WO2006043612A1 - Heat resistant adhesive film and electromagnetic steel sheet with said heat resistant adhesive film, iron core using said electromagnetic steel sheet, and process for manufacturing the same. - Google Patents

Heat resistant adhesive film and electromagnetic steel sheet with said heat resistant adhesive film, iron core using said electromagnetic steel sheet, and process for manufacturing the same. Download PDF

Info

Publication number
WO2006043612A1
WO2006043612A1 PCT/JP2005/019264 JP2005019264W WO2006043612A1 WO 2006043612 A1 WO2006043612 A1 WO 2006043612A1 JP 2005019264 W JP2005019264 W JP 2005019264W WO 2006043612 A1 WO2006043612 A1 WO 2006043612A1
Authority
WO
WIPO (PCT)
Prior art keywords
steel sheet
heat
resin
resistant adhesive
insulating coating
Prior art date
Application number
PCT/JP2005/019264
Other languages
French (fr)
Japanese (ja)
Inventor
Noriko Yamada
Hiroyasu Fujii
Yuji Kubo
Kazutoshi Takeda
Fumiaki Takahashi
Yoshihiro Arita
Yoshifumi Ohata
Original Assignee
Nippon Steel Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corporation filed Critical Nippon Steel Corporation
Priority to JP2006543048A priority Critical patent/JP4860480B2/en
Priority to CN2005800348428A priority patent/CN101040022B/en
Publication of WO2006043612A1 publication Critical patent/WO2006043612A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J1/00Adhesives based on inorganic constituents
    • C09J1/02Adhesives based on inorganic constituents containing water-soluble alkali silicates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J1/00Adhesives based on inorganic constituents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/04Non-macromolecular additives inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J5/00Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/16Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets
    • H01F1/18Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of sheets with insulating coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F3/00Cores, Yokes, or armatures
    • H01F3/02Cores, Yokes, or armatures made from sheets

Definitions

  • the heat treatment is performed at room temperature or more and 300 or less, and thereafter annealing treatment such as strain relief annealing (this In the invention, unless otherwise specified, it means a heat treatment exceeding 300.)
  • the present invention relates to a heat-resistant adhesive coating composition that can be produced and a surface-coated electrical steel sheet.
  • Electrical steel sheets are mainly used as iron cores for motors and transformers.
  • the surface of an electrical steel sheet is formed with an insulating coating, and after being continuously punched into a predetermined shape, it is laminated and integrated by a method such as welding or fitting of uneven parts called caulking. It is common to form an iron core.
  • the integrated iron core can be used as it is incorporated in electrical equipment, or it can be used in electrical equipment after annealing at temperatures around 700 ⁇ to 800.
  • the latter annealing is called strain relief annealing, and it removes or reduces the shear strain introduced into the steel sheet during punching / shearing, thermal strain generated by welding of the end face, and plastic deformation strain of the caulking portion.
  • strain relief annealing removes or reduces the shear strain introduced into the steel sheet during punching / shearing, thermal strain generated by welding of the end face, and plastic deformation strain of the caulking portion.
  • it is applied to iron cores used in electrical equipment applications that require high electrical efficiency.
  • the edge of the iron core is short-circuited and insulation is lowered, and that magnetic properties are deteriorated due to processing strain.
  • a method for producing a surface-coated electrical steel sheet for bonding characterized in that a liquid mixture mainly composed of acryl-modified epoxy resin emulsion containing a latent curing agent is applied and incompletely baked (patent no. No. 2613725) and electrical steel sheets with insulating coatings coated with an adhesive resin containing a foaming agent (Japanese Patent Laid-Open No. 2002-260910), and also Japanese Patent Publication No. 55-9815 and Japanese Patent Laid-Open No. 2-208034 The technology of the gazette is proposed.
  • JP-B-42-24519, JP-A-58-128715, JP-B-47-47499 disclose so-called inorganic coatings that do not contain a resin component. . Since Japanese Patent Publication No. 42-24519 does not have a bonding function between steel plates, an integrated iron core cannot be obtained unless a fixing method other than bonding such as caulking or welding is performed. JP Japanese Laid-Open Patent Publication Nos. 58-128715 and 47-47499 have the problems that the film is hard because it is an inorganic film composed only of a low-melting-point glass component, and the punching die is adversely affected, and there is a lot of dust generation. It was. Disclosure of the invention
  • the present invention improves the heat resistance of the adhesive insulating coating of the electrical steel sheet with the adhesive insulating coating, and the heat resistant adhesive insulating coating that can maintain the adhesive state and the insulating property even when strain relief is performed, and the same
  • the present invention provides an electromagnetic steel sheet with a heat-resistant adhesive coating, an iron core using the electromagnetic steel sheet, and a method for manufacturing the same.
  • the present invention uses the following means.
  • a heat-resistant adhesive insulating coating comprising a resin having a softening point temperature of room temperature to 300 ° C and a low melting point inorganic component having a softening point temperature of 1000 or less.
  • the heat-resistant adhesive insulating film according to (4) wherein the mixing ratio of the resin to the low-melting-point inorganic component is 20% or more and 500% or less by mass fraction.
  • the heat-resistant adhesive insulation according to (4) characterized in that the low-melting point inorganic component is S i 0 2 -B 2 0 3 -R 2 0 series low-melting point glass (R is Al force re-metal) Coating.
  • a magnetic steel sheet with a heat-resistant adhesive insulating coating having the coating according to (1) on at least one side of the steel plate.
  • the composition of the insulating coating of the electrical steel sheet is combined to exert two types of adhesive performance.
  • the measurement was performed by a resin that softens at room temperature to 300 and below and differential thermal analysis. It is a film containing a low melting point inorganic component having a softening point temperature of 1000 or less.
  • the coating resin is softened during heat pressing and the iron core is bonded and integrated.
  • the low melting point inorganic component fulfills the function of maintaining the core in a unified state when the core is strain-relieved.
  • Figure 1 shows a typical differential thermal analysis curve for glass.
  • Figure 2 shows a ladder-like siloxane polymer.
  • an annealing temperature of about 700: to 800 ° C is usually required. At these annealing temperatures, organic matter decomposes and the structure cannot be maintained, so the adhesion cannot be maintained.
  • a group of low-melting-point inorganic components called so-called low-melting-point glass frits and low-melting-point inorganic components such as water glass and colloidal sill force show good adhesion between steel plates in the vicinity of annealing temperature condition 750. I found.
  • the low melting point inorganic component is the softening point temperature of the low-melting-point inorganic component that dominates the adhesiveness in the strain relief annealing temperature range.
  • the mixing ratio of the resin to the glass frits was 100% in terms of solid content, that is, the same mass.
  • the coating amount was 8 g / m 2 per side, and the film was dried at a plate temperature of 160. A test piece was cut out from the sample thus prepared. Next, 250 adhesive strength and 750 adhesive strength were measured.
  • the softening point temperature is the fourth inflection point temperature observed after the start of measurement in the differential thermal analysis measurement curve shown in Fig. 1, or JI S-R3 103-1 “Glass The softening point test method ”(I SO 7884-6: 1987, ASTM C33 8), whichever is the lower temperature. If any of these methods are difficult to measure, replace with another softening point temperature. Also good.
  • the 250 ° C adhesive strength refers to the addition of two specimens with a length of 10 cm in the rolling direction and a length of 3 cm perpendicular to the rolling direction, with the short side overlapped by l cm and the area of 3 cm 2. It is the value obtained by dividing the strength when it was pulled and peeled at room temperature after bonding, under the conditions of pressure 10kg / 3cm 2 , heating temperature 250 ⁇ , heating time 60 seconds, by area 3cm 2 .
  • the applied pressure and the adhesive strength are values obtained by dividing the indicated value (kg) of the spring rod by the area and are expressed as kg / cm 2 , which corresponds to 9.8 ⁇ 10 4 Pa.
  • the adhesive strength at 750 is the sample bonded under the above-mentioned low temperature bonding conditions, and further heated under the conditions of a heating temperature of 750 and a heating time of 2 hours without applying pressure, and then pulled in the rolling direction at room temperature.
  • a heating temperature of 750 and a heating time of 2 hours without applying pressure, and then pulled in the rolling direction at room temperature.
  • the inventors consider the following mechanism for the reason why the adhesive strength at 750 depends on the softening point temperature of the low melting point inorganic component. 250: During pressure and heat bonding near the resin, the resin softens and melts, and in the case of double-sided coating, the film interface disappears and adhesion between the films is achieved. However, at this stage, the low-melting-point inorganic component having high temperature stability hardly causes the reaction. Next, when heated at 750, the low melting point inorganic component softens and then melts depending on the low melting point inorganic component species, and the low melting point inorganic components coming into contact with each other are bonded together. As a result, the opposing coatings are integrated, and the adhesion between the steel plates is completed. Therefore, it is important that the low-melting-point inorganic component softens or melts in the heating stage near 750 ° C.
  • the low melting point inorganic component with a high softening point temperature does not progress in the temperature range of 750, even if the low melting point inorganic components are in contact with each other. A sufficient contact area cannot be obtained between inorganic components. Therefore, the bond between the low melting point inorganic components is not sufficiently formed. As a result, the adhesive strength cannot be obtained.
  • Condition No. 1 to Condition No. 8 in Table 1 in the low melting point inorganic component having a low softening point temperature, if the low melting point inorganic components are in contact with each other, Since softening proceeds in the temperature range of 750, a constant contact area can be obtained between the low melting point inorganic components. Therefore, a bond between the low melting point inorganic components is formed. As a result, adhesive strength can be obtained.
  • the adhesive strength of 10 kg / cm 2 or higher at 250 is defined as the adhesive strength that can be handled without peeling in the manufacturing process after temporary fixing by low-temperature bonding and until final fixing.
  • the adhesive strength of 1 kg / cm 2 or higher at 750 stipulates the adhesive strength that does not peel after being installed in electrical equipment.
  • a low melting point inorganic component of the present invention a low melting point glass frit, water glass or a mixture of these colloidal silicas can be used.
  • the low-melting-point inorganic component to be used is an inorganic powder
  • its particle size is also important. If the particle size is too large, coarse protrusions will be formed on the surface of the film, preventing contact between the films.
  • the average particle size of the low-melting-point inorganic component to be used is 20 mm or less. In particular, it is desirable that the average particle size is 4 w m or less, and further 3 m or less.
  • the present inventors examined the mixing ratio of the low melting point inorganic component and the resin.
  • Condition No. 2 to Condition No. 6 that is, when the resin / glass frit mixing ratio is 20% or more and 500% or less, the adhesive strength is 250 and the adhesive strength is 10 kg / cm 2 or more, and the adhesive is 750. It can be seen that the strength is lkg / cni 2 and both values are good. On the other hand, when the resin / glass frit mixing ratio of Condition No. 1 is 10%, the adhesive strength is 250 kg and the adhesive strength is kg / cm 2 750, and the adhesive strength is 0.5 kg / cm 2 . Also, under condition No.
  • the present inventors consider the following mechanism for the reason why the adhesive strength depends on the resin ratio to the low-melting-point inorganic component. Resins share the adhesive function when heated at 250 ° C, and the low melting point inorganic component is 750 ", and share the adhesive function when heated. Therefore, at each heating temperature, both are able to exert their functions. It is possible to infer the mechanism of the resin / low-melting-point inorganic component ratio dependence on the adhesive strength by examining whether there is an organic resin that performs an adhesive function when heated at 250, or at 750. The strength is 750, and the surface occupancy of each low melting point inorganic component that performs the adhesive function when heated can be considered.
  • the inventors prepared a coated steel sheet and an iron core made of the steel sheet under the following conditions, and investigated the magnetic properties.
  • a number of non-oriented electrical steel sheets having a plate thickness of 0.5 ⁇ and having no insulating coating on the surface were prepared.
  • the coating amount was adjusted to 1 Og / ra 2 per side and dried at a plate temperature of 150.
  • the inner diameter 10. 16cm (4 Lee inches), to produce a-ring-shaped sample having an outer diameter of 1 2. 7 cm (5 I inch), pressure 10 kg / cm 2 in a stacked state 20 sheets, the temperature Heated at 250 for 4 hours to produce a film-bonded iron core. Next, the iron core was annealed at 750 ° C. for 2 hours without pressing. Finally, the iron loss value was measured at a frequency of 50 ⁇ and a magnetic flux density of 1.5 Tesla. The results are shown in Table 3. Table 3
  • the present inventors consider the following mechanism. Pressurization / heating adhesion at 250 ° C softens and melts the resin in the coating, and in the case of double-sided coating, the coating interface disappears and adhesion between coatings is realized. However, at this stage, the low-melting-point inorganic component with high temperature stability hardly reacts. Next, when heated at 750 ° C., the low-melting-point inorganic component softens this time, and depending on the low-melting-point inorganic component species, it melts and the low-melting-point inorganic components coming into contact with each other are bonded together.
  • the opposing coatings are integrated, and the adhesion between the steel plates is completed. And after cooling to room temperature, the iron loss value is measured. What should be considered here is the problem of stress generated in the formed iron core when the steel sheet surface is fully bonded in the high temperature state of 750 and cooled to room temperature.
  • the magnetic properties deteriorate when stress acts on the iron core.
  • the relationship between the thermal expansion coefficient and stress of the substance will be described.
  • a substance with a large coefficient of thermal expansion and a substance with a small coefficient of thermal expansion are bonded at a high temperature and cooled to room temperature
  • a substance with a large coefficient of thermal expansion has a tensile stress.
  • compressive stress acts on materials with small thermal expansion coefficients.
  • Linear thermal expansion coefficient of the electromagnetic steel sheet is also non-oriented electrical steel sheet oriented electrical steel sheet is a contact about 100x 10- 7 (tr 1).
  • the low-melting-point inorganic component of the present invention contributes to the development of adhesiveness after strain relief annealing, and is preferably a low melting point glass having a softening point of 750 or less, which is a normal strain relief annealing temperature.
  • the low-melting glass can be softened and melted during strain relief annealing and solidified by cooling, and the two plates can be bonded after strain relief annealing.
  • the composition of low melting glass is Si0 2 -B 2 0 3 -R 2 0 (R is alkali metal), P 2 0 5 -R 2 0 (R is alkali metal), Si0 2 -Pb0- B 2 0 3 series, B 2 0 3 -B i 2 0 3 series, S i 0 2 -B 2 0 3 -ZnO series, SnO- P 2 0 5 series, S i 0 2 -B 2 0 3 -Z r 0 2 And the like.
  • the Si 0 2 -B 2 0 3 -R 2 0 (R is alkali metal) system is preferable because it is lead-free and has high adhesion after strain relief annealing.
  • the low melting point inorganic component may be added as a liquid like water glass.
  • the water glass is particularly preferably soda silicate.
  • the advantage of using water glass is that it does not contain powder particles, so there is no unevenness due to particles on the coated surface, and it is easy to obtain a smooth surface.
  • silicate soda Adhesive strength after strain relief annealing 1. High strength over OMPa
  • the low-melting-point inorganic component of the present invention it is possible to use a material obtained by further mixing the above-mentioned inorganic component with colloidal silica.
  • colloidal U force, etc. By mixing colloidal U force, etc., the viscosity when machine components are softened during strain relief annealing can be adjusted. ⁇ Silicier force also remains in the membrane even if it remains unsoftened during strain relief annealing. It functions as an aggregate and can increase the bond strength after strain relief annealing.
  • thermosetting resin that causes a curing reaction when the steel sheets are bonded together by pressing and heating, such as phenol resin or epoxy resin, can be applied.
