JP2006054244A - Electromagnetic steel sheet with heat-resistance adhesive insulating film and its manufacturing method - Google Patents

Electromagnetic steel sheet with heat-resistance adhesive insulating film and its manufacturing method Download PDF

Info

Publication number
JP2006054244A
JP2006054244A JP2004233266A JP2004233266A JP2006054244A JP 2006054244 A JP2006054244 A JP 2006054244A JP 2004233266 A JP2004233266 A JP 2004233266A JP 2004233266 A JP2004233266 A JP 2004233266A JP 2006054244 A JP2006054244 A JP 2006054244A
Authority
JP
Japan
Prior art keywords
heat
steel sheet
insulating film
nuclei
adhesive insulating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004233266A
Other languages
Japanese (ja)
Other versions
JP4571838B2 (en
Inventor
Noriko Yamada
紀子 山田
Yuji Kubo
祐治 久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2004233266A priority Critical patent/JP4571838B2/en
Publication of JP2006054244A publication Critical patent/JP2006054244A/en
Application granted granted Critical
Publication of JP4571838B2 publication Critical patent/JP4571838B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electromagnetic steel sheet with a heat-resistance adhesive insulating film which can be adhered by pressing and heating after it is punched or sheared and be annealed for relieving stress, and to provide its manufacturing method. <P>SOLUTION: The electromagnetic steel sheet with a heat-resistance adhesive insulating film is provided with a film made mainly of a thermoplastic siloxane polymer on at least one side of the steel sheet. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、打ち抜き又はせん断加工後、加圧及び加熱により接着でき、歪取り燒鈍を行うことが可能な、表面被覆された電磁鋼板及びその製造方法に関するものである。   The present invention relates to a surface-coated electrical steel sheet that can be bonded by pressurization and heating after punching or shearing and can be subjected to strain relief, and a method for producing the same.

無方向性電磁鋼板は、主にモーターやトランス等の鉄心として用いられる。通常、無方向性電磁鋼板の表面は絶縁皮膜が形成されており、所定の形状に連続的に打ち抜きを行った後、積層して溶接・かしめ等の方法により一体化するのが一般的である。要求される磁気特性によっては、一体化した後、鉄心の歪取り燒鈍を行っている。   Non-oriented electrical steel sheets are mainly used as iron cores for motors and transformers. Usually, the surface of a non-oriented electrical steel sheet has an insulating film formed, and after punching continuously into a predetermined shape, it is generally laminated and integrated by a method such as welding or caulking. . Depending on the required magnetic properties, the iron core is subjected to strain relief after being integrated.

溶接やかしめにより積層した電磁鋼板を一体化する方法では、鉄心エッジ部が短絡され絶縁性が低下すると言う問題や、加工歪により磁気特性が劣化すると言う問題がある。溶接やかしめによる欠点を回避する方法として、熱圧着により接着性を発揮する絶縁皮膜を予め電磁鋼板上に成膜し、打ち抜き又はせん断加工後、積層して熱圧着する技術が提案されている。例えば、潜在性硬化剤を配合したアクリル変成エポキシ樹脂エマルジョンを主成分とする混合液を塗布し、不完全に焼きつけることを特徴とする接着用表面被覆電磁鋼板の製造方法(特許文献1)や、発泡剤を含有する接着性樹脂で被覆された絶縁皮膜付き電磁鋼板(特許文献2)が提案されている。これらのいわゆる接着コーティング技術は、かしめや溶接で生じる問題を軽減できるが、何れも有機樹脂で鋼板表面が被覆されているため、歪取焼鈍を施すと接着力を保つことができない。このため、歪取り燒鈍を行わないコアについては接着コーティングを施した電磁鋼板を用いることが可能であるが、鉄損低減のための歪取燒鈍をするコアについては使用することができない。   In the method of integrating the magnetic steel sheets laminated by welding or caulking, there are problems that the iron core edge portion is short-circuited and insulation is lowered, and that magnetic characteristics are deteriorated due to processing strain. As a method for avoiding defects due to welding or caulking, a technique has been proposed in which an insulating film exhibiting adhesiveness is formed on a magnetic steel sheet in advance by thermocompression bonding and, after punching or shearing, laminated and thermocompression bonded. For example, a method for producing a surface-coated electrical steel sheet for adhesion (Patent Document 1), characterized in that a liquid mixture mainly composed of an acrylic modified epoxy resin emulsion blended with a latent curing agent is applied and incompletely baked (Patent Document 1), An electromagnetic steel sheet with an insulating film coated with an adhesive resin containing a foaming agent (Patent Document 2) has been proposed. These so-called adhesive coating techniques can alleviate the problems caused by caulking and welding, but since the steel sheet surface is coated with an organic resin, the adhesive strength cannot be maintained when strain relief annealing is performed. For this reason, although it is possible to use the electrical steel sheet which gave the adhesive coating about the core which does not perform distortion removal annealing, it cannot be used about the core which carries out distortion suppression for iron loss reduction.

一方、所定の形状に打ち抜き等で加工した電磁鋼板を歪取り燒鈍してから、接着剤により固着する方法も考えられるが、小さな打ち抜き片一枚毎に接着剤を塗布する必要があるため、作業性が悪い。   On the other hand, a method of fixing the magnetic steel sheet processed by punching or the like into a predetermined shape after strain relief is also conceivable, but it is necessary to apply an adhesive to each small punched piece, Workability is poor.

また、非晶質合金薄帯の積層板(特許文献3)を作製する方法として、非晶質合金薄帯に耐熱性接着剤を塗布して積層すれば、350℃以上の高温の磁場中焼鈍を行っても接着能が低下しないことが知られているが、この耐熱性接着剤は、Si-O結合とB-O結合とを主鎖として含んでいるボロシロキサン系樹脂を主成分とするものである。   In addition, as a method for producing a laminated sheet of amorphous alloy ribbon (Patent Document 3), if a heat resistant adhesive is applied to the amorphous alloy ribbon and laminated, it is annealed at a high temperature of 350 ° C. or higher. However, this heat-resistant adhesive is mainly composed of borosiloxane resin containing Si-O bond and BO bond as the main chain. is there.

特許第2613725号公報Japanese Patent No. 2613725 特開2002-260910号公報JP 2002-260910 A 国際公開WO 86/05314号公報International Publication WO 86/05314

本発明は、溶接・かしめを行うことなく鉄心の一体化ができる接着性絶縁皮膜付き電磁鋼板の接着性絶縁皮膜の耐熱性を向上させ、歪取り燒鈍を行っても、接着状態及び絶縁性が保たれる耐熱接着性絶縁皮膜付き電磁鋼板及びその製造方法を提供することを目的とする。   The present invention improves the heat resistance of the adhesive insulating film of the electromagnetic steel sheet with an adhesive insulating film that can be integrated with the iron core without welding and caulking, and even if the strain relief is performed, the adhesion state and the insulating property An object is to provide a magnetic steel sheet with a heat-resistant adhesive insulating film and a method for producing the same.

