JPH0263057A - Photosensitive heat resistant resin composition and production of integrated circuit - Google Patents

Photosensitive heat resistant resin composition and production of integrated circuit

Info

Publication number
JPH0263057A
JPH0263057A JP21672088A JP21672088A JPH0263057A JP H0263057 A JPH0263057 A JP H0263057A JP 21672088 A JP21672088 A JP 21672088A JP 21672088 A JP21672088 A JP 21672088A JP H0263057 A JPH0263057 A JP H0263057A
Authority
JP
Japan
Prior art keywords
group
polymer
insulating film
lower alkyl
resin composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21672088A
Other languages
Japanese (ja)
Inventor
Akira Oikawa
及川 朗
Shunichi Fukuyama
俊一 福山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP21672088A priority Critical patent/JPH0263057A/en
Publication of JPH0263057A publication Critical patent/JPH0263057A/en
Pending legal-status Critical Current

Links

Landscapes

  • Silicon Polymers (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

PURPOSE:To enable to prepare a flattened integrated circuit provided with through-holes required to be formed as layer insulation by using a specified organosilicon polymer having silanol groups substituted by specified triorganosilyl groups, in the polymer. CONSTITUTION:An organosilicon polymer described in the 'PURPOSE' is expressed by the formula I and has 3,000-5,000,000 weight average mol.wt., wherein silanol groups contained in the polymer are expressed by the formula II and substituted by triorganosilanol groups contg. at least >=5% lower alkenyl group. In the formulas I and II, R1 is H, OH group, lower alkyl group, etc.; R2 is arylene group; n is an integer 10-50,000; R is lower alkenyl group, lower alkyl group, or aryl group, which may be same or different to each other. Thus, an insulating film having flattening function and through-holes opened therein is obtd.

Description

【発明の詳細な説明】 〔概要〕 有機硅素重合体よりなる樹脂組成物に関し、感光性をも
ち、且つ耐熱性に優れた樹脂組成物を実用化することを
目的とし、 (R+5i(h/z(Rz) l/□〕7の一般式で表
され、この重合体に含まれるシラノール基の水素原子が
、(R)zsi−で表されるトリオルガノシリル基によ
り置換されたポリオルガノジルアリーレンシロキサンを
用いて樹脂組成物を構成する。
[Detailed Description of the Invention] [Summary] The purpose of this invention is to put into practical use a resin composition made of an organosilicon polymer that is photosensitive and has excellent heat resistance. A polyorganosylarylene siloxane represented by the general formula (Rz)l/□]7, in which the hydrogen atom of the silanol group contained in this polymer is substituted with a triorganosilyl group represented by (R)zsi- A resin composition is constructed using the following.

〔産業上の利用分野〕[Industrial application field]

本発明は感光性耐熱樹脂組成物に関する。 The present invention relates to a photosensitive heat-resistant resin composition.

大量の情報を高速に処理する必要から半導体素子は集積
化が進んでおり、LSIやVLSIが実用化されている
Due to the need to process large amounts of information at high speed, semiconductor devices are becoming increasingly integrated, and LSI and VLSI have been put into practical use.

こ〜で、従来の集積化は単位素子の小形化により行われ
ており、配線の最小線幅としてサブミクロンのものが用
いられ、被処理半導体基板上に形成されている絶縁膜の
上にパターン形成して使用されている。
Conventional integration is achieved by miniaturizing unit elements, and submicron wiring is used as the minimum line width, and patterns are formed on the insulating film formed on the semiconductor substrate to be processed. Formed and used.

また一方では、集積度を高めるために、このような二次
元構造でなく三次元構造が研究されている。
On the other hand, in order to increase the degree of integration, three-dimensional structures are being studied instead of such two-dimensional structures.

すなわち、シリコン(St)単結晶基板を用いて二次元
構造をとる集積回路を形成した後、この上に化学気相成
長法(Chemical Vapor Deposit
ion略称CvD法)やスピンコード法などによって絶
縁層を作り、写真蝕刻技術(フォトリソグラフィ)を用
いてパイヤホールを形成すると共に電子回路を形成し、
これを繰り返すことにより多層化を行い、三次元配線を
有するLSIを形成する。
That is, after forming an integrated circuit having a two-dimensional structure using a silicon (St) single crystal substrate, a chemical vapor deposition method (Chemical Vapor Deposition method) is applied thereon.
An insulating layer is created using ion (CvD method) or a spin code method, and a pie hole is formed using photolithography and an electronic circuit is formed.
By repeating this process, multilayering is achieved and an LSI having three-dimensional wiring is formed.

このように多層化による集積度の向上が行われているが
、信頼性を向上するためには耐熱性と平坦性が優れ、且
つ上下の導体線路を連結するスルーホールの形成が容易
な絶縁膜の形成が必要である。
In this way, the degree of integration has been improved by multilayering, but in order to improve reliability, it is necessary to use an insulating film that has excellent heat resistance and flatness, and also allows easy formation of through holes that connect upper and lower conductor lines. formation is necessary.