  • the resin of the present invention softens at room temperature or more and 300 or less, but considering blocking properties, it is preferably 50 or more, 80 or more, 100 or more, especially 120 to 300 ° C or less. It is preferable to soften to such an extent that fluidity is exhibited. The softening to such an extent that fluidity is exhibited is that the viscosity is 1 xl 0 8 dPa s or less. Baking on steel plate surface As a mechanism of softening by the following heating with a resin strength of 300 cured by heating, there is a case where the cured resin is a thermoplastic resin and the temperature force at which the thermoplastic develops is 300 or more and the following. .
  • the resin As a softening mechanism when the resin is thermosetting, there is a case where it is softened to a rubber state or a fluid state by heating to a temperature higher than the glass transition temperature.
  • the resin undergoes a glass transition while softening once through a cross-linking reaction that forms a three-dimensional skeleton by heating.
  • the cross-linking reaction may proceed again to be cured.
  • the acrylic modified epoxy resin emulsion previously incorporated with a latent curing agent used as the resin of the present invention is an epoxy resin obtained by compounding a latent curing agent with an epoxy resin and then chemically reacting the acrylic resin. And a mixture of latent hardeners and emulsions.
  • the epoxy resin here refers to a resin having two or more epoxy groups in the monomer, and includes bisphenol A type, bisphenol F type, bisphenol AD type, naphthenic type, phenol novolac type, There are orthocresol novolac type, glycidyl ester type, alicyclic type, etc.
  • latent curing agents dicyandiamide, melamine, organic acid dihydrazide, amine amide, keramin, tertiary amine salt, imidazole salt, boron trifluoride amine salt, microcapsule type curing agent And molecular sieve type curing agents.
  • the acrylic resin is transformed into a mixed system of the above epoxy resin and epoxy resin curing agent.
  • modification means that the acrylic resin is chemically bonded to the surface of the epoxy resin and epoxy resin curing agent mixture.
  • acrylic resins used for such modification include maleic acid, methacrylic acid esters, acrylic acid, acrylate esters, styrene, and acetic acid. It is a polymerized or copolymerized one or more of vinyl.
  • the mixing ratio of epoxy resin and latent epoxy resin curing agent varies greatly depending on the type of epoxy resin and the type of curing agent, but usually 0.05 to 2 parts by mass is appropriate for 1 part by mass of epoxy resin. It is.
  • a liquid mixture mainly composed of acrylic-modified epoxy resin emulsion pre-blended with a latent curing agent is baked in an incomplete state after being applied to the surface of the steel sheet. There is no sticking or blocking, and it is in a state where it is bonded by pressing and heating after shearing and laminating. Usually, it can be baked in an incomplete state by drying at a furnace temperature of 100 to 300 for 10 to 90 seconds.
  • siloxane polymer can be used as a resin that is softened by heating.
  • Siloxane polymers are polymers whose main skeleton is composed of inorganic Si-0-Si bonds. Si, like C, like Si-CH 3 , Si-C 6 H 5 , Si-H, Si can be directly chemically bonded to organic groups and H, so organic groups and H A siloxane polymer having a modified skeleton can be obtained.
  • Si nuclides can be examined by ⁇ R.
  • Si nuclei that form siloxane polymers include D nuclei and Q nuclei in addition to T nuclei.
  • the D nucleus is one in which four of Si's four bonds form Si-R (R is an organic group or H) bond, and the remaining two are Si-0 bonds.
  • Q nucleus is a Si-0 bond in four of Si's four bonds.
  • a ladder molecule as shown in Fig. 2 is formed.
  • a polymer composed of ladder-like molecules causes entanglement of ladder-like molecule chains by coating and baking, and a hardened surface state with no stickiness or blocking is obtained.
  • Molecular chains that have been entangled at 100 ° C or higher will break and become fluid.
  • Si nuclei to which epoxy groups are bonded may be included in addition to Si nuclei to which methyl groups are bonded.
  • the siloxane polymer of the present invention is obtained by hydrolysis in the presence of one or both of organotrialkoxysilane and organotrichlorosilane in the presence of a hydrochloric acid catalyst.
  • Organotrioxyxyfun can be selected from the group consisting of ⁇ ⁇ ⁇ xylan, ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇ ⁇
  • organotrialkoxysilane or organotrimethyl ⁇ D silane may be hydrolyzed after being dispersed in an organic solvent.
  • Solvents include methanol, ethanol, ethanol, and bueno.
  • the mass ratio of the organic solvent to the organoalkoxysilano at the time of hydrolysis is preferably 1: 0.5 to 1: 2.
  • Hydrolysis is performed by adding 0.1 to 1 times as much water as the number of moles of all alkoxy groups in the starting material. Add hydrochloric acid as catalyst for hydrolysis
  • organotrichlorosilane is used as a raw material
  • hydrochloric acid is produced as a by-product when water is added, and hydrolysis is carried out under a hydrochloric acid catalyst without any special treatment. Sometimes it is not necessary.
  • the hydrolyzed sol is usually converted into a siloxane polymer by promoting the polycondensation reaction by a process such as concentration. Concentration is performed by removing the organic solvent and by-product alcohol, etc. using a rotary evaporator, etc., and the mass of the concentrate is about 15 to 60 of the solution mass before concentration. It is preferable from the viewpoint of expression.
  • an alkoxide such as K0H can be added and refluxed in a nitrogen atmosphere or the like to accelerate the polycondensation reaction and obtain a siloxane polymer.
  • the obtained siloxane polymer is diluted 1.5 to 10 times with an organic solvent or water to make a coating solution. Usually, by baking at 100 to 200 for 15 to 120 seconds, a state of adhesion by pressure heating can be obtained.
  • the resin and low-melting-point inorganic component in the present invention do not show at least apparent melting in the film of the present invention depending on conditions such as heating and annealing atmosphere, and the grains remain as they are. However, there is no problem in the present invention as long as the bonding function is exhibited by the heating and annealing.
  • the present invention can be applied to any type of magnetic steel sheet produced by ordinary rolling and annealing, such as a directional magnetic steel sheet and a non-oriented electrical steel sheet, but is particularly applicable to a non-oriented electrical steel sheet for motor cores. If this is the case, the effect can be demonstrated most.
  • a surface coating is formed on the steel sheet surface by finish annealing for both steel sheets.
  • a phosphate-based film containing a silica component is formed in the case of grain-oriented electrical steel.
  • a chromate-based film is formed in the case of non-oriented electrical steel.
  • a manufacturing method that forms a film mainly composed of forsterite silicate during finish annealing, a manufacturing method that does not intentionally form the film, and a forsterite film that has been formed are pickled. There is a manufacturing method that removes by means.
  • the present invention can be applied with or without these various surface coatings.
  • the magnetic steel sheet with a heat-resistant adhesive insulating coating of the present invention is prepared by applying a coating solution containing a heat-resistant adhesive insulating film composition by a method such as rollco, overnight, burco, dipco, or spray. Apply to steel plate.
  • the coating amount is preferably lg / m 2 or more and 30 g / m 2 or less, particularly preferably 2 g / m 2 or more and 10 g / m 2 or less.
  • the heat-resistant adhesive insulating coating composition is preferably a mixture of a resin and a low-melting-point inorganic component, but it may be a mixture in which both are dispersed in a lump or two layers are separately applied. good.
  • Low-melting-point inorganic components may be dispersed in the form of dots or stripes in the matrix due to organic components, or the organic components may be dotted in the inorganic matrix due to siloxane bonds, etc. It may be dispersed in stripes.
  • the film thickness is desirably 0.5 m or more and 20 m or less per side. If the film thickness is less than 0.5, it is difficult to sufficiently cover the entire surface of the steel sheet, so that sufficient adhesive strength cannot be obtained. On the other hand, if it exceeds 20 ⁇ m, the space factor greatly decreases when pressed and heated. End up. Therefore, the film thickness should be 0.5 m or more and 20 m or less.
  • the coating composition of the present invention is first baked and cured after application to the surface of the magnetic steel sheet so as not to cause stickiness or blocking.
  • the steel sheet with a heat-resistant adhesive insulating coating can be produced by baking at 50 to 200. This process involves punching the iron core May be immediately before the lamination of the iron cores, but it is particularly preferable to apply a so-called pre-coated electromagnetic steel sheet at the time of producing the steel sheets in terms of simplifying the iron core production process.
  • the resin is softened by heating to a temperature higher than the baking temperature.
  • the resin component softened by heating spreads uniformly on the surface of the electromagnetic steel sheet pieces without the coating layer of the present invention. Can be glued during cooling. Since high temperature hot pressing results in high costs, the hot pressing temperature is preferably 300 ° C or lower.
  • the pressure of the hot press is preferably 0. IMPa or more and 50MPa or less, and particularly preferably IMPa or more and 20MPa or less. If the pressure of the hot press is low, sufficient adhesion cannot be obtained, making it difficult to integrate as an iron core. When the pressure of hot press is high, the adhesive layer may flow and protrude from the interlayer.
  • the electromagnetic steel sheet of the present invention can be integrated as an iron core by punching into a desired shape, laminating, pressurizing and heating. After that, even if stress relief annealing is performed as necessary, the adhesion between the laminated steel sheets is maintained.
  • the temperature of strain relief annealing is usually 650 or more and 850 ° C or less, and is often 700 or more and 800 or less.
  • the coating film of the present invention has an adhesive ability without performing annealing such as strain relief annealing, it can be used for an iron core that does not perform strain relief annealing. In other words, it can be used as an adhesive film for both strain relief annealing and non-strain relief annealing. Further, in the case of strain relief annealing, it is possible to use caulking or fixing with a jig together when fixing by pressurization or heating. This
  • a solution containing the tutu was prepared.
  • the resin / glass frits mixing ratio in the liquid containing glass frits was set to 200%.
  • This coating solution has a thickness of 0.5mm and has a coating amount of 6g / m per side using a mouthpiece for a non-oriented electrical steel sheet that has been annealed without an insulating coating on the steel sheet surface. Painted to be 2 . Then, it was dried at a drying temperature of 150 and cooled.
  • the film thickness per side was 10 m.
  • a specimen having a length of 3 cm in the direction perpendicular to the rolling direction was cut out from the sample thus prepared. Then, two test pieces with a length of 1 cm at the short side and an overlap area of 3 cm 2 were heated to 250 with pressure of 10 kg / cm 2 , held for 60 seconds, cooled, and bonded at 250 A test piece for strength measurement was prepared. Further, a part of the test piece for measuring 250 ° C adhesion strength was heated to 750 under no load, held for 2 hours, cooled, and a test piece for measuring 750 adhesive strength was prepared. The test piece thus prepared was measured for adhesive strength using a tensile tester. The results are shown in Table 4.
  • the bond strength is 250 and the bond strength is 10 kg / cm 2 or more, and 750 bond strength is also lkg. / cDi 2 or better, but with a glass frit of Condition No. 6 with an average particle size of 25 ⁇ m, the adhesive strength was measured at 750 ° C with a 250 bond strength of 5 kg / cm 2 The value was so small that it was not possible.
  • the example in which the average particle size of the glass frit is 20 im or less is superior to the comparative example in which the average particle size is 25 m.
  • the coating amount is 8 g / m per side using a roll coater. 2 was applied. Then, it was dried at a drying temperature of 140 and cooled. The film thickness per side was 6 jm. From this to the samples prepared, the inner diameter 10. 16cm (4 inches), to produce a-ring-shaped sample having an outer diameter of 12.7 cm (5 Lee inches), pressure 10 kg m 2 stacked state 20 sheets, the temperature 250 And heated for 4 hours to produce a coated adhesive core. Next, the iron core was annealed at a temperature of 750 for 2 hours without being pressurized. Finally, the iron loss value was measured at a frequency of 50 Hz and a magnetic flux density of 1.5 Tesla. The results are shown in Table 5.
  • the glass transition temperature of the resin obtained by applying and baking this coating solution was 104 and softened at 120 or more.
  • aqueous solution prepared by mixing 35.3 g of water and 1.04 g of 35% hydrochloric acid was dropped into a liquid for mixing 178 g of methyltrioxysilane and 138 g of ethanol to perform hydrolysis.
  • the hydrolyzed solution was concentrated by using a mouth evaporator until the solvent disappeared at 58.
  • the mass of the concentrate was 30% of the solution mass before concentration.
  • the mass average molecular weight of this concentrate was 10,000. Since this concentrate showed a pliability, it is thought that methyltriethoxysilane was polymerized in the form of a chain polymer. When this concentrate was heat-treated at 70 for 15 minutes, it solidified but at 180 it softened from around. 200 parts by mass of ethanol was blended with 100 parts by mass of the concentrate.
  • a coating solution was prepared by hydrolyzing 36 g of water using 4.8 g of acetic acid as a catalyst. This siloxane polymer was not softened by heating.
  • each coating solution is applied to both sides of a non-oriented electrical steel sheet having a thickness of 0.5 ⁇ . It was applied in the evening and baked in a furnace set at 70 for 15 minutes. The coating amount was 7 g / m 2 . In any case, there was no stickiness of the film surface after baking. Using two test pieces having a width of 3 cm and a length of 10 cm, a part of the test pieces was overlapped so that the area of the bonded portion was 6 cm 2 and hot pressing was performed.
  • Example 4 An inorganic / organic mixed treatment liquid mainly composed of magnesium chromate and acrylic resin was applied and baked to provide an insulating film on the surface.
  • Example 4 An inorganic / organic mixed treatment liquid mainly composed of magnesium chromate and acrylic resin was applied and baked to provide an insulating film on the surface.
  • Hydrolysis was performed by adding dropwise an aqueous solution containing 35.3 g of water and 1.04 g of 35% hydrochloric acid to a mixture of 178 g of methyltriethoxysilane and 138 g of ethanol.
  • the hydrolyzed solution was concentrated using a rotary evaporator until the solvent disappeared at 58.
  • the mass of the concentrate was 30% of the solution mass before concentration.
  • the concentrate had a mass average molecular weight of 10 000. Since this concentrate showed stubbornness, it is thought that methyltrioxysilane was polymerized in the form of a chain polymer.
  • this concentrate was heat-treated at 70 for 15 minutes, it solidified, but softened from around 180 ° C. 200 parts by mass of ethanol was added to 100 parts by mass of this concentrate.
  • the coating solutions A to were diluted with water, and various water glasses were added to prepare coating solutions.
  • the examples and comparative examples are both surfaces of non-oriented electrical steel sheets with a thickness of 0.5 mm.
  • Each coating solution was applied on a rollco overnight and baked for 15 minutes in an oven set at 70 ° C.
  • the coating amount was 10 g / m 2 . In any case, there was no stickiness of the film surface after baking.
  • test pieces each having a width of 3 cm and a length of 10 cm
  • a part of the test piece was overlapped so that the area of the bonded portion was 6 cm 2 and hot pressing was performed. Prior to hot pressing, the applied film was scraped off other than the bonded area.
  • two test pieces were bonded by hot press of 1 OMPa for 1 minute.
  • the strain relief annealing was performed in nitrogen at 750 for 2 hours.
  • the adhesive strength before and after strain relief annealing was evaluated using the shear tensile strength, which is the horizontal strength of the bonded surface.
  • Example 5 An inorganic-organic mixed processing liquid mainly composed of magnesium chromate and acrylic resin was applied and baked to provide an insulating film on the surface.
  • Example 5 An inorganic-organic mixed processing liquid mainly composed of magnesium chromate and acrylic resin was applied and baked to provide an insulating film on the surface.
  • the coating liquid D described in Example 3 was prepared. To 100 parts by mass of coating solution D, 10 parts by mass of spherical particles of polyester having an average particle diameter of 4 m and a softening temperature force of S 200 were mixed and dispersed. It was applied to a non-oriented electrical steel sheet with a surface coating with an inorganic / organic mixed treatment liquid in a rollco and then baked in a furnace set at 100 for 2 minutes. The coating amount was 10 g / m 2 . Two pieces of a test piece having a width of 3 cm and a length of 10 cm were used, and a part of the test piece was overlapped so that the area of the bonded portion was 6 cm 2 and hot pressing was performed.
  • the present invention after punching or shearing, it is bonded by pressurization and heating, and can be integrated as an iron core. Thereafter, the adhesive ability can be maintained even after further strain relief annealing. It is possible to provide an attached magnetic steel sheet.
  • the iron core can be integrated without welding or caulking, and iron loss deterioration due to welding or caulking can be avoided, and the adhesion and insulation properties are maintained even after stress relief annealing, resulting in excellent magnetic properties.
  • An iron core can be produced.