前記課題を解決するために、以下のような手段を用いる。
(1) 鋼板の少なくとも片面に、熱可塑性シロキサンポリマーを主成分とする皮膜を有することを特徴とする耐熱接着性絶縁皮膜付き電磁鋼板。
(2) 前記耐熱接着性絶縁皮膜が、Si核としてメチル基が結合したT核を全Si核に対して50%以上含み、かつT核のうちT3核が80%以上であることを特徴とする(1)記載の耐熱接着性絶縁皮膜付き電磁鋼板。
(3) 前記耐熱接着性絶縁皮膜が、エポキシ基が結合したSi核を全Si核に対して0.5%以上20%未満含むことを特徴とする(2)記載の耐熱接着性絶縁皮膜付き電磁鋼板。
(4) オルガノトリアルコキシシラン又はオルガノトリクロロシランの一方又は双方を塩酸触媒下で加水分解して作製した質量平均分子量5000以上100000以下の熱可塑性シロキサンポリマーを含む塗布液を鋼板の少なくとも片面に塗布し焼き付けることを特徴とする耐熱接着性絶縁皮膜付き電磁鋼板の製造方法。
In order to solve the above problems, the following means are used.
(1) An electrical steel sheet with a heat-resistant adhesive insulating film, characterized by having a film mainly composed of a thermoplastic siloxane polymer on at least one surface of the steel sheet.
(2) The heat-resistant adhesive insulating film contains 50% or more of T nuclei bonded with methyl groups as Si nuclei with respect to all Si nuclei, and T 3 nuclei out of T nuclei are 80% or more. (1) The electrical steel sheet with a heat-resistant adhesive insulating film.
(3) The electrical steel sheet with a heat-resistant adhesive insulating coating according to (2), wherein the heat-resistant adhesive insulating coating contains 0.5% or more and less than 20% of Si nuclei bonded with epoxy groups with respect to all Si nuclei. .
(4) A coating solution containing a thermoplastic siloxane polymer having a weight average molecular weight of 5000 or more and 100000 or less prepared by hydrolyzing one or both of organotrialkoxysilane or organotrichlorosilane in the presence of a hydrochloric acid catalyst is applied to at least one surface of a steel plate. A method for producing a magnetic steel sheet with a heat-resistant adhesive insulating film, characterized by baking.

本発明によれば、打ち抜き又はせん断加工後、加圧及び加熱により接着でき、歪取り焼鈍を行うことが可能な、耐熱接着性絶縁皮膜付き電磁鋼板を提供することができる。溶接、かしめを行うことなく鉄心の一体化ができ、溶接やかしめによる鉄損劣化が回避可能となり、また、歪取り焼鈍後も接着状態及び絶縁性が保たれるので、磁気特性に優れた鉄心を作製することができる。   According to the present invention, it is possible to provide an electrical steel sheet with a heat-resistant adhesive insulating film that can be bonded by pressurization and heating after punching or shearing and can be subjected to strain relief annealing. Iron core can be integrated without welding and caulking, and iron loss deterioration due to welding and caulking can be avoided. Adhesive state and insulation are maintained even after strain relief annealing, so the iron core has excellent magnetic properties. Can be produced.

本発明において、電磁鋼板の少なくとも一方の表面に、熱可塑性シロキサンポリマー層を形成する。ここで、シロキサンポリマーとは、無機成分がSiとOのみから成るものを意味するものとする。   In the present invention, a thermoplastic siloxane polymer layer is formed on at least one surface of the electrical steel sheet. Here, the siloxane polymer means that the inorganic component consists only of Si and O.

無機ポリマーは、M(金属又は半金属)-O(酸素)-Mの無機結合で主骨格が構成されているポリマーである。MがSiの場合、Si-O結合をシロキサン結合と言う。SiはCと同様に、Si-CH3、Si-C6H5、Si-Hのように、Siが直接、有機基やHと化学結合することができるので、有機基やHで骨格が修飾された無機ポリマーを得ることができる。MがSiであるシロキサンポリマー膜は、膜を構成している分子の構造によって、熱可塑性を示す場合と熱硬化性を示す場合がある。シロキサン骨格が三次元網目状に構成されている場合は熱硬化性である。単鎖の線状シロキサンポリマーが架橋された場合も熱硬化性を示すことが多い。これに対して、三重の鎖からできた直鎖状のシロキサンポリマーや後述する梯子状ポリマーが主な構成要素である膜の場合は、熱可塑性を示す。 The inorganic polymer is a polymer in which a main skeleton is constituted by inorganic bonds of M (metal or semimetal) -O (oxygen) -M. When M is Si, the Si—O bond is called a siloxane bond. Si, like C, can be directly chemically bonded to an organic group or H like Si-CH 3 , Si-C 6 H 5 , or Si-H. A modified inorganic polymer can be obtained. A siloxane polymer film in which M is Si may exhibit thermoplasticity or thermosetting properties depending on the structure of molecules constituting the film. When the siloxane skeleton is configured in a three-dimensional network, it is thermosetting. When a single-chain linear siloxane polymer is crosslinked, it often exhibits thermosetting properties. On the other hand, in the case of a film in which a linear siloxane polymer made of a triple chain or a ladder polymer described later is a main constituent, thermoplasticity is exhibited.

熱可塑性シロキサンポリマー層を両面に有する電磁鋼板を積層した場合、熱プレス時の加熱により軟化した上下の膜が一体となるため、冷却時に電磁鋼板を接着することが可能になる。また、熱可塑性シロキサンポリマー層を片面にのみ有する電磁鋼板を同じ向きに積層した場合、熱可塑性シロキサンポリマー層のない電磁鋼板の表面に、加熱により軟化した膜成分が一様に広がるため、冷却時に接着することができる。   When magnetic steel sheets having thermoplastic siloxane polymer layers on both sides are laminated, the upper and lower films softened by heating at the time of hot pressing are integrated, so that the magnetic steel sheets can be bonded during cooling. In addition, when magnetic steel sheets having a thermoplastic siloxane polymer layer only on one side are laminated in the same direction, the film component softened by heating spreads uniformly on the surface of the electromagnetic steel sheet without the thermoplastic siloxane polymer layer. Can be glued.

