JP2007086476A - Organic inorganic photosensitive laminated insulating film - Google Patents

Organic inorganic photosensitive laminated insulating film Download PDF

Info

Publication number
JP2007086476A
JP2007086476A JP2005275824A JP2005275824A JP2007086476A JP 2007086476 A JP2007086476 A JP 2007086476A JP 2005275824 A JP2005275824 A JP 2005275824A JP 2005275824 A JP2005275824 A JP 2005275824A JP 2007086476 A JP2007086476 A JP 2007086476A
Authority
JP
Japan
Prior art keywords
organic
resin layer
photosensitive resin
insulating film
photosensitive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005275824A
Other languages
Japanese (ja)
Inventor
Takaaki Kobayashi
隆昭 小林
Ichiro Doi
一郎 土井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Electronics Co Ltd
Original Assignee
Asahi Kasei Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Electronics Co Ltd filed Critical Asahi Kasei Electronics Co Ltd
Priority to JP2005275824A priority Critical patent/JP2007086476A/en
Publication of JP2007086476A publication Critical patent/JP2007086476A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Materials For Photolithography (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an organic inorganic photosensitive laminated insulating film which is suitable for a buffer coat material for an LSI chip. <P>SOLUTION: The photosensitive insulating film is formed on a surface of a metal wiring substrate, and is characterized by having a plurality of layers comprising an organic inorganic photosensitive resin layer whose insulating film has a siloxane structure and an organic photosensitive resin layer. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、半導体デバイス、多層配線基板などの電気・電子材料の製造用として有用な感光性絶縁膜に関するものである。さらに詳しくいえば、本発明は、LSIチップのバッファコート材料や再配線層などの絶縁材料として好適な有機無機感光性積層絶縁膜に関するものである。   The present invention relates to a photosensitive insulating film useful for producing electrical / electronic materials such as semiconductor devices and multilayer wiring boards. More specifically, the present invention relates to an organic / inorganic photosensitive laminated insulating film suitable as an insulating material such as an LSI chip buffer coating material and a rewiring layer.

LSIチップのバッファコート材料や再配線層などの絶縁材料に対する性能要求は、LSIの微細化に伴い高解像、低温キュア、低応力などに厳しさを増している。特に、バッファコート材料の前に使われるLowK材料がますます耐応力、耐熱性に弱くなり、再配線のCuも電流密度増大で厚膜化傾向となり、上層バッファコート材料としては、従来の高解像度、耐薬品性、耐温度ストレス耐性などに加えて、厚膜、平坦化、低応力、低温キュア硬化処理を満足できなければいけない。
従来は、バッファコート材料としては、例えば、特許文献1〜5に見られるように感光性ポリイミドが、その代表例の1つとして使われて来たが、問題点も多く、中でもキュア後の平坦性に劣るという大きな欠点があり、それ単独で上述の要求をすべて満たすものは知られていない。
Performance requirements for insulating materials such as buffer coating materials and redistribution layers of LSI chips are becoming increasingly severe with high resolution, low temperature curing, low stress, etc., as LSIs become finer. In particular, the low-K material used before the buffer coating material becomes weaker in stress resistance and heat resistance, and Cu for rewiring also tends to become thicker due to an increase in current density. In addition to chemical resistance, temperature stress resistance, etc., it must be able to satisfy thick film, flattening, low stress, low temperature cure curing treatment.
Conventionally, as a buffer coating material, for example, as shown in Patent Documents 1 to 5, photosensitive polyimide has been used as one of representative examples. However, there are many problems, and in particular, flatness after curing. There is a major drawback of being inferior in nature, and it is not known that alone meets all the above requirements.

詳しくは、感光性ポリイミド前駆体は、側鎖に2重結合を持ったポリアミドであり、LSIウエハ上にスピンコートした後、光架橋反応で側鎖の2重結合のみを架橋させ、現像でパターン形成し、熱硬化処理でポリアミドから脱水反応で耐熱性に優れたポリイミド構造に変化する。架橋鎖も熱処理で分解揮発する。
また、脱水反応の過程で下地との強固な密着性を形成する。強固な分子構造のため、有機アルカリ液(DMSO/TMAH )など耐薬品性にも優れる。
ところが、問題点としては熱硬化での脱水反応、架橋鎖分解反応で膜が緻密化する方向に変化し、厚みで4割近く収縮することである。
Specifically, the photosensitive polyimide precursor is a polyamide having a double bond in the side chain. After spin coating on the LSI wafer, only the double bond in the side chain is cross-linked by a photocrosslinking reaction, and the pattern is developed. It is formed and changed from polyamide by heat curing to a polyimide structure with excellent heat resistance by dehydration reaction. Cross-linked chains are also decomposed and volatilized by heat treatment.
In addition, a strong adhesion with the base is formed in the course of the dehydration reaction. Due to its strong molecular structure, it also has excellent chemical resistance such as organic alkali solution (DMSO / TMAH).
However, the problem is that the film changes in the direction of densification by the dehydration reaction by thermosetting and the cross-linking chain decomposition reaction, and shrinks by nearly 40% by thickness.

図1にこの熱硬化での脱水反応、架橋鎖分解反応に基づく収縮、平坦性の低下の状態が示され、スピンコートまで平坦であった膜が、下地段差高さの違いから熱硬化収縮により、平坦性が劣化する様子が示されている。
これ以外にも上記収縮に伴って発生する大きな内部応力(約40Mpa)も応力に弱い下地LowK(低誘電率材料)への影響が問題となる。
さらに、大きな紫外線光吸収のため10μ〜30μ付近の厚膜での光解像度が劣化するなど、今後の再配線プロセスでの多層化、微細化に問題となることが予想される。
感光性ポリイミド以外の感光性耐熱材料として感光性ベンゾシクロブテン等があるが、同様に熱硬化過程で脱水反応を伴い大きな膜収縮、内部応力など同じ問題点を抱えている。
FIG. 1 shows the state of dehydration reaction, shrinkage due to cross-linking chain decomposition reaction, and reduced flatness in this heat curing. The film that was flat up to the spin coat is caused by the heat curing shrinkage due to the difference in the height of the base step. It is shown that the flatness deteriorates.
In addition to this, the large internal stress (about 40 Mpa) generated due to the shrinkage also has a problem of influence on the underlying LowK (low dielectric constant material) which is weak against the stress.
Furthermore, it is expected that there will be a problem in multilayering and miniaturization in the future rewiring process, for example, optical resolution in a thick film near 10 μ to 30 μ deteriorates due to large ultraviolet light absorption.
There are photosensitive benzocyclobutenes and the like as photosensitive heat-resistant materials other than photosensitive polyimide, but they also have the same problems such as large film shrinkage and internal stress accompanied by a dehydration reaction in the thermosetting process.

特開平06−053520号公報Japanese Patent Laid-Open No. 06-053520 特開平06−240137号公報Japanese Patent Laid-Open No. 06-240137 特開平09−017777号公報JP 09-017777 A 特開平11−297684号公報Japanese Patent Laid-Open No. 11-297684 特開2002−203851号公報JP 2002-203851 A

本発明は、半導体デバイス、多層配線基板などの電気・電子材料の製造用として有用な
、特にLSIチップのバッファコート材料として好適な厚膜化、耐熱性、低光反射、高解像、耐薬品性に優れると同時に低収縮、平坦性、低応力の改善されたた感光性樹脂絶縁膜を得ることを目的とする。
The present invention is useful for the manufacture of electrical / electronic materials such as semiconductor devices and multilayer wiring boards, and is particularly suitable as a buffer coating material for LSI chips. Thickening, heat resistance, low light reflection, high resolution, chemical resistance It is an object of the present invention to obtain a photosensitive resin insulating film which is excellent in properties and has improved low shrinkage, flatness and low stress.

本発明者等は、前記課題を解決するために、新材料としてシロキサンを含む有機無機感光性樹脂を研究する内、該樹脂と前記有機感光性樹脂(例えば、感光性ポリイミド)とを組み合わせることで、両者の欠点を補完し優れた性能の感光性絶縁膜が得られることを見いだし、本発明を完成させるに至った。即ち、本発明は以下の通りである。
(1)金属配線基板面上に形成する感光性絶縁膜であって、該絶縁膜がシロキサン構造を有する有機無機感光性樹脂層と、有機樹脂層との複数層を有することを特徴とする感光性絶縁膜である。
(2)前記有機樹脂層が、有機ネガ型感光性樹脂層であることを特徴とする(1)記載の感光性絶縁膜である。
In order to solve the above-mentioned problems, the inventors have studied organic-inorganic photosensitive resin containing siloxane as a new material, and combined the resin with the organic photosensitive resin (for example, photosensitive polyimide). The inventors have found that a photosensitive insulating film having excellent performance can be obtained by complementing the disadvantages of both, and the present invention has been completed. That is, the present invention is as follows.
(1) A photosensitive insulating film formed on the surface of a metal wiring board, wherein the insulating film has a plurality of layers of an organic-inorganic photosensitive resin layer having a siloxane structure and an organic resin layer. A conductive insulating film.
(2) The photosensitive insulating film according to (1), wherein the organic resin layer is an organic negative photosensitive resin layer.

