JPH04184444A - Production of photosensitive heat resistant resin composition and semiconductor device - Google Patents

Production of photosensitive heat resistant resin composition and semiconductor device

Info

Publication number
JPH04184444A
JPH04184444A JP2314574A JP31457490A JPH04184444A JP H04184444 A JPH04184444 A JP H04184444A JP 2314574 A JP2314574 A JP 2314574A JP 31457490 A JP31457490 A JP 31457490A JP H04184444 A JPH04184444 A JP H04184444A
Authority
JP
Japan
Prior art keywords
resin
insulating film
resin composition
forming
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2314574A
Other languages
Japanese (ja)
Inventor
Shunichi Fukuyama
俊一 福山
Masaaki Yamagami
山上 雅昭
Tomoko Kobayashi
倫子 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2314574A priority Critical patent/JPH04184444A/en
Publication of JPH04184444A publication Critical patent/JPH04184444A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a photosensitive resin compsn. not causing cracking at the time of heat treatment by using a resin represented by a specified formula and enabling the formation of a negative pattern by irradiation with UV rays. CONSTITUTION:A resin represented by formula I is used and the formation of a negative type pattern by irradiation with UV rays is enabled. In the formula I, each R<1> is 1-3C lower alkyl or aryl, plural R<1>'s may be different from each other, >=20% of plural R<2>'s are ethylene oxide, the remainder is vinyl, lower alkyl or aryl and each of n, m and l is a positive integer. The resin can satisfy both photosensitivity and heat resistance because it contains ethylene oxide as mentioned above and a photosensitive heat resistant resin compsn. not causing cracking at the time of heat treatment is obtd.

Description

【発明の詳細な説明】 〔概要〕 有機硅素重合体よりなる絶縁膜の形成方法に関し、 感光性をもち、耐熱性に優れた樹脂を用いて平坦な絶縁
膜を形成することを目的とし、下記の組成式で表され、
紫外線照射によりネガ型のパターン形成か可能な感光性
耐熱樹脂組成物を使用し、配線パターンの形成か終わっ
た半導体基板上に該感光性耐熱樹脂組成物を塗布して樹
脂膜を形成し、配線パターン形成部を除いて紫外線照射
を施した後に現像を行って樹脂膜よりなるパターンを形
成したる後、更に該基板上に絶縁膜の形成を行い、平坦
な絶縁膜を得ることを特徴として半導体装置の製造方法
を構成する。
[Detailed Description of the Invention] [Summary] Regarding a method for forming an insulating film made of an organic silicon polymer, the following method is used for the purpose of forming a flat insulating film using a resin that is photosensitive and has excellent heat resistance. It is represented by the composition formula of
A photosensitive heat-resistant resin composition that can form a negative pattern by irradiation with ultraviolet rays is used, and the photosensitive heat-resistant resin composition is applied onto the semiconductor substrate on which the wiring pattern has been formed to form a resin film. A semiconductor characterized by forming a pattern made of a resin film by irradiating ultraviolet rays except for the pattern forming part, developing it, and then forming an insulating film on the substrate to obtain a flat insulating film. A method for manufacturing the device is configured.

(Si02)  、 (R’SiO+  s)  ゆ 
(SIR23)、  ・・・(1)ニーで、 R1は炭素数かj〜3の低級アルキル基、アリール基を
表し、同一または異なっていてもよい。
(Si02), (R'SiO+ s)
(SIR23), (1) R1 represents a lower alkyl group or aryl group having j to 3 carbon atoms, and may be the same or different.

R2は少なくとも20%以上がエチレンオキシドであり
、残りはビニル基、低級アルキル基またはアリール基よ
りなる。
At least 20% of R2 is ethylene oxide, and the remainder is vinyl, lower alkyl, or aryl.

n、m、1は正の整数を表す。n, m, and 1 represent positive integers.

〔産業上の利用分野〕[Industrial application field]

本発明は感光性耐熱樹脂組成物に関する。 The present invention relates to a photosensitive heat-resistant resin composition.

大量の情報を高速に処理する必要から半導体素子は集積
化か進んでおり、LSIやVLS Iか実用化されてい
る。
Due to the need to process large amounts of information at high speed, semiconductor devices have become increasingly integrated, and LSI and VLSI have been put into practical use.

