JPH05156021A - Organic silicon polymer and production of semiconductor device - Google Patents

Organic silicon polymer and production of semiconductor device

Info

Publication number
JPH05156021A
JPH05156021A JP32721391A JP32721391A JPH05156021A JP H05156021 A JPH05156021 A JP H05156021A JP 32721391 A JP32721391 A JP 32721391A JP 32721391 A JP32721391 A JP 32721391A JP H05156021 A JPH05156021 A JP H05156021A
Authority
JP
Japan
Prior art keywords
organic silicon
silicon polymer
insulating film
formula
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP32721391A
Other languages
Japanese (ja)
Inventor
Shunichi Fukuyama
俊一 福山
Tomoko Kobayashi
倫子 小林
Yoshiyuki Okura
嘉之 大倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP32721391A priority Critical patent/JPH05156021A/en
Publication of JPH05156021A publication Critical patent/JPH05156021A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To provide an interlaminar insulating film using an organic silicon polymer, excellent in the heat resistance and flatness and free from the generation of cracks. CONSTITUTION:An organic silicon polymer of formula I (RA is lower fluoroalkyl; (n) is 10-50000) having a weight-average mol.wt. of 1000-5000000, or an organic silicon polymer produced by substituting a part of the hydrogen atoms of silanol groups contained in the organic silicon polymer of formula I with triorganosilyl groups of formula II (RB is lower fluoroalkyl or aryl) is employed to form the interlaminar insulating film of a semiconductor integrated circuit.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は有機硅素重合体とこれを
用いた半導体集積回路の層間絶縁膜の形成方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an organic silicon polymer and a method for forming an interlayer insulating film of a semiconductor integrated circuit using the same.

【0002】大量の情報を高速に処理する必要から、情
報処理装置の主体を構成する半導体装置は集積化が進ん
でLSI やVLSIが実用化されており、更にULSIの実用化が
進められている。
Since it is necessary to process a large amount of information at a high speed, the semiconductor devices forming the main body of an information processing apparatus have been highly integrated, and LSI and VLSI have been put into practical use, and further, ULSI has been put into practical use. ..

【0003】こゝで、集積化はチップの大型化と云うよ
りも素子を構成する単位素子の微細化により行われてお
り、配線の最小線幅はサブミクロン(Sub-micron)に達し
ており、また、電子回路は層間絶縁膜を介する多層構造
がとられている。
Here, the integration is performed by miniaturization of the unit element which constitutes the element rather than by increasing the size of the chip, and the minimum line width of the wiring has reached sub-micron. Also, the electronic circuit has a multilayer structure with an interlayer insulating film interposed.

【0004】そのため、層間絶縁膜の形成材料としては
耐熱性と下地平坦化性に優れると共に低誘電率であるこ
とが必要である。
Therefore, it is necessary that the material for forming the interlayer insulating film is excellent in heat resistance and flatness of the underlayer and has a low dielectric constant.

【0005】[0005]

【従来の技術】半導体集積回路の製造において、半導体
基板上には多数の電極や配線などが多層構成されるため
に、その表面は凹凸を多く含み、多数の段差を伴うこと
が避けられないが、この段差の存在は多層配線の信頼性
を著しく低下させる。
2. Description of the Related Art In the manufacture of semiconductor integrated circuits, a large number of electrodes, wirings, etc. are multilayered on a semiconductor substrate. The presence of this step significantly lowers the reliability of the multilayer wiring.

【0006】そのため、層間絶縁膜の必要条件は電気的
絶縁性と耐熱性が優れていること以外に平坦化性が優れ
ていることが必要である。こゝで、層間絶縁膜の形成材
料としては無機および有機絶縁物が用いられている。
For this reason, the interlayer insulating film is required to have excellent flattening property in addition to excellent electrical insulation and heat resistance. Here, inorganic and organic insulators are used as the material for forming the interlayer insulating film.

【0007】すなわち、無機絶縁物としては二酸化硅素
(SiO2),窒化硅素(Si3N4), 燐硅酸ガラス( 略称PSG)
などがあり、気相成長法(CVD法) などにより被処理基板
上に膜形成されている。
That is, as the inorganic insulating material, silicon dioxide (SiO 2 ), silicon nitride (Si 3 N 4 ), phosphosilicate glass (abbreviated as PSG) is used.
The film is formed on the substrate to be processed by a vapor phase growth method (CVD method) or the like.