(3)前記有機ネガ型感光性樹脂層が、感光性ポリイミド、ベンゾシクロブテン、不飽和ポリエステル、不飽和ポリウレタン、不飽和エポキシ、不飽和メタアクリレート、ポリエーテルアクリレートのいずれかの層であることを特徴とする(1)又は(2)記載の感光性絶縁膜である。
(4)前記有機無機感光性樹脂層と有機ネガ型感光性樹脂層とが、同じ光吸収帯を持つことを特徴とする(1)〜(3)のいずれかに記載の感光性絶縁膜である。
(5)金属配線基板面側から、有機ネガ型感光性樹脂層、次いでシロキサン構造を有する有機無機感光性樹脂層を順に積層してなることを特徴とする(1)〜(4)のいずれかに記載の感光性絶縁膜の製造方法である。
(3) The organic negative photosensitive resin layer is any layer of photosensitive polyimide, benzocyclobutene, unsaturated polyester, unsaturated polyurethane, unsaturated epoxy, unsaturated methacrylate, and polyether acrylate. The photosensitive insulating film according to (1) or (2), which is characterized.
(4) The photosensitive insulating film according to any one of (1) to (3), wherein the organic-inorganic photosensitive resin layer and the organic negative photosensitive resin layer have the same light absorption band. is there.
(5) Any one of (1) to (4), wherein an organic negative photosensitive resin layer and then an organic inorganic photosensitive resin layer having a siloxane structure are sequentially laminated from the metal wiring board surface side. The method for producing a photosensitive insulating film according to the above.

(6)金属配線基板面側から、有機ネガ型感光性樹脂層、シロキサン構造を有する有機無機感光性樹脂層、有機ネガ型感光性樹脂層を順に積層してなることを特徴とする(1)〜(4)のいずれかに記載の感光性絶縁膜の製造方法である。
(7)金属配線基板面側から、シロキサン構造を有する有機無機感光性樹脂層、次いで有機ネガ型感光性樹脂層を順に積層してなることを特徴とする(1)〜(4)のいずれかに記載の感光性絶縁膜の製造方法である。
(8)金属配線基板面側から、有機ネガ型感光性樹脂層の厚みが1μm、シロキサン構造を有する有機無機感光性樹脂層の厚みが10〜100μm、有機ネガ型感光性樹脂層の厚みが1μmとなるように順に積層してなることを特徴とする(1)〜(4)のいずれかに記載の感光性絶縁膜の製造方法である。
(6) An organic negative photosensitive resin layer, an organic inorganic photosensitive resin layer having a siloxane structure, and an organic negative photosensitive resin layer are sequentially laminated from the metal wiring board surface side. It is a manufacturing method of the photosensitive insulating film in any one of-(4).
(7) Any one of (1) to (4), wherein an organic inorganic photosensitive resin layer having a siloxane structure and then an organic negative photosensitive resin layer are sequentially laminated from the metal wiring board surface side. The method for producing a photosensitive insulating film according to the above.
(8) From the metal wiring board surface side, the thickness of the organic negative photosensitive resin layer is 1 μm, the thickness of the organic inorganic photosensitive resin layer having a siloxane structure is 10 to 100 μm, and the thickness of the organic negative photosensitive resin layer is 1 μm. The method for producing a photosensitive insulating film according to any one of (1) to (4), wherein layers are sequentially laminated so that

本発明のシロキサン構造を有する有機無機感光性樹脂(以下、単にシロキサンということもある。)と有機樹脂、とりわけ有機感光性ポリイミドとの積層型補完構造を用いることで、次の優れた効果が期待できる。
(1)シロキサンが感光性ポリイミドの熱収縮膜減り大の問題を解決し、熱硬化処理後も、膜減りが少なく、下地段差部で良好な平坦性確保が可能となる。
(2)シロキサンのアルカリ薬品に弱い欠点を感光性ポリイミドが解決し、下地に段差があっても、段差の無い平坦部でも、耐薬品性にも優れた層間絶縁膜構造にすることができる。
(3)シロキサンの下地との密着性小の欠点を克服し、下地に段差があっても、段差の無い平坦部でも、密着性に優れた層間絶縁膜構造にすることができる。
(4)下側ポリイミドと上側ポリイミドがそれぞれ、下地材料(Cu等)界面からの反射光と、上側材料(空気など)界面からの反射光を低減することが可能となり、より高精度な解像度向上が達成できる。
The following excellent effects are expected by using the laminated complementary structure of the organic inorganic photosensitive resin having a siloxane structure of the present invention (hereinafter sometimes simply referred to as siloxane) and an organic resin, particularly an organic photosensitive polyimide. it can.
(1) Siloxane solves the problem of reducing the thermal shrinkage film of photosensitive polyimide, and even after the thermosetting treatment, the film is less reduced and good flatness can be ensured at the base step portion.
(2) The photosensitive polyimide solves the drawback of siloxanes that are weak against alkaline chemicals, so that an interlayer insulating film structure excellent in chemical resistance can be obtained even if there is a step on the base or a flat portion without a step.
(3) Overcoming the drawbacks of low adhesion to the siloxane substrate, and an interlayer insulating film structure with excellent adhesion can be obtained even if the substrate has a step or a flat part without a step.
(4) Lower polyimide and upper polyimide can reduce the reflected light from the base material (Cu etc.) interface and the reflected light from the upper material (air etc.) interface, respectively, and improve the resolution with higher accuracy. Can be achieved.

(1)有機樹脂層について
本発明の感光性絶縁膜を構成する有機樹脂層としては、当該技術分野で慣用とれる種々のものを用いることができ、非ポリアミック酸構造の非感光性型のものでも採用できるが、特にネガ型感光性樹脂層、中でも感光性ポリイミド、ベンゾシクロブテン、不飽和ポリエステル、不飽和ポリウレタン、不飽和エポキシ、不飽和メタアクリレート、ポリエーテルアクリレートが好適で、とりわけ感光性ポリイミドが好適ある。
(1) Organic Resin Layer As the organic resin layer constituting the photosensitive insulating film of the present invention, various types commonly used in the technical field can be used, and even a non-photosensitive type having a non-polyamic acid structure can be used. In particular, negative photosensitive resin layers, especially photosensitive polyimides, benzocyclobutenes, unsaturated polyesters, unsaturated polyurethanes, unsaturated epoxies, unsaturated methacrylates, and polyether acrylates are preferred. It is suitable.

感光性ポリイミドとしては、下記の一般式で表される構造のものを用いることができる。

Figure 2007086476
As a photosensitive polyimide, the thing represented by the following general formula can be used.
Figure 2007086476