こ\で、従来から集積化は単位素子の微細化により行わ
れており、これに伴い、導体配線の最小線幅もサブミク
ロンのものか用いられてるようになった。
Conventionally, integration has been achieved by miniaturizing unit elements, and along with this, the minimum line width of conductor wiring has also come to be in the submicron range.

また、集積度の向上のために二次元構造ではなく三次元
構造か採られるようになった。
Additionally, to improve the degree of integration, a three-dimensional structure has been adopted instead of a two-dimensional structure.

すなわち、シリコン(S])単結晶基板を用いて二次元
構造をとる集積回路を形成した後、この上に化学気相成
長法(Chemical Vapor Deposit
ion略称C〜ID法)や樹脂組成物を塗布するスピン
コード法などによって絶縁膜を作り、写真蝕刻技術(フ
ォトリソグラフィ)を用いてパイヤホールを形成した後
に、この上に二層目の配線を形成し、これを繰り返すこ
とにより多層化を行う方法か行われている。
That is, after forming an integrated circuit with a two-dimensional structure using a silicon (S) single crystal substrate, a chemical vapor deposition method is applied on the integrated circuit.
An insulating film is created using a method such as ion (abbreviated as C to ID method) or a spin code method that coats a resin composition, and after forming a pie hole using photolithography, a second layer of wiring is formed on top of this. However, by repeating this process, multiple layers are created.

このように多層化による集積度の向上か行われているか
、製造工数を少なくし、且つ歩留まりを向上するためI
こは耐熱性と平坦性か優れ、且つ上下の導体線路を連結
するスルーホールの形成か容易な絶縁膜の形成か必要で
ある。
In this way, the degree of integration is improved by multilayering, and I
This requires excellent heat resistance and flatness, as well as the formation of through holes to connect the upper and lower conductor lines, or the easy formation of an insulating film.

〔従来の技術〕[Conventional technology]

半導体集積回路の製造において、半導体基板上には多数
の半導体素子や導体線路か形成されるためにその表面は
凹凸化しており、段差かある。
In the manufacture of semiconductor integrated circuits, a large number of semiconductor elements and conductor lines are formed on a semiconductor substrate, so the surface thereof is uneven and has steps.

そのため、この上に形成する層間絶縁膜は絶縁性か優れ
ていること以外に表面か平坦化できることか必要である
Therefore, the interlayer insulating film formed thereon must not only have excellent insulation properties but also be able to flatten the surface.

ニーで、眉間絶縁膜として無機絶縁物あるいは有機絶縁
物が使用されている。
An inorganic insulator or an organic insulator is used as an insulating film between the eyebrows.

そして、無機絶縁物としては二酸化硅素(S]02)、
窒化硅素(5iJ4)、燐硅酸ガラス(略称PSG)な
どがあり、CVD法などによって被処理基板上に形成さ
れている。
And, as an inorganic insulator, silicon dioxide (S]02),
Examples include silicon nitride (5iJ4) and phosphosilicate glass (abbreviated as PSG), and are formed on a substrate to be processed by a CVD method or the like.

然し、CVD法によって作られるSiO□膜、S+3N
4膜やPSG膜などは耐熱性の面では優れているもの\
、下地基板の凹凸を忠実に再現するために平坦化の目的
には添わない。
However, SiO□ film made by CVD method, S+3N
4 film and PSG film are excellent in terms of heat resistance.
, it does not serve the purpose of planarization because it faithfully reproduces the unevenness of the underlying substrate.

そこで、無機膜の堆積とエツチングとを同時に行い、膜
の凸部を削りながら成膜することにより平坦な無機膜を
得るバイアススパッタ法や、樹脂膜を上層に作り、樹脂
膜と無機膜とをコントロールエツチングすることにより
平坦な絶縁膜を得るエッチバック法などが検討されてい
る。
Therefore, the bias sputtering method, which deposits and etches the inorganic film at the same time and forms a flat inorganic film while scraping the convex parts of the film, and the bias sputtering method, which forms a resin film as an upper layer and separates the resin film and the inorganic film, are used. Etch-back methods that obtain a flat insulating film through controlled etching are being considered.