〔従来の技術〕[Conventional technology]

集積回路は半導体素子に限らず磁気バブルメモリ素子な
どの電子部品についても形成されているが、代表的なも
のはSi単結晶基板(ウェハ)の上に形成され、LSI
やVLS Iを構成している半導体集積回路(IC)で
ある。
Integrated circuits are formed not only on semiconductor devices but also on electronic components such as magnetic bubble memory devices, but they are typically formed on Si single crystal substrates (wafers), and LSI
It is a semiconductor integrated circuit (IC) that constitutes a VLSI.

以下、Si集積回路を例とし、従来の技術および問題点
について説明する。
Hereinafter, conventional techniques and problems will be explained using a Si integrated circuit as an example.

Si集積回路の形成に当たって、絶縁膜としては無機お
よび有機絶縁膜が組み合わせて使用されている。
In forming Si integrated circuits, a combination of inorganic and organic insulating films are used as insulating films.

すなわち、無機絶縁膜としては二酸化硅素(5tOz)
、窒化硅素(5i3N4L燐硅酸ガラス(略称psG)
などが使用され、熱処理やCVD法などによって形成さ
れている。
That is, silicon dioxide (5tOz) is used as the inorganic insulating film.
, silicon nitride (5i3N4L phosphosilicate glass (abbreviated as psG)
etc., and is formed by heat treatment, CVD method, etc.

然し、熱処理により作られるSiO□膜やCVD法によ
って作られる5iOz膜、5i3Nn膜やPSG膜など
は耐熱性の面では優れているもの\、下地基板の凹凸を
忠実に再現するために平坦化の目的には添わない。
However, although SiO□ films made by heat treatment, 5iOz films, 5i3Nn films, and PSG films made by CVD methods have excellent heat resistance, they require flattening to faithfully reproduce the unevenness of the underlying substrate. It doesn't serve the purpose.

そのため半導体デバイスの形成に当たって、かなりの段
差が存在する場合は、薄く、且つサブミクロン幅の配線
は容易に断線する危険性があることから、平坦化を必要
とする用途に対して上記のような無機絶縁膜を単独で使
用することは難しく、耐熱性の優れた有機化合物をスピ
ンコードして平坦化する方法がとられている。
Therefore, when forming semiconductor devices, if there is a significant step difference, there is a risk that thin and submicron-width wiring will easily break, so the above-mentioned method is recommended for applications that require planarization. It is difficult to use an inorganic insulating film alone, and a method of flattening the surface by spin-coating an organic compound with excellent heat resistance is being used.

そして、この目的に適し、耐熱性の優れた有機絶縁物と
してポリオルガノシルセスキオキサンなど有機溶媒に可
溶な有機硅素化合物が使用されてきた。
Organic silicon compounds soluble in organic solvents, such as polyorganosilsesquioxane, have been used as organic insulators suitable for this purpose and having excellent heat resistance.

このポリオルガノシルセスキオキサンはオルガノトリク
ロロシラン或いはオルガノトリアルコキシシランを出発
原料として、この化合物を加水分解し、引き続いて脱水
縮合して作られているが、か−る三官能シリコーンを構
造単位とする有機硅素化合物はその一部または全部が梯
子型の構造をとるために有機溶媒に可溶であり、スピン
コード法を用いて被覆し、絶縁膜を形成することができ
る。
This polyorganosilsesquioxane is made by using organotrichlorosilane or organotrialkoxysilane as a starting material, hydrolyzing this compound, and then dehydrating and condensing it, but the trifunctional silicone is used as the structural unit. The organosilicon compound, which partially or entirely has a ladder-shaped structure, is soluble in an organic solvent, and can be coated using a spin coating method to form an insulating film.

また、耐熱性に優れ直鎖状の構造をとる有機硅素化合物
としてはシロキサン結合とジルアリーレン結合とを交互
にもつポリテトラメチルシルフエニーレンシロキサンが
あり、これは1.4−ビス(ヒドロキシジメチルシリル
)ベンゼンをベンゼンに溶解し、生成する水を除去しな
がら還流条件のもとて縮合することにより作られている
In addition, as an organosilicon compound with excellent heat resistance and a linear structure, there is polytetramethylsilphenylene siloxane, which has alternating siloxane bonds and diarylene bonds, and this is 1,4-bis(hydroxydimethylsilyl). ) It is made by dissolving benzene in benzene and condensing it under reflux conditions while removing the water produced.