ここでXは4価の脂肪族基又は4価の芳香族基を、Yは2価の脂肪族基又は2価の芳香族基をそれぞれ表す。
X基の構造は、原料となるテトラカルボン酸無水物に由来する。テトラカルボン酸無水物としては、例えば芳香族テトラカルボン酸無水物に由来するものであれば、ピロメリット酸二無水物、4,4' −オキシジフタル酸二無水物、3,3' ,4,4' −ベンゾフェノンテトラカルボン酸二無水物、3,3' ,4,4' −ジフェニルスルフォンテトラカルボン酸二無水物、1,1,1,3,3,3−ヘキサフルオロプロパン−2,2−ジフタル酸二無水物、3,3' ,4,4′−ビフェニルテトラカルボン酸二無水物、1,2,3,4−ベンゼンテトラカルボン酸二無水物、3,6−トリフルオロ−1,2,4,5−ベンゼンテトラカルボン酸二無水物、また、3,3′,4,4′−ジフェニルエーテルテトラカルボン酸二無水物、1,4−ジメトキシ−2,3,5,6−ベンゼンテトラカルボン酸二無水物、1,4−ジトリメチルシリル−2,3,5,6−ベンゼンテトラカルボン酸二無水物、1,4−ビス(3,4−ジカルボキシルフェノキシ)ベンゼン二無水物、1,3−ビス(3,4−ジカルボキシルフェノキシ)ベンゼン二無水物、3,3′,4,4′−ジフェニルメタンテトラカルボン酸二無水物、ビス(3,4−ジカルボキシルフェノキシ)ジメチルシラン二無水物、ビス(3,4−ジカルボキシルフェノキシ)メチルアミン二無水物、4,4′−ビス(3,4−ジカルボキシルフェノキシ)ビフェニル二無水物、4,4′−ビス(3,4−ジカルボキシルフェノキシ)ジフェニルスルフォン二無水物、2,3,5,6−ナフタレンテトラカルボン酸二無水物、2,3,5,6−ピリジンテトラカルボン酸二無水物、2,3,6,7−キノリンテトラカルボン酸二無水物、3,3′,4,4′−ジフェニルスルフィドテトラカルボン酸二無水物、3,3′,4,4′−ジフェニルスルホキシドテトラカルボン酸二無水物、1,2,8,9−アントラセンテトラカルボン酸二無水物、1,4−ビス(3,4−ジカルボキシルフェニルスルフォニル)ベンゼン二無水物、1,4−ビス(3,4−ジカルボキシルフェニルチオ)ベンゼン二無水物、3,3″,4,4″−タ−フェニルテトラカルボン酸二無水物、4−フェニルベンゾフェノン−3,3″,4,4″−テトラカルボン酸二無水物、1,4−ビス(3,4−ジカ
ルボキシルベンゾイル)−ベンゼン二無水物、3,3''' ,4,4''' −クアチルフェニルテトラカルボン酸二無水物、4,4′−ビス(3,4−ジカルボキシルフェノキシ)ベンゾフェノン二無水物、4,4′−ビス(3,4−ジカルボキシルフェノキシ)ジフェニルスルホキシド二無水物などを用いることができる。
Here, X represents a tetravalent aliphatic group or a tetravalent aromatic group, and Y represents a divalent aliphatic group or a divalent aromatic group.
The structure of the X group is derived from the tetracarboxylic anhydride used as a raw material. Examples of the tetracarboxylic anhydride include pyromellitic dianhydride, 4,4′-oxydiphthalic dianhydride, 3,3 ′, 4,4, as long as they are derived from aromatic tetracarboxylic anhydride. '-Benzophenone tetracarboxylic dianhydride, 3,3', 4,4'-diphenylsulfone tetracarboxylic dianhydride, 1,1,1,3,3,3-hexafluoropropane-2,2-diphthal Acid dianhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, 1,2,3,4-benzenetetracarboxylic dianhydride, 3,6-trifluoro-1,2, 4,5-benzenetetracarboxylic dianhydride, 3,3 ', 4,4'-diphenyl ether tetracarboxylic dianhydride, 1,4-dimethoxy-2,3,5,6-benzenetetracarboxylic acid Dianhydride, , 4-Ditrimethylsilyl-2,3,5,6-benzenetetracarboxylic dianhydride, 1,4-bis (3,4-dicarboxylphenoxy) benzene dianhydride, 1,3-bis (3,4 -Dicarboxylphenoxy) benzene dianhydride, 3,3 ', 4,4'-diphenylmethanetetracarboxylic dianhydride, bis (3,4-dicarboxylphenoxy) dimethylsilane dianhydride, bis (3,4 Dicarboxylphenoxy) methylamine dianhydride, 4,4'-bis (3,4-dicarboxylphenoxy) biphenyl dianhydride, 4,4'-bis (3,4-dicarboxylphenoxy) diphenylsulfone dianhydride 2,3,5,6-naphthalenetetracarboxylic dianhydride, 2,3,5,6-pyridinetetracarboxylic dianhydride, 2,3,6,7- Norin tetracarboxylic dianhydride, 3,3 ', 4,4'-diphenyl sulfide tetracarboxylic dianhydride, 3,3', 4,4'-diphenyl sulfoxide tetracarboxylic dianhydride, 1,2, 8,9-anthracenetetracarboxylic dianhydride, 1,4-bis (3,4-dicarboxylphenylsulfonyl) benzene dianhydride, 1,4-bis (3,4-dicarboxylphenylthio) benzene dianhydride 3,3 ″, 4,4 ″ -tert-phenyltetracarboxylic dianhydride, 4-phenylbenzophenone-3,3 ″, 4,4 ″ -tetracarboxylic dianhydride, 1,4-bis ( 3,4-dicarboxylbenzoyl) -benzene dianhydride, 3,3 ′ ″, 4,4 ′ ″-quatylphenyltetracarboxylic dianhydride, 4,4′-bis (3,4-di Carboxyl Phenoxy) benzophenone dianhydride, 4,4'-bis (3,4-dicarboxyl) diphenyl sulfoxide dianhydride can be used.

また、脂肪族テトラカルボン酸無水物に由来するものとしては、ブタンテトラカルボン酸二無水物、1,2,3,4−シクロブタンテトラカルボン酸二無水物、1,2−ジメチル−1,2,3,4−シクロブタンテトラカルボン酸二無水物、1,3−ジメチル−1,2,3,4−シクロブタンテトラカルボン酸二無水物、1,3−ジクロロ−1,2,3,4−シクロブタンテトラカルボン酸二無水物、1,2,3,4−テトラメチル−1,2,3,4−シクロブタンテトラカルボン酸二無水物、1,2,3,4−シクロペンタンテトラカルボン酸二無水物、1,2,4,5−シクロヘキサンテトラカルボン酸二無水物、3,3' ,4,4' −ジシクロヘキシルテトラカルボン酸二無水物、2,3,5−トリカルボキシシクロペンチル酢酸二無水物、3,5,6−トリカルボキシノルボルナン−2−酢酸二無水物、2,3,4,5−テトラヒドロフランテトラカルボン酸二無水物、1,3,3a,4,5,9b−ヘキサヒドロ−5(テトラヒドロ−2,5−ジオキソ−3−フラニル)−ナフト[1,2−c]−フラン−1,3−ジオン、1,3,3a,4,5,9b−ヘキサヒドロ−5−メチル−5(テトラヒドロ−2,5−ジオキソ−3−フラニル)−ナフト[1,2−c]−フラン−1,3−ジオン、1,3,3a,4,5,9b−ヘキサヒドロ−5−エチル−5(テトラヒドロ−2,5−ジオキソ−3−フラニル)−ナフト[1,2−c]−フラン−1,3−ジオン、1,3,3a,4,5,9b−ヘキサヒドロ−7−メチル−5(テトラヒドロ−2,5−ジオキソ−3−フラニル)−ナフト[1,2−c]−フラン−1,3−ジオン、1,3,3a,4,5,9b−ヘキサヒドロ−7−エチル−5(テトラヒドロ−2,5−ジオキソ−3−フラニル)−ナフト[1,2−c]−フラン−1,3−ジオン、1,3,3a,4,5,9b−ヘキサヒドロ−8−メチル−5(テトラヒドロ−2,5−ジオキソ−3−フラニル)−ナフト[1,2−c]−フラン−1,3−ジオン、1,3,3a,4,5,9b−ヘキサヒドロ−8−エチル−5(テトラヒドロ−2,5−ジオキソ−3−フラニル)−ナフト[1,2−c]−フラン−1,3−ジオン、1,3,3a,4,5,9b−ヘキサヒドロ−5,8−ジメチル−5(テトラヒドロ−2,5−ジオキソ−3−フラニル)−ナフト[1,2−c]−フラン−1,3−ジオン、5−(2,5−ジオキソテトラヒドロフラル)−3−メチル−3−シクロヘキセン−1,2−ジカルボン酸二無水物、ビシクロ[2,2,2]−オクト−7−エン−2,3,5,6−テトラカルボン酸二無水物等を用いることができる。   Moreover, as what originates in an aliphatic tetracarboxylic anhydride, butane tetracarboxylic dianhydride, 1,2,3,4-cyclobutane tetracarboxylic dianhydride, 1,2-dimethyl-1,2, 3,4-cyclobutanetetracarboxylic dianhydride, 1,3-dimethyl-1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,3-dichloro-1,2,3,4-cyclobutanetetra Carboxylic dianhydride, 1,2,3,4-tetramethyl-1,2,3,4-cyclobutanetetracarboxylic dianhydride, 1,2,3,4-cyclopentanetetracarboxylic dianhydride, 1,2,4,5-cyclohexanetetracarboxylic dianhydride, 3,3 ′, 4,4′-dicyclohexyltetracarboxylic dianhydride, 2,3,5-tricarboxycyclopentylacetic acid dianhydride 3,5,6-tricarboxynorbornane-2-acetic acid dianhydride, 2,3,4,5-tetrahydrofurantetracarboxylic dianhydride, 1,3,3a, 4,5,9b-hexahydro-5 (Tetrahydro-2,5-dioxo-3-furanyl) -naphtho [1,2-c] -furan-1,3-dione, 1,3,3a, 4,5,9b-hexahydro-5-methyl-5 (Tetrahydro-2,5-dioxo-3-furanyl) -naphtho [1,2-c] -furan-1,3-dione, 1,3,3a, 4,5,9b-hexahydro-5-ethyl-5 (Tetrahydro-2,5-dioxo-3-furanyl) -naphtho [1,2-c] -furan-1,3-dione, 1,3,3a, 4,5,9b-hexahydro-7-methyl-5 (Tetrahydro-2,5-dioxo-3-furani ) -Naphtho [1,2-c] -furan-1,3-dione, 1,3,3a, 4,5,9b-hexahydro-7-ethyl-5 (tetrahydro-2,5-dioxo-3-furanyl) ) -Naphtho [1,2-c] -furan-1,3-dione, 1,3,3a, 4,5,9b-hexahydro-8-methyl-5 (tetrahydro-2,5-dioxo-3-furanyl) ) -Naphtho [1,2-c] -furan-1,3-dione, 1,3,3a, 4,5,9b-hexahydro-8-ethyl-5 (tetrahydro-2,5-dioxo-3-furanyl) ) -Naphtho [1,2-c] -furan-1,3-dione, 1,3,3a, 4,5,9b-hexahydro-5,8-dimethyl-5 (tetrahydro-2,5-dioxo-3) -Furanyl) -naphtho [1,2-c] -furan-1,3-dione, -(2,5-dioxotetrahydrofural) -3-methyl-3-cyclohexene-1,2-dicarboxylic dianhydride, bicyclo [2,2,2] -oct-7-ene-2,3,5 , 6-tetracarboxylic dianhydride and the like can be used.