なお、層間絶縁膜にはこの上に形成する電子回路と下に
形成しである電子回路とを接続するだめのスルーホール
の形成か必要であるか、無機絶縁膜を使用する場合はフ
ォトレジストを使用する写真蝕刻技術()才)−リソグ
ラフィ)により、改めて絶縁膜に孔開けを行うことか必
要である。
In addition, it is necessary to form through holes in the interlayer insulating film to connect the electronic circuits formed above and the electronic circuits formed below, and if an inorganic insulating film is used, it is necessary to form a photoresist. Depending on the photo-etching technique (lithography) used, it is necessary to make holes in the insulating film again.

一方、有機絶縁膜の形成にはスピンコード法か使用でき
、この方法によると段差のある被処理基板上に平坦な膜
が形成できることから有利であり、材料としては耐熱性
か優れている有機化合物重合体か着目されている。
On the other hand, the spin-coding method can be used to form an organic insulating film, and this method is advantageous because it allows a flat film to be formed on a substrate with steps, and the material is an organic compound with excellent heat resistance. Polymers are attracting attention.

然し、従来より用いられているポリイミドは約450°
Cで分解か生ずることや、吸湿性か高く、また、不純物
としてアルカリ金属を含むと云う問題かある。
However, conventionally used polyimide has an angle of about 450°.
There are problems in that C may cause decomposition, it is highly hygroscopic, and it contains alkali metals as impurities.

また、シリコーン樹脂は400°C程度の温度で酸化さ
れたり、500°C以上では熱分解か生し、これにより
生ずる歪みにより膜にクラックか発生し易いと云う問題
かある。
Another problem is that silicone resins are oxidized at temperatures of about 400° C., or undergo thermal decomposition at temperatures above 500° C., and the resulting distortion tends to cause cracks in the film.

また、これらの樹脂は酸素プラズマ処理に当たって、酸
化による脱ガスやクラックの発生か見られると云う問題
かある。
Furthermore, when these resins are subjected to oxygen plasma treatment, there is a problem in that degassing and cracking due to oxidation can be observed.

そのため、耐熱性か高く、また吸湿性の少ない樹脂か必
要である。
Therefore, a resin with high heat resistance and low moisture absorption is required.

また、スルーホールの形成のためにそれ自身か感光性を
有しており、紫外線など電離放射線の照射により架橋重
合か生ずるような感光性樹脂の開発か望ましいか、これ
らの必要条件を充分に満足する樹脂組成物は未だ実用化
されていない。
In addition, it is desirable to develop a photosensitive resin that is photosensitive itself for the formation of through-holes and undergoes cross-linking polymerization when irradiated with ionizing radiation such as ultraviolet rays, which fully satisfies these requirements. Resin compositions that do this have not yet been put to practical use.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

集積回路の形成に当たって層間絶縁膜の形成材料として
使用される樹脂組成物の必要条件は、■ 450℃以上
の耐熱性かあり、熱処理によりクラックが生じないこと
、 ■ アルカリ金属などの腐食性不純物を含まぬこと、 ■ 感光性をもっており、微細なスルーホールパターン
などを形成可能なこと、 である。
Requirements for the resin composition used as a material for forming interlayer insulating films in the formation of integrated circuits are: 1. It must be heat resistant to 450°C or higher and will not crack during heat treatment; 2. It must be free from corrosive impurities such as alkali metals. ■It is photosensitive and can form fine through-hole patterns.

また、信頼性の優れた集積回路を形成するためには平坦
性の優れた層間絶縁膜を形成する技術を確立しておくこ
とか必要である。
Furthermore, in order to form an integrated circuit with excellent reliability, it is necessary to establish a technique for forming an interlayer insulating film with excellent flatness.