然し、これらの有機硅素重合体を半導体デバイスの平坦
化工程に使用すると400℃以上の熱処理を受けると、
分解反応や硬化反応により生じる内部歪や配線材料との
熱膨張係数の違いにより発生する応力に耐えきれず、絶
縁膜にクラックを生ずると云う問題があり、改良が必要
であった。
However, when these organosilicon polymers are used in the planarization process of semiconductor devices and subjected to heat treatment at 400°C or higher,
There was a problem in that the insulating film cracked because it could not withstand stress caused by internal strain caused by decomposition and hardening reactions and the difference in thermal expansion coefficient with the wiring material, and an improvement was needed.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

以上記したように従来の有機硅素重合体からなる絶縁膜
は、半導体デバイスの形成に当たってクランクが生じ易
いと云う問題がある。
As described above, conventional insulating films made of organic silicon polymers have a problem in that they are susceptible to cranking during the formation of semiconductor devices.

また、絶縁膜は平坦化用に使用するだけでなく、絶縁膜
にスルーホールを設け、上下の配線層を回路接続する必
要もある。
In addition to using the insulating film for planarization, it is also necessary to provide through holes in the insulating film to connect the upper and lower wiring layers to the circuit.

このスルーホールの形成法として従来は絶縁膜の上にフ
ォトレジストを被覆し、紫外線を選択照射した後に現像
してレジストパターンを作り、これにドライエツチング
を施すなどの方法によりスルーホールを形成しているが
、このように煩雑な工程をとることなく有機硅素化合物
自体が感光性をもっておれば、スルーホールの形成は容
易であり、工程の短縮に寄与するところが大きい。
The conventional method for forming these through holes is to coat the insulating film with photoresist, selectively irradiate it with ultraviolet rays, develop it to create a resist pattern, and then dry-etch it to form the through holes. However, if the organosilicon compound itself has photosensitivity without such a complicated process, through-holes can be easily formed, which greatly contributes to shortening the process.

そこで、このような懸案を解決し得る有機硅素化合物を
実用化することが課題である。
Therefore, the challenge is to put organic silicon compounds into practical use that can solve these concerns.

〔課題を解決するための手段〕[Means to solve the problem]

上記の課題は(1)の一般式で表わされ、重量平均分子
量が3000〜5.000.000である有機硅素重合
体であって、該重合体に含まれているシラノール基が(
2)式で表され、少なくとも5%以上の低級アルケニル
基を含むトリオルガノシリル基によって置換されている
ことを特徴とする感光性耐熱樹脂組成物の使用により解
決することができる。
The above problem is an organosilicon polymer represented by the general formula (1) and having a weight average molecular weight of 3000 to 5.000.000, in which the silanol groups contained in the polymer are (
The problem can be solved by using a photosensitive heat-resistant resin composition represented by the formula 2), which is substituted with a triorganosilyl group containing at least 5% of lower alkenyl groups.

(R,5t(hz□(Rz)+z□〕7      …
(1)但し、R1は水素、ヒドロキシ基、低級ア ルキル基ル基、低級アルコキシ基、 R2はアリーレン基、 nは10〜50000の整数、 (R)zsi−…(2) 但し、Rは低級アルケニル基、低級アルキル基またはア
リール基を表し、同一 もしくは異なっていてもよい。
(R, 5t(hz□(Rz)+z□)7...
(1) However, R1 is hydrogen, a hydroxy group, a lower alkyl group, a lower alkoxy group, R2 is an arylene group, n is an integer of 10 to 50,000, (R)zsi-... (2) However, R is lower alkenyl represents a group, a lower alkyl group, or an aryl group, and may be the same or different.

〔作用〕[Effect]

発明者等はデバイス形成に当たってクランクの発生を無
くし、またネガ型の感光特性を得る絶縁材料として、 (R+5iOtzz(Rz)+/z ) rr    
…(1)の一般式で表され、R1がヒドロキシ基、低級
アルキル基または低級アルコキシ基からなり、R,がフ
ェニレン基(−C6H*−)などからなるを機硅素重合
体の使用を提案しているが、これは次の二つの構造式で
示される有機硅素材料の重合体または混合物である。
The inventors used (R+5iOtzz(Rz)+/z) rr as an insulating material to eliminate the occurrence of cranks in device formation and to obtain negative photosensitive characteristics.
...We propose the use of a silicon polymer represented by the general formula (1), where R1 is a hydroxy group, a lower alkyl group, or a lower alkoxy group, and R is a phenylene group (-C6H*-), etc. This is a polymer or mixture of organosilicon materials represented by the following two structural formulas.

こ−で、R1はヒドロキシ基、低級アルキル基または低
級アルコキシ基、Rは低級アルケニル基。
Here, R1 is a hydroxy group, lower alkyl group or lower alkoxy group, and R is a lower alkenyl group.

低級アルキル基、低級アルコキシ基、アリール基の何れ
でもよいが、少なくとも5%以上が低級アルケニル基か
ら成っていることが必要である。
It may be any of a lower alkyl group, a lower alkoxy group, or an aryl group, but it is necessary that at least 5% or more of the group consists of a lower alkenyl group.