電磁鋼板と熱可塑性シロキサンポリマー層は、主として電磁鋼板表面の酸化膜との間にFe-O…HO-Siで表される水素結合を介して密着する。この水素結合は、熱可塑性シロキサンポリマー層の焼き付け、電磁鋼板同士の接着、歪取り燒鈍等の熱処理過程でFe-O-Siで表される化学結合に移行していく。電磁鋼板の表面は、クロム酸マグネシウムとアクリル系樹脂を主成分とする無機-有機混合処理液や、クロム酸マグネシウムとリン酸マグネシウムと硼酸の混合液からなる無機系処理液等を塗布、焼き付けして生成した絶縁膜で被覆されていてもよい。電磁鋼板の表面が絶縁膜で被覆されている場合は、Cr-O…HO-Si等の水素結合を介して、熱可塑性シロキサンポリマー層が密着する。この水素結合は、後の熱処理過程でCr-O-Si等の化学結合に移行するものと考えられる。熱可塑性シロキサンポリマーは、上述のように無機成分を介して電磁鋼板表面と結合しており、かつ、主骨格が無機結合で形成されているので、熱プレスによる接着、歪取り燒鈍等の熱処理過程で有機成分が熱分解することがあったとしても、主骨格はそのまま残るので、接着性を保つことができる。   The electrical steel sheet and the thermoplastic siloxane polymer layer are in close contact with the oxide film on the surface of the electrical steel sheet mainly through hydrogen bonds represented by Fe—O... HO—Si. This hydrogen bond shifts to a chemical bond represented by Fe—O—Si in a heat treatment process such as baking of the thermoplastic siloxane polymer layer, adhesion between the magnetic steel sheets, and strain relief. The surface of the electrical steel sheet is coated and baked with an inorganic-organic mixed treatment liquid mainly composed of magnesium chromate and an acrylic resin, or an inorganic treatment liquid composed of a mixed liquid of magnesium chromate, magnesium phosphate and boric acid. It may be covered with an insulating film generated in this way. When the surface of the electrical steel sheet is covered with an insulating film, the thermoplastic siloxane polymer layer adheres through hydrogen bonds such as Cr—O... HO—Si. This hydrogen bond is considered to shift to a chemical bond such as Cr—O—Si in the subsequent heat treatment process. The thermoplastic siloxane polymer is bonded to the surface of the electrical steel sheet through the inorganic component as described above, and the main skeleton is formed of an inorganic bond, so heat treatment such as adhesion by heat press, strain relief annealing, etc. Even if the organic component may be thermally decomposed in the process, the main skeleton remains as it is, so that the adhesiveness can be maintained.

歪取り燒鈍後も、熱可塑性シロキサンポリマー層は前述したようにSi-O-Siの無機骨格から成る酸化物被膜として機能するので、十分な絶縁性を保つことができる。特に、電磁鋼板の表面が無機-有機混合処理液や無機系処理液等で処理されてクロム酸系等の絶縁膜が形成されている場合は、高い絶縁性を示す。   Even after the strain relief, the thermoplastic siloxane polymer layer functions as an oxide film composed of an Si—O—Si inorganic skeleton as described above, so that sufficient insulation can be maintained. In particular, when the surface of the electrical steel sheet is treated with an inorganic-organic mixed treatment liquid, an inorganic treatment liquid, or the like to form an insulating film such as a chromic acid, high insulation is exhibited.

熱可塑性シロキサンポリマーが接着性を発現するための熱可塑性を示す温度は100℃以上であることが必要である。100℃未満で熱可塑性が現れる場合は、耐ブロッキング性が低下するので適さない。熱プレス温度の上限は、歪取り燒鈍温度以下であればよいが、高温の熱プレスになると高コストになるので、通常は300℃以下であることが望ましい。熱プレスの圧力は、0.1MPa以上50MPa以下であることが望ましく、1MPa以上20MPa以下であることが特に望ましい。熱プレスの圧力が低い場合は、十分な接着性を得ることができないため、鉄心として一体化することが困難になる。熱プレスの圧力が高い場合は、接着層が流動して、層間からはみ出すことがある。   The temperature at which the thermoplastic siloxane polymer exhibits thermoplasticity for exhibiting adhesiveness needs to be 100 ° C. or higher. If thermoplasticity appears below 100 ° C., blocking resistance is reduced, which is not suitable. The upper limit of the hot press temperature may be equal to or lower than the strain relief temperature, but it is usually desirable to be 300 ° C. or lower because a high temperature hot press is expensive. The pressure of the hot press is preferably 0.1 MPa or more and 50 MPa or less, and particularly preferably 1 MPa or more and 20 MPa or less. When the pressure of the hot press is low, sufficient adhesiveness cannot be obtained, so that it is difficult to integrate as an iron core. When the pressure of hot pressing is high, the adhesive layer may flow and protrude from the interlayer.

歪取り燒鈍の温度は、通常650℃以上850℃以下である。   The temperature for strain relief is usually 650 ° C. or higher and 850 ° C. or lower.

Siの4つの結合手の内、1個がSi-R(Rは有機基又はH)結合を形成し、残りの3個がSi-O結合になっているものをT核と言う。T核の中で、Oを介してSiと結合している数が3個のもの、即ち、R-Si(-O-Si≡)3のRと結合しているSiをT3核と呼ぶ。Si核種はNMRによって調べることができる。一般に、シロキサンポリマーを形成するSi核としては、T核以外にD核とQ核が挙げられる。D核はSiの4つの結合手の内、2個がSi-R(Rは有機基又はH)結合を形成し、残りの2個がSi-O結合になっているものである。Q核はSiの4つの結合手の内、4個がSi-O結合になっているものである。 Of the four bonds of Si, one of which forms a Si-R bond (R is an organic group or H) and the remaining three are Si-O bonds is called a T nucleus. Among the T nuclei, the number of those bonded to Si through O, that is, Si bonded to R of R-Si (-O-Si≡) 3 is called T 3 nucleus . Si nuclides can be examined by NMR. In general, examples of Si nuclei forming a siloxane polymer include D nuclei and Q nuclei in addition to T nuclei. In the D nucleus, two of Si's four bonds form Si-R (R is an organic group or H) bond, and the remaining two are Si-O bonds. The Q nucleus is a Si-O bond in four of the four Si bonds.

T3核のSiが一定の規則に従って結合を繰り返した場合、図1に示したような梯子状分子が形成される。 When the T 3 nucleus Si repeats bonding according to a certain rule, a ladder molecule as shown in FIG. 1 is formed.

Rがメチル基であるとき、歪取り燒鈍中の炭化の程度やガス発生量が少ないので、歪取り燒鈍後の接着強度が特に高くなる。   When R is a methyl group, the degree of carbonization during the strain relief and the amount of gas generation are small, so that the adhesive strength after strain relief is particularly high.