〔課題を解決するための手段〕[Means to solve the problem]

上記の課題は下記の組成式て表され、紫外線照射により
ネガ型のパターン形成か可能な感光性耐熱樹脂組成物を
使用し、配線パターンの形成か終わった半導体基板上に
感光性耐熱樹脂組成物を塗布して樹脂膜を形成し、配線
パターン形成部を除いて紫外線照射を施した後に現像を
行って樹脂膜よりなるパターンを形成したる後、更に基
板上に絶縁膜の形成を行い、平坦な絶縁膜を得ることを
特徴として半導体装置の製造方法を構成することにより
解決することかできる。
The above problem is solved by using a photosensitive heat-resistant resin composition that can form a negative pattern by irradiation with ultraviolet rays. A resin film is formed by coating the substrate, and after irradiation with ultraviolet rays except for the wiring pattern forming area, development is performed to form a pattern made of the resin film, and then an insulating film is further formed on the substrate to make it flat. This problem can be solved by configuring a method for manufacturing a semiconductor device that is characterized by obtaining an insulating film.

(Si02)ゎ (R’5i01.5)ゆ (S+R2
5)+  ・・・(1)ニーで、 R1は炭素数か1〜3の低級アルキル基、アリール基を
表し、同一または異なっていてもよい。
(Si02)ゎ (R'5i01.5)yu (S+R2
5)+...(1) R1 represents a lower alkyl group or aryl group having 1 to 3 carbon atoms, and may be the same or different.

R2は少なくとも20%以上かエチレンオキシドてあり
、残りはビニル基、低級アルキル基またはアリール基よ
りなる。
R2 is at least 20% ethylene oxide, and the remainder is vinyl, lower alkyl, or aryl.

n、m、lは正の整数を表す。n, m, l represent positive integers.

〔作用〕[Effect]

本発明は一般式(1)で示されるポリオルガノシロキサ
ン樹脂を用いて層間絶縁膜を構成するものである。
The present invention constitutes an interlayer insulating film using a polyorganosiloxane resin represented by the general formula (1).

この一般式(1)で表される樹脂の特徴は、R2が少な
くとも20%以上がエチレンオキシドを含んで構成され
ており、そのために感光性と耐熱性とを同時に実現でき
ることである。
The resin represented by the general formula (1) is characterized in that R2 contains at least 20% of ethylene oxide, and therefore can achieve both photosensitivity and heat resistance.

なお、nは10〜1O1000の整数を、mは0〜10
,000の整数を、またIは8〜l000の整数を示し
ている。
In addition, n is an integer of 10 to 101000, m is 0 to 10
,000, and I represents an integer from 8 to 1000.

また、この樹脂はネガ型の感光性を有しており、加熱硬
化を行う前に紫外線照射を行い、有機溶剤を用いて現像
することによりスルーホールなど、任意のパターン形成
を行うことかできる。
Furthermore, this resin has negative photosensitivity, and by irradiating it with ultraviolet rays before heat curing and developing it with an organic solvent, it is possible to form any pattern such as through holes.

また、か\る感光性を有する有機硅素化合物を用いて平
坦な層間絶縁膜を形成するには、第−層の配線を形成し
た基板上にスピンコード法により、この樹脂組成物を被
覆した後、第−層の配線か行われている部分以外に紫外
線の照射を行って現像することにより、配線か行われて
いない部分のみに樹脂膜を残すようにする。
In addition, in order to form a flat interlayer insulating film using an organic silicon compound having such photosensitivity, it is necessary to coat the resin composition on the substrate on which the wiring of the first layer is formed by a spin-coating method. By irradiating and developing ultraviolet rays on areas other than the areas where the wiring of the -th layer is formed, the resin film is left only on the areas where the wiring is not formed.

次に、この上に従来のようにCVD法やスピンコード法
により絶縁膜を形成すれば、平坦な層間絶縁膜を形成す
ることかできる。
Next, if an insulating film is formed on this by the conventional CVD method or spin code method, a flat interlayer insulating film can be formed.

る。Ru.

〔実施例〕〔Example〕

合成例1: (請求項1に対応) 1000ccの四つ目フラスコにヘキサメチルジシロキ
サン25.8g (0,2モル)、濃塩酸80g、イオ
ン交換水120g、  メタノール60g、メチルイソ
ブチルケトン300 ccを入れ、水浴にて還流温度に
まで加熱した後、テトラメトキシシラン30.44 g
 (0,2モル)を滴下ロートを用いて2時間かけてゆ
っくり滴下した。
Synthesis Example 1: (Corresponding to Claim 1) In a 1000 cc fourth flask, 25.8 g (0.2 mol) of hexamethyldisiloxane, 80 g of concentrated hydrochloric acid, 120 g of ion exchange water, 60 g of methanol, and 300 cc of methyl isobutyl ketone were added. After heating to reflux temperature in a water bath, add 30.44 g of tetramethoxysilane.
(0.2 mol) was slowly added dropwise over 2 hours using a dropping funnel.