すなわち、ビニル基、アリル基のような低級アルケニル
基は紫外線、エキシマレーザ光あるいは電離放射線のよ
うな高エネルギー線の照射に対し、感度が高くて架橋反
応を起こし、ネガ型のパターン形成が容易になる。
In other words, lower alkenyl groups such as vinyl groups and allyl groups are highly sensitive to irradiation with high-energy rays such as ultraviolet rays, excimer laser light, or ionizing radiation and cause crosslinking reactions, making it easy to form negative patterns. Become.

本発明のか\る効果は半導体装置の製造工程においてス
ルーホールの形成に要する工程を削減することができる
ために製造コストの低減が可能である。
One advantage of the present invention is that the steps required for forming through holes in the manufacturing process of semiconductor devices can be reduced, and thus manufacturing costs can be reduced.

こ\で、アリーレン基はベンゼン骨格を有する有機基で
あれば特に限定されないが実用的にはpまたはm−フェ
ニレン基が好ましい。
Here, the arylene group is not particularly limited as long as it is an organic group having a benzene skeleton, but practically a p- or m-phenylene group is preferred.

また、ポリオルガノジルアリーレンシロキサンの分子鎖
中のジルアリーレン結合とシロキサン結合の比率はいず
れであってもかまわないが、耐熱性の面から25重量%
以上のジルアリーレン結合をもっていることが望ましい
In addition, the ratio of the diarylene bond and the siloxane bond in the molecular chain of the polyorganodylarylene siloxane may be any value, but from the viewpoint of heat resistance, the ratio is 25% by weight.
It is desirable to have the above diarylene bond.

なお、一般式(1)で表される有機硅素重合体の末端に
あるシラノール基の水素(I4)原子をトリオ−ルガノ
シリル基(R) 、+Si−で置換しであるために架橋
密度は低下し、これにより柔軟性が増加しているためク
ランクが生じにくい。
In addition, since the hydrogen (I4) atom of the silanol group at the end of the organosilicon polymer represented by general formula (1) is replaced with a trio-organosilyl group (R), +Si-, the crosslinking density decreases. , which increases flexibility and makes it less prone to cranking.

こ\で、(3)式および(4)式で示されているシラノ
ール基のH−を(R)3Si−で置換する方法としては
、これらの有機硅素重合体を トリオルガノシラン(R)sSiX ヘキサオルガノジシラザン(R) 3SiNH3i (
R) 3ヘキサオルガノジシロキサン (R) sS 
iOs 1(R) 3但し、Rはビニル基、低級アルキ
ル基またはアリール基で同一であっても違ってい てもよい。
Here, as a method for substituting H- of the silanol groups shown in formulas (3) and (4) with (R)3Si-, these organosilicon polymers are replaced with triorganosilane (R)sSiX. Hexaorganodisilazane (R) 3SiNH3i (
R) 3hexaorganodisiloxane (R) sS
iOs 1(R) 3 However, R may be a vinyl group, a lower alkyl group, or an aryl group, and may be the same or different.

Xはハロゲン、シアノ基、イソシアナ ト基またはイソチオシアナト基、 の何れかと反応させればよい。X is halogen, cyano group, isocyanate to group or isothiocyanato group, It is sufficient to react with any of the following.

なお、本発明に係る有機硅素重合体(ポリオルガノジル
アリーレンジシロキサン樹脂)は多くの有機溶媒に可溶
であり、スピンコード法により半扉体液処理基板の上に
塗布し、平坦化を行うことができる。
Note that the organosilicon polymer (polyorganosyl arylene disiloxane resin) according to the present invention is soluble in many organic solvents, and can be applied onto a half-door body fluid-treated substrate by a spin code method and flattened. Can be done.

また、紫外線、エキシマレーザ光、電離放射線などの照
射によりネガ型のパターン形成が可能であり、そのため
層間絶縁層として使用した場合に形成が必要なスルーホ
ールをレジストを使用することなく開けることができる
In addition, it is possible to form a negative pattern by irradiation with ultraviolet rays, excimer laser light, ionizing radiation, etc., and therefore it is possible to create through holes that need to be formed when used as an interlayer insulating layer without using a resist. .

また、耐熱性についても400℃以上まで熱酸化を受け
ることなく膜質を保持することができる。
Furthermore, regarding heat resistance, the film quality can be maintained without undergoing thermal oxidation up to 400° C. or higher.

〔実施例〕〔Example〕

実施例1: (合成例1) 300’c cの四つ目フラスコにメチルイソブチルケ
トン100cc、メチルセルソルブアセテート50cc
および水30ccを加え、これに触媒としてトリエチル
アミン15ccを加え、攪拌を続けながら一60℃に冷
却した。
Example 1: (Synthesis Example 1) 100 cc of methyl isobutyl ketone and 50 cc of methyl cellosolve acetate were placed in a 300'cc fourth flask.
Then, 30 cc of water was added, and 15 cc of triethylamine was added thereto as a catalyst, and the mixture was cooled to -60°C while stirring.

