JPH05163353A - Organosilicon polymer and production of semiconductor device - Google Patents

Organosilicon polymer and production of semiconductor device

Info

Publication number
JPH05163353A
JPH05163353A JP3331002A JP33100291A JPH05163353A JP H05163353 A JPH05163353 A JP H05163353A JP 3331002 A JP3331002 A JP 3331002A JP 33100291 A JP33100291 A JP 33100291A JP H05163353 A JPH05163353 A JP H05163353A
Authority
JP
Japan
Prior art keywords
polymer
forming
integrated circuit
semiconductor integrated
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3331002A
Other languages
Japanese (ja)
Inventor
Shunichi Fukuyama
俊一 福山
Tomoko Kobayashi
倫子 小林
Yoshiyuki Okura
嘉之 大倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP3331002A priority Critical patent/JPH05163353A/en
Publication of JPH05163353A publication Critical patent/JPH05163353A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02123Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
    • H01L21/02126Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC

Abstract

PURPOSE:To provide an organosilicon polymer, a process for producing an interlayer insulation film made therefrom and an insulation material excellent in heat resistance and leveling properties. CONSTITUTION:A process for producing a semiconductor device comprising forming an organosilicon polymer which is a polymer of a weight-average molecular weight of 3000-5000000 represented by the general formula [RASiO2/2(RB)1/2]n (wherein at least 20% of RAs are hydroxylated aryl groups, the rests are lower alkyl groups; RB is alkylene; n is an integer of 10-50000, wherein the hydrogen atoms of the silanol groups contained in the polymer are substituted by triorganosilyl groups of the general formula (RC)3Si(wherein Rs are epoxy, lower alkyl or aryl and may be the same or different from each other), either forming an interlayer insulation film of a semiconductor integrated circuit from the polymer or forming an interlayer insulation film of a semiconductor integrated circuit by adding naphthoquinonediazide to the organosilicon polymer to form a photosensitive heat-resistant resin composition and forming an interlayer insulation film of a semiconductor integrated circuit.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は有機硅素重合体とこれを
用いた半導体集積回路の層間絶縁膜の形成方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an organic silicon polymer and a method for forming an interlayer insulating film of a semiconductor integrated circuit using the same.

【0002】大量の情報を高速に処理する必要から、情
報処理装置の主体を構成する半導体装置は集積化が進ん
でLSI やVLSIが実用化されており、更にULSIの実用化が
進められている。
Since it is necessary to process a large amount of information at a high speed, the semiconductor devices forming the main body of an information processing apparatus have been highly integrated, and LSI and VLSI have been put into practical use, and further, ULSI has been put into practical use. ..

【0003】こゝで、集積化はチップの大型化と云うよ
りも素子を構成する単位素子の微細化により行われてお
り、配線の最小線幅はサブミクロン(Sub-micron)に達し
ており、また、電子回路は層間絶縁膜を介する多層構造
がとられている。
Here, the integration is performed by miniaturization of the unit element which constitutes the element rather than by increasing the size of the chip, and the minimum line width of the wiring has reached sub-micron. Also, the electronic circuit has a multilayer structure with an interlayer insulating film interposed.

【0004】そのため、層間絶縁膜の形成材料としては
耐熱性と下地平坦化性に優れていることが必要である。
Therefore, the material for forming the interlayer insulating film is required to have excellent heat resistance and flatness of the underlying layer.

【0005】[0005]

【従来の技術】半導体集積回路の製造において、半導体
基板上には多数の電極や配線などが多層構成されるため
に、その表面は凹凸を多く含み、多数の段差を伴うこと
が避けられないが、この段差の存在は多層配線の信頼性
を著しく低下させている。
2. Description of the Related Art In the manufacture of semiconductor integrated circuits, a large number of electrodes, wirings, etc. are multilayered on a semiconductor substrate. The presence of this step significantly lowers the reliability of the multilayer wiring.