滴下終了後に約30分に亙ってそのま一加熱を続け、分
子jt5.0 Xl03(ポリスチレン換算)のンリコ
ーンボ1jマを得た。
After the completion of the dropwise addition, heating was continued for about 30 minutes to obtain a polymer bomb having a molecular weight of 5.0 Xl03 (in terms of polystyrene).

この樹脂溶液の水層を除去した後に、ピリジン100c
cを添加し、ジメチルビニルクロルシラン100 cc
を添加して未反応のシラノール残基をシリル化した。
After removing the aqueous layer of this resin solution, pyridine 100c
100 cc of dimethylvinylchlorosilane
was added to silylate unreacted silanol residues.

そして、シリル化か終わった後、水洗を行い有機層への
メタノール添加によりポリマを沈澱回収した。
After the silylation was completed, the organic layer was washed with water and methanol was added to the organic layer to precipitate and recover the polymer.

次に、凍結乾燥を行った二のポリマをジクロロメタンに
溶解し、水浴にて20°Cに保持したま\過酢酸30C
Cを添加した。
Next, the freeze-dried second polymer was dissolved in dichloromethane, kept at 20°C in a water bath, and mixed with peracetic acid at 30°C.
C was added.

反応か終了した後、亜硫酸水素ナトリウムの0゜5%水
溶液にて5回洗浄し、続いて純水にて10回洗浄した。
After the reaction was completed, it was washed 5 times with a 0.5% aqueous solution of sodium bisulfite, and then washed 10 times with pure water.

そして、洗浄後に前記のヘースポリマと同様にして白色
粉末20gを回収した。
After washing, 20 g of white powder was collected in the same manner as the hair polymer.

合成した樹脂はメチルイソブチフケトンに溶解して25
重量%の樹脂溶液とした。
The synthesized resin was dissolved in methyl isobutyfuketone and 25
% resin solution by weight.

合成例2 (請求項1に対応) 1000ccの四つロフラスコにヘキサメチルンンロキ
サン16.24g (Oiモル)、濃塩酸80g、イオ
ン交換水120g、  メタノール80g、メチルイソ
ブチルケトン100 ccを入れ、水浴にて還流温度に
まで加熱した後、テトラメトキシシラン30.44 g
 (0゜2モル)とメチルトリメトキシシラン15.2
g C0゜1モル)の混合物を滴下ロートを用いて2時
間つ・けてゆっくり滴下した。
Synthesis Example 2 (Corresponding to Claim 1) Put 16.24 g (Oi mol) of hexamethylchloroxane, 80 g of concentrated hydrochloric acid, 120 g of ion-exchanged water, 80 g of methanol, and 100 cc of methyl isobutyl ketone into a 1000 cc four-loaf flask, and place in a water bath. After heating to reflux temperature, 30.44 g of tetramethoxysilane
(0°2 mol) and methyltrimethoxysilane 15.2
Using a dropping funnel, a mixture of 1 mol of g CO was slowly added dropwise over a period of 2 hours.

滴下終了後に約30分に亙ってそのま一加熱を続(y、
分子量3.0 XIO’(ポリスチレン換算)のノリコ
ーンポリマを得た。
After the dropping was completed, heating was continued for about 30 minutes (y,
A noricorn polymer having a molecular weight of 3.0 XIO' (in terms of polystyrene) was obtained.

この樹脂溶液の水層を除去した後に、ピリジン150c
cを添加し、ジメチルビニルクロルシラン150 cc
を添加して未反応のシラノール残基をシリル化した。
After removing the aqueous layer of this resin solution, pyridine 150c
150 cc of dimethylvinylchlorosilane
was added to silylate unreacted silanol residues.

そして、シリル化か終わった後、水洗を行い有機層への
メタノール添加によりポリマを沈澱回収した。
After the silylation was completed, the organic layer was washed with water and methanol was added to the organic layer to precipitate and recover the polymer.