Abstract

This invention provides an electromagnetic steel sheet, which, after lamination, can be bonded by pressing and heating, can realize strain relieving annealing, and has a surface covered with a heat resistant adhesive insulating film, an iron core using the electromagnetic steel sheet, and a process for manufacturing the same. The electromagnetic steel sheet is covered with a heat resistant adhesive insulating film comprising a resin, which softens at room temperature or above and 300˚C or below, and a low-melting inorganic component having a softening temperature of 1000˚C or below as measured by a differential thermal analysis method. A strain relieving annealable bonded fixed iron core is provided by stacking this electromagnetic steel sheet and conducting press fixation.

Description

耐熱接着性被膜およびそれを被覆した耐熱接着性被膜付き電磁鋼板 ならびに当該電磁鋼板を用いた鉄心およびその製造方法 技術分野 Technical field of heat-resistant adhesive film, electrical steel sheet with heat-resistant adhesive film coated thereon, iron core using the electrical steel sheet, and manufacturing method thereof
本発明は、 積層後、 加圧及び加熱 (本発明においては、 特に断ら ない限り室温以上 300 以下明の加熱処理をいう。 ) により接着でき 、 さ らにその後歪取焼鈍等の焼鈍処理 (本発明においては、 特に断 らない限り 300で超の加熱処理をいう。 ) を施しても接着能が維持 書  In the present invention, after lamination, pressurization and heating (in the present invention, unless otherwise specified, the heat treatment is performed at room temperature or more and 300 or less), and thereafter annealing treatment such as strain relief annealing (this In the invention, unless otherwise specified, it means a heat treatment exceeding 300.)
できる耐熱接着性被膜組成物、 および表面被覆された電磁鋼板に関 するものである。 背景技術 The present invention relates to a heat-resistant adhesive coating composition that can be produced and a surface-coated electrical steel sheet. Background art
電磁鋼板は、 主にモーターや トランス等の鉄心と して用いられる 。 通常、 電磁鋼板の表面は絶縁被膜が形成されており、 所定の形状 に連続的に打ち抜きを行った後、 積層して溶接、 またはかしめとよ ばれる凹凸部を嵌合させる方法等により一体化して鉄心を形成する のが一般的である。  Electrical steel sheets are mainly used as iron cores for motors and transformers. Usually, the surface of an electrical steel sheet is formed with an insulating coating, and after being continuously punched into a predetermined shape, it is laminated and integrated by a method such as welding or fitting of uneven parts called caulking. It is common to form an iron core.
一体化された鉄心は、 そのまま電気機器に組み込まれて使用され るものと、 700 ^から 800で前後の温度で焼鈍された後、 電気機器に 組み込まれるものとがある。 後者の焼鈍は歪取焼鈍といわれるもの で、 打ち抜き/せん断時に鋼板に導入されたせん断歪、 端面部の溶 接により発生する熱歪、 さらにはかしめ部の塑性変形歪などを焼鈍 により除去ないしは低減し、 鉄心としての磁気特性を高めることが 目的で、 高い電気効率が要求される電気機器用途に使用される鉄心 に実施される。 溶接やかしめにより積層した電磁鋼板を一体化する方法では、 鉄 心エッジ部が短絡され絶縁性が低下するという問題や、 加工歪によ り磁気特性が劣化するという問題がある。 溶接やかしめによる欠点 を回避する方法と して、 熱圧着により接着性を発揮する絶縁被膜を 予め電磁鋼板上に成膜し、 打ち抜き又はせん断加工後、 積層して熱 圧着する技術が提案されている。 The integrated iron core can be used as it is incorporated in electrical equipment, or it can be used in electrical equipment after annealing at temperatures around 700 ^ to 800. The latter annealing is called strain relief annealing, and it removes or reduces the shear strain introduced into the steel sheet during punching / shearing, thermal strain generated by welding of the end face, and plastic deformation strain of the caulking portion. However, with the aim of enhancing the magnetic properties of the iron core, it is applied to iron cores used in electrical equipment applications that require high electrical efficiency. In the method of integrating magnetic steel sheets laminated by welding or caulking, there are problems that the edge of the iron core is short-circuited and insulation is lowered, and that magnetic properties are deteriorated due to processing strain. As a method of avoiding defects due to welding and caulking, a technology has been proposed in which an insulating coating that exhibits adhesiveness is formed on a magnetic steel sheet in advance by thermocompression bonding, and after stamping or shearing, it is laminated and thermocompression bonded. Yes.
例えば、 潜在性硬化剤を配合したァク リル変成エポキシ樹脂エマ ルジョ ンを主成分とする混合液を塗布し、 不完全に焼き付けること を特徴とする接着用表面被覆電磁鋼板の製造方法 (特許第 2613725 号公報) や発泡剤を含有する接着性樹脂で被覆された絶縁被膜つき 電磁鋼板 (特開 2002-260910号公報) 、 さ らには特公昭 55— 98 15号 公報ゃ特開平 2— 208034号公報の技術が提案されている。 これらの いわゆる接着コーティ ング技術は、 かしめや溶接で生じる問題を軽 減できるが、 いずれも有機物のみで鋼板表面が被覆されているため 、 多く は 300で以上の温度では分解してしまい、 歪取焼鈍を施すと 接着力を保つことができない。 このため、 歪取焼鈍を行わない鉄心 については接着コーティ ングを施した電磁鋼板が用いることが可能 であるが、 鉄損低減のための歪取燒鈍をする鉄心については使用す ることができないという問題があった。  For example, a method for producing a surface-coated electrical steel sheet for bonding, characterized in that a liquid mixture mainly composed of acryl-modified epoxy resin emulsion containing a latent curing agent is applied and incompletely baked (patent no. No. 2613725) and electrical steel sheets with insulating coatings coated with an adhesive resin containing a foaming agent (Japanese Patent Laid-Open No. 2002-260910), and also Japanese Patent Publication No. 55-9815 and Japanese Patent Laid-Open No. 2-208034 The technology of the gazette is proposed. These so-called adhesive coating techniques can alleviate the problems caused by caulking and welding, but since the steel sheet surface is coated only with organic matter, many of them decompose at temperatures above 300, and distortion is eliminated. Adhesive strength cannot be maintained after annealing. For this reason, magnetic steel sheets with adhesive coating can be used for iron cores that are not subjected to strain relief annealing, but cannot be used for iron cores that are subjected to strain relief to reduce iron loss. There was a problem.
一方、 所定の形状に打ち抜き等で加工した電磁鋼板を歪取焼鈍し てから、 接着剤により固着する方法も考えられるが、 小さな打ち抜 き片一枚毎に接着剤を塗布する必要があるため、 作業性が悪い。  On the other hand, it is possible to use a method in which a magnetic steel sheet that has been processed into a predetermined shape by punching or the like is strain-annealed and then fixed with an adhesive, but it is necessary to apply adhesive to each small punched piece. The workability is bad.
また、 特公昭 42- 245 19号公報、 特開昭 58- 128715号公報、 特公昭 4 7 - 47499号公報には、 いわゆる無機被膜とよばれる、 樹脂成分を含 まない被膜が開示されている。 特公昭 42-245 19号公報は、 鋼板同士 の接着機能を有したものではないため、 かしめや溶接など接着以外 の固定法を行わなければ一体型の鉄心を得ることができない。 特開 昭 58- 128715号公報および特公昭 47-47499号公報は、 低融点ガラス 成分のみから成る無機皮膜であるため膜が硬く打ち抜き金型に悪影 響を及ぼす上、 発塵も多いという問題があった。 発明の開示 JP-B-42-24519, JP-A-58-128715, JP-B-47-47499 disclose so-called inorganic coatings that do not contain a resin component. . Since Japanese Patent Publication No. 42-24519 does not have a bonding function between steel plates, an integrated iron core cannot be obtained unless a fixing method other than bonding such as caulking or welding is performed. JP Japanese Laid-Open Patent Publication Nos. 58-128715 and 47-47499 have the problems that the film is hard because it is an inorganic film composed only of a low-melting-point glass component, and the punching die is adversely affected, and there is a lot of dust generation. It was. Disclosure of the invention
本発明は、 接着性絶縁被膜付き電磁鋼板の接着性絶縁被膜の耐熱 性を向上させ、 歪取燒鈍を行っても接着状態および絶縁性が保たれ る耐熱接着性絶縁被膜およびそれを被覆した耐熱接着性被膜付き電 磁鋼板ならびに当該電磁鋼板を用いた鉄心およびその製造方法を提 供するものである。  The present invention improves the heat resistance of the adhesive insulating coating of the electrical steel sheet with the adhesive insulating coating, and the heat resistant adhesive insulating coating that can maintain the adhesive state and the insulating property even when strain relief is performed, and the same The present invention provides an electromagnetic steel sheet with a heat-resistant adhesive coating, an iron core using the electromagnetic steel sheet, and a method for manufacturing the same.
前記課題を解決するために、 本発明は以下のような手段を用いる  In order to solve the above problems, the present invention uses the following means.
(1) 軟化点温度が室温以上 300°C以下の樹脂と軟化点温度が 1000で 以下の低融点無機成分とを含む耐熱接着性絶縁被膜。 (1) A heat-resistant adhesive insulating coating comprising a resin having a softening point temperature of room temperature to 300 ° C and a low melting point inorganic component having a softening point temperature of 1000 or less.
(2) 250^接着強度 = 10kg/cm2以上、 750で接着強度 = lkg/cm2以上 であることを特徴とする (1)に記載の耐熱接着性絶縁被膜。 (2) The heat-resistant adhesive insulating coating according to (1), wherein 250 ^ adhesive strength = 10 kg / cm 2 or more, and 750, adhesive strength = lkg / cm 2 or more.
(3) 30でから 300でにおける線熱膨張係数が 10X 10— 7 (で-1)以上 15 0X 10"7 (で- 1)以下であることを特徴とする (1)に記載の耐熱接着 性絶縁被膜。 (3) 30 linear thermal expansion coefficient at 300 from in the 10X 10- 7 (in - 1) or 15 0X 10 "7 (in - 1) heat adhesion according to (1) the less is Insulating coating.
(4) 低融点無機成分が、 低融点ガラスフリ ッ ト、 水ガラス、 ある いはそれらにコロイダルシリカをさ らに混合したものである (1)に 記載の耐熱接着性絶縁被膜。  (4) The heat-resistant adhesive insulating coating according to (1), wherein the low-melting-point inorganic component is a low-melting-point glass frit, water glass, or a mixture of them with colloidal silica.
(5) 低融点無機成分が平均粒径 20 以下であることを特徴とす る (4)に記載の耐熱接着性絶縁被膜。  (5) The heat-resistant adhesive insulating coating according to (4), wherein the low melting point inorganic component has an average particle size of 20 or less.
(6) 低融点無機成分に対する樹脂の混合比率が質量分率で 20%以 上 500%以下であることを特徴とする (4)に記載の耐熱接着性絶縁被 膜。 (7) 低融点無機成分が S i 02 -B2 03 -R2 0系低融点ガラス (Rはアル力 リ 金属)であることを特徴とする (4)に記載の耐熱接着性絶縁被膜。 (6) The heat-resistant adhesive insulating film according to (4), wherein the mixing ratio of the resin to the low-melting-point inorganic component is 20% or more and 500% or less by mass fraction. (7) The heat-resistant adhesive insulation according to (4), characterized in that the low-melting point inorganic component is S i 0 2 -B 2 0 3 -R 2 0 series low-melting point glass (R is Al force re-metal) Coating.
(8) 水ガラスが珪酸ソーダであることを特徴とする (4)に記載の耐 熱接着性絶縁被膜。  (8) The heat-resistant adhesive insulating coating according to (4), wherein the water glass is sodium silicate.
(9) 樹脂が、 エポキシ樹脂、 アク リル樹脂、 フエノール樹脂、 予 め潜在性硬化剤を配合したアク リル変成エポキシ樹脂ェマルジヨ ン を主成分とする混合液を不完全状態に焼き付けた樹脂、 または、 シ ロキサンポリマー、 から選ばれる 1種または 2種以上を含むことを 特徴とする (1 )記載の耐熱接着性絶縁被膜。  (9) Resin that is baked incompletely with a mixed liquid mainly composed of epoxy resin, acrylic resin, phenolic resin, and acrylic modified epoxy resin emulsion containing a latent curing agent, or The heat-resistant adhesive insulating coating according to (1), comprising one or more selected from siloxane polymers.
( 10) 鋼板の少なく とも片面に、 (1 )に記載の被膜を有する、 耐熱 接着性絶縁被膜付き電磁鋼板。  (10) A magnetic steel sheet with a heat-resistant adhesive insulating coating, having the coating according to (1) on at least one side of the steel plate.
( 1 1 ) 耐熱接着性絶縁被膜の膜厚が 0. 5 m以上 20 m以下である ことを特徴とする (10)に記載の耐熱接着性絶縁被膜付き電磁鋼板。  (11) The electrical steel sheet with a heat-resistant adhesive insulating coating according to (10), wherein the thickness of the heat-resistant adhesive insulating coating is 0.5 m or more and 20 m or less.
( 12) ( 10)に記載の耐熱接着性絶縁被膜付き電磁鋼板を用いた鉄心  (12) An iron core using a magnetic steel sheet with a heat-resistant adhesive insulating coating according to (10)
( 13) ( 10)に記載の電磁鋼板を、 積層、 加圧固定して、 電磁鋼板積 層体を作製後、 600〜900 の焼鈍を行い、 一体化された鉄心を得る 、 耐熱接着性絶縁被膜付き電磁鋼板を用いた鉄心の製造方法。 (13) After laminating and pressing and fixing the electrical steel sheets described in (10) to produce an electrical steel sheet laminate, annealing is performed at 600 to 900 to obtain an integrated iron core. A method of manufacturing an iron core using a coated electromagnetic steel sheet.
( 14) 少なく とも加圧固定の段階において、 加熱を行い接着固定す るか、 かしめまたは治具により固定を行うか、 あるいはこれらを併 用する、 (13)に記載の耐熱接着性絶縁被膜付き電磁鋼板を用いた鉄 心の製造方法。  (14) At least at the stage of pressure fixation, either heat and adhesively fix, or fix by caulking or jig, or use these together, with heat-resistant adhesive insulating coating according to (13) An iron core manufacturing method using electrical steel sheets.
本発明は、 電磁鋼板の絶縁被膜の組成を複合化して 2種類の接着 能を発揮させるものであり、 その具体的手段として、 室温以上 300 で以下で軟化する樹脂と示差熱分析法で測定した軟化点温度が 1000 で以下である低融点無機成分を含む被膜であることを特徴とするも のである。 被膜の樹脂は、 熱プレス時に軟化して鉄心を接着一体化 する機能を果たし、 低融点無機成分は鉄心の歪取燒鈍時に鉄心を一 体化された状態に維持する機能を果たすものである。 図面の簡単な説明 In the present invention, the composition of the insulating coating of the electrical steel sheet is combined to exert two types of adhesive performance. As specific means, the measurement was performed by a resin that softens at room temperature to 300 and below and differential thermal analysis. It is a film containing a low melting point inorganic component having a softening point temperature of 1000 or less. The coating resin is softened during heat pressing and the iron core is bonded and integrated. The low melting point inorganic component fulfills the function of maintaining the core in a unified state when the core is strain-relieved. Brief Description of Drawings
図 1 は、 ガラスの一般的な示差熱分析曲線を示す図。  Figure 1 shows a typical differential thermal analysis curve for glass.
図 2 は、 梯子状シロキサンポリマ一を示す図。 発明を実施するための最良の形態  Figure 2 shows a ladder-like siloxane polymer. BEST MODE FOR CARRYING OUT THE INVENTION
鋼板から歪みを除去するには、 焼鈍温度と して通常 700 :から 800 °C程度の温度が必要である。 こう した焼鈍温度では、 有機物は分解 してしまい、 構造を維持することができないため接着性も維持する ことはできない。 発明者らは 700でから 800°Cの高温でも構造を維持 でき、 鋼板間の接着性を発揮できるのは無機化合物が好適と考え、 各種の無機化合物について検討を重ねた。 その結果、 いわゆる低融 点ガラスフリ ッ トと呼ばれる一群の低融点無機成分や、 水ガラス、 コロイダルシリ力等の低融点無機成分が焼鈍温度条件 750で付近で 鋼板間の良好な接着性を示すことを見出した。 しかし、 これらの低 融点無機成分のみでは、 焼鈍完了前の段階においては接着能が発揮 されないため鉄心の一体保持が果たせない。 そこで、 これらに樹脂 を複合させることにより、 歪取焼鈍を行う前から接着固定が可能で 、 かつ歪取焼鈍後も接着固定能が維持される鉄心を得ることができ ることを見出した。  In order to remove the strain from the steel sheet, an annealing temperature of about 700: to 800 ° C is usually required. At these annealing temperatures, organic matter decomposes and the structure cannot be maintained, so the adhesion cannot be maintained. The inventors considered that an inorganic compound is suitable for maintaining the structure even at a high temperature of 700 to 800 ° C and exhibiting adhesion between the steel plates, and studied various inorganic compounds. As a result, a group of low-melting-point inorganic components called so-called low-melting-point glass frits and low-melting-point inorganic components such as water glass and colloidal sill force show good adhesion between steel plates in the vicinity of annealing temperature condition 750. I found. However, these low-melting-point inorganic components alone cannot achieve the integral holding of the iron core because the bonding ability is not exhibited at the stage before annealing is completed. Therefore, it has been found that by combining a resin with these, an iron core can be obtained which can be bonded and fixed before the strain relief annealing and can maintain the adhesive fixing ability even after the strain relief annealing.
以下、 まず低融点無機成分について説明する。 発明者らは、 歪取 焼鈍温度域における接着作用の良否を支配するのは低融点無機成分 の軟化点温度であることを突き止めた。  Hereinafter, the low melting point inorganic component will be described first. The inventors have found that it is the softening point temperature of the low-melting-point inorganic component that dominates the adhesiveness in the strain relief annealing temperature range.
以下、 発明を完成するために行なった実験内容を詳細に説明する 発明者らは上述の軟化点温度の重要性を確認するため、 次のよう な条件で試料を作製し、 その接着強度を調査した。 まず、 板厚が 0. 5mmで、 表面に絶縁性被膜を持たない無方向性電磁鋼板を多数用意 した。 これらに対し、 低融点無機成分として、 平均粒径が 5 ; mで 、 種々の軟化点温度を持つ低融点ガラスフリ ッ ト、 樹脂と してェポ キシ樹脂 : アク リル樹脂 : フエノ ール樹脂 = 15 : 3 : 3 (質量%) で 固形分分率 20質量%の水ェマルジヨ ン液を用い、 両者を混合し、 口 —ルコ一夕一を用いて塗布した。 ガラスフリ ツ 卜に対する樹脂の混 合割合は固形分比率で 100 %、 つまり、 同じ質量になるようにした 。 被膜量は片面当たり 8g/m2になるようにし、 板温 160でで乾燥した 。 こう して作製した試料から試験片を切り出した。 ついで、 250 接着強度と 750 接着強度を測定した。 The details of the experiments conducted to complete the invention are described below. In order to confirm the importance of the above-mentioned softening point temperature, the inventors prepared a sample under the following conditions and investigated its adhesive strength. First, we prepared many non-oriented electrical steel sheets with a thickness of 0.5 mm and no insulating coating on the surface. On the other hand, as low-melting-point inorganic components, the average particle size is 5 m and low-melting-point glass frits with various softening point temperatures. As the resin, epoxy resin: acrylic resin: phenolic resin = A 15: 3: 3 (mass%) water emulsion solution having a solid fraction of 20 mass% was mixed, and both were mixed and coated using a mouth-ruko overnight. The mixing ratio of the resin to the glass frits was 100% in terms of solid content, that is, the same mass. The coating amount was 8 g / m 2 per side, and the film was dried at a plate temperature of 160. A test piece was cut out from the sample thus prepared. Next, 250 adhesive strength and 750 adhesive strength were measured.