Y基の構造は、原料として用いるジアミン類に由来する。Y基が2価の芳香族基である場合の例としては、パラフェニレンジアミン、3,3' −ジメチル−4,4' −ジアミノビフェニル、2,2' −ジメチル−4,4' −ジアミノビフェニル、3,3' −ジメトキシ−4,4' −ジアミノビフェニル、3,3' −ジクロロ−4,4' −ジアミノビフェニル、9,10−ビス(4−アミノフェニル)アントラセン、4,4' −ジアミノベンゾフェノン、4,4' −ジアミノジフェニルスルフォン、3,3' −ジアミノジフェニルスルフォン、4,4' −ジアミノジフェニルスォキシド、1,3−ビス(3−アミノフェノキシ)ベンゼン、ビス〔4−(4−アミノフェノキシ)フェニル〕スルフォン、ビス〔4−(3−アミノフェノキシ)フェニル〕スルフォン、4,4' −ビス(4−アミノフェノキシ)ビフェニル、4,4' −ビス(3−アミノフェノキシビフェニル、ビス〔4−(4−アミノフェノキシ)フェニル〕エーテル、1,1,1,3,3,3−ヘキサフルオロ−2,2−ビス(4−アミノフェニル)プロパン、1,1,1,3,3,3−ヘキサフルオロ−2,2−ビス〔4−(4−アミノフェノキシ)フェニル〕プロパン、1,1,1,3,3,3−ヘキサフルオロ−2,2−ビス(3−アミノ−4−メチルフェニル)プロパン、メタフェニレンジアミン、4,4' −ジアミノジフェニルエーテル、4,4' −ジアミノジフェニルスルフィド、3,4' −ジアミノジフェニルエーテル、1,4−ビス(4−ア
ミノフェノキシ)ベンゼン、1,3−ビス(4−アミノフェノキシ)ベンゼンを挙げることができる。
The structure of the Y group is derived from diamines used as raw materials. Examples where the Y group is a divalent aromatic group include paraphenylenediamine, 3,3′-dimethyl-4,4′-diaminobiphenyl, and 2,2′-dimethyl-4,4′-diaminobiphenyl. 3,3′-dimethoxy-4,4′-diaminobiphenyl, 3,3′-dichloro-4,4′-diaminobiphenyl, 9,10-bis (4-aminophenyl) anthracene, 4,4′-diamino Benzophenone, 4,4′-diaminodiphenylsulfone, 3,3′-diaminodiphenylsulfone, 4,4′-diaminodiphenyl sulfoxide, 1,3-bis (3-aminophenoxy) benzene, bis [4- (4- Aminophenoxy) phenyl] sulfone, bis [4- (3-aminophenoxy) phenyl] sulfone, 4,4′-bis (4-aminophenoxy) biff Nyl, 4,4′-bis (3-aminophenoxybiphenyl, bis [4- (4-aminophenoxy) phenyl] ether, 1,1,1,3,3,3-hexafluoro-2,2-bis ( 4-aminophenyl) propane, 1,1,1,3,3,3-hexafluoro-2,2-bis [4- (4-aminophenoxy) phenyl] propane, 1,1,1,3,3 3-hexafluoro-2,2-bis (3-amino-4-methylphenyl) propane, metaphenylenediamine, 4,4′-diaminodiphenyl ether, 4,4′-diaminodiphenyl sulfide, 3,4′-diaminodiphenyl ether 1,4-bis (4-aminophenoxy) benzene and 1,3-bis (4-aminophenoxy) benzene.

またY基が2価の脂肪族基である場合の例としては、1,1−メタキシリレンジアミン、1,3−プロパンジアミン、テトラメチレンジアミン、ペンタメチレンジアミン、ヘキサメチレンジアミン、ヘプタメチレンジアミン、オクタメチレンジアミン、ノナメチレンジアミン、4,4−ジアミノヘプタメチレンジアミン、1,4−ジアミノシクロヘキサン、イソホロンジアミン、テトラヒドロジシクロペンタジエニレンジアミン、ヘキサヒドロ−4,7−メタノインダニレンジメチレンジアミン、トリシクロ[6.2.1.02,7]−ウンデシレンジメチルジアミン、4,4' −メチレンビス(シクロヘキシルアミン)を挙げることができる。   Examples of the case where the Y group is a divalent aliphatic group include 1,1-metaxylylenediamine, 1,3-propanediamine, tetramethylenediamine, pentamethylenediamine, hexamethylenediamine, heptamethylenediamine, Octamethylene diamine, nonamethylene diamine, 4,4-diaminoheptamethylene diamine, 1,4-diaminocyclohexane, isophorone diamine, tetrahydrodicyclopentadienylenediamine, hexahydro-4,7-methanoindanylene methylene diamine, tricyclo Mention may be made of [6.2.1.02,7] -undecylenedimethyldiamine and 4,4′-methylenebis (cyclohexylamine).

また、別の例としては、下式で示されるジアミノポリシロキサンを用いることもできる。

Figure 2007086476
As another example, diaminopolysiloxane represented by the following formula can also be used.
Figure 2007086476

但し、式中、R12及びR13はそれぞれ独立して二価の炭化水素基を表し、R14及びR15は、それぞれ独立して一価の炭化水素基を表す。mは1以上、好ましくは1〜9の整数である。
具体的には、上記式におけるR12及びR13としては、メチレン基、エチレン基、プロピレン基等の炭素数1−7のアルキレン基、フェニレン基等の炭素数6−18のアリーレン基などが挙げられ、R14及びR15としては、メチル基、エチル基等の炭素数1〜7のアルキル基、フェニル基等の炭素数6−12のアリール基などが挙げられる。
上記に挙げた構造は例であって、これらに限定されるものではない。また、X又は/及びYがそれぞれ複数の構造からなる、共重合体であってもよい。
However, in the formula, R 12 and R 13 each independently represent a divalent hydrocarbon group, and R 14 and R 15 each independently represent a monovalent hydrocarbon group. m is 1 or more, preferably an integer of 1 to 9.
Specifically, examples of R 12 and R 13 in the above formula include an alkylene group having 1 to 7 carbon atoms such as a methylene group, an ethylene group and a propylene group, and an arylene group having 6 to 18 carbon atoms such as a phenylene group. Examples of R 14 and R 15 include an alkyl group having 1 to 7 carbon atoms such as a methyl group and an ethyl group, and an aryl group having 6 to 12 carbon atoms such as a phenyl group.
The structures listed above are examples and are not limited to these. Further, it may be a copolymer in which X and / or Y each have a plurality of structures.