梯子状分子からなる重合体は、塗布・焼き付けによって梯子状分子鎖の絡み合い等が起こり、べとつきやブロッキングの発生のない硬化した表面状態が得られる。100℃以上で絡み合っていた分子鎖が解けて流動性即ち熱可塑性を示すようになる。このような梯子状分子からなる重合体の性質を示す熱可塑性シロキサンポリマーとしては、Si核としてメチル基が結合したT核を全Siに対して50%以上含み、かつ、T核の内T3核が80%以上、特に好ましくは95%以上であることが望ましい。Si核としてメチル基が結合したT核が全Siに対して50%より少ないときは、歪取り焼鈍中の炭化が激しくなったり、ガス発生によって接着層が膨張し、接着強度が低下したりするため適さない。T核の内T3核が80%より少ないときは、梯子状分子の形成が困難になるので適さない。図1に示した梯子状分子は100%T3核から構成されている。T3核であれば必ず梯子状分子であるとは言えないが、T3核の割合が高いことは、梯子状分子を形成するための必要条件になっている。 A polymer composed of ladder-like molecules is entangled with ladder-like molecular chains by coating and baking, and a hardened surface state without stickiness or blocking is obtained. Molecular chains that have been entangled at 100 ° C. or higher are broken and become fluid, that is, thermoplastic. The thermoplastic siloxane polymer exhibiting the properties of a polymer composed of such ladder-shaped molecules includes 50% or more of T nuclei bonded with methyl groups as Si nuclei with respect to all Si, and T 3 It is desirable that the nucleus is 80% or more, particularly preferably 95% or more. When the number of T nuclei bonded with methyl groups as Si nuclei is less than 50% of the total Si, carbonization during strain relief annealing becomes intense, or the adhesive layer expands due to gas generation, resulting in a decrease in adhesive strength. Therefore it is not suitable. If the number of T 3 nuclei in the T nuclei is less than 80%, the formation of ladder molecules becomes difficult, which is not suitable. The ladder molecule shown in Fig. 1 is composed of 100% T 3 nuclei. T 3 nuclei are not necessarily ladder-like molecules, but a high proportion of T 3 nuclei is a necessary condition for forming ladder-like molecules.

メチル基が結合したSi核以外に、エポキシ基が結合したSiを全Siに対して0.5%以上20%未満含む場合、耐熱接着性絶縁皮膜と電磁鋼板との密着性が特に高くなるので望ましい。0.5%より少ないときは、密着性を高める効果が小さい。20%を超える場合は、炭化が激しくなったり、ガス発生によって接着層が膨張し、接着強度が低下したりするため適さない。   In addition to the Si nucleus bonded to the methyl group, when the Si bonded to the epoxy group is contained in an amount of 0.5% or more and less than 20% with respect to the total Si, the adhesion between the heat-resistant adhesive insulating film and the electrical steel sheet is particularly high. When it is less than 0.5%, the effect of improving the adhesion is small. If it exceeds 20%, carbonization becomes violent, or the adhesive layer expands due to gas generation, resulting in a decrease in adhesive strength.

本発明の耐熱接着性絶縁皮膜付き電磁鋼板は、オルガノトリアルコキシシラン又はオルガノトリクロロシランの一方又は双方を出発原料として塩酸触媒下で加水分解して得た質量平均分子量5000以上100000以下の熱可塑性シロキサンポリマーを用いて製造することができる。オルガノトリアルコキシシランとしては、トリエトキシシラン、トリメトキシシラン、メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、プロピルトリメトキシシラン、プロピルトリエトキシシラン、イソブチルトリメトキシシラン、イソブチルトリエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、メタクリロキシプロピルトリメトキシシラン、メタクリロキシプロピルトリエトキシシラン、グリシドキシプロピルトリメトキシシラン、グリシドキシプロピルトリエトキシシラン、アミノプロピルトリメトキシシラン、アミノプロピルトリエトキシシラン等が挙げられる。オルガノトリクロロシランとしては、メチルトリクロロシラン、エチルトリクロロシラン、フェニルトリクロロシラン等が挙げられる。   The electrical steel sheet with a heat-resistant adhesive insulating film of the present invention is a thermoplastic siloxane having a mass average molecular weight of 5000 or more and 100000 or less obtained by hydrolysis under a hydrochloric acid catalyst using one or both of organotrialkoxysilane or organotrichlorosilane as a starting material. It can be produced using a polymer. Examples of organotrialkoxysilane include triethoxysilane, trimethoxysilane, methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, propyltrimethoxysilane, propyltriethoxysilane, isobutyltrimethoxysilane, Isobutyltriethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, methacryloxypropyltrimethoxysilane, methacryloxypropyltriethoxysilane, glycidoxypropyltrimethoxysilane, glycidoxypropyltriethoxysilane, aminopropyltrimethoxysilane And aminopropyltriethoxysilane. Examples of the organotrichlorosilane include methyltrichlorosilane, ethyltrichlorosilane, and phenyltrichlorosilane.

オルガノトリアルコキシシラン又はオルガノトリクロロシランの一方又は双方は、有機溶媒に分散させてから加水分解してもよい。溶媒としては、メタノール、エタノール、プロパノール、ブタノール等の各種アルコール、アセトン、トルエン、キシレン等を用いることができる。加水分解時のオルガノアルコキシシランに対する有機溶媒の質量比は、1:0.5〜1:2であることが望ましい。   One or both of organotrialkoxysilane and organotrichlorosilane may be hydrolyzed after being dispersed in an organic solvent. As the solvent, various alcohols such as methanol, ethanol, propanol and butanol, acetone, toluene, xylene and the like can be used. The mass ratio of the organic solvent to the organoalkoxysilane at the time of hydrolysis is desirably 1: 0.5 to 1: 2.

加水分解は、出発原料中の全アルコキシ基のモル数に対して、0.1〜1倍の水を添加して行う。加水分解の触媒として塩酸を添加する。オルガノトリクロロシランを原料に用いたときは、水を加えることにより塩酸が副生成物として生成し、特に手を加えなくても塩酸触媒下で加水分解を行うことになるので、塩酸を加えなくてもよいこともある。   Hydrolysis is performed by adding 0.1 to 1 times as much water as the number of moles of all alkoxy groups in the starting material. Hydrochloric acid is added as a hydrolysis catalyst. When organotrichlorosilane is used as a raw material, hydrochloric acid is produced as a by-product by adding water, and hydrolysis is carried out under a hydrochloric acid catalyst without any special treatment. Sometimes it is good.