ここで軟化点温度とは、 図 1 に示す示差熱分析法の測定曲線にお いて、 測定開始後、 第 4番目に観測された変曲点の温度、 あるいは J I S-R3 103- 1 「硝子軟化点試験方法」 (I SO 7884-6 : 1987, ASTM C33 8) のいずれか低い方の温度である力 これらのいずれの方法でも 測定が困難な場合は、 他の軟化点温度で代替しても良い。  Here, the softening point temperature is the fourth inflection point temperature observed after the start of measurement in the differential thermal analysis measurement curve shown in Fig. 1, or JI S-R3 103-1 “Glass The softening point test method ”(I SO 7884-6: 1987, ASTM C33 8), whichever is the lower temperature. If any of these methods are difficult to measure, replace with another softening point temperature. Also good.
また、 250°C接着強度とは、 圧延方向長さ 10cm、 圧延方向に対し 直角方向の長さ 3cmの 2枚の試料について、 短辺部を l cm、 面積 3cm2 で重ね合わせた状態で加圧力 10kg/3cm2、 加熱温度 250^、 加熱時間 60秒の条件で、 接着した後、 室温において圧延方向に引張り、 剥離 した時の強度を面積 3cm2で除した値である。 なお、 本発明において 、 加圧力、 接着強度は、 ばね抨の指示値 (kg) を面積で除した値で 、 kg/cm2と記すが、 これは 9. 8 x 104 Paに相当する。 In addition, the 250 ° C adhesive strength refers to the addition of two specimens with a length of 10 cm in the rolling direction and a length of 3 cm perpendicular to the rolling direction, with the short side overlapped by l cm and the area of 3 cm 2. It is the value obtained by dividing the strength when it was pulled and peeled at room temperature after bonding, under the conditions of pressure 10kg / 3cm 2 , heating temperature 250 ^, heating time 60 seconds, by area 3cm 2 . In the present invention, the applied pressure and the adhesive strength are values obtained by dividing the indicated value (kg) of the spring rod by the area and are expressed as kg / cm 2 , which corresponds to 9.8 × 10 4 Pa.
また、 750で接着強度とは上記低温接着条件で接着させた試料に 対し、 更に、 加圧しない状態で、 加熱温度 750 、 加熱時間 2時間 の条件で加熱した後、 室温において圧延方向に引張り、 剥離した時 の強度を面積 3cm2で除した値である。 結果を表 1 に示す。 In addition, the adhesive strength at 750 is the sample bonded under the above-mentioned low temperature bonding conditions, and further heated under the conditions of a heating temperature of 750 and a heating time of 2 hours without applying pressure, and then pulled in the rolling direction at room temperature. When peeled This is the value obtained by dividing the strength of by the area 3 cm 2 . The results are shown in Table 1.
表 1 table 1
条件 組成 (質量%) 軟化点 接着強度: kg/cm2 番号 B2 03 Si02 ZnO A12 03 BaO MgO κ2 ο Bi2 03 SnO PbO 温度 250T: 750 :Condition Composition (mass%) Softening point Adhesive strength: kg / cm 2 No. B 2 0 3 Si0 2 ZnO A1 2 0 3 BaO MgO κ 2 ο Bi 2 0 3 SnO PbO Temperature 250T: 750:
1 50 一 一 ― ― ― ― ― ― ― 50 300で 30 31 50 1-------50 300 30 3
2 一 ― ― ― ― ― ― ― 50 50 ― 350 40 52 1 ― ― ― ― ― ― ― 50 50 ― 350 40 5
3 15 5 一 ― ― ― ― 80 ― ― 一 40(TC 30 83 15 5 1----80--1 40 (TC 30 8
4 25 - 15 15 5 30 10 ― ― ― ― ― 525で 20 74 25-15 15 5 30 10 ― ― ― ― ― 525 20 7
20 20 ― 5 55 ― ― ― ― ― 一 675 30 620 20 ― 5 55 ― ― ― ― ― One 675 30 6
6 20 70 ― ― ― ■ ― 10 ― ― ― 760で 40 76 20 70 ― ― ― ■ ― 10 ― ― ― 760 40 7
7 50 ― 10 15 15 10 ― ― ― ― 880 20 37 50 ― 10 15 15 10 ― ― ― ― 880 20 3
8 ― 50 ― 35 ― 15 ― ― ― ― 1000で 10 18 ― 50 ― 35 ― 15 ― ― ― ― 1000 10 1
9 ― 45 ― 40 ― 15 ― ― ― ― 一 1050 10 接着せず 9 ― 45 ― 40 ― 15 ― ― ― ― One 1050 10 Not adhered
表 1から、 条件番号 1.から条件番号 8で、 軟化点温度が 1000 以 下のガラスフリ ッ トを使用した時、 250で接着強度が 10kg/cm2以上 で、 かつ、 750 接着強度が 1 kg/cm2と、 両方の値が良好であるこ とがわかる。 一方、 条件番号 9の軟化点温度が 1050 のガラスフリ ッ トを使用した時は 250で接着強度は 10kg/cm2と良好であるが、 750 で接着強度は焼鈍後、 接着面が簡単に剥離し、 測定できないほど弱 いものであった。 以上のことから、 軟化点温度が 1000で以下のガラ スフリ ッ トを使用した時、 250で接着強度が 10kg/cm2以上、 750で接 着強度が lkg/cm2と両方の特性が良好であることが判明した。 From Table 1, Condition No. 1 to Condition No. 8, and when using a glass frit with a softening point temperature of 1000 or less, the bond strength is 250 kg and the bond strength is 10 kg / cm 2 or more, and 750 bond strength is 1 kg. and / cm 2, this both values are good Togawakaru. On the other hand, when a glass frit with a softening point temperature of 1050 in condition number 9 is used, the bond strength is good at 250 and 10 kg / cm 2 , but at 750 the bond strength is easily peeled off after annealing. It was so weak that it could not be measured. From the above, when using the following glass frit with a softening point temperature of 1000, the adhesive strength is 10 kg / cm 2 or more at 250, and the adhesive strength is lkg / cm 2 at 750. It turned out to be.
次に、 750で接着強度が低融点無機成分の軟化点温度に依存する 理由について、 発明者らは次のような機構を考えている。 250 :付 近での加圧 · 加熱接着時には、 樹脂が軟化 , 溶融し、 両面塗布の場 合は被膜界面が消失し、 被膜間接着が達成される。 但し、 この段階 では温度安定性の高い、 低融点無機成分はほとんど反応を起こして はいない。 次いで、 750ででの加熱時に、 今度は低融点無機成分が 軟化、 低融点無機成分種によっては溶融し、 接触する低融点無機成 分同士が結合する。 その結果、 相対する被膜が一体化し、 鋼板どう しの接着が完成する。 従って、 750°C付近の加熱段階においては、 低融点無機成分が軟化ないしは溶融がすることが重要である。  Next, the inventors consider the following mechanism for the reason why the adhesive strength at 750 depends on the softening point temperature of the low melting point inorganic component. 250: During pressure and heat bonding near the resin, the resin softens and melts, and in the case of double-sided coating, the film interface disappears and adhesion between the films is achieved. However, at this stage, the low-melting-point inorganic component having high temperature stability hardly causes the reaction. Next, when heated at 750, the low melting point inorganic component softens and then melts depending on the low melting point inorganic component species, and the low melting point inorganic components coming into contact with each other are bonded together. As a result, the opposing coatings are integrated, and the adhesion between the steel plates is completed. Therefore, it is important that the low-melting-point inorganic component softens or melts in the heating stage near 750 ° C.
表 1 の条件番号 9のように、 軟化点温度が高い低融点無機成分で は、 低融点無機成分同士が例え接触していたとしても、 750 の温 度域では軟化が進行しないので、 低融点無機成分間において十分な 接触面積を得ることができない。 そのため、 低融点無機成分間結合 が十分に形成されない。 その結果、 接着強度を得ることができない 一方、 表 1 の条件番号 1 から条件番号 8のように、 軟化点温度が 低い低融点無機成分では、 低融点無機成分同士が接触していれば、 750での温度域で軟化が進行するので、 低融点無機成分間において 一定の接触面積を得ることができる。 そのため、 低融点無機成分間 結合が形成される。 その結果、 接着強度を得ることができる。 As in Condition No. 9 in Table 1, the low melting point inorganic component with a high softening point temperature does not progress in the temperature range of 750, even if the low melting point inorganic components are in contact with each other. A sufficient contact area cannot be obtained between inorganic components. Therefore, the bond between the low melting point inorganic components is not sufficiently formed. As a result, the adhesive strength cannot be obtained. On the other hand, as shown in Condition No. 1 to Condition No. 8 in Table 1, in the low melting point inorganic component having a low softening point temperature, if the low melting point inorganic components are in contact with each other, Since softening proceeds in the temperature range of 750, a constant contact area can be obtained between the low melting point inorganic components. Therefore, a bond between the low melting point inorganic components is formed. As a result, adhesive strength can be obtained.
なお、 880でや 1000でといった加熱温度である 750でより も高い軟 化点温度を持つ低融点無機成分においても、 一定の 750 接着強度 が得られる理由は完全には解明できていないが、 軟化点温度が 880 T:や l OOO :の低融点無機成分でも 750での温度域において、 ある種 の軟化様反応が起き、 低融点無機成分同士が結合し、 被膜一体化 , 鋼板接着が実現するのでないかと推測している。  The reason why a certain 750 adhesive strength can be obtained even for low-melting-point inorganic components with a softening point temperature higher than 750, which is a heating temperature of 880 or 1000, has not been fully elucidated. Even with a low melting point inorganic component with a spot temperature of 880 T: or l OOO:, some kind of softening-like reaction takes place in the temperature range of 750, and the low melting point inorganic components are bonded to each other, and the film is integrated and the steel sheet is bonded. I guess that.
250で接着強度を 10kg/cm2以上と したのは、 低温での接着による 仮固定の後、 本固定するまでの間の製造工程において、 剥離せずに 取り扱いできる接着強度を規定したものである。 また 750で接着強 度を l kg/cm2以上としたのは、 電気機器に組み込んだ後に剥離しな い接着強度を規定したものである。 The adhesive strength of 10 kg / cm 2 or higher at 250 is defined as the adhesive strength that can be handled without peeling in the manufacturing process after temporary fixing by low-temperature bonding and until final fixing. . In addition, the adhesive strength of 1 kg / cm 2 or higher at 750 stipulates the adhesive strength that does not peel after being installed in electrical equipment.
本発明の低融点無機成分には、 低融点ガラスフリ ッ ト、 水ガラス またはこれらコロイダルシリカを混合したもの等を用いることがで さる。  As the low melting point inorganic component of the present invention, a low melting point glass frit, water glass or a mixture of these colloidal silicas can be used.
使用する低融点無機成分が無機物粉末の場合は、 その粒径も重要 である。 粒径が大き過ぎると被膜表面に粗大な突起を形成してしま い、 被膜間での接触が妨けられてしまう。 被膜間あるいは粉末間に おいて十分な接触を実現するためには、 使用する低融点無機成分の 平均粒径は 20 ΠΙ以下であることが望ましい。 特に、 平均粒径 4 w m 以下、 さ らには 3 m以下であることが望ましい。  When the low-melting-point inorganic component to be used is an inorganic powder, its particle size is also important. If the particle size is too large, coarse protrusions will be formed on the surface of the film, preventing contact between the films. In order to achieve sufficient contact between coatings or powders, it is desirable that the average particle size of the low-melting-point inorganic component to be used is 20 mm or less. In particular, it is desirable that the average particle size is 4 w m or less, and further 3 m or less.
次いで、 本発明者らは低融点無機成分と樹脂の混合比率について 検討した。  Next, the present inventors examined the mixing ratio of the low melting point inorganic component and the resin.
まず、 板厚が 0. 35mmで表面にクロム酸マグネシウムを主体とする 絶縁被膜を持つ無方向性電磁鋼板を多数用意した。 これらに対し、 低融点無機成分として、 平均粒径が で、 軟化点温度が 550での 低融点ガラスフリ ッ ト (B203 = 30 % Si 02 = 20 % Ba0=30% Na2 0= 10% Zn0= 10%) と、 樹脂組成がエポキシ樹脂 : アク リル樹脂 : フエノール樹脂 =20: 5 : 3 (質量%) で固形分分率 20質量%の水 ェマルジョ ン液とを混合しロールコ一夕—を用いて塗布した。 この 時、 ガラスフリ ッ トに対する樹脂の混合比率が種々の値になるよう に調製した。 被膜量は片面当たり 5g/m2になるようにし、 板温 150で で乾燥した。 こう して作製した試料から試験片を切り出した。 つい で、 250で接着強度と 750 接着強度を測定した。 結果を第 2表に示 す。 First, we prepared a number of non-oriented electrical steel sheets with a thickness of 0.35 mm and an insulating coating mainly composed of magnesium chromate on the surface. On the other hand, As a low melting point inorganic component, a low melting point glass frit (B 2 0 3 = 30% Si 0 2 = 20% Ba0 = 30% Na 2 0 = 10% Zn0 = 10%) and an epoxy resin: acrylic resin: phenolic resin = 20: 5: 3 (mass%) and a 20% by weight solids liquid mixture are mixed and a rollco is used. And applied. At this time, the mixing ratio of the resin to the glass frit was adjusted to various values. The coating amount was adjusted to 5 g / m 2 per side and dried at a plate temperature of 150. A test piece was cut out from the sample thus prepared. The bond strength and 750 bond strength were then measured at 250. The results are shown in Table 2.
表 2  Table 2
Figure imgf000013_0001
Figure imgf000013_0001
表 2より、 条件番号 2から条件番号 6、 すなわち、 樹脂/ガラス フリ ッ ト混合比率が 20%以上 500%以下である時、 250で接着強度が 10kg/cm2以上で、 かつ、 750で接着強度が lkg/cni2と、 両方の値が良 好であることがわかる。 一方、 条件番号 1 の樹脂/ガラスフリ ッ ト 混合比率が 10%の条件では 250で接着強度力 kg/cm2 750で接着強 度が 0.5kg/cm2といずれも低い。 また、 条件番号 7の樹脂/ガラスフ リ ッ ト混合比率が 700%の条件では 250 接着強度は 40kg/cm2と良 好であるものの、 750 接着が 0. 5kg/cni2と低くかった。 以上のこと から、 樹脂/ガラスフリ ッ トの混合比率は 20 %以上 500 %以下の条件 の時、 250で接着強度と 750°C接着強度の両方が良好であることがわ かった。 From Table 2, Condition No. 2 to Condition No. 6, that is, when the resin / glass frit mixing ratio is 20% or more and 500% or less, the adhesive strength is 250 and the adhesive strength is 10 kg / cm 2 or more, and the adhesive is 750. It can be seen that the strength is lkg / cni 2 and both values are good. On the other hand, when the resin / glass frit mixing ratio of Condition No. 1 is 10%, the adhesive strength is 250 kg and the adhesive strength is kg / cm 2 750, and the adhesive strength is 0.5 kg / cm 2 . Also, under condition No. 7 where the resin / glass float mixing ratio is 700%, the 250 bond strength is 40kg / cm 2 Although preferred, 750 adhesion was as low as 0.5 kg / cni 2 . From the above, it was found that both the adhesive strength and the adhesive strength at 750 ° C were good at 250 when the resin / glass frit mixing ratio was 20% to 500%.
また、 接着強度が低融点無機成分に対する樹脂比率に依存する理 由について、 本発明者らは次のような機構を考えている。 樹脂は 25 0で加熱時の接着機能を、 低融点無機成分は 750"€加熱時の接着機能 を、 それぞれ分担している。 そのため、 それぞれの加熱温度におい て、 両者が機能を発揮できる状態にあるかどうかを考察することで 、 接着強度に対する樹脂/低融点無機成分比率依存性機構を推測で きる。 即ち、 250 接着強度は 250で加熱時に接着機能を果たす有機 樹脂の、 また、 750で接着強度は 750で加熱時に接着機能を果たす低 融点無機成分の、 それぞれの表面占有状態を考えれば良い。  The present inventors consider the following mechanism for the reason why the adhesive strength depends on the resin ratio to the low-melting-point inorganic component. Resins share the adhesive function when heated at 250 ° C, and the low melting point inorganic component is 750 ", and share the adhesive function when heated. Therefore, at each heating temperature, both are able to exert their functions. It is possible to infer the mechanism of the resin / low-melting-point inorganic component ratio dependence on the adhesive strength by examining whether there is an organic resin that performs an adhesive function when heated at 250, or at 750. The strength is 750, and the surface occupancy of each low melting point inorganic component that performs the adhesive function when heated can be considered.
低融点無機成分に対し、 樹脂の比率が少ない場合、 例えば、 表 2 の条件番号 1 のような場合、 表面の大部分を低融点無機成分が占め 、 表面には樹脂がほとんど顔を視かせていない。 このような状態で 被膜同志を重ね合わせ加圧した状態で、 250 で加熱したと しても 、 樹脂どう しで十分な接触面積を稼ぐことができないので、 被膜間 接着を果たすべき樹脂が十分に機能できない。 そのため、 250°C接 着強度は小さい値となる (条件番号 1 の場合、 250で接着強度 = 5kg /cm2 ) 。 250で加熱時に十分な接着が実現されていない状態で 750で 加熱を実施し、 低融点無機成分が軟化 ' 溶融しても、 予め、 250 加熱時に被膜間接触が十分に実現されていなければ、 低融点無機成 分どう しの接触 , 結合が十分に実現できない。 その結果、 750°C接 着強度も小さな値になってしまう (条件番号 1 の場合、 750 :接着 強度 = 0. 5 kg/cm2 ) 。 このような機構により、 低融点無機成分に対 し、 樹脂の比率が小さ過ぎる場合、 250 接着強度、 750°C接着強度 の両方とも低い値を示す。 When the ratio of the resin to the low melting point inorganic component is small, for example, in the case of condition number 1 in Table 2, the low melting point inorganic component occupies most of the surface, and the resin is almost visible on the surface. Absent. In this state, even if the coatings are overlaid and pressurized, even if heated at 250, a sufficient contact area cannot be obtained between the resins, so there is sufficient resin to achieve adhesion between the coatings. Cannot function. Therefore, the adhesive strength at 250 ° C is a small value (in the case of condition number 1, 250 and adhesive strength = 5 kg / cm 2 ). When heating is performed at 750 in a state where sufficient adhesion is not realized at 250, heating is performed at 750, and even if the low melting point inorganic component softens and melts, contact between the coatings is not sufficiently realized at 250 heating. Contact and bonding between low melting point inorganic components cannot be realized sufficiently. As a result, the adhesion strength at 750 ° C also becomes a small value (in the case of condition number 1, 750: adhesive strength = 0.5 kg / cm 2 ). Due to this mechanism, if the resin ratio is too small relative to the low melting point inorganic component, the adhesive strength is 250 and 750 ° C. Both show low values.
一方、 低融点無機成分に対する樹脂の混合比率が大きい場合、 被 膜表面には樹脂が十分に存在し、 250 加熱時には樹脂が十分に接 着機能を果たすので、 大きな接着強度を得ることができる (条件 7 の場合、 250 :接着強度 = 40kg/cm2 ) 。 しかしながら、 750 加熱時 には、 接着機能を発揮すべき低融点無機成分が被膜表面に十分には 存在しないため、 750 接着強度は小さな値になる (条件番号 7 の 場合、 750で接着強度 = 0. 5kg/cm2 ) 。 On the other hand, when the mixing ratio of the resin to the low-melting-point inorganic component is large, the resin is sufficiently present on the surface of the film, and the resin performs a sufficient adhesion function when heated to 250, so that a large adhesive strength can be obtained ( For condition 7, 250: Adhesive strength = 40 kg / cm 2 ). However, when 750 is heated, the low melting point inorganic component that should exhibit the adhesive function is not sufficiently present on the coating surface, so the 750 adhesive strength becomes small (in the case of Condition No. 7, the adhesive strength = 0 at 750) 5kg / cm 2 ).
なお、 低融点無機成分の 30°Cから 300°Cにおける線熱膨張係数を 1 o x io—7 ( リ以上 1 50 X 1 0—7 rc— 1 )以下にすることで、 鉄心成形 時における磁気特性のばらつきをも防止できる。 Note that by the following linear thermal expansion coefficient at 300 ° C from 30 ° C low-melting inorganic component 1 ox io- 7 (Li or 1 50 X 1 0- 7 rc- 1 ), the magnetic during core form Variations in characteristics can also be prevented.