【0008】然し、これらの絶縁膜は電気的特性や耐熱
性などの特性は優れているものゝ、形成に当たって下地
基板の凹凸を忠実に再現するために平坦化の目的には沿
わない。
However, although these insulating films have excellent characteristics such as electrical characteristics and heat resistance, they do not meet the purpose of flattening in order to faithfully reproduce the irregularities of the underlying substrate during formation.

【0009】そのため、CVD 法などにより無機絶縁膜を
形成した後に有機絶縁物を塗布して平坦化を行い、次
に、無機絶縁膜の現れるまでドライエッチングを施して
平坦面を得るエッチバック法や無機絶縁膜の形成とスパ
ッタを同時に行って凸部を削りながら成膜して平坦面を
得るバイアス・スパッタ法の使用などが提案されている
が、多大の工数と時間を要するために実用的な方法であ
るとは言えない。
Therefore, an inorganic insulating film is formed by a CVD method or the like, and then an organic insulating material is applied to planarize it, and then dry etching is performed until the inorganic insulating film appears to obtain a flat surface. It is proposed to use the bias sputtering method to form a flat surface by forming an inorganic insulating film and sputtering at the same time while scraping the convex portion, but it requires a lot of man-hours and time, so it is practical. Not a method.

【0010】一方、有機絶縁物としてはポリイミド樹脂
や硅素樹脂があり、これを溶剤に溶解して得られる塗液
は基板上にスピンコート法により膜形成できるため、平
坦化性には優れているが、幾らかの問題がある。
On the other hand, as the organic insulator, there are polyimide resin and silicon resin, and the coating liquid obtained by dissolving this in a solvent can form a film on the substrate by the spin coating method, and therefore has excellent flatness. But there are some problems.

【0011】すなわち、ポリイミド樹脂は約450 ℃で分
解が生じ、吸湿性も高く、またアルカリ金属などの腐食
性不純物を含んでいると云う欠点がある。また、硅素樹
脂は400 ℃程度の温度で酸化されたり、500 ℃以上の温
度で熱分解したりして、膜の歪みによるクラックが発生
し易いと云う欠点がある。
That is, the polyimide resin is decomposed at about 450 ° C., has a high hygroscopic property, and has a drawback that it contains corrosive impurities such as alkali metals. Further, the silicon resin has a drawback that it is easily oxidized at a temperature of about 400.degree. C. or thermally decomposed at a temperature of 500.degree.

【0012】また、絶縁材料としては誘電率(ε) が小
さいことが必要である。すなわち、多層配線構造をとる
場合に必要なことは、層間の漏話(Cross-talk)が少な
く、また電気信号の遅延時間(τ) を少なくすることで
あり、そのためには誘電率(ε) の小さな絶縁材料を使
用する必要がある。
The insulating material must have a small dielectric constant (ε). In other words, what is required when a multilayer wiring structure is adopted is to reduce cross-talk between layers and to reduce the delay time (τ) of electric signals, and for that purpose, the dielectric constant (ε) It is necessary to use a small insulating material.

【0013】こゝで、電気信号の遅延時間(τ) は、 τ=ε1/2 /c ・・・・・・・(3) 但し、c は光の速度 で与えられる。Here, the delay time (τ) of the electric signal is τ = ε 1/2 / c (3) where c is the speed of light.

【0014】これらのことから、誘電率が小さく, 耐熱
性が優れ,且つ 高純度で吸湿性の少ない有機絶縁材料の
開発が望まれている。
For these reasons, it is desired to develop an organic insulating material having a low dielectric constant, excellent heat resistance, high purity and low hygroscopicity.

【0015】[0015]

【発明が解決しようとする課題】VLSIやULSIなど多層配
線が必要な集積回路の形成に当たっては誘電率が小さ
く、耐熱性が優れ、且つ基板の平坦化性の優れた層間絶
縁膜が必要である。
When forming an integrated circuit such as VLSI or ULSI that requires multi-layer wiring, an interlayer insulating film having a small dielectric constant, excellent heat resistance, and excellent planarization of the substrate is required. ..

【0016】そこで、この開発が課題である。Therefore, this development is an issue.