(2)シロキサン構造を有する有機無機感光性樹脂層について
シロキサン構造を有する有機無機感光性樹脂の前駆体モノマー構造例を図2に示す。Aは無機シロキサン(Si−O −Si構造)の元になるシリコンアルコキシド(アルコキシシランと同じ)であり、Bは感光基Cとの結合基であり、Cは紫外光に感度を有する感光基(エポキシ基、メタアクリル基など)である。
最初に加水分解重縮合のSolGel反応でSiO2ナノサイズ粒子を含む粘性流体(シロキサンSi−O −Si構造)を形成し、LSIウエハ上にスピンコートした後、紫外光照射により、感光基を架橋させ、架橋硬化した部分だけ現像で残し、熱硬化処理で完全に硬化させる。全体的にはSiO2ナノ粒子を有機ポリマーがバインダーとして包む構造になる。無機SiO2は硬い安定な構造であるため、熱硬化処理しても複合膜の寸法変化が小さく、低内部応力、低硬化温度、低収縮、光透過性などに優れた特徴を示す。
(2) Organic-inorganic photosensitive resin layer having a siloxane structure An example of a precursor monomer structure of an organic-inorganic photosensitive resin having a siloxane structure is shown in FIG. A is a silicon alkoxide (same as alkoxysilane) that is the basis of inorganic siloxane (Si-O-Si structure), B is a bonding group with photosensitive group C, and C is a photosensitive group sensitive to ultraviolet light ( Epoxy group, methacryl group, etc.).
First, a viscous fluid (siloxane Si-O-Si structure) containing SiO 2 nano-sized particles is formed by the SolGel reaction of hydrolysis polycondensation, spin-coated on the LSI wafer, and then the photosensitive groups are crosslinked by ultraviolet light irradiation. Only the part that has been cross-linked and cured remains in the development, and is completely cured by heat curing. Overall, the structure is such that the organic polymer is wrapped with SiO 2 nanoparticles as a binder. Since inorganic SiO 2 has a hard and stable structure, the dimensional change of the composite film is small even when thermally cured, and exhibits excellent characteristics such as low internal stress, low curing temperature, low shrinkage, and light transmittance.

その一方で、再配線Cuのレジスト除去液に一般的に有機アルカリ液(DMSOディメチルスルホオキサイド+TMAHテトラメチルアンモニウムハイドライドなど)が使用されるが、Si−O 結合はアルカリに弱く切断されやすく、耐薬品性が問題となっている。また下地Cuなどとの密着性も弱く、エポキシやメタアクリルも不十分な結合強度のため、下地密着性にも問題となっている。またシロキサン構造を有する有機無機感光性樹脂は光
透過性に優れるため、厚い膜においても感光に有利であるが、下地材料(Cuなど)からの光反射の影響を受け易く解像度劣化が問題となっている。
シロキサン構造を有する有機無機感光性樹脂の前駆体モノマーは、ドイツ国 Fraunhofer ISC 社製の「ORMOCER」(登録商標)ONEとして市販されており、容易に入手することができる。
On the other hand, an organic alkaline solution (such as DMSO dimethylsulfoxide + TMAH tetramethylammonium hydride) is generally used as the resist removal solution for the rewiring Cu. However, the Si—O bond is weak against alkali and easily cut off. Chemical properties are a problem. In addition, adhesion to the substrate Cu is weak, and epoxy and methacryl are also insufficient in bonding strength, which causes a problem in substrate adhesion. An organic inorganic photosensitive resin having a siloxane structure is excellent in light transmittance and is advantageous for light exposure even in a thick film, but it is easily affected by light reflection from a base material (Cu, etc.), and resolution degradation becomes a problem. ing.
The precursor monomer of the organic-inorganic photosensitive resin having a siloxane structure is commercially available as “ORMOCER” (registered trademark) ONE manufactured by Fraunhofer ISC, Germany, and can be easily obtained.

(3)有機感光性樹脂層とシロキサン構造を有する有機無機感光性樹脂層との複数層について
1)図3にシロキサン構造を有する有機無機感光性樹脂と有機感光性樹脂、とりわけ感光性ポリイミドとの性質の比較と補完関係を示す。
両者は、耐熱性、感光性は共通しており、それ以外は相互に欠点を補完しあう関係になっており、そのことが本発明の重要なポイントである。
本発明はこれら相互補完の関係にある膜を積層構造にすることで、従来の問題点を解決することができる。
(3) Regarding a plurality of layers of an organic photosensitive resin layer and an organic / inorganic photosensitive resin layer having a siloxane structure 1) FIG. 3 shows an organic / inorganic photosensitive resin having a siloxane structure and an organic photosensitive resin, particularly photosensitive polyimide. Comparison of properties and complementary relationships are shown.
Both have the same heat resistance and photosensitivity, and other than that, they are mutually in a mutually complementary relationship, which is an important point of the present invention.
In the present invention, the conventional problems can be solved by forming a laminated structure of these mutually complementary films.

2)次に、図4を用いて本発明の積層構造の製法の概略を説明する。 先ず、下地との密着性向上のために感光性ポリイミドの低濃度溶液をスピンコートし、薄膜層を形成する。110℃でのプリベーク後、平坦性を目的とした厚膜のシロキサン構造を有する有機無機感光性樹脂をスピンコートし、厚膜層を形成する。再度110℃でプリベーク後、耐薬品性向上のために感光性ポリイミドの低濃度溶液をスピンコートし、薄膜層を形成する。
露光工程は一回で、上部ポリイミドから下部ポリイミドまでネガ型感光現像パターンを形成し、熱硬化処理も1回で、積層膜の硬化を完了させる。
2) Next, the outline of the manufacturing method of the laminated structure of this invention is demonstrated using FIG. First, a thin film layer is formed by spin-coating a low-concentration solution of photosensitive polyimide in order to improve adhesion to the base. After pre-baking at 110 ° C., an organic / inorganic photosensitive resin having a thick siloxane structure for flatness is spin-coated to form a thick film layer. After prebaking again at 110 ° C., a low concentration solution of photosensitive polyimide is spin-coated to improve chemical resistance, and a thin film layer is formed.
The exposure process is performed once, a negative photosensitive development pattern is formed from the upper polyimide to the lower polyimide, and the curing of the laminated film is completed by one thermal curing treatment.

3)各積層膜の層厚みの最適化は本発明の重要なポイントである。
下部、上部の感光性ポリイミドが極度に厚くなると、熱収縮率大、内部応力大、光吸収大などの弊害をもたらし性能がでなくなる。中間のシロキサン構造を有する有機無機感光性樹脂が極度に薄いと平坦性劣化などの弊害をもたらす。
すなわち、膜の構成厚みとしては、下部感光性ポリイミド厚みは1〜10μm、好ましくは1〜5μm、さらに好ましくは1〜2μmであり、中間シロキサン構造を有する有機無機感光性樹脂厚みは10〜100μm、好ましくは10〜50μm、さらに好ましくは20〜40μmであり、上部感光性ポリイミド厚みは1〜10μm、好ましくは1〜5μm、さらに好ましくは1〜2μmである。
そして、全体膜厚を変更するには、中間のシロキサン構造を有する有機無機感光性樹脂厚みを調整する方法が好ましい。
3) Optimization of the layer thickness of each laminated film is an important point of the present invention.
When the lower and upper photosensitive polyimides are extremely thick, they cause adverse effects such as a large heat shrinkage rate, a large internal stress, and a large light absorption. If the organic-inorganic photosensitive resin having an intermediate siloxane structure is extremely thin, it causes problems such as deterioration of flatness.
That is, as the constituent thickness of the film, the lower photosensitive polyimide thickness is 1 to 10 μm, preferably 1 to 5 μm, more preferably 1 to 2 μm, and the thickness of the organic-inorganic photosensitive resin having an intermediate siloxane structure is 10 to 100 μm. Preferably it is 10-50 micrometers, More preferably, it is 20-40 micrometers, and the upper photosensitive polyimide thickness is 1-10 micrometers, Preferably it is 1-5 micrometers, More preferably, it is 1-2 micrometers.
And in order to change the whole film thickness, the method of adjusting the organic-inorganic photosensitive resin thickness which has an intermediate | middle siloxane structure is preferable.