本発明者らは、 次のような条件で被膜付き鋼板とその鋼板を素材 とする鉄心を作製し、 その磁気特性を調べた。 まず、 板厚が 0. 5ππη で、 表面に絶縁性被膜を持たない無方向性電磁鋼板を多数用意した 。 これらに対し、 低融点無機成分と して、 平均粒径が 5 ^ mで、 種 々の熱膨張係数を持つ低融点ガラスフリ ッ トと、 樹脂組成がェポキ シ樹脂 : ァク リル樹脂 : フエノ —ル樹脂 = 10 : 4 : 5 (質量 で固形 分分率 20質量%の水ェマルジヨ ン液とを混合しロールコ—夕一を用 いて塗布した。 ガラスフリ ッ 卜に対する樹脂の混合割合は固形分比 率で 200 %になるようにした。 被膜量は片面当たり l Og/ra2になるよ うにし、 板温 150でで乾燥した。 The inventors prepared a coated steel sheet and an iron core made of the steel sheet under the following conditions, and investigated the magnetic properties. First, a number of non-oriented electrical steel sheets having a plate thickness of 0.5ππη and having no insulating coating on the surface were prepared. On the other hand, as the low melting point inorganic component, the average particle size is 5 ^ m, low melting point glass frits with various thermal expansion coefficients, and the resin composition is epoxy resin: acrylic resin: pheno — Resin resin = 10: 4: 5 (A mixture of 20% by weight water emulsion solution with a solid content of 20% by weight was applied using a roll coater. The mixing ratio of the resin to the glass flakes is the solid content ratio. The coating amount was adjusted to 1 Og / ra 2 per side and dried at a plate temperature of 150.
これらの試料から、 内径 10. 16cm ( 4イ ンチ) 、 外径 1 2. 7cm ( 5ィ ンチ) のリ ング状の試料を作製し、 20枚積層した状態で加圧力 10kg /cm2 , 温度 250でで 4時間加熱し、 被膜接着型鉄心を作製した。 次い で、 この鉄心を加圧しない状態で温度 750でで 2時間焼鈍した。 最後 に周波数 50Ηζ、 磁束密度 1. 5テスラで鉄損値を測定した。 結果を表 3 に示す。 表 3 From these samples, the inner diameter 10. 16cm (4 Lee inches), to produce a-ring-shaped sample having an outer diameter of 1 2. 7 cm (5 I inch), pressure 10 kg / cm 2 in a stacked state 20 sheets, the temperature Heated at 250 for 4 hours to produce a film-bonded iron core. Next, the iron core was annealed at 750 ° C. for 2 hours without pressing. Finally, the iron loss value was measured at a frequency of 50Ηζ and a magnetic flux density of 1.5 Tesla. The results are shown in Table 3. Table 3
条件 組成 (質量%) 線熱膨張係数 鉄心鉄損 番号 Si02 ZnO A1203 BaO MgO K20 Βί203 SnO PbO OC-リ (W/kg)Condition Composition (mass%) Linear thermal expansion coefficient Iron core loss No. Si0 2 ZnO A1 2 0 3 BaO MgO K 2 0 Βί 2 0 3 SnO PbO OC-Li (W / kg)
1 45 30 ― ― ― 25 ― ― ― 一 160X10- 7 3.271 45 30 ― ― ― 25 ― ― ― One 160X10- 7 3.27
2 ― ― ― ― ― ― ― 45 55 一 150X10- 7 3.082 ― ― ― ― ― ― ― 45 55 One 150X10- 7 3.08
3 ― ― 20 ― ― ― ― ― 40 40 一 135X10' 7 3.033 ― ― 20 ― ― ― ― ― 40 40 One 135X10 ' 7 3.03
4 10 5 ― ― ― ― 一 85 ― ― 一 105X10' 7 3.054 10 5 ― ― ― ― One 85 ― ― One 105X10 ' 7 3.05
5 20 15 ― 5 60 ― ― 一 ― 一 ― 90X10" 7 3.075 20 15 ― 5 60 ― ― One ― One ― 90X10 '' 7 3.07
6 45 一 15 10 20 10 一 ― ― 一 80X 10" 7 3.026 45 One 15 10 20 10 One ― ― One 80X 10 '' 7 3.02
7 55 一 ― ― ― ― ― 一 ― 45 55X10— 7 3.067 55 One ― ― ― ― ― One ― 45 55X10― 7 3.06
8 25 65 ― ― ― ― 10 ― 一 一 ― 30X10" 7 3.048 25 65 ― ― ― ― 10 ― One ― 30X10 '' 7 3.04
9 ― 45 ― 40 ― 15 一 一 ― 一 ― 10X10- 7 3.099 ― 45 ― 40 ― 15 One one ― One ― 10X10- 7 3.09
10 ― 100 ― ― ― ― 一 一 一 一 5X10- 7 3.26 10 ― 100 ― ― ― ― 1 1 1 5X10- 7 3.26
表 3から条件番号 2から条件番号 9で、 低融点無機成分の 30でから 300でにおける線熱膨張係数が 10X 10— 7 (で—1 ) 以上 150X 10—7 ( 以下である時、 焼鈍後の鉄心成形時の鉄損が 3.1 (W/kg) よ り も小さ く良好であることがわかる。 一方、 条件番号 1の線熱膨張 係数が 160X 10— 7 (で-1 ) のガラスフリ ッ トを使用した時は鉄損値 が 3.27 (W/kg) と大きく、 また、 条件番号 10の線熱膨張係数が 5X 1 (J—7 (で— 1 ) のガラスフリ ッ トを使用した時も鉄損値が 3.26 (W/kg ) と大きかった。 以上のことから、 低融点無機成分の 30でから 300 における線熱膨張係数が lox 10— 7 (で—1 ) 以上 150x 10— 7 ( r1 Table 3 Condition No. 2 under the conditions No. 9, linear thermal expansion coefficient at 300 from 30 of the low-melting inorganic component 10X 10- 7 (in - 1) When more 150X 10- 7 (or less, after annealing iron loss 3.1 (W / kg) yo Ri seen it is rather small good when core form the other hand, the linear thermal expansion coefficient of the condition number 1 160X 10- 7 (in - 1). Garasufuri Tsu City of When iron is used, the iron loss value is 3.27 (W / kg), and condition number 10 has a linear thermal expansion coefficient of 5X 1 (J- 7 (de- 1 )). loss value was as large as 3.26 (W / kg) from the above, the linear thermal expansion coefficient at 300 to 30 of the low-melting inorganic component lox 10- 7 (in - 1). or more 150x 10- 7 (r 1
) 以下である時、 焼鈍後の鉄心成形時の鉄損が良好であることが判 明した。 ) It was found that the iron loss in forming the iron core after annealing was good when
焼鈍後の鉄心状態での鉄損が低融点無機成分の線熱膨張係数に依 存する理由について、 本発明者らは次のような機構を考えている。 250°Cでの加圧 · 加熱接着により、 被膜中の樹脂が軟化 · 溶融し、 両面塗布の場合は、 被膜界面が消失し、 被膜間接着が実現される。 但し、 この段階では温度安定性の高い、 低融点無機成分はほとんど 反応を起こしてはいない。 次いで、 750°Cでの加熱時に、 今度は低 融点無機成分が軟化、 低融点無機成分種によっては溶融し、 接触す る低融点無機成分同士が結合する。 その結果、 相対する被膜が一体 化し、 鋼板どう しの接着が完成する。 そして、 室温まで冷却された 後、 鉄損値の測定がなされる。 ここで考察すべきは 750でと言う高 温状態において鋼板表面が全面接着され、 室温まで冷却された時、 成形鉄心に発生する応力の問題である。  Regarding the reason why the iron loss in the iron core after annealing depends on the linear thermal expansion coefficient of the low melting point inorganic component, the present inventors consider the following mechanism. Pressurization / heating adhesion at 250 ° C softens and melts the resin in the coating, and in the case of double-sided coating, the coating interface disappears and adhesion between coatings is realized. However, at this stage, the low-melting-point inorganic component with high temperature stability hardly reacts. Next, when heated at 750 ° C., the low-melting-point inorganic component softens this time, and depending on the low-melting-point inorganic component species, it melts and the low-melting-point inorganic components coming into contact with each other are bonded together. As a result, the opposing coatings are integrated, and the adhesion between the steel plates is completed. And after cooling to room temperature, the iron loss value is measured. What should be considered here is the problem of stress generated in the formed iron core when the steel sheet surface is fully bonded in the high temperature state of 750 and cooled to room temperature.
一般に、 鉄心に対し応力が作用すると磁気特性は劣化する。 ここ で、 まず物質の熱膨張係数と応力の関係について述べる。 一般に熱 膨張係数の大きな物質と熱膨張係数の小さな物質とを高温で接着さ せ、 室温まで冷却すると、 熱膨張係数の大きな物質には引張り応力 が、 また、 熱膨張係数の小さな物質には圧縮応力がそれぞれ働く。 電磁鋼板の線熱膨張係数は方向性電磁鋼板も無方向性電磁鋼板もお およそ 100x 10— 7 (tr1) である。 一方、 実験に使用 した低融点無 機成分の熱膨張係数は 5X 10— 7 ( T1 ) から 160X 10—7 ( -1 ) であ る。 従って、 鋼板より も小さな熱膨張係数を持つ無機粉末を使用 し た場合は引張り応力が、 また鋼板より も大きな熱膨張係数を持つ無 機粉末を使用 した場合は圧縮応力がそれぞれ、 成形鉄心に働いてい ることになる。 In general, the magnetic properties deteriorate when stress acts on the iron core. First, the relationship between the thermal expansion coefficient and stress of the substance will be described. In general, when a substance with a large coefficient of thermal expansion and a substance with a small coefficient of thermal expansion are bonded at a high temperature and cooled to room temperature, a substance with a large coefficient of thermal expansion has a tensile stress. However, compressive stress acts on materials with small thermal expansion coefficients. Linear thermal expansion coefficient of the electromagnetic steel sheet is also non-oriented electrical steel sheet oriented electrical steel sheet is a contact about 100x 10- 7 (tr 1). On the other hand, the thermal expansion coefficient of the low-melting non-machine components used in the experiment 5X 10- 7 (T 1) from 160X 10- 7 (- 1) Ru der. Therefore, tensile stress acts on the formed iron core when using inorganic powder with a smaller thermal expansion coefficient than steel sheet, and compressive stress when using inorganic powder with larger thermal expansion coefficient than steel sheet. It will be.
本実験について考えてみると、 条件番号 1で、 最も大きな線熱膨 張係数を持つ無機粉末の場合には、 成形鉄心に対し大きな圧縮力が 、 また、 条件番号 10で最も小さな線熱膨張係数を持つ無機粉末の場 合には、 成形鉄心に対し大きな引張り応力が、 それぞれ作用してい るものと推定される。 鋼板と最も大きな線熱膨張係数の差を持ち、 そのため、 最も大きな応力が生じているものと推測される、 条件番 号 1と条件番号 10の成形鉄心は、 この応力付与が原因で鉄損値が大 きかったものと考えられる。 一方、 条件番号 2から条件番号 9の場合 においては、 使用した無機粉末の熱膨張係数は、 鋼板のそれと異な るものではあるが、 その差異が小さかったため、 成形鉄心に対する 引っ張り応力や圧縮応力がたとえ作用していたとしてもその値は小 さく、 その結果、 鉄損値に対し大きな影響が表れなかったのではな いかと推定できる。  Considering this experiment, in the case of inorganic powder having the largest linear thermal expansion coefficient in condition number 1, a large compressive force is exerted on the formed core, and the smallest linear thermal expansion coefficient in condition number 10 In the case of inorganic powders with a large tensile stress, it is estimated that a large tensile stress acts on the formed iron core. Because of the difference in the coefficient of linear thermal expansion between the steel sheet and the steel sheet, it is assumed that the largest stress is generated. It is thought that was large. On the other hand, in the case of Condition No. 2 to Condition No. 9, the thermal expansion coefficient of the inorganic powder used was different from that of the steel sheet, but the difference was small, so the tensile stress and compressive stress on the formed iron core were similar. Even if it works, the value is small, and as a result, it can be estimated that the iron loss value did not have a significant effect.
本発明の低融点無機成分は、 歪取焼鈍後の接着性発現に寄与する ものであり、 軟化点が通常の歪取焼鈍温度である 750 以下の低融 点ガラスであることが好ましい。 低融点ガラスは、 歪取焼鈍中に軟 化 · 溶融し、 冷却により固化して、 歪取焼鈍後に 2枚の板を接着す ることができる。 低融点ガラスの組成としては、 Si02- B203 - R20 (R はアルカ リ金属)系、 P205 - R20 (Rはアルカ リ金属)系、 Si02-Pb0-B20 3系、 B2 03 - B i 2 03系、 S i 02 - B2 03 - ZnO系、 SnO- P2 05系、 S i 02 -B2 03 -Z r 02系等が挙げられる。 特に、 S i 02 -B2 03 - R2 0 (Rはアルカ リ金属)系は 、 無鉛である上、 歪取焼鈍後の接着力が高いので好ましい。 The low-melting-point inorganic component of the present invention contributes to the development of adhesiveness after strain relief annealing, and is preferably a low melting point glass having a softening point of 750 or less, which is a normal strain relief annealing temperature. The low-melting glass can be softened and melted during strain relief annealing and solidified by cooling, and the two plates can be bonded after strain relief annealing. The composition of low melting glass is Si0 2 -B 2 0 3 -R 2 0 (R is alkali metal), P 2 0 5 -R 2 0 (R is alkali metal), Si0 2 -Pb0- B 2 0 3 series, B 2 0 3 -B i 2 0 3 series, S i 0 2 -B 2 0 3 -ZnO series, SnO- P 2 0 5 series, S i 0 2 -B 2 0 3 -Z r 0 2 And the like. In particular, the Si 0 2 -B 2 0 3 -R 2 0 (R is alkali metal) system is preferable because it is lead-free and has high adhesion after strain relief annealing.
低融点無機成分は、 水ガラスのように液体で添加しても良い。 水 ガラスは、 珪酸ソ一ダが特に好ましい。 水ガラスを使用する利点と して、 粉末粒子を含まないため、 塗布面に粒子に起因する凹凸がな く、 平滑面が得られやすいことが挙げられる 特に、 珪酸ソ ダを 利用 した場合は、 歪取焼鈍後の接着強度として 1. OMPa以上の高い強  The low melting point inorganic component may be added as a liquid like water glass. The water glass is particularly preferably soda silicate. The advantage of using water glass is that it does not contain powder particles, so there is no unevenness due to particles on the coated surface, and it is easy to obtain a smooth surface.In particular, when using silicate soda, Adhesive strength after strain relief annealing 1. High strength over OMPa
、 /- 度が得られる。 また、 珪酸カリ.ヴムを利用した場合は、 歪取焼鈍 の接着強度として 4. 0 7. OM P a程度の高い強度が得られる。  , /-Degree is obtained. In addition, when potassium silicate is used, a high strength of 4.0.7 OM Pa can be obtained as the bond strength for strain relief annealing.
本発明の低融点無機成分として 、 上述の無機成分にさ らにコ ィ ダルシリカを混合したものを用いることもでさる。 コロイダルシ U 力などを混合することにより、 歪取焼鈍中に 機成分が軟化したと きの粘度を調整することができる よ Πィダルシリ力は歪取 焼鈍中に軟化せず残った場合も 膜中の骨材として機能しており歪 取焼鈍後の接着強度を高めることができる。  As the low-melting-point inorganic component of the present invention, it is possible to use a material obtained by further mixing the above-mentioned inorganic component with colloidal silica. By mixing colloidal U force, etc., the viscosity when machine components are softened during strain relief annealing can be adjusted. ΠSilicier force also remains in the membrane even if it remains unsoftened during strain relief annealing. It functions as an aggregate and can increase the bond strength after strain relief annealing.
本発明に適用できる樹脂は、 フエノ ール樹脂やエポキシ樹脂のよ うな加圧 · 加熱により鋼板どう しを接着させる際、 硬化反応を起こ す熱硬化性樹脂が適用できるのは勿論のこと、 アク リル樹脂やメタ ク リル樹脂のような加熱しても硬化反応の起こ らない熱可塑性樹脂 も適用できる。 熱可塑性、 熱硬化性いずれの樹脂でも適用できるが 、 接着作用を有するものであることが望ましい。  As a resin applicable to the present invention, a thermosetting resin that causes a curing reaction when the steel sheets are bonded together by pressing and heating, such as phenol resin or epoxy resin, can be applied. A thermoplastic resin that does not cause a curing reaction even when heated, such as a ril resin or a methacryl resin, can be applied. Either thermoplastic or thermosetting resin can be applied, but it is desirable to have an adhesive action.
本発明の樹脂は、 室温以上 300で以下で軟化するが、 ブロッキン グ性等を考慮して、 好ましくは 50 以上、 80で以上、 100で以上、 特に、 120 以上 300°C以下の加熱で、 流動性が発現する程度に軟化 することが好ましい。 流動性が発現する程度の軟化とは、 粘度が 1 x l 08 dPa s以下になることを目安とする。 鋼板表面上に焼き付け により硬化させた樹脂力 300で以下の加熱により軟化する機構とし ては、 硬化させた樹脂が熱可塑性樹脂であり、 かつ、 熱可塑性の発 現する温度力 以上 300で以下にある場合が挙げられる。 The resin of the present invention softens at room temperature or more and 300 or less, but considering blocking properties, it is preferably 50 or more, 80 or more, 100 or more, especially 120 to 300 ° C or less. It is preferable to soften to such an extent that fluidity is exhibited. The softening to such an extent that fluidity is exhibited is that the viscosity is 1 xl 0 8 dPa s or less. Baking on steel plate surface As a mechanism of softening by the following heating with a resin strength of 300 cured by heating, there is a case where the cured resin is a thermoplastic resin and the temperature force at which the thermoplastic develops is 300 or more and the following. .
また、 樹脂が熱硬化性であるときの軟化の機構としては、 ガラス 転移温度より高温に加熱することによりゴム状態あるいは流動状態 に軟化する場合が挙げられる。 特に、 200 以下の低温で数十秒以 下の短時間焼き付け処理で硬化させた樹脂の場合、 加熱により三次 元的な骨格を形成する架橋反応が進みながらも、 ガラス転移を経る ことにより一度軟化し、 さ らに高温に加熱すると再度架橋反応が進 んで硬化することがある。  As a softening mechanism when the resin is thermosetting, there is a case where it is softened to a rubber state or a fluid state by heating to a temperature higher than the glass transition temperature. In particular, in the case of a resin cured by baking at a low temperature of 200 or less for a short time of several tens of seconds or less, the resin undergoes a glass transition while softening once through a cross-linking reaction that forms a three-dimensional skeleton by heating. Furthermore, when heated to a high temperature, the cross-linking reaction may proceed again to be cured.
本発明の樹脂として用いる、 予め潜在性硬化剤を配合したァク リ ル変成エポキシ樹脂ェマルジヨ ンとは、 エポキシ樹脂に潜在性硬化 剤を配合した後、 アク リル樹脂を化学反応させて、 エポキシ樹脂と 潜在性硬化剤の混合物の周囲を被覆し、 ェマルジヨ ンとしたもので ある。 ここで言うエポキシ樹脂とは、 モノマ一中に 2つ以上のェポ キシ基を有する樹脂を指し、 ビスフエノール A型、 ビスフエノール F 型、 ビスフエノール AD型、 ナフ夕レン型、 フエノールノボラック型 、 オルソク レゾールノボラック型、 グリ シジルエステル型、 脂環型 等がある。 潜在性硬化剤としては、 ジシアンジアミ ド、 メラミ ン、 有機酸ジヒ ドラジ ド、 ァミ ンイ ミ ド、 ケラミ ン、 第 3アミ ン塩、 ィ ミダゾール塩、 3フッ化ホウ素ァミン塩、 マイクロカプセル型硬化 剤、 モレキュラーシ一ブ型硬化剤等が挙げられる。 上記エポキシ樹 脂とエポキシ樹脂硬化剤の混合系にアク リル樹脂を変成させる。  The acrylic modified epoxy resin emulsion previously incorporated with a latent curing agent used as the resin of the present invention is an epoxy resin obtained by compounding a latent curing agent with an epoxy resin and then chemically reacting the acrylic resin. And a mixture of latent hardeners and emulsions. The epoxy resin here refers to a resin having two or more epoxy groups in the monomer, and includes bisphenol A type, bisphenol F type, bisphenol AD type, naphthenic type, phenol novolac type, There are orthocresol novolac type, glycidyl ester type, alicyclic type, etc. As latent curing agents, dicyandiamide, melamine, organic acid dihydrazide, amine amide, keramin, tertiary amine salt, imidazole salt, boron trifluoride amine salt, microcapsule type curing agent And molecular sieve type curing agents. The acrylic resin is transformed into a mixed system of the above epoxy resin and epoxy resin curing agent.