別に1.4−ビス(メチルジクロロシリル)ベンゼン1
0gをテトラヒドロフラン50ccに溶解したちのを用
意し、先の四つ目フラスコに40分かけて滴下した。
Separately 1,4-bis(methyldichlorosilyl)benzene 1
A sample of 0 g was dissolved in 50 cc of tetrahydrofuran and added dropwise to the fourth flask over 40 minutes.

滴下終了後、系を2.0℃/分の速度で昇温し、80℃
に加温して2時間攪拌を続けた。
After dropping, the system was heated at a rate of 2.0°C/min to 80°C.
and continued stirring for 2 hours.

反応が終了した後、室温にまで冷却し、多量の水で洗滌
した。
After the reaction was completed, it was cooled to room temperature and washed with a large amount of water.

水で洗滌した反応用液は更に共沸により残存している水
を取り除いた。
The reaction solution washed with water was further subjected to azeotropic distillation to remove remaining water.

その後、触媒としてピリジン20ccを加え、60℃に
加温した後、ビニルジメチルクロロシラン20ccを添
加し、この温度で3時間反応させ、未反応の水酸基の水
素原子をビニルジメチルシリル基で置換した。
Thereafter, 20 cc of pyridine was added as a catalyst, and after heating to 60° C., 20 cc of vinyldimethylchlorosilane was added and reacted at this temperature for 3 hours to replace the hydrogen atoms of unreacted hydroxyl groups with vinyldimethylsilyl groups.

反応終了後、反応溶液を多量の水に投入して樹脂を析出
させて回収し、凍結乾燥を施し、5.1gの白色粉末を
得ることができた。
After the reaction was completed, the reaction solution was poured into a large amount of water to precipitate the resin, which was recovered and freeze-dried to obtain 5.1 g of white powder.

そして、ゲルパーミェーションクロマトグラフによるポ
リスチレン換算により求めた重量平均分子量は3.5 
XIO’であった。
The weight average molecular weight determined by gel permeation chromatography in terms of polystyrene was 3.5.
It was XIO'.

実施例2: (合成例2) 300ccの四つ目フラスコにメチルイソブチルケトン
100cc、メチルセルソルブアセテート50ccおよ
び水30ccを加え、これに触媒としてトリエチルアミ
ン15ccを加え、攪拌を続けながら一60°Cに冷却
した。
Example 2: (Synthesis Example 2) Add 100 cc of methyl isobutyl ketone, 50 cc of methyl cellosolve acetate and 30 cc of water to a 300 cc fourth flask, add 15 cc of triethylamine as a catalyst, and heat to -60°C while continuing to stir. Cooled.

別に1,4−ビス(メチルジクロロシリル)ベンゼン1
0gをテトラヒドロフラン50ccに溶解したものを用
意し、先の四つロフラスコに40分かけて滴下した。
Separately 1,4-bis(methyldichlorosilyl)benzene 1
A solution of 0 g dissolved in 50 cc of tetrahydrofuran was prepared, and the solution was added dropwise to the four-necked flask over 40 minutes.

滴下終了後、系を2.0℃/分の速度で昇温し、80℃
に加温して2時間攪拌を続けた。
After dropping, the system was heated at a rate of 2.0°C/min to 80°C.
and continued stirring for 2 hours.

反応が終了した後、室温にまで冷却し、多量の水で洗滌
した。
After the reaction was completed, it was cooled to room temperature and washed with a large amount of water.

水で渋滞した反応用液は更に共沸により残存した水を取
り除いた。
The reaction liquid clogged with water was further removed by azeotropy to remove remaining water.

その後、触媒としてピリジン20ccを加え、60°C
に加温した後、ビニルジメチルクロロシランLOccと
フエニルジメチルクロロシラン10ccを添加し、この
温度で3時間反応させ、未反応の水酸基の水素原子をビ
ニルジメチルシリル基およびフェニルジメチルシリル基
で置換した。
Then, 20cc of pyridine was added as a catalyst and the mixture was heated to 60°C.
Then, vinyldimethylchlorosilane LOcc and phenyldimethylchlorosilane 10cc were added and reacted at this temperature for 3 hours to replace the hydrogen atoms of unreacted hydroxyl groups with vinyldimethylsilyl groups and phenyldimethylsilyl groups.

反応終了後、反応溶液を多量の水に投入して樹脂を析出
させて回収し、凍結乾燥を施し、5.2gの白色粉末を
得ることができた。
After the reaction was completed, the reaction solution was poured into a large amount of water to precipitate the resin, which was recovered and freeze-dried to obtain 5.2 g of white powder.

そして、ゲルパーミェーションクロマトグラフによるポ
リスチレン換算により求めた重量平均分子量は3.4 
XIO’であった。
The weight average molecular weight determined by gel permeation chromatography in terms of polystyrene was 3.4.
It was XIO'.

実施例3: (半導体ICの形成5合成例1関連)合成
例1で得た白色粉末をメチルイソブチルケトンに溶解し
、20重量%の樹脂溶液を調製した。
Example 3: (Formation of semiconductor IC 5, related to Synthesis Example 1) The white powder obtained in Synthesis Example 1 was dissolved in methyl isobutyl ketone to prepare a 20% by weight resin solution.