4)感光性ポリイミド以外の材料でも、ポリイミドと類似の性質(耐熱性、高内部応力、熱硬化収縮、紫外光吸収)を有する耐熱性感光ポリマー(例えば感光性ベンゾシクロブテン)もシロキサン構造を有する有機無機感光性樹脂と組み合わせることで同様の補完効果が期待できるため、本発明と同じ効果を示す。
また、シロキサン構造を有する有機無機感光性樹脂と組み合わせる有機感光性樹脂は耐熱性が低くとも感光基を持つ高分子(不飽和ポリエステル、不飽和ポリウレタン、不飽和エポキシ、不飽和メタアクリレート、ポリエーテルアクリレート等)であれば、一括露光、耐薬品性が発揮でき、本発明と同じ効果を示す。
4) A heat-resistant photosensitive polymer (for example, photosensitive benzocyclobutene) having properties similar to polyimide (heat resistance, high internal stress, thermosetting shrinkage, ultraviolet light absorption) also has a siloxane structure even in materials other than photosensitive polyimide. Since the same complementary effect can be expected by combining with organic-inorganic photosensitive resin, the same effect as the present invention is exhibited.
In addition, organic photosensitive resins combined with organic inorganic photosensitive resins having a siloxane structure are polymers with a photosensitive group even though their heat resistance is low (unsaturated polyester, unsaturated polyurethane, unsaturated epoxy, unsaturated methacrylate, polyether acrylate). Etc.), the batch exposure and chemical resistance can be exhibited, and the same effect as the present invention is exhibited.

5)積層膜形成後の熱硬化処理温度は、その最低温度が高い材料が決定する。 例えば、従来の感光性ポリイミドは最低温度350℃、シロキサン構造を有する有機無機感光性樹脂は最低温度150℃であるため、350℃が熱硬化温度となる。シロキサン構造を有する有機無機感光性樹脂は高温耐性が高く、350℃でも問題なく硬化する。
6)シロキサン構造を有する有機無機感光性樹脂と下部または上部または両側の有機感
光性樹脂が同じネガ感光型、同じ光吸収波長帯を持つことが好ましい。
積層膜形成後の光露光工程を一回で済ませることを可能で、さらにシロキサン構造を有する有機無機感光性樹脂は透明な材料であり、厚膜化しても良好な光透過性を示す。
また下部の薄膜有機感光性樹脂(例えば、感光性ポリイミド)は光吸収が大きく、下地Cu等からの反射防止膜としての機能を発揮する。したがって最適な厚み構成の積層構造にすることで露光解像度の向上が期待できる。
5) The thermosetting temperature after forming the laminated film is determined by the material having the lowest minimum temperature. For example, since the conventional photosensitive polyimide has a minimum temperature of 350 ° C. and the organic / inorganic photosensitive resin having a siloxane structure has a minimum temperature of 150 ° C., 350 ° C. is the thermosetting temperature. The organic-inorganic photosensitive resin having a siloxane structure has high temperature resistance and can be cured without any problem even at 350 ° C.
6) It is preferable that the organic inorganic photosensitive resin having a siloxane structure and the organic photosensitive resin on the lower, upper, or both sides have the same negative photosensitive type and the same light absorption wavelength band.
The light exposure process after forming the laminated film can be completed once, and the organic-inorganic photosensitive resin having a siloxane structure is a transparent material and exhibits good light transmittance even when the film thickness is increased.
Further, the lower thin film organic photosensitive resin (for example, photosensitive polyimide) absorbs a large amount of light, and functions as an antireflection film from the underlying Cu or the like. Therefore, an improvement in exposure resolution can be expected by using a laminated structure having an optimum thickness structure.

(4)感光性樹脂絶縁膜の製造方法について
有機感光性樹脂層とシロキサン構造を有する有機無機感光性樹脂層とは、例えばスピンコーター、バーコーター、ブレードコーター、カーテンコーター、スクリーン印刷機等で塗布するか、スプレーコーター等で噴霧塗布する方法により基板上に積層形成することができる。
得られた塗膜は、風乾、オーブン又はホットプレートによる加熱乾燥、真空乾燥などにより乾燥する。
こうして得られた塗膜は、コンタクトアライナー、ミラープロジェクション、ステッパー等の露光装置を用いて、紫外線光源等により露光される。パターンの解像度及び取扱い性の点で、その光源波長はi線が好ましく、装置としてはステッパーが好ましい。
(4) Method for producing photosensitive resin insulating film The organic photosensitive resin layer and the organic inorganic photosensitive resin layer having a siloxane structure are applied by, for example, a spin coater, a bar coater, a blade coater, a curtain coater, or a screen printing machine. Alternatively, it can be laminated on the substrate by a spray coating method using a spray coater or the like.
The obtained coating film is dried by air drying, heat drying with an oven or a hot plate, vacuum drying, or the like.
The coating film thus obtained is exposed with an ultraviolet light source or the like using an exposure apparatus such as a contact aligner, mirror projection, or stepper. In terms of pattern resolution and handleability, the light source wavelength is preferably i-line, and the apparatus is preferably a stepper.

現像は、従来知られているフォトレジストの現像方法、例えば回転スプレー法、パドル法、超音波処理を伴う浸漬法などの中から任意の方法を選んで行うことができる。
使用される現像液としては、前記のポリマー前駆体に対する良溶媒と貧溶媒の組み合わせが好ましい。この良溶媒としては、N−メチルピロリドン、N−アセチル−2−ピロリドン、N,N′−ジメチルアセトアミド、シクロペンタノン、シクロヘキサノン、γ−ブチロラクトン、α−アセチル−γ−ブチロラクトンなどが、また、貧溶媒としてはトルエン、キシレン、メタノール、エタノール、イソプロピルアルコール及び水などが用いられる。良溶媒に対する貧溶媒の割合は使用するポリイミド前駆体の溶解性により調整される。各溶媒を組み合わせて用いることもできる。
The development can be carried out by selecting an arbitrary method from conventionally known photoresist development methods such as a rotary spray method, a paddle method, and an immersion method involving ultrasonic treatment.
The developer used is preferably a combination of a good solvent and a poor solvent for the polymer precursor. Examples of the good solvent include N-methylpyrrolidone, N-acetyl-2-pyrrolidone, N, N′-dimethylacetamide, cyclopentanone, cyclohexanone, γ-butyrolactone, α-acetyl-γ-butyrolactone, and the like. As the solvent, toluene, xylene, methanol, ethanol, isopropyl alcohol, water and the like are used. The ratio of the poor solvent to the good solvent is adjusted by the solubility of the polyimide precursor used. Combinations of the solvents can also be used.

また、カルボン酸含有量の高いものを含む組成物に対しては、コリンヒドロキシド、テトラメチルアンモニウムヒドロキシド等、有機塩基の水溶液に、必要に応じ、上記の溶媒を加えた現像液が用いられる。このようにして得られたポリイミド前駆体組成物のパターンフィルムは加熱して感光性成分を揮散させることにより、ポリイミドに変換される。
加熱変換は、ホットプレート、オーブン、温度プログラムを設定できる昇温式オーブンにより行うことが出来る。加熱変換させる際の雰囲気気体としては空気を用いてもよく、窒素、アルゴン等の不活性ガスを用いることができる。
For a composition containing a high carboxylic acid content, a developer obtained by adding the above solvent to an aqueous solution of an organic base such as choline hydroxide or tetramethylammonium hydroxide is used. . The polyimide precursor composition pattern film thus obtained is converted to polyimide by heating to volatilize the photosensitive component.
The heat conversion can be performed by a hot plate, an oven, or a temperature rising oven in which a temperature program can be set. Air may be used as the atmospheric gas for heat conversion, and an inert gas such as nitrogen or argon can be used.

次に、実施例により本発明をさらに詳細に説明するが、本願発明の範囲はこれらによって限定されるものではない。
(実施例1)
1)基板上に、NMPで1.3倍に希釈した、感光性ポリイミド「PIMEL」(登録商標、旭化成エレクトロニクス株式会社製)I8320をスピンコート(1000RPM)して、密着性向上のための2μm厚の薄膜を形成した(図5−1)。
2)この薄膜を110℃でプリベークし、NMPを揮散し、1μm厚の薄膜ポリイミドを形成した(図5−2)。
EXAMPLES Next, although an Example demonstrates this invention further in detail, the scope of the present invention is not limited by these.
Example 1
1) A photosensitive polyimide “PIMEL” (registered trademark, manufactured by Asahi Kasei Electronics Co., Ltd.) I8320 diluted 1.3 times with NMP is spin-coated (1000 RPM) on the substrate to obtain a thickness of 2 μm for improving adhesion. Was formed (FIG. 5-1).
2) This thin film was pre-baked at 110 ° C. to strip NMP to form a 1 μm-thick thin film polyimide (FIG. 5-2).