次に、凍結乾燥を行ったこのポリマをジクロロメタンに
溶解し、水浴にて20°Cに保持したま″−過酢酸50
CCを添加した。
Next, this freeze-dried polymer was dissolved in dichloromethane and kept at 20°C in a water bath.
CC was added.

反応か終了した後、亜硫酸水素ナトリウムの0゜596
水溶液にて5回洗浄し、続いて純水(こで10回洗浄し
た。
After the reaction is completed, 0°596 of sodium bisulfite
It was washed 5 times with an aqueous solution, and then washed 10 times with pure water.

そして、洗浄後に前記のヘースポリマと同様にして白色
粉末20gを回収した。
After washing, 20 g of white powder was collected in the same manner as the hair polymer.

実施例1.(スルーホールをもつ集積回路形成例)合成
例1により調製した樹脂溶液を、半導体素子を形成して
あり、また第−層A1配線を施したSi基板上に1.5
μmの厚さにスピンコードした。
Example 1. (Example of forming an integrated circuit with through-holes) The resin solution prepared in Synthesis Example 1 was placed on a Si substrate on which semiconductor elements were formed and layer A1 wiring was applied.
Spin coded to a thickness of μm.

ニーで、Aj7配線の厚さは1μm、最小線幅は1μm
、最小線間隔は1.5μmである。
At the knee, the thickness of the Aj7 wiring is 1 μm, and the minimum line width is 1 μm.
, the minimum line spacing is 1.5 μm.

塗布後、80°Cで20分に亙って溶剤乾燥を行い、続
いてスルーホール形成部を除いて露光可能なマスクを用
いてエキシマレーザ光による照射を行い、イソプロピル
アルコールに浸漬してスルーホールの形成された樹脂層
を得た。
After coating, the solvent was dried at 80°C for 20 minutes, followed by irradiation with excimer laser light using an exposure mask except for the through-hole formation area, and the through-hole was immersed in isopropyl alcohol. A resin layer was obtained.

この時、スルーホールは直径か1.5μmであっ次に、
Si基板をN2気流中て450°C,]時間の熱処理を
施した。
At this time, the diameter of the through hole is 1.5 μm, and then,
The Si substrate was heat-treated at 450°C for ] hours in a N2 stream.

熱処理後の基板表面の段差は約0.2μmであり、A7
配線により生した段差は平坦化さていた。
The height difference on the substrate surface after heat treatment is approximately 0.2 μm, and the height difference is approximately 0.2 μm.
The level difference caused by the wiring had been flattened.

続いて、二層目のA7配線を行い、保護層として1.2
μmのPSG膜を形成した後、電極取り出し用の窓開け
を行って半導体装置を得た。
Next, conduct the second layer of A7 wiring, and use 1.2 as a protective layer.
After forming a μm-thick PSG film, a window for taking out the electrodes was opened to obtain a semiconductor device.

二の半導体装置は大気中で450°C,]時間の加熱試
験を行った後、−65°C−150°Cの10回の熱衝
撃試験後においても全く不良は存在しなかった。
The second semiconductor device was subjected to a heating test at 450°C for 1 hour in the atmosphere, and no defects were found even after 10 thermal shock tests at -65°C to 150°C.

実施例2: (請求項2対応) 合成例1により調製した樹脂溶液を、半導体素子を形成
してあり、また第−層Al配線を施したSi基板上に1
.5μmの厚さにスピンコードした。
Example 2: (Corresponding to Claim 2) The resin solution prepared according to Synthesis Example 1 was applied to a Si substrate on which a semiconductor element was formed and a first layer Al wiring was applied.
.. It was spin coded to a thickness of 5 μm.

二\て、Aβ配線の厚さは1μm、最小線幅は1μm、
最小線間隔は1,5μmである。
2\The thickness of the Aβ wiring is 1 μm, the minimum line width is 1 μm,
The minimum line spacing is 1.5 μm.

塗布後、80°Cて20分に亙って溶剤乾燥を行った後
、第−層A1配線を施した部分を除いて露光可能なマス
クを用いてエキシマレーザ光による照射を行い、アルカ
リ現像液(商品名MP−312)を用いて現像を行い、
配線間のみに樹脂を残した平坦化された表面を得た。
After coating, the solvent was dried at 80°C for 20 minutes, and then irradiated with excimer laser light using an exposure mask except for the area where the A1 wiring of the first layer was applied, and an alkaline developer was applied. (Product name: MP-312).
A flattened surface was obtained with resin remaining only between the wires.