この樹脂溶液を第1層目のポリSi配線(厚さ1μm、
最小線幅1μm、最小線間隔1.5μm)を施したSi
基板の上に3000rpm、 45秒の条件でスピンコ
ードした。
This resin solution was applied to the first layer of poly-Si wiring (1 μm thick,
Si with minimum line width of 1 μm and minimum line spacing of 1.5 μm)
Spin coding was performed on the substrate at 3000 rpm for 45 seconds.

塗布した後、80℃で20分間に亙って溶剤を乾燥し、
更に250℃で30分、400℃で60分の熱処理を施
した。
After coating, the solvent was dried at 80°C for 20 minutes,
Further heat treatment was performed at 250°C for 30 minutes and at 400°C for 60 minutes.

熱処理後の基板表面での段差は約0.2μmであり、配
線により生じた段差は平坦化されていた。
The level difference on the substrate surface after the heat treatment was about 0.2 μm, and the level difference caused by the wiring had been flattened.

次に、スルーホールを形成して二層目のポリSi配線を
行い、保護層として1μm厚のpsc膜を常圧CVD法
により堆積した後、電極取り出し用の窓開けを行って半
導体装置を得た。
Next, through-holes are formed and a second layer of poly-Si wiring is formed, and a 1 μm thick PSC film is deposited as a protective layer by atmospheric pressure CVD, and then a window for taking out the electrodes is opened to obtain a semiconductor device. Ta.

この装置は大気中で450℃で1時間の加熱試験を行っ
た後、−65〜150℃で10回の熱サイクルを行った
が全く不良は発生しなかった。
This device was subjected to a heating test at 450° C. for 1 hour in the atmosphere, and then subjected to 10 thermal cycles at −65 to 150° C., but no defects occurred.

実施例4: (スルーホール形成2舎成例1関連)実施
例3と同様にして樹脂層の塗布、乾燥まで行った後、エ
キシマレーザ光による照射を行い、スルーホール部のみ
を未照射の状態にしてメチルイソブチルケトンに浸漬し
、直径が2μmのスルーホールが形成された樹脂層を得
た。
Example 4: (Through-hole formation 2 construction example 1 related) After coating and drying the resin layer in the same manner as in Example 3, irradiation with excimer laser light was performed, leaving only the through-hole portion unirradiated. The resin layer was then immersed in methyl isobutyl ketone to obtain a resin layer in which through holes with a diameter of 2 μm were formed.

そして加熱し硬化させた後に実施例2と同様にして半導
体装置を得たが、この装置は大気中で450℃で1時間
の加熱試験を行った後、−65〜150℃で10回の熱
サイクルを行ったが全く不良は発生しなかった。
After heating and curing, a semiconductor device was obtained in the same manner as in Example 2, but this device was subjected to a heating test at 450°C for 1 hour in the air, and then heated 10 times at -65 to 150°C. I ran the cycle, but no defects occurred.

実施例5 : (PSGと複合膜を形成3合成例1関連
)樹脂の塗布を500Orpmで行った他は実施例3と
同様にして樹脂層まで形成した後、更に常圧CVD法に
より0.3μm厚のPSG膜を堆積した。
Example 5: (Formation of a composite film with PSG 3 Related to Synthesis Example 1) After forming a resin layer in the same manner as in Example 3 except that the resin was applied at 500 rpm, a layer of 0.3 μm was further formed by atmospheric pressure CVD. A thick PSG film was deposited.

この膜は下地段差を0.3μmにまで平坦化していた。This film flattened the underlying level difference to 0.3 μm.

その後は実施例3と同様にして半導体装置を作り同様の
試験を行ったが、クラックの発生は全く認められなかっ
た。
Thereafter, a semiconductor device was manufactured in the same manner as in Example 3, and the same tests were conducted, but no cracks were observed.

実施例6: (半導体ICの形成例1合成例2関連)に
置換した例) 実施例2で合成した白色粉末をメチルイソブチルケトン
に溶解し、20重量%の樹脂溶液を調製した。
Example 6: (Related to Semiconductor IC Formation Example 1 and Synthesis Example 2) The white powder synthesized in Example 2 was dissolved in methyl isobutyl ketone to prepare a 20% by weight resin solution.

この樹脂溶液を第1層目のポリSi配!l!A(厚さ1
μm、最小線幅1μm、最小線間隔1.5μm)を施し
たSi基板の上に300Orpm、 45秒の条件でス
ピンコードした。
This resin solution is applied to the first layer of poly-Si! l! A (thickness 1
Spin coding was performed on a Si substrate with a minimum line width of 1 μm, a minimum line width of 1 μm, and a minimum line spacing of 1.5 μm under conditions of 300 rpm and 45 seconds.