【0017】[0017]

【課題を解決するための手段】上記の課題は次の一般式
(1)で表され1000〜5,000,000 の重量平均分子量を有す
る有機硅素重合体を用いるか、或いは、この有機硅素重
合体中に含まれるシラノール基の水素原子の一部を次の
一般式(2) で表されるトリオルガノシリル基で置換した
有機硅素重合体を用いて半導体集積回路の層間絶縁膜を
構成することにより解決することができる。
[Means for Solving the Problems]
An organic silicon polymer having a weight average molecular weight of 1000 to 5,000,000 represented by (1) is used, or a part of hydrogen atoms of a silanol group contained in the organic silicon polymer is replaced by the following general formula (2). The problem can be solved by forming an interlayer insulating film of a semiconductor integrated circuit using an organic silicon polymer substituted with a triorganosilyl group represented by

【0018】( RA SiO1.5) n ・・・・・・・(1) 但し、 RA は低級フルオロアルキル基、nは10〜50,000
の整数 ( RB )3Si- ・・・・・・・・(2) 但し、 RB は低級フルオロアルキル基またはアリール
基、
( RA SiO 1.5 ) n ... (1) where RA is a lower fluoroalkyl group and n is 10 to 50,000.
Integer (R B) 3 Si- ········ ( 2) where, R B is a lower fluoroalkyl group or an aryl group,

【0019】[0019]

【作用】発明者等は上記の必要条件を満たす方法として
有機硅素重合体の中に弗素原子を導入した。
The present inventors have introduced a fluorine atom into an organic silicon polymer as a method for satisfying the above requirements.

【0020】すなわち、弗素樹脂はポリテトラフルオロ
エチレン( 商品名テフロン) で代表されるように他の樹
脂に比較して耐熱性, 電気絶縁性, 耐薬品性に優れ、ま
た誘電率(ε) が小さいと云う特徴がある。
That is, the fluororesin is excellent in heat resistance, electric insulation and chemical resistance as compared with other resins as represented by polytetrafluoroethylene (trade name Teflon), and has a dielectric constant (ε). It has the characteristic of being small.

【0021】そこで、(1) の一般式で示すようにラダー
型シロキサン構造をとる有機硅素重合体のアルキル基の
代わりに低級フルオロアルキル基を用いるか、或いは更
に有機硅素重合体の末端にあるシラノール基の水素
(H)原子の一部を(2) の一般式で示されるトリオルガ
ノシリル基で置換することにより低誘電率化と耐熱性を
向上するものである。
Therefore, as shown by the general formula (1), a lower fluoroalkyl group is used in place of the alkyl group of the organic silicon polymer having a ladder type siloxane structure, or silanol at the end of the organic silicon polymer is further used. By substituting a part of hydrogen (H) atoms of the group with a triorganosilyl group represented by the general formula (2), the low dielectric constant and the heat resistance are improved.

【0022】なお、構造式(4) は理解を容易にするため
に上記(1) 式を書き改めたもの、また構造式(5) は上記
(2) 式に関連する低級フルオロアルキル基を二個置換し
た場合を例示している。
Structural formula (4) is a modification of the above formula (1) for easy understanding, and structural formula (5) is the above formula.
The case where two lower fluoroalkyl groups related to formula (2) are substituted is illustrated.

【0023】こゝで、低級フルオロアルキル基としては
-CF3,-C2F5などが該当する。
Here, as the lower fluoroalkyl group,
-CF 3 , -C 2 F 5 etc. are applicable.

【0024】[0024]

【化1】 [Chemical 1]

【0025】[0025]

【化2】 なお、本発明に係るポリオルガノシルセスキオキサン樹
脂は多くの有機溶媒に可溶であり、従来の有機硅素重合
体と同様にスピンコート法により被処理基板上に成膜が
可能である。
[Chemical 2] The polyorganosilsesquioxane resin according to the present invention is soluble in many organic solvents and can be formed into a film on a substrate to be processed by spin coating as in the case of conventional organic silicon polymers.

【0026】従って、段差を伴う基板面の平坦化を容易
に達成することができ、また、従来の樹脂に較べると誘
電率が低いために電気信号の伝送特性を向上することが
できる。
Therefore, it is possible to easily achieve the flattening of the substrate surface with a step, and it is possible to improve the electric signal transmission characteristic because the dielectric constant is lower than that of the conventional resin.