次に、この上にCVD法によりPSG膜を1μmの厚さ
に形成した結果、段差のない層間絶縁膜を得た。
Next, a PSG film with a thickness of 1 μm was formed thereon by the CVD method, resulting in an interlayer insulating film with no steps.

続いて、電子線露光により形成したレジストをマスクと
して直径0.5.czmのスルーホールを形成し、更に
、この層間絶縁膜の上に二層目のA1配線を行い、この
上に保護膜として厚さか1.5μmのPSG膜を形成し
て半導体装置か完成した。
Next, using a resist formed by electron beam exposure as a mask, a diameter of 0.5 mm was applied. A through hole of czm was formed, a second layer of A1 wiring was formed on this interlayer insulating film, and a PSG film with a thickness of 1.5 μm was formed as a protective film on top of this, thereby completing a semiconductor device.

この半導体装置は大気中で450°C,1時間の加熱試
験を行った後、−65°C→150°Cの10回の熱衝
撃試験後においても全く不良は存在しなかった。
This semiconductor device was subjected to a heating test at 450°C for 1 hour in the atmosphere, and after 10 thermal shock tests from -65°C to 150°C, no defects were found.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、感光性をもち、耐熱性か優れ、熱処理
に際してクラックの発生かない樹脂組成物を得ることが
でき、本発明の実施により半導体装置の形成に当たって
、スルーホールの形成をレジストを使用せずに行うこと
もてき、これにより製造工程の大幅の短縮が可能となる
According to the present invention, it is possible to obtain a resin composition that is photosensitive, has excellent heat resistance, and does not generate cracks during heat treatment, and by carrying out the present invention, a resist is used to form through holes when forming a semiconductor device. It is also possible to do this without any additional steps, which can significantly shorten the manufacturing process.

Claims (2)

【特許請求の範囲】[Claims] (1)下記の組成式で表され、紫外線照射によりネガ型
のパターン形成が可能な感光性耐熱樹脂組成物。 (SiO_2)_n(R^1SiO_1_._5)_m
(SiR^2_3)_l…(1)こゝで、 R^1は炭素数が1〜3の低級アルキル基、アリール基
を表し、同一または異なっていてもよい。 R^2は少なくとも20%以上がエチレンオキシドであ
り、残りはビニル基、低級アルキル基 またはアリール基である。 n、m、lは正の整数を表す。
(1) A photosensitive heat-resistant resin composition represented by the following compositional formula and capable of forming a negative pattern by ultraviolet irradiation. (SiO_2)_n(R^1SiO_1_._5)_m
(SiR^2_3)_l...(1) Here, R^1 represents a lower alkyl group or aryl group having 1 to 3 carbon atoms, and may be the same or different. At least 20% of R^2 is ethylene oxide, and the remainder is a vinyl group, lower alkyl group, or aryl group. n, m, l represent positive integers.
(2)配線パターンの形成が終わった半導体基板上に請
求項1記載の感光性耐熱樹脂組成物を塗布して樹脂膜を
形成し、配線パターン形成部を除いて紫外線照射を施し
た後に現像を行って樹脂膜よりなるパターンを形成した
る後、更に該基板上に絶縁膜の形成を行い、平坦な絶縁
膜を得ることを特徴とする半導体装置の製造方法。
(2) A resin film is formed by applying the photosensitive heat-resistant resin composition according to claim 1 on the semiconductor substrate on which the wiring pattern has been formed, and after irradiating with ultraviolet rays except for the wiring pattern forming area, development is carried out. 1. A method of manufacturing a semiconductor device, which comprises: forming a pattern made of a resin film, and then forming an insulating film on the substrate to obtain a flat insulating film.
JP2314574A 1990-11-20 1990-11-20 Production of photosensitive heat resistant resin composition and semiconductor device Pending JPH04184444A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2314574A JPH04184444A (en) 1990-11-20 1990-11-20 Production of photosensitive heat resistant resin composition and semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2314574A JPH04184444A (en) 1990-11-20 1990-11-20 Production of photosensitive heat resistant resin composition and semiconductor device