塗布した後、80℃で20分間に互って溶剤を乾燥し、
更に250℃で30分、400℃で60分の熱処理を施
した。
After coating, dry the solvent at 80℃ for 20 minutes,
Further heat treatment was performed at 250°C for 30 minutes and at 400°C for 60 minutes.

熱処理後の基板表面での段差は約0.2μmであり、配
線により生じた段差は平坦化されていた。
The level difference on the substrate surface after the heat treatment was about 0.2 μm, and the level difference caused by the wiring had been flattened.

次に、スルーホールを形成して二層目のポリSi配線を
行い、保護層として1μm厚のpsc膜を常圧CVD法
により堆積した後、電極取り出し用の窓開けを行って半
導体装置を得た。
Next, through-holes are formed and a second layer of poly-Si wiring is formed, and a 1 μm thick PSC film is deposited as a protective layer by atmospheric pressure CVD, and then a window for taking out the electrodes is opened to obtain a semiconductor device. Ta.

この装置は大気中で450℃で1時間の加熱試験を行っ
た後、−65〜150℃で10回の熱サイクルを行った
が全く不良は発生しなかった。
This device was subjected to a heating test at 450° C. for 1 hour in the atmosphere, and then subjected to 10 thermal cycles at −65 to 150° C., but no defects occurred.

実施例7: (スルーホール形成2今成例2関連)実施
例6と同様にして樹脂層の塗布、乾燥まで行った後、エ
キシマレーザ光による照射を行い、スルーホール部のみ
を未照射の状態にしてメチルイソブチルケトンに浸漬し
、直径が2μmのスルーホールが形成された樹脂層を得
た。
Example 7: (Through Hole Formation 2 Related to Formation Example 2) After coating and drying the resin layer in the same manner as in Example 6, irradiation with excimer laser light was performed, leaving only the through hole portion unirradiated. The resin layer was then immersed in methyl isobutyl ketone to obtain a resin layer in which through holes with a diameter of 2 μm were formed.

そして加熱し硬化させた後に実施例2と同様にして半導
体装置を得たが、この装置は大気中で450℃で1時間
の加熱試験を行った後、−65〜150℃で10回の熱
サイクルを行ったが全く不良は発生しなかった。
After heating and curing, a semiconductor device was obtained in the same manner as in Example 2, but this device was subjected to a heating test at 450°C for 1 hour in the air, and then heated 10 times at -65 to 150°C. I ran the cycle, but no defects occurred.

実施例8 :  (PSG層と併用5合成例2関連)樹
脂の塗布を500Orpmで行った他は実施例6と同様
にして樹脂層まで形成した後、更に常圧CVD法により
0.3μm厚のPSG膜を堆積した。
Example 8: (Used in combination with PSG layer 5 Related to Synthesis Example 2) After forming the resin layer in the same manner as in Example 6 except that the resin was applied at 500 rpm, a 0.3 μm thick film was further formed by atmospheric pressure CVD. A PSG film was deposited.

この膜は下地段差を0.3μmにまで平坦化していた。This film flattened the underlying level difference to 0.3 μm.

その後は実施例6と同様にして半導体装置を作り同様の
試験を行ったが、クラックの発生は全く認められなかっ
た。
Thereafter, a semiconductor device was manufactured in the same manner as in Example 6, and the same tests were conducted, but no cracks were observed.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、新規で有用な有機硅素重合体を簡便な
方法で効率よく製造することができる。
According to the present invention, a new and useful organosilicon polymer can be efficiently produced by a simple method.

また、平坦化機能をもち、高温の酸素雰囲気中で使用し
ても膜の破損を生じない絶縁膜をもつ半導体tCの形成
が可能である。
Furthermore, it is possible to form a semiconductor tC having an insulating film that has a planarization function and does not cause damage even when used in a high-temperature oxygen atmosphere.

更に、半導体ICを形成する際に、配線層間のスルーホ
ールの形成をレジストを用いずに直接に電離放射線を照
射して行うことができる。
Furthermore, when forming a semiconductor IC, through holes between wiring layers can be formed by directly irradiating ionizing radiation without using a resist.

以上のことから、信鯨性の高い半導体ICを効率よく製
造することが可能となる。
From the above, it becomes possible to efficiently manufacture a highly reliable semiconductor IC.

Claims (2)