【0006】そのため、層間絶縁膜の必要条件は電気的
絶縁性と耐熱性が優れていること以外に平坦化性が優れ
ていることである。こゝで、層間絶縁膜の形成材料とし
ては無機および有機絶縁物がある。
Therefore, a necessary condition of the interlayer insulating film is that it has excellent flattening property in addition to excellent electrical insulating property and heat resistance. Here, as the material for forming the interlayer insulating film, there are inorganic and organic insulators.

【0007】すなわち、無機絶縁物としては二酸化硅素
(SiO2),窒化硅素(Si3N4), 燐硅酸ガラス( 略称PSG)
などがあり、気相成長法(CVD法) などにより被処理基板
上に膜形成されている。
That is, as the inorganic insulating material, silicon dioxide (SiO 2 ), silicon nitride (Si 3 N 4 ), phosphosilicate glass (abbreviated as PSG) is used.
The film is formed on the substrate to be processed by a vapor phase growth method (CVD method) or the like.

【0008】然し、これらの絶縁膜は電気的特性や耐熱
性などの特性は優れているものゝ、形成に当たって下地
基板の凹凸を忠実に再現することから平坦化の目的には
沿わない。
However, although these insulating films have excellent characteristics such as electrical characteristics and heat resistance, they do not meet the purpose of planarization because they faithfully reproduce the irregularities of the underlying substrate during formation.

【0009】そのため、CVD 法などにより無機絶縁膜を
形成した後に有機絶縁物を塗布して平坦化を行い、次
に、無機絶縁膜の現れるまでドライエッチングを施して
平坦面を得るエッチバック法や無機絶縁膜の形成とスパ
ッタとを同時に行って凸部を削りながら成膜して平坦面
を得るバイアス・スパッタ法の使用などが提案されてい
るが、多大の工数を要するために実用的な方法とは言え
ない。
Therefore, an inorganic insulating film is formed by a CVD method or the like, and then an organic insulating material is applied to planarize it, and then dry etching is performed until the inorganic insulating film appears to obtain a flat surface. A bias sputtering method has been proposed in which the inorganic insulating film is formed and the sputtering is performed at the same time to form a film while scraping the protrusions to obtain a flat surface. However, it is a practical method because it requires a large number of steps. It can not be said.

【0010】一方、有機絶縁物としてはポリイミド樹脂
や硅素樹脂があり、これを溶剤に溶解して得られる塗液
は基板上にスピンコート法により膜形成できるため、平
坦化性には優れているが、幾らかの問題がある。
On the other hand, as the organic insulator, there are polyimide resin and silicon resin, and the coating liquid obtained by dissolving this in a solvent can form a film on the substrate by the spin coating method, and therefore has excellent flatness. But there are some problems.

【0011】すなわち、ポリイミド樹脂は約450 ℃で分
解が生じ、吸湿性も高く、またアルカリ金属などの腐食
性不純物を含んでいると云う欠点がある。また、硅素樹
脂は400 ℃程度の温度で酸化されたり、500 ℃以上の温
度で熱分解したりして、膜の歪みによるクラックが発生
し易いと云う欠点がある。
That is, the polyimide resin is decomposed at about 450 ° C., has a high hygroscopic property, and has a drawback that it contains corrosive impurities such as alkali metals. Further, the silicon resin has a drawback that it is easily oxidized at a temperature of about 400.degree. C. or thermally decomposed at a temperature of 500.degree.

【0012】これらのことから、耐熱性が優れ, 且つ
高純度で吸湿性の少ない有機絶縁材料の開発が望まれて
いる。
From these facts, the heat resistance is excellent, and
It is desired to develop an organic insulating material having high purity and low hygroscopicity.

【0013】[0013]

【発明が解決しようとする課題】VLSIやULSIなど多層配
線が必要な集積回路の形成に当たっては耐熱性が優れ、
且つ基板の平坦化性の優れた層間絶縁膜が必要である。
When forming an integrated circuit such as VLSI or ULSI that requires multi-layer wiring, it has excellent heat resistance,
In addition, an interlayer insulating film having excellent substrate flatness is required.