3)前記薄膜ポリイミドの上に、シロキサン構造を有する有機無機感光性樹脂「ORMOCER」(登録商標 ドイツ国 Fraunhofer ISC社製)ONEを溶剤添加無しで1分間スピンコート(2800RPM)して、20μm厚のスピンコート膜を得た(図5−3)。
4)このスピンコート膜を110℃でプリベークし、残存揮発成分を除去したが、この際膜の収縮も平坦性低下もなかった(図5−4)。
5)この上に前記1)と同様にして、NMPで1.3倍に希釈した、感光性ポリイミド「PIMEL」(登録商標、旭化成エレクトロニクス株式会社製)I8320をスピンコート(1000RPM)して、2μm厚の薄膜を形成した(図5−5)。
6)前記2)と同様にして、この薄膜を110℃でプリベークし、NMPを揮散し、1μm厚の薄膜ポリイミドを形成した(図5−6)。
3) On the thin film polyimide, an organic inorganic photosensitive resin “ORMOCER” (registered trademark, Fraunhofer ISC, Germany) ONE having a siloxane structure was spin-coated (2800 RPM) for 1 minute without adding a solvent, and the thickness was 20 μm. A spin coat film was obtained (FIG. 5-3).
4) The spin coat film was pre-baked at 110 ° C. to remove the remaining volatile components. At this time, neither the film shrinkage nor the flatness decreased (FIG. 5-4).
5) In the same manner as in 1) above, photosensitive polyimide “PIMEL” (registered trademark, manufactured by Asahi Kasei Electronics Co., Ltd.) I8320 diluted 1.3 times with NMP was spin-coated (1000 RPM), and 2 μm. A thin film was formed (FIGS. 5-5).
6) In the same manner as in 2), this thin film was prebaked at 110 ° C., and NMP was volatilized to form a 1 μm-thick thin film polyimide (FIGS. 5-6).

7)ネガ型マスクを使用し、i線(波長365nm)紫外光照射で架橋反応させ、解像度向上のポストベーク(110℃)を行った後 MIBK(メチルイソブチルケトン)とIPA(イソプロピルアルコール)の1:1混合液を使って、現像処理し、5μm径のViaホールパターンを形成した(図5−7)。
8)このViaホールパターンが形成された3層膜を350℃熱硬化処理した。この際、シロキサン構造を有する有機無機感光性樹脂はSiO2 ナノサイズ粒子が熱処理前から凝集しているため、熱硬化処理を行っても、膜収縮は起こさず、極めて平坦な膜構造を保持していた(図5−8)。
9)さらに、2層目Cu再配線層形成した。積層膜が平坦なため、微細Cu配線が形成された(図5−9)。
7) Using negative mask, crosslink reaction by irradiation with i-line (wavelength 365nm) ultraviolet light, and post-bake (110 ° C) to improve resolution 1 of MIBK (methyl isobutyl ketone) and IPA (isopropyl alcohol) 1 was developed using a mixed solution to form a via hole pattern having a diameter of 5 μm (FIGS. 5-7).
8) The three-layer film on which this Via hole pattern was formed was heat-cured at 350 ° C. At this time, the organic / inorganic photosensitive resin having a siloxane structure has SiO 2 nano-sized particles aggregated before the heat treatment, so that even when thermosetting is performed, the film does not shrink and maintains a very flat film structure. (FIGS. 5-8).
9) Further, a second Cu rewiring layer was formed. Since the laminated film was flat, fine Cu wiring was formed (FIGS. 5-9).

半導体デバイス、多層配線基板などの電気・電子材料、特にLSIチップのバッファコート材料として極めて有用である。   It is extremely useful as a buffer coating material for electrical / electronic materials such as semiconductor devices and multilayer wiring boards, especially LSI chips.

従来の感光性ポリイミドの平坦性悪化を説明する図である。It is a figure explaining the flatness deterioration of the conventional photosensitive polyimide. シロキサン構造を有する有機無機感光性樹脂のモノマ分子構造例を説明する図である。It is a figure explaining the example of a monomer molecular structure of the organic inorganic photosensitive resin which has a siloxane structure. シロキサン構造を有する有機無機感光性樹脂と有機感光性樹脂(例えば、感光性ポリイミド)の性質の比較と補完関係を説明する図である。It is a figure explaining the comparison and complementary relationship of the property of organic inorganic photosensitive resin which has siloxane structure, and organic photosensitive resin (for example, photosensitive polyimide). 本発明の積層構造の1つを説明する図である。It is a figure explaining one of the laminated structure of this invention. 本発明の積層構造の製造プロセスを説明する図である。It is a figure explaining the manufacturing process of the laminated structure of this invention. 本発明の積層構造の製造プロセスを説明する図である。It is a figure explaining the manufacturing process of the laminated structure of this invention. 本発明の積層構造の製造プロセスを説明する図である。It is a figure explaining the manufacturing process of the laminated structure of this invention. 本発明の積層構造の製造プロセスを説明する図である。It is a figure explaining the manufacturing process of the laminated structure of this invention. 本発明の積層構造の製造プロセスを説明する図である。It is a figure explaining the manufacturing process of the laminated structure of this invention. 本発明の積層構造の製造プロセスを説明する図である。It is a figure explaining the manufacturing process of the laminated structure of this invention. 本発明の積層構造の製造プロセスを説明する図である。It is a figure explaining the manufacturing process of the laminated structure of this invention. 本発明の積層構造の製造プロセスを説明する図である。It is a figure explaining the manufacturing process of the laminated structure of this invention. 本発明の積層構造の製造プロセスを説明する図である。It is a figure explaining the manufacturing process of the laminated structure of this invention.

Claims (8)

金属配線基板面上に形成する感光性絶縁膜であって、該絶縁膜がシロキサン構造を有する有機無機感光性樹脂層と、有機樹脂層との複数層を有することを特徴とする感光性絶縁膜。   A photosensitive insulating film formed on the surface of a metal wiring board, wherein the insulating film has a plurality of layers of an organic-inorganic photosensitive resin layer having a siloxane structure and an organic resin layer . 前記有機樹脂層が、有機ネガ型感光性樹脂層であることを特徴とする請求項1記載の感光性絶縁膜。   The photosensitive insulating film according to claim 1, wherein the organic resin layer is an organic negative photosensitive resin layer. 前記有機ネガ型感光性樹脂層が、感光性ポリイミド、ベンゾシクロブテン、不飽和ポリエステル、不飽和ポリウレタン、不飽和エポキシ、不飽和メタアクリレート、ポリエーテルアクリレートのいずれかの層であることを特徴とする請求項1又は2記載の感光性絶縁膜。   The organic negative photosensitive resin layer is a layer of any one of photosensitive polyimide, benzocyclobutene, unsaturated polyester, unsaturated polyurethane, unsaturated epoxy, unsaturated methacrylate, and polyether acrylate. The photosensitive insulating film according to claim 1. 前記有機無機感光性樹脂層と有機ネガ型感光性樹脂層とが、同じ光吸収帯を持つことを特徴とする請求項1〜3のいずれかに記載の感光性絶縁膜。   The photosensitive insulating film according to claim 1, wherein the organic-inorganic photosensitive resin layer and the organic negative photosensitive resin layer have the same light absorption band. 金属配線基板面側から、有機ネガ型感光性樹脂層、次いでシロキサン構造を有する有機無機感光性樹脂層を順に積層してなることを特徴とする請求項1〜4のいずれかに記載の感光性絶縁膜の製造方法。   The photosensitive property according to any one of claims 1 to 4, wherein an organic negative photosensitive resin layer and then an organic inorganic photosensitive resin layer having a siloxane structure are sequentially laminated from the metal wiring board surface side. Insulating film manufacturing method. 金属配線基板面側から、有機ネガ型感光性樹脂層、シロキサン構造を有する有機無機感光性樹脂層、有機ネガ型感光性樹脂層を順に積層してなることを特徴とする請求項1〜4のいずれかに記載の感光性絶縁膜の製造方法。   The organic negative photosensitive resin layer, the organic inorganic photosensitive resin layer having a siloxane structure, and the organic negative photosensitive resin layer are sequentially laminated from the metal wiring board surface side. The manufacturing method of the photosensitive insulating film in any one. 金属配線基板面側から、シロキサン構造を有する有機無機感光性樹脂層、次いで有機ネガ型感光性樹脂層を順に積層してなることを特徴とする請求項1〜4のいずれかに記載の感光性絶縁膜の製造方法。   The photosensitive property according to any one of claims 1 to 4, wherein an organic inorganic photosensitive resin layer having a siloxane structure and then an organic negative photosensitive resin layer are sequentially laminated from the metal wiring board surface side. Insulating film manufacturing method. 金属配線基板面側から、有機ネガ型感光性樹脂層の厚みが1μm、シロキサン構造を有する有機無機感光性樹脂層の厚みが10〜100μm、有機ネガ型感光性樹脂層の厚みが1μmとなるように順に積層してなることを特徴とする請求項1〜4のいずれかに記載の感光性絶縁膜の製造方法。   From the metal wiring board surface side, the thickness of the organic negative photosensitive resin layer is 1 μm, the thickness of the organic inorganic photosensitive resin layer having a siloxane structure is 10 to 100 μm, and the thickness of the organic negative photosensitive resin layer is 1 μm. The method for producing a photosensitive insulating film according to claim 1, wherein the photosensitive insulating film is laminated in order.
JP2005275824A 2005-09-22 2005-09-22 Organic inorganic photosensitive laminated insulating film Pending JP2007086476A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005275824A JP2007086476A (en) 2005-09-22 2005-09-22 Organic inorganic photosensitive laminated insulating film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005275824A JP2007086476A (en) 2005-09-22 2005-09-22 Organic inorganic photosensitive laminated insulating film