【0027】[0027]

【実施例】【Example】

合成例1:(請求項1関連) 容量が300cc の四っ口フラスコに、メチルイソブチルケ
トンを100cc,触媒としてトリエチルアミンを15cc, フル
オロメチルトリクロロシランを10gを加え、攪拌を続け
ながら−60℃に冷却した。
Synthesis Example 1 (related to claim 1) To a four-necked flask having a capacity of 300 cc, 100 cc of methyl isobutyl ketone, 15 cc of triethylamine as a catalyst and 10 g of fluoromethyltrichlorosilane were added, and the mixture was cooled to −60 ° C. while continuing stirring. did.

【0028】次に、純水30ccをこの四っ口フラスコに40
分かけて滴下した。滴下終了後に、この反応系を2.0 ℃
/分の速度で昇温し、80℃に保持して2時間に亙って攪
拌を続けた。
Next, 30 cc of pure water was added to this four-necked flask.
It dripped over minutes. After the dropping is completed, the reaction system is heated to 2.0 ° C.
The temperature was raised at a rate of / min, the temperature was maintained at 80 ° C, and stirring was continued for 2 hours.

【0029】反応が終わって室温にまで冷却した後、多
量の水で洗浄した。洗浄した反応溶液はエバポレータを
用いて濃縮し、アセトニトリルにより沈澱を回収し、凍
結乾燥させることにより白色粉末Aを得た。 合成例2:(請求項2関連) 合成例1で得たポリマを再びメチルイソブチルケトンに
溶解し、触媒としてピリジンを20cc加え、60℃に加温し
た後、フェニルジ( トリフルオロメチル) クロロシラン
を20cc添加し、この温度で3時間に亙って反応させ、未
反応の水酸基の水素原子をビニルジメチルシリル基で置
換した。
After the reaction was completed and the mixture was cooled to room temperature, it was washed with a large amount of water. The washed reaction solution was concentrated using an evaporator, the precipitate was collected with acetonitrile, and freeze-dried to obtain white powder A. Synthetic Example 2: (Related to Claim 2) The polymer obtained in Synthetic Example 1 was again dissolved in methyl isobutyl ketone, 20 cc of pyridine was added as a catalyst, the mixture was heated to 60 ° C, and phenyldi (trifluoromethyl) chlorosilane was added to 20 cc. After the addition, the reaction was carried out at this temperature for 3 hours, and the hydrogen atoms of the unreacted hydroxyl groups were replaced with vinyldimethylsilyl groups.

【0030】反応が終了した後、反応溶液を多量のアセ
トニトリルに投入して樹脂を析出させ回収し、凍結乾燥
させることにより白色粉末Bを得た。 実施例1:(請求項3関連) 合成例1で得た白色粉末Aをメチルイソブチルケトンに
溶解して20重量%の樹脂溶液を作った。
After the reaction was completed, the reaction solution was poured into a large amount of acetonitrile to precipitate and collect the resin, which was freeze-dried to obtain a white powder B. Example 1 (related to claim 3) The white powder A obtained in Synthesis Example 1 was dissolved in methyl isobutyl ketone to prepare a 20% by weight resin solution.

【0031】半導体素子を形成し、第1層目のポリシリ
コン配線を施してあるSi基板上に、この樹脂溶液を3000
rpm,45秒の条件でスピンコートした。なお、ポリシリコ
ン配線の厚さは1mm, 最小線幅は1μm ,最小線間隔は
1.5μm である。
A semiconductor element is formed, and the resin solution is applied to the Si substrate on which the first-layer polysilicon wiring is formed by applying 3000 parts of this resin solution.
Spin coating was performed under the conditions of rpm and 45 seconds. The thickness of the polysilicon wiring is 1 mm, the minimum line width is 1 μm, and the minimum line interval is 1.5 μm.

【0032】樹脂溶液は塗布後に80℃で20分間乾燥し、
更に450 ℃で30分間の熱処理を施した。熱処理後の基板
表面の段差は約0.2 μm であり、配線によって生じた段
差は平坦化されていた。
After coating, the resin solution is dried at 80 ° C. for 20 minutes,
Further, heat treatment was performed at 450 ° C. for 30 minutes. The step difference on the substrate surface after the heat treatment was about 0.2 μm, and the step difference caused by the wiring was flattened.