【0014】また、多層配線構造をとる場合は、層間絶
縁膜を貫いてバイアホール(Via-hole)を設け、上下の配
線を回路接続することが必要であり、その際、従来のよ
うにレジストを被覆して選択露光し、バイアホール形成
部を選択的にエッチングするのではなく、有機絶縁材料
自体が感光性を有しており、紫外線照射部のみが溶剤可
溶性となれば工程の短縮に寄与する所が大きい。
Further, when a multilayer wiring structure is adopted, it is necessary to provide a via-hole through the interlayer insulating film and connect the upper and lower wirings to the circuit. The organic insulating material itself has photosensitivity rather than selectively etching the via hole formation part by coating with, and contributes to shortening the process if only the ultraviolet irradiation part becomes solvent soluble There is a lot to do.

【0015】そこで、かゝる材料の開発が課題である。Therefore, development of such a material is an issue.

【0016】[0016]

【課題を解決するための手段】上記の課題は次の一般式
(1)で表され重量平均分子量が3,000 〜5,000,000 の重
合体であって、該重合体中に含まれるシラノール基の水
素原子が次の一般式(2) で表されるトリオルガノシリル
基により置換されていることを特徴として有機硅素重合
体を作り、これを用いて半導体集積回路の層間絶縁膜を
形成するか、或いはこの有機硅素重合体にナフトキノン
ジアジドを添加して感光性耐熱樹脂組成物を作り、これ
を用いて半導体集積回路の層間絶縁膜を形成することを
特徴として半導体装置の製造方法を構成することにより
解決することができる。
[Means for Solving the Problems]
A polymer represented by (1) and having a weight average molecular weight of 3,000 to 5,000,000, wherein the hydrogen atom of the silanol group contained in the polymer is replaced by a triorganosilyl group represented by the following general formula (2). The organic heat-resistant resin composition is prepared by forming an organic silicon polymer and forming an interlayer insulating film of a semiconductor integrated circuit using this, or by adding naphthoquinone diazide to this organic silicon polymer. This can be solved by configuring a method for manufacturing a semiconductor device, which is characterized in that an interlayer insulating film of a semiconductor integrated circuit is formed by using this.

【0017】[ RA SiO2/2(RB )1/2] n ・・・・(1) 但し、 RA はその20%以上がヒドロキシ置換のアリール
基で、残りは低級アルキル基、RB はアルキレン基、n
は10〜5,0000の整数、 ( RC )3Si- ・・・・(2) 但し、 RC はエポキシ基,低級アルキル基またはアリー
ル基を表し同一または異なっていてもよい。
[ RA SiO 2/2 (R B ) 1/2 ] n ... (1) where R A is 20% or more of the hydroxy-substituted aryl group, the rest is a lower alkyl group, R B is an alkylene group, n
It is an integer of 10~5,0000, (R C) 3 Si- ···· (2) where, R C is an epoxy group may be the same or different represents a lower alkyl group or an aryl group.

【0018】[0018]

【作用】発明者等は上記の必要条件を満たす方法として
ラダー型シロキサン構造をとる従来の有機硅素重合体を
改良した。
The present inventors have improved the conventional organic silicon polymer having a ladder-type siloxane structure as a method for satisfying the above requirements.

【0019】すなわち、1,4-ビス( ジヒドロキシメチル
シリル) メタンをメチルイソブチルケトンに溶解し、引
き続いて生成する水を除去しながら還流条件下で縮合す
ることによりジメチルシルアルキレンジシロキサンのよ
うにシロキサン結合とシルアルキレン結合を交互に有す
る有機硅素重合体は公知であるが、本発明に係る有機硅
素重合体は低級アルキル基の20%以上をヒドロキシ置換
のアリール基で構成すると共に、この重合体中に含まれ
るシラノール基の水素(H)原子をトリオルガノシリル
基で置換させたものである。
That is, 1,4-bis (dihydroxymethylsilyl) methane is dissolved in methyl isobutyl ketone and subsequently condensed under reflux conditions while removing water produced, thereby forming a siloxane such as dimethylsilalkylenedisiloxane. Organic silicon polymers having alternating bonds and silalkylene bonds are known, but the organic silicon polymer according to the present invention comprises 20% or more of lower alkyl groups with hydroxy-substituted aryl groups, and The hydrogen (H) atom of the silanol group contained in is substituted with a triorganosilyl group.