Publications (1)

Publication Number Publication Date
JP2007086476A true JP2007086476A (en) 2007-04-05

Family

ID=37973511

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005275824A Pending JP2007086476A (en) 2005-09-22 2005-09-22 Organic inorganic photosensitive laminated insulating film

Country Status (1)

Country Link
JP (1) JP2007086476A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010217545A (en) * 2009-03-17 2010-09-30 Asahi Glass Co Ltd Photolithographic process and developing solution composition
WO2013002417A1 (en) * 2011-06-30 2013-01-03 Fujifilm Corporation Pattern forming method, multi-layered resist pattern, multi-layered film for organic solvent development, resist composition, method for manufacturing electronic device, and electronic device
JP2013033227A (en) * 2011-06-30 2013-02-14 Fujifilm Corp Pattern forming method, multilayer resist pattern, multilayer film for development with organic solvent, resist composition, method for manufacturing electronic device, and electronic device
CN110634794A (en) * 2019-09-27 2019-12-31 合肥鑫晟光电科技有限公司 Method for manufacturing display panel

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62293239A (en) * 1986-06-12 1987-12-19 Nippon Telegr & Teleph Corp <Ntt> Photosensitive high-polymer film and multi-layered wiring board using said film
JPH01123229A (en) * 1987-11-09 1989-05-16 Toray Silicone Co Ltd Pattern forming material and pattern forming method
JPH04181254A (en) * 1989-11-15 1992-06-29 Fujitsu Ltd Polysilphenylenesiloxane, its production, resist material, and semiconductor device
JPH04184444A (en) * 1990-11-20 1992-07-01 Fujitsu Ltd Production of photosensitive heat resistant resin composition and semiconductor device
JPH0572736A (en) * 1991-09-18 1993-03-26 Hitachi Chem Co Ltd Production of fluorine-contained polyimide resin film pattern
JPH06148887A (en) * 1991-01-28 1994-05-27 Oki Electric Ind Co Ltd Photosensitive resin composition
JP2002203851A (en) * 2001-01-05 2002-07-19 Mitsubishi Electric Corp Manufacturing method of semiconductor device
JP2003255534A (en) * 2002-02-28 2003-09-10 Mitsui Chemicals Inc Multilayer photosensitive resin film and insulating film comprising the same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62293239A (en) * 1986-06-12 1987-12-19 Nippon Telegr & Teleph Corp <Ntt> Photosensitive high-polymer film and multi-layered wiring board using said film
JPH01123229A (en) * 1987-11-09 1989-05-16 Toray Silicone Co Ltd Pattern forming material and pattern forming method
JPH04181254A (en) * 1989-11-15 1992-06-29 Fujitsu Ltd Polysilphenylenesiloxane, its production, resist material, and semiconductor device
JPH04184444A (en) * 1990-11-20 1992-07-01 Fujitsu Ltd Production of photosensitive heat resistant resin composition and semiconductor device
JPH06148887A (en) * 1991-01-28 1994-05-27 Oki Electric Ind Co Ltd Photosensitive resin composition
JPH0572736A (en) * 1991-09-18 1993-03-26 Hitachi Chem Co Ltd Production of fluorine-contained polyimide resin film pattern
JP2002203851A (en) * 2001-01-05 2002-07-19 Mitsubishi Electric Corp Manufacturing method of semiconductor device
JP2003255534A (en) * 2002-02-28 2003-09-10 Mitsui Chemicals Inc Multilayer photosensitive resin film and insulating film comprising the same

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010217545A (en) * 2009-03-17 2010-09-30 Asahi Glass Co Ltd Photolithographic process and developing solution composition
WO2013002417A1 (en) * 2011-06-30 2013-01-03 Fujifilm Corporation Pattern forming method, multi-layered resist pattern, multi-layered film for organic solvent development, resist composition, method for manufacturing electronic device, and electronic device
JP2013033227A (en) * 2011-06-30 2013-02-14 Fujifilm Corp Pattern forming method, multilayer resist pattern, multilayer film for development with organic solvent, resist composition, method for manufacturing electronic device, and electronic device
CN103649833A (en) * 2011-06-30 2014-03-19 富士胶片株式会社 Pattern forming method, multi-layered resist pattern, multi-layered film for organic solvent development, resist composition, method for manufacturing electronic device, and electronic device
KR20140043409A (en) * 2011-06-30 2014-04-09 후지필름 가부시키가이샤 Pattern forming method, multi-layered resist pattern, multi-layered film for organic solvent development, resist composition, method for manufacturing electronic device, and electronic device
US9250532B2 (en) 2011-06-30 2016-02-02 Fujifilm Corporation Pattern forming method, multi-layered resist pattern, multi-layered film for organic solvent development, resist composition, method for manufacturing electronic device, and electronic device
KR101708784B1 (en) 2011-06-30 2017-02-21 후지필름 가부시키가이샤 Pattern forming method, multi-layered resist pattern, multi-layered film for organic solvent development, resist composition, method for manufacturing electronic device, and electronic device
CN110634794A (en) * 2019-09-27 2019-12-31 合肥鑫晟光电科技有限公司 Method for manufacturing display panel
CN110634794B (en) * 2019-09-27 2023-04-07 合肥鑫晟光电科技有限公司 Method for manufacturing display panel

Similar Documents

Publication Publication Date Title
TWI710586B (en) Polymer having a structure of polyamide, polyamide-imide, or polyimide, photosensitive resin composition, patterning process, photosensitive dry film, and protective film for electric and electronic parts
JP4736863B2 (en) Positive photosensitive polyamideimide resin composition, pattern manufacturing method, and electronic component
JP6724363B2 (en) Resin and photosensitive resin composition
JP7003659B2 (en) Resin composition
WO2012002134A1 (en) Photosensitive resin composition, photosensitive resin composition film, and semiconductor device using the photosensitive resin composition or the photosensitive resin composition film
WO2017064984A1 (en) Resin and photosensitive resin composition
KR102542822B1 (en) Resin composition, curing relief pattern thereof, and method for manufacturing a semiconductor electronic component or semiconductor device using the same
TWI724143B (en) Photosensitive resin composition, manufacturing method of interlayer insulating film or surface protective film using the same, and interlayer insulating film and surface protective film
JP6888660B2 (en) Resin composition containing polyimide precursor, method for manufacturing cured film and electronic components
JP3872223B2 (en) Positive photosensitive resin composition, method for producing relief pattern, and electronic component
JP7247655B2 (en) Photosensitive resin composition
KR102451559B1 (en) resin composition
JP4736864B2 (en) Positive photosensitive polyamideimide resin composition, pattern manufacturing method, and electronic component
WO2017081922A1 (en) Semiconductor device, and manufacturing method for same
JP2007086476A (en) Organic inorganic photosensitive laminated insulating film
JP2019101440A (en) Positive photosensitive resin composition, cured film, semiconductor device and production method of relief pattern in cured film
JP2018036329A (en) Photosensitive resin composition
JP2018054937A (en) Photosensitive resin composition
JP2000221677A (en) Positive photosensitive resin composition and pattern forming method using same
TWI440980B (en) Photosensitive resin composition, method of fabricating patterned cured layer, and electronic component
JP2022126590A (en) Resin composition, film, cured film, and semiconductor device
WO2020246565A1 (en) Photosensitive polyimide resin composition
JP2020094194A (en) Resin composition, resin sheet, cured film, cured film relief pattern manufacturing method, protective film, insulator film, electronic component, and display device
CN116836388B (en) Positive photosensitive resin, resin composition, preparation method and application thereof
CN116149140B (en) Positive photosensitive resin composition with high chemical resistance and preparation method and application thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080919

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20090401

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100908

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100914

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110308