加水分解したゾルは、通常、濃縮等のプロセスにより重縮合反応を促進させ、熱可塑性シロキサンポリマーとする。濃縮は、ロータリーエバポレータ等で有機溶媒や副生成物のアルコール等を除去し、濃縮物の質量が濃縮前の溶液質量の15〜60%程度になるように行うことが好ましい。濃縮により、オルガノアルコキシシランの重縮合反応が促進され、分子量が増大する。オルガノアルコキシシランの質量平均分子量は、5000以上100,000以下であるとき、良好な熱可塑性を示す膜が得られる。分子量が5000より少ないときは、膜の焼き付け後、熱可塑性を示さないので適さない。分子量が100,000を超えるときは、膜の焼き付け後も、べたつきが残るので適さない。濃縮以外の方法として、KOH等のアルカリを添加して窒素雰囲気下等で還流を行って重縮合反応を促進させ、熱可塑性シロキサンポリマーを得ることもできる。   The hydrolyzed sol is usually converted into a thermoplastic siloxane polymer by promoting the polycondensation reaction by a process such as concentration. Concentration is preferably carried out so that the organic solvent, by-product alcohol and the like are removed by a rotary evaporator or the like, and the mass of the concentrate is about 15 to 60% of the mass of the solution before the concentration. Concentration promotes the polycondensation reaction of organoalkoxysilane and increases the molecular weight. When the weight average molecular weight of the organoalkoxysilane is 5000 or more and 100,000 or less, a film exhibiting good thermoplasticity can be obtained. A molecular weight of less than 5000 is not suitable because it does not exhibit thermoplasticity after baking of the film. When the molecular weight exceeds 100,000, stickiness remains even after the film is baked, which is not suitable. As a method other than the concentration, a thermoplastic siloxane polymer can be obtained by adding an alkali such as KOH and refluxing in a nitrogen atmosphere to accelerate the polycondensation reaction.

熱可塑性シロキサンポリマーは、通常、塗布前に有機溶媒や水で、1.5〜10倍程度に希釈し、耐熱接着性絶縁皮膜形成用塗布液とする。希釈用の有機溶媒としては、メタノール、エタノール、プロパノール、ブタノール等の各種アルコール、アセトン、トルエン、キシレン等が挙げられる。   The thermoplastic siloxane polymer is usually diluted about 1.5 to 10 times with an organic solvent or water before coating to form a coating solution for forming a heat-resistant adhesive insulating film. Examples of the organic solvent for dilution include various alcohols such as methanol, ethanol, propanol and butanol, acetone, toluene, xylene and the like.

耐熱接着性絶縁皮膜形成用塗布液は、溶質として熱可塑性シロキサンポリマーの他にジメトキシジメチルシラン、ジエトキシジメチルシラン等のジオルガノジアルコキシシランを含んでもよい。熱可塑性シロキサンポリマーを構成しているオルガノトリアルコキシシランに対する、ジオルガノジアルコキシシランのモル比は0.1以下であることが望ましい。この比が0.1を超えると、焼き付け後も膜がべとつく。   The coating solution for forming a heat-resistant adhesive insulating film may contain diorganodialkoxysilane such as dimethoxydimethylsilane and diethoxydimethylsilane as a solute in addition to the thermoplastic siloxane polymer. The molar ratio of the diorganodialkoxysilane to the organotrialkoxysilane constituting the thermoplastic siloxane polymer is preferably 0.1 or less. When this ratio exceeds 0.1, the film becomes sticky after baking.

B、Si、Al、Ti、Zr、Nb、Ta、Wから選ばれる1種類以上の金属アルコキシドをオルガノアルコキシシランと同時に加水分解して、ゾルを調製してもよい。B、Al、Ti、Zr、Nb、Ta、Wの金属アルコキシドを添加することにより、オルガノアルコキシシランの加水分解・重縮合反応が促進される。Al、Ti、Zr、Nb、Ta、Wの金属アルコキシドは、何れもアルコキシシランに比べて反応性が高いため、アルコキシ基の一部をβ-ジケトン、β-ケトエステル、アルカノールアミン、アルキルアルカノールアミン、有機酸等で置換したアルコキシド誘導体を使用してもよい。Si以外の金属アルコキシド又はアルコキシド誘導体の一方又は双方の全Siに対するモル比は、0.1以下であることが望ましい。この比が0.1を超える場合は、熱可塑性の発現が不十分になったり、塗布液がゲル化したりするので好ましくない。また、金属アルコキシドとして、テトラエトキシシラン、テトラメトキシシラン等Siのテトラアルコキシドを添加した場合は、膜が硬くなり、傷付き難くなるので好ましい。熱可塑性シロキサンポリマーを構成しているオルガノトリアルコキシシランに対する、Siのテトラアルコキシドのモル比は0.3以下であることが望ましい。この比が0.3を超えると、膜全体としての熱可塑性の発現が困難になる。   One or more metal alkoxides selected from B, Si, Al, Ti, Zr, Nb, Ta, and W may be hydrolyzed simultaneously with the organoalkoxysilane to prepare a sol. By adding metal alkoxides of B, Al, Ti, Zr, Nb, Ta, and W, hydrolysis / polycondensation reaction of organoalkoxysilane is promoted. Since the metal alkoxides of Al, Ti, Zr, Nb, Ta, and W are all more reactive than alkoxysilane, some alkoxy groups are β-diketone, β-ketoester, alkanolamine, alkylalkanolamine, An alkoxide derivative substituted with an organic acid or the like may be used. The molar ratio of one or both of the metal alkoxide or alkoxide derivative other than Si to the total Si is preferably 0.1 or less. When this ratio exceeds 0.1, it is not preferable because the development of thermoplasticity becomes insufficient or the coating solution gels. Further, when a tetraalkoxide of Si such as tetraethoxysilane or tetramethoxysilane is added as a metal alkoxide, the film becomes hard and is not easily damaged. The molar ratio of Si tetraalkoxide to the organotrialkoxysilane constituting the thermoplastic siloxane polymer is preferably 0.3 or less. When this ratio exceeds 0.3, it becomes difficult to develop thermoplasticity as a whole film.

調製したゾルをロールコータ、バーコータ、フローコータ、ディップコータ、スプレー等の方法で電磁鋼板に塗布する。塗布量は1g/m2以上30g/m2以下、特に2g/m2以上10g/m2以下であることが好ましい。塗布後、50〜200℃で焼き付けることにより、耐熱接着性絶縁皮膜付き電磁鋼板を作製することができる。 The prepared sol is applied to a magnetic steel sheet by a roll coater, bar coater, flow coater, dip coater, spray or the like. The coating amount is preferably 1 g / m 2 or more and 30 g / m 2 or less, particularly preferably 2 g / m 2 or more and 10 g / m 2 or less. After application, an electrical steel sheet with a heat-resistant adhesive insulating film can be produced by baking at 50 to 200 ° C.

まず、3種類の熱可塑性シロキサン系ポリマーの前駆体を作製した。   First, three types of thermoplastic siloxane polymer precursors were prepared.

