 Hoya株式会社 量子ドット発光型無機el素子
US8089061B2 (en) 2006-06-05 2012-01-03 Hoya Corporation Quantum dot inorganic electroluminescent device
EP1970128A3 (de) * 2007-03-10 2010-02-17 Alexander Kuhn Verfahren und Einrichtung zur Herstellung einer Beschichtung
JP2012522335A (ja) * 2009-03-27 2012-09-20 ディーエイチ テクノロジーズ デベロップメント プライベート リミテッド 飛行源の加熱時間
JP2012230952A (ja) * 2011-04-25 2012-11-22 Nippon Telegr & Teleph Corp <Ntt> 注入方法
JP2015515361A (ja) * 2012-02-28 2015-05-28 ユニバーシティ オブ レスターUniversity Of Leicester 気相法と湿式化学法との組合せによる化学反応
US9931607B2 (en) 2012-02-28 2018-04-03 Gediminas Gallinis Chemical reaction by combination of gas-phase and wet-chemical methods
JP2017203771A (ja) * 2016-05-12 2017-11-16 エフ・イ−・アイ・カンパニー ビームによって付着させた構造体へのナノオブジェクトの取付け
US10981184B2 (en) 2017-03-27 2021-04-20 Semes Co., Ltd. Coating apparatus and coating method
JP2022515785A (ja) * 2018-12-21 2022-02-22 ジェイ. ワグナー ゲーエムベーハー ポンプシステム
JP7524194B2 (ja) 2018-12-21 2024-07-29 ジェイ. ワグナー ゲーエムベーハー ポンプシステム
JP7455450B1 (ja) 2023-12-08 2024-03-26 株式会社ナノリューション 分離装置

Also Published As

Publication number Publication date
KR20070068370A (ko) 2007-06-29
US7829154B2 (en) 2010-11-09
EP1811553A4 (en) 2009-09-16
EP1811553A1 (en) 2007-07-25
KR100912627B1 (ko) 2009-08-17
CN101069275A (zh) 2007-11-07
JP4467568B2 (ja) 2010-05-26
JPWO2006043656A1 (ja) 2008-05-22
TWI287255B (en) 2007-09-21
TW200620419A (en) 2006-06-16
US20090093105A1 (en) 2009-04-09
CN100477134C (zh) 2009-04-08

Similar Documents

Publication Publication Date Title
JP4467568B2 (ja) 微粒子堆積装置及び微粒子堆積物製造方法
US9070556B2 (en) Patterning of nanostructures
US7651926B2 (en) Rapid patterning of nanostructures
US7220463B2 (en) Method for obtaining nanoparticles
US9113544B2 (en) Method for producing hyperthermal hydrogen molecules and using same for selectively breaking C—H and/or Si—H bonds of molecules at or on substrate surfaces
JPH07503761A (ja) 高荷電イオンを用いた表面に対するガスもしくは蒸気の物理化学反応による表面改質方法と装置
JP3869394B2 (ja) 微粒子の堆積方法及びカーボンナノチューブの形成方法
JP4113545B2 (ja) カーボンナノチューブの形成装置及び方法
JP2011076798A (ja) 電界発光素子およびその製造方法
Fang et al. Electric-field-induced assembly of Ag nanoparticles on a CuO nanowire using ambient electrospray ionization
WO2007125726A1 (ja) イメージングが可能なクラスタイオン衝撃によるイオン化方法および装置ならびにエッチング方法および装置
US20210305016A1 (en) Specific type ion source and plasma film forming apparatus
JP3341387B2 (ja) 微細構造材料の製造方法並びにその製造装置、および微細構造を有する発光素子
JP2011076770A (ja) 電界発光素子およびその製造方法
JP3079399B2 (ja) 微粒子膜製造装置
KR100856545B1 (ko) 나노입자빔을 이용한 박막증착 방법 및 장치
JP2007154230A (ja) 成膜装置
JP2009091644A (ja) 真空アーク蒸着源を用いたフィルム上への微粒子形成装置
JP2004530792A (ja) ナノ結晶ビームの形成方法

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

WWE Wipo information: entry into national phase

Ref document number: 2006520456

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 1020077008469

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2005795475

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 200580041287.1

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 11665735

Country of ref document: US

WWP Wipo information: published in national office

Ref document number: 2005795475

Country of ref document: EP