【0020】構造式(3) と(4) は理解を助けるために一
般式(1) と(2) の一般式を書き直したものであり、何れ
かの構造をとる。
Structural formulas (3) and (4) are rewritten general formulas of general formulas (1) and (2) to facilitate understanding, and take either structure.

【0021】[0021]

【化1】 [Chemical 1]

【0022】[0022]

【化2】 [Chemical 2]

【0023】この構造式において、 RA はその20%以上
がC6H4(OH),C6H3(OH)2などのヒドロキシ置換のアリール
基であり、残りがCH3,C2H5,n-C3H7,i-C3H7,C6H5,C6H4-C
H3などの低級アルキル基である。
In this structural formula, 20% or more of R A is a hydroxy-substituted aryl group such as C 6 H 4 (OH), C 6 H 3 (OH) 2 and the rest is CH 3 , C 2 H 5 , nC 3 H 7 , iC 3 H 7 , C 6 H 5 , C 6 H 4 -C
A lower alkyl group such as H 3 .

【0024】また、 RB は-CH2-,-C2H4-などのアルキレ
ンであり、 RC はエポキシ基,低級アルキル基またはア
リール基である。本発明に係る有機硅素重合体はこのよ
うな構造をもつポリオルガノシルアルキレンシロキサン
であるが、この分子鎖中でのシルアルキレン結合とシロ
キサン結合の比率は何れであってもよいものゝ、絶縁膜
にクラックを生じなくするためには25重量%以上のアル
キレン結合を有していることが好ましい。
R B is an alkylene such as —CH 2 —, —C 2 H 4 — and R C is an epoxy group, a lower alkyl group or an aryl group. The organic silicon polymer according to the present invention is a polyorganosyl alkylene siloxane having such a structure, but the ratio of the sil alkylene bond and the siloxane bond in the molecular chain may be any, and the insulating film In order to prevent the occurrence of cracks, it is preferable to have 25% by weight or more of alkylene bonds.

【0025】このような有機硅素重合体を用いて層間絶
縁膜を形成すると配線材料の熱膨張に起因する応力を受
けにくいためにクラックを生じることがない。次の特徴
はこの材料にナフトキノンジアジドの添加により感光性
樹脂組成物を形成でき、アルカリ現像が可能になること
である。
When the interlayer insulating film is formed using such an organic silicon polymer, cracks are not generated because the stress due to the thermal expansion of the wiring material is not easily received. The next feature is that a photosensitive resin composition can be formed by adding naphthoquinonediazide to this material, and alkali development becomes possible.

【0026】すなわち、本発明に係るポリオルガノシル
アルキレンシロキサンは一般式(1)に示す RA はその20
%以上がC6H4(OH),C6H3(OH)2などのヒドロキシ置換のア
リール基を有するためにテトラメチルアンモニウムハイ
ドロオキサイド( 略称TMAH)のようなアルカリ現像液に
可溶であるが、これにナフトキノンジアジドを添加する
ことによりポジ型のレジストを構成することができる。
That is, in the polyorganosylalkylene siloxane according to the present invention, R A shown in the general formula (1) is 20
% Or more have hydroxy-substituted aryl groups such as C 6 H 4 (OH) and C 6 H 3 (OH) 2 and are soluble in alkali developers such as tetramethylammonium hydroxide (abbreviated as TMAH). However, a positive resist can be formed by adding naphthoquinone diazide to this.