Publications (1)

Publication Number Publication Date
JPH04184444A true JPH04184444A (en) 1992-07-01

Family

ID=18054927

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2314574A Pending JPH04184444A (en) 1990-11-20 1990-11-20 Production of photosensitive heat resistant resin composition and semiconductor device

Country Status (1)

Country Link
JP (1) JPH04184444A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005010077A1 (en) * 2003-07-29 2005-02-03 Toagosei Co., Ltd. Silicon-containing polymer, process for rpoducing the same, heat-resistant resin composition, and heat-resistant film
JP2007086476A (en) * 2005-09-22 2007-04-05 Asahi Kasei Electronics Co Ltd Organic inorganic photosensitive laminated insulating film

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005010077A1 (en) * 2003-07-29 2005-02-03 Toagosei Co., Ltd. Silicon-containing polymer, process for rpoducing the same, heat-resistant resin composition, and heat-resistant film
JPWO2005010077A1 (en) * 2003-07-29 2006-11-30 東亞合成株式会社 SILICON-CONTAINING POLYMER COMPOUND, PROCESS FOR PRODUCING THE SAME, HEAT-RESISTANT RESIN COMPOSITION AND HEAT-RESISTANT FILM
US7811637B2 (en) 2003-07-29 2010-10-12 Toagosei Co., Ltd. Silicon-containing polymer, process for producing the same, heat-resistant resin composition, and heat-resistant film
JP2011102399A (en) * 2003-07-29 2011-05-26 Toagosei Co Ltd Silicon-containing polymer compound, manufacturing method of the same, heat-resistant resin composition, and heat-resistant coating
JP4702055B2 (en) * 2003-07-29 2011-06-15 東亞合成株式会社 Silicon-containing polymer compound and method for producing the same
US8329815B2 (en) 2003-07-29 2012-12-11 Toagosei Co., Ltd. Silicone-containing polymer and a heat-resistant resin composition comprising the silicon-containing polymer
JP2007086476A (en) * 2005-09-22 2007-04-05 Asahi Kasei Electronics Co Ltd Organic inorganic photosensitive laminated insulating film

Similar Documents

Publication Publication Date Title
KR930007921B1 (en) Polyisophenylene siloxane, production process thereof and resist material and semiconductor device formed thereof
TW574104B (en) Etch-stop resins
KR100245180B1 (en) A phothosensitive composition, a method of forming a pattern and electronic parts
JPH04184444A (en) Production of photosensitive heat resistant resin composition and semiconductor device
JPS62215944A (en) Heat resistant photosensitive resin composition and formation of insulating layer
JPH0551458A (en) Organosilicon polymer and method for producing semiconductor device using the same polymer
JP2606321B2 (en) Photosensitive heat-resistant resin composition and method for manufacturing semiconductor device
JPH0314333B2 (en)
JPH07307114A (en) Method for forming polyimide insulated film
JPH0263057A (en) Photosensitive heat resistant resin composition and production of integrated circuit
JPH04253319A (en) Photosensitive heat resistant resin composition, pattern forming method, and semiconductor device using thereof
JPH0517686A (en) Heat-resistant photosensitive resin composition and formation of interlayer insulating film
KR100757108B1 (en) Polymer for hardmask and hardmask composition containing thereof
JP2628597B2 (en) Silicone compound
JPH0376717A (en) Organosilicon polymer, resin composition containing the same, and production of semiconductor device using the composition
CN107430334B (en) Positive photosensitive resin composition, method for producing patterned cured film, and electronic component
JPH0238427A (en) Heat-resistant photopolymer composition and production of integrated circuit by sing same
JPS6296942A (en) Production of heat resistant resin pattern
JPS62299965A (en) Negative type resist composition
JPH0343455A (en) Photosensitive heat-resistant resin composition and semiconductor device
JPS6256956A (en) Production of heat resistant insulating pattern
JPH04289865A (en) Manufacture for wiring structure
JPH0545882A (en) Production of photosensitive heat-resistant resin composition and insulating layer
JPH0642076B2 (en) Pattern forming material and multilayer wiring board using the same
JPS60108842A (en) Manufacture of semiconductor device