【0033】次に、この絶縁膜にスルーホールを形成
し、この上にポリシリコンの配線を行い、保護層として
厚さが1μm のPSG 膜を常圧CVD 法により形成した後、
電極取り出し用の窓開けを行って半導体装置を得ること
ができた。
Next, a through hole is formed in this insulating film, a wiring of polysilicon is formed thereon, and a PSG film having a thickness of 1 μm is formed as a protective layer by the atmospheric pressure CVD method.
A semiconductor device could be obtained by opening a window for taking out an electrode.

【0034】この半導体装置は従来のPSG 膜を絶縁膜と
した装置に較べ信号の伝播速度は約30%高速化してい
た。また、大気中で450 ℃で1時間の加熱試験および−
65℃〜+150 ℃の10回に亙る熱サイクル試験後において
も全く不良は見出せなかった。 実施例2:(請求項3関連) 合成例2で得た白色粉末Bをメチルイソブチルケトンに
溶解して20重量%の樹脂溶液を作った。
In this semiconductor device, the signal propagation speed was increased by about 30% as compared with the conventional device using a PSG film as an insulating film. In addition, a heating test at 450 ° C for 1 hour in air and
No defects were found at all even after 10 thermal cycle tests at 65 ° C to + 150 ° C. Example 2: (Related to Claim 3) The white powder B obtained in Synthesis Example 2 was dissolved in methyl isobutyl ketone to prepare a 20 wt% resin solution.

【0035】半導体素子を形成し、第1層目のAl配線を
施してあるSi基板上に、この樹脂溶液を3000rpm,45秒の
条件でスピンコートした。なお、Al配線の厚さは1mm,
最小線幅は1μm,最小線間隔は1.5 μm であった。
This resin solution was spin-coated under the condition of 3000 rpm for 45 seconds on a Si substrate on which a semiconductor element was formed and on which Al wiring of the first layer was formed. The thickness of the Al wiring is 1 mm,
The minimum line width was 1 μm and the minimum line spacing was 1.5 μm.

【0036】樹脂溶液は塗布後に80℃で20分間乾燥し、
更に450 ℃で30分間の熱処理を施した。熱処理後の基板
表面の段差は約0.2 μm であり、配線によって生じた段
差は平坦化されていた。
The resin solution is dried at 80 ° C. for 20 minutes after coating,
Further, heat treatment was performed at 450 ° C. for 30 minutes. The step difference on the substrate surface after the heat treatment was about 0.2 μm, and the step difference caused by the wiring was flattened.

【0037】次に、この絶縁膜にスルーホールを形成
し、この上にAlの配線を行い、保護層として厚さが1μ
m のPSG 膜を常圧CVD 法により形成した後、電極取り出
し用の窓開けを行って半導体装置を得ることができた。
Next, a through hole is formed in this insulating film, and Al wiring is formed on the through hole, and the thickness of the protective layer is 1 μm.
After forming a PSG film of m 2 by the atmospheric pressure CVD method, a window for taking out an electrode was opened to obtain a semiconductor device.

【0038】この半導体装置は従来のPSG 膜を絶縁膜と
した装置に較べ信号の伝播速度は約30%高速化してい
た。また、従来の有機硅素重合体を使用する場合に見ら
れるAl配線上のクラックの発生は見出せなかった。
In this semiconductor device, the signal propagation speed was increased by about 30% as compared with the conventional device using a PSG film as an insulating film. In addition, the occurrence of cracks on Al wiring, which was observed when using a conventional organic silicon polymer, was not found.

【0039】[0039]