【0027】すなわち、光照射を行わない状態ではナフ
トキノンジアジドの溶解抑止効果により本発明に係るポ
リオルガノシルアルキレンシロキサンはアルカリ現像液
には不溶であるが、光照射によりナフトキノンジアジド
はN2を離脱してカルベンを生じ、ケテンを経て水と反応
してカルボン酸に変質し、アルカリ可溶性となる。
[0027] That is, in a state of not performing light irradiation polyorganosiloxane silalkylenesiloxane according to the present invention by the dissolution inhibiting effect of the naphthoquinone diazide is insoluble in an alkali developer, naphthoquinonediazide by light irradiation left the N 2 To form carbene, which reacts with water through ketene to be converted to a carboxylic acid and becomes alkali-soluble.

【0028】そして、溶解抑止効果を失うためにポリオ
ルガノシルアルキレンシロキサンはアルカリ可溶性とな
るのである。このように本発明に係るポリオルガノシル
アルキレンシロキサンにナフトキノンジアジドを添加し
てなる感光性樹脂組成物はポジ型レジストを形成するこ
とができ、この使用によりバイアホールの形成が容易と
なる。
The polyorganosylalkylene siloxane becomes alkali-soluble in order to lose its dissolution inhibiting effect. As described above, the photosensitive resin composition obtained by adding naphthoquinonediazide to the polyorganosylalkylenesiloxane according to the present invention can form a positive resist, and the use thereof facilitates the formation of via holes.

【0029】[0029]

【実施例】【Example】

合成例1:(請求項1関連) 容量が300cc の四つ口フラスコに、メチルイソブチルケ
トン100cc と水30ccとを加え、触媒としてトリエチルア
ミンを15ccを加え、攪拌を続けながら室温で1,4-ビス(
ヒドロキシフェニルジクロシリル) エタン10gをテトラ
ヒドロフラン50ccに溶解し、40分かけて滴下した。
Synthesis Example 1: (Related to Claim 1) To a four-necked flask having a capacity of 300 cc, 100 cc of methyl isobutyl ketone and 30 cc of water were added, 15 cc of triethylamine was added as a catalyst, and 1,4-bis (1,4-bis) bis (bisphenol) was added at room temperature while stirring. (
10 g of hydroxyphenyldichlorosilyl) ethane was dissolved in 50 cc of tetrahydrofuran and added dropwise over 40 minutes.

【0030】滴下終了後に、この反応系を80℃に保持し
て2時間に亙って攪拌を続けた。そして、反応が終わっ
て室温にまで冷却した後、多量の水で水層が中性になる
まで洗浄した。
After completion of the dropping, the reaction system was kept at 80 ° C. and stirring was continued for 2 hours. After the reaction was completed, the mixture was cooled to room temperature, and then washed with a large amount of water until the aqueous layer became neutral.

【0031】洗浄した反応溶液から共沸により残存した
水を取り除いた後、触媒としてピリジン20ccを加え、40
℃に加温した後、グリシジルエポキシジメチルイソシア
ナトシラン20ccを添加し、この温度で5時間反応させて
未反応の水酸基の水素原子を置換した。
After removing the water remaining by azeotropy from the washed reaction solution, 20 cc of pyridine was added as a catalyst, and 40
After heating to 0 ° C., 20 cc of glycidylepoxydimethylisocyanatosilane was added and reacted at this temperature for 5 hours to replace hydrogen atoms of unreacted hydroxyl groups.

【0032】反応終了後、反応溶液を多量の水に投入し
て樹脂を析出させて回収した。そして、沈澱回収後の樹
脂を凍結乾燥して5.5 gの白色粉末を得た。この有機硅
素重合体について、ゲルパーミエーションクロマトグラ
フによるポリスチレン換算により求めた重量平均分子量
は5.2 ×104 であった。
After the reaction was completed, the reaction solution was poured into a large amount of water to precipitate the resin, and the resin was recovered. The precipitate-collected resin was freeze-dried to obtain 5.5 g of white powder. The weight average molecular weight of this organic silicon polymer determined by gel permeation chromatography and converted into polystyrene was 5.2 × 10 4 .