【特許請求の範囲】[Claims] (1)(1)の一般式で表わされ、重量平均分子量が3
000〜5,000,000の有機硅素重合体であって
、該重合体に含まれているシラノール基が(2)式で表
され、少なくとも5%以上の低級アルケニル基を含むト
リオルガノシリル基によって置換されていることを特徴
とする感光性耐熱樹脂組成物。 〔R_1SiO_2_/_2(R_2)_1_/_2〕
_n…(1)但し、R_1は水素、ヒドロキシ基、低級
アルキル基、低級アルコキシ基、 R_2はアリーレン基、 nは10〜50000の整数、 (R)_3Si−…(2) 但し、Rは低級アルケニル基、低級アルキ ル基またはアリール基を表し、同一 もしくは異なっていてもよい。
(1) Represented by the general formula (1), with a weight average molecular weight of 3
000 to 5,000,000, wherein the silanol group contained in the polymer is represented by the formula (2) and is composed of a triorganosilyl group containing at least 5% or more of a lower alkenyl group. A photosensitive heat-resistant resin composition characterized by being substituted. [R_1SiO_2_/_2(R_2)_1_/_2]
_n...(1) However, R_1 is hydrogen, hydroxy group, lower alkyl group, lower alkoxy group, R_2 is arylene group, n is an integer of 10 to 50,000, (R)_3Si-...(2) However, R is lower alkenyl represents a group, a lower alkyl group, or an aryl group, and may be the same or different.
(2)請求項1で示される有機硅素重合体を絶縁膜とし
て使用するか、或いは紫外線または電離放射線を選択的
に照射してスルーホールの形成を行い、層間絶縁膜とし
て使用することを特徴とする集積回路の製造方法。
(2) The organosilicon polymer according to claim 1 is used as an insulating film, or selectively irradiated with ultraviolet rays or ionizing radiation to form through holes and used as an interlayer insulating film. A method for manufacturing integrated circuits.
JP21672088A 1988-08-30 1988-08-30 Photosensitive heat resistant resin composition and production of integrated circuit Pending JPH0263057A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21672088A JPH0263057A (en) 1988-08-30 1988-08-30 Photosensitive heat resistant resin composition and production of integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21672088A JPH0263057A (en) 1988-08-30 1988-08-30 Photosensitive heat resistant resin composition and production of integrated circuit

Publications (1)

Publication Number Publication Date
JPH0263057A true JPH0263057A (en) 1990-03-02

Family

ID=16692866

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21672088A Pending JPH0263057A (en) 1988-08-30 1988-08-30 Photosensitive heat resistant resin composition and production of integrated circuit

Country Status (1)

Country Link
JP (1) JPH0263057A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0443361A (en) * 1990-06-11 1992-02-13 Fujitsu Ltd Organic silicon polymer resist and production thereof
JPH05216237A (en) * 1992-02-03 1993-08-27 Oki Electric Ind Co Ltd Radiation sensitive resin composition
KR100739273B1 (en) * 1999-04-12 2007-07-12 제이에스알 가부시끼가이샤 Composition for Resist Underlayer Film and Method for Producing the Same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0443361A (en) * 1990-06-11 1992-02-13 Fujitsu Ltd Organic silicon polymer resist and production thereof
JPH05216237A (en) * 1992-02-03 1993-08-27 Oki Electric Ind Co Ltd Radiation sensitive resin composition
KR100739273B1 (en) * 1999-04-12 2007-07-12 제이에스알 가부시끼가이샤 Composition for Resist Underlayer Film and Method for Producing the Same

Similar Documents

Publication Publication Date Title
US6743471B2 (en) Process for preparing insulating material having low dielectric constant
KR930007921B1 (en) Polyisophenylene siloxane, production process thereof and resist material and semiconductor device formed thereof
JP3543669B2 (en) Coating liquid for forming insulating film and method for forming insulating film
JPS63107122A (en) Flattening method for irregular substrate
JPS6046826B2 (en) semiconductor equipment
JPH0263057A (en) Photosensitive heat resistant resin composition and production of integrated circuit
JPH0551458A (en) Organosilicon polymer and method for producing semiconductor device using the same polymer
JP2574403B2 (en) Organosilicon polymer, method for producing the same, and semiconductor device using the same
JPS62215944A (en) Heat resistant photosensitive resin composition and formation of insulating layer
JPH0446934A (en) Photosensitive heat-resistant resin composition, semiconductor device using the same, and their preparation
JPH0238427A (en) Heat-resistant photopolymer composition and production of integrated circuit by sing same
JPH0284435A (en) Organic silicon polymer, its production and use thereof
JPH04181254A (en) Polysilphenylenesiloxane, its production, resist material, and semiconductor device
JPH04104253A (en) Organosilicon polymer, its manufacture, semiconductor device using same, and its manufacture
JPH0341121A (en) Organosilicon polymer and its production and use
JPH02173043A (en) Organosilicon polymer
JPH04184444A (en) Production of photosensitive heat resistant resin composition and semiconductor device
JPH0376717A (en) Organosilicon polymer, resin composition containing the same, and production of semiconductor device using the composition
JPH03166230A (en) Polyarylene siloxane, photosensitive heat-resistant resin composition and semiconductor device using same composition as interlaminar insulating film
JPH01221431A (en) Organosilicon polymer, its production and semiconductor device prepared by using the same
JPH0343455A (en) Photosensitive heat-resistant resin composition and semiconductor device
JPH01313942A (en) Semiconductor device
JPH0517686A (en) Heat-resistant photosensitive resin composition and formation of interlayer insulating film
JPH0456975B2 (en)
JPS60108842A (en) Manufacture of semiconductor device