熱可塑性前駆体A
メチルトリエトキシシラン178gとエタノール138gの混合用液中に、水35.3g、35%塩酸を1.04gの混合水溶液を滴下して、加水分解を行った。加水分解した液は、ロータリーエバポレータを用いて、58℃で溶媒が出なくなるまで濃縮を行った。濃縮物の質量は、濃縮前の溶液質量の30%であった。この濃縮物の質量平均分子量は10000であった。この濃縮物は、曳糸性を示したので、鎖状高分子の形にメチルトリエトキシシランが重合していると考えられる。この濃縮物に対して70℃で15分の熱処理を行うと固化したが、180℃付近から軟化し、熱可塑性を示した。この濃縮物を熱可塑性前駆体Aと呼ぶ。
Thermoplastic precursor A
Hydrolysis was performed by adding dropwise a mixed aqueous solution of 35.3 g of water and 1.04 g of 35% hydrochloric acid to a liquid for mixing 178 g of methyltriethoxysilane and 138 g of ethanol. The hydrolyzed liquid was concentrated using a rotary evaporator until no solvent was produced at 58 ° C. The mass of the concentrate was 30% of the solution mass before concentration. The mass average molecular weight of this concentrate was 10,000. Since this concentrate showed spinnability, it is considered that methyltriethoxysilane was polymerized in the form of a chain polymer. When this concentrate was heat-treated at 70 ° C for 15 minutes, it solidified, but softened from around 180 ° C and showed thermoplasticity. This concentrate is called thermoplastic precursor A.

熱可塑性前駆体B
メチルトリエトキシシラン178gとエタノール138gの混合用液中に、水35.3g、35%塩酸を1.04gの混合水溶液を滴下して、加水分解を行った。加水分解した液は、ロータリーエバポレータを用いて、85℃で溶媒が出なくなるまで濃縮を行った。濃縮物の質量は、濃縮前の溶液質量の21%であった。この濃縮物の質量平均分子量は27000であった。この濃縮物も曳糸性及び熱可塑性を示した。この濃縮物を熱可塑性前駆体Bと呼ぶ。
Thermoplastic precursor B
Hydrolysis was performed by adding dropwise a mixed aqueous solution of 35.3 g of water and 1.04 g of 35% hydrochloric acid to a liquid for mixing 178 g of methyltriethoxysilane and 138 g of ethanol. The hydrolyzed liquid was concentrated using a rotary evaporator until no solvent was produced at 85 ° C. The mass of the concentrate was 21% of the solution mass before concentration. This concentrate had a weight average molecular weight of 27000. This concentrate also exhibited spinnability and thermoplasticity. This concentrate is called thermoplastic precursor B.

熱可塑性前駆体C
フェニルトリエトキシシラン240gとエタノール138gの混合用液中に、水35.3g、35%塩酸を1.04gの混合水溶液を滴下して、加水分解を行った。加水分解した液は、ロータリーエバポレータを用いて、58℃で溶媒が出なくなるまで濃縮を行った。濃縮物の質量は、濃縮前の溶液質量の40%であった。この濃縮物の質量平均分子量は20000であった。この濃縮物も曳糸性及び熱可塑性を示した。この濃縮物を熱可塑性前駆体Cと呼ぶ。
Thermoplastic precursor C
Hydrolysis was performed by adding dropwise a mixed aqueous solution of 35.3 g of water and 1.04 g of 35% hydrochloric acid into a mixture for mixing 240 g of phenyltriethoxysilane and 138 g of ethanol. The hydrolyzed liquid was concentrated using a rotary evaporator until no solvent was produced at 58 ° C. The mass of the concentrate was 40% of the solution mass before concentration. The concentrate had a mass average molecular weight of 20000. This concentrate also exhibited spinnability and thermoplasticity. This concentrate is called thermoplastic precursor C.

次に、グリシドキシプロピル基を含むシロキサン系ゾルの合成を行った。   Next, a siloxane-based sol containing a glycidoxypropyl group was synthesized.

Ep-1
酢酸1.8g、テトラエトキシチタン2.3g、グリシドキシプロピルトリエトキシシラン278.4gを24時間攪拌した。
Ep-1
Acetic acid (1.8 g), tetraethoxytitanium (2.3 g), and glycidoxypropyltriethoxysilane (278.4 g) were stirred for 24 hours.

Ep-2
酢酸12.6g、テトラエトキシチタン16.0g、テトラエトキシシラン62.5g、グリシドキシプロピルトリエトキシシラン194.9gを24時間攪拌した。
Ep-2
12.6 g of acetic acid, 16.0 g of tetraethoxytitanium, 62.5 g of tetraethoxysilane, and 194.9 g of glycidoxypropyltriethoxysilane were stirred for 24 hours.

Ep-3
酢酸5.4g、テトラエトキシチタン6.8g、テトラエトキシシラン145.8g、グリシドキシプロピルトリエトキシシラン278.4gを24時間攪拌した。
Ep-3
Acetic acid 5.4 g, tetraethoxytitanium 6.8 g, tetraethoxysilane 145.8 g, and glycidoxypropyltriethoxysilane 278.4 g were stirred for 24 hours.

これらの前駆体をそれぞれ希釈液、グリシドキシプロピル基を含むシロキサン系ゾルと表1に示す割合で混合し、塗布液とした。   Each of these precursors was mixed with a dilute solution and a siloxane-based sol containing a glycidoxypropyl group in the proportions shown in Table 1 to obtain a coating solution.

比較例に示したゾルは、以下のように合成した。   The sol shown in the comparative example was synthesized as follows.

非熱可塑性ゾルA
メチルトリエトキシシラン178g、テトラメトキシシラン152gを2-エトキシエタノール270.3g中に分散させる。酢酸4.8gを触媒とし、水36gを加えて加水分解することにより、ゾルAを調製した。
Non-thermoplastic sol A
178 g of methyltriethoxysilane and 152 g of tetramethoxysilane are dispersed in 270.3 g of 2-ethoxyethanol. Sol A was prepared by hydrolyzing by adding 36 g of water using 4.8 g of acetic acid as a catalyst.

非熱可塑性ゾルB
アセト酢酸エチル260.28gとテトラエトキシチタン227.9gを92gのエタノールに分散させ、両末端カルビノール変性で平均分子量3000のポリジメチルシロキサン1500gを加え攪拌した。92gのエタノールと36gの水の混合溶液を滴下し、ゾルBを調製した。
Non-thermoplastic sol B
260.28 g of ethyl acetoacetate and 227.9 g of tetraethoxytitanium were dispersed in 92 g of ethanol, and 1500 g of polydimethylsiloxane having an average molecular weight of 3000 modified by carbinol at both ends was added and stirred. Sol B was prepared by adding dropwise a mixed solution of 92 g of ethanol and 36 g of water.