ここで言う変成とは、 エポキシ樹脂とエポキシ樹脂硬化剤混合物 の表面に、 化学的にアク リル樹脂を結合させることを言う。 このよ うな変成に供するアク リル樹脂としては、 メ夕ク リル酸、 メタク リ ル酸エステル、 アク リル酸、 アク リル酸エステル、 スチレン、 酢酸 ビニル等の 1種もしくは 2種以上を重合あるいは共重合したものであ る。 エポキシ榭脂と潜在性エポキシ樹脂硬化剤の配合比は、 ェポキ シ樹脂の種類、 硬化剤の種類により大きく変動するが、 通常、 ェポ キシ樹脂 1質量部に対し、 0.05〜2質量部が適当である。 予め潜在性 硬化剤を配合したアク リル変性エポキシ樹脂ェマルジヨ ンを主成分 とする混合液は、 鋼板表面に塗布後、 不完全状態に焼き付けること が必須であるが、 不完全状態とは、 ベとつきやブロッキングの発生 が無く、 しかも、 せん断加工し、 積層した後、 加圧加熱により接着 する状態のことである。 通常は、 100〜300での炉温で 10〜90秒間乾 燥することで、 不完全状態に焼き付けることができる。 The term “modification” as used herein means that the acrylic resin is chemically bonded to the surface of the epoxy resin and epoxy resin curing agent mixture. Examples of acrylic resins used for such modification include maleic acid, methacrylic acid esters, acrylic acid, acrylate esters, styrene, and acetic acid. It is a polymerized or copolymerized one or more of vinyl. The mixing ratio of epoxy resin and latent epoxy resin curing agent varies greatly depending on the type of epoxy resin and the type of curing agent, but usually 0.05 to 2 parts by mass is appropriate for 1 part by mass of epoxy resin. It is. It is essential that a liquid mixture mainly composed of acrylic-modified epoxy resin emulsion pre-blended with a latent curing agent is baked in an incomplete state after being applied to the surface of the steel sheet. There is no sticking or blocking, and it is in a state where it is bonded by pressing and heating after shearing and laminating. Usually, it can be baked in an incomplete state by drying at a furnace temperature of 100 to 300 for 10 to 90 seconds.
更に、 加熱により軟化する樹脂としてシロキサンポリマーを用い ることができる。 シロキサンポリマーは、 Si-0-Siの無機結合で主 骨格が構成されているポリマーである。 Siは、 Cと同様に、 Si-CH3 、 Si-C6H5、 Si- Hのように、 Siが直接、 有機基や Hと化学結合するこ とができるので、 有機基や Hで骨格が修飾されたシロキサンポリマ —を得ることができる。 Furthermore, a siloxane polymer can be used as a resin that is softened by heating. Siloxane polymers are polymers whose main skeleton is composed of inorganic Si-0-Si bonds. Si, like C, like Si-CH 3 , Si-C 6 H 5 , Si-H, Si can be directly chemically bonded to organic groups and H, so organic groups and H A siloxane polymer having a modified skeleton can be obtained.
Siの 4つの結合手の内、 1個が Si-R(Rは有機基又は H)結合を形成し 、 残りの 3個が Si-0結合になっているものを T核と言う。 T核の中で 、 0を介して Siと結合している数力 3個のもの、 即ち Rsi (_0-Si) 3を T 3核と呼ぶ。 Si核種は、 匪 Rによって調べることができる。 一般に、 シロキサンポリマ一を形成する Si核としては、 T核以外に、 D核と Q 核が挙げられる。 D核は Siの 4つの結合手の内、 2個が Si- R(Rは有機 基又は H)結合を形成し、 残りの 2個が Si-0結合になつているもので ある。 Q核は Siの 4つの結合手の内、 4個が Si- 0結合になっているも のである。 Of the four bonds of Si, one forms a Si-R (R is an organic group or H) bond, and the remaining three are Si-0 bonds. Among the T nuclei, those with three forces that are bonded to Si through 0, that is, Rsi (_0-Si) 3 are called T 3 nuclei. Si nuclides can be examined by 匪 R. In general, Si nuclei that form siloxane polymers include D nuclei and Q nuclei in addition to T nuclei. The D nucleus is one in which four of Si's four bonds form Si-R (R is an organic group or H) bond, and the remaining two are Si-0 bonds. Q nucleus is a Si-0 bond in four of Si's four bonds.
T3画の Siが一定の規則に従って結合を繰り返した場合、 図 2に示 したような梯子状分子が形成される。 梯子状分子からなる重合体は、 塗布 · 焼き付けによって梯子状分 子鎖の絡み合い等が起こ り、 ベとつきやブロッキングの発生のない 硬化した表面状態が得られる。 100°C以上で絡み合つていた分子鎖 が解けて、 流動性を示すようになる。 流動性を示す範囲であれば、 メチル基が結合した S i核以外に、 エポキシ基が結合した S i核を含ん でもよい。 When Si in the T3 drawing repeats bonding according to a certain rule, a ladder molecule as shown in Fig. 2 is formed. A polymer composed of ladder-like molecules causes entanglement of ladder-like molecule chains by coating and baking, and a hardened surface state with no stickiness or blocking is obtained. Molecular chains that have been entangled at 100 ° C or higher will break and become fluid. As long as fluidity is exhibited, Si nuclei to which epoxy groups are bonded may be included in addition to Si nuclei to which methyl groups are bonded.
本発明のシロキサンポリマ一は、 オルガノ ト リアルコキシシラン 又はオルガノ ト リ クロロシランの一方又は双方を出発原料と して、 塩酸触媒下で加水分解して得る。 オルガノ ト リアル キシシフンと しては、 卜 リエ 卜キシシラン、 卜 リ メ 卜キシシラン 、 メチル卜 リ メ 卜千シシラン、 メチルト リエ トキシシラン、 ェチル卜 メ 卜キシシ ラン、 ェチル卜 リエトキシシラン、 プロピル卜 リ メ 卜キシシラン、 プ口ピル卜 リエ 卜キシシラン、 イソブチル卜 リ メ 卜キシシラン、 ィ ソブチル 卜リエ トキシシラン、 フエ二ル卜リ メ 卜キシシラン 、 フェ ニル卜 リエ トキシシラン、 メ夕ク リ ロキシプ口ピル卜 リメ 卜キシシ ラン、 メタク リ ロキシプロピルト リエトキシシラン 、 グ U シ ドキシ プ口ピル卜 リ メ トキシシラン、 グリ シ ドキシプロピル Uェ トキシ シラン、 ァミ ノプロピルト リ メ トキシシラン 、 アミ ノプ □ピル卜 U エ トキシシラン等が挙げられる。 オルガノ ト り クロ Pシランとして は、 メチルト リ クロロシラン、 ェチル卜 リ ク ロロシラン 、 フェニル 卜 リクロロシラン等が挙げられる。  The siloxane polymer of the present invention is obtained by hydrolysis in the presence of one or both of organotrialkoxysilane and organotrichlorosilane in the presence of a hydrochloric acid catalyst. Organotrioxyxyfun can be selected from the group consisting of 卜 卜 卜 xylan, 卜 メ 卜 シ ラ ン シ ラ ン 卜 卜 卜 卜 卜 卜 メ チ ル メ チ ル メ チ ル メ チ ル メ チ ル メ チ ル メ チ ル メ チ ル メ チ ル メ チ ル 卜 卜 卜 卜 卜 卜Xy silane, pill pills, xy silane, isobutyl dimethyl silane, isopropyl silane, xy silane, phenylene silane, xy silane, phenyl silane xy silane, methoxy lip lip lip oxime silane , Methacryloxypropyl triethoxysilane, guanidopropyl pill 卜 methoxysilane, glycidopropyl U ethoxysilane, aminopropyl trimethoxysilane, amino □ pill 卜 U ethoxysilane, etc. . Examples of the organochloro-P silane include methyl trichlorosilane, ethyl trichlorosilane, and phenyl trichlorosilane.
オルガノ ト リアルコキシシラン又はオルガノ 卜 リク □ Dシランの 一方又は双方は 、 有機溶媒に分散させてから加水分解しても良い。 溶媒と しては、 メタノール、 エタノール、 プ □ノ ノ一ル 、 ブ夕ノー One or both of organotrialkoxysilane or organotrimethyl □ D silane may be hydrolyzed after being dispersed in an organic solvent. Solvents include methanol, ethanol, ethanol, and bueno.
,
ル等の各種アルコール、 アセ トン、 トルエン 、 キシレノ等を用いるVarious alcohols such as ruthenium, acetone, toluene, xyleno, etc.
,
ことができる。 加水分解時のオルガノアルコキシシラノに対する有 機溶媒の質量比は、 1 : 0. 5〜 1 : 2であることが望ましい 加水分解は、 出発原料中の全アルコキシ基のモル数に対して 0. 1 〜 1倍の水を添加して行う。 加水分解の触媒として塩酸を添加するbe able to. The mass ratio of the organic solvent to the organoalkoxysilano at the time of hydrolysis is preferably 1: 0.5 to 1: 2. Hydrolysis is performed by adding 0.1 to 1 times as much water as the number of moles of all alkoxy groups in the starting material. Add hydrochloric acid as catalyst for hydrolysis
。 オルガノ ト リクロロシランを原料に用いたときは、 水を加えるこ とにより塩酸が副生成物として生成し、 特に手を加えなくても塩酸 触媒下で加水分解を行う ことになるので、 塩酸を加えなくても良い こともある。 . When organotrichlorosilane is used as a raw material, hydrochloric acid is produced as a by-product when water is added, and hydrolysis is carried out under a hydrochloric acid catalyst without any special treatment. Sometimes it is not necessary.
加水分解したゾルは、 通常、 濃縮等のプロセスにより重縮合反応 を促進させ、 シロキサンポリマーとする。 濃縮は、 ロータリーエバ ポレー夕等で有機溶媒や副生成物のアルコール等を除去し、 濃縮物 の質量が濃縮前の溶液質量の 15〜60 程度になるように行う ことが 、 加熱による軟化性の発現の観点から好ましい。 濃縮以外の方法と して、 K0H等のアル力 リ を添加して窒素雰囲気下等で還流を行って 、 重縮合反応を促進させ、 シロキサンポリマ一を得ることもできる 。 得られたシロキサンポリマーは、 有機溶媒や水で 1. 5〜 10倍程度 に希釈し、 塗布液とする。 通常、 100 〜 200 で 15〜 120秒間焼き 付けることにより、 加圧加熱により接着する状態が得られる。  The hydrolyzed sol is usually converted into a siloxane polymer by promoting the polycondensation reaction by a process such as concentration. Concentration is performed by removing the organic solvent and by-product alcohol, etc. using a rotary evaporator, etc., and the mass of the concentrate is about 15 to 60 of the solution mass before concentration. It is preferable from the viewpoint of expression. As a method other than concentration, an alkoxide such as K0H can be added and refluxed in a nitrogen atmosphere or the like to accelerate the polycondensation reaction and obtain a siloxane polymer. The obtained siloxane polymer is diluted 1.5 to 10 times with an organic solvent or water to make a coating solution. Usually, by baking at 100 to 200 for 15 to 120 seconds, a state of adhesion by pressure heating can be obtained.
なお、 本発明における樹脂や低融点無機成分は、 加熱、 焼鈍の雰 囲気等の条件によっては、 本発明の被膜中において少なく とも外見 的な溶融が見られず、 粒がそのままの状態で残存しているように見 える場合もあるが、 当該加熱、 焼鈍により接着機能が発現すれば、 本発明において何ら問題はない。  It should be noted that the resin and low-melting-point inorganic component in the present invention do not show at least apparent melting in the film of the present invention depending on conditions such as heating and annealing atmosphere, and the grains remain as they are. However, there is no problem in the present invention as long as the bonding function is exhibited by the heating and annealing.
本発明は通常の圧延 · 焼鈍により製造された電磁鋼板であれば方 向性電磁鋼板、 無方向性電磁鋼板など種類を問わず適用できるが、 特に、 モーター鉄心用の無方向性電磁鋼板に適用する場合、 その効 果が最も発揮できる。  The present invention can be applied to any type of magnetic steel sheet produced by ordinary rolling and annealing, such as a directional magnetic steel sheet and a non-oriented electrical steel sheet, but is particularly applicable to a non-oriented electrical steel sheet for motor cores. If this is the case, the effect can be demonstrated most.
方向性電磁鋼板や無方向性電磁鋼板の通常の製造法においては、 双方の鋼板とも、 仕上げ焼鈍に鋼板表面に表面被膜が形成される。 方向性電磁鋼板の場合にはシリカ成分を含有したリ ン酸塩系の被膜 が、 また、 無方向性電磁鋼の場合には、 クロム酸塩系の被膜がそれ ぞれ形成される。 特に、 方向性電磁鋼板の場合は、 仕上げ焼鈍中に フオルステライ ト質の珪酸塩を主体とした被膜を形成させる製法、 意図的に形成させない製法、 生成しているフォルステラィ ト質被膜 を酸洗等の手段で除去する製法などがある。 本発明はこう した種々 の表面被膜の有無に関わらず、 適用することができる。 In the normal manufacturing method of grain-oriented electrical steel sheets and non-oriented electrical steel sheets, a surface coating is formed on the steel sheet surface by finish annealing for both steel sheets. In the case of grain-oriented electrical steel, a phosphate-based film containing a silica component is formed. In the case of non-oriented electrical steel, a chromate-based film is formed. In particular, in the case of grain-oriented electrical steel sheets, a manufacturing method that forms a film mainly composed of forsterite silicate during finish annealing, a manufacturing method that does not intentionally form the film, and a forsterite film that has been formed are pickled. There is a manufacturing method that removes by means. The present invention can be applied with or without these various surface coatings.
本発明の耐熱接着性絶縁被膜付き電磁鋼板は、 耐熱接着性絶縁被 膜組成物を含む塗布液を、 ロールコ一夕、 バーコ一夕、 フローコー 夕、 ディ ップコ一夕、 スプレー等の方法で、 電磁鋼板に塗布する。 塗布量は l g/m2以上 30 g/m2以下、 特に 2 g/m2以上 1 0 g/m2以下であるこ とが好ましい。 The magnetic steel sheet with a heat-resistant adhesive insulating coating of the present invention is prepared by applying a coating solution containing a heat-resistant adhesive insulating film composition by a method such as rollco, overnight, burco, dipco, or spray. Apply to steel plate. The coating amount is preferably lg / m 2 or more and 30 g / m 2 or less, particularly preferably 2 g / m 2 or more and 10 g / m 2 or less.
耐熱接着性絶縁被膜組成物は、 樹脂と低融点無機成分が混合され たものが好ましいが、 両者が塊状に分散混合しているものや、 ある いは両者が二層分離塗布されているものでも良い。 有機成分による マ ト リ ツクスの中に低融点無機成分が点状 · 縞状などの形状で分散 していてもよいし、 シロキサン結合などによる無機マ ト リ ックスの 中に有機成分が点状 · 縞状に分散していてもよい。  The heat-resistant adhesive insulating coating composition is preferably a mixture of a resin and a low-melting-point inorganic component, but it may be a mixture in which both are dispersed in a lump or two layers are separately applied. good. Low-melting-point inorganic components may be dispersed in the form of dots or stripes in the matrix due to organic components, or the organic components may be dotted in the inorganic matrix due to siloxane bonds, etc. It may be dispersed in stripes.
膜厚は片面当たり 0. 5 m以上 20 m以下が望ましい。 膜厚は 0. 5 未満では鋼板上表面全体を十分に被覆しにく いため十分な接着 強度が得られず、 一方 20 ^ mより多いと加圧 · 加熱した際、 占積率 が大きく低下してしまう。 そのため、 膜厚は 0. 5 m以上 20 m以 下が良い。  The film thickness is desirably 0.5 m or more and 20 m or less per side. If the film thickness is less than 0.5, it is difficult to sufficiently cover the entire surface of the steel sheet, so that sufficient adhesive strength cannot be obtained. On the other hand, if it exceeds 20 ^ m, the space factor greatly decreases when pressed and heated. End up. Therefore, the film thickness should be 0.5 m or more and 20 m or less.
本発明の被膜組成物は、 電磁鋼板表面に塗布後、 ベたつきやプロ ッキングが起きないように、 先ず、 焼き付けて硬化させる。 塗布後 、 50〜 200でで焼き付けることにより、 耐熱接着性絶縁被膜付き電 磁鋼板を作製することができる。 この工程は、 鉄心打ち抜きあるい は鉄心積層の直前であってもよいが、 鋼板製造時に塗布しておきい わゆるプレコー ト状態の電磁鋼板としておく のが、 鉄心製造工程が 簡便になるという意味で特に好ましい。 この鋼板から所要の形状に 打ち抜いた鋼板片を積層してブロック化するに際し、 前記の焼き付 け温度より高温に加熱することで樹脂が軟化する。 The coating composition of the present invention is first baked and cured after application to the surface of the magnetic steel sheet so as not to cause stickiness or blocking. After application, the steel sheet with a heat-resistant adhesive insulating coating can be produced by baking at 50 to 200. This process involves punching the iron core May be immediately before the lamination of the iron cores, but it is particularly preferable to apply a so-called pre-coated electromagnetic steel sheet at the time of producing the steel sheets in terms of simplifying the iron core production process. When the steel sheet pieces punched out from the steel sheet into a desired shape are stacked and blocked, the resin is softened by heating to a temperature higher than the baking temperature.
本発明の被膜を両面に有する電磁鋼板片を積層して、 熱プレスを 行った場合、 熱プレス時の加熱により軟化した樹脂が一体となるた め、 冷却時に電磁鋼板片を接着することが可能になる。  When magnetic steel sheet pieces having the coating of the present invention on both sides are laminated and hot pressing is performed, the resin softened by heating during the hot pressing is integrated, so the magnetic steel sheet pieces can be bonded during cooling. become.
また、 本発明の被膜を片面にのみ有する電磁鋼板片を同じ向きに 積層した場合、 本発明の被膜層の無い電磁鋼板片の表面に、 加熱に より軟化した樹脂成分が一様に広がるため、 冷却時に接着すること ができる。 高温の熱プレスになると高コス トになるので、 熱プレス 温度は 300°C以下であることが望ましい。 熱プレスの圧力は、 0. I MP a以上 50MPa以下であることが望ましく、 I MP a以上 20MP a以下である ことが特に望ましい。 熱プレスの圧力が低い場合は、 十分な接着性 を得ることができないため、 鉄心として一体化することが困難にな る。 熱プレスの圧力が高い場合は、 接着層が流動して、 層間からは み出すことがある。  In addition, when the magnetic steel sheet pieces having the coating of the present invention only on one side are laminated in the same direction, the resin component softened by heating spreads uniformly on the surface of the electromagnetic steel sheet pieces without the coating layer of the present invention. Can be glued during cooling. Since high temperature hot pressing results in high costs, the hot pressing temperature is preferably 300 ° C or lower. The pressure of the hot press is preferably 0. IMPa or more and 50MPa or less, and particularly preferably IMPa or more and 20MPa or less. If the pressure of the hot press is low, sufficient adhesion cannot be obtained, making it difficult to integrate as an iron core. When the pressure of hot press is high, the adhesive layer may flow and protrude from the interlayer.
本発明の電磁鋼板は、 所望の形状に打ち抜いた後、 積層して加圧 、 加熱を行えば、 鉄心として一体化することができる。 その後、 必 要に応じて歪取焼鈍を施した場合でも、 積層鋼板間の接着能は維持 される。 歪取焼鈍の温度は、 通常 650で以上 850°C以下であり、 700 で以上 800 以下で行う ことが多い。  The electromagnetic steel sheet of the present invention can be integrated as an iron core by punching into a desired shape, laminating, pressurizing and heating. After that, even if stress relief annealing is performed as necessary, the adhesion between the laminated steel sheets is maintained. The temperature of strain relief annealing is usually 650 or more and 850 ° C or less, and is often 700 or more and 800 or less.
なお、 本発明の被膜は、 歪取焼鈍等の焼鈍を行わなくても接着能 を有しているので、 歪取焼鈍を行わない鉄心にも利用できる。 すな わち、 歪取焼鈍用、 非歪取焼鈍用兼用の接着被膜として利用可能で ある。 また、 歪取焼鈍用の場合において、 加圧、 加熱による固定に際し 、 かしめや治具による固定を併用することも可能である。 これによIn addition, since the coating film of the present invention has an adhesive ability without performing annealing such as strain relief annealing, it can be used for an iron core that does not perform strain relief annealing. In other words, it can be used as an adhesive film for both strain relief annealing and non-strain relief annealing. Further, in the case of strain relief annealing, it is possible to use caulking or fixing with a jig together when fixing by pressurization or heating. This
Ό 、
実施例 1 Example 1
アク リル樹脂 : エポキシ樹脂 : フエノ ール樹脂 = 10 : 4 : 3 (質量 % ) 組成で固形分比率 20質量%の樹脂水分散液に、 軟化点温度が 45 0 で種々の粒径を持つガラスフリ ツ トを配合した液を調製した。 ガラスフリ ツ トを配合した液における、 樹脂/ガラスフリ ツ ト混合 比率は 200 %になるようにした。 この塗布液を板厚が 0. 5匪で鋼板表 面に絶縁被膜を持たない仕上げ焼鈍済みの無方向性電磁鋼板に対し 、 口—ルコ一夕—を用いて被膜量が片面当たり 6g/m2になるよう塗 布した。 次いで乾燥温度 150でで乾燥し、 冷却した。 片面当たりの 被膜厚さは 10 mであった。 こう して作製した試料から圧延方向長 さ l OciiK 圧延方向に直角方向の長さ 3cmの寸法の試験片を切り出し た。 そして、 短辺部で長さ l cm、 重なり面積 3 cm2で 2枚の試験片を 重ね 10kg/cm2で加圧した状態で 250 まで加熱し、 60秒間保持し、 冷却し、 250で接着強度測定用の試験片を調製した。 更に、 250°C接 着強度測定用試験片の一部について、 荷重のかからない状態で 750 でまで加熱し、 2時間保持し、 冷却し、 750 接着強度測定用の試 験片を調製した。 このようにして調製した試験片について引っ張り 試験機を用いて接着強度を測定した。 結果を表 4に示す。 Acrylic resin: Epoxy resin: Phenolic resin = 10: 4: 3 (mass%) A glass-free resin with a softening point temperature of 450 and various particle sizes in an aqueous resin dispersion with a composition of 20 mass% solid content. A solution containing the tutu was prepared. The resin / glass frits mixing ratio in the liquid containing glass frits was set to 200%. This coating solution has a thickness of 0.5mm and has a coating amount of 6g / m per side using a mouthpiece for a non-oriented electrical steel sheet that has been annealed without an insulating coating on the steel sheet surface. Painted to be 2 . Then, it was dried at a drying temperature of 150 and cooled. The film thickness per side was 10 m. A specimen having a length of 3 cm in the direction perpendicular to the rolling direction was cut out from the sample thus prepared. Then, two test pieces with a length of 1 cm at the short side and an overlap area of 3 cm 2 were heated to 250 with pressure of 10 kg / cm 2 , held for 60 seconds, cooled, and bonded at 250 A test piece for strength measurement was prepared. Further, a part of the test piece for measuring 250 ° C adhesion strength was heated to 750 under no load, held for 2 hours, cooled, and a test piece for measuring 750 adhesive strength was prepared. The test piece thus prepared was measured for adhesive strength using a tensile tester. The results are shown in Table 4.