【0033】この樹脂をメチルイソブチルケトンに溶解
して25重量%樹脂溶液を作った。 合成例2:(請求項3関連) 合成例1で形成した重量平均分子量が5.2 ×104 の有機
硅素重合体の25重量%メチルイソブチルケトン溶液に10
重量%のナフトキノンジアジドを添加して感光性樹脂液
を作った。 実施例1:(請求項2関連) 半導体素子を形成し、第1層目のAl配線を施してあるSi
基板上に合成例1で得た25重量%樹脂液を1.5 μm の厚
さにスピンコートした。
This resin was dissolved in methyl isobutyl ketone to make a 25 wt% resin solution. Synthetic Example 2: (Related to Claim 3) A 25 wt% solution of the organosilicon polymer having a weight average molecular weight of 5.2 × 10 4 formed in Synthetic Example 1 in a solution of 25% by weight methylisobutylketone was used.
A photosensitive resin liquid was prepared by adding naphthoquinonediazide in a weight percentage. Example 1 (Related to Claim 2) A semiconductor element is formed and Si having a first layer of Al wiring is formed.
The 25 wt% resin solution obtained in Synthesis Example 1 was spin-coated on the substrate to a thickness of 1.5 μm.

【0034】こゝで、Al配線の厚さは1mm, 最小線幅は
1μm ,最小線間隔は1.5μm である。樹脂液は塗布後
に80℃で20分間乾燥し、更に窒素(N2) 気流中で450 ℃
で1時間の熱処理を施した。
The thickness of the Al wiring is 1 mm, the minimum line width is 1 μm, and the minimum line interval is 1.5 μm. After application, the resin liquid is dried at 80 ° C for 20 minutes and then in a nitrogen (N 2 ) stream at 450 ° C.
Was heat-treated for 1 hour.

【0035】熱処理後の基板表面の段差は約0.2 μm で
あり、配線によって生じた段差は平坦化されていた。次
に、この絶縁膜にレジストを使用する写真蝕刻技術を用
いてビアホールを形成し、この上に二層目のAl配線を行
い、保護層として厚さが1.2 μm のPSG 膜を常圧CVD 法
により形成した後、電極取り出し用の窓開けを行って半
導体装置を得ることができた。
The step on the substrate surface after the heat treatment was about 0.2 μm, and the step caused by the wiring was flat. Next, a via hole is formed in this insulating film by using a photo-etching technique that uses a resist, a second layer of Al wiring is formed on it, and a 1.2 μm-thick PSG film is formed as a protective layer by the atmospheric pressure CVD method. Then, a window for taking out an electrode was opened to obtain a semiconductor device.

【0036】この半導体装置は大気中で450 ℃で1時間
の加熱試験および−65℃〜+150 ℃の10回に亙る熱サイ
クル試験後においても全く不良は見出せなかった。 実施例2:(請求項4関連) 半導体素子を形成し、第1層目のAl配線を施してあるSi
基板上に、合成例2で得た感光性樹脂液を1.5 μm の厚
さにスピンコートした。
No defect was found in this semiconductor device even after a heating test at 450 ° C. for 1 hour in the air and a thermal cycle test of 10 times at −65 ° C. to + 150 ° C. Example 2 (Related to Claim 4) A semiconductor element is formed, and a first layer of Al wiring is applied to Si.
The photosensitive resin solution obtained in Synthesis Example 2 was spin-coated on the substrate to a thickness of 1.5 μm.

【0037】こゝで、Al配線の厚さは1mm, 最小線幅は
1μm ,最小線間隔は1.5μm である。樹脂液は塗布後
に80℃で20分間乾燥し、更に窒素(N2) 気流中で450 ℃
で1時間の熱処理を施した。
Here, the thickness of the Al wiring is 1 mm, the minimum line width is 1 μm, and the minimum line interval is 1.5 μm. After application, the resin liquid is dried at 80 ° C for 20 minutes and then in a nitrogen (N 2 ) stream at 450 ° C.
Was heat-treated for 1 hour.