Figure 2006054244
Figure 2006054244

実施例及び比較例において、表1に記載の厚さ0.5mmの無方向性電磁鋼板の両面に、それぞれの塗布液をロールコータで塗布し、70℃に設定した炉で15分焼き付けた。塗布量は7g/m2であった。いずれも焼きつけ後の膜表面のべたつきはなかった。 In Examples and Comparative Examples, each coating solution was applied on both sides of a non-oriented electrical steel sheet having a thickness of 0.5 mm shown in Table 1 with a roll coater, and baked in an oven set at 70 ° C. for 15 minutes. The coating amount was 7 g / m 2 . In any case, there was no stickiness of the film surface after baking.

幅3cm、長さ10cmの試験片を2枚用いて、接着部分の面積が6cm2になるように試験片の一部を重ねて、熱プレスを行った。熱プレスの前に、接着部分以外に塗布された膜は削り落とした。200℃、1分、10MPaの熱プレスにより、2枚の試験片を接着させた。歪取り燒鈍は、窒素中で750℃2時間行った。歪取り焼鈍前後の接着強度は、接着した面の水平方向強度であるせん断引張強度を用いて評価した。その結果は、表1に示す通りであった。 Two pieces of a test piece having a width of 3 cm and a length of 10 cm were used, and a part of the test piece was overlapped so that the area of the bonded portion was 6 cm 2 , followed by hot pressing. Prior to hot pressing, the applied film other than the bonded part was scraped off. Two test pieces were bonded by a hot press at 200 ° C. for 1 minute and 10 MPa. The strain relief was performed in nitrogen at 750 ° C. for 2 hours. The adhesive strength before and after strain relief annealing was evaluated using the shear tensile strength, which is the horizontal strength of the bonded surface. The results were as shown in Table 1.

比較例1〜3は、熱可塑性を示さないシロキサン系ポリマーを用いたため、熱プレスで接着することができなかった。比較例4、5は、接着コートとして、従来用いられているものである。塗布液が有機物であり、歪取り焼鈍時に有機物が熱分解するため、歪取り焼鈍後の接着強度が得られない。これに対し、本発明の実施例1〜10では、何れも歪取り焼鈍後の接着強度が得られており、溶接・かしめを行うことなく鉄心の一体化ができる接着性絶縁皮膜付き電磁鋼板を提供できることが確認された。   Since Comparative Examples 1 to 3 used a siloxane-based polymer that did not exhibit thermoplasticity, they could not be bonded by hot pressing. Comparative Examples 4 and 5 are conventionally used as an adhesive coat. Since the coating liquid is organic and the organic is thermally decomposed during strain relief annealing, the adhesive strength after strain relief annealing cannot be obtained. On the other hand, in Examples 1 to 10 of the present invention, the adhesive strength after strain relief annealing is obtained, and the electrical steel sheet with an adhesive insulating film that can be integrated with the iron core without performing welding or caulking. It was confirmed that it could be provided.

梯子状シロキサンポリマーの構造を示す図。The figure which shows the structure of a ladder-like siloxane polymer.

Claims (4)

鋼板の少なくとも片面に、熱可塑性シロキサンポリマーを主成分とする皮膜を有することを特徴とする耐熱接着性絶縁皮膜付き電磁鋼板。   An electrical steel sheet with a heat-resistant adhesive insulating coating, comprising a coating composed mainly of a thermoplastic siloxane polymer on at least one surface of the steel plate. 前記耐熱接着性絶縁皮膜が、Si核としてメチル基が結合したT核を全Si核に対して50%以上含み、かつT核のうちT3核が80%以上であることを特徴とする請求項1記載の耐熱接着性絶縁皮膜付き電磁鋼板。 The heat-resistant adhesive insulating film contains 50% or more of T nuclei bonded with methyl groups as Si nuclei with respect to all Si nuclei, and T 3 nuclei out of T nuclei is 80% or more. Item 2. An electrical steel sheet with a heat-resistant adhesive insulating film according to Item 1. 前記耐熱接着性絶縁皮膜が、エポキシ基が結合したSi核を全Si核に対して0.5%以上20%未満含むことを特徴とする請求項2記載の耐熱接着性絶縁皮膜付き電磁鋼板。   3. The electrical steel sheet with a heat-resistant adhesive insulating coating according to claim 2, wherein the heat-resistant adhesive insulating coating contains 0.5% or more and less than 20% of Si nuclei bonded with epoxy groups with respect to all Si nuclei. オルガノトリアルコキシシラン又はオルガノトリクロロシランの一方又は双方を塩酸触媒下で加水分解して作製した質量平均分子量5000以上100,000以下の熱可塑性シロキサンポリマーを含む耐熱接着性絶縁皮膜形成用塗布液を鋼板の少なくとも片面に塗布し焼き付けることを特徴とする耐熱接着性絶縁皮膜付き電磁鋼板の製造方法。   A coating solution for forming a heat-resistant adhesive insulating film containing a thermoplastic siloxane polymer having a mass average molecular weight of 5000 or more and 100,000 or less prepared by hydrolyzing one or both of organotrialkoxysilane and organotrichlorosilane in a hydrochloric acid catalyst A method for producing a magnetic steel sheet with a heat-resistant adhesive insulating film, characterized by being applied to one side and baked.
JP2004233266A 2004-08-10 2004-08-10 Electrical steel sheet with heat-resistant adhesive insulating film and method for producing the same Active JP4571838B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004233266A JP4571838B2 (en) 2004-08-10 2004-08-10 Electrical steel sheet with heat-resistant adhesive insulating film and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004233266A JP4571838B2 (en) 2004-08-10 2004-08-10 Electrical steel sheet with heat-resistant adhesive insulating film and method for producing the same

Publications (2)

Publication Number Publication Date
JP2006054244A true JP2006054244A (en) 2006-02-23
JP4571838B2 JP4571838B2 (en) 2010-10-27

Family

ID=36031540

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004233266A Active JP4571838B2 (en) 2004-08-10 2004-08-10 Electrical steel sheet with heat-resistant adhesive insulating film and method for producing the same

Country Status (1)

Country Link
JP (1) JP4571838B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014148704A (en) * 2013-01-31 2014-08-21 Osaka Gas Chem Kk Composition for outermost surface of gas cooking appliance
US10711321B2 (en) 2015-12-21 2020-07-14 Posco Adhesive coating composition for non-oriented electrical steel sheet, non-oriented electrical steel sheet product, and manufacturing method therefor
CN114585772A (en) * 2019-10-21 2022-06-03 杰富意钢铁株式会社 Electromagnetic steel sheet with insulating coating

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11807922B2 (en) 2016-12-23 2023-11-07 Posco Co., Ltd Electrical steel sheet adhesive coating composition, electrical steel sheet product, and manufacturing method therefor
KR101904306B1 (en) 2016-12-23 2018-10-04 주식회사 포스코 Adhesive coating composition for non-oriented electrical steel, and method for non-oriented electrical steel product