【発明の効果】本発明の実施により誘電率が他の有機絶
縁材料に較べて少なく、耐熱性と平坦性に優れ、且つク
ラック発生のない層間絶縁膜を得ることができ、これに
より半導体集積回路の特性と信頼性を向上することがで
きる。
According to the present invention, an interlayer insulating film having a lower dielectric constant than other organic insulating materials, excellent heat resistance and flatness, and free from cracks can be obtained. The characteristics and reliability of can be improved.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 次の一般式で表され1000〜5,000,000 の
重量平均分子量を有することを特徴とする有機硅素重合
体。 ( RA SiO1.5) n ・・・・・・・(1) 但し、 RA は低級フルオロアルキル基、 nは10〜50,000の整数
1. An organic silicon polymer represented by the following general formula and having a weight average molecular weight of 1000 to 5,000,000. ( RA SiO 1.5 ) n ... (1) However, RA is a lower fluoroalkyl group, and n is an integer of 10 to 50,000.
【請求項2】 前記(1) 式で表される有機硅素重合体中
に含まれるシラノール基の水素原子の一部を次の一般式
(2) で表されるトリオルガノシリル基で置換したことを
特徴とする有機硅素重合体。 ( RB )3Si- ・・・・・・・・(2) 但し、 RB は低級フルオロアルキル基またはアリール
基、
2. A part of the hydrogen atom of the silanol group contained in the organic silicon polymer represented by the formula (1) is replaced by the following general formula:
An organosilicon polymer characterized by being substituted with a triorganosilyl group represented by (2). (R B) 3 Si- ········ ( 2) where, R B is a lower fluoroalkyl group or an aryl group,
【請求項3】 請求項1または2記載の有機硅素重合体
を用いて半導体集積回路の層間絶縁膜を形成することを
特徴とする半導体装置の製造方法。
3. A method of manufacturing a semiconductor device, comprising forming an interlayer insulating film of a semiconductor integrated circuit by using the organic silicon polymer according to claim 1.
JP32721391A 1991-12-11 1991-12-11 Organic silicon polymer and production of semiconductor device Withdrawn JPH05156021A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32721391A JPH05156021A (en) 1991-12-11 1991-12-11 Organic silicon polymer and production of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32721391A JPH05156021A (en) 1991-12-11 1991-12-11 Organic silicon polymer and production of semiconductor device

Publications (1)

Publication Number Publication Date
JPH05156021A true JPH05156021A (en) 1993-06-22

Family

ID=18196582

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32721391A Withdrawn JPH05156021A (en) 1991-12-11 1991-12-11 Organic silicon polymer and production of semiconductor device

Country Status (1)

Country Link
JP (1) JPH05156021A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1041519A (en) * 1996-03-26 1998-02-13 Lg Electron Inc Liquid crystal display device and its manufacture

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1041519A (en) * 1996-03-26 1998-02-13 Lg Electron Inc Liquid crystal display device and its manufacture

Similar Documents

Publication Publication Date Title
JP3418458B2 (en) Method for manufacturing semiconductor device
JP2003501518A (en) Low dielectric constant polyorganosilicon coating derived from polycarbosilane
JP4518421B2 (en) Method for producing low-k dielectric film
JP2003501832A (en) Use of siloxane dielectric films for integration of organic dielectric films in electronic devices
JP3767248B2 (en) Semiconductor device
JP2008511711A5 (en)
JPS63107122A (en) Flattening method for irregular substrate
JP3819391B2 (en) Method for producing organic silicate polymer, and method for producing insulating film using the same
JP2000302791A (en) Silicon compound, insulating film forming material and semiconductor apparatus
TWI328841B (en) Composition for forming porous film, porous film and method for forming the same, interlevel insulator film, and semiconductor device
JPH05156021A (en) Organic silicon polymer and production of semiconductor device
JP2000100808A (en) Insulation film forming material and semiconductor device containing insulating film formed of the same
JP2574403B2 (en) Organosilicon polymer, method for producing the same, and semiconductor device using the same
JP2003252982A (en) Organic insulating film material, manufacturing method thereof, method for forming organic insulating film, and semiconductor device equipped with organic insulating film
JPH10150036A (en) Formation of low permittivity insulating film and semiconductor device using the film
JPH07242747A (en) Organosilicon polymer and semiconductor device
JPH0551458A (en) Organosilicon polymer and method for producing semiconductor device using the same polymer
JP4232776B2 (en) Manufacturing method of semiconductor device
JPH04185641A (en) Production of heat-resistant resin composition and insulation film
JPH04359056A (en) Resin composition and method for forming layer insulating film
JPH05202191A (en) Organosilicon polymer and production of semiconductor device
JPH05163353A (en) Organosilicon polymer and production of semiconductor device
JP2671902B2 (en) Method for forming multi-layer wiring of semiconductor integrated circuit
JPH02192729A (en) Manufacture of insulating layer
JP2705078B2 (en) Method for planarizing semiconductor element surface

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990311