【0038】熱処理後の基板表面の段差は約0.2 μm で
あり、配線によって生じた段差は平坦化されていた。次
に、この樹脂膜のビアホール形成位置に約100mJ/cm2
露光量で波長463nmのg線を用いて紫外線露光を行った
後、TMAHアルカリ現像液に浸漬し、直径0.2μm のビア
ホールを形成した後、乾燥とN2気流中で450 ℃で1時間
の処理を行いナフトキノンジアジドを分解除去した。
The step on the substrate surface after the heat treatment was about 0.2 μm, and the step caused by the wiring was flattened. Next, the resin film is exposed to ultraviolet rays using a g-line with a wavelength of 463 nm at a via hole formation position of about 100 mJ / cm 2 and then immersed in a TMAH alkaline developer to form a via hole with a diameter of 0.2 μm. After that, naphthoquinonediazide was decomposed and removed by drying and treatment at 450 ° C. for 1 hour in N 2 stream.

【0039】次に、この上に二層目のAlの配線を行い、
保護層として厚さが1.2 μm のPSG膜を常圧CVD 法によ
り形成した後、電極取り出し用の窓開けを行って半導体
装置を得ることができた。
Next, a second layer of Al wiring is formed on this,
A 1.2 μm-thick PSG film was formed as a protective layer by atmospheric pressure CVD, and then a window for taking out electrodes was opened to obtain a semiconductor device.

【0040】この半導体装置は大気中で450 ℃で1時間
の加熱試験および−65℃〜+150 ℃の10回に亙る熱サイ
クル試験後においても全く不良は見出せなかった。
No defects were found in this semiconductor device even after a heating test at 450 ° C. for 1 hour in the air and a thermal cycle test of 10 times at −65 ° C. to + 150 ° C.

【0041】[0041]

【発明の効果】本発明の実施により耐熱性と平坦性に優
れ、且つクラック発生のない層間絶縁膜を得ることがで
き、また、本発明に係る有機硅素重合体にナフトキノン
ジアジドを添加することにより感光性を有する樹脂組成
物を得ることができ、この使用によりビアホールを備え
た層間絶縁層を容易に形成することが可能となる。
By carrying out the present invention, it is possible to obtain an interlayer insulating film which is excellent in heat resistance and flatness and does not cause cracks, and by adding naphthoquinonediazide to the organic silicon polymer according to the present invention. A resin composition having photosensitivity can be obtained, and by using this, an interlayer insulating layer having a via hole can be easily formed.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 次の一般式(1)で表され重量平均分子量
が3,000 〜5,000,000の重合体であって、該重合体中に
含まれるシラノール基の水素原子が次の一般式(2) で表
されるトリオルガノシリル基により置換されていること
を特徴とする有機硅素重合体。 [ RA SiO2/2(RB )1/2] n・・・・(1) 但し、 RA はその20%以上がヒドロキシ置換のアリール
基で、残りは低級アルキル基、 RB はアルキレン基、 n は10〜5,0000の整数、 ( RC )3Si- ・・・・(2) 但し、 RC はエポキシ基,低級アルキル基またはアリー
ル基を表し同一または異なっていてもよい。
1. A polymer represented by the following general formula (1) and having a weight average molecular weight of 3,000 to 5,000,000, wherein the hydrogen atom of the silanol group contained in the polymer is represented by the following general formula (2): An organic silicon polymer characterized by being substituted with a triorganosilyl group represented. [ RA SiO 2/2 (R B ) 1/2 ] n ··· (1) However, 20% or more of R A is a hydroxy-substituted aryl group, the rest is a lower alkyl group, and R B is an alkylene. radical, n is an integer of 10~5,0000, (R C) 3 Si- ···· (2) where, R C is an epoxy group may be the same or different represents a lower alkyl group or an aryl group.
【請求項2】 請求項1記載の有機硅素重合体を用いて
半導体集積回路の層間絶縁膜を形成することを特徴とす
る半導体装置の製造方法。
2. A method of manufacturing a semiconductor device, comprising forming an interlayer insulating film of a semiconductor integrated circuit by using the organic silicon polymer according to claim 1.
【請求項3】 請求項1記載の有機硅素重合体にナフト
キノンジアジドを添加してなることを特徴とする感光性
耐熱樹脂組成物。
3. A photosensitive heat-resistant resin composition obtained by adding naphthoquinonediazide to the organic silicon polymer according to claim 1.
【請求項4】 請求項3記載の感光性耐熱樹脂組成物を
用いて半導体集積回路の層間絶縁膜を形成することを特
徴とする半導体装置の製造方法。
4. A method of manufacturing a semiconductor device, which comprises forming an interlayer insulating film of a semiconductor integrated circuit using the photosensitive heat-resistant resin composition according to claim 3.
JP3331002A 1991-12-16 1991-12-16 Organosilicon polymer and production of semiconductor device Withdrawn JPH05163353A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3331002A JPH05163353A (en) 1991-12-16 1991-12-16 Organosilicon polymer and production of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3331002A JPH05163353A (en) 1991-12-16 1991-12-16 Organosilicon polymer and production of semiconductor device