表 4 Table 4
Figure imgf000027_0001
Figure imgf000027_0001
表 4から、 条件番号 1から条件番号 5のガラスフリ ッ トの平均粒 径が 2 t mから 20 mの試料群においては、 250で接着強度が 10kg/c m2以上で、 かつ、 750 接着強度も lkg/cDi2以上と良好であるのに対 し、 条件番号 6のガラスフリ ッ トの平均粒径が 25^mの試料につい ては、 250 接着強度が 5kg/cm2で 750°C接着強度は測定できないほ ど小さい値となり、 良好ではなかった。 From Table 4, in the sample group with the average particle diameter of glass frit of condition number 1 to condition number 5 from 2 tm to 20 m, the bond strength is 250 and the bond strength is 10 kg / cm 2 or more, and 750 bond strength is also lkg. / cDi 2 or better, but with a glass frit of Condition No. 6 with an average particle size of 25 ^ m, the adhesive strength was measured at 750 ° C with a 250 bond strength of 5 kg / cm 2 The value was so small that it was not possible.
ガラスフリ ッ トの平均粒径が 20 i m以下である実施例の方が、 平 均粒径が 25 mである比較例に比べ優れている。  The example in which the average particle size of the glass frit is 20 im or less is superior to the comparative example in which the average particle size is 25 m.
実施例 2 Example 2
ァク リル樹脂 : エポキシ樹脂 : フエノ ール樹脂 = 11 : 3 : 4 (質量 %) 組成で固形分比率 20質量%の樹脂水分散液に、 組成が B203 = 25 質量%、 Si02 = 65質量%、 Na20= 10質量%で、 30 :から 300でにお ける線熱膨張係数が 40X 10— 7 (で—1) のガラスフリ ッ ト (実施例) を配合した液と、 同樹脂水分散液に、 組成が B203 =50質量%、 Si02 =25質量%、 K20=25質量%で、 30^ から 300 の線熱膨張係数が 17 OX 10"7 (で-1 ) のガラスフリ ッ ト (比較例) を混合した液を調製 した。 ガラスフリ ッ トはいずれも平均粒径が 10 mのものを使用し た。 また、 ガラスフリ ッ トを配合した液における、 樹脂/ガラスフ リ ッ ト混合比率はいずれも 100 %になるようにした。 Acrylic resin: Epoxy resin: Phenolic resin = 11: 3: 4 (mass%) In a resin aqueous dispersion with a solid content ratio of 20 mass% in composition, the composition is B 2 0 3 = 25 mass%, Si0 2 = 65% by weight, with Na 2 0 = 10 wt%, 30: from our Keru linear thermal expansion coefficient of 40X 10- 7 (in - 1) to 300 and the liquid formulated with Garasufuri Tsu bets (example) of, In the same aqueous resin dispersion, the composition is B 2 0 3 = 50% by mass, Si 0 2 = 25% by mass, K 2 0 = 25% by mass, and the linear thermal expansion coefficient from 30 ^ to 300 is 17 OX 10 " 7 ( 1 ) glass frit (comparative example) was mixed, and all glass frits with an average particle size of 10 m were used. Resin / glass The lit mixing ratio was set to 100% in all cases.
この塗布液を板厚が 0.5龍で鋼板表面にクロム酸マグネシウム系 の絶縁被膜を持つ仕上げ焼鈍済みの無方向性電磁鋼板に対し、 ロー ルコ—夕一を用いて被膜量が片面当たり 8g/m2になるよう塗布した 。 ついで乾燥温度 140でで乾燥し、 冷却した。 片面当たりの被膜厚 さは 6 j mであった。 こう して作製した試料から、 内径 10. 16cm (4 インチ) 、 外径 12.7cm (5イ ンチ) のリ ング状の試料を作製し、 20 枚積層した状態で加圧力 10kg m2、 温度 250でで 4時間加熱し、 被膜 接着型鉄心を作製した。 次いで、 この鉄心を加圧しない状態で温度 750 で 2時間焼鈍した。 最後に周波数 50Hz、 磁束密度 1.5テスラで 鉄損値を測定した。 結果を表 5に示す。 For this non-oriented electrical steel sheet with a coating thickness of 0.5 dragon and a annealed non-oriented electrical steel sheet with a magnesium chromate-based insulation film on the steel sheet surface, the coating amount is 8 g / m per side using a roll coater. 2 was applied. Then, it was dried at a drying temperature of 140 and cooled. The film thickness per side was 6 jm. From this to the samples prepared, the inner diameter 10. 16cm (4 inches), to produce a-ring-shaped sample having an outer diameter of 12.7 cm (5 Lee inches), pressure 10 kg m 2 stacked state 20 sheets, the temperature 250 And heated for 4 hours to produce a coated adhesive core. Next, the iron core was annealed at a temperature of 750 for 2 hours without being pressurized. Finally, the iron loss value was measured at a frequency of 50 Hz and a magnetic flux density of 1.5 Tesla. The results are shown in Table 5.
表 5  Table 5
Figure imgf000028_0001
Figure imgf000028_0001
表 5から、 条件番号 1の線熱膨張係数が 40X 10— 7 (で- 1 ) のガラ スフリ ッ トを使用して作製した鉄心の鉄損が 3.05 (W/kg) と良好で あるのに対し、 条件番号 2の線熱膨張係数が 170X 10—7 (°C-' ) のガ ラスフリ ヅ トを使用して作製した鉄心の鉄損が 3.27 (W/kg) と大き い値となり、 良好ではなかった。 このように、 本発明による実施例 の方が比較例に比べ優れていることが分かる。 Table 5, the linear thermal expansion coefficient of the condition number 1 40X 10- 7 (in - 1) for iron loss of the core prepared using a glass Sufuri Tsu City of is good and 3.05 (W / kg) against linear thermal expansion coefficient of the condition number 2 becomes 170X 10- 7 (° C- ') iron loss of the core prepared using a gas Rasufuri Uz bets is greater and 3.27 (W / kg) value, good It wasn't. Thus, it can be seen that the example according to the present invention is superior to the comparative example.
実施例 3 Example 3
塗布液として、 以下の 4種類を作製した。  The following four types of coating solutions were prepared.
塗布液 A Coating solution A
水 100質量部に対して、 潜在性硬化剤を 20質量 配合したァク リル 変成エポキシ樹脂ェマルジョ ン 40質量部、 メチルェチルケトン 5質 量部を配合した。 この塗布液を塗布 · 焼き付けして得られた樹脂の ガラス転移温度は 104 であり、 120 以上で軟化した。 Acrylic modified epoxy resin emulsion containing 20 parts of latent curing agent with 100 parts by weight of water 40 parts by weight, methyl ethyl ketone 5 quality An amount was blended. The glass transition temperature of the resin obtained by applying and baking this coating solution was 104 and softened at 120 or more.
塗布液 B Coating solution B
水 100質量部、 アク リル樹脂ェマルジヨ ン 40質量部、 エポキシ樹 脂ェマルジヨ ン 40質量部、 アミ ン系エポキシ硬化剤 4質量部を配合 した。 この塗布液を塗布 · 焼き付けして得られた樹脂は 150で以上 で軟化した。  100 parts by weight of water, 40 parts by weight of acrylic resin emulsion, 40 parts by weight of epoxy resin emulsion, and 4 parts by weight of an amine epoxy curing agent were blended. The resin obtained by applying and baking this coating solution softened at 150 or more.
塗布液 C Coating liquid C
メチルト リエ トキシシラン 178gとェタノール 138gの混合用液中に 、 水 35. 3 gと 35%塩酸 1. 04gとを混合した水溶液を滴下して、 加水分 解を行った。 加水分解した液は、 口一夕 リーエバポレータを用いて 、 58 で溶媒が出なくなるまで、 濃縮を行った。 濃縮物の質量は、 濃縮前の溶液質量の 30%であつた。 この濃縮物の質量平均分子量は 1 0000であった。 この濃縮物はえい糸性を示したので、 鎖状高分子の 形にメチルト リエトキシシランが重合していると考えられる。 この 濃縮物に対して、 70でで 15分の熱処理を行う と固化したが、 180で 付近から軟化した。 この濃縮物 100質量部に対してエタノールを 200 質量部配合した。  An aqueous solution prepared by mixing 35.3 g of water and 1.04 g of 35% hydrochloric acid was dropped into a liquid for mixing 178 g of methyltrioxysilane and 138 g of ethanol to perform hydrolysis. The hydrolyzed solution was concentrated by using a mouth evaporator until the solvent disappeared at 58. The mass of the concentrate was 30% of the solution mass before concentration. The mass average molecular weight of this concentrate was 10,000. Since this concentrate showed a pliability, it is thought that methyltriethoxysilane was polymerized in the form of a chain polymer. When this concentrate was heat-treated at 70 for 15 minutes, it solidified but at 180 it softened from around. 200 parts by mass of ethanol was blended with 100 parts by mass of the concentrate.
塗布液 D Coating solution D
メチル卜 リエ トキシシラン 178g、 テ トラメ トキシシラン 152 gを、 2-ェ トキシエタノール 270. 3g中に分散させる。 酢酸 4. 8 gを触媒と し 、 水 36gを加えて加水分解することにより、 塗布液を調製した。 こ のシロキサンポリマ一は、 加熱により軟化しなかった。  Disperse 178 g of methyl lyeoxysilane and 152 g of tetramethoxysilane in 270.3 g of 2-ethoxyethanol. A coating solution was prepared by hydrolyzing 36 g of water using 4.8 g of acetic acid as a catalyst. This siloxane polymer was not softened by heating.
表 6 において、 塗布液の中段のガラス組成の後ろの括弧内に記載 した温度は、 ガラスの軟化温度である。 表 6 に記載したガラスは、 いずれも平均粒径 2 mの粉末である。 実施例及び比較例は、 厚さ 0. 5ππηの無方向性電磁鋼板の両面に、 それぞれの塗布液をロールコー 夕で塗布し、 70 に設定した炉で 1 5分焼き付けた。 塗布量は 7 g/m2 であった。 いずれも焼き付け後の膜表面のベたつきはなかった。 幅 3 cm、 長さ 1 0 cmの試験片を 2枚用いて、 接着部分の面積が 6 cm2に なるように、 試験片の一部を重ねて、 熱プレスを行った。 熱プレス の前に、 接着部分以外に塗布された膜は、 削り落とした。 200 、 1 分、 l OMP aの熱プレスにより、 2枚の試験片を接着させた。 歪取焼鈍 は、 窒素中で 750で2時間行った。 歪取焼鈍前後の接着強度は、 接着 した面の水平方向強度であるせん断引張強度を用いて評価した。 比較例 1は、 軟化温度が歪取焼鈍温度より高いガラスなので、 焼 鈍後の接着性が無かった。 比較例 2は、 樹脂が加熱により軟化しな いタイプのものなので、 熱プレスによって接着することができなか つた。 比較例 3は、 低融点ガラスを含まないため、 歪取焼鈍後の接 着性が得られなかった。 In Table 6, the temperature indicated in parentheses after the glass composition in the middle of the coating solution is the glass softening temperature. The glasses listed in Table 6 are all powders with an average particle size of 2 m. In Examples and Comparative Examples, each coating solution is applied to both sides of a non-oriented electrical steel sheet having a thickness of 0.5ππη. It was applied in the evening and baked in a furnace set at 70 for 15 minutes. The coating amount was 7 g / m 2 . In any case, there was no stickiness of the film surface after baking. Using two test pieces having a width of 3 cm and a length of 10 cm, a part of the test pieces was overlapped so that the area of the bonded portion was 6 cm 2 and hot pressing was performed. Prior to hot pressing, the film applied to areas other than the bonded area was scraped off. Two test pieces were bonded by hot pressing of 200, 1 minute, l OMPa. The strain relief annealing was performed in nitrogen at 750 for 2 hours. The adhesive strength before and after strain relief annealing was evaluated using the shear tensile strength, which is the horizontal strength of the bonded surface. In Comparative Example 1, since the glass had a softening temperature higher than the stress relief annealing temperature, there was no adhesion after annealing. In Comparative Example 2, since the resin is of a type that does not soften by heating, it could not be bonded by hot pressing. Since Comparative Example 3 did not contain a low-melting glass, adhesion after strain relief annealing could not be obtained.
表 6  Table 6
Figure imgf000030_0001
Figure imgf000030_0001
0 クロム酸マグネシウムとアクリル系樹脂を主成分とする無機一有機混合処理液を 塗布 ·焼き付けして表面に絶縁膜を施した。 実施例 4 0 An inorganic / organic mixed treatment liquid mainly composed of magnesium chromate and acrylic resin was applied and baked to provide an insulating film on the surface. Example 4
塗布液として、 以下の 4種類を作製した。 The following four types of coating solutions were prepared.
塗布液 A Coating solution A
水 100質量部に対して、 潜在性硬化剤を 20質量%配合したァク リ ル変成エポキシ樹脂ェマルジョ ン 40質量部、 メチルェチルケ トン 5 質量部を配合した。 この塗布液を塗布 · 焼き付けして得られた樹脂 のガラス転移温度は 104でであり、 Ot:以上で軟化した。  40 parts by mass of an acrylic modified epoxy resin emulsion containing 20% by mass of a latent curing agent and 5 parts by mass of methyl ethyl ketone were blended with 100 parts by mass of water. The glass transition temperature of the resin obtained by applying and baking this coating solution was 104, and softened at Ot: or higher.
塗布液 B Coating solution B
水 100質量部、 アク リル樹脂ェマルジヨ ン 40質量部、 エポキシ樹 脂ェマルジヨ ン 40質量部、 アミ ン系エポキシ硬化剤 4質量部を配合 した。 この塗布液を塗布 · 焼き付けして得られた樹脂は 150で以上 で軟化した。  100 parts by weight of water, 40 parts by weight of acrylic resin emulsion, 40 parts by weight of epoxy resin emulsion, and 4 parts by weight of an amine epoxy curing agent were blended. The resin obtained by applying and baking this coating solution softened at 150 or more.
塗布液 C Coating liquid C
メチルト リエトキシシラン 178 g とエタノール 138gの混合用液中 に、 水 35. 3gと 35 %塩酸 1. 04 gとを混合した水溶液を滴下して加水 分解を行った。 加水分解した液は、 ロータリーエバポレー夕を用い て 58 で溶媒が出なくなるまで濃縮を行った。 濃縮物の質量は、 濃 縮前の溶液質量の 30 %であった。 この濃縮物の質量平均分子量は 10 000であった。 この濃縮物はえい糸性を示したので、 鎖状高分子の 形にメチルト リエ トキシシランが重合していると考えられる。 この 濃縮物に対して 70でで 15分の熱処理を行う と固化したが、 180°C付 近から軟化した。 この濃縮物 100質量部に対してエタノールを 200質 量部配合した。  Hydrolysis was performed by adding dropwise an aqueous solution containing 35.3 g of water and 1.04 g of 35% hydrochloric acid to a mixture of 178 g of methyltriethoxysilane and 138 g of ethanol. The hydrolyzed solution was concentrated using a rotary evaporator until the solvent disappeared at 58. The mass of the concentrate was 30% of the solution mass before concentration. The concentrate had a mass average molecular weight of 10 000. Since this concentrate showed stubbornness, it is thought that methyltrioxysilane was polymerized in the form of a chain polymer. When this concentrate was heat-treated at 70 for 15 minutes, it solidified, but softened from around 180 ° C. 200 parts by mass of ethanol was added to 100 parts by mass of this concentrate.
実施例において塗布液 A〜(;を水で希釈後、 種々の水ガラスを添加 して塗布液を作製した。 実施例および比較例は、 厚さ 0. 5mmの無方 向性電磁鋼板の両面に、 それぞれの塗布液をロールコ一夕で塗布し 、 70°Cに設定した炉で 15分焼き付けた。 塗布量は 10g/m2であった。 いずれも焼き付け後の膜表面のベたつきはなかった。 In the examples, the coating solutions A to (; were diluted with water, and various water glasses were added to prepare coating solutions. The examples and comparative examples are both surfaces of non-oriented electrical steel sheets with a thickness of 0.5 mm. Each coating solution was applied on a rollco overnight and baked for 15 minutes in an oven set at 70 ° C. The coating amount was 10 g / m 2 . In any case, there was no stickiness of the film surface after baking.
幅 3 cm、 長さ 10 cmの試験片を 2枚用いて、 接着部分の面積が 6 cm2 になるように試験片の一部を重ねて熱プレスを行った。 熱プレスの 前に、 接着部分以外に塗布された膜は削り落とした。 200で、 1分、 1 OMP aの熱プレスにより 2枚の試験片を接着させた。 歪取焼鈍は窒 素中で 750で2時間行った。 歪取焼鈍前後の接着強度は、 接着した面 の水平方向強度であるせん断引張強度を用いて評価した。 Using two test pieces each having a width of 3 cm and a length of 10 cm, a part of the test piece was overlapped so that the area of the bonded portion was 6 cm 2 and hot pressing was performed. Prior to hot pressing, the applied film was scraped off other than the bonded area. At 200, two test pieces were bonded by hot press of 1 OMPa for 1 minute. The strain relief annealing was performed in nitrogen at 750 for 2 hours. The adhesive strength before and after strain relief annealing was evaluated using the shear tensile strength, which is the horizontal strength of the bonded surface.
表 7Table 7
Figure imgf000032_0001
Figure imgf000032_0001
1 ) クロム酸マグネシウムとアクリル系樹脂を主成分とする無機 - 有 機混合処理液を塗布 · 焼き付けして表面に絶縁膜を施した. 実施例 5 1) An inorganic-organic mixed processing liquid mainly composed of magnesium chromate and acrylic resin was applied and baked to provide an insulating film on the surface. Example 5
実施例 3で記載した塗布液 Dを作製した。 塗布液 D 100質量部に 対して、 平均粒径 4 mで軟化温度力 S 200 のポリエステルの球状粒 子 1 0質量部を混合 ' 分散させた。 ロールコ一夕で無機一有機混合 処理液による表面皮膜のついた無方向性電磁鋼板に塗布後、 100 に設定した炉で 2分焼き付けた。 塗布量は 10g/m2であった。 幅 3cm 、 長さ 10cmの試験片を 2枚用いて、 接着部分の面積が 6cm2になるよ うに試験片の一部を重ねて熱プレスを行った。 熱プレスの前に、 接 着部分以外に塗布された膜は削り落と した。 230 :、 1分、 l OMPaの 熱プレスにより 2枚の試験片を接着させた。 歪取焼鈍は窒素中で 75 0で 2時間行った。 歪取焼鈍前後の接着強度は、 接着した面の水平方 向強度であるせん断引張強度を用いて評価した。 歪取焼鈍前後の接 着強度はそれぞれ 1. OMPa, 2. IMPaであった。 産業上の利用可能性 The coating liquid D described in Example 3 was prepared. To 100 parts by mass of coating solution D, 10 parts by mass of spherical particles of polyester having an average particle diameter of 4 m and a softening temperature force of S 200 were mixed and dispersed. It was applied to a non-oriented electrical steel sheet with a surface coating with an inorganic / organic mixed treatment liquid in a rollco and then baked in a furnace set at 100 for 2 minutes. The coating amount was 10 g / m 2 . Two pieces of a test piece having a width of 3 cm and a length of 10 cm were used, and a part of the test piece was overlapped so that the area of the bonded portion was 6 cm 2 and hot pressing was performed. Prior to hot pressing, the applied film was scraped off except for the bonding area. 230 :, 1 minute, l Two test pieces were bonded by a hot press of OMPa. The strain relief annealing was performed in nitrogen at 750 for 2 hours. The bond strength before and after strain relief annealing was evaluated using the shear tensile strength, which is the horizontal strength of the bonded surface. The adhesion strengths before and after strain relief annealing were 1. OMPa and 2. IMPa, respectively. Industrial applicability
本発明によれば、 打ち抜き又はせん断加工後、 加圧及び加熱によ り接着して、 鉄心として一体化でき、 その後、 更に歪取焼鈍を施し ても接着能が維持できる、 耐熱接着性絶縁被膜付き電磁鋼板を提供 することができる。 溶接、 かしめを行う ことなく鉄心の一体化がで き、 溶接やかしめによる鉄損劣化が回避可能となり、 また、 歪取焼 鈍後も接着状態及び絶縁性が保たれるので、 磁気特性に優れた鉄心 を作製することができる。  According to the present invention, after punching or shearing, it is bonded by pressurization and heating, and can be integrated as an iron core. Thereafter, the adhesive ability can be maintained even after further strain relief annealing. It is possible to provide an attached magnetic steel sheet. The iron core can be integrated without welding or caulking, and iron loss deterioration due to welding or caulking can be avoided, and the adhesion and insulation properties are maintained even after stress relief annealing, resulting in excellent magnetic properties. An iron core can be produced.