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5813632A (en) * 1981-07-17 1983-01-26 Japan Synthetic Rubber Co Ltd Ladder-like lower alkylpolysilsesquioxane capable of forming heat-resistant thin film
JPS6232157A (en) * 1985-08-02 1987-02-12 Yoshio Ichikawa Coating composition
JPS6250483A (en) * 1985-08-30 1987-03-05 Sumitomo Metal Ind Ltd Electrical steel sheet having excellent seizure resistance and blankability
JPS6348363A (en) * 1986-08-19 1988-03-01 Japan Synthetic Rubber Co Ltd Coating composition
JPH03287627A (en) * 1990-04-05 1991-12-18 Nippon Telegr & Teleph Corp <Ntt> Polysiloxane
JPH04161435A (en) * 1990-10-24 1992-06-04 Kansai Paint Co Ltd Curable silicone resin composition for glass fiber and cured product thereof
JPH04323382A (en) * 1991-04-23 1992-11-12 Nippon Steel Corp Formation of insulated film grain-oriented silicon steel sheet containing no p and cr compound
JPH05163353A (en) * 1991-12-16 1993-06-29 Fujitsu Ltd Organosilicon polymer and production of semiconductor device
JPH07292108A (en) * 1993-11-05 1995-11-07 Shin Etsu Chem Co Ltd Method for producing organic functional group-containing organopolysiloxane and organopolysiloxane obtained from the production method
JP2003100523A (en) * 2002-08-12 2003-04-04 Nkk Corp Low-noise laminated core and wound core using high- silicon steel plate
JP2003226753A (en) * 2002-02-01 2003-08-12 Kansai Research Institute Thermoplastic polyphenylsilsesquioxane and method for producing high-molecular weight polyphenylsilsesquioxane using the same

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5813632A (en) * 1981-07-17 1983-01-26 Japan Synthetic Rubber Co Ltd Ladder-like lower alkylpolysilsesquioxane capable of forming heat-resistant thin film
JPS6232157A (en) * 1985-08-02 1987-02-12 Yoshio Ichikawa Coating composition
JPS6250483A (en) * 1985-08-30 1987-03-05 Sumitomo Metal Ind Ltd Electrical steel sheet having excellent seizure resistance and blankability
JPS6348363A (en) * 1986-08-19 1988-03-01 Japan Synthetic Rubber Co Ltd Coating composition
JPH03287627A (en) * 1990-04-05 1991-12-18 Nippon Telegr & Teleph Corp <Ntt> Polysiloxane
JPH04161435A (en) * 1990-10-24 1992-06-04 Kansai Paint Co Ltd Curable silicone resin composition for glass fiber and cured product thereof
JPH04323382A (en) * 1991-04-23 1992-11-12 Nippon Steel Corp Formation of insulated film grain-oriented silicon steel sheet containing no p and cr compound
JPH05163353A (en) * 1991-12-16 1993-06-29 Fujitsu Ltd Organosilicon polymer and production of semiconductor device
JPH07292108A (en) * 1993-11-05 1995-11-07 Shin Etsu Chem Co Ltd Method for producing organic functional group-containing organopolysiloxane and organopolysiloxane obtained from the production method
JP2003226753A (en) * 2002-02-01 2003-08-12 Kansai Research Institute Thermoplastic polyphenylsilsesquioxane and method for producing high-molecular weight polyphenylsilsesquioxane using the same
JP2003100523A (en) * 2002-08-12 2003-04-04 Nkk Corp Low-noise laminated core and wound core using high- silicon steel plate

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014148704A (en) * 2013-01-31 2014-08-21 Osaka Gas Chem Kk Composition for outermost surface of gas cooking appliance
US10711321B2 (en) 2015-12-21 2020-07-14 Posco Adhesive coating composition for non-oriented electrical steel sheet, non-oriented electrical steel sheet product, and manufacturing method therefor
CN114585772A (en) * 2019-10-21 2022-06-03 杰富意钢铁株式会社 Electromagnetic steel sheet with insulating coating

Also Published As

Publication number Publication date
JP4571838B2 (en) 2010-10-27

Similar Documents

Publication Publication Date Title
JP5494602B2 (en) Heat-resistant adhesive insulation coating
KR101006033B1 (en) Electromagnetic steel sheet having insulating coating film and method for producing same
KR101006031B1 (en) Electromagnetic steel sheet having insulating coating film and method for producing same
CN109476952B (en) Electromagnetic steel sheet with insulating coating, method for producing same, and coating agent for forming insulating coating
DE102009017822A1 (en) Aqueous silane systems based on tris (alkoxysilylalkyl) amines and their use
JP4568029B2 (en) Iron core having excellent end face insulation and method for treating insulating coating on end face of iron core
JP4571838B2 (en) Electrical steel sheet with heat-resistant adhesive insulating film and method for producing the same
CN103596702A (en) Coating method and coating for a bearing component
KR100697736B1 (en) Stainless-Steel Foils With Inorganic/Organic Hybrid Film Coating
EP2294583B1 (en) Electrically insulating coating and method of formation thereof
JP2002222616A (en) Ceramic insulated cable, self-welding ceramic insulated cable, composition for coating, coil and voice coil for loudspeaker
JP2015095598A (en) Powder for powder-compact magnetic cores
JP2003247078A (en) Inorganic-organic hybrid film-coated stainless foil
JPS6250483A (en) Electrical steel sheet having excellent seizure resistance and blankability
JP4225133B2 (en) Photocatalyst sheet for resin surface modification, laminate and resin surface modification method
JP7401056B2 (en) Method of producing coated electrical strip and coated electrical strip
JP5115232B2 (en) Electrical steel sheet with insulating coating
JP3302817B2 (en) Inorganic / organic fusion coated steel sheet and method for producing the same, inorganic / organic fusion coating, coating liquid for forming inorganic / organic fusion coating, and method for producing the same
KR102091123B1 (en) Electrical steel sheet product, and method for manufacturing the electrical steel sheet product
KR101444820B1 (en) manufacturing method of hybrid packaging materials for insulation and corrosion proof in flexible energy devices
JP4905382B2 (en) Electrical steel sheet with insulating coating
KR102382585B1 (en) Method of Polysiloxane-Based Coating Composition For Fixing Belt
JP2000281974A (en) Coating composition for porous substrate
JP2003266592A (en) Electromagnetic steel plate iron core having excellent end insulating properties and insulating film treatment method for end surface of iron core
JP2004055377A (en) Insulated wire and self-fusing insulated wire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090331

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090601

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100803

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100813

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130820

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4571838

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130820

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130820

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350