Publications (1)

Publication Number Publication Date
JPH05163353A true JPH05163353A (en) 1993-06-29

Family

ID=18238734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3331002A Withdrawn JPH05163353A (en) 1991-12-16 1991-12-16 Organosilicon polymer and production of semiconductor device

Country Status (1)

Country Link
JP (1) JPH05163353A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006054244A (en) * 2004-08-10 2006-02-23 Nippon Steel Corp Electromagnetic steel sheet with heat-resistance adhesive insulating film and its manufacturing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006054244A (en) * 2004-08-10 2006-02-23 Nippon Steel Corp Electromagnetic steel sheet with heat-resistance adhesive insulating film and its manufacturing method
JP4571838B2 (en) * 2004-08-10 2010-10-27 新日本製鐵株式会社 Electrical steel sheet with heat-resistant adhesive insulating film and method for producing the same

Similar Documents

Publication Publication Date Title
JP3773845B2 (en) Positive photosensitive polyimide precursor and composition containing the same
US5057396A (en) Photosensitive material having a silicon-containing polymer
JP2000302791A (en) Silicon compound, insulating film forming material and semiconductor apparatus
JP4760026B2 (en) Positive photosensitive resin composition, semiconductor device and display element using the positive photosensitive resin composition, and manufacturing method of semiconductor device and display element
JPH05163353A (en) Organosilicon polymer and production of semiconductor device
US5290899A (en) Photosensitive material having a silicon-containing polymer
JPH0551458A (en) Organosilicon polymer and method for producing semiconductor device using the same polymer
JP2606321B2 (en) Photosensitive heat-resistant resin composition and method for manufacturing semiconductor device
JP7418516B2 (en) Hardmask composition, hardmask layer and pattern forming method
JPH0263057A (en) Photosensitive heat resistant resin composition and production of integrated circuit
JPH04184444A (en) Production of photosensitive heat resistant resin composition and semiconductor device
JP2000347404A (en) Photosensitive polymer composition and electronic parts using the same and its manufacture
JPH0545882A (en) Production of photosensitive heat-resistant resin composition and insulating layer
JPH05156021A (en) Organic silicon polymer and production of semiconductor device
JPH0517686A (en) Heat-resistant photosensitive resin composition and formation of interlayer insulating film
JP4126580B2 (en) Photosensitive polymer composition and method for producing the same, method for producing pattern, and electronic component
JPH04289865A (en) Manufacture for wiring structure
JPS62293239A (en) Photosensitive high-polymer film and multi-layered wiring board using said film
JPH05202191A (en) Organosilicon polymer and production of semiconductor device
JPH04104253A (en) Organosilicon polymer, its manufacture, semiconductor device using same, and its manufacture
CN107430334B (en) Positive photosensitive resin composition, method for producing patterned cured film, and electronic component
JP2938116B2 (en) Material for forming interlayer insulating film and method for manufacturing semiconductor device
JPH0642076B2 (en) Pattern forming material and multilayer wiring board using the same
JP2671902B2 (en) Method for forming multi-layer wiring of semiconductor integrated circuit
JPH0343455A (en) Photosensitive heat-resistant resin composition and semiconductor device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990311