Claims

1 . 軟化点温度が室温以上 300で以下の樹脂と軟化点温度が 1000 で以下の低融点無機成分とを含む耐熱接着性絶縁被膜。 1. A heat-resistant adhesive insulating coating comprising a resin having a softening point temperature of room temperature or higher and 300 or lower and a low melting point inorganic component having a softening point temperature of 1000 or lower.
2. 250 接着強度 = 10kg/cm2以上、 750で接着強度 = lkg/cm2以 上であることを特徴とする請求項 1 に記載の耐熱接着性絶縁被膜。 2.250 adhesion strength = 10 kg / cm 2 or more, the heat adhesive insulating film according to claim 1, characterized in that the adhesive strength = lkg / cm 2 or more on at 750.
 Contract
3. 30でから 300でにおける線熱膨張係数が 10X 10— 7 (で—1)以上 13. linear thermal expansion coefficient at 300 from 30 are 10X 10- 7 (in - 1) or 1
50x 10— 7 ( 以下であることを特徴とする請求項 1 に記載の耐 熱接着性絶縁被膜。 の 50x 10- 7 (Heat resistance adhesive insulating film according to claim 1, wherein the less. Of
4. 低融点無機成分が、 低融点ガラスフリ ッ ト、 水ガラス、 また はあるいはそれらにコロイダルシリカをさ囲らに混合したものである 請求項 1記載の耐熱接着性絶縁被膜。 4. The heat-resistant adhesive insulating coating according to claim 1, wherein the low-melting-point inorganic component is a low-melting-point glass frit, water glass, or a mixture of them with colloidal silica.
5. 低融点無機成分が平均粒径 20 m以下であることを特徴とす る請求項 4 に記載の耐熱接着性絶縁被膜。  5. The heat-resistant adhesive insulating coating according to claim 4, wherein the low melting point inorganic component has an average particle size of 20 m or less.
6. 低融点無機成分に対する樹脂の混合比率が質量分率で 20%以 上 500%以下であることを特徴とする請求項 4 に記載の耐熱接着性絶 縁被膜。  6. The heat-resistant adhesive insulating coating according to claim 4, wherein the mixing ratio of the resin to the low melting point inorganic component is 20% or more and 500% or less by mass fraction.
7. 低融点無機成分が Si02-B203 - R20系低融点ガラス (Rはアル力 リ金属)であることを特徴とする請求項 4 に記載の耐熱接着性絶縁 被膜。 7. The heat-resistant adhesive insulating coating according to claim 4, wherein the low-melting-point inorganic component is Si0 2 -B 2 0 3 -R 2 0 series low-melting-point glass (R is an Al metal).
8. 水ガラスが珪酸ソーダであることを特徴とする請求項 4に記 載の耐熱接着性絶縁被膜。  8. The heat-resistant adhesive insulating coating according to claim 4, wherein the water glass is sodium silicate.
9. 樹脂が、 エポキシ樹脂、 アク リル樹脂、 フエノール樹脂、 予 め潜在性硬化剤を配合したアク リル変成エポキシ樹脂ェマルジヨ ン を主成分とする混合液を不完全状態に焼き付けた樹脂、 または、 シ ロキサンポリマー、 から選ばれる 1種または 2種以上を含むことを 特徴とする請求項 1記載の耐熱接着性絶縁被膜。 9. Resin is a resin that is baked incompletely with a mixed liquid mainly composed of epoxy resin, acrylic resin, phenolic resin, and acrylic modified epoxy resin emulsion containing a latent curing agent. The heat-resistant adhesive insulating coating according to claim 1, comprising one or more selected from the group consisting of loxane polymers.
10. 鋼板の少なく とも片面に、 請求項 1 に記載の被膜を有する、 耐熱接着性絶縁被膜付き電磁鋼板。 10. A magnetic steel sheet with a heat-resistant adhesive insulating coating, comprising the coating according to claim 1 on at least one side of the steel plate.
1 1 . 耐熱接着性絶縁被膜の膜厚が 0. 5 m以上 20 ^ m以下である ことを特徴とする請求項 10に記載の耐熱接着性絶縁被膜付き電磁鋼 板。  11. The electromagnetic steel plate with a heat-resistant adhesive insulating coating according to claim 10, wherein the film thickness of the heat-resistant adhesive insulating coating is 0.5 m or more and 20 ^ m or less.
12. 請求項 10に記載の耐熱接着性絶縁被膜付き電磁鋼板を用いた 鉄心。  12. An iron core using the electrical steel sheet with a heat-resistant adhesive insulating coating according to claim 10.
13. 請求項 10に記載の電磁鋼板を、 積層、 加圧固定して、 電磁鋼 板積層体を作製後、 600〜 900 :の焼鈍を行い、 一体化された鉄心を 得る、 耐熱接着性絶縁被膜付き電磁鋼板を用いた鉄心の製造方法。  13. The electrical steel sheet according to claim 10 is laminated and pressure-fixed to produce an electrical steel sheet laminate, and then annealed at 600 to 900: to obtain an integrated iron core. A method of manufacturing an iron core using a coated electromagnetic steel sheet.
14. 少なく とも加圧固定の段階において、 加熱を行い接着固定す るか、 かしめまたは治具により固定を行うか、 あるいはこれらを併 用する、 請求項 13に記載の耐熱接着性絶縁被膜付き電磁鋼板を用い た鉄心の製造方法。  14. The electromagnetic wave with a heat-resistant adhesive insulating coating according to claim 13, wherein at least in the pressure fixing stage, heating is performed for adhesive fixing, fixing is performed by caulking or a jig, or a combination thereof is used. A method of manufacturing an iron core using steel plates.
PCT/JP2005/019264 2004-10-18 2005-10-13 Heat resistant adhesive film and electromagnetic steel sheet with said heat resistant adhesive film, iron core using said electromagnetic steel sheet, and process for manufacturing the same. WO2006043612A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006543048A JP4860480B2 (en) 2004-10-18 2005-10-13 Electrical steel sheet with heat-resistant adhesive coating coated with heat-resistant adhesive film, iron core using the electrical steel sheet, and manufacturing method thereof
CN2005800348428A CN101040022B (en) 2004-10-18 2005-10-13 Heat resistant adhesive film and electromagnetic steel sheet with the heat resistant adhesive film, iron core using the electromagnetic steel sheet, and process for manufacturing the same

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2004-302920 2004-10-18
JP2004302920 2004-10-18
JP2004308015 2004-10-22
JP2004-308015 2004-10-22
JP2004-308069 2004-10-22
JP2004308069 2004-10-22

Publications (1)

Publication Number Publication Date
WO2006043612A1 true WO2006043612A1 (en) 2006-04-27

Family

ID=36203027

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2005/019264 WO2006043612A1 (en) 2004-10-18 2005-10-13 Heat resistant adhesive film and electromagnetic steel sheet with said heat resistant adhesive film, iron core using said electromagnetic steel sheet, and process for manufacturing the same.

Country Status (6)

Country Link
JP (2) JP4860480B2 (en)
KR (2) KR100886236B1 (en)
CN (1) CN101040022B (en)
MY (1) MY142207A (en)
TW (1) TWI328235B (en)
WO (1) WO2006043612A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010088250A (en) * 2008-10-01 2010-04-15 Nippon Steel Corp Silicon-steel-plate laminate having simple vibration transmission waveform
JP2011127038A (en) * 2009-12-18 2011-06-30 Nitto Denko Corp Water-dispersible pressure-sensitive adhesive composition and pressure-sensitive adhesive sheet
JP2015147988A (en) * 2014-02-07 2015-08-20 Jfeスチール株式会社 Grain-oriented electrical steel sheet and manufacturing method thereof
JP2016176137A (en) * 2015-03-19 2016-10-06 Jfeスチール株式会社 Magnetic steel sheet with insulating coating, laminated magnetic steel sheet and production method of them
CN108473819A (en) * 2015-12-24 2018-08-31 Posco公司 Electric steel plate is bonded coating composition, the electric steel plate for being formed with adhesive coating, electric steel plate product and its manufacturing method
US10832841B2 (en) 2018-04-27 2020-11-10 Toyota Jidosha Kabushiki Kaisha Electromagnetic steel sheet
JP2021509925A (en) * 2017-12-26 2021-04-08 ポスコPosco Manufacturing method of electrical steel sheet adhesive coating composition, electrical steel sheet laminate and electrical steel sheet product
EP4169715A4 (en) * 2020-06-17 2023-11-29 Nippon Steel Corporation Coating composition for electromagnetic steel sheet, surface-covered electromagnetic steel sheet for bonding, and laminated core
JP7473813B2 (en) 2020-10-02 2024-04-24 日本製鉄株式会社 Film-coated metal foil and method for producing film-coated metal foil

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101561280B1 (en) * 2013-11-27 2015-10-16 주식회사 포스코 Coating composition for non-oriented electrical steel, method of manufacturing non-oriented electrical product and non-oriented electrical product
JP6032230B2 (en) * 2014-03-06 2016-11-24 Jfeスチール株式会社 Electrical steel sheet and laminated electrical steel sheet with insulation coating
JP6102853B2 (en) * 2014-07-25 2017-03-29 Jfeスチール株式会社 Electrical steel sheet and laminated electrical steel sheet with insulation coating
JP6546438B2 (en) * 2015-04-06 2019-07-17 小林 博 A method of producing an iron core in which layers of laminated electromagnetic steel sheets are insulated by granular particles of iron oxide Fe2O3
CN104804690A (en) * 2015-04-28 2015-07-29 广西德骏门窗幕墙有限公司 Adhesive of aluminium curtain wall and preparation method of adhesive
KR101797129B1 (en) 2015-12-21 2017-11-13 주식회사 포스코 Adhesive coating composition for non-oriented electrical steel, non-oriented electrical steel product, and method for manufacturing the product
KR101796234B1 (en) 2015-12-22 2017-11-09 주식회사 포스코 Insulation coating composite for oriented electrical steel steet, forming method of insulation coating using the same, and oriented electrical steel steet
KR101817967B1 (en) * 2016-11-07 2018-01-12 한국생산기술연구원 Water glass-based organic-inorganic hybrid adhesives and manufacturing method thereof
JP7068313B2 (en) 2016-12-23 2022-05-16 ポスコ Electrical steel sheet adhesive coating composition, electrical steel sheet products, and their manufacturing methods
KR101904306B1 (en) * 2016-12-23 2018-10-04 주식회사 포스코 Adhesive coating composition for non-oriented electrical steel, and method for non-oriented electrical steel product
KR102091123B1 (en) * 2017-12-26 2020-03-19 주식회사 포스코 Electrical steel sheet product, and method for manufacturing the electrical steel sheet product
KR102112171B1 (en) 2017-12-26 2020-05-18 주식회사 포스코 Adhesive coating composition for electrical steel sheet, electrical steel sheet product, and method for manufacturing the same
CN110317532B (en) * 2018-03-30 2021-07-16 宝山钢铁股份有限公司 Water-soluble environment-friendly self-bonding insulating coating for silicon steel
DE102018206151A1 (en) * 2018-04-20 2019-10-24 Voestalpine Stahl Gmbh COATED TAPE AND METHOD OF MANUFACTURING
WO2021125900A1 (en) * 2019-12-20 2021-06-24 주식회사 포스코 Composition for forming oriented electrical steel sheet insulation film, oriented electrical steel sheet, and method for producing oriented electrical steel sheet
CN116144240B (en) * 2021-11-22 2024-04-05 宝山钢铁股份有限公司 Light-viscosity silicon steel environment-friendly insulating paint, silicon steel plate and manufacturing method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6163004A (en) * 1984-09-05 1986-04-01 Kawasaki Steel Corp Laminated directional silicon steel plate
JPS6212651A (en) * 1985-03-06 1987-01-21 テイカ株式会社 Composite type curable composition
JPH07201551A (en) * 1993-12-29 1995-08-04 Nkk Corp Laminated electromagnetic steel plate
JPH11246834A (en) * 1997-11-21 1999-09-14 Lintec Corp Tacky body containing inorganic powder and fusion of its inorgnic powder
JP2001189211A (en) * 1999-12-28 2001-07-10 Alps Electric Co Ltd Dust core and method of manufacturing dust core
JP2002260910A (en) * 2001-02-28 2002-09-13 Kawasaki Steel Corp Electromagnetic steel sheet with insulating film of good adhesion

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57174365A (en) * 1981-04-21 1982-10-27 Fuji Electric Co Ltd Adhesive
JPS5978275A (en) * 1982-10-28 1984-05-07 Shinto Paint Co Ltd Adhesive composition for clad steel stock preparation
JPS6173778A (en) * 1984-09-19 1986-04-15 Sekisui Plastics Co Ltd Water glass adhesive
CN1052686A (en) * 1990-12-14 1991-07-03 刘传校 A kind of double-component insulated tackiness agent
JPH07336969A (en) * 1994-06-09 1995-12-22 Nkk Corp Electromagnet steel plate bonded core and manufacturing method
JPH09323066A (en) * 1996-06-07 1997-12-16 Kawasaki Steel Corp Silicon steel sheet capable of stress relief annealing and provided with insulating coating film excellent in resistance to corrosion and solvent and formation of the insulating coating film
JP2000282249A (en) * 1999-03-29 2000-10-10 Kawasaki Steel Corp Insulated coating film of grain oriented silicon electric steel sheet and its formation
JP2001240916A (en) * 2000-02-29 2001-09-04 Kawasaki Steel Corp Electro-magnetic steel sheet having insulated film, annealable for strain-removal and having excellent blanking size stability
JP4221933B2 (en) * 2002-01-28 2009-02-12 Jfeスチール株式会社 Method for producing electrical steel sheet with insulating coating excellent in weldability and punchability
JP2003282330A (en) * 2002-03-27 2003-10-03 Jfe Steel Kk Adhesive-fixed laminated iron core and its manufacturing method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6163004A (en) * 1984-09-05 1986-04-01 Kawasaki Steel Corp Laminated directional silicon steel plate
JPS6212651A (en) * 1985-03-06 1987-01-21 テイカ株式会社 Composite type curable composition
JPH07201551A (en) * 1993-12-29 1995-08-04 Nkk Corp Laminated electromagnetic steel plate
JPH11246834A (en) * 1997-11-21 1999-09-14 Lintec Corp Tacky body containing inorganic powder and fusion of its inorgnic powder
JP2001189211A (en) * 1999-12-28 2001-07-10 Alps Electric Co Ltd Dust core and method of manufacturing dust core
JP2002260910A (en) * 2001-02-28 2002-09-13 Kawasaki Steel Corp Electromagnetic steel sheet with insulating film of good adhesion

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010088250A (en) * 2008-10-01 2010-04-15 Nippon Steel Corp Silicon-steel-plate laminate having simple vibration transmission waveform
JP2011127038A (en) * 2009-12-18 2011-06-30 Nitto Denko Corp Water-dispersible pressure-sensitive adhesive composition and pressure-sensitive adhesive sheet
JP2015147988A (en) * 2014-02-07 2015-08-20 Jfeスチール株式会社 Grain-oriented electrical steel sheet and manufacturing method thereof
JP2016176137A (en) * 2015-03-19 2016-10-06 Jfeスチール株式会社 Magnetic steel sheet with insulating coating, laminated magnetic steel sheet and production method of them
CN108473819A (en) * 2015-12-24 2018-08-31 Posco公司 Electric steel plate is bonded coating composition, the electric steel plate for being formed with adhesive coating, electric steel plate product and its manufacturing method
JP2021509925A (en) * 2017-12-26 2021-04-08 ポスコPosco Manufacturing method of electrical steel sheet adhesive coating composition, electrical steel sheet laminate and electrical steel sheet product
US10832841B2 (en) 2018-04-27 2020-11-10 Toyota Jidosha Kabushiki Kaisha Electromagnetic steel sheet
EP4169715A4 (en) * 2020-06-17 2023-11-29 Nippon Steel Corporation Coating composition for electromagnetic steel sheet, surface-covered electromagnetic steel sheet for bonding, and laminated core
JP7473813B2 (en) 2020-10-02 2024-04-24 日本製鉄株式会社 Film-coated metal foil and method for producing film-coated metal foil

Also Published As

Publication number Publication date
JP5494602B2 (en) 2014-05-21
TW200618000A (en) 2006-06-01
KR20070042198A (en) 2007-04-20
KR20080104061A (en) 2008-11-28
MY142207A (en) 2010-10-29
KR100921015B1 (en) 2009-10-09
CN101040022A (en) 2007-09-19
CN101040022B (en) 2012-12-12
TWI328235B (en) 2010-08-01
JP4860480B2 (en) 2012-01-25
JP2012046825A (en) 2012-03-08
JPWO2006043612A1 (en) 2008-05-22
KR100886236B1 (en) 2009-03-02

Similar Documents

Publication Publication Date Title
WO2006043612A1 (en) Heat resistant adhesive film and electromagnetic steel sheet with said heat resistant adhesive film, iron core using said electromagnetic steel sheet, and process for manufacturing the same.
TW567202B (en) Process for producing novel silicone polymer, silicone polymer produced by the same process, thermosetting resin composition, resin film, metal foil with insulating material
JP7320055B2 (en) Manufacturing method of electromagnetic steel sheet product
CN109476952B (en) Electromagnetic steel sheet with insulating coating, method for producing same, and coating agent for forming insulating coating
KR102114810B1 (en) Adhesive coating composition for electrical steel sheet, electrical steel sheet laminate, and method for manufacturing the electrical steel sheet product
JP6344537B1 (en) Method for producing electrical steel sheet with adhesive insulating coating and method for producing laminated electrical steel sheet
CN110408360B (en) Insulating glue solution, preparation method and application thereof, and magnetic separation sheet obtained from insulating glue solution
KR101540373B1 (en) Adhesive coating composition for non-oriented electrical steel, non-oriented electrical steel product, and method for manufacturing the product
CN111261040A (en) Foldable flexible cover plate and manufacturing method thereof
JP6404977B2 (en) Heat-resistant adhesive insulating coating composition and electrical steel sheet with insulating coating
RU2357994C2 (en) Thermally-resistant adhesive insulation coating, electrical steel sheet coating specified has been applied onto, magnetic core containing above type electrical steel sheet and its fabrication mode
JPH07336969A (en) Electromagnet steel plate bonded core and manufacturing method
JP6368733B2 (en) Heat-resistant adhesive insulating coating composition and electrical steel sheet with insulating coating
JP4885164B2 (en) Magnetic steel sheet with heat-resistant adhesive insulation coating for laminated thermocompression bonding
JP2007194405A (en) Epoxy resin composition for heat conduction
JP2008179866A (en) Multilayer adhesion composition
JP2003200527A (en) Metal foil laminate and double-side metal foil laminate
JP5750275B2 (en) Insulated steel sheet and laminated iron core
JP2006054244A (en) Electromagnetic steel sheet with heat-resistance adhesive insulating film and its manufacturing method
TWI722939B (en) Self-bonding coating compositions, self-bonding coating film, and method for producing the same
CN115612411A (en) Thermosetting thermoplastic composite resin bonding sheet with high peeling strength and preparation method thereof
JP2928034B2 (en) Manufacturing method of laminated core
CN116918224A (en) Laminated iron core and method for manufacturing the same
JP2009057527A (en) Application liquid and carrier material with resin layer

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KM KP KR KZ LC LK LR LS LT LU LV LY MA MD MG MK MN MW MX MZ NA NG NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SM SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU LV MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2006543048

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 1020077005434

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 200580034842.8

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2007118498

Country of ref document: RU

122 Ep: pct application non-entry in european phase

Ref document number: 05795149

Country of ref document: EP

Kind code